Powered by Deep Web Technologies
Note: This page contains sample records for the topic "waste acceptance criteria" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA  

Science Conference Proceedings (OSTI)

This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.

U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

2005-07-01T23:59:59.000Z

2

Waste acceptance criteria for closure generated waste  

Science Conference Proceedings (OSTI)

The PORTS Facility has been operating since 1954. The PORTS Facility is used to enrich uranium for nuclear navy applications and commercial nuclear reactors. The PORTS process uses molecular diffusion techniques to separate the U-235 isotope from the U-238 isotope. The PORTS Facility consists of a complex cascade of compressors and converters through which gaseous uranium hexafluoride feed is processed. The feed contains approximately 0.7 percent U-235 by weight while products contain from 4 to 97 percent U-235 by weight, depending on the final application. In general, the majority of the closure wastes generated at PORTS consists of personal protective equipment (PPE), rags, soils, decontamination solutions, and construction related debris. These hazardous wastes will be predominately characterized on the basis of process knowledge. PORTS assumes its conservative waste characterizations that are based on process knowledge are correct unless and until further investigation and/or analysis proves the constituents are not present or are present at concentrations below characteristic regulatory thresholds. Waste Acceptance Criteria for wastes generated by the closure of active and inactive RCRA facilities at PORTS has been developed. The criteria presented in this document govern the activities that are performed during the closure and subsequent generation of waste and relocation from the closure locations to the storage unit. These criteria are intended to ensure the proper handling, classification, processing, and storage of wastes in order to prevent hazardous waste release that may pose a threat to human health or the environment. Any wastes currently stored at each of the facilities that are to be closed will be transferred to the X-326 or X-7725 Storage Units. The waste transfers will be accomplished in accordance with the Container Transfer Plan.

Not Available

1992-05-01T23:59:59.000Z

3

Nevada Test Site Waste Acceptance Criteria  

Science Conference Proceedings (OSTI)

This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2005-10-01T23:59:59.000Z

4

Hanford Site solid waste acceptance criteria  

SciTech Connect

Order 5820.2A requires that each treatment, storage, and/or disposal facility (referred to in this document as TSD unit) that manages low-level or transuranic waste (including mixed waste and TSCA PCB waste) maintain waste acceptance criteria. These criteria must address the various requirements to operate the TSD unit in compliance with applicable safety and environmental requirements. This document sets forth the baseline criteria for acceptance of radioactive waste at TSD units operated by WMH. The criteria for each TSD unit have been established to ensure that waste accepted can be managed in a manner that is within the operating requirements of the unit, including environmental regulations, DOE Orders, permits, technical safety requirements, waste analysis plans, performance assessments, and other applicable requirements. Acceptance criteria apply to the following TSD units: the Low-Level Burial Grounds (LLBG) including both the nonregulated portions of the LLBG and trenches 31 and 34 of the 218-W-5 Burial Ground for mixed waste disposal; Central Waste Complex (CWC); Waste Receiving and Processing Facility (WRAP); and T Plant Complex. Waste from all generators, both from the Hanford Site and from offsite facilities, must comply with these criteria. Exceptions can be granted as provided in Section 1.6. Specific waste streams could have additional requirements based on the 1901 identified TSD pathway. These requirements are communicated in the Waste Specification Records (WSRds). The Hanford Site manages nonradioactive waste through direct shipments to offsite contractors. The waste acceptance requirements of the offsite TSD facility must be met for these nonradioactive wastes. This document does not address the acceptance requirements of these offsite facilities.

Ellefson, M.D.

1998-07-01T23:59:59.000Z

5

Hanford Site Solid Waste Acceptance Criteria  

Science Conference Proceedings (OSTI)

This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

Not Available

1993-11-17T23:59:59.000Z

6

Nevada Test Site Waste Acceptance Criteria (NTSWAC)  

SciTech Connect

This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

NNSA /NSO Waste Management Project

2008-06-01T23:59:59.000Z

7

Nevada National Security Site Waste Acceptance Criteria  

Science Conference Proceedings (OSTI)

This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

NSTec Environmental Management

2011-01-01T23:59:59.000Z

8

Nevada National Security Site Waste Acceptance Criteria  

SciTech Connect

This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept the following: ? DOE hazardous and non-hazardous non-radioactive classified waste ? DOE low-level radioactive waste (LLW) ? DOE mixed low-level waste (MLLW) ? U.S. Department of Defense (DOD) classified waste The LLW and MLLW listed above may also be classified waste. Classified waste is the only waste accepted for disposal that may be non-radioactive and shall be required to meet the waste acceptance criteria for radioactive waste as specified in this document. Classified waste may be sent to the NNSS as classified matter. Section 3.1.18 provides the requirements that must be met for permanent burial of classified matter. The NNSA/NFO and support contractors are available to assist the generator in understanding or interpreting this document. For assistance, please call the NNSA/NFO Environmental Management Operations (EMO) at (702) 295-7063, and the call will be directed to the appropriate contact.

none,

2013-06-01T23:59:59.000Z

9

Nevada National Security Site Waste Acceptance Criteria  

Science Conference Proceedings (OSTI)

This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept DOE non-radioactive classified waste, DOE non-radioactive hazardous classified waste, DOE low-level radioactive waste (LLW), DOE mixed low-level waste (MLLW), and U.S. Department of Defense (DOD) classified waste for permanent disposal. Classified waste is the only waste accepted for disposal that may be non-radioactive and will be required to meet the waste acceptance criteria for radioactive waste as specified in this document. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project (WMP) at (702) 295-7063, and your call will be directed to the appropriate contact.

NSTec Environmental Management

2012-02-28T23:59:59.000Z

10

NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA, JUNE 2006  

Science Conference Proceedings (OSTI)

This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE

2006-06-01T23:59:59.000Z

11

Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria  

SciTech Connect

The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

W. Mahlon Heileson

2006-10-01T23:59:59.000Z

12

WIPP waste acceptance criteria and transportation system  

Science Conference Proceedings (OSTI)

The Waste Isolation Pilot Plant (WIPP), located near Carlsbad, New Mexico, USA, is a US Department of Energy (DOE) facility designed as a permanent repository for transuranic wastes in the center of a 2,000-foot-thick salt bed situated 2,150 feet underground. Construction of the facility started in 1975, under a congressional act of site selection. In 1979, demonstration of safe disposal at the WIPP was authorized by Public Law 96-164. The operational philosophy and practice at the facility are: (1) start clean -- stay clean, (2) meet or exceed regulatory requirements, and (3) control radiation exposure levels to as low as reasonably achievable (ALARA). Strict safety measures must be taken in the areas of waste preparation, transportation, and facility operation.

Wu, C.F.; Ward, T.R.; Gregory, P.C.

1991-12-31T23:59:59.000Z

13

TRU waste acceptance criteria for the Waste Isolation Pilot Plant: Revision 3  

SciTech Connect

This document is intended to delineate the criteria by which unclassified waste will be accepted for emplacement at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico and describe the bases upon which these criteria were established. These criteria are not intended to be specifications but rather limits that will allow waste generating and shipping sites to develop their own procedures and specifications for preparation of TRU waste for shipment to the WIPP. These criteria will also allow waste generating sites to plan future facilities for waste preparation that will produce TRU waste forms compatible with WIPP waste emplacement and isolation requirements. These criteria only apply to contract-handled (CH) and remote-handled (RH) transuranic (TRU) waste forms and are not intended to apply to beta-gamma wastes, spent fuel, high-level waste (HLW), low-level waste (LLW), low specific activity (LSA) waste, or forms of radioactive waste for experimental purposes. Specifications for receipt of experimental waste forms will be prepared by the responsible projects in conjunction with the staff of the WIPP project at a later date. In addition, these criteria only apply to waste emplaced in bedded rock salt. Technical bases for these criteria may differ significantly from those for other host rocks. 25 refs. 4 figs., 1 tab.

1989-01-01T23:59:59.000Z

14

Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant  

Science Conference Proceedings (OSTI)

The purpose of this document is to summarize the waste acceptance criteria applicable to the transportation, storage, and disposal of contact-handled transuranic (CH-TRU) waste at the Waste Isolation Pilot Plant (WIPP). These criteria serve as the U.S. Department of Energy's (DOE) primary directive for ensuring that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.The authorization basis of WIPP for the disposal of CH-TRU waste includes the U.S.Department of Energy National Security and Military Applications of Nuclear EnergyAuthorization Act of 1980 (reference 1) and the WIPP Land Withdrawal Act (LWA;reference 2). Included in this document are the requirements and associated criteriaimposed by these acts and the Resource Conservation and Recovery Act (RCRA,reference 3), as amended, on the CH-TRU waste destined for disposal at WIPP.|The DOE TRU waste sites must certify CH-TRU waste payload containers to thecontact-handled waste acceptance criteria (CH-WAC) identified in this document. Asshown in figure 1.0, the flow-down of applicable requirements to the CH-WAC istraceable to several higher-tier documents, including the WIPP operational safetyrequirements derived from the WIPP CH Documented Safety Analysis (CH-DSA;reference 4), the transportation requirements for CH-TRU wastes derived from theTransuranic Package Transporter-Model II (TRUPACT-II) and HalfPACT Certificates ofCompliance (references 5 and 5a), the WIPP LWA (reference 2), the WIPP HazardousWaste Facility Permit (reference 6), and the U.S. Environmental Protection Agency(EPA) Compliance Certification Decision and approval for PCB disposal (references 7,34, 35, 36, and 37). The solid arrows shown in figure 1.0 represent the flow-down of allapplicable payload container-based requirements. The two dotted arrows shown infigure 1.0 represent the flow-down of summary level requirements only; i.e., the sitesmust reference the regulatory source documents from the U.S. Nuclear RegulatoryCommission (NRC) and the New Mexico Environment Department (NMED) for acomprehensive and detailed listing of the requirements.This CH-WAC does not address the subject of waste characterization relating to adetermination of whether the waste is hazardous; rather, the sites are referred to theWaste Analysis Plan (WAP) contained in the WIPP Hazardous Waste Facility Permit fordetails of the sampling and analysis protocols to be used in determining compliance withthe required physical and chemical properties of the waste. Requirements andassociated criteria pertaining to a determination of the radiological properties of thewaste, however, are addressed in appendix A of this document. The collectiveinformation obtained from waste characterization records and acceptable knowledge(AK) serves as the basis for sites to certify that their CH-TRU waste satisfies the WIPPwaste acceptance criteria listed herein.

Washington TRU Solutions LLC

2005-12-29T23:59:59.000Z

15

Methods for verifying compliance with low-level radioactive waste acceptance criteria  

Science Conference Proceedings (OSTI)

This report summarizes the methods that are currently employed and those that can be used to verify compliance with low-level radioactive waste (LLW) disposal facility waste acceptance criteria (WAC). This report presents the applicable regulations representing the Federal, State, and site-specific criteria for accepting LLW. Typical LLW generators are summarized, along with descriptions of their waste streams and final waste forms. General procedures and methods used by the LLW generators to verify compliance with the disposal facility WAC are presented. The report was written to provide an understanding of how a regulator could verify compliance with a LLW disposal facility`s WAC. A comprehensive study of the methodology used to verify waste generator compliance with the disposal facility WAC is presented in this report. The study involved compiling the relevant regulations to define the WAC, reviewing regulatory agency inspection programs, and summarizing waste verification technology and equipment. The results of the study indicate that waste generators conduct verification programs that include packaging, classification, characterization, and stabilization elements. The current LLW disposal facilities perform waste verification steps on incoming shipments. A model inspection and verification program, which includes an emphasis on the generator`s waste application documentation of their waste verification program, is recommended. The disposal facility verification procedures primarily involve the use of portable radiological survey instrumentation. The actual verification of generator compliance to the LLW disposal facility WAC is performed through a combination of incoming shipment checks and generator site audits.

NONE

1993-09-01T23:59:59.000Z

16

Preliminary waste acceptance criteria for the ICPP spent fuel and waste management technology development program  

SciTech Connect

The purpose of this document is to identify requirements to be met by the Producer/Shipper of Spent Nuclear Fuel/High-LeveL Waste SNF/HLW in order for DOE to be able to accept the packaged materials. This includes defining both standard and nonstandard waste forms.

Taylor, L.L.; Shikashio, R.

1993-09-01T23:59:59.000Z

17

CHARACTERIZATION OF TANK 50 SLURRY FOR SALTSTONE WASTE ACCEPTANCE CRITERIA, APRIL 2007 SAMPLES  

DOE Green Energy (OSTI)

This report summarizes the results from the characterization of the second quarter April 2007 sampling of Tank 50H for the Saltstone Waste Acceptance Criteria (WAC). Six one liter samples were taken in polyethylene bottles to analyze for the WAC contaminants and a 200 mL sample was taken in a steel container for analysis of volatile organic compounds. The information from this characterization will be given to Waste Solidification Engineering personnel to qualify the transfer of aqueous waste to the Saltstone Facility. The following conclusions are drawn from the analytical results found in this report: (1) All six of the one liter samples taken in April 2007 from the mixed slurry in Tank 50 have the same compositions within the experimental uncertainty of the analyses. (2) Of the ninety-one process, chemical, and radioactive WAC target or limit contaminants listed in Revision 7 of the 'Waste Acceptance Criteria for Aqueous Waste sent to the Z-Area Saltstone Production Facility', eighty-nine had concentrations that were unequivocally less than the WAC limit or target. (3) The two contaminants whose concentrations could not be shown to be less than their WAC targets were methanol and radioactive Nb-93m. Currently the AD Section of SRNL does not have a method for measuring methanol in caustic solutions. For Nb-93m the results are ambiguous due to possible interferences in the ICP-MS analysis from Zr-93 or Mo-93. (4) Of the six additional chemical and radioactive contaminants requested in the TTR for Saltstone qualification, five were measured or calculated. These were Sb, Be, Tl, along with total beta and gamma. The AD Section does not have a method to measure the 6th contaminant which was the cyanide ion.

Zeigler, K; Ned Bibler, N; David Diprete, D

2007-12-07T23:59:59.000Z

18

Evaluation of ISDP Batch 2 Qualification Compliance to 512-S, DWPF, Tank Farm, and Saltstone Waste Acceptance Criteria  

Science Conference Proceedings (OSTI)

The purpose of this report is to document the acceptability of the second macrobatch (Salt Batch 2) of Tank 49H waste to H Tank Farm, DWPF, and Saltstone for operation of the Interim Salt Disposition Project (ISDP). Tank 49 feed meets the Waste Acceptance Criteria (WAC) requirements specified by References 11, 12, and 13. Salt Batch 2 material is qualified and ready to be processed through ARP/MCU to the final disposal facilities.

Shafer, A.

2010-05-05T23:59:59.000Z

19

Structural acceptance criteria for the evaulation of existing double-shell waste storage tanks located at the Hanford site, Richland, Washington  

SciTech Connect

The structural acceptance criteria contained herein for the evaluation of existing underground double-shell waste storage tanks located at the Hanford Site is part of the Life Management/Aging Management Program of the Tank Waste Remediation System. The purpose of the overall life management program is to ensure that confinement of the waste is maintained over the required service life of the tanks. Characterization of the present condition of the tanks, understanding and characterization of potential degradation mechanisms, and development of tank structural acceptance criteria based on previous service and projected use are prerequisites to assessing tank integrity, to projecting the length of tank service, and to developing and applying prudent fixes or repairs. The criteria provided herein summarize the requirements for the analysis and structural qualification of the existing double-shell tanks for continued operation. Code reconciliation issues and material degradation under aging conditions are addressed. Although the criteria were developed for double-shell tanks, many of the provisions are equally applicable to single-shell tanks. However, the criteria do not apply to the evaluation of tank appurtenances and buried piping.

Julyk, L.J.; Day, A.D.; Dyrness, A.D.; Moore, C.J.; Peterson, W.S.; Scott, M.A.; Shrivastava, H.P.; Sholman, J.S.; Watts, T.N.

1995-09-01T23:59:59.000Z

20

DWPF COAL-CARBON WASTE ACCEPTANCE CRITERIA LIMIT EVALUATION BASED ON EXPERIMENTAL WORK (TANK 48 IMPACT STUDY)  

DOE Green Energy (OSTI)

This report summarizes the results of both experimental and modeling studies performed using Sludge Batch 10 (SB10) simulants and FBSR product from Tank 48 simulant testing in order to develop higher levels of coal-carbon that can be managed by DWPF. Once the Fluidized Bed Steam Reforming (FBSR) process starts up for treatment of Tank 48 legacy waste, the FBSR product stream will contribute higher levels of coal-carbon in the sludge batch for processing at DWPF. Coal-carbon is added into the FBSR process as a reductant and some of it will be present in the FBSR product as unreacted coal. The FBSR product will be slurried in water, transferred to Tank Farm and will be combined with sludge and washed to produce the sludge batch that DWPF will process. The FBSR product is high in both water soluble sodium carbonate and unreacted coal-carbon. Most of the sodium carbonate is removed during washing but all of the coal-carbon will remain and become part of the DWPF sludge batch. A paper study was performed earlier to assess the impact of FBSR coal-carbon on the DWPF Chemical Processing Cell (CPC) operation and melter off-gas flammability by combining it with SB10-SB13. The results of the paper study are documented in Ref. 7 and the key findings included that SB10 would be the most difficult batch to process with the FBSR coal present and up to 5,000 mg/kg of coal-carbon could be fed to the melter without exceeding the off-gas flammability safety basis limits. In the present study, a bench-scale demonstration of the DWPF CPC processing was performed using SB10 simulants spiked with varying amounts of coal, and the resulting seven CPC products were fed to the DWPF melter cold cap and off-gas dynamics models to determine the maximum coal that can be processed through the melter without exceeding the off-gas flammability safety basis limits. Based on the results of these experimental and modeling studies, the presence of coal-carbon in the sludge feed to DWPF is found to have both positive (+) and negative (-) impact as summarized below: (-) Coal-carbon is a melter reductant. If excess coal-carbon is present, the resulting melter feed may be too reducing, potentially shortening the melter life. During this study, the Reduction/Oxidation Potential (REDOX) of the melter could be controlled by varying the ratio of nitric and formic acid. (-) The addition of coal-carbon increases the amount of nitric acid added and decreases the amount of formic acid added to control melter REDOX. This means that the CPC with the FBSR product is much more oxidizing than current CPC processing. In this study, adequate formic acid was present in all experiments to reduce mercury and manganese, two of the main goals of CPC processing. (-) Coal-carbon will be oxidized to carbon dioxide or carbon monoxide in the melter. The addition of coal-carbon to the FBSR product will lead to approximately 55% higher offgas production from formate, nitrate and carbon due to the decomposition of the carbon at the maximum levels in this testing. Higher offgas production could lead to higher cold cap coverage or melter foaming which could decrease melt rate. No testing was performed to evaluate the impact of the higher melter offgas flow. (+) The hydrogen production is greatly reduced in testing with coal as less formic acid is added in CPC processing. In the high acid run without coal, the peak hydrogen generation was 15 times higher than in the high acid run with added coal-carbon. (+) Coal-carbon is a less problematic reducing agent than formic acid, since the content of both carbon and hydrogen are important in evaluating the flammability of the melter offgas. Processing with coal-carbon decreases the amount of formic acid added in the CPC, leading to a lower flammability risk in processing with coal-carbon compared to the current DWPF flowsheet. (+) The seven SB10 formulations which were tested during the bench-scale CPC demonstration were all determined to be within the off-gas flammability safety basis limits during the 9X/5X off-gas surge for normal bubbled melter

Lambert, D.; Choi, A.

2010-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "waste acceptance criteria" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DWPF COAL-CARBON WASTE ACCEPTANCE CRITERIA LIMIT EVALUATION BASED ON EXPERIMENTAL WORK (TANK 48 IMPACT STUDY)  

Science Conference Proceedings (OSTI)

This report summarizes the results of both experimental and modeling studies performed using Sludge Batch 10 (SB10) simulants and FBSR product from Tank 48 simulant testing in order to develop higher levels of coal-carbon that can be managed by DWPF. Once the Fluidized Bed Steam Reforming (FBSR) process starts up for treatment of Tank 48 legacy waste, the FBSR product stream will contribute higher levels of coal-carbon in the sludge batch for processing at DWPF. Coal-carbon is added into the FBSR process as a reductant and some of it will be present in the FBSR product as unreacted coal. The FBSR product will be slurried in water, transferred to Tank Farm and will be combined with sludge and washed to produce the sludge batch that DWPF will process. The FBSR product is high in both water soluble sodium carbonate and unreacted coal-carbon. Most of the sodium carbonate is removed during washing but all of the coal-carbon will remain and become part of the DWPF sludge batch. A paper study was performed earlier to assess the impact of FBSR coal-carbon on the DWPF Chemical Processing Cell (CPC) operation and melter off-gas flammability by combining it with SB10-SB13. The results of the paper study are documented in Ref. 7 and the key findings included that SB10 would be the most difficult batch to process with the FBSR coal present and up to 5,000 mg/kg of coal-carbon could be fed to the melter without exceeding the off-gas flammability safety basis limits. In the present study, a bench-scale demonstration of the DWPF CPC processing was performed using SB10 simulants spiked with varying amounts of coal, and the resulting seven CPC products were fed to the DWPF melter cold cap and off-gas dynamics models to determine the maximum coal that can be processed through the melter without exceeding the off-gas flammability safety basis limits. Based on the results of these experimental and modeling studies, the presence of coal-carbon in the sludge feed to DWPF is found to have both positive (+) and negative (-) impact as summarized below: (-) Coal-carbon is a melter reductant. If excess coal-carbon is present, the resulting melter feed may be too reducing, potentially shortening the melter life. During this study, the Reduction/Oxidation Potential (REDOX) of the melter could be controlled by varying the ratio of nitric and formic acid. (-) The addition of coal-carbon increases the amount of nitric acid added and decreases the amount of formic acid added to control melter REDOX. This means that the CPC with the FBSR product is much more oxidizing than current CPC processing. In this study, adequate formic acid was present in all experiments to reduce mercury and manganese, two of the main goals of CPC processing. (-) Coal-carbon will be oxidized to carbon dioxide or carbon monoxide in the melter. The addition of coal-carbon to the FBSR product will lead to approximately 55% higher offgas production from formate, nitrate and carbon due to the decomposition of the carbon at the maximum levels in this testing. Higher offgas production could lead to higher cold cap coverage or melter foaming which could decrease melt rate. No testing was performed to evaluate the impact of the higher melter offgas flow. (+) The hydrogen production is greatly reduced in testing with coal as less formic acid is added in CPC processing. In the high acid run without coal, the peak hydrogen generation was 15 times higher than in the high acid run with added coal-carbon. (+) Coal-carbon is a less problematic reducing agent than formic acid, since the content of both carbon and hydrogen are important in evaluating the flammability of the melter offgas. Processing with coal-carbon decreases the amount of formic acid added in the CPC, leading to a lower flammability risk in processing with coal-carbon compared to the current DWPF flowsheet. (+) The seven SB10 formulations which were tested during the bench-scale CPC demonstration were all determined to be within the off-gas flammability safety basis limits during the 9X/5X off-gas surge for normal bubbled melter

Lambert, D.; Choi, A.

2010-10-15T23:59:59.000Z

22

Nonhazardous Solid Waste Management Regulations & Criteria (Mississippi)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of the Nonhazardous Solid Waste Management Regulations & Criteria is to establish a minimum State Criteria under the Mississippi Solid Waste Law for all solid waste management...

23

Fuel Reliability Program: Proposed RIA Acceptance Criteria  

Science Conference Proceedings (OSTI)

The NRC is in the process of finalizing the interim RIA failure criteria published in NUREG-0800, Standard Review Plan, Section 4.2, Fuel System Design, Revision 3. A technical evaluation of the RIA issue has been conducted under the auspices of the EPRI Fuel Reliability Program with the objective of proposing a final version of the interim RIA failure criteria for PCMI processes. The approach used in the technical evaluation combined experimental data from a variety of sources, including integral RIA-si...

2010-12-23T23:59:59.000Z

24

Inelastic analysis acceptance criteria for radioactive material transportation containers  

SciTech Connect

The design criteria currently used in the design of radioactive material (RAM) transportation containers are taken from the ASME Boiler and Pressure Vessel Code (ASME, 1992). These load-based criteria are ideally suited for pressure vessels where the loading is quasistatic and all stresses are in equilibrium with externally applied loads. For impact events, the use of load-based criteria is less supportable. Impact events tend to be energy controlled, and thus, energy-based acceptance criteria would appear to be more appropriate. Determination of an ideal design criteria depends on what behavior is desired. Currently there is not a design criteria for inelastic analysis for RAM nation packages that is accepted by the regulatory agencies. This lack of acceptance criteria is one of the major factors in limiting the use of inelastic analysis. In this paper inelastic analysis acceptance criteria based on stress and strain-energy density will be compared for two stainless steel test units subjected to impacts onto an unyielding target. Two different material models are considered for the inelastic analysis, a bilinear fit of the stress-strain curve and a power law hardening model that very closely follows the stress-strain curve. It is the purpose of this paper to stimulate discussion and research into the area of strain-energy density based inelastic analysis acceptance criteria.

Ammerman, D.J.; Ludwigsen, J.S.

1993-06-01T23:59:59.000Z

25

Hazardous Waste Management Implementation Inspection Criteria...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to the Director of the Office of ES&H Evaluations on (301) 903-5392. Subject: Hazardous Waste Management Inplementation Inspection Criteria, Approach, Evaluations Management Date:...

26

Reportable Nuclide Criteria for ORNL Waste Management Activities - 13005  

SciTech Connect

The U.S. Department of Energy's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee generates numerous radioactive waste streams. Many of those streams contain a large number of radionuclides with an extremely broad range of concentrations. To feasibly manage the radionuclide information, ORNL developed a reportable nuclide criteria to distinguish between those nuclides in a waste stream that require waste tracking versus those nuclides of such minimal activity that do not require tracking. The criteria include tracking thresholds drawn from ORNL onsite management requirements, transportation requirements, and relevant treatment and disposal facility acceptance criteria. As a management practice, ORNL maintains waste tracking on a nuclide in a specific waste stream if it exceeds any of the reportable nuclide criteria. Nuclides in a specific waste stream that screen out as non-reportable under all these criteria may be dropped from ORNL waste tracking. The benefit of this criteria is to ensure that nuclides in a waste stream with activities which meaningfully affect safety and compliance are tracked, while documenting the basis for removing certain isotopes from further consideration.

McDowell, Kip [ORNL; Forrester, Tim [ORNL; Saunders, Mark Edward [ORNL

2013-01-01T23:59:59.000Z

27

MCO combustible gas management leak test acceptance criteria  

DOE Green Energy (OSTI)

Existing leak test acceptance criteria for mechanically sealed and weld sealed multi-canister overpacks (MCO) were evaluated to ensure that MCOs can be handled and stored in stagnant air without compromising the Spent Nuclear Fuel Project's overall strategy to prevent accumulation of combustible gas mixtures within MCO's or within their surroundings. The document concludes that the integrated leak test acceptance criteria for mechanically sealed and weld sealed MCOs (1 x 10{sup -5} std cc/sec and 1 x 10{sup -7} std cc/sec, respectively) are adequate to meet all current and foreseeable needs of the project, including capability to demonstrate compliance with the NFPA 60 Paragraph 3-3 requirement to maintain hydrogen concentrations [within the air atmosphere CSB tubes] t or below 1 vol% (i.e., at or below 25% of the LFL).

SHERRELL, D.L.

1999-05-11T23:59:59.000Z

28

Automated Transportation Management System (ATMS) V2.0 logistics module PBI acceptance criteria  

Science Conference Proceedings (OSTI)

This document defines the acceptance criteria for the Automated Transportation Management System V2.0 Logistics Module Performance Based Incentive (PBI). This acceptance criteria will be the primary basis for the generation of acceptance test procedures. The purpose of this document is to define the minimum criteria that must be fulfilled to guarantee acceptance of the Logistics Module.

Weidert, R.S.

1995-02-28T23:59:59.000Z

29

NWTS program criteria for mined geologic disposal of nuclear waste: program objectives, functional requirements, and system performance criteria  

SciTech Connect

At the present time, final repository criteria have not been issued by the responsible agencies. This document describes general objectives, requirements, and criteria that the DOE intends to apply in the interim to the National Waste Terminal Storage (NWTS) Program. These objectives, requirements, and criteria have been developed on the basis of DOE's analysis of what is needed to achieve the National objective of safe waste disposal in an environmentally acceptable and economic manner and are expected to be consistent with anticipated regulatory standards. The qualitative statements in this document address the broad issues of public and occupational health and safety, institutional acceptability, engineering feasibility, and economic considerations. A comprehensive set of criteria, general and project specific, of which these are a part, will constitute a portion of the technical basis for preparation and submittal by the DOE of formal documents to support future license applications for nuclear waste repositories.

None

1981-04-01T23:59:59.000Z

30

Waste Acceptance Testing of Secondary Waste Forms: Cast Stone, Ceramicrete and DuraLith  

SciTech Connect

To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions has initiated secondary-waste-form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is conducting tests on four candidate waste forms to evaluate their ability to meet potential waste acceptance criteria for immobilized secondary wastes that would be placed in the IDF. All three waste forms demonstrated compressive strengths above the minimum 3.45 MPa (500 psi) set as a target for cement-based waste forms. Further, none of the waste forms showed any significant degradation in compressive strength after undergoing thermal cycling (30 cycles in a 10 day period) between -40 C and 60 C or water immersion for 90 days. The three leach test methods are intended to measure the diffusion rates of contaminants from the waste forms. Results are reported in terms of diffusion coefficients and a leachability index (LI) calculated based on the diffusion coefficients. A smaller diffusion coefficient and a larger LI are desired. The NRC, in its Waste Form Technical Position (NRC 1991), provides recommendations and guidance regarding methods to demonstrate waste stability for land disposal of radioactive waste. Included is a recommendation to conduct leach tests using the ANS 16.1 method. The resulting leachability index (LI) should be greater than 6.0. For Hanford secondary wastes, the LI > 6.0 criterion applies to sodium leached from the waste form. For technetium and iodine, higher targets of LI > 9 for Tc and LI > 11 for iodine have been set based on early waste-disposal risk and performance assessment analyses. The results of these three leach tests conducted for a total time between 11days (ASTM C1308) to 90 days (ANS 16.1) showed: (1) Technetium diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that all the waste forms had leachability indices better than the target LI > 9 for technetium; (2) Rhenium diffusivity: Cast Stone 2M specimens, when tested using EPA 1315 protocol, had leachability indices better than the target LI > 9 for technetium based on rhenium as a surrogate for technetium. All other waste forms tested by ANSI/ANS 16.1, ASTM C1308, and EPA 1315 test methods had leachability indices that were below the target LI > 9 for Tc based on rhenium release. These studies indicated that use of Re(VII) as a surrogate for 99Tc(VII) in low temperature secondary waste forms containing reductants will provide overestimated diffusivity values for 99Tc. Therefore, it is not appropriate to use Re as a surrogate 99Tc in future low temperature waste form studies. (3) Iodine diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that the three waste forms had leachability indices that were below the target LI > 11 for iodine. Therefore, it may be necessary to use a more effective sequestering material than silver zeolite used in two of the waste forms (Ceramicrete and DuraLith); (4) Sodium diffusivity: All the waste form specimens tested by the three leach methods (ANSI/ANS 16.1, ASTM C1308, and EPA 1315) exceeded the target LI value of 6; (5) All three leach methods (ANS 16.1, ASTM C1308 and EPA 1315) provided similar 99Tc diffusivity values for both short-time transient diffusivity effects as well as long-term ({approx}90 days) steady diffusivity from each of the three tested waste forms (Cast Stone 2M, Ceramicrete and DuraLith). Therefore, any one of the three methods can be used to determine the contaminant diffusivities from a selected waste form.

Mattigod, Shas V.; Westsik, Joseph H.; Chung, Chul-Woo; Lindberg, Michael J.; Parker, Kent E.

2011-08-12T23:59:59.000Z

31

Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221F-HET/Drums  

Science Conference Proceedings (OSTI)

This report is fully responsive to the requirements of Section 4.0 Acceptable Knowledge from the WIPP Transuranic Waste Characterization Quality Assurance Plan, CAO-94-1010, and provides a sound, (and auditable) characterization that satisfies the WIPP criteria for Acceptable Knowledge.

Lunsford, G.F.

1999-06-14T23:59:59.000Z

32

EM Waste Acceptance Product Specification (WAPS) for Vitrified High-Level Waste Forms  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Waste Acceptance Product EM Waste Acceptance Product Specification (WAPS) for Vitrified High-Level Waste Forms Presentation to the HLW Corporate Board July 24, 2008 By Tony Kluk/Ken Picha 2 Background * Originally Waste Acceptance Preliminary Specifications were Office of Civilian Radioactive Waste Management (RW) documents and project specific: - Defense Waste Processing Facility (PE-03, July 1989) - West Valley Demonstration Project (PE-04, January 1990) * Included many of same specifications as current version of WAPS * First version of RW Waste Acceptance System Requirements Document in January 1993 (included requirements for both SNF and HLW) * EM decided to extract requirements for HLW and put into the WAPS document 3 Background (Cont'd) * Lists technical specifications for acceptance of borosilicate HLW

33

Acceptable knowledge document for INEEL stored transuranic waste -- Rocky Flats Plant waste. Revision 2  

Science Conference Proceedings (OSTI)

This document and supporting documentation provide a consistent, defensible, and auditable record of acceptable knowledge for waste generated at the Rocky Flats Plant which is currently in the accessible storage inventory at the Idaho National Engineering and Environmental Laboratory. The inventory consists of transuranic (TRU) waste generated from 1972 through 1989. Regulations authorize waste generators and treatment, storage, and disposal facilities to use acceptable knowledge in appropriate circumstances to make hazardous waste determinations. Acceptable knowledge includes information relating to plant history, process operations, and waste management, in addition to waste-specific data generated prior to the effective date of the RCRA regulations. This document is organized to provide the reader a comprehensive presentation of the TRU waste inventory ranging from descriptions of the historical plant operations that generated and managed the waste to specific information about the composition of each waste group. Section 2 lists the requirements that dictate and direct TRU waste characterization and authorize the use of the acceptable knowledge approach. In addition to defining the TRU waste inventory, Section 3 summarizes the historical operations, waste management, characterization, and certification activities associated with the inventory. Sections 5.0 through 26.0 describe the waste groups in the inventory including waste generation, waste packaging, and waste characterization. This document includes an expanded discussion for each waste group of potential radionuclide contaminants, in addition to other physical properties and interferences that could potentially impact radioassay systems.

NONE

1998-01-23T23:59:59.000Z

34

Proposed waste form performance criteria and testing methods for low-level mixed waste  

SciTech Connect

This document describes proposed waste form performance criteria and testing method that could be used as guidance in judging viability of a waste form as a physico-chemical barrier to releases of radionuclides and RCRA regulated hazardous components. It is assumed that release of contaminants by leaching is the single most important property by which the effectiveness of a waste form is judged. A two-tier regimen is proposed. The first tier includes a leach test required by the Environmental Protection Agency and a leach test designed to determine the net forward leach rate for a variety of materials. The second tier of tests are to determine if a set of stresses (i.e., radiation, freeze-thaw, wet-dry cycling) on the waste form adversely impact its ability to retain contaminants and remain physically intact. It is recommended that the first tier tests be performed first to determine acceptability. Only on passing the given specifications for the leach tests should other tests be performed. In the absence of site-specific performance assessments (PA), two generic modeling exercises are described which were used to calculate proposed acceptable leach rates.

Franz, E.M.; Fuhrmann, M.; Bowerman, B. [Brookhaven National Lab., Upton, NY (United States); Bates, S. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Peters, R. [Battelle Pacific Northwest Lab., Richland, WA (United States)

1994-08-01T23:59:59.000Z

35

Nonhazardous Solid Waste Management Regulations and Criteria (Mississippi)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nonhazardous Solid Waste Management Regulations and Criteria Nonhazardous Solid Waste Management Regulations and Criteria (Mississippi) Nonhazardous Solid Waste Management Regulations and Criteria (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Mississippi Program Type Environmental Regulations

36

Radioactive Waste Management, Inspection Criteria; Approach,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

include the applicable elements identified in the specific waste-type chapters of DOE M 435.1-1; and be developed using the graded approach process? Has a process been...

37

Example Procedures for Developing Acceptance-Range Criteria for BESTEST-EX  

NLE Websites -- All DOE Office Websites (Extended Search)

502 502 August 2010 Example Procedures for Developing Acceptance-Range Criteria for BESTEST-EX Ron Judkoff, Ben Polly, and Marcus Bianchi National Renewable Energy Laboratory Joel Neymark J. Neymark & Associates Link to Accompanying Zipped Data Files (938 KB) Technical Report Example Procedures for NREL/TP-550-47502 Developing Acceptance-Range August 2010 Criteria for BESTEST-EX Ron Judkoff, Ben Polly, and Marcus Bianchi National Renewable Energy Laboratory Joel Neymark J. Neymark & Associates Prepared under Task No. ARRB.1000 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy

38

Notice of inquiry on waste acceptance issues: Response summary  

SciTech Connect

On May 25, 1994, the Department of Energy published a Notice of Inquiry on Waste Acceptance Issues in the Federal Register. Through this Notice of Inquiry, the Department sought to implement the Secretary`s initiative to explore with affected parties various options and methods for sharing the costs related to the financial burden associated with continued on-site storage by eliciting the views of affected parties on: (1) The Department`s preliminary view that it does not have a statutory obligation to begin accepting spent nuclear fuel in 1998 in the absence of an operational repository or other suitable storage facility constructed under the Nuclear Waste Policy Act of 1982, as amended; (2) The need for an interim, away-from-reactor storage facility prior to repository operations; and (3) Options for offsetting, through the Nuclear Waste Fund, a portion of the financial burden that may be incurred by utilities in continuing to store spent nuclear fuel at reactor sites beyond 1998. The Department received a total of 1,111 responses representing 1,476 signatories to this Notice of Inquiry. The responses included submittals from utilities (38 responses); public utility/service commissions and utility regulators (26 responses); Federal, state, and local governments, agencies, and representatives (23 responses); industry and companies (30 responses); public interest groups and other organizations (19 responses); and members of the general public (975 responses).

NONE

1995-03-01T23:59:59.000Z

39

Elastic-Plastic Strain Acceptance Criteria for Structures Subject to Rapidly Applied Transient Dynamic Loading  

SciTech Connect

Rapidly applied transient dynamic loads produce stresses and deflections in structures that typically exceed those from static loading conditions. Previous acceptance criteria for structures designed for rapidly applied transient dynamic loading limited stresses to those determined from elastic analysis. Different stress limits were established for different grades of structure depending upon the amount of permanent set considered acceptable. Structure allowed to sustain very limited permanent set is designed to stress limits not significantly greater than yield stress. Greater permanent set in structure under rapidly applied transient dynamic loading conditions is permitted by establishing stress limits that are significantly greater than yield stress but still provide adequate safety margin (with respect to failure). This paper presents a strain-based elastic-plastic (i.e., inelastic) analysis criterion developed as an alternative to the more conservative stress-based elastic analysis stress criterion for structures subjected to rapidly applied transient dynamic loading. The strain limits established are based on material ductility considerations only and are set as a fraction of the strain at ultimate stress obtained from an engineering stress/strain curve of the material. Strains limits are categorized by type as membrane or surface and by region as general, local , or concentrated. The application of the elastic-plastic criterion provides a more accurate, less conservative design/analysis basis for structures than that used in elastic stress-based analysis criteria, while still providing adequate safety margins.

W.R. Solonick

2003-04-01T23:59:59.000Z

40

Initial Acceptance Criteria Concepts and Data for Assessing Longevity of Low-Voltage Cable Insulations and Jackets  

Science Conference Proceedings (OSTI)

The cables installed in nuclear plants have long lives in most applications. However, the service conditions for some applications can cause the jackets and insulations of cables to age more rapidly than normal. It is desirable to have acceptance criteria for continued service of those cables experiencing significant aging. This report establishes a basis for acceptance criteria, provides a method for estimating remaining cable life, and provides aging profiles under various thermal and radiation conditi...

2005-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "waste acceptance criteria" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Criteria for greater confinement of radioactive wastes at arid western sites  

Science Conference Proceedings (OSTI)

This document provides a set of criteria and standards for greater confinement disposal (CCD) of low-level waste as an alternative to shallow land burial or deep geologic disposal for certain types of waste. The criteria and standards are discussed relative to seven major areas: radiation exposure protection, characterization of waste, transportation and handling, site selection, engineering, general facility requirements, and administration. The document addresses the objectives or goals of burial at intermediate depths to provide greater confinement, and its advantages and disadvantages compared to shallow land burial. Additionally, the document describes a generic greater confinement disposal facility (GCDF), and discusses as well as evaluates the various interrelating factors which must be considered in the selection of a viable site and in the development of GCDF design and performance criteria. Methods are developed for evaluating and ranking the importance of the factors based on health and safety, their potential impact on cost, and the uncertainty and/or difficulty in measurement and control of the factors. It also provides the methodology and analysis used to determine the various site-specific waste concentration acceptance standards (in the form of area disposal concentration limits) as well as design and engineering standards. It also illustrates the methodology used to determine the optimal or preferred depth of disposal under expected arid site conditions and alternative wet or irrigated site conditions. In addition, an example calculation demonstrates the application of the waste area concentration limits at an arid or humid GDF in determining the allowable waste inventory capacity of a particular site and the loading capacity of a waste disposal cell.

Card, D.H.; Hunter, P.H.; Adam, J.A.; White, R.B.

1981-05-01T23:59:59.000Z

42

Risk analysis for new nuclear waste sites: Will it generate public acceptance?  

SciTech Connect

This report discusses public acceptance of radioactive waste facilities and what seems to be increasingly militant stances against such facilities. The role of risk assessment in possibly enhancing public acceptance is investigated.

Inhaber, H.

1993-11-01T23:59:59.000Z

43

NWTS program criteria for mined geologic disposal of nuclear waste: repository performance and development criteria. Public draft  

Science Conference Proceedings (OSTI)

This document, DOE/NWTS-33(3) is one of a series of documents to establish the National Waste Terminal Storage (NWTS) program criteria for mined geologic disposal of high-level radioactive waste. For both repository performance and repository development it delineates the criteria for design performance, radiological safety, mining safety, long-term containment and isolation, operations, and decommissioning. The US Department of Energy will use these criteria to guide the development of repositories to assist in achieving performance and will reevaluate their use when the US Nuclear Regulatory Commission issues radioactive waste repository rules.

none,

1982-07-01T23:59:59.000Z

44

Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes  

SciTech Connect

This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and Hazardous Waste Management (RHWM) organization is responsible for the review and maintenance of this document. It should be noted that the DOE metal recycling moratorium is still in effect and is implemented as outlined in reference 17 when metals are being dispositioned for disposal/re-use/recycling off-site. This document follows the same methodology as described in the previously approved 1992 Moratorium document. Generator knowledge and certification are the primary means of characterization. Sampling and analysis are used when there is insufficient knowledge of a waste to determine if it contains added radioactivity. Table 1 (page 12) presents a list of LLNL's analytical methods for evaluating volumetrically contaminated waste and updates the reasonably achievable analytical-method-specific Minimum Detectable Concentrations (MDCs) for various matrices. Results from sampling and analysis are compared against the maximum MDCs for the given analytical method and the sample specific MDC to determine if the sample contains DOE added volumetric radioactivity. The evaluation of an item that has a physical form, and history of use, such that accessible surfaces may be potentially contaminated, is based on DOE Order 5400.5 (Reference 3), and its associated implementation guidance document DOE G 441.1-XX, Control and Release of Property with Residual Radioactive Material (Reference 4). The guidance document was made available for use via DOE Memorandum (Reference 5). Waste and materials containing residual radioactivity transferred off-site must meet the receiving facilities Waste Acceptance Criteria (if applicable) and be in compliance with other applicable federal or state requirements.

Dominick, J

2008-12-18T23:59:59.000Z

45

W-026, transuranic waste (TRU) glovebox acceptance test report  

SciTech Connect

On July 18, 1997, the Transuranic (TRU) glovebox was tested using glovebox acceptance test procedure 13021A-86. The primary focus of the glovebox acceptance test was to examine control system interlocks, display menus, alarms, and operator messages. Limited mechanical testing involving the drum ports, hoists, drum lifter, compacted drum lifter, drum tipper, transfer car, conveyors, sorting table, lidder/delidder device and the TRU empty drum compactor were also conducted. As of February 25, 1998, 10 of the 102 test exceptions that affect the TRU glovebox remain open. These items will be tracked and closed via the WRAP Master Test Exception Database. As part of Test Exception resolution/closure the responsible individual closing the Test Exception performs a retest of the affected item(s) to ensure the identified deficiency is corrected, and, or to test items not previously available to support testing. Test exceptions are provided as appendices to this report.

Leist, K.J.

1998-03-11T23:59:59.000Z

46

Identifying potential repositories for radioactive waste: multiple criteria decision analysis and critical infrastructure systems  

E-Print Network (OSTI)

An approach for the analysis and management of multiple criteria critical infrastructure problems is put forth. Nuclear waste management involves complex tradeoffs under uncertainty. Among all waste either generated by nature or human activities, radioactive nuclear waste is the most toxic to human health and difficult to manage: it is known that some nuclear waste material will be radioactive and potentially dangerous for hundreds of thousands of years. This paper discusses the use of multiple criteria decision analysis techniques such as the analytic hierarchy process for recommending sites to be considered as potential repositories for nuclear waste.

Kouichi Taji; Jason K. Levy; Jens Hartmann; Michelle L. Bell; Richard M. Anderson; Benjamin F. Hobbs; Tom Feglar

2005-01-01T23:59:59.000Z

47

Building Energy Simulation Test for Existing Homes (BESTEST-EX): Instructions for Implementing the Test Procedure, Calibration Test Reference Results, and Example Acceptance-Range Criteria  

Science Conference Proceedings (OSTI)

This publication summarizes building energy simulation test for existing homes (BESTEST-EX): instructions for implementing the test procedure, calibration tests reference results, and example acceptance-range criteria.

Judkoff, R.; Polly, B.; Bianchi, M.; Neymark, J.; Kennedy, M.

2011-08-01T23:59:59.000Z

48

The role of acceptable knowledge in transuranic waste disposal operations - 11117  

SciTech Connect

The Acceptable Knowledge (AK) process plays a key role in the delineation of waste streams destined for the Waste Isolation Pilot Plant (WIPP). General Electric's Vallecitos Nuclear Center (GEVNC) provides for an ideal case study of the application of AK in a multiple steward environment. In this review we will elucidate the pivotal role Acceptable Knowledge played in segregating Department of Energy (DOE) responsibilities from a commercial facility. The Acceptable Knowledge process is a necessary component of waste characterization that determines whether or not a waste stream may be considered for disposal at the WIPP site. This process may be thought of as an effort to gain a thorough understanding of the waste origin, chemical content, and physical form gleaned by the collection of documentation that concerns generator/storage site history, mission, and operations; in addition to waste stream specific information which includes the waste generation process, the waste matrix, the quantity of waste concerned, and the radiological and chemical make up of the waste. The collection and dissemination of relevant documentation is the fundamental requirement for the AK process to work. Acceptable Knowledge is the predominant process of characterization and, therefore, a crucial part of WIPP's transuranic waste characterization program. This characterization process, when conducted to the standards set forth in WIPP's operating permit, requires confirmation/verification by physical techniques such as Non-Destructive Examination (NDE), Visual Examination (VE), and Non-Destructive Assay (NDA). These physical characterization techniques may vary in their appropriateness for a given waste stream; however, nothing will allow the substitution or exclusion of AK. Beyond the normal scope of operations, AK may be considered, when appropriate, a surrogate for the physical characterization techniques in a procedure that appeals to concepts such As Low As Reasonably Achievable (ALARA) and budgetary savings. This substitution is referred to as an Acceptable Knowledge Sufficiency Determination. With a Sufficiency Determination Request, AK may supplant the need for one or all of the physical analysis methods. This powerful procedure may be used on a scale as small as a single container to that of a vast waste stream. Only under the most stringent requirements will an AK Sufficiency Determination be approved by the regulators and, to date, only six such Sufficiency Determinations have been approved. Although Acceptable Knowledge is legislated into the operational procedures of the WIPP facility there is more to it than compliance. AK is not merely one of a long list of requirements in the characterization and verification of transuranic (TRU) waste destined for the WIPP. Acceptable Knowledge goes beyond the regulatory threshold by offering a way to reduce risk, cost, time, and uncertainty on its own laurels. Therefore, AK alone can be argued superior to any other waste characterization technique.

Chancellor, Christopher John [Los Alamos National Laboratory; Nelson, Roger [DOE-CARLSBAD

2010-11-08T23:59:59.000Z

49

Participatory approach, acceptability and transparency of waste management LCAs: Case studies of Torino and Cuneo  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Life Cycle Assessment is still not fully operational in waste management at local scale. Black-Right-Pointing-Pointer Credibility of WM LCAs is negatively affected by assumptions and lack of transparency. Black-Right-Pointing-Pointer Local technical-social-economic constraints are often not reflected by WM LCAs. Black-Right-Pointing-Pointer A participatory approach can increase acceptability and credibility of WM LCAs. Black-Right-Pointing-Pointer Results of a WM LCA can hardly ever be generalised, thus transparency is essential. - Abstract: The paper summarises the main results obtained from two extensive applications of Life Cycle Assessment (LCA) to the integrated municipal solid waste management systems of Torino and Cuneo Districts in northern Italy. Scenarios with substantial differences in terms of amount of waste, percentage of separate collection and options for the disposal of residual waste are used to discuss the credibility and acceptability of the LCA results, which are adversely affected by the large influence of methodological assumptions and the local socio-economic constraints. The use of site-specific data on full scale waste treatment facilities and the adoption of a participatory approach for the definition of the most sensible LCA assumptions are used to assist local public administrators and stakeholders showing them that LCA can be operational to waste management at local scale.

Blengini, Gian Andrea, E-mail: blengini@polito.it [DIATI - Department of Environment, Land and Infrastructures Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); CNR-IGAG - Institute of Environmental Geology and Geo-Engineering, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Fantoni, Moris, E-mail: moris.fantoni@polito.it [DIATI - Department of Environment, Land and Infrastructures Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Busto, Mirko, E-mail: mirko.busto@jrc.ec.europa.eu [European Commission - Joint Research Centre, Via Enrico Fermi 2749, I-21027 Ispra (Italy); Genon, Giuseppe, E-mail: giuseppe.genon@polito.it [DIATI - Department of Environment, Land and Infrastructures Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Zanetti, Maria Chiara, E-mail: mariachiara.zanetti@polito.it [DIATI - Department of Environment, Land and Infrastructures Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy)

2012-09-15T23:59:59.000Z

50

Waste management project's alternatives: A risk-based multi-criteria assessment (RBMCA) approach  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer We examine the evaluation of a waste management project's alternatives. Black-Right-Pointing-Pointer We present a novel risk-based multi-criteria assessment (RBMCA) approach. Black-Right-Pointing-Pointer In the RBMCA the evaluation criteria are based on the quantitative risk analysis of the project's alternatives. Black-Right-Pointing-Pointer Correlation between the criteria weight values and the decision makers' risk preferences is examined. Black-Right-Pointing-Pointer Preference to the multi-criteria against the one-criterion evaluation process is discussed. - Abstract: This paper examines the evaluation of a waste management project's alternatives through a quantitative risk analysis. Cost benefit analysis is a widely used method, in which the investments are mainly assessed through the calculation of their evaluation indicators, namely benefit/cost (B/C) ratios, as well as the quantification of their financial, technical, environmental and social risks. Herein, a novel approach in the form of risk-based multi-criteria assessment (RBMCA) is introduced, which can be used by decision makers, in order to select the optimum alternative of a waste management project. Specifically, decision makers use multiple criteria, which are based on the cumulative probability distribution functions of the alternatives' B/C ratios. The RBMCA system is used for the evaluation of a waste incineration project's alternatives, where the correlation between the criteria weight values and the decision makers' risk preferences is analyzed and useful conclusions are discussed.

Karmperis, Athanasios C., E-mail: athkarmp@mail.ntua.gr [National Technical University of Athens, School of Mechanical Engineering, Sector of Industrial Management and Operational Research, Athens (Greece); Sotirchos, Anastasios, E-mail: anasot@mail.ntua.gr [National Technical University of Athens, School of Mechanical Engineering, Sector of Industrial Management and Operational Research, Athens (Greece); Aravossis, Konstantinos, E-mail: arvis@mail.ntua.gr [National Technical University of Athens, School of Mechanical Engineering, Sector of Industrial Management and Operational Research, Athens (Greece); Tatsiopoulos, Ilias P., E-mail: itat@central.ntua.gr [National Technical University of Athens, School of Mechanical Engineering, Sector of Industrial Management and Operational Research, Athens (Greece)

2012-01-15T23:59:59.000Z

51

Accepting Mixed Waste as Alternate Feed Material for Processing and Disposal at a Licensed Uranium Mill  

SciTech Connect

Certain categories of mixed wastes that contain recoverable amounts of natural uranium can be processed for the recovery of valuable uranium, alone or together with other metals, at licensed uranium mills, and the resulting tailings permanently disposed of as 11e.(2) byproduct material in the mill's tailings impoundment, as an alternative to treatment and/or direct disposal at a mixed waste disposal facility. This paper discusses the regulatory background applicable to hazardous wastes, mixed wastes and uranium mills and, in particular, NRC's Alternate Feed Guidance under which alternate feed materials that contain certain types of mixed wastes may be processed and disposed of at uranium mills. The paper discusses the way in which the Alternate Feed Guidance has been interpreted in the past with respect to processing mixed wastes and the significance of recent changes in NRC's interpretation of the Alternate Feed Guidance that sets the stage for a broader range of mixed waste materials to be processed as alternate feed materials. The paper also reviews the le gal rationale and policy reasons why materials that would otherwise have to be treated and/or disposed of as mixed waste, at a mixed waste disposal facility, are exempt from RCRA when reprocessed as alternate feed material at a uranium mill and become subject to the sole jurisdiction of NRC, and some of the reasons why processing mixed wastes as alternate feed materials at uranium mills is preferable to direct disposal. Finally, the paper concludes with a discussion of the specific acceptance, characterization and certification requirements applicable to alternate feed materials and mixed wastes at International Uranium (USA) Corporation's White Mesa Mill, which has been the most active uranium mill in the processing of alternate feed materials under the Alternate Feed Guidance.

Frydenland, D. C.; Hochstein, R. F.; Thompson, A. J.

2002-02-26T23:59:59.000Z

52

Nuclear waste management technical support in the development of nuclear waste form criteria for the NRC. Task 1. Waste package overview  

Science Conference Proceedings (OSTI)

In this report the current state of waste package development for high level waste, transuranic waste, and spent fuel in the US and abroad has been assessed. Specifically, reviewed are recent and on-going research on various waste forms, container materials and backfills and tentatively identified those which are likely to perform most satisfactorily in the repository environment. Radiation effects on the waste package components have been reviewed and the magnitude of these effects has been identified. Areas requiring further research have been identified. The important variables affecting radionuclide release from the waste package have been described and an evaluation of regulatory criteria for high level waste and spent fuel is presented. Finally, for spent fuel, high level, and TRU waste, components which could be used to construct a waste package having potential to meet NRC performance requirements have been described and identified.

Dayal, R.; Lee, B.S.; Wilke, R.J.; Swyler, K.J.; Soo, P.; Ahn, T.M.; McIntyre, N.S.; Veakis, E.

1982-02-01T23:59:59.000Z

53

Assessment of national systems for obtaining local acceptance of waste management siting and routing activities  

SciTech Connect

There is a rich mixture of formal and informal approaches being used in our sister nuclear democracies in their attempts to deal with the difficulties of obtaining local acceptance for siting of waste management facilities and activities. Some of these are meeting with a degree of success not yet achieved in the US. Although this survey documents and assesses many of these approaches, time did not permit addressing in any detail their relevance to common problems in the US. It would appear the US could benefit from a periodic review of the successes and failures of these efforts, including analysis of their applicability to the US system. Of those countries (Germany, Sweden, Switzerland, Japan, Belgium, and the US) who are working to a time table for the preparation of a high-level waste (HLW) repository, Germany is the only country to have gained local siting acceptance for theirs. With this (the most difficult of siting problems) behind them they appear to be in the best overall condition relative to waste management progress and plans. This has been achieved without a particularly favorable political structure, made up for by determination on the part of the political leadership. Of the remaining three countries studied (France, UK and Canada) France, with its AVM production facility, is clearly the world leader in the HLW immobilization aspect of waste management. France, Belgium and the UK appear to have the least favorable political structures and environments for arriving at waste management decisions. US, Switzerland and Canada appear to have the least favorable political structures and environments for arriving at waste management decisions.

Paige, H.W.; Lipman, D.S.; Owens, J.E.

1980-07-01T23:59:59.000Z

54

Transuranic contaminated waste form characterization and data base  

Science Conference Proceedings (OSTI)

This volume contains 5 appendices. Title listing are: technologies for recovery of transuranics; nondestructive assay of TRU contaminated wastes; miscellaneous waste characteristics; acceptance criteria for TRU waste; and TRU waste treatment technologies.

Kniazewycz, B.G.; McArthur, W.C.

1980-07-01T23:59:59.000Z

55

Contested environmental policy infrastructure: Socio-political acceptance of renewable energy, water, and waste facilities  

Science Conference Proceedings (OSTI)

The construction of new infrastructure is hotly contested. This paper presents a comparative study on three environmental policy domains in the Netherlands that all deal with legitimising building and locating infrastructure facilities. Such infrastructure is usually declared essential to environmental policy and claimed to serve sustainability goals. They are considered to serve (proclaimed) public interests, while the adverse impact or risk that mainly concerns environmental values as well is concentrated at a smaller scale, for example in local communities. The social acceptance of environmental policy infrastructure is institutionally determined. The institutional capacity for learning in infrastructure decision-making processes in the following three domains is compared: 1.The implementation of wind power as a renewable energy innovation; 2.The policy on space-water adaptation, with its claim to implement a new style of management replacing the current practice of focusing on control and 'hard' infrastructure; 3.Waste policy with a focus on sound waste management and disposal, claiming a preference for waste minimization (the 'waste management hierarchy'). All three cases show a large variety of social acceptance issues, where the appraisal of the impact of siting the facilities is confronted with the desirability of the policies. In dealing with environmental conflict, the environmental capacity of the Netherlands appears to be low. The policies are frequently hotly contested within the process of infrastructure decision-making. Decision-making on infrastructure is often framed as if consensus about the objectives of environmental policies exists. These claims are not justified, and therefore stimulating the emergence of environmental conflicts that discourage social acceptance of the policies. Authorities are frequently involved in planning infrastructure that conflicts with their officially proclaimed policy objectives. In these circumstances, they are often confronted with local actors who support alternatives that are in fact better in tune with the new policy paradigm.

Wolsink, Maarten, E-mail: M.P.Wolsink@uva.n [Department of Geography, Planning and International Development Studies, University of Amsterdam, Nieuwe Prinsengracht 130, 1018 VZ Amsterdam (Netherlands)

2010-09-15T23:59:59.000Z

56

Multi-criteria decision analysis for waste management in Saharawi refugee camps  

SciTech Connect

The aim of this paper is to compare different waste management solutions in Saharawi refugee camps (Algeria) and to test the feasibility of a decision-making method developed to be applied in particular conditions in which environmental and social aspects must be considered. It is based on multi criteria analysis, and in particular on the analytic hierarchy process (AHP), a mathematical technique for multi-criteria decision making (Saaty, T.L., 1980. The Analytic Hierarchy Process. McGraw-Hill, New York, USA; Saaty, T.L., 1990. How to Make a Decision: The Analytic Hierarchy Process. European Journal of Operational Research; Saaty, T.L., 1994. Decision Making for Leaders: The Analytic Hierarchy Process in a Complex World. RWS Publications, Pittsburgh, PA), and on participatory approach, focusing on local community's concerns. The research compares four different waste collection and management alternatives: waste collection by using three tipper trucks, disposal and burning in an open area; waste collection by using seven dumpers and disposal in a landfill; waste collection by using seven dumpers and three tipper trucks and disposal in a landfill; waste collection by using three tipper trucks and disposal in a landfill. The results show that the second and the third solutions provide better scenarios for waste management. Furthermore, the discussion of the results points out the multidisciplinarity of the approach, and the equilibrium between social, environmental and technical impacts. This is a very important aspect in a humanitarian and environmental project, confirming the appropriateness of the chosen method.

Garfi, M. [DICMA, University of Bologna, Via Terracini 28, I-40131 Bologna (Italy)], E-mail: marianna.garfi@mail.ing.unibo.it; Tondelli, S. [DAPT, University of Bologna, Viale Risorgimento 4, I-40126 Bologna (Italy); Bonoli, A. [DICMA, University of Bologna, Via Terracini 28, I-40131 Bologna (Italy)

2009-10-15T23:59:59.000Z

57

Criteria for temperature monitoring in ferrocyanide waste tanks at the Hanford Site  

Science Conference Proceedings (OSTI)

This report is relevant to the twenty underground waste storage tanks at the Hanford Site that have been identified as potentially containing a significant amount of ferrocyanide compounds. Tanks believed to contain > 1,000 gram moles of ferrocyanide have been classified as Watch List tanks. This report addresses temperature monitoring criteria for the Ferrocyanide Watch List tanks. These criteria must comply with governing regulations to ensure that safe continued storage of the tank wastes is not jeopardized. Temperature monitoring is defined in this report as the routine as the routine continuous measurement of a waste tank temperature with an output that is tied to an actively interrogated information collection system that includes an automated warning of temperature increases beyond the established limits.

Fowler, K.D.; Dukelow, G.T.

1994-09-01T23:59:59.000Z

58

Design criteria, Waste Isolation Pilot Plant (WIPP). Revised Mission Concept-IIA (RMC-IIA). Revision 3  

SciTech Connect

This document provides design criteria which shall be used by the architect-engineer in the Title II detail design of the Waste Isolation Pilot Plant. The design criteria present requirements which the architect-engineer must address in the design of the Waste Isolation Pilot Plant.

Not Available

1982-12-01T23:59:59.000Z

59

Determining site-specific drum loading criteria for storing combustible {sup 238}Pu waste  

DOE Green Energy (OSTI)

Waste containing hydrogenous-combustible material contaminated with {sup 238}Pu can generate hydrogen gas at appreciable rates through alpha radiolysis. To ensure safe transportation of WIPP drums, the limit for {sup 238}Pu-combustible waste published in the WIPP TRUPACT-11 CONTENT (TRUCON) CODES is 21 milliwafts per 55 gallon drum. This corresponds to about 45 milligrams of {sup 238}PuO{sub 2} used for satellite heat source-electrical generators. The Los Alamos waste storage site adopted a {sup 238}Pu waste storage criteria based on these TRCUCON codes. However, reviews of the content in drums of combustible waste generated during heat source assembly at Los Alamos showed the amount of {sup 238}Pu is typically much greater than 45 milligrams. It is not feasible to appreciably reduce Los Alamos {sup 238}Pu waste drum loadings without significantly increasing waste volumes or introducing unsafe practices. To address this concern, a series of studies were implemented to evaluate the applicability of the TRUCON limits for storage of this specific waste. Addressed in these evaluations were determination of the hydrogen generation rate, hydrogen diffusion rates through confinement layers and vent filters, and packaging requirements specific to Los Alamos generated {sup 238}Pu contaminated combustible waste. These studies also showed that the multiple-layer packaging practices in use at Los Alamos could be relaxed without significantly increasing the risk of contamination. Based on a model developed to predict H{sub 2} concentrations in packages and drum headspace, the site specific effective hydrogen generation rate, and hydrogen-diffusion values, and revising the waste packaging practices, we were able to raise the safe loading limit for {sup 238}Pu waste drums for on site storage to the gram levels typical of currently generated {sup 238}Pu waste.

Marshall, R.S.; Callis, E.L.; Cappis, J.H.; Espinoza, J.M.; Foltyn, E.M.; Reich, B.T. [Los Alamos National Lab., NM (United States); Smith, M.C. [Benchmark Environmental Corp., Albuquerque, NM (United States)

1994-02-01T23:59:59.000Z

60

Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221F-HET/Drums  

Science Conference Proceedings (OSTI)

Since beginning operations in 1954, the Department of Energy's Savannah River Site FB-Line conducted atomic energy defense activities consistent with the listing in Section 10101(3) of the Nuclear Waste Policy Act of 1982. The facility mission was to process and convert dilute plutonium solution into highly purified weapons grade plutonium metal. As a result of various activities conducted in support of the mission (e.g., operation, maintenance, repair, clean up, and facility modifications), the facility generated transuranic waste. This document, along with referenced supporting documents, provides a defensible and auditable record of acceptable knowledge for one of the waste streams from the FB-Line. The waste was packaged in 55-gallon drums, then shipped to the transuranic waste storage facility in ''E'' area of the Savannah River Site. This acceptable knowledge report includes information relating to the facility's history, configuration,equipment, process operations, and waste management practices.

Lunsford, G.F.

1999-08-23T23:59:59.000Z

Note: This page contains sample records for the topic "waste acceptance criteria" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A fuzzy multi-criteria group decision making framework for evaluating health-care waste disposal alternatives  

Science Conference Proceedings (OSTI)

Nowadays, as in all other organizations, the amount of waste generated in the health-care institutions is rising due to their extent of service. Medical waste management is a common problem of developing countries including Turkey, which are becoming ... Keywords: Fuzzy integral, Group decision making, Health-care waste management, Multi-criteria decision making, OWA

Mehtap Dursun; E. Ertugrul Karsak; Melis Almula Karadayi

2011-09-01T23:59:59.000Z

62

Cross-Site Transfer System at Hanford: long-term strategy for waste acceptance  

SciTech Connect

This report summarizes results of a technical panel review of the current methodology for accepting waste for transport through the Hanford Replacement Cross-Site Transfer System (RCSTS), which was constructed to replace the existing pipelines that hydraulically connect the 200 West and 200 East areas. This report is a complement to an existing document (Hudson 1996); the methodology proposed in that document was refined based on panel recommendations. The refinements were focused around predicting and preventing the 3 main modes suspected of plugging the existing CSTS: precipitation, gelation, particle dropout/settling. The proposed analysis will require integration of computer modeling and laboratory experiments to build a defensible case for transportability of a proposed slurry composition for a given tank. This will be validated by recirculating actual tank waste, in-tank and in-farm, prior to transport. The panel`s recommendation was that the probability of success of waste transfer would be greatly improved by integrating the predictive analysis with real-time control during RCSTS operation. The methodology will be optimized.

Shekarriz, A; Onishi, Y.; Smith, P.A.; Sterner, M.; Rector, D.R.; Virden, J.

1997-02-01T23:59:59.000Z

63

Savannah River Site Waste Isolation Pilot Plant Disposal Program - Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221-HET  

Science Conference Proceedings (OSTI)

This document, along with referenced supporting documents provides a defensible and auditable record of acceptable knowledge for one of the waste streams from the FB-Line. This heterogeneous debris transuranic waste stream was generated after January 25, 1990 and before March 20, 1997. The waste was packaged in 55-gallon drums, then shipped to the transuranic waste storage facility in ''E'' area of the Savannah River Site. This acceptable knowledge report includes information relating to the facility's history, configuration, equipment, process operations and waste management practices. Information contained in this report was obtained from numerous sources including: facility safety basis documentation, historical document archives, generator and storage facility waste records and documents, and interviews with cognizant personnel.

Lunsford, G.F.

2001-01-24T23:59:59.000Z

64

Building Energy Simulation Test for Existing Homes (BESTEST-EX): Instructions for Implementing the Test Procedure, Calibration Test Reference Results, and Example Acceptance-Range Criteria  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Simulation Test for Building Energy Simulation Test for Existing Homes (BESTEST-EX): Instructions for Implementing the Test Procedure, Calibration Test Reference Results, and Example Acceptance-Range Criteria Ron Judkoff, Ben Polly, and Marcus Bianchi National Renewable Energy Laboratory Joel Neymark J. Neymark & Associates Mike Kennedy Mike D. Kennedy, Inc. Link to Accompanying Zipped Data Files (3.9 MB) This document is intended for use with the following documents: Building Energy Simulation Test for Existing Homes (BESTEST-EX), NREL/TP-550-47427 Example Procedures for Developing Acceptance-Range Criteria for BESTEST-EX, NREL/TP-550-47502 Technical Report NREL/TP-5500-52414 August 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy

65

WIPP TRANSURANIC WASTE How has the WIPP TRU Waste Inventory Changed  

E-Print Network (OSTI)

of tank waste from the Hanford site that is currently managed as high-level waste. None of this waste has that these Hanford tank wastes will be treated and will eventually be able to meet the WIPP waste acceptance criteria on the Hanford Tank Waste and K-Basin Sludges that were included in the waste inventory for recertifica- tion

66

Integrating multi-criteria decision analysis for a GIS-based hazardous waste landfill sitting in Kurdistan Province, western Iran  

SciTech Connect

The evaluation of a hazardous waste disposal site is a complicated process because it requires data from diverse social and environmental fields. These data often involve processing of a significant amount of spatial information which can be used by GIS as an important tool for land use suitability analysis. This paper presents a multi-criteria decision analysis alongside with a geospatial analysis for the selection of hazardous waste landfill sites in Kurdistan Province, western Iran. The study employs a two-stage analysis to provide a spatial decision support system for hazardous waste management in a typically under developed region. The purpose of GIS was to perform an initial screening process to eliminate unsuitable land followed by utilization of a multi-criteria decision analysis (MCDA) to identify the most suitable sites using the information provided by the regional experts with reference to new chosen criteria. Using 21 exclusionary criteria, as input layers, masked maps were prepared. Creating various intermediate or analysis map layers a final overlay map was obtained representing areas for hazardous waste landfill sites. In order to evaluate different landfill sites produced by the overlaying a landfill suitability index system was developed representing cumulative effects of relative importance (weights) and suitability values of 14 non-exclusionary criteria including several criteria resulting from field observation. Using this suitability index 15 different sites were visited and based on the numerical evaluation provided by MCDA most suitable sites were determined.

Sharifi, Mozafar [Razi University Center for Environmental Studies, Faculty of Science, Baghabrisham 67149, Kermanshah (Iran, Islamic Republic of)], E-mail: sharifimozafar@gmail.com; Hadidi, Mosslem [Academic Center for Education, Culture and Research, Kermanshah (Iran, Islamic Republic of)], E-mail: hadidi_moslem@yahoo.com; Vessali, Elahe [Paradise Ave, Azad University, School of Agriculture, Shiraz (Iran, Islamic Republic of)], E-mail: elahe_vesali@yahoo.com; Mosstafakhani, Parasto [Razi University Centre for Environmental Studies, Faculty of Science, Baghabrisham 67149, Kermanshah (Iran, Islamic Republic of)], E-mail: mostafakhany2003@yahoo.com; Taheri, Kamal [Regional office of Water Resource Management, Zan Boulevard, Kermanshah (Iran, Islamic Republic of)], E-mail: taheri.kamal@gmail.com; Shahoie, Saber [Department of Soil Science, Faculty of Agriculture, Kurdistan University, University Boulevard, Sanandadj (Iran, Islamic Republic of)], E-mail: shahoei@yahoo.com; Khodamoradpour, Mehran [Regional office of Climatology, Sanandaj (Iran, Islamic Republic of)], E-mail: mehrankhodamorad@yahoo.com

2009-10-15T23:59:59.000Z

67

PUBLIC AND REGULATORY ACCEPTANCE OF BLENDING OF RADIOACTIVE WASTE VS DILUTION  

SciTech Connect

On April 21, 2009, the Energy Facilities Contractors Group (EFCOG) Waste Management Working Group (WMWG) provided a recommendation to the Department of Energy's Environmental Management program (DOE-EM) concerning supplemental guidance on blending methodologies to use to classify waste forms to determine if the waste form meets the definition of Transuranic (TRU) Waste or can be classified as Low-Level Waste (LLW). The guidance provides specific examples and methods to allow DOE and its Contractors to properly classify waste forms while reducing the generation of TRU wastes. TRU wastes are much more expensive to characterize at the generator's facilities, ship, and then dispose at the Waste Isolation Pilot Plant (WIPP) than Low-Level Radioactive Waste's disposal. Also the reduction of handling and packaging of LLW is inherently less hazardous to the nuclear workforce. Therefore, it is important to perform the characterization properly, but in a manner that minimizes the generation of TRU wastes if at all possible. In fact, the generation of additional volumes of radioactive wastes under the ARRA programs, this recommendation should improve the cost effective implementation of DOE requirements while properly protecting human health and the environment. This paper will describe how the message of appropriate, less expensive, less hazardous blending of radioactive waste is the 'right' thing to do in many cases, but can be confused with inappropriate 'dilution' that is frowned upon by regulators and stakeholders in the public. A proposal will be made in this paper on how to communicate this very complex and confusing technical issue to regulatory bodies and interested stakeholders to gain understanding and approval of the concept. The results of application of the proposed communication method and attempt to change the regulatory requirements in this area will be discussed including efforts by DOE and the NRC on this very complex subject.

Goldston, W.

2010-11-30T23:59:59.000Z

68

A multi-criteria assessment of scenarios on thermal processing of infectious hospital wastes: A case study for Central Macedonia  

Science Conference Proceedings (OSTI)

In Greece more than 14,000 tonnes of infectious hospital waste are produced yearly; a significant part of it is still mismanaged. Only one off-site licensed incineration facility for hospital wastes is in operation, with the remaining of the market covered by various hydroclave and autoclave units, whereas numerous problems are still generally encountered regarding waste segregation, collection, transportation and management, as well as often excessive entailed costs. Everyday practices still include dumping the majority of solid hospital waste into household disposal sites and landfills after sterilization, still largely without any preceding recycling and separation steps. Discussed in the present paper are the implemented and future treatment practices of infectious hospital wastes in Central Macedonia; produced quantities are reviewed, actual treatment costs are addressed critically, whereas the overall situation in Greece is discussed. Moreover, thermal treatment processes that could be applied for the treatment of infectious hospital wastes in the region are assessed via the multi-criteria decision method Analytic Hierarchy Process. Furthermore, a sensitivity analysis was performed and the analysis demonstrated that a centralized autoclave or hydroclave plant near Thessaloniki is the best performing option, depending however on the selection and weighing of criteria of the multi-criteria process. Moreover the study found that a common treatment option for the treatment of all infectious hospital wastes produced in the Region of Central Macedonia, could offer cost and environmental benefits. In general the multi-criteria decision method, as well as the conclusions and remarks of this study can be used as a basis for future planning and anticipation of the needs for investments in the area of medical waste management.

Karagiannidis, A. [Laboratory of Heat Transfer and Environmental Engineering, Aristotle University of Thessaloniki, Box 483, GR-54124 Thessaloniki (Greece); Papageorgiou, A., E-mail: apapa@auth.g [Laboratory of Heat Transfer and Environmental Engineering, Aristotle University of Thessaloniki, Box 483, GR-54124 Thessaloniki (Greece); Perkoulidis, G. [Laboratory of Heat Transfer and Environmental Engineering, Aristotle University of Thessaloniki, Box 483, GR-54124 Thessaloniki (Greece); Sanida, G. [3rd Health Region Administration (Macedonia), 16 Aristotelous Str, GR-54623 Thessaloniki (Greece); Samaras, P. [Technological Education Institution of West Macedonia, Department of Pollution Control Technologies, 50100 Kozani (Greece)

2010-02-15T23:59:59.000Z

69

Secondary Waste Cast Stone Waste Form Qualification Testing Plan  

SciTech Connect

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

Westsik, Joseph H.; Serne, R. Jeffrey

2012-09-26T23:59:59.000Z

70

Acceptable Knowledge Summary Report for Mixed TRU Waste Streams: SR-W026-221F-HET-A through D  

Science Conference Proceedings (OSTI)

This document, along with referenced supporting documents provides a defensible and auditable record of acceptable knowledge for the heterogeneous debris mixed transuranic waste streams generated in the FB-Line after January 25, 1990 and before March 20, 1997.

Lunsford, G.F.

2001-10-02T23:59:59.000Z

71

WRAP Module 1 waste analysis plan  

Science Conference Proceedings (OSTI)

The purpose of this waste analysis plan is to document the necessary characterization, sampling, screening, analysis, and waste acceptance criteria for waste received at the WRAP Module 1. Waste expected to be received at WRAP Module 1 includes newly generated and retrieved waste. The newly generated waste will undergo verification prior to treatment, storage, or disposal. Retrieved waste from the burial grounds or above ground storage will undergo further characterization (as needed), treatment, supercompaction, and repackaging

Mayancsik, B.A.

1995-09-22T23:59:59.000Z

72

Waste disposal options report. Volume 1  

SciTech Connect

This report summarizes the potential options for the processing and disposal of mixed waste generated by reprocessing spent nuclear fuel at the Idaho Chemical Processing Plant. It compares the proposed waste-immobilization processes, quantifies and characterizes the resulting waste forms, identifies potential disposal sites and their primary acceptance criteria, and addresses disposal issues for hazardous waste.

Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

1998-02-01T23:59:59.000Z

73

Draft principles, policy, and acceptance criteria for decommissioning of U.S. Department of Energy contaminated surplus facilities and summary of international decommissioning programs  

SciTech Connect

Decommissioning activities enable the DOE to reuse all or part of a facility for future activities and reduce hazards to the general public and any future work force. The DOE Office of Environment, Health and Safety has prepared this document, which consists of decommissioning principles and acceptance criteria, in an attempt to establish a policy that is in agreement with the NRC policy. The purpose of this document is to assist individuals involved with decommissioning activities in determining their specific responsibilities as identified in Draft DOE Order 5820.DDD, ``Decommissioning of US Department of Energy Contaminated Surplus Facilities`` (Appendix A). This document is not intended to provide specific decommissioning methodology. The policies and principles of several international decommissioning programs are also summarized. These programs are from the IAEA, the NRC, and several foreign countries expecting to decommission nuclear facilities. They are included here to demonstrate the different policies that are to be followed throughout the world and to allow the reader to become familiar with the state of the art for environment, safety, and health (ES and H) aspects of nuclear decommissioning.

Singh, B.K. [Argonne National Lab., IL (United States)]|[USDOE Office of Nuclear Safety Policy and Standards, Washington, DC (United States). Systems Analysis and Standards Div.; Gillette, J.; Jackson, J. [Argonne National Lab., IL (United States)

1994-12-01T23:59:59.000Z

74

Developing Alternative Low Level Waste Disposal Criteria Per 10 CFR 61.58  

Science Conference Proceedings (OSTI)

The NRC identified, as a priority, expanding the guidance available for the development of alternative disposal criteria pursuant to Paragraph 61.58 of Part 61 of Title 10 of the US Code of Federal Regulations. This report constitutes the first part of a two-year project to examine the feasibility of alternative criteria and provide a model evaluation demonstrating the formulation of such criteria. The report also examines the radionuclides listed in 10 CFR 61.55 with respect to their properties and indi...

2009-12-09T23:59:59.000Z

75

MEASUREMENT AND CALCULATION OF RADIONUCLIDE ACTIVITIES IN SAVANNAH RIVER SITE HIGH LEVEL WASTE SLUDGE FOR ACCEPTANCE OF DEFENSE WASTE PROCESSING FACILITY GLASS IN A FEDERAL REPOSITORY  

SciTech Connect

This paper describes the results of the analyses of High Level Waste (HLW) sludge slurry samples and of the calculations necessary to decay the radionuclides to meet the reporting requirement in the Waste Acceptance Product Specifications (WAPS) [1]. The concentrations of 45 radionuclides were measured. The results of these analyses provide input for radioactive decay calculations used to project the radionuclide inventory at the specified index years, 2015 and 3115. This information is necessary to complete the Production Records at Savannah River Site's Defense Waste Processing Facility (DWPF) so that the final glass product resulting from Macrobatch 5 (MB5) can eventually be submitted to a Federal Repository. Five of the necessary input radionuclides for the decay calculations could not be measured directly due to their low concentrations and/or analytical interferences. These isotopes are Nb-93m, Pd-107, Cd-113m, Cs-135, and Cm-248. Methods for calculating these species from concentrations of appropriate other radionuclides will be discussed. Also the average age of the MB5 HLW had to be calculated from decay of Sr-90 in order to predict the initial concentration of Nb-93m. As a result of the measurements and calculations, thirty-one WAPS reportable radioactive isotopes were identified for MB5. The total activity of MB5 sludge solids will decrease from 1.6E+04 {micro}Ci (1 {micro}Ci = 3.7E+04 Bq) per gram of total solids in 2008 to 2.3E+01 {micro}Ci per gram of total solids in 3115, a decrease of approximately 700 fold. Finally, evidence will be given for the low observed concentrations of the radionuclides Tc-99, I-129, and Sm-151 in the HLW sludges. These radionuclides were reduced in the MB5 sludge slurry to a fraction of their expected production levels due to SRS processing conditions.

Bannochie, C; David Diprete, D; Ned Bibler, N

2008-12-31T23:59:59.000Z

76

WESF hot cells waste minimization criteria hot cells window seals evaluation  

SciTech Connect

WESF will decouple from B Plant in the near future. WESF is attempting to minimize the contaminated solid waste in their hot cells and utilize B Plant to receive the waste before decoupling. WESF wishes to determine the minimum amount of contaminated waste that must be removed in order to allow minimum maintenance of the hot cells when they are placed in ''laid-up'' configuration. The remaining waste should not cause unacceptable window seal deterioration for the remaining life of the hot cells. This report investigates and analyzes the seal conditions and hot cell history and concludes that WESF should remove existing point sources, replace cerium window seals in F-Cell and refurbish all leaded windows (except for A-Cell). Work should be accomplished as soon as possible and at least within the next three years.

Walterskirchen, K.M.

1997-03-31T23:59:59.000Z

77

TRU Waste Sampling Program: Volume I. Waste characterization  

DOE Green Energy (OSTI)

Volume I of the TRU Waste Sampling Program report presents the waste characterization information obtained from sampling and characterizing various aged transuranic waste retrieved from storage at the Idaho National Engineering Laboratory and the Los Alamos National Laboratory. The data contained in this report include the results of gas sampling and gas generation, radiographic examinations, waste visual examination results, and waste compliance with the Waste Isolation Pilot Plant-Waste Acceptance Criteria (WIPP-WAC). A separate report, Volume II, contains data from the gas generation studies.

Clements, T.L. Jr.; Kudera, D.E.

1985-09-01T23:59:59.000Z

78

History of Uranium-233(sup233U)Processing at the Rocky Flats Plant. In support of the RFETS Acceptable Knowledge Program  

Science Conference Proceedings (OSTI)

This report documents the processing of Uranium-233 at the Rocky Flats Plant (Rocky Flats Environmental Technology Site). The information may be used to meet Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC)and for determining potential Uranium-233 content in applicable residue waste streams.

Moment, R.L.; Gibbs, F.E.; Freiboth, C.J.

1999-04-01T23:59:59.000Z

79

Radioactive Waste Management, Inspection Criteria; Approach, and Lines of Inquiry; CRAD 64-33  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1.0 PURPOSE 1.0 PURPOSE Within the Office of Independent Oversight, the Office of Environment, Safety and Health Evaluations' (ES&H) mission is to assess the effectiveness of those environment, safety, and health systems and practices used by field organizations in implementing Integrated Safety Management and to provide clear, concise, and independent evaluations of performance in protecting our workers, the public, and the environment from the hazards associated with Department of Energy (DOE) activities and sites. A key to success is the rigor and comprehensiveness of our process; and as with any process, we continually stnve to improve and \ provide additional value and insight to field operations. Integral to this is our commitment to enhance our program. Therefore, we have revised our Inspection Criteria, Approach, and Lines

80

Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry, CRAD 64-30  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Within the Office of Independent Oversight, the Office of Environment, Safety and Health Within the Office of Independent Oversight, the Office of Environment, Safety and Health (ES&H) Evaluations' mission is to assess the effectiveness of those environment, safety, and health systems and practices used by field orgailizatioils in implementing Integrated Safety Management and to provide clear, concise, and independent evaluations of perfomlance in protecting our workers, the public, and the environment from the hazards associated with Department of Energy (DOE) activities and sites. A key to success is the rigor and comprehensiveness of our process; and as with any process, we continually strive to improve and provide additional value and insight to field operations. Integral to this is our commitment to enhance our program. Therefore, we have revised our Inspection Criteria, Approach, and Lines

Note: This page contains sample records for the topic "waste acceptance criteria" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL. Revision 2  

Science Conference Proceedings (OSTI)

The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical waste to LBL`s Hazardous Waste Handling Facility (HWHF). Hazardous chemical waste is a necessary byproduct of LBL`s research and technical support activities. This waste must be handled properly if LBL is to operate safely and provide adequate protection to staff and the environment. These guidelines describe how you, as a generator of hazardous chemical waste, can meet LBL`s acceptance criteria for hazardous chemical waste.

Not Available

1993-10-01T23:59:59.000Z

82

Radiation dose assessment methodology and preliminary dose estimates to support US Department of Energy radiation control criteria for regulated treatment and disposal of hazardous wastes and materials  

Science Conference Proceedings (OSTI)

This report provides unit dose to concentration levels that may be used to develop control criteria for radionuclide activity in hazardous waste; if implemented, these criteria would be developed to provide an adequate level of public and worker health protection, for wastes regulated under U.S, Environmental Protection Agency (EPA) requirements (as derived from the Resource Conservation and Recovery Act [RCRA] and/or the Toxic Substances Control Act [TSCA]). Thus, DOE and the US Nuclear Regulatory Commission can fulfill their obligation to protect the public from radiation by ensuring that such wastes are appropriately managed, while simultaneously reducing the current level of dual regulation. In terms of health protection, dual regulation of very small quantities of radionuclides provides no benefit.

Aaberg, R.L.; Baker, D.A.; Rhoads, K.; Jarvis, M.F.; Kennedy, W.E. Jr.

1995-07-01T23:59:59.000Z

83

Criteria for the development and use of the methodology for environmentally-acceptable fossil energy site evaluation and selection. Volume 2. Final report  

SciTech Connect

This report serves as a companion document to the report, Volume 1: Environmentally-Acceptable Fossil Energy Site Evaluation and Selection: Methodology and Users Guide, in which a methodology was developed which allows the siting of fossil fuel conversion facilities in areas with the least environmental impact. The methodology, known as SELECS (Site Evaluation for Energy Conversion Systems) does not replace a site specific environmental assessment, or an environmental impact statement (EIS), but does enhance the value of an EIS by thinning down the number of options to a manageable level, by doing this in an objective, open and selective manner, and by providing preliminary assessment and procedures which can be utilized during the research and writing of the actual impact statement.

Eckstein, L.; Northrop, G.; Scott, R.

1980-02-01T23:59:59.000Z

84

Standard format and content acceptance criteria for the Material Control and Accounting (MC and A) Reform Amendment: 10 CFR Part 74, Subpart E. Revision 1  

SciTech Connect

In 1987 the NRC revised the material control and accounting requirements for NRC licensees authorized to possess and use a formula quantity (i.e., 5 formula kilograms or more) of strategic special nuclear material. Those revisions issued as 10 CFR 74.51-59 require timely monitoring of in-process inventory and discrete items to detect anomalies potentially indicative of material losses. Timely detection and enhanced loss localization capabilities are beneficial to alarm resolution and also for material recovery in the event of an actual loss. NUREG-1280 was issued in 1987 to present criteria that could be used by applicants, licensees, and NRC license reviewers in the initial preparation and subsequent review of fundamental nuclear material control (FNMC) plans submitted in response to the Reform Amendment. This document is also intended for both licensees and license reviewers with respect to FNMC plan revisions. General performance objectives, system capabilities, process monitoring, item monitoring, alarm resolution, quality assurance, and accounting are addressed. This revision to NUREG-1280 is an expansion of the initial edition, which clarifies and expands upon several topics and addresses issues identified under Reform Amendment implementation experience.

NONE

1995-04-01T23:59:59.000Z

85

Sampling and analysis validates acceptable knowledge on LANL transuranic, heterogeneous, debris waste, or ``Cutting the Gordian knot that binds WIPP``  

SciTech Connect

Through sampling and toxicity characteristic leaching procedure (TCLP) analyses, LANL and the DOE validated that a LANL transuranic (TRU) waste (TA-55-43, Lot No. 01) was not a Resource Recovery and Conservation Act (RCRA) hazardous waste. This paper describes the sampling and analysis project as well as the statistical assessment of the analytical results. The analyses were conducted according to the requirements and procedures in the sampling and analysis plan approved by the New Mexico Environmental Department. The plan used a statistical approach that was consistent with the stratified, random sampling requirements of SW-846. LANL adhered to the plan during sampling and chemical analysis of randomly selected items of the five major types of materials in this heterogeneous, radioactive, debris waste. To generate portions of the plan, LANL analyzed a number of non-radioactive items that were representative of the mix of items present in the waste stream. Data from these cold surrogates were used to generate means and variances needed to optimize the design. Based on statistical arguments alone, only two samples from the entire waste stream were deemed necessary, however a decision was made to analyze at least two samples of each of the five major waste types. To obtain these samples, nine TRU waste drums were opened. Sixty-six radioactively contaminated and four non-radioactive grab samples were collected. Portions of the samples were composited for chemical analyses. In addition, a radioactively contaminated sample of rust-colored powder of interest to the New Mexico Environment Department (NMED) was collected and qualitatively identified as rust.

Kosiewicz, S.T.; Triay, I.R.; Souza, L.A. [Los Alamos National Lab., NM (United States). Chemical Science and Technology Div.; Michael, D.I.; Black, P.K. [Neptune and Co., Los Alamos, NM (United States)

1999-02-01T23:59:59.000Z

86

ICDF Complex Waste Profile and Verification Sample Guidance  

Science Conference Proceedings (OSTI)

This guidance document will assist waste generators who characterize waste streams destined for disposal at the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) Complex. The purpose of this document is to develop a conservative but appropriate way to (1) characterize waste for entry into the ICDF; (2) ensure compliance with the waste acceptance criteria; and (3) facilitate disposal at the ICDF landfill or evaporation pond. In addition, this document will establish the waste verification process used by ICDF personnel to ensure that untreated waste meets applicable ICDF acceptance limits

W. M. Heileson

2006-10-01T23:59:59.000Z

87

Hazardous Waste Program (Alabama)  

Energy.gov (U.S. Department of Energy (DOE))

This rule states criteria for identifying the characteristics of hazardous waste and for listing hazardous waste, lists of hazardous wastes, standards for the management of hazardous waste and...

88

Public acceptability of the use of gamma rays from spent nuclear fuel as a hazardous waste treatment process  

Science Conference Proceedings (OSTI)

Three methods were used to estimate public reaction to the use of gamma irradiation of hazardous wastes as a hazardous waste treatment process. The gamma source of interest is spent nuclear fuel. The first method is Benefit-Risk Decision Making, where the benefits of the proposed technology are compared to its risks. The second analysis compares the proposed technology to the other, currently used nuclear technologies and estimates public reaction based on that comparison. The third analysis is called Analysis of Public Consent, and is based on the professional methods of the Institute for Participatory Management and Planning. The conclusion of all three methods is that the proposed technology should not result in negative public reaction sufficient to prevent implementation.

Mincher, B.J.; Wells, R.P.; Reilly, H.J.

1992-01-01T23:59:59.000Z

89

Market driven strategy for acquisition of waste acceptance and transportation services for commercial spent fuel in the United States  

SciTech Connect

The Department of Energy has the responsibility for the shipment of spent nuclear fuel (SNF) from commercial reactors to a Federal facility for storage and/or disposal. DOE has developed a strategy for a market driven approach for the acquisition of transportation services and equipment which will maximize the participation of private industry. To implement this strategy, DOE is planning to issue a Request for Proposal (RFP) for the provision of the required services and equipment to accept SNF from the utilities and transport the SNF to a Federal facility. The paper discusses this strategy and describes the RFP.

Lemeshewky, W.; Macaluso, C.; Smith, P. [Dept. of Energy, Washington, DC (United States); Teer, B. [JAI Corp., Fairfax, VA (United States)

1998-05-01T23:59:59.000Z

90

Savannah River Site sample and analysis plan for Clemson Technical Center waste  

Science Conference Proceedings (OSTI)

The purpose of this sampling and analysis plan is to determine the chemical, physical and radiological properties of the SRS radioactive Polychlorinated Biphenyl (PCB) liquid waste stream, to verify that it conforms to Waste Acceptance Criteria of the Department of Energy (DOE) East Tennessee Technology Park (ETTP) Toxic Substance Control Act (TSCA) Incineration Facility. Waste being sent to the ETTP TSCA Incinerator for treatment must be sufficiently characterized to ensure that the waste stream meets the waste acceptance criteria to ensure proper handling, classification, and processing of incoming waste to meet the Waste Storage and Treatment Facility`s Operating Permits. This sampling and analysis plan is limited to WSRC container(s) of homogeneous or multiphasic radioactive PCB contaminated liquids generated in association with a treatability study at Clemson Technical Center (CTC) and currently stored at the WSRC Solid Waste Division Mixed Waste Storage Facility (MWSF).

Hagstrom, T.

1998-04-01T23:59:59.000Z

91

Hanford Site Transuranic (TRU) Waste Certification Plan  

SciTech Connect

As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In addition, a TRU waste is eligible for disposal at WIPP only if it has been generated in whole or in part by one or more of the activities listed in Section 10101(3) of the Nuclear Waste Policy Act. DOE sites must determine that each waste stream to be disposed of at WIPP is ''defense'' TRU waste. (See also the definition of ''defense'' TRU waste.). Only CH TRU wastes meeting the requirements of the QAPjP, WIPP-WAP, WPP-WAC, and other requirements documents described above will be accepted for transportation and disposal at WIPP.

GREAGER, T.M.

2000-12-01T23:59:59.000Z

92

Hanford Site Transuranic (TRU) Waste Certification Plan  

SciTech Connect

As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In addition, a TRU waste is eligible for disposal at WIPP only if it has been generated in whole or in part by one or more of the activities listed in Section 10101(3) of the Nuclear Waste Policy Act. DOE sites must determine that each waste stream to be disposed of at WIPP is ''defense'' TRU waste. (See also the definition of ''defense'' TRU waste.). Only CH TRU wastes meeting the requirements of the QAPjP, WIPP-WAP, WPP-WAC, and other requirements documents described above will be accepted for transportation and disposal at WIPP.

GREAGER, T.M.

2000-12-06T23:59:59.000Z

93

Hanford site transuranic waste certification plan  

Science Conference Proceedings (OSTI)

As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of U.S. Department of Energy (DOE) Order 5820.2A, ''Radioactive Waste Management, and the Waste Acceptance Criteria for the Waste Isolation Pilot Plant' (DOE 1996d) (WIPP WAC). The WIPP WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WIPP WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their management of TRU waste and TRU waste shipments before transferring waste to WIPP. The Hanford Site must also ensure that its TRU waste destined for disposal at WIPP meets requirements for transport in the Transuranic Package Transporter41 (TRUPACT-11). The U.S. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-I1 requirements in the ''Safety Analysis Report for the TRUPACT-II Shipping Package'' (NRC 1997) (TRUPACT-I1 SARP).

GREAGER, T.M.

1999-05-12T23:59:59.000Z

94

Mixed waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of mixed waste handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. Mixed waste is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington.

1995-01-01T23:59:59.000Z

95

Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification.

Albert, R.

1992-06-30T23:59:59.000Z

96

Qualifying radioactive waste forms for geologic disposal  

SciTech Connect

We have developed a phased strategy that defines specific program-management activities and critical documentation for producing radioactive waste forms, from pyrochemical processing of spent nuclear fuel, that will be acceptable for geologic disposal by the US Department of Energy. The documentation of these waste forms begins with the decision to develop the pyroprocessing technology for spent fuel conditioning and ends with production of the last waste form for disposal. The need for this strategy is underscored by the fact that existing written guidance for establishing the acceptability for disposal of radioactive waste is largely limited to borosilicate glass forms generated from the treatment of aqueous reprocessing wastes. The existing guidance documents do not provide specific requirements and criteria for nonstandard waste forms such as those generated from pyrochemical processing operations.

Jardine, L.J. [Lawrence Livermore National Lab., CA (United States); Laidler, J.J.; McPheeters, C.C. [Argonne National Lab., IL (United States)

1994-09-01T23:59:59.000Z

97

Environmental assessment for transuranic waste work-off plan, Los Alamos National Laboratory. Rough draft: Final report  

Science Conference Proceedings (OSTI)

The Los Alamos National Laboratory (LANL) generates transuranic (TRU) waste in a variety of programs related to national defense. TRU waste is a specific class of radioactive waste requiring permanent isolation. Most defense-related TRU waste will be permanently disposed of in the Waste Isolation Pilot Plant (WIPP). WIPP is a deep geologic repository located in southeastern New Mexico and is now in the testing phase of development. All waste received by Wipp must conform with established Waste Acceptance Criteria (WAC). The purpose of the proposed action is to retrieve stored TRU waste and prepare the waste for shipment to and disposal WIPP. Stored TRU waste LANL is represented by four waste forms. The facilities necessary for work-off activities are tailored to the treatment and preparation of these four waste forms. Preparation activities for newly generated TRU waste are also covered by this action.

Not Available

1990-10-26T23:59:59.000Z

98

Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste  

SciTech Connect

The Hanford double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions' Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems. A series of these tests have used a five-part simulant composed of particles of different size and density and designed to be equal or more challenging than AY-102 waste. This five-part simulant, however, has not been compared with the broad range of Hanford waste, and thus there is an additional uncertainty that this simulant may not be as challenging as the most difficult Hanford waste. The purpose of this study is to quantify how the current five-part simulant compares to all of the Hanford sludge waste, and to suggest alternate simulants that could be tested to reduce the uncertainty in applying the current testing results to potentially more challenging wastes.

Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

2012-07-10T23:59:59.000Z

99

Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste  

SciTech Connect

The Hanford double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions' Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems. A series of these tests have used a five-part simulant composed of particles of different size and density and designed to be equal or more challenging than AY-102 waste. This five-part simulant, however, has not been compared with the broad range of Hanford waste, and thus there is an additional uncertainty that this simulant may not be as challenging as the most difficult Hanford waste. The purpose of this study is to quantify how the current five-part simulant compares to all of the Hanford sludge waste, and to suggest alternate simulants that could be tested to reduce the uncertainty in applying the current testing results to potentially more challenging wastes.

Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

2011-09-01T23:59:59.000Z

100

DOE mixed waste treatment capacity analysis  

SciTech Connect

This initial DOE-wide analysis compares the reported national capacity for treatment of mixed wastes with the calculated need for treatment capacity based on both a full treatment of mixed low-level and transuranic wastes to the Land Disposal Restrictions and on treatment of transuranic wastes to the WIPP waste acceptance criteria. The status of treatment capacity is reported based on a fifty-element matrix of radiation-handling requirements and functional treatment technology categories. The report defines the classifications for the assessment, describes the models used for the calculations, provides results from the analysis, and includes appendices of the waste treatment facilities data and the waste stream data used in the analysis.

Ross, W.A.; Wehrman, R.R.; Young, J.R.; Shaver, S.R.

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste acceptance criteria" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington.

1995-01-10T23:59:59.000Z

102

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies  

SciTech Connect

This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

103

Evaluating off-site disposal of low-level waste at LANL-9498  

SciTech Connect

Los Alamos National Laboratory generates a wide range of waste types, including solid low-level radioactive waste (LL W), in conducting its national security mission and other science and technology activities. Although most ofLANL's LLW has been disposed on-site, limitations on expansion, stakeholder concerns, and the potential for significant volumes from environmental remediation and decontamination and demolition (D&D) have led LANL to evaluate the feasibility of increasing off-site disposal. It appears that most of the LL W generated at LANL would meet the Waste Acceptance Criteria at the Nevada Test Site or the available commercial LL W disposal site. Some waste is considered to be problematic to transport to off-site disposal even though it could meet the off-site Waste Acceptance Criteria. Cost estimates for off-site disposal are being evaluated for comparison to estimated costs under the current plans for continued on-site disposal.

Hargis, Kenneth M [Los Alamos National Laboratory; French, Sean B [Los Alamos National Laboratory; Boyance, Julien A [NORTH WIND, INC.

2009-01-01T23:59:59.000Z

104

Standard-C hydrogen monitoring system. Acceptance test report  

DOE Green Energy (OSTI)

Project W-369, Watch List Tank Hydrogen Monitors, installed a Standard-C Hydrogen Monitoring System (SHMS) on Flammable Gas Watch List waste tank 104-AN. This document is the acceptance test report for the acceptance testing of the SHMS.

Lott, D.T.

1995-05-17T23:59:59.000Z

105

Sodium-Bearing Waste Treatment Alternatives Implementation Study  

SciTech Connect

The purpose of this document is to discuss issues related to the implementation of each of the five down-selected INEEL/INTEC radioactive liquid waste (sodium-bearing waste - SBW) treatment alternatives and summarize information in three main areas of concern: process/technical, environmental permitting, and schedule. Major implementation options for each treatment alternative are also identified and briefly discussed. This report may touch upon, but purposely does not address in detail, issues that are programmatic in nature. Examples of these include how the SBW will be classified with respect to the Nuclear Waste Policy Act (NWPA), status of Waste Isolation Pilot Plant (WIPP) permits and waste storage availability, available funding for implementation, stakeholder issues, and State of Idaho Settlement Agreement milestones. It is assumed in this report that the SBW would be classified as a transuranic (TRU) waste suitable for disposal at WIPP, located in New Mexico, after appropriate treatment to meet transportation requirements and waste acceptance criteria (WAC).

Charles M. Barnes; James B. Bosley; Clifford W. Olsen

2004-07-01T23:59:59.000Z

106

AVLIS production plant waste management plan  

Science Conference Proceedings (OSTI)

Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables.

Not Available

1984-11-15T23:59:59.000Z

107

Acceptance Test Refactoring  

E-Print Network (OSTI)

Abstract. In Executable Acceptance Test Driven Development, acceptance tests represent the requirements of a software system. As requirements change over time, the acceptance tests have to be updated and maintained. This process can be time-consuming and risky as acceptance tests lack the regression safety net that production code has. Refactoring of acceptance tests is used to keep the fixtures and the acceptance test definitions consistent.

Heiko Ordelt; Frank Maurer

2008-01-01T23:59:59.000Z

108

Data Package for Secondary Waste Form Down-Selection—Cast Stone  

SciTech Connect

Available literature on Cast Stone and Saltstone was reviewed with an emphasis on determining how Cast Stone and related grout waste forms performed in relationship to various criteria that will be used to decide whether a specific type of waste form meets acceptance criteria for disposal in the Integrated Disposal Facility (IDF) at Hanford. After the critical review of the Cast Stone/Saltstone literature, we conclude that Cast Stone is a good candidate waste form for further consideration. Cast stone meets the target IDF acceptance criteria for compressive strength, no free liquids, TCLP leachate are below the UTS permissible concentrations and leach rates for Na and Tc-99 are suiteably low. The cost of starting ingredients and equipment necessary to generate Cast Stone waste forms with secondary waste streams are low and the Cast Stone dry blend formulation can be tailored to accommodate variations in liquid waste stream compositions. The database for Cast Stone short-term performance is quite extensive compared to the other three candidate waste solidification processes. The solidification of liquid wastes in Cast Stone is a mature process in comparison to the other three candidates. Successful production of Cast Stone or Saltstone has been demonstrated from lab-scale monoliths with volumes of cm3 through m3 sized blocks to 210-liter sized drums all the way to the large pours into vaults at Savannah River. To date over 9 million gallons of low activity liquid waste has been solidified and disposed in concrete vaults at Savannah River.

Serne, R. Jeffrey; Westsik, Joseph H.

2011-09-05T23:59:59.000Z

109

Position paper: Seismic design criteria  

SciTech Connect

The purpose of this paper is to document the seismic design criteria to be used on the Title 11 design of the underground double-shell waste storage tanks and appurtenant facilities of the Multi-Function Waste Tank Facility (MWTF) project, and to provide the history and methodologies for determining the recommended Design Basis Earthquake (DBE) Peak Ground Acceleration (PGA) anchors for site-specific seismic response spectra curves. Response spectra curves for use in design are provided in Appendix A.

Farnworth, S.K.

1995-05-22T23:59:59.000Z

110

Microsoft Word - acceptance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Acceptance Checklist Acceptance Checklist The following checklist is intended to provide system owners, project managers, and other information system development and maintenance professionals with guidance in identifying and planning information system acceptance activities. The checklist reflects recognized acceptance management activities to be performed throughout the information systems project lifecycle. Information systems acceptance is generally characterized as a process to officially accept new or modified software components, which, when integrated, form an information system. Within this context, the objectives of software acceptance are summarized as the following: C Verify that the software product meets users= requirements and is fully operational.

111

ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY  

SciTech Connect

The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information.

Romano, Stephen; Welling, Steven; Bell, Simon

2003-02-27T23:59:59.000Z

112

Acceptance test report, 241-SY-101 Flexible Receiver System, Phase 1 testing  

DOE Green Energy (OSTI)

This document summarizes the results of the Phase 1 acceptance test of the 241-SY-101 Flexible Receiver System (FRS). This acceptance test consisted of a pressure-decay/leak test of the containment bag to verify that the seams along the length of the bag had been adequately sealed. The sealing integrity of the FRS must be verified to ensure that the release of waste and aerosols will be minimized during the removal of the test mixer pump from Tank 241-SY-101. The FRS is one of six major components of the Equipment Removal System, which has been designed to retrieve, transport, and store the mixer pump. This acceptance test was performed at Lancs Industries in Kirkland, Washington on January 17, 1995. The bag temperature-compensated pressure loss of 575 Pa was below the acceptance criteria of 625 Pa and the test results were therefore found to be acceptable. The bag manufacturer estimates that 80--90% of the pressure loss is attributed to leakage around the bag inflation valve where the pressure gage was connected. A leak detector was applied over the entire bag during the pre-tests and no leakage was found. Furthermore, the leak rate corresponding to this pressure loss is very small when compared to the acceptable leak rate of the completely assembled FRS. The sealing integrity of the assembled FRS is verified in Phase 3 testing.

Ritter, G.A.

1995-02-06T23:59:59.000Z

113

Idaho National Engineering Laboratory code assessment of the Rocky Flats transuranic waste  

SciTech Connect

This report is an assessment of the content codes associated with transuranic waste shipped from the Rocky Flats Plant in Golden, Colorado, to INEL. The primary objective of this document is to characterize and describe the transuranic wastes shipped to INEL from Rocky Flats by item description code (IDC). This information will aid INEL in determining if the waste meets the waste acceptance criteria (WAC) of the Waste Isolation Pilot Plant (WIPP). The waste covered by this content code assessment was shipped from Rocky Flats between 1985 and 1989. These years coincide with the dates for information available in the Rocky Flats Solid Waste Information Management System (SWIMS). The majority of waste shipped during this time was certified to the existing WIPP WAC. This waste is referred to as precertified waste. Reassessment of these precertified waste containers is necessary because of changes in the WIPP WAC. To accomplish this assessment, the analytical and process knowledge available on the various IDCs used at Rocky Flats were evaluated. Rocky Flats sources for this information include employee interviews, SWIMS, Transuranic Waste Certification Program, Transuranic Waste Inspection Procedure, Backlog Waste Baseline Books, WIPP Experimental Waste Characterization Program (headspace analysis), and other related documents, procedures, and programs. Summaries are provided of: (a) certification information, (b) waste description, (c) generation source, (d) recovery method, (e) waste packaging and handling information, (f) container preparation information, (g) assay information, (h) inspection information, (i) analytical data, and (j) RCRA characterization.

1995-07-01T23:59:59.000Z

114

Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program  

SciTech Connect

The Performance Demonstration Program (PDP) for Nondestructive Assay (NDA) is a test program designed to yield data on measurement system capability to characterize drummed transuranic (TRU) waste generated throughout the Department of Energy (DOE) complex. The tests are conducted periodically and provide a mechanism for the independent and objective assessment of NDA system performance and capability relative to the radiological characterization objectives and criteria of the Office of Characterization and Transportation (OCT). The primary documents requiring an NDA PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC), which requires annual characterization facility participation in the PDP, and the Quality Assurance Program Document (QAPD). This NDA PDP implements the general requirements of the QAPD and applicable requirements of the WAC. Measurement facilities must demonstrate acceptable radiological characterization performance through measurement of test samples comprised of pre-specified PDP matrix drum/radioactive source configurations. Measurement facilities are required to analyze the NDA PDP drum samples using the same procedures approved and implemented for routine operational waste characterization activities. The test samples provide an independent means to assess NDA measurement system performance and compliance per criteria delineated in the NDA PDP Plan. General inter-comparison of NDA measurement system performance among DOE measurement facilities and commercial NDA services can also be evaluated using measurement results on similar NDA PDP test samples. A PDP test sample consists of a 55-gallon matrix drum containing a waste matrix type representative of a particular category of the DOE waste inventory and nuclear material standards of known radionuclide and isotopic composition typical of DOE radioactive material. The PDP sample components are made available to participating measurement facilities as designated by the Carlsbad Field Office (CBFO). The nuclear material type, mass and associated alpha activity of the NDA PDP radioactive standard sets have been specified and fabricated to allow assembly of PDP samples that simulate TRU alpha activity concentrations, radionuclidic/isotopic distributions and physical forms typical of the DOE TRU waste inventory. The PDP matrix drum waste matrix types were derived from an evaluation of information contained in the Transuranic Waste Baseline Inventory Report (TWBIR) to ensure representation of prevalent waste types and their associated matrix characteristics in NDA PDP testing. NDA drum analyses required by the Waste Isolation Pilot Plant (WIPP) may only be performed by measurement facilities that comply with the performance criteria as set forth in the NDA PDP Plan. In this document, these analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes.

Carlsbad Field Office

2005-08-03T23:59:59.000Z

115

The Nevada Test Site Legacy TRU Waste - The WIPP Central Characterization Project  

Science Conference Proceedings (OSTI)

This paper discusses the Central Characterization Project (CCP) designed by the Waste Isolation Pilot Plant (WIPP) to aid sites, especially those sites with small quantities of transuranic (TRU) waste streams, in disposing of legacy waste at their facility. Because of the high cost of contracting vendors with the characterization capabilities necessary to meet the WIPP Waste Acceptance Criteria, utilizing the CCP is meant to simplify the process for small quantity sites. The paper will describe the process of mobilization of the vendors through CCP, the current production milestones that have been met, and the on-site lessons learned.

Norton, J. F.; Lahoud, R. G.; Foster, B. D.; VanMeighem, J.

2003-02-25T23:59:59.000Z

116

Gas characterization monitoring system functional design criteria  

DOE Green Energy (OSTI)

The purpose of this document is to provide the functional design criteria for the Gas Characterization Monitoring Systems (Standard-E Hydrogen Monitoring Systems,) to be designed, fabricated and installed on the Waste Tank Farms in the Hanford 200 Areas.

Schneider, T.C.

1997-06-01T23:59:59.000Z

117

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory  

Science Conference Proceedings (OSTI)

This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

118

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents  

Science Conference Proceedings (OSTI)

This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

119

DEVELOPMENT QUALIFICATION AND DISPOSAL OF AN ALTERNATIVE IMMOBILIZED LOW-ACTIVITY WASTE FORM AT THE HANFORD SITE  

SciTech Connect

Demonstrating that a waste form produced by a given immobilization process is chemically and physically durable as well as compliant with disposal facility acceptance criteria is critical to the success of a waste treatment program, and must be pursued in conjunction with the maturation of the waste processing technology. Testing of waste forms produced using differing scales of processing units and classes of feeds (simulants versus actual waste) is the crux of the waste form qualification process. Testing is typically focused on leachability of constituents of concern (COCs), as well as chemical and physical durability of the waste form. A principal challenge regarding testing immobilized low-activity waste (ILAW) forms is the absence of a standard test suite or set of mandatory parameters against which waste forms may be tested, compared, and qualified for acceptance in existing and proposed nuclear waste disposal sites at Hanford and across the Department of Energy (DOE) complex. A coherent and widely applicable compliance strategy to support characterization and disposal of new waste forms is essential to enhance and accelerate the remediation of DOE tank waste. This paper provides a background summary of important entities, regulations, and considerations for nuclear waste form qualification and disposal. Against this backdrop, this paper describes a strategy for meeting and demonstrating compliance with disposal requirements emphasizing the River Protection Project (RPP) Integrated Disposal Facility (IDF) at the Hanford Site and the fluidized bed steam reforming (FBSR) mineralized low-activity waste (LAW) product stream.

SAMS TL; EDGE JA; SWANBERG DJ; ROBBINS RA

2011-01-13T23:59:59.000Z

120

Developing Automated Methods of Waste Sorting  

SciTech Connect

The U.S. Department of Energy (DOE) analyzed the need complex-wide for remote and automated technologies as they relate to the treatment and disposal of mixed wastes. This analysis revealed that several DOE sites need the capability to open drums containing waste, visually inspect and sort the contents, and finally repackage the containers that are acceptable at a waste disposal facility such as the Waste Isolation Pilot Plant (WIPP) in New Mexico. Conditioning contaminated waste so that it is compatible with the WIPP criteria for storage is an arduous task whether the waste is contact handled (waste having radioactivity levels below 200 mrem/hr) or remote handled. Currently, WIPP non-compliant items are removed from the waste stream manually, at a rate of about one 55-gallon drum per day. Issues relating to contamination-based health hazards as well as repetitive motion health hazards are steering industry towards a more user-friendly, method of conditioning or sorting waste.

Shurtliff, Rodney Marvin

2002-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste acceptance criteria" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Waste Isolation Pilot Plant Safety Analysis Report  

Science Conference Proceedings (OSTI)

The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

NONE

1995-11-01T23:59:59.000Z

122

Summary of radioactive solid waste received in the 200 areas during calendar year 1996  

Science Conference Proceedings (OSTI)

Rust Federal Services of Hanford Inc. manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Operations Office under contract DE-AC06-87RL10930. These facilities include storage areas and disposal sites for radioactive solid waste. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities from startup in 1944 through calendar year 1996. This report does not include backlog waste, solid radioactive wastes in storage or disposed of in other areas, or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria, liquid waste data are not included in this document.

Hladek, K.L.

1997-05-21T23:59:59.000Z

123

Environmental assessment for the construction, operation, and decommissioning of the Waste Segregation Facility at the Savannah River Site  

Science Conference Proceedings (OSTI)

This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D&D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D&D a facility to process low-activity job-control and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS.

NONE

1998-01-01T23:59:59.000Z

124

Infectious waste feed system  

DOE Patents (OSTI)

An infectious waste feed system for comminuting infectious waste and feeding the comminuted waste to a combustor automatically without the need for human intervention. The system includes a receptacle for accepting waste materials. Preferably, the receptacle includes a first and second compartment and a means for sealing the first and second compartments from the atmosphere. A shredder is disposed to comminute waste materials accepted in the receptacle to a predetermined size. A trough is disposed to receive the comminuted waste materials from the shredder. A feeding means is disposed within the trough and is movable in a first and second direction for feeding the comminuted waste materials to a combustor.

Coulthard, E. James (York, PA)

1994-01-01T23:59:59.000Z

125

Acceptance test report: Backup power system  

SciTech Connect

Acceptance Test Report for construction functional testing of Project W-030 Backup Power System. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. Backup power includes a single 125 KW diesel generator, three 10-kva uninterruptible power supply units, and all necessary control.

Cole, D.B. [Westinghouse Hanford Co., Richland, WA (United States)

1996-01-26T23:59:59.000Z

126

SRNL PHASE 1 ASSESSMENT OF THE WTP WASTE QUALIFICATION PROGRAM  

SciTech Connect

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) Project is currently transitioning its emphasis from an engineering design and construction phase toward facility completion, start-up and commissioning. With this transition, the WTP Project has initiated more detailed assessments of the requirements that must be met during the actual processing of the Hanford Site tank waste. One particular area of interest is the waste qualification program. In general, the waste qualification program involves testing and analysis to demonstrate compliance with waste acceptance criteria, determine waste processability, and demonstrate laboratory-scale unit operations to support WTP operations. The testing and analysis are driven by data quality objectives (DQO) requirements necessary for meeting waste acceptance criteria for transfer of high-level wastes from the tank farms to the WTP, and for ensuring waste processability including proper glass formulations during processing within the WTP complex. Given the successful implementation of similar waste qualification efforts at the Savannah River Site (SRS) which were based on critical technical support and guidance from the Savannah River National Laboratory (SRNL), WTP requested subject matter experts (SMEs) from SRNL to support a technology exchange with respect to waste qualification programs in which a critical review of the WTP program could be initiated and lessons learned could be shared. The technology exchange was held on July 18-20, 2011 in Richland, Washington, and was the initial step in a multi-phased approach to support development and implementation of a successful waste qualification program at the WTP. The 3-day workshop was hosted by WTP with representatives from the Tank Operations Contractor (TOC) and SRNL in attendance as well as representatives from the US DOE Office of River Protection (ORP) and the Defense Nuclear Facility Safety Board (DNFSB) Site Representative office. The purpose of the workshop was to share lessons learned and provide a technology exchange to support development of a technically defensible waste qualification program. The objective of this report is to provide a review, from SRNL's perspective, of the WTP waste qualification program as presented during the workshop. In addition to SRNL's perspective on the general approach to the waste qualification program, more detailed insight into the specific unit operations presented by WTP during the workshop is provided. This report also provides a general overview of the SRS qualification program which serves as a basis for a comparison between the two programs. Recommendations regarding specific steps are made based on the review and SRNL's lessons learned from qualification of SRS low-activity waste (LAW) and high-level waste (HLW) to support maturation of the waste qualification program leading to WTP implementation.

Peeler, D.; Hansen, E.; Herman, C.; Marra, S.; Wilmarth, B.

2012-03-06T23:59:59.000Z

127

Acceptance Test Report for AMS-4 Continuous Air Monitors (CAM) at 241AN Exhausters  

SciTech Connect

This report provides the completed copy and test results of the Acceptance Test Procedure (TWR-4713). Test results were actually hand written in the ATP including redline changes. All acceptance criteria steps were completed satisfactorily without exceptions.

SCAIEF, C.C.

1999-11-11T23:59:59.000Z

128

The contact-temperature ignition (CTI) criteria for propagating chemical reactions including the effect of moisture and application to Hanford waste  

SciTech Connect

To assure the continued absence of uncontrolled condensed-phase chemical reactions in connection with the Hanford waste materials, efforts have been underway including both theoretical and experimental investigations to clarify the requirements for such reactions. This document defines the differences and requirements for homogeneous runaway and propagating chemical reactions incuding a discussion of general contact-temperature ignition (CTI) condition for propagating reactions that include the effect of moisture. The CTI condition implies that the contact temperature or interface temperature between reacted and unreacted materials must exceed the ignition temperature and is compared to experimental data including both synthetic ferrocyanide and surrogate organic materials. In all cases, the occurrences of ignition accompanied by self-propagating reactions are consistent with the theoretical anticipations of the CTI condition.

Cash, R.J.

1995-09-27T23:59:59.000Z

129

Disposal of Rocky Flats residues as waste  

SciTech Connect

Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

Dustin, D.F.; Sendelweck, V.S. [EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant; Rivera, M.A. [Lamb Associates, Inc., Rockville, MD (United States)

1993-03-01T23:59:59.000Z

130

Solidification of Acidic, High Nitrate Nuclear Wastes by Grouting or Absorption on Silica Gel  

Science Conference Proceedings (OSTI)

The use of grout and silica gel were explored for the solidification of four types of acidic, high nitrate radioactive wastes. Two methods of grouting were tested: direct grouting and pre-neutralization. Two methods of absorption on silica gel were also tested: direct absorption and rotary spray drying. The waste simulant acidity varied between 1 N and 12 N. The waste simulant was neutralized by pre-blending calcium hydroxide with Portland cement and blast furnace slag powders prior to mixing with the simulant for grout solidification. Liquid sodium hydroxide was used to partially neutralize the simulant to a pH above 2 and then it was absorbed for silica gel solidification. Formulations for each of these methods are presented along with waste form characteristics and properties. Compositional variation maps for grout formulations are presented which help determine the optimum "recipe" for a particular waste stream. These maps provide a method to determine the proportions of waste, calcium hydroxide, Portland cement, and blast furnace slag that provide a waste form that meets the disposal acceptance criteria. The maps guide researchers in selecting areas to study and provide an operational envelop that produces acceptable waste forms. The grouts both solidify and stabilize the wastes, while absorption on silica gel produces a solid waste that will not pass standard leaching procedures (TCLP) if required. Silica gel wastes can be made to pass most leach tests if heated to 600ºC.

A. K. Herbst; S. V. Raman; R. J. Kirkham

2004-01-01T23:59:59.000Z

131

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory  

SciTech Connect

This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

132

SLUDGE BATCH 7 ACCEPTANCE EVALUATION: RADIONUCLIDE CONCENTRATIONS IN TANK 51 SB7 QUALIFICATION SAMPLE PREPARED AT SRNL  

SciTech Connect

Presented in this report are radionuclide concentrations required as part of the program of qualifying Sludge Batch Seven (SB7) for processing in the Defense Waste Processing Facility (DWPF). The SB7 material is currently in Tank 51 being washed and prepared for transfer to Tank 40. The acceptance evaluation needs to be completed prior to the transfer of the material in Tank 51 to Tank 40. The sludge slurry in Tank 40 has already been qualified for DWPF and is currently being processed as SB6. The radionuclide concentrations were measured or estimated in the Tank 51 SB7 Qualification Sample prepared at Savannah River National Laboratory (SRNL). This sample was prepared from the three liter qualification sample of Tank 51 sludge slurry (HTF-51-10-125) received on September 18, 2010. The sample was delivered to SRNL where it was initially characterized in the Shielded Cells. With consultation from the Liquid Waste Organization, the qualification sample was then modified by several washes and decants, which included addition of Pu from H Canyon and sodium nitrite per the Tank Farm corrosion control program. This final slurry now has a composition expected to be similar to that of the slurry in Tank 51 after final preparations have been made for transfer of that slurry to Tank 40. Determining the radionuclide concentrations in this Tank 51 SB7 Qualification Sample is part of the work requested in Technical Task Request (TTR) No. HLW-DWPF-TTR-2010-0031. The radionuclides included in this report are needed for the DWPF Radiological Program Evaluation, the DWPF Waste Acceptance Criteria (TSR/WAC) Evaluation, and the DWPF Solid Waste Characterization Program (TTR Task I.2). Radionuclides required to meet the Waste Acceptance Product Specifications (TTR Task III.2.) will be measured at a later date after the slurry from Tank 51 has been transferred to Tank 40. Then a sample of the as-processed SB7 will be taken and transferred to SRNL for measurement of these radionuclides. The results presented in this report are those necessary for DWPF to assess if the Tank 51 SB7 sample prepared at SRNL meets the requirements for the DWPF Radiological Program Evaluation, the DWPF Waste Acceptance Criteria evaluation, and the DWPF Solid Waste Characterization Program. Concentrations are given for thirty-four radionuclides along with total alpha and beta activity. Values for total gamma and total gamma plus beta activities are also calculated.

Pareizs, J.; Hay, M.

2011-02-22T23:59:59.000Z

133

WIPP Waste Information System Waste Container Data Report  

E-Print Network (OSTI)

WIPP Waste Information System Waste Container Data Report 06/06/2008 07:50 2.6 % LASB00411 % % Report Date Run by Report Site Id Container Number Waste Stream Data Status Code PEARCYM Version RP0360 Selection Criteria - Total Pages PRD02Instance 5 #12;Waste Isolation Pilot Plant Waste Container Data Report

134

WIPP Waste Information System Waste Container Data Report  

E-Print Network (OSTI)

WIPP Waste Information System Waste Container Data Report 06/06/2008 07:49 2.6 % LAS817174 % % Report Date Run by Report Site Id Container Number Waste Stream Data Status Code PEARCYM Version RP0360 Selection Criteria - Total Pages PRD02Instance 5 #12;Waste Isolation Pilot Plant Waste Container Data Report

135

Demonstrating Reliable High Level Waste Slurry Sampling Techniques to Support Hanford Waste Processing - 14194  

SciTech Connect

The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HL W) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOC must demonstrate the ability to adequately mix and sample high-level waste feed to meet the WTP Waste Acceptance Criteria and Data Quality Objectives. The sampling method employed must support both TOC and WTP requirements. To facilitate information transfer between the two facilities the mixing and sampling demonstrations are led by the One System Integrated Project Team. The One System team, Waste Feed Delivery Mixing and Sampling Program, has developed a full scale sampling loop to demonstrate sampler capability. This paper discusses the full scale sampling loops ability to meet precision and accuracy requirements, including lessons learned during testing. Results of the testing showed that the Isolok(R) sampler chosen for implementation provides precise, repeatable results. The Isolok(R) sampler accuracy as tested did not meet test success criteria. Review of test data and the test platform following testing by a sampling expert identified several issues regarding the sampler used to provide reference material used to judge the Isolok?'s accuracy. Recommendations were made to obtain new data to evaluate the sampler's accuracy utilizing a reference sampler that follows good sampling protocol.

Kelly, Steven E.

2013-11-11T23:59:59.000Z

136

Acceptance test report, 241-SY-101 Flexible Receiver System, Phase 2 testing  

DOE Green Energy (OSTI)

This document summarizes the results of the Phase 2 acceptance test of the 241-SY-101 Flexible Receiver System (FRS). The FRS is one of six major components of the Equipment Removal System, which has been designed to retrieve, transport, and store the test mixer pump currently installed in Tank 241-SY-101. The purpose of this acceptance test is to verify the strength of the containment bag and bag bottom cinching mechanism. It is postulated that 68 gallons of waste could be trapped inside the pump internals. The bag must be capable of supporting this waste if it shakes loose and drains to the bottom of the bag after the bag bottom has been cinched closed. This acceptance test was performed at the Maintenance and Storage Facility (MASF) Facility in the 400 area on January 23, 1995. The bag assembly supported the weight of 920 kg (2,020 lbs) of water with no leakage or damage to the bag. This value meets the acceptance criteria of 910 kg of water and therefore the results were found to be acceptable. The maximum volume of liquid expected to be held up in the pump internals is 258 L (68 gallons), which corresponds to 410 kg. This test weight gives just over a safety factor of 2. The bag also supported a small shock load while it was filled with water when the crane hoisted the bag assembly up and down. Based on the strength rating of the bag components, the bag assembly should support 2--3 times the test weight of 910 kg.

Ritter, G.A.

1995-02-06T23:59:59.000Z

137

Secondary Waste Form Screening Test Results—THOR® Fluidized Bed Steam Reforming Product in a Geopolymer Matrix  

SciTech Connect

Screening tests are being conducted to evaluate waste forms for immobilizing secondary liquid wastes from the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Plans are underway to add a stabilization treatment unit to the Effluent Treatment Facility to provide the needed capacity for treating these wastes from WTP. The current baseline is to use a Cast Stone cementitious waste form to solidify the wastes. Through a literature survey, DuraLith alkali-aluminosilicate geopolymer, fluidized-bed steam reformation (FBSR) granular product encapsulated in a geopolymer matrix, and a Ceramicrete phosphate-bonded ceramic were identified both as candidate waste forms and alternatives to the baseline. These waste forms have been shown to meet waste disposal acceptance criteria, including compressive strength and universal treatment standards for Resource Conservation and Recovery Act (RCRA) metals (as measured by the toxicity characteristic leaching procedure [TCLP]). Thus, these non-cementitious waste forms should also be acceptable for land disposal. Information is needed on all four waste forms with respect to their capability to minimize the release of technetium. Technetium is a radionuclide predicted to be in the secondary liquid wastes in small quantities, but the Integrated Disposal Facility (IDF) risk assessment analyses show that technetium, even at low mass, produces the largest contribution to the estimated IDF disposal impacts to groundwater.

Pires, Richard P.; Westsik, Joseph H.; Serne, R. Jeffrey; Mattigod, Shas V.; Golovich, Elizabeth C.; Valenta, Michelle M.; Parker, Kent E.

2011-07-14T23:59:59.000Z

138

Acceptable NSLS Safety Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Acceptable NSLS Safety Documentation Print NSLS users who have completed NSLS Safety Module must present a copy of one of the following documents to receive ALS 1001: Safety at the...

139

RH-TRU Waste Inventory Characterization by AK and Proposed WIPP RH-TRU Waste Characterization Objectives  

SciTech Connect

The U.S. Department of Energy (DOE)-Carlsbad Field Office (CBFO) has developed draft documentation to present the proposed Waste Isolation Pilot Plant (WIPP) remote-handled (RH-) transuranic (TRU) waste characterization program to its regulators, the U.S. Environmental Protection Agency and the New Mexico Environment Department. Compliance with Title 40, Code of Federal Regulations, Parts 191 and 194; the WIPP Land Withdrawal Act (PL 102-579); and the WIPP Hazardous Waste Facility Permit, as well as the Certificates of Compliance for the 72-B and 10-160B Casks, requires that specific waste parameter limits be imposed on DOE sites disposing of TRU waste at WIPP. The DOE-CBFO must control the sites' compliance with the limits by specifying allowable characterization methods. As with the established WIPP contact handled TRU waste characterization program, the DOE-CBFO has proposed a Remote-Handled TRU Waste Acceptance Criteria (RH-WAC) document consolidating the requirements from various regulatory drivers and proposed allowable characterization methods. These criteria are consistent with the recommendation of a recent National Academy Sciences/National Research Council to develop an RH-TRU waste characterization approach that removes current self imposed requirements that lack a legal or safety basis. As proposed in the draft RH-WAC and other preliminary documents, the DOE-CBFO RH-TRU waste characterization program proposes the use of acceptable knowledge (AK) as the primary method for obtaining required characterization information. The use of AK involves applying knowledge of the waste in light of the materials or processes used to generate the waste. Documentation, records, or processes providing information about various attributes of a waste stream, such as chemical, physical, and radiological properties, may be used as AK and may be applied to individual waste containers either independently or in conjunction with radiography, visual examination, assay, and other sampling and analytical data. RH-TRU waste cannot be shipped to WIPP on the basis of AK alone if documentation demonstrating that all of the prescribed limits in the RH-WAC are met is not available, discrepancies exist among AK source documents describing the same waste stream and the most conservative assumptions regarding those documents indicates that a limit will not be met, or all required data are not available for a given waste stream.

Most, W. A.; Kehrman, R.; Gist, C.; Biedscheid, J.; Devarakonda, J.; Whitworth, J.

2002-02-26T23:59:59.000Z

140

Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste  

Science Conference Proceedings (OSTI)

'The Hanford double-shell tank (DST) system provides the staging location for waste feed delivery to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Hall (2008) includes WTP acceptance criteria that describe physical and chemical characteristics of the waste that must be certified as acceptable before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST. The objectives of Washington River Protection Solutions' (WRPS) Small Scale Mixing Demonstration (SSMD) project are to understand and demonstrate the DST sampling and batch transfer performance at multiple scales using slurry simulants comprised of UDS particles and liquid (Townson 2009). The SSMD project utilizes geometrically scaled DST feed tanks to generate mixing, sampling, and transfer test data. In Phase 2 of the testing, RPP-49740, the 5-part simulant defined in RPP-48358 was used as the waste slurry simulant. The Phase 2 test data are being used to estimate the expected performance of the prototypic systems in the full-scale DSTs. As such, understanding of the how the small-scale systems as well as the simulant relate to the full-scale DSTs and actual waste is required. The focus of this report is comparison of the size and density of the 5-part SSMD simulant to that of the Hanford waste. This is accomplished by computing metrics for particle mobilization, suspension, settling, transfer line intake, and pipeline transfer from the characterization of the 5-part SSMD simulant and characterizations of the Hanford waste. In addition, the effects of the suspending fluid characteristics on the test results are considered, and a computational fluid dynamics tool useful to quantify uncertainties from simulant selections is discussed.'

Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

2011-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "waste acceptance criteria" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Gas characterization system 241-AN-105 field acceptance test procedure  

DOE Green Energy (OSTI)

This document details the field Acceptance Testing of a gas characterization system being installed on waste tank 241-AN-105. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases.

Schneider, T.C.

1996-03-01T23:59:59.000Z

142

Gas characterization system 241-AW-101 field acceptance test procedure  

DOE Green Energy (OSTI)

This document details the field Acceptance Testing of a gas characterization system being installed on waste tank 241-AW-101. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases.

Schneider, T.C.

1996-03-01T23:59:59.000Z

143

The retrofitting of existing buildings for seismic criteria  

E-Print Network (OSTI)

This thesis describes the process for retrofitting a building for seismic criteria. It explains the need for a new, performance-based design code to provide a range of acceptable building behavior. It then outlines the ...

Besing, Christa, 1978-

2004-01-01T23:59:59.000Z

144

Characterization of the Old Hydrofracture Facility (OHF) waste tanks located at ORNL  

SciTech Connect

The Old Hydrofracture Facility (OHF) is located in Melton Valley within Waste Area Grouping (WAG) 5 and includes five underground storage tanks (T1, T2, T3, T4, and T9) ranging from 13,000 to 25,000 gal. capacity. During the period of 1996--97 there was a major effort to re-sample and characterize the contents of these inactive waste tanks. The characterization data summarized in this report was needed to address waste processing options, examine concerns dealing with the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the waste characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and to provide the data needed to meet DOT requirements for transporting the waste. This report discusses the analytical characterization data collected on both the supernatant and sludge samples taken from three different locations in each of the OHF tanks. The isotopic data presented in this report supports the position that fissile isotopes of uranium ({sup 233}U and {sup 235}U) do not satisfy the denature ratios required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). The fissile isotope of plutonium ({sup 239}Pu and {sup 241}Pu) are diluted with thorium far above the WAC requirements. In general, the OHF sludge was found to be hazardous (RCRA) based on total metal content and the transuranic alpha activity was well above the 100 nCi/g limit for TRU waste. The characteristics of the OHF sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP.

Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

1997-04-01T23:59:59.000Z

145

Waste analysis plan for 222-S dangerous and mixed waste storage area  

Science Conference Proceedings (OSTI)

The 222-S Laboratory Complex, in the southeast corner of the 200 West Area, consists of the 222-S Laboratory, the 222-SA Standards Laboratory, and several ancillary facilities. Currently, 222-S Laboratory activities are in supporting efforts to characterize the waste stored in the 200 Areas single shell and double shell tanks. Besides this work, the laboratory also provides analytical services for waste-management processing plants, Tank Farms, B Plant, 242-A Evaporator Facility, Plutonium-Uranium Extraction Plant, Plutonium Finishing Plant, Uranium-Oxide Plant, Waste Encapsulation Storage Facility, environmental monitoring and surveillance programs, and activities involving essential materials and research and development. One part of the 222-SA Laboratory prepares nonradioactive standards for the 200 Area laboratories. The other section of the laboratory is used for cold (nonradioactive) process development work and standards preparation. The 219-S Waste Handling Facility has three storage tanks in which liquid acid waste from 222-S can be received, stored temporarily, and neutralized. From this facility, neutralized waste, containing radionuclides, is transferred to the Tank Farms. A 700-gallon sodium-hydroxide supply tank is also located in this facility. This plan provides the methods used to meet the acceptance criteria required by the 204-AR Waste Receiving Facility.

Warwick, G.J.

1994-08-30T23:59:59.000Z

146

Hazardous Waste Code Determination for First/Second-Stage Sludge Waste Stream (IDCs 001, 002, 800)  

Science Conference Proceedings (OSTI)

This document, Hazardous Waste Code Determination for the First/Second-Stage Sludge Waste Stream, summarizes the efforts performed at the Idaho National Engineering and Environmental Laboratory (INEEL) to make a hazardous waste code determination on Item Description Codes (IDCs) 001, 002, and 800 drums. This characterization effort included a thorough review of acceptable knowledge (AK), physical characterization, waste form sampling, chemical analyses, and headspace gas data. This effort included an assessment of pre-Waste Analysis Plan (WAP) solidified sampling and analysis data (referred to as preliminary data). Seventy-five First/Second-Stage Sludge Drums, provided in Table 1-1, have been subjected to core sampling and analysis using the requirements defined in the Quality Assurance Program Plan (QAPP). Based on WAP defined statistical reduction, of preliminary data, a sample size of five was calculated. That is, five additional drums should be core sampled and analyzed. A total of seven drums were sampled, analyzed, and validated in compliance with the WAP criteria. The pre-WAP data (taken under the QAPP) correlated very well with the WAP compliant drum data. As a result, no additional sampling is required. Based upon the information summarized in this document, an accurate hazardous waste determination has been made for the First/Second-Stage Sludge Waste Stream.

Arbon, R.E.

2001-01-31T23:59:59.000Z

147

Security Enforcement Reporting Criteria  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Classified Information Security Noncompliance Reporting Criteria January 2012 MANDATORY SECURITY INCIDENT REPORTING Classified information security noncompliances are categorized...

148

Demonstration of Mixed Waste Debris Macroencapsulation Using Sulfur Polymer Cement  

SciTech Connect

This report covers work performed during FY 1997 as part of the Evaluation of Sulfur Polymer Cement Fast-Track System Project. The project is in support of the ``Mercury Working Group/Mercury Treatment Demonstrations - Oak Ridge`` and is described in technical task plan (TTP) OR-16MW-61. Macroencapsulation is the treatment technology required for debris by the U.S. Environmental Protection Agency Land Disposal Restrictions (LDR) under the Resource Conservation and Recovery Act. Based upon the results of previous work performed at Oak Ridge, the concept of using sulfur polymer cement (SPC) for this purpose was submitted to the Mixed Waste Focus Area (MWFA). Because of the promising properties of the material, the MWFA accepted this Quick Win project, which was to demonstrate the feasibility of macroencapsulation of actual mixed waste debris stored on the Oak Ridge Reservation. The waste acceptance criteria from Envirocare, Utah, were chosen as a standard for the determination of the final waste form produced. During this demonstration, it was shown that SPC was a good candidate for macroencapsulation of mixed waste debris, especially when the debris pieces were dry. The matrix was found to be quite easy to use and, once the optimum operating conditions were identified, very straightforward to replicate for batch treatment. The demonstration was able to render LDR compliant more than 400 kg of mixed wastes stored at the Oak Ridge National Laboratory.

Mattus, C.H.

1998-07-01T23:59:59.000Z

149

A literature review of mixed waste components: Sensitivities and effects upon solidification/stabilization in cement-based matrices  

Science Conference Proceedings (OSTI)

The US DOE Oak Ridge Field Office has signed a Federal Facility Compliance Agreement (FFCA) regarding Oak Ridge Reservation (ORR) mixed wastes subject to the land disposal restriction (LDR) provisions of the Resource conservation and Recovery Act. The LDR FFCA establishes an aggressive schedule for conducting treatability studies and developing treatment methods for those ORR mixed (radioactive and hazardous) wastes listed in Appendix B to the Agreement. A development, demonstration, testing, and evaluation program has been initiated to provide those efforts necessary to identify treatment methods for all of the wastes that meet Appendix B criteria. The program has assembled project teams to address treatment development needs in a variety of areas, including that of final waste forms (i.e., stabilization/solidification processes). A literature research has been performed, with the objective of determining waste characterization needs to support cement-based waste-form development. The goal was to determine which waste species are problematic in terms of consistent production of an acceptable cement-based waste form and at what concentrations these species become intolerable. The report discusses the following: hydration mechanisms of Portland cement; mechanisms of retardation and acceleration of cement set-factors affecting the durability of waste forms; regulatory limits as they apply to mixed wastes; review of inorganic species that interfere with the development of cement-based waste forms; review of radioactive species that can be immobilized in cement-based waste forms; and review of organic species that may interfere with various waste-form properties.

Mattus, C.H.; Gilliam, T.M.

1994-03-01T23:59:59.000Z

150

A facility design for repackaging ORNL CH-TRU legacy waste in Building 3525  

Science Conference Proceedings (OSTI)

For the last 25 years, the Oak Ridge National Laboratory (ORNL) has conducted operations which have generated solid, contact-handled transuranic (CH-TRU) waste. At present the CH-TRU waste inventory at ORNL is about 3400 55-gal drums retrievably stored in RCRA-permitted, aboveground facilities. Of the 3400 drums, approximately 2600 drums will need to be repackaged. The current US Department of Energy (DOE) strategy for disposal of these drums is to transport them to the Waste Isolation Pilot Plant (WIPP) in New Mexico which only accepts TRU waste that meets a very specific set of criteria documented in the WIPP-WAC (waste acceptance criteria). This report describes activities that were performed from January 1994 to May 1995 associated with the design and preparation of an existing facility for repackaging and certifying some or all of the CH-TRU drums at ORNL to meet the WIPP-WAC. For this study, the Irradiated Fuel Examination Laboratory (IFEL) in Building 3525 was selected as the reference facility for modification. These design activities were terminated in May 1995 as more attractive options for CH-TRU waste repackaging were considered to be available. As a result, this document serves as a final report of those design activities.

Huxford, T.J.; Cooper, R.H. Jr.; Davis, L.E.; Fuller, A.B.; Gabbard, W.A.; Smith, R.B. [Oak Ridge National Lab., TN (United States); Guay, K.P. [S. M. Stroller Corp. (United States); Smith, L.C. [United Energy Services Corp. (United States)

1995-07-01T23:59:59.000Z

151

Radioactive Waste Management, Inspection Criteria; Approach,...  

NLE Websites -- All DOE Office Websites (Extended Search)

systems and practices used by field organizations in implementing Integrated Safety Management and to provide clear, concise, and independent evaluations of performance in...

152

Hazardous Waste Management Implementation Inspection Criteria...  

NLE Websites -- All DOE Office Websites (Extended Search)

and practices used by field orgailizatioils in implementing Integrated Safety Management and to provide clear, concise, and independent evaluations of perfomlance in...

153

Acceptance test specifications for test number eleven: sodium system filling, heatup, pressurization, and drain. [LMFBR  

SciTech Connect

This document provides the general instructions for performing acceptance test number eleven as indicated in the Acceptance Test Index (TI-022-130-003). Also indicated are the plant conditions and special equipment required to conduct the test. The acceptance criteria for each portion of the test are specified.

Bell, C.R.

1975-05-01T23:59:59.000Z

154

Acceptance-test specifications for Test Number Four: process sensor and display test. [LMFBR  

SciTech Connect

This document provides the general instructions for performing acceptance Test Number Four as indicated in the Acceptance Test Index (TI-022-130-003). Also indicated are the plant conditions and special equipment required to conduct the test. The acceptance criteria for each portion of the test are specified.

Bell, C.R.

1975-05-09T23:59:59.000Z

155

Nuclear safety criteria and specifications for space nuclear reactors  

SciTech Connect

The purpose of this document is to define safety criteria which must be met to implement US safety policy for space fission reactors. These criteria provide the bases for decisions on the acceptability of specific mission and reactor design proposals. (JDH)

1982-08-01T23:59:59.000Z

156

Just-in-time characterization and certification of DOE-generated wastes  

SciTech Connect

Transportation and disposal of wastes generated by Department of Energy (DOE) activities, including weapons production and decontamination and decommissioning (D&D) of facilities, require that wastes be certified as complying with various regulations and requirements. These certification requirements are typically summarized by disposal sites in their specific waste acceptance criteria. Although a large volume of DOE wastes have been generated by past activities and are presently in storage awaiting disposal, a significant volume of DOE wastes, particularly from D&D projects. have not yet been generated. To prepare DOE-generated wastes for disposal in an efficient manner. it is suggested that a program of just-in-time characterization and certification be adopted. The goal of just-in-time characterization and certification, which is based on the just-in-time manufacturing process, is to streamline the certification process by eliminating redundant layers of oversight and establishing pro-active waste management controls. Just-in-time characterization and certification would rely on a waste management system in which wastes are characterized at the point of generation, precertified as they are generated (i.e., without iterative inspections and tests subsequent to generation and storage), and certified at the point of shipment, ideally the loading dock of the building from which the wastes are generated. Waste storage would be limited to accumulating containers for cost-efficient transportation.

Arrenholz, D.A.; Primozic, F.J. [Benchmark Environmental Corp., Albuquerque, NM (United States); Robinson, M.A. [Los Alamos National Lab., NM (United States)

1995-12-31T23:59:59.000Z

157

Tank SY-101 void fraction instrument functional design criteria  

DOE Green Energy (OSTI)

This document presents the functional design criteria for design, analysis, fabrication, testing, and installation of a void fraction instrument for Tank SY-101. This instrument will measure the void fraction in the waste in Tank SY-101 at various elevations.

McWethy, L.M.

1994-10-18T23:59:59.000Z

158

Hanford Waste Vitrification Plant Project Waste Form Qualification Program Plan  

SciTech Connect

The US Department of Energy has created a waste acceptance process to help guide the overall program for the disposal of high-level nuclear waste in a federal repository. This Waste Form Qualification Program Plan describes the hierarchy of strategies used by the Hanford Waste Vitrification Plant Project to satisfy the waste form qualification obligations of that waste acceptance process. A description of the functional relationship of the participants contributing to completing this objective is provided. The major activities, products, providers, and associated scheduling for implementing the strategies also are presented.

Randklev, E.H.

1993-06-01T23:59:59.000Z

159

Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory  

SciTech Connect

Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

Dorries, Alison M [Los Alamos National Laboratory

2010-11-09T23:59:59.000Z

160

Characterization of the C1 and C2 waste tanks located in the BVEST system at ORNL  

SciTech Connect

There was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns dealing with the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the waste characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report discusses the analytical characterization data for the supernatant and sludge in the BVEST waste tanks C-1 and C-2. The isotopic data presented in this report supports the position that fissile isotopes of uranium ({sup 233}U and {sup 235}U) and plutonium ({sup 239}Pu and {sup 241}Pu) were denatured as required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). In general, the sludge in tanks C1 and C2 was found to be hazardous based on RCRA characteristics and the transuranic alpha activity was well above the 100 nCi/g limit for TRU waste. Additional characteristics of the C1 and C2 sludge inventory relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP.

Keller, J.M.; Giaquinto, J.M.

1998-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste acceptance criteria" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

CHANGING RELEASE CRITERIA FROM PAST TO PRESENT  

SciTech Connect

Beginning with the decommissioning of nuclear power plants the release, criteria for radioactive materials has gained importance significantly. After decommissioning and dismantling, most of the residues need not be treated as radioactive waste, since they contain only small amounts of radioactivity. The Karlsruhe Research Center already dismantled two research reactors completely (the Karlstein Super Heated Steam Reactor and the Niederaichbach Nuclear Power Plant), while several additional decommissioning projects are currently in progress. About 70 % of the total waste mass within each project can be released from the area of atomic regulations and licenses. At the Niederaichbach and Karlstein sites the release procedures and the release criteria were determined in the decommissioning license, where issues such as controlling and release values were fixed. Additionally, each step of the release process has to be coordinated with the regulator. Today the general release criteria are contained in the atomic act. Depending on the nature of the material to be released (e.g. building structures or metallic waste), and depending on the further use of the material, such as unrestricted reuse or waste disposal, release values for each nuclide are established. To prepare the release of materials, a release plan including the release measurement results is sent to the regulator, who has to officially approve the concept.

Graf, A.; Valencia, L.

2003-02-27T23:59:59.000Z

162

NVLAP Common Criteria Testing LAP  

Science Conference Proceedings (OSTI)

NVLAP Common Criteria Testing LAP. ... This site has been established for applicants to the Common Criteria Testing accreditation program. ...

2013-07-26T23:59:59.000Z

163

Order acceptance using genetic algorithms  

Science Conference Proceedings (OSTI)

This paper uses a genetic algorithm to solve the order-acceptance problem with tardiness penalties. We compare the performance of a myopic heuristic and a genetic algorithm, both of which do job acceptance and sequencing, using an upper bound based on ... Keywords: Genetic algorithms, Order acceptance, Scheduling

Walter O. Rom; Susan A. Slotnick

2009-06-01T23:59:59.000Z

164

Addendum to the Calcined Waste Storage at the Idaho Nuclear Technology Center  

Science Conference Proceedings (OSTI)

This report is an addendum to the report Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center, INEEL/EXT-98-00455 Rev. 1, June 2003. The original report provided a summary description of the Calcined Solids Storage Facilities (CSSFs). It also contained dozens of pages of detailed data tables documenting the volume and composition (chemical content and radionuclide activity) of the calcine stored in the CSSFs and the liquid waste from which the calcine was derived. This addendum report compiles the calcine composition data from the original report. It presents the compiled data in a graphical format with units (weight percent, curies per cubic meter, and nanocuries per gram) that are commonly used in regulatory and waste acceptance criteria documents. The compiled data are easier to use and understand when comparing the composition of the calcine with potential regulatory or waste acceptance criteria. This addendum report also provides detailed explanations for the large variability in the calcine composition among the CSSFs. The calcine composition varies as a result of reprocessing different types of fuel that had different cladding materials. Different chemicals were used to dissolve the various types of fuel, extract the uranium, and calcine the resulting waste. This resulted in calcine with variable compositions. This addendum report also identifies a few trace chemicals and radionuclides for which the accuracy of the amounts estimated to be in the calcine could be improved by making adjustments to the assumptions and methods used in making the estimates.

M. D. Staiger; Michael Swenson; T. R. Thomas

2004-05-01T23:59:59.000Z

165

Formulation Efforts for Direct Vitrification of INEEL Blend Calcine Waste Simulate: Fiscal Year 2000  

SciTech Connect

This report documents the results of glass formulation efforts for Idaho National Engineering and Environmental Laboratory (INEEL) high level waste (HWL) calcine. Two waste compositions were used during testing. Testing started by using the Run 78 calcine composition and switched to simulated Blend calcine composition when it became available. The goal of the glass formulation efforts was to develop a frit composition that will accept higher waste loading that satisfies the glass processing and product acceptance constraints. 1. Melting temperature of 1125 ? 25?C 2. Viscosity between 2 and 10 Pa?s at the melting temperature 3. Liquidus temperature at least 100?C below the melting temperature 4. Normalized release of B, Li and Na each below 1 g/m2 (per ASTM C 1285-97) Glass formulation efforts tested several frit compositions with variable waste loadings of Run 78 calcine waste simulant. Frit 107 was selected as the primary candidate for processing since it met all process and performance criteria up to 45 mass% waste loading. When the simulated Blend calcine waste composition became available Frits 107 and 108 compositions were retested and again Frit 107 remained the primary candidate. However, both frits suffered a decrease in waste loading when switching from the Run 78 calcine to simulated Blend calcine waste composition. This was due to increase concentrations of both F and Al2O3 along with a decrease in CaO and Na2O in the simulate Blend calcine waste all of which have strong impacts on the glass properties that limit waste loading of this type of waste.

Crum, Jarrod V.; Vienna, John D.; Peeler, David K.; Reamer, I. A.

2001-03-30T23:59:59.000Z

166

Evaluation of the Capabilities of the Hanford Reservation and Envirocare of Utah for Disposal of Potentially Problematic Mixed Low-Level Waste Streams  

E-Print Network (OSTI)

The U.S. Department of Energy's (DOE) Mixed Waste Focus Area is developing a program to address and resolve issues associated with final waste form performance in treating and disposing of DOE's mixed lowlevel waste (MLLW) inventory. A key issue for the program is identifying MLLW streams that may be problematic for disposal. Previous reports have quantified and qualified the capabilities of fifteen DOE sites for MLLW disposal and provided volume and radionuclide concentration estimates for treated MLLW based on the DOE inventory. Scoping-level analyses indicated that 101 waste streams identified in this report (approximately 6250 m 3 of the estimated total treated MLLW) had radionuclide concentrations that may make their disposal problematic. The radionuclide concentrations of these waste streams were compared with the waste acceptance criteria (WAC) for a DOE disposal facility at Hanford and for Envirocare's commercial disposal facility for MLLW in Utah. Of the treated MLLW volume ...

Prepared For The; Robert D. Waters; Phillip I. Pohl; Wu-ching Cheng; Marilyn M. Gruebel; Timothy A. Wheeler; Brenda S. Langkopf

1998-01-01T23:59:59.000Z

167

Emergency Management Criteria & Review Approach Documents | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Management Criteria & Review Approach Documents Emergency Management Criteria & Review Approach Documents Emergency Management Criteria & Review Approach Documents Documents Available for Download CRAD, Emergency Management - Idaho Accelerated Retrieval Project Phase II CRAD, Emergency Management - Los Alamos National Laboratory TA 55 SST Facility CRAD, Emergency Management - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Emergency Management - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Emergency Management - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Y-12 Enriched Uranium Operations Oxide

168

Hazardous Waste Code Determinations for the First/Second Stage Sludge Waste Stream (IDCs 001, 002, 800)  

Science Conference Proceedings (OSTI)

This document, Hazardous Waste Code Determination for the First/Second-Stage Sludge Waste Stream, summarizes the efforts performed at the Idaho National Engineering and Environmental Laboratory (INEEL) to make a hazardous waste code determination on Item Description Codes (IDCs) 001, 002, and 800 drums. This characterization effort included a thorough review of acceptable knowledge (AK), physical characterization, waste form sampling, chemical analyses, and headspace gas data. This effort included an assessment of pre-Waste Analysis Plan (WAP) solidified sampling and analysis data (referred to as preliminary data). Seventy-five First/Second-Stage Sludge Drums, provided in Table 1-1, have been subjected to core sampling and analysis using the requirements defined in the Quality Assurance Program Plan (QAPP). Based on WAP defined statistical reduction, of preliminary data, a sample size of five was calculated. That is, five additional drums should be core sampled and analyzed. A total of seven drums were sampled, analyzed, and validated in compliance with the WAP criteria. The pre-WAP data (taken under the QAPP) correlated very well with the WAP compliant drum data. As a result, no additional sampling is required. Based upon the information summarized in this document, an accurate hazardous waste determination has been made for the First/Second-Stage Sludge Waste Stream.

Arbon, Rodney Edward

2001-01-01T23:59:59.000Z

169

A model for a national low level waste program  

SciTech Connect

A national program for the management of low level waste is essential to the success of environmental clean-up, decontamination and decommissioning, current operations and future missions. The value of a national program is recognized through procedural consistency and a shared set of resources. A national program requires a clear waste definition and an understanding of waste characteristics matched against available and proposed disposal options. A national program requires the development and implementation of standards and procedures for implementing the waste hierarchy, with a specitic emphasis on waste avoidance, minimization and recycling. It requires a common set of objectives for waste characterization based on the disposal facility's waste acceptance criteria, regulatory and license requirements and performance assessments. Finally, a national waste certification program is required to ensure compliance. To facilitate and enhance the national program, a centralized generator services organization, tasked with providing technical services to the generators on behalf of the national program, is necessary. These subject matter experts are the interface between the generating sites and the disposal facility(s). They provide an invaluable service to the generating organizations through their involvement in waste planning prior to waste generation and through championing implementation of the waste hierarchy. Through their interface, national treatment and transportation services are optimized and new business opportunities are identified. This national model is based on extensive experience in the development and on-going management of a national transuranic waste program and management of the national repository, the Waste Isolation Pilot Plant. The Low Level Program at the Savannah River Site also successfully developed and implemented the waste hierarchy, waste certification and waste generator services concepts presented below. The Savannah River Site services over forty generators and has historically managed over 12,000 cubic meters of low level waste annually. The results of the waste minimization program at the site resulted in over 900 initiatives, avoiding over 220,000 cubic meters of waste for a life cycle cost savings of $275 million. At the Los Alamos National Laboratory, the low level waste program services over 20 major generators and several hundred smaller generators that produce over 4,000 cubic meters of low level waste annually. The Los Alamos National Laboratory low level waste program utilizes both on-site and off-site disposal capabilities. Off-site disposal requires the implementation of certification requirements to utilize both federal and commercial options. The Waste Isolation Pilot Plant is the US Department of Energy's first deep geological repository for the permanent disposal of Transuanic waste. Transuranic waste was generated and retrievably stored at 39 sites across the US. Transuranic waste is defined as waste with a radionuclide concentration equal to or greater than 100 nCi/g consisting of radionuclides with half-lives greater than 20 years and with an atomic mass greater than uranium. Combining the lessons learned from the national transuranic waste program, the successful low level waste program at Savannah River Site and the experience of off-site disposal options at Los Alamos National Laboratory provides the framework and basis for developing a viable national strategy for managing low level waste.

Blankenhorn, James A [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

170

DOE natural phenomenal hazards design and evaluation criteria  

Science Conference Proceedings (OSTI)

It is the policy of the Department of Energy (DOE) to design, construct, and operate DOE facilities so that workers, the general public, and the environment are protected from the impacts of natural phenomena hazards (NPH). Furthermore, DOE has established explicit goals of acceptable risk for NPH performance. As a result, natural phenomena hazard (earthquake, extreme wind, and flood) design and evaluation criteria for DOE facilities have been developed based on target probabilistic performance goals. These criteria include selection of design/evaluation NPH input from probabilistic hazard curves combined with commonly practiced deterministic response evaluation methods and acceptance criteria with controlled levels of conservatism. For earthquake considerations, conservatism is intentionally introduced in specification of material strengths and capacities, in the allowance of limited inelastic behavior, and by a seismic scale factor. Criteria have been developed following a graded approach for several performance goals ranging from that appropriate for normal-use facilities to that appropriate for facilities involving hazardous or critical operations. Performance goals are comprised of qualitative expressions of acceptable behavior and of target quantitative probabilities that acceptable limits of behavior are maintained. The criteria are simple procedures but have a rigorous basis. This paper addresses DOE seismic design and evaluation criteria.

Murray, R.C.; Nelson, T.A. [Lawrence Livermore National Lab., CA (United States); Short, S.A. [EQE International, Inc., Irvine, CA (United States); Kennedy, R.P.; Chander, H. [RPK Structural Mechanics Consulting, Inc., Yorba Linda, CA (United States); Hill, J.R.; Kimball, J.K. [USDOE, Washington, DC (United States)

1994-10-01T23:59:59.000Z

171

Expedited demonstration of molten salt mixed waste treatment technology. Final report  

Science Conference Proceedings (OSTI)

This final report discusses the molten salt mixed waste project in terms of the various subtasks established. Subtask 1: Carbon monoxide emissions; Establish a salt recycle schedule and/or a strategy for off-gas control for MWMF that keeps carbon monoxide emission below 100 ppm on an hourly averaged basis. Subtask 2: Salt melt viscosity; Experiments are conducted to determine salt viscosity as a function of ash composition, ash concentration, temperature, and time. Subtask 3: Determine that the amount of sodium carbonate entrained in the off-gas is minimal, and that any deposited salt can easily be removed form the piping using a soot blower or other means. Subtask 4: The provision of at least one final waste form that meets the waste acceptance criteria of a landfill that will take the waste. This report discusses the progress made in each of these areas.

NONE

1995-02-02T23:59:59.000Z

172

Treatment plan for aqueous/organic/decontamination wastes under the Oak Ridge Reservation FFCA Development, Demonstration, Testing, and Evaluation Program  

SciTech Connect

The U.S. Department of Energy (DOE) Oak Ridge Operations Office and the U.S. Environmental Protection Agency (EPA)-Region IV have entered into a Federal Facility Compliance Agreement (FFCA) which seeks to facilitate the treatment of low-level mixed wastes currently stored at the Oak Ridge Reservation (ORR) in violation of the Resource, Conservation and Recovery Act Land Disposal Restrictions. The FFCA establishes schedules for DOE to identify treatment for wastes, referred to as Appendix B wastes, that current have no identified or existing capacity for treatment. A development, demonstration, testing, and evaluation (DDT&E) program was established to provide the support necessary to identify treatment methods for mixed was meeting the Appendix B criteria. The Program has assembled project teams to address treatment development needs for major categories of the Appendix B wastes based on the waste characteristics and possible treatment technologies. The Aqueous, Organic, and Decontamination (A/O/D) project team was established to identify pretreatment options for aqueous and organic wastes which will render the waste acceptable for treatment in existing waste treatment facilities and to identify the processes to decontaminate heterogeneous debris waste. In addition, the project must also address the treatment of secondary waste generated by other DDT&E projects. This report details the activities to be performed under the A/O/D Project in support of the identification, selection, and evaluation of treatment processes. The goals of this plan are (1) to determine the major aqueous and organic waste streams requiring treatment, (2) to determine the treatment steps necessary to make the aqueous and organic waste acceptable for treatment in existing treatment facilities on the ORR or off-site, and (3) to determine the processes necessary to decontaminate heterogeneous wastes that are considered debris.

Backus, P.M.; Benson, C.E.; Gilbert, V.P.

1994-08-01T23:59:59.000Z

173

User Electrical Inspection Criteria  

NLE Websites -- All DOE Office Websites (Extended Search)

User Electronic and Electrical Equipment Inspection Criteria User Electronic and Electrical Equipment Inspection Criteria Any electrical or electronic equipment users bring to the APS will have to be inspected. In some cases, this inspection will be quite simple, e.g., if the equipment has already been inspected by a Nationally Recognized Testing Laboratory (NRTL) and is used for its designed purpose. Other equipment will require a more thorough inspection (this may include NRTL inspected equipment if it is assembled into an apparatus with other components). The inspection is based on an eight-part list of criteria. Paraphrased, those criteria are: The equipment must be suitable for its intended use (and if appropriate, installation). For example, a heater controller intended to control a 1000W heater cannot be used to control a 2000W heater. The

174

Whole Window Performance Criteria  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Criteria This graph shows the relationship between whole window U-factor and center of glass U-factor (U-cog) for two window types for two generic frames from the...

175

Waste Feed Delivery System Phase 1 Preliminary RAM Analysis [SEC 1 and 2  

SciTech Connect

This report presents the updated results of the preliminary reliability, availability, and maintainability (RAM) analysis of selected waste feed delivery (WFD) operations to be performed by the Tank Farm Contractor (TFC) during Phase I activities in support of the Waste Treatment and Immobilization Plant (WTP). For planning purposes, waste feed tanks are being divided into five classes in accordance with the type of waste in each tank and the activities required to retrieve, qualify, and transfer waste feed. This report reflects the baseline design and operating concept, as of the beginning of Fiscal Year 2000, for the delivery of feed from three of these classes, represented by source tanks 241-AN-102, 241-AZ-101 and 241-AN-105. The preliminary RAM analysis quantifies the potential schedule delay associated with operations and maintenance (OBM) field activities needed to accomplish these operations. The RAM analysis is preliminary because the system design, process definition, and activity planning are in a state of evolution. The results are being used to support the continuing development of an O&M Concept tailored to the unique requirements of the WFD Program, which is being documented in various volumes of the Waste Feed Delivery Technical Basis (Carlson. 1999, Rasmussen 1999, and Orme 2000). The waste feed provided to the WTP must: (1) meet limits for chemical and radioactive constituents based on pre-established compositional envelopes (i.e., feed quality); (2) be in acceptable quantities within a prescribed sequence to meet feed quantities; and (3) meet schedule requirements (i.e., feed timing). In the absence of new criteria related to acceptable schedule performance due to the termination of the TWRS Privatization Contract, the original criteria from the Tank Waste Remediation System (77443s) Privatization Contract (DOE 1998) will continue to be used for this analysis.

DYKES, A.A.

2000-10-11T23:59:59.000Z

176

Standard-D hydrogen monitoring system acceptance test  

DOE Green Energy (OSTI)

This document details the results of the field Acceptance Testing of the Standard-D Hydrogen Monitoring System on the waste tank exhaust stacks in 241-AW and 241-AN tank farm. The monitors will be used to measure hydrogen and ammonia from the exhaust stacks.

Lott, D.T., Westinghouse Hanford

1996-05-24T23:59:59.000Z

177

Hanford Site Transuranic (TRU) Waste Certification Plan  

Science Conference Proceedings (OSTI)

The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria within which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

GREAGER, T.M.

1999-09-09T23:59:59.000Z

178

Hanford Site Transuranic (TRU) Waste Certification Plan  

Science Conference Proceedings (OSTI)

The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria with in which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

GREAGER, T.M.

1999-12-14T23:59:59.000Z

179

DOE/EIS-0200-SA-01: Supplement Analysis and Determination for the Proposed Characterization for Disposal of Contact-Handled Transuranic Waste at the Waste Isolation Pilot Plant (WIPP) (12/00)  

NLE Websites -- All DOE Office Websites (Extended Search)

CH-TRU waste may be shipped to WIPP in drums, standard waste boxes, or drum overpacks; 1,250 cubic meters is the CH-TRU waste may be shipped to WIPP in drums, standard waste boxes, or drum overpacks; 1,250 cubic meters is the equivalent of about 6,000 drums (4.8 drums/cubic meter). 1 Supplement Analysis and Determination for the Proposed Characterization for Disposal of Contact-Handled Transuranic Waste at the Waste Isolation Pilot Plant (WIPP) (DOE/EIS- 0200-SA-01) 1.0 Introduction In the Record of Decision for the Department of Energy's Waste Isolation Pilot Plant Disposal Phase Supplemental Environmental Impact Statement (63 Fed. Reg. 3623, January 23, 1998), the Department of Energy (DOE) decided to dispose of transuranic (TRU) waste at WIPP after preparing it to meet WIPP's Waste Acceptance Criteria (WAC). In the Record of Decision for the Department of Energy's Waste Management Program: Treatment and Storage of

180

DOE/EIS-0200-SA-01: Supplement Analysis and Determination for the Proposed Characterization for Disposal of Contact-Handled Transuranic Waste at the Waste Isolation Pilot Plant (WIPP) (12/00)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH-TRU waste may be shipped to WIPP in drums, standard waste boxes, or drum overpacks; 1,250 cubic meters is the CH-TRU waste may be shipped to WIPP in drums, standard waste boxes, or drum overpacks; 1,250 cubic meters is the equivalent of about 6,000 drums (4.8 drums/cubic meter). 1 Supplement Analysis and Determination for the Proposed Characterization for Disposal of Contact-Handled Transuranic Waste at the Waste Isolation Pilot Plant (WIPP) (DOE/EIS- 0200-SA-01) 1.0 Introduction In the Record of Decision for the Department of Energy's Waste Isolation Pilot Plant Disposal Phase Supplemental Environmental Impact Statement (63 Fed. Reg. 3623, January 23, 1998), the Department of Energy (DOE) decided to dispose of transuranic (TRU) waste at WIPP after preparing it to meet WIPP's Waste Acceptance Criteria (WAC). In the Record of Decision for the Department of Energy's Waste Management Program: Treatment and Storage of

Note: This page contains sample records for the topic "waste acceptance criteria" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Consumers (Consumer Acceptance and Charging Infrastructure) Consumer...  

NLE Websites -- All DOE Office Websites (Extended Search)

CONSUMERS (CONSUMER ACCEPTANCE AND CHARGING INFRASTRUCTURE) EV Everywhere Workshop July 30, 2012 Consumer Acceptance Group A Breakout Session 1 - Brainstorm Consumer Acceptance...

182

Acceptance Test Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Acceptance Test Plan Acceptance Test Plan This template is used to document the plan for performing the systems acceptance test, the roles and responsibilities of individuals...

183

Secondary Waste Form Down Selection Data Package – Ceramicrete  

SciTech Connect

As part of high-level waste pretreatment and immobilized low activity waste processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed in the Integrated Disposal Facility. Currently, four waste forms are being considered for stabilization and solidification of the liquid secondary wastes. These waste forms are Cast Stone, Ceramicrete, DuraLith, and Fluidized Bed Steam Reformer. The preferred alternative will be down selected from these four waste forms. Pacific Northwest National Laboratory is developing data packages to support the down selection process. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilization and solidification of the liquid secondary wastes. The information included will be based on information available in the open literature and from data obtained from testing currently underway. This data package is for the Ceramicrete waste form. Ceramicrete is a relatively new engineering material developed at Argonne National Laboratory to treat radioactive and hazardous waste streams (e.g., Wagh 2004; Wagh et al. 1999a, 2003; Singh et al. 2000). This cement-like waste form can be used to treat solids, liquids, and sludges by chemical immobilization, microencapsulation, and/or macroencapsulation. The Ceramicrete technology is based on chemical reaction between phosphate anions and metal cations to form a strong, dense, durable, low porosity matrix that immobilizes hazardous and radioactive contaminants as insoluble phosphates and microencapsulates insoluble radioactive components and other constituents that do not form phosphates. Ceramicrete is a type of phosphate-bonded ceramic, which are also known as chemically bonded phosphate ceramics. The Ceramicrete binder is formed through an acid-base reaction between calcined magnesium oxide (MgO; a base) and potassium hydrogen phosphate (KH{sub 2}PO{sub 4}; an acid) in aqueous solution. The reaction product sets at room temperature to form a highly crystalline material. During the reaction, the hazardous and radioactive contaminants also react with KH{sub 2}PO{sub 4} to form highly insoluble phosphates. In this data package, physical property and waste acceptance data for Ceramicrete waste forms fabricated with wastes having compositions that were similar to those expected for secondary waste effluents, as well as secondary waste effluent simulants from the Hanford Tank Waste Treatment and Immobilization Plant were reviewed. With the exception of one secondary waste form formulation (25FA+25 W+1B.A. fabricated with the mixed simulant did not meet the compressive strength requirement), all the Ceramicrete waste forms that were reviewed met or exceeded Integrated Disposal Facility waste acceptance criteria.

Cantrell, Kirk J.; Westsik, Joseph H.

2011-08-31T23:59:59.000Z

184

Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility  

Science Conference Proceedings (OSTI)

This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

2012-05-01T23:59:59.000Z

185

Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site  

Science Conference Proceedings (OSTI)

The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is used throughout this document to describe RACM. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the DOE/NV-325, Nevada National Security Site Waste Acceptance Criteria (NNSSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, or contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, or small quantities of LLHB demolition and construction waste and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NNSSWAC.

NSTec Environmental Programs

2010-10-04T23:59:59.000Z

186

RESEARCH AND DEVELOPMENT INVESTMENT CRITERIA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RESEARCH AND DEVELOPMENT INVESTMENT CRITERIA The goal of the Research and Development Investment Criteria initiative is to measurably improve the performance of the government's...

187

DOE G 435.1-1 Chapter 3, Transuranic Waste Requirements  

Directives, Delegations, and Requirements

The guide provides criteria for determining if a waste is to be managed in accordance with DOE M 435.1-1, Chapter III, Transuranic Waste Requirements.

1999-07-09T23:59:59.000Z

188

Analysis of the suitability of DOE facilities for treatment of commercial low-level radioactive mixed waste  

SciTech Connect

This report evaluates the capabilities of the United States Department of Energy`s (DOE`s) existing and proposed facilities to treat 52 commercially generated low-level radioactive mixed (LLMW) waste streams that were previously identified as being difficult-to-treat using commercial treatment capabilities. The evaluation was performed by comparing the waste matrix and hazardous waste codes for the commercial LLMW streams with the waste acceptance criteria of the treatment facilities, as identified in the following DOE databases: Mixed Waste Inventory Report, Site Treatment Plan, and Waste Stream and Technology Data System. DOE facility personnel also reviewed the list of 52 commercially generated LLMW streams and provided their opinion on whether the wastes were technically acceptable at their facilities, setting aside possible administrative barriers. The evaluation tentatively concludes that the DOE is likely to have at least one treatment facility (either existing or planned) that is technically compatible for most of these difficult-to-treat commercially generated LLMW streams. This conclusion is tempered, however, by the limited amount of data available on the commercially generated LLMW streams, by the preliminary stage of planning for some of the proposed DOE treatment facilities, and by the need to comply with environmental statutes such as the Clean Air Act.

1996-02-01T23:59:59.000Z

189

Vitrification of hazardous and radioactive wastes  

SciTech Connect

Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

Bickford, D.F.; Schumacher, R.

1995-12-31T23:59:59.000Z

190

Cost-Effective Fabrication Routes for the Production of Quantum Well Structures and Recovery of Waste Heat from Heavy Duty Trucks  

Science Conference Proceedings (OSTI)

The primary objectives of Phase I were: (a) carry out cost, performance and system level models, (b) quantify the cost benefits of cathodic arc and heterogeneous nanocomposites over sputtered material, (c) evaluate the expected power output of the proposed thermoelectric materials and predict the efficiency and power output of an integrated TE module, (d) define market acceptance criteria by engaging Caterpillar's truck OEMs, potential customers and dealers and identify high-level criteria for a waste heat thermoelectric generator (TEG), (e) identify potential TEG concepts, and (f) establish cost/kWatt targets as well as a breakdown of subsystem component cost targets for the commercially viable TEG.

Willigan, Rhonda

2009-09-30T23:59:59.000Z

191

Criteria Review and Approach Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Criteria Review and Approach Documents Criteria Review and Approach Documents Criteria Review and Approach Documents May 31, 2013 CRAD, Criticality Safety Controls Implementation - May 31, 2013 Criticality Safety Controls Implementation with DOE activities and sites (HSS CRAD 45-18) May 6, 2013 CRAD, Review of Safety Basis Development - May 6, 2013 Review of Safety Basis Development for the Los Alamos National Laboratory Transuranic Waste Facility (HSS CRAD 45-59, Rev. 0) April 25, 2013 CRAD, Documented Safety Analysis Development - April 23, 2013 Review of Documented Safety Analysis Development for the Hanford Site Waste Treatment and Immobilization Plant (LBL Facilities) (HSS CRAD 45-58, Rev. 0) February 1, 2013 CRAD, Review of Safety Basis Development - January 31, 2013 Review of Safety Basis Development for the Savannah River Site Salt Waste

192

STANDARD DESIGN CRITERIA  

DOE Patents (OSTI)

Hanford Atomic Production Operation specification gaides for design criteria, structural engineering, civil engineering, heating, ventilation, air conditioning, fire alarm systems, noise control, lighting, railroad construction, corrosion protection, and electrical engineering are presented. Details of this manual are given in TID-4100 (Suppl.). (N.W.R.)

None

1963-01-01T23:59:59.000Z

193

Final environmental impact statement. Waste Isolation Pilot Plant  

Science Conference Proceedings (OSTI)

In accordance with the National Environmental Policy Act (NEPA) of 1969, the US Department of Energy (DOE) has prepared this document as environmental input to future decisions regarding the Waste Isolation Pilot Plant (WIPP), which would include the disposal of transuranic waste, as currently authorized. The alternatives covered in this document are the following: (1) Continue storing transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) as it is now or with improved confinement. (2) Proceed with WIPP at the Los Medanos site in southeastern New Mexico, as currently authorized. (3) Dispose of TRU waste in the first available repository for high-level waste. The Los Medanos site would be investigated for its potential suitability as a candidate site. This is administration policy and is the alternative preferred by the DOE. (4) Delay the WIPP to allow other candidate sites to be evaluated for TRU-waste disposal. This environmental impact statement is arranged in the following manner: Chapter 1 is an overall summary of the analysis contained in the document. Chapters 2 and 4 set forth the objectives of the national waste-management program and analyze the full spectrum of reasonable alternatives for meeting these objectives, including the WIPP. Chapter 5 presents the interim waste-acceptance criteria and waste-form alternatives for the WIPP. Chapters 6 through 13 provide a detailed description and environmental analysis of the WIPP repository and its site. Chapter 14 describes the permits and approvals necessary for the WIPP and the interactions that have taken place with Federal, State, and local authorities, and with the general public in connection with the repository. Chapter 15 analyzes the many comments received on the DEIS and tells what has been done in this FEIS in response. The appendices contain data and discussions in support of the material in the text.

Not Available

1980-10-01T23:59:59.000Z

194

Flammable gas project: Criteria for flammable gas watch list tanks  

Science Conference Proceedings (OSTI)

The Flammable Gas Watch List is the listing of tanks that are subject to the provisions of Public Law 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation`` (Appendix A). Tanks on the Flammable Gas Watch List are judged to have a serious potential for release of high-level waste due to the ignition of flammable gases released from the waste in the tank. The purpose of this document is to provide criteria for identifying and categorizing the Hanford Site high4evel waste tanks to be included on the Flammable Gas Watch List. This document also provides criteria on which to base a recommendation to remove tanks from the Flammable Gas Watch List.

Cash, R.J.

1997-01-29T23:59:59.000Z

195

RANGE DESIGN CRITERIA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RANGE DESIGN CRITERIA RANGE DESIGN CRITERIA U.S. DEPARTMENT OF ENERGY Office of Health, Safety and Security AVAILABLE ONLINE AT: INITIATED BY: http://www.hss.energy.gov Office of Health, Safety and Security Notices This document is intended for the exclusive use of elements of the Department of Energy (DOE), to include the National Nuclear Security Administration, their contractors, and other government agencies/individuals authorized to use DOE facilities. DOE disclaims any and all liability for personal injury or property damage due to use of this document in any context by any organization, group, or individual, other than during official government activities. Local DOE management is responsible for the proper execution of firearms-related programs for

196

Occupational Safety & Health Criteria & Review Approach Documents |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Occupational Safety & Health Criteria & Review Approach Documents Occupational Safety & Health Criteria & Review Approach Documents Occupational Safety & Health Criteria & Review Approach Documents Documents Available for Download CRAD, Occupational Safety & Health - Idaho MF-628 Drum Treatment Facility CRAD, Occupational Safety & Health - Idaho Accelerated Retrieval Project Phase II CRAD, Occupational Safety & Health - Los Alamos National Laboratory TA 55 SST Facility CRAD, Occupational Safety & Health - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Occupational Safety & Health - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Occupational Safety & Health - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

197

Conduct of Operations Criteria, Review, & Approach Documents | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conduct of Operations Criteria, Review, & Approach Documents Conduct of Operations Criteria, Review, & Approach Documents Conduct of Operations Criteria, Review, & Approach Documents Documents Available for Download CRAD, Conduct of Operations - Idaho MF-628 Drum Treatment Facility CRAD, Conduct of Operations - Idaho Accelerated Retrieval Project Phase II CRAD, Conduct of Operations - Los Alamos National Laboratory TA 55 SST Facility CRAD, Conduct of Operations - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Conduct of Operations - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Conduct of Operations - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Conduct of Operations - Oak Ridge National Laboratory TRU ALPHA LLWT Project

198

Safety Basis Criteria & Review Approach Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Basis Criteria & Review Approach Documents Safety Basis Criteria & Review Approach Documents Safety Basis Criteria & Review Approach Documents Documents Available for Download CRAD, Safety Basis - Idaho MF-628 Drum Treatment Facility CRAD, Safety Basis - Idaho Accelerated Retrieval Project Phase II CRAD, Safety Basis - Los Alamos National Laboratory TA 55 SST Facility CRAD, Safety Basis - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Safety Basis - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Safety Basis - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Safety Basis - Oak Ridge National Laboratory TRU ALPHA LLWT Project CRAD, Safety Basis - Y-12 Enriched Uranium Operations Oxide Conversion Facility

199

Acceptance test report for the Westinghouse 100 ton hydraulic trailer  

DOE Green Energy (OSTI)

The SY-101 Equipment Removal System 100 Ton Hydraulic Trailer was designed and built by KAMP Systems, Inc. Performance of the Acceptance Test Procedure at KAMP`s facility in Ontario, California (termed Phase 1 in this report) was interrupted by discrepancies noted with the main hydraulic cylinder. The main cylinder was removed and sent to REMCO for repair while the trailer was sent to Lampson`s facility in Pasco, Washington. The Acceptance Test Procedure was modified and performance resumed at Lampson (termed Phase 2 in this report) after receipt of the repaired cylinder. At the successful conclusion of Phase 2 testing the trailer was accepted as meeting all the performance criteria specified.

Barrett, R.A.

1995-03-06T23:59:59.000Z

200

Consumer Acceptance Of Smart Grid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consumer Acceptance Of Smart Consumer Acceptance Of Smart Grid Electricity Advisory Committee June 6, 2013 Thanks To * Sonny Popowsky * Sue Kelly * Phyllis Reha * Bob Curry * Paul Centolella * Chris Peters * David Till * Paul Hudson * Tom Sloan * Wanda Reder Paper Objective * End-Use Consumer Acceptance Of Smart Grid Critical To Infrastructure Investments Being Fully Realized * While Utilities & Regulators Have Prime Role In Shaping SG, There Is Role For DOE As Facilitator & Educator * Focus Of This Paper Is On Systems Installed Inside Homes & Businesses Issues Experienced In Early Smart Grid Roll-Outs * Initial Resistance By Some End-Use Consumer Groups To Smart Grid Installation * Early Technology Roll-Outs Were Not Prepared For This Pushback * Since These Initial Efforts, Lessons-Learned

Note: This page contains sample records for the topic "waste acceptance criteria" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Toward an acceptable nuclear future  

SciTech Connect

The nuclear option is in danger of being foreclosed. The trend toward antinuclearism may be reversed if concerns about low-level radiation insult can be shown ultimately to be without foundation; evidence for this speculation is presented. Nevertheless it is suggested that the nuclear enterprise itself must propose new initiatives to increase the acceptability of nuclear energy. A key element of an acceptable nuclear future is cluster siting of reactors. This siting plan might be achieved by confining new reactors essentially to existing sites.

Weinberg, A.M.

1977-11-01T23:59:59.000Z

202

Acceptable Materials for Recycling at Colorado State University Mixed Paper -Acceptable Items  

E-Print Network (OSTI)

Acceptable Materials for Recycling at Colorado State University Mixed Paper - Acceptable Items - Acceptable Items Refrigerators Microwave ovens Electrical Equipment: computers, monitors, TV's, etc. Remember

203

W-025, acceptance test report  

SciTech Connect

This acceptance test report (ATR) has been prepared to establish the results of the field testing conducted on W-025 to demonstrate that the electrical/instrumentation systems functioned as intended by design. This is part of the RMW Land Disposal Facility.

Roscha, V.

1994-10-04T23:59:59.000Z

204

L-286 Acceptance Test Record  

SciTech Connect

This document provides a detailed account of how the acceptance testing was conducted for Project L-286, ''200E Area Sanitary Water Plant Effluent Stream Reduction''. The testing of the L-286 instrumentation system was conducted under the direct supervision

HARMON, B.C.

2000-01-14T23:59:59.000Z

205

DIFFERENCES AND SIMILARITIES IN ANDRA'S ASSESSMENT OF ACTIVITIES CARRIED OUT BY RADIOACTIVE WASTE GENERATORS AND AFFECTING THE QUALITY OF IL-LL SHORT-LIVED WASTE PACKAGES AND HL-IL LONG-LIVED WASTE PACKAGES  

Science Conference Proceedings (OSTI)

In both cases of packages for either low-level and intermediate-level short-lived (LL-IL/SL) or high-level and intermediate-level long-lived (HL-IL/LL) radioactive waste, Andra has defined a quality reference system, manages it, follows up its appropriate implementation in production plants and verifies its effectiveness in production. The purpose of such a reference system is to ensure, in the first case, that waste packages comply with the Centre de l'Aube's acceptance criteria and, in the second case, that the characteristics submitted by the waste generators to Andra as input data for the deep geological repository project reflect the actual production conditions. In that context, the three management steps of the quality reference system include differences due to the fact that HL-IL/SL packages have not been submitted yet to any technical acceptance criterion. Compliance with any such criterion should be the subject of a characterization report during the qualification phase and of a examination during the verification phase. The management of the quality reference system also involves similarities that facilitate the joint work carried out by Andra with the waste generators, especially in the facilities where both package types are produced.

Trentesaux, C.; Cairon, P.; Dumont, J.-N.; Felix, B.; Losada, F.

2003-02-27T23:59:59.000Z

206

Multiport riser and flange assemblies acceptance test report  

DOE Green Energy (OSTI)

This document presents the results of the acceptance test for the multiport riser (MPR) and multiport flange (MPF) assemblies. The accepted MPR and MPF assemblies will be used in support of the hydrogen mitigation project for double-shell waste tank 241-SY-101 and other related projects. The testing described in this document verifies that the mechanical and interface features are operating as designed and that the unit is ready for field service. The objectives of the acceptance testing were as follows: Basic equipment functions and mechanical interfaces were verified; Installation and removal of equipment were demonstrated to the degree possible; Operation of the decon spray system and all valving was confirmed; and the accumulated leak rate of the MPR and MPF assemblies was determined.

Precechtel, D.R.; Schroeder, B.K.

1994-09-12T23:59:59.000Z

207

Railcar waste transfer system hydrostatic test report  

SciTech Connect

This Acceptance Test Report (ATR) documents for record purposes the field results, acceptance, and approvals of the completed acceptance test per HNF-SD-W417-ATP-001, ''Rail car Waste Transfer System Hydrostatic Test''. The test was completed and approved without any problems or exceptions.

Ellingson, S.D.

1997-04-03T23:59:59.000Z

208

Topical Report on Reactivity Initiated Accident: Bases for RIA Fuel and Core Coolability Criteria  

Science Conference Proceedings (OSTI)

Revised acceptance criteria have been developed for the response of light water reactor (LWR) fuel under reactivity initiated accidents (RIA). Development of these revisions is part of an industry effort to extend burnup levels beyond currently licensed limits. The revised criteria are proposed for use in licensing burnup extensions or new fuel designs.

2002-05-22T23:59:59.000Z

209

Waste Isolation Pilot Plant 2005 Site Environmental Report  

SciTech Connect

The purpose of this report is to provide information needed by the DOE to assess WIPP's environmental performance and to make WIPP environmental information available to stakeholders and members of the public. This report has been prepared in accordance with DOE Order 231.1A and DOE guidance. This report documents WIPP's environmental monitoring programs and their results for 2004. The WIPP Project is authorized by the DOE National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Pub. L. 96-164). After more than 20 years of scientific study and public input, WIPP received its first shipment of waste on March 26, 1999. Located in southeastern New Mexico, WIPP is the nation's first underground repository permitted to safely and permanently dispose of TRU radioactive and mixed waste (as defined in the WIPP LWA) generated through defense activities and programs. TRU waste is defined, in the WIPP LWA, as radioactive waste containing more than 100 nanocuries (3,700 becquerels [Bq]) of alpha-emitting TRU isotopes per gram of waste, with half-lives greater than 20 years except for high-level waste, waste that has been determined not to require the degree of isolation required by the disposal regulations, and waste the U.S. Nuclear Regulatory Commission (NRC) has approved for disposal. Most TRU waste is contaminated industrial trash, such as rags and old tools; sludges from solidified liquids; glass; metal; and other materials from dismantled buildings. TRU waste is eligible for disposal at WIPP if it has been generated in whole or in part by one or more of the activities listed in the Nuclear Waste Policy Act of 1982 (42 United States Code [U.S.C.] §10101, et seq.), including naval reactors development, weapons activities, verification and control technology, defense nuclear materials production, defense nuclear waste and materials by-products management,defense nuclear materials security and safeguards and security investigations, and defense research and development. The waste must also meet the WIPP Waste Acceptance Criteria. When TRU waste arrives at WIPP, it is transported into the Waste Handling Building. The waste containers are removed from the shipping containers, placed on the waste hoist, and lowered to the repository level of 655 m (2,150 ft; approximately 0.5 mi) below the surface. Next, the containers of waste are removed from the hoist and placed in excavated disposal rooms in the Salado Formation, a thick sequence of evaporite beds deposited approximately 250 million years ago (Figure 1.1). After each panel of seven rooms has been filled with waste, specially designed closures are emplaced. When all of WIPP's panels have been filled, at the conclusion of WIPP operations, seals will be placed in the shafts. One of the main attributes of salt, as a rock formation in which to isolate radioactive waste, is the ability of the salt to creep, that is, to deform continuously over time. Excavations into which the waste-filled drums are placed will close eventually, flowing around the drums and sealing them within the formation.

Washington Regulatory and Environmental Services

2006-10-13T23:59:59.000Z

210

Nitrogen chiller acceptance test procedure  

SciTech Connect

This document includes the inspection and testing requirements for the Nitrogen Chiller unit. The Chiller will support the Rotary Mode core Sampling System during the summer. The Chiller cools the Nitrogen Purge Gas that is used when drilling in tank wastes to cool the drill bit.

Kostelnik, A.J.

1995-03-07T23:59:59.000Z

211

Waste retrieval sluicing system data acquisition system acceptance test report  

SciTech Connect

This document describes the test procedure for the Project W-320 Tank C-106 Sluicing Data Acquisition System (W-320 DAS). The Software Test portion will test items identified in the WRSS DAS System Description (SD), HNF-2115. Traceability to HNF-2115 will be via a reference that follows in parenthesis, after the test section title. The Field Test portion will test sensor operability, analog to digital conversion, and alarm setpoints for field instrumentation. The W-320 DAS supplies data to assist thermal modeling of tanks 241-C-106 and 241-AY-102. It is designed to be a central repository for information from sources that would otherwise have to be read, recorded, and integrated manually. Thus, completion of the DAS requires communication with several different data collection devices and output to a usable PC data formats. This test procedure will demonstrate that the DAS functions as required by the project requirements stated in Section 3 of the W-320 DAS System Description, HNF-2115.

Bevins, R.R.

1998-07-31T23:59:59.000Z

212

Acceptability of reactors in space  

SciTech Connect

Reactors are the key to our future expansion into space. However, there has been some confusion in the public as to whether they are a safe and acceptable technology for use in space. The answer to these questions is explored. The US position is that when reactors are the preferred technical choice, that they can be used safely. In fact, it does not appear that reactors add measurably to the risk associated with the Space Transportation System.

Buden, D.

1981-01-01T23:59:59.000Z

213

Acceptability of reactors in space  

SciTech Connect

Reactors are the key to our future expansion into space. However, there has been some confusion in the public as to whether they are a safe and acceptable technology for use in space. The answer to these questions is explored. The US position is that when reactors are the preferred technical choice, that they can be used safely. In fact, it dies not appear that reactors add measurably to the risk associated with the Space Transportation System.

Buden, D.

1981-04-01T23:59:59.000Z

214

Chapter 31 Identification and Listing of Hazardous Waste (Kentucky)  

Energy.gov (U.S. Department of Energy (DOE))

This administrative regulation establishes the general provisions necessary for identification and listing of a hazardous waste. The regulation also establishes the criteria for identifying the...

215

Waste Isolation Pilot Plant 2003 Site Environmental Report  

SciTech Connect

The purpose of this report is to provide information needed by the DOE to assess WIPP's environmental performance and to convey that performance to stakeholders and members of the public. This report has been prepared in accordance with DOE Order 231.1A and DOE guidance. This report documents WIPP's environmental monitoring programs and their results for 2003. The WIPP Project is authorized by the DOE National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Pub. L. 96-164). After more than 20 years of scientific study and public input, WIPP received its first shipment of waste on March 26, 1999. Located in southeastern New Mexico, WIPP is the nation's first underground repository permitted to safely and permanently dispose of TRU radioactive and mixed waste (as defined in the WIPP LWA) generated through the research and production of nuclear weapons and other activities related to the national defense of the United States. TRU waste is defined in the WIPP LWA as radioactive waste containing more than 100 nanocuries (3,700 becquerels [Bq]) of alpha-emitting transuranic isotopes per gram of waste, with half-lives greater than 20 years. Exceptions are noted as high-level waste, waste that has been determined not to require the degree of isolation required by the disposal regulations, and waste the U.S. Nuclear Regulatory Commission (NRC) has approved for disposal. Most TRU waste is contaminated industrial trash, such as rags and old tools, and sludges from solidified liquids; glass; metal; and other materials from dismantled buildings. A TRU waste is eligible for disposal at WIPP if it has been generated in whole or in partby one or more of the activities listed in the Nuclear Waste Policy Act of 1982 (42 United States Code [U.S.C.] §10101, et seq.), including naval reactors development, weapons activities, verification and control technology, defense nuclear materials production, defense nuclear waste and materials by-products management, defense nuclear materials security and safeguards and security investigations, and defense research and development. The waste must also meet the WIPP Waste Acceptance Criteria. When TRU waste arrives at WIPP, it is transported into the Waste Handling Building. The waste containers are removed from the shipping containers, placed on the waste hoist, and lowered to the repository level of 655 m (2,150 ft; approximately 0.5 mi) below the surface. Next, the containers of waste are removed from the hoist and placed in excavated storage rooms in the Salado Formation, a thick sequence of evaporite beds deposited approximately 250 million years ago (Figure 1.1). After each panel has been filled with waste, specially designed closures are emplaced. When all of WIPP's panels have been filled, at the conclusion of WIPP operations, seals will be placed in the shafts. Salt under pressure is relatively plastic, and mine openings will be allowed to creep closed for final disposal, encapsulating and isolating the waste.

Washington Regulatory and Environmental Services

2005-09-03T23:59:59.000Z

216

CRAD, Radioactive Waste Management - June 22, 2009 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radioactive Waste Management - June 22, 2009 Radioactive Waste Management - June 22, 2009 CRAD, Radioactive Waste Management - June 22, 2009 June 22, 2009 Radioactive Waste Management, Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-33, Rev. 0) The following provides an overview of the typical activities that will be performed to collect information to evaluate the management of radioactive wastes and implementation of integrated safety management. The following Inspection Activities apply to all Inspection Criteria listed below: Review radioactive waste management and control processes and implementing procedures. Interview personnel including waste management supervision, staff, and subject matter experts. Review project policies, procedures, and corresponding documentation related to ISM core function

217

Low-Level Waste Disposal Facility Federal Review Group Manual  

Energy.gov (U.S. Department of Energy (DOE))

This Revision 3 of the Low-Level Waste Disposal  Facility Federal Review Group (LFRG) Manual was prepared primarily to include review criteria for the review of transuranic (TRU) waste disposal...

218

Research and Development Investment Criteria | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Investment Criteria Research and Development Investment Criteria Criteria for research and development. The goal of the Research and Development Investment...

219

FHR Generic Design Criteria  

SciTech Connect

The purpose of this document is to provide an initial, focused reference to the safety characteristics of and a licensing approach for Fluoride-Salt-Cooled High-Temperature Reactors (FHRs). The document does not contain details of particular reactor designs nor does it attempt to identify or classify either design basis or beyond design basis accidents. Further, this document is an initial attempt by a small set of subject matter experts to document the safety and licensing characteristics of FHRs for a larger audience. The document is intended to help in setting the safety and licensing research, development, and demonstration path forward. Input from a wider audience, further technical developments, and additional study will be required to develop a consensus position on the safety and licensing characteristics of FHRs. This document begins with a brief overview of the attributes of FHRs and then a general description of their anticipated safety performance. Following this, an overview of the US nuclear power plant approval process is provided that includes both test and power reactors, as well as the role of safety standards in the approval process. The document next describes a General Design Criteria (GDC)–based approach to licensing an FHR and provides an initial draft set of FHR GDCs. The document concludes with a description of a path forward toward developing an FHR safety standard that can support both a test and power reactor licensing process.

Flanagan, G.F.; Holcomb, D.E.; Cetiner, S.M.

2012-06-15T23:59:59.000Z

220

FHR Generic Design Criteria  

Science Conference Proceedings (OSTI)

The purpose of this document is to provide an initial, focused reference to the safety characteristics of and a licensing approach for Fluoride-Salt-Cooled High-Temperature Reactors (FHRs). The document does not contain details of particular reactor designs nor does it attempt to identify or classify either design basis or beyond design basis accidents. Further, this document is an initial attempt by a small set of subject matter experts to document the safety and licensing characteristics of FHRs for a larger audience. The document is intended to help in setting the safety and licensing research, development, and demonstration path forward. Input from a wider audience, further technical developments, and additional study will be required to develop a consensus position on the safety and licensing characteristics of FHRs. This document begins with a brief overview of the attributes of FHRs and then a general description of their anticipated safety performance. Following this, an overview of the US nuclear power plant approval process is provided that includes both test and power reactors, as well as the role of safety standards in the approval process. The document next describes a General Design Criteria (GDC) - based approach to licensing an FHR and provides an initial draft set of FHR GDCs. The document concludes with a description of a path forward toward developing an FHR safety standard that can support both a test and power reactor licensing process.

Flanagan, George F [ORNL; Holcomb, David Eugene [ORNL; Cetiner, Mustafa Sacit [ORNL

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste acceptance criteria" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Disposal Activities and the Unique Waste Streams at the Nevada National Security Site (NNSS)  

SciTech Connect

This slide show documents waste disposal at the Nevada National Security Site. Topics covered include: radionuclide requirements for waste disposal; approved performance assessment (PA) for depleted uranium disposal; requirements; program approval; the Waste Acceptance Review Panel (WARP); description of the Radioactive Waste Acceptance Program (RWAP); facility evaluation; recent program accomplishments, nuclear facility safety changes; higher-activity waste stream disposal; large volume bulk waste streams.

Arnold, P.

2012-10-31T23:59:59.000Z

222

HLW Glass Waste Loadings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HLW HLW Glass Waste Loadings Ian L. Pegg Vitreous State Laboratory The Catholic University of America Washington, DC Overview Overview  Vitrification - general background  Joule heated ceramic melter (JHCM) technology  Factors affecting waste loadings  Waste loading requirements and projections  WTP DWPF  DWPF  Yucca Mountain License Application requirements on waste loading  Summary Vitrification  Immobilization of waste by conversion into a glass  Internationally accepted treatment for HLW  Why glass?  Amorphous material - able to incorporate a wide spectrum of elements over wide ranges of composition; resistant to radiation damage  Long-term durability - natural analogs Relatively simple process - amenable to nuclearization at large  Relatively simple process - amenable to nuclearization at large scale  There

223

Approach for enhancing nuclear materials tracking and reporting in waste  

SciTech Connect

Recent policy from the Department of Energy/Office of Safeguards and Security (DOE/OSS) has identified the need to report nuclear materials in waste in a manner that is consistent with the Department of Energy's Nuclear Materials Information System (NMIS), which uses Form 471 as its official record. NMIS is used to track nuclear material inventories while they are subject to safeguards. This requirement necessitates the reevaluation of existing business practices that are used to track and report these nuclear materials. This paper provides a methodology for applying a systems approach to the evaluation of the flow of nuclear waste materials from a generating facility through to permanent disposal. This methodology can be used to integrate existing systems and leverage data already gathered that support both the waste reporting requirements and the NMIS requirements. In order to consider an active waste reporting system that covers waste management through to final disposal, the requirements for characterization, certification, and transportation for disposal at the Waste Isolation Pilot Plant (WIPP) are used as an example. These requirements are found in the WIPP Waste Acceptance Criteria (WIPP/WAC) and associated requirement documents. This approach will prevent inconsistencies in reported data and address current and future needs. For example, spent fuel (which the U.S. intends to dispose of as high-level waste) has not been viewed as particularly attractive in terms of proliferation in comparison to materials associated with other parts of the nuclear fuel cycle. However, collecting high-level waste (or some types of defense waste) in one location where it will be left for hundreds or thousands of years presents proliferation and safeguards issues that need to be considered as part of a systems evaluation. This paper brings together information on domestic and international safeguards practices and considers the current system of documentation used by the U.S. Department of Energy for radioactive waste disposal. The information presented represents current practices, and we recognize that the practices were designed to address different goals. After providing an overview of these areas, some steps that may help develop safeguards systems for geologic repositories in the U.S. context are discussed.

Longmire, V. L. (Victoria L.); Seitz, S. L. (Sharon L.); Sinkule, B. J. (Barbara J.)

2001-06-01T23:59:59.000Z

224

MHD-ETF design criteria  

DOE Green Energy (OSTI)

This document establishes criteria to be utilized for the design of a pilot-scale (150 to 300 MW thermal) open cycle, coal-fired MHD/steam plant. Criteria for this Engineering Test Facility (ETF) are presented relative to plant siting, plant engineering and operations, MHD-ETF testing, costing and scheduling.

Retallick, F.D.

1978-04-01T23:59:59.000Z

225

Functional design criteria for the retained gas sampler system  

DOE Green Energy (OSTI)

A Retained Gas Sampler System (RGSS) is being developed to capture and analyze waste samples from Hanford Flammable Gas Watch List Tanks to determine both the quantity and composition of gases retained in the waste. The RGSS consists of three main components: the Sampler, Extractor, and Extruder. This report describes the functional criteria for the design of the RGSS components. The RGSS Sampler is based on the WHC Universal Sampler design with modifications to eliminate gas leakage. The primary function of the Sampler is to capture a representative waste sample from a tank and transport the sample with minimal loss of gas content from the tank to the laboratory. The function of the Extruder is to transfer the waste sample from the Sampler to the Extractor. The function of the Extractor is to separate the gases from the liquids and solids, measure the relative volume of gas to determine the void fraction, and remove and analyze the gas constituents.

Wootan, D.W.

1995-04-12T23:59:59.000Z

226

DECONTAMINATION/DESTRUCTION TECHNOLOGY DEMONSTRATION FOR ORGANICS IN TRANSURANIC WASTE  

DOE Green Energy (OSTI)

The United States Department of Energy's Savannah River Site has approximately 5000 55-gallon drums of {sup 238}Pu contaminated waste in interim storage. These may not be shipped to WIPP in TRUPACT-II containers due to the high rate of hydrogen production resulting from the radiolysis of the organic content of the drums. In order to circumvent this problem, the {sup 238}Pu needs to be separated from the organics--either by mineralization of the latter or by decontamination by a chemical separation. We have conducted ''cold'' optimization trials and surrogate tests in which a combination of a mediated electrochemical oxidation process (SILVER II{trademark}) and ultrasonic mixing have been used to decontaminate the surrogate waste materials. The surrogate wastes were impregnated with copper oxalate for plutonium dioxide. Our process combines both mineralization of reactive components (such cellulose, rubber, and oil) and surface decontamination of less reactive materials such as polyethylene, polystyrene and polyvinylchloride. By using this combination of SILVER II and ultrasonic mixing, we have achieved 100% current efficiency for the destruction of the reactive components. We have demonstrated that: The degree of decontamination achieved would be adequate to meet both WIPP waste acceptance criteria and TRUPACT II packaging and shipping requirements; The system can maintain near absolute containment of the surrogate radionuclides; Only minimal pre-treatment (coarse shredding) and minimal waste sorting are required; The system requires minimal off gas control processes and monitoring instrumentation; The laboratory trials have developed information that can be used for scale-up purposes; The process does not produce dioxins and furans; Disposal routes for secondary process arisings have already been demonstrated in other programs. Based on the results from Phase 1, the recommendation is to proceed to Phase 2 and use the equipment at Savannah River Site to demonstrate the processing of genuine plutonium contaminated wastes.

Chris Jones; Javier Del Campo; Patrick Nevins; Stuart Legg

2002-08-01T23:59:59.000Z

227

Nuclear waste incineration technology status  

Science Conference Proceedings (OSTI)

The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance.

Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

1981-07-15T23:59:59.000Z

228

Standard-B auto grab sampler hydrogen monitoring system, Acceptance Test Report  

DOE Green Energy (OSTI)

Project W-369, Watch List Tank Hydrogen Monitors, installed a Standard-C Hydrogen Monitoring System (SHMS) on the Flammable gas waste tank AN-104. General Support Projects (8K510) was support by Test Engineering (7CH30) in the performance of the Acceptance Test Procedures (ATP) to qualify the SHMS cabinets on the waste tank. The ATP`s performance was controlled by Tank Farm work package. This completed ATP is transmitted by EDT-601748 as an Acceptance Test Report (ATR) in accordance with WHC-6-1, EP 4.2 and EP 1.12.

Lott, D.T.

1995-05-18T23:59:59.000Z

229

Surface moisture measurement system hardware acceptance test report  

SciTech Connect

This document summarizes the results of the hardware acceptance test for the Surface Moisture Measurement System (SMMS). This test verified that the mechanical and electrical features of the SMMS functioned as designed and that the unit is ready for field service. The bulk of hardware testing was performed at the 306E Facility in the 300 Area and the Fuels and Materials Examination Facility in the 400 Area. The SMMS was developed primarily in support of Tank Waste Remediation System (TWRS) Safety Programs for moisture measurement in organic and ferrocyanide watch list tanks.

Ritter, G.A., Westinghouse Hanford

1996-05-28T23:59:59.000Z

230

EPA streamlines requirements for universal wastes  

SciTech Connect

The Universal Waste rule issued Feb. 11, 1993, fosters the recycling of certain universal wastes typically discarded by consumers. Because these wastes are disposed of from households, they are excluded from hazardous waste regulation under the Resource Conservation and Recovery Act (RCRA). However, any commercial entity that accepts these wastes is subject to full RCRA regulation. Hence, there has been little incentive to recycle these wastes. U.S. Environmental Protection Agency (EPA) has concluded certain universal wastes are hazardous and are predominantly generated in municipal settings both household and commercial. These wastes could benefit from and safely be managed under a regulatory scheme less burdensome than the full RCRA Subtitle C program now applicable to these waters. The Universal Waste rule proposes requirements for used nickel-cadmium and small, sealed lead-acid batteries and canceled pesticides. The Agency is considering expanding the scope of the rule to other forms of universal wastes, including antifreeze and light bulbs.

Bryant, C. (Technical Group Inc., Washington, DC (United States))

1993-07-01T23:59:59.000Z

231

Performance Demonstration Program Plan for RCRA Constituent Analysis of Solidified Wastes  

Science Conference Proceedings (OSTI)

The Performance Demonstration Program (PDP) for Resource Conservation and Recovery Act (RCRA) constituents distributes test samples for analysis of volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and metals in solid matrices. Each distribution of test samples is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD; DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department. The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the RCRA PDP. Participating laboratories demonstrate acceptable performance by successfully analyzing single- blind performance evaluation samples (subsequently referred to as PDP samples) according to the criteria established in this plan. PDP samples are used as an independent means to assess laboratory performance regarding compliance with the WAP quality assurance objectives (QAOs). The concentrations of analytes in the PDP samples address levels of regulatory concern and encompass the range of concentrations anticipated in waste characterization samples. The WIPP requires analyses of homogeneous solid wastes to demonstrate compliance with regulatory requirements. These analyses must be performed by laboratories that demonstrate acceptable performance in this PDP. These analyses are referred to as WIPP analyses, and the samples on which they are performed are referred to as WIPP samples. Participating laboratories must analyze PDP samples using the same procedures used for WIPP samples.

Carlsbad Field Office

2006-09-21T23:59:59.000Z

232

Submit Your Criteria Revision Suggestions  

Science Conference Proceedings (OSTI)

... Enter your comments directly into the Criteria text (posted online as a Google Doc): Send an e-mail to iday@nist.gov to let us know you'd like to ...

2012-06-13T23:59:59.000Z

233

Registered Charity Number 207890 Accepted Manuscript  

NLE Websites -- All DOE Office Websites (Extended Search)

Accepted Manuscript, which has been through the RSC Publishing peer Accepted Manuscript, which has been through the RSC Publishing peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This Accepted Manuscript will be replaced by the edited and formatted Advance Article as soon as this is available. To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication. More information about Accepted Manuscripts can be found in the Information for Authors.

234

Standard-B hydrogen monitoring system acceptance test report  

DOE Green Energy (OSTI)

Test Engineering was supported by Tank Waste Remediation System Safety Programs Engineering Support in the performance of an Acceptance Test Procedure (ATP) to qualify the Standard Hydrogen Monitoring System (SHMS) cabinet installed on waste tank 241-SY-103. The June 7, 1994 ATP performance was controlled by West Waste Tank Farms work package 2W-94-322. The ATP was conducted following the final installation of a second Whittaker electro-chemical hydrogen monitoring cell. The cabinet had been sited on the waste tank two years earlier, but never connected to the exhaust vent header to monitor Tank 241-SY-103 vent header exhaust gases. The cabinet was then modified, to remove two undesirable solid state hydrogen monitors and install a second Whittaker electro-chemical hydrogen monitoring sensor and signal conditioning. The ATP was used to assure that the cabinet wiring and components were properly installed and labeled and that the two years without operation had not seriously damaged the installed equipment. Electrical and pneumatic tests were performed to assure system integrity.

Tran, T.T.

1994-09-08T23:59:59.000Z

235

FFCAct Clearinghouse, directory of abstracts: Radioactive waste technical support program. Revision 2  

Science Conference Proceedings (OSTI)

The Federal Facility Compliance Act (FFCAct) Clearinghouse is a card catalog of information about the FFCAct and its requirements for developing Site Treatment Plans (STP). The information available in the clearinghouse includes abstracts describing computer applications, technical reports, and a list of technical experts. This report contains 61 abstracts from the database relating to radioactive waste management. The clearinghouse includes information on characterization, retrieval, treatment, storage, and disposal elements of waste management as they relate to the FFCAct and the treatment of mixed wastes. Subject areas of information being compiled include: commercial treatment capabilities; listings of technical experts for assistance in selecting and evaluating treatment options and technologies; mixed waste data and treatability groups; guidance on STP development; life-cycle costs planning estimates for facilities; references to documentation on available technologies and technology development activities; Waste Acceptance Criteria (WAC) for treatment facilities; regulatory, health and safety issues associated with treatment facilities and technologies; and computer databases, applications, and models for identifying and evaluating treatment facilities and technologies. Access to the FFCAct clearinghouse is available to the DOE and its DOE contractors involved in STP development and other FFCAct activities.

NONE

1994-10-01T23:59:59.000Z

236

Incineration of DOE offsite mixed waste at the Idaho National Engineering and Environmental Laboratory  

Science Conference Proceedings (OSTI)

The Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering and Environmental Laboratory (INEEL) is one of three incinerators in the US Department of Energy (DOE) Complex capable of incinerating mixed low-level waste (MLLW). WERF has received MLLW from offsite generators and is scheduled to receive more. The State of Idaho supports receipt of offsite MLLW waste at the WERF incinerator within the requirements established in the (INEEL) Site Treatment Plan (STP). The incinerator is operating as a Resource Conservation and Recovery Act (RCRA) Interim Status Facility, with a RCRA Part B permit application currently being reviewed by the State of Idaho. Offsite MLLW received from other DOE facilities are currently being incinerated at WERF at no charge to the generator. Residues associated with the incineration of offsite MLLW waste that meet the Envirocare of Utah waste acceptance criteria are sent to that facility for treatment and/or disposal. WERF is contributing to the treatment and reduction of MLLW in the DOE Complex.

Harris, J.D.; Harvego, L.A.; Jacobs, A.M. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Willcox, M.V. [Dept. of Energy Idaho Operations Office, Idaho Falls, ID (United States)

1998-01-01T23:59:59.000Z

237

EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review Environmental Management Advisory Board EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review Report Number TWS #003 EMAB EM-TWS SRS / Hanford Tank Waste June 23, 2011 This is the second report of the Environmental Management Tank Waste Subcommittee (EMTWS) of the Environmental Management Advisory Board (EMAB). The first report was submitted and accepted by the Assistant Secretary for Environmental Management (EM-1) in September 2010. The EM-TWS responded to three charges from EM-1 regarding the Waste Treatment and Immobilization Plant at Hanford (WTP) under construction in Richland, Washington. EM's responses were timely, and efforts have been

238

NITRATE DESTRUCTION LITERATURE SURVEY AND EVALUATION CRITERIA  

DOE Green Energy (OSTI)

This report satisfies the initial phase of Task WP-2.3.4 Alternative Sodium Recovery Technology, Subtask 1; Develop Near-Tank Nitrate/Nitrite Destruction Technology. Some of the more common anions in carbon steel waste tanks at SRS and Hanford Site are nitrate which is corrosive, and nitrite and hydroxide which are corrosion inhibitors. At present it is necessary to periodically add large quantities of 50 wt% caustic to waste tanks. There are three primary reasons for this addition. First, when the contents of salt tanks are dissolved, sodium hydroxide preferentially dissolves and is removed. During the dissolution process the concentration of free hydroxide in the tank liquid can decrease from 9 M to less than 0.2 M. As a result, roughly half way through the dissolution process large quantities of sodium hydroxide must be added to the tank to comply with requirements for corrosion control. Second, hydroxide is continuously consumed by reaction with carbon dioxide which occurs naturally in purge air used to prevent buildup of hydrogen gas inside the tanks. The hydrogen is generated by radiolysis of water. Third, increasing the concentration of hydroxide increases solubility of some aluminum compounds, which is desirable in processing waste. A process that converts nitrate and nitrite to hydroxide would reduce certain costs. (1) Less caustic would be purchased. (2) Some of the aluminum solid compounds in the waste tanks would become more soluble so less mass of solids would be sent to High Level Vitrification and therefore it would be not be necessary to make as much expensive high level vitrified product. (3) Less mass of sodium would be fed to Saltstone at SRS or Low Level Vitrification at Hanford Site so it would not be necessary to make as much low level product. (4) At SRS less nitrite and nitrate would be sent to Defense Waste Processing Facility (DWPF) so less formic acid would be consumed there and less hydrogen gas would be generated. This task involves literature survey of technologies to perform the nitrate to hydroxide conversion, selection of the most promising technologies, preparation of a flowsheet and design of a system. The most promising technologies are electrochemical reduction of nitrates and chemical reduction with hydrogen or ammonia. The primary reviewed technologies are listed and they aredescribed in more detail later in the report: (1) Electrochemical destruction; (2) Chemical reduction with agents such as ammonia, hydrazine or hydrogen; (3) Hydrothermal reduction process; and (4) Calcination. Only three of the technologies on the list have been demonstrated to generate usable amounts of caustic; electrochemical reduction and chemical reduction with ammonia, hydrazine or hydrogen and hydrothermal reduction. Chemical reduction with an organic reactant such as formic acid generates carbon dioxide which reacts with caustic and is thus counterproductive. Treatment of nitrate with aluminum or other active metals generates a solid product. High temperature calcination has the potential to generate sodium oxide which may be hydrated to sodium hydroxide, but this is unproven. The following criteria were developed to evaluate the most suitable option. The numbers in brackets after the criteria are relative weighting factors to account for importance: (1) Personnel exposure to radiation for installation, routine operation and maintenance; (2) Non-radioactive safety issues; (3) Whether the technology generates caustic and how many moles of caustic are generated per mole of nitrate plus nitrite decomposed; (4) Whether the technology can handle nitrate and nitrite at the concentrations encountered in waste; (5) Maturity of technology; (6) Estimated annual cost of operation (labor, depreciation, materials, utilities); (7) Capital cost; (8) Selectivity to nitrogen as decomposition product (other products are flammable and/or toxic); (9) Impact of introduced species; (10) Selectivity for destruction of nitrate vs. nitrite; and (11) Cost of deactivation and demolition. Each technology was given a score from one

Steimke, J.

2011-02-01T23:59:59.000Z

239

Performance assessment for the disposal of low-level waste in the 200 east area burial grounds  

Science Conference Proceedings (OSTI)

A performance assessment analysis was completed for the 200 East Area Low-Level Burial Grounds (LLBG) to satisfy compliance requirements in DOE Order 5820.2A. In the analysis, scenarios of radionuclide release from the 200 East Area Low-Level waste facility was evaluated. The analysis focused on two primary scenarios leading to exposure. The first was inadvertent intrusion. In this scenario, it was assumed that institutional control of the site and knowledge of the disposal facility has been lost. Waste is subsequently exhumed and dose from exposure is received. The second scenario was groundwater contamination.In this scenario, radionuclides are leached from the waste by infiltrating precipitation and transported through the soil column to the underlying unconfined aquifer. The contaminated water is pumped from a well 100 m downstream and consumed,causing dose. Estimates of potential contamination of the surrounding environment were developed and the associated doses to the maximum exposed individual were calculated. The doses were compared with performance objective dose limits, found primarily in the DOE order 5850.2A. In the 200 East Area LLBG,it was shown that projected doses are estimated to be well below the limits because of the combination of environmental, waste inventory, and disposal facility characteristics of the 200 East Area LLBG. Waste acceptance criteria were also derived to ensure that disposal of future waste inventories in the 200 East Area LLBG will not cause an unacceptable increase in estimated dose.

Wood, M.I., Westinghouse Hanford

1996-08-15T23:59:59.000Z

240

Sorbent Testing for the Solidification of Unidentified Rocky Flats Laboratory Waste Stored at the Idaho National Laboratory  

Science Conference Proceedings (OSTI)

At the request of the U.S. Department of Energy (DOE), MSE Technology Applications, Inc. (MSE) evaluated various commercially available sorbents to solidify unidentified laboratory liquids from Rocky Flats that are stored at the Idaho National Laboratory (INL). The liquids are a collection of laboratory wastes that were generated from various experiments and routine analytical laboratory activities carried out at Rocky Flats. The liquids are in bottles discovered inside of buried waste drums being exhumed from the subsurface disposal area at the Radioactive Waste Management Complex (RWMC) by the contractor, CH2M Hill Washington International (CWI). Free liquids are unacceptable at the Waste Isolation Pilot Plant (WIPP), and some of these liquids cannot be returned to the retrieval pit. Stabilization of the liquids into a solid mass will allow these materials to be sent to an appropriate disposal location. The selected sorbent or sorbent combinations should produce a stabilized mass that is capable of withstanding conditions similar to those experienced during storage, shipping, and burial. The final wasteform should release less than 1% liquid by volume per the WIPP Waste Acceptance Criteria (WAC). The absence or presence of free liquid in the solidified waste-forms was detected when tested by SW-846, Method 9095B, Paint Filter Free Liquids, and the amount of liquid released from the wasteform was determined by SW-846, Method 9096, Liquid Release Test. Reactivity testing was also conducted on the solidified laboratory liquids. (authors)

Bickford, J. [MSE Technology Applications, Inc., Butte, MT (United States); Kimmitt, R. [CH2M WG Idaho, LLC, Idaho National Laboratory, CF-601, MF-637, MS4201, Scoville, ID (United States)

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste acceptance criteria" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Intruder scenarios for site-specific low-level radioactive waste classification  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) has revised its low-level radioactive waste (LLW) management requirements and guidelines for waste generated at its facilities supporting defense missions. Specifically, draft DOE Order 5820.2A, Chapter 3 describes the purpose, policy, and requirements necessary for the management of defense LLW. The draft DOE policy calls for LLW operations to be managed to protect the health and safety of the public, preserve the environment, and ensure that no remedial action will be necessary after termination of operations. The basic approach used by DOE is to establish overall performance objectives, in terms of groundwater protection and public radiation dose limits, and to require site-specific performance assessments to determine compliance. As a result of these performance assessments, each site will develop waste acceptance criteria that define the allowable quantities and concentrations of specific radioisotopes. Additional limitations on waste disposal design, waste form, and waste treatment will also be developed on a site-specific basis. As a key step in the site-specific performance assessments, an evaluation must be conducted of potential radiation doses to intruders who may inadvertently move onto a closed DOE LLW disposal site after loss of institutional controls. This report (1) describes the types of intruder scenarios that should be considered when performing this step of the site-specific performance assessment, (2) provides the results of generic calculations performed using unit concentrations of various radionuclides as a comparison of the magnitude of importance of the various intruder scenarios, and (3) shows the relationship between the generic doses and waste classification limits for defense wastes.

Kennedy, W.E. Jr.; Peloquin, R.A.

1988-09-01T23:59:59.000Z

242

Tank SY-102 waste retrieval assessment: Rheological measurements and pump jet mixing simulations  

SciTech Connect

Wastes stored in Hanford Tank 241-SY-102 are planned to be retrieved from that tank and transferred to 200 East Area through the new pipeline Replacement Cross Site Transfer System (RCSTS). Because the planned transfer of this waste will use the RCSTS, the slurry that results from the mobilization and retrieval operations must meet the applicable waste acceptance criteria for this system. This report describes results of the second phase (the detailed assessment) of the SY-102 waste retrieval study, which is a part of the efforts to establish a technical basis for mobilization of the slurry, waste retrieval, and slurry transport. Hanford Tank 241-SY-102 is located in the SY Tank Farm in the Hanford Site`s 200 West Area. It was built in 1977 to serve as a feed tank for 242-S Evaporator/Crystallizer, receiving supernatant liquid from S, SX, T, and U tank farms. Since 1981, the primary sources of waste have been from 200 West Area facilities, e.g., T-Plant decontamination operations, Plutonium Finishing Plant operations, and the 222-S Laboratory. It is the only active-service double-shell tank (DST) in the 200 West Area and is used as the staging tank for cross-site transfers to 200 East Area DSTs. The tank currently stores approximately 470 kL (125 kgal) of sludge wastes from a variety of sources including the Plutonium Finishing Plant, T-Plant, and the 222-S Laboratory. In addition to the sludge, approximately twice this amount (about 930 kL) of dilute, noncomplexed waste forms a supernatant liquid layer above the sludge.

Onishi, Y.; Shekarriz, R.; Recknagle, K.P. [and others

1996-09-01T23:59:59.000Z

243

SLUDGE BATCH 5 ACCEPTANCE EVALUATION RADIONUCLIDE CONCENTRATIONS IN TANK 51 SB5 QUALIFICATION SAMPLE PREPARED AT SRNL  

SciTech Connect

Presented in this report are radionuclide concentrations required as part of the program of qualifying Sludge Batch Five (SB5) for processing in the Defense Waste Processing Facility (DWPF). Part of this SB5 material is currently in Tank 51 being washed and prepared for transfer to Tank 40. The acceptance evaluation needs to be completed prior to the transfer of the material in Tank 51 to Tank 40 to complete the formation of SB5. The sludge slurry in Tank 40 has already been qualified for DWPF and is currently being processed as SB4. The radionuclide concentrations were measured or estimated in the Tank 51 SB5 Qualification Sample prepared at Savannah River National Laboratory (SRNL). This sample was prepared from the three liter sample of Tank 51 sludge slurry taken on March 21, 2008. The sample was delivered to SRNL where it was initially characterized in the Shielded Cells. Under direction of the Liquid Waste Organization it was then modified by five washes, six decants, an addition of Pu/Be from Canyon Tank 16.4, and an addition of NaNO2. This final slurry now has a composition expected to be similar to that of the slurry in Tank 51 after final preparations have been made for transfer of that slurry to Ta Determining the radionuclide concentrations in this Tank 51 SB5 Qualification Sample is part of the work requested in Technical Task Request (TTR) No. HLW-DWPF-TTR-2008-0010. The work with this qualification sample is covered by a Task Technical and Quality Assurance Plan and an Analytical Study Plan. The radionuclides included in this report are needed for the DWPF Radiological Program Evaluation, the DWPF Waste Acceptance Criteria (TSR/WAC) Evaluation, and the DWPF Solid Waste Characterization Program (TTR Task 2). Radionuclides required to meet the Waste Acceptance Product Specifications (TTR Task 5) will be measured at a later date after the slurry from Tank 51 has been transferred to Tank 40. Then a sample of the as-processed SB5 will be taken and transferred to SRNL for measurement of these radionuclides. Data presented in this report represents the measured or estimated radionuclide concentrations obtained from several standard and special analytical methods performed by Analytical Development (AD) personnel within SRNL. The method for I-129 measurement in sludge is described in detail. Most of these methods were performed on solutions resulting from the dissolutions of the slurry samples. Concentrations are given for twenty-nine radionuclides along with total alpha and beta activity. Values for total gamma and total gamma plus beta activities are also calculated. Results also indicate that 98% of the Tc-99 and 92% of the I-129 that could have been in this sludge batch have been removed by chemical processing steps in the SRS Canyons or Tank Farm.

Bannochie, C; Ned Bibler, N; David Diprete, D

2008-07-28T23:59:59.000Z

244

Development of a Waste Treatment Process to Deactivate Reactive Uranium Metal and Produce a Stable Waste Form  

SciTech Connect

This paper highlights the results of initial investigations conducted to support the development of an integrated treatment process to convert pyrophoric metallic uranium wastes to a non-pyrophoric waste that is acceptable for land disposal. Several dissolution systems were evaluated to determine their suitability to dissolve uranium metal and that yield a final waste form containing uranium specie(s) amenable to precipitation, stabilization, adsorption, or ion exchange. During initial studies, one gram aliquots of uranium metal or the uranium alloy U-2%Mo were treated with 5 to 60 mL of selected reagents. Treatment systems screened included acids, acid mixtures, and bases with and without addition of oxidants. Reagents used included hydrochloric, sulfuric, nitric, and phosphoric acids, sodium hypochlorite, sodium hydroxide and hydrogen peroxide. Complete dissolution of the uranium turnings was achieved with the H{sub 3}PO{sub 4}/HCI system at room temperature within minutes. The sodium hydroxide/hydrogen peroxide, and sodium hypochlorite systems achieved complete dissolution but required elevated temperatures and longer reaction times. A ranking system based on criteria, such as corrosiveness, temperature, dissolution time, off-gas type and amount, and liquid to solid ratio, was designed to determine the treatment systems that should be developed further for a full-scale process. The highest-ranking systems, nitric acid/sulfuric acid and hydrochloric acid/phosphoric acid, were given priority in our follow-on investigations.

Gates-Anderson, D D; Laue, C A; Fitch, T E

2002-01-17T23:59:59.000Z

245

Seismic design and evaluation criteria based on target performance goals  

SciTech Connect

The Department of Energy utilizes deterministic seismic design/evaluation criteria developed to achieve probabilistic performance goals. These seismic design and evaluation criteria are intended to apply equally to the design of new facilities and to the evaluation of existing facilities. In addition, the criteria are intended to cover design and evaluation of buildings, equipment, piping, and other structures. Four separate sets of seismic design/evaluation criteria have been presented each with a different performance goal. In all these criteria, earthquake loading is selected from seismic hazard curves on a probabilistic basis but seismic response evaluation methods and acceptable behavior limits are deterministic approaches with which design engineers are familiar. For analytical evaluations, conservatism has been introduced through the use of conservative inelastic demand-capacity ratios combined with ductile detailing requirements, through the use of minimum specified material strengths and conservative code capacity equations, and through the use of a seismic scale factor. For evaluation by testing or by experience data, conservatism has been introduced through the use of an increase scale factor which is applied to the prescribed design/evaluation input motion.

Murray, R.C.; Nelson, T.A. [Lawrence Livermore National Lab., CA (United States); Kennedy, R.P. [Structural Mechanics Consulting, Inc., Yorba Linda, CA (United States); Short, S.A. [EQE International, Inc., Irvine, CA (United States)

1994-04-01T23:59:59.000Z

246

Restrictions on Federal Employees Acceptance of Gifts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Restrictions on Federal Employees Acceptance of Gifts Restrictions on Federal Employees Acceptance of Gifts As the holiday season approaches, it is important to remember there are restrictions on Federal employees accepting gifts from outside sources and from other Federal employees. Just as there is no "working lunch" exception to the gift prohibition, there is no "holiday party" exception. A gift includes anything of monetary value, including a gratuity, favor, discount, entertainment, training, transportation, lodging, and meals. Gifts from outside sources. Generally, as a Federal employee, you may not solicit or accept a gift (1) from a "prohibited source" or (2) if given because of your official position. A "prohibited

247

SAPHIRE 8 Software Acceptance Test Plan  

SciTech Connect

This document describe & report the overall SAPHIRE 8 Software acceptance test paln to offically release the SAPHIRE version 8 software to the NRC custoer for distribution.

Ted S. Wood; Curtis L. Smith

2009-07-01T23:59:59.000Z

248

Venture Acceleration Fund now accepting 2012 applications  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 applications Venture Acceleration Fund now accepting 2012 applications The three companies selected will receive up to 100,000 each to commercialize technology and take it to...

249

Occupational Radiation Protection Program Inspection Criteria...  

NLE Websites -- All DOE Office Websites (Extended Search)

Inspection Criteria, Approach, and Lines of Inqu v Acting Di ector, Off'ke.-of Safety and Emergency Management Evaluations Date: '; 4 I &.- WJ Criteria Lead,...

250

Alternative Underwriting Criteria - Using Utility Bill Payment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Underwriting Criteria - Using Utility Bill Payment History as a Proxy for Credit: Case Study on Clean Energy Works Oregon Title Alternative Underwriting Criteria -...

251

Performance Criteria for Residential Zero Energy Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Criteria for Residential Zero Energy Windows Title Performance Criteria for Residential Zero Energy Windows Publication Type Conference Paper LBNL Report Number...

252

Occupational Radiation Protection Program Inspection Criteria...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluations Criteria Review and Approach Document 1.0 PURPOSE Subject: Occupational Radiation Protection Program Inspection Criteria, Approach, and Lines of Inqu v Acting Di...

253

SOLIDIFICATION OF THE HANFORD LAW WASTE STREAM PRODUCED AS A RESULT OF NEAR-TANK CONTINUOUS SLUDGE LEACHING AND SODIUM HYDROXIDE RECOVERY  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE), Office of River Protection (ORP), is responsible for the remediation and stabilization of the Hanford Site tank farms, including 53 million gallons of highly radioactive mixed wasted waste contained in 177 underground tanks. The plan calls for all waste retrieved from the tanks to be transferred to the Waste Treatment Plant (WTP). The WTP will consist of three primary facilities including pretreatment facilities for Low Activity Waste (LAW) to remove aluminum, chromium and other solids and radioisotopes that are undesirable in the High Level Waste (HLW) stream. Removal of aluminum from HLW sludge can be accomplished through continuous sludge leaching of the aluminum from the HLW sludge as sodium aluminate; however, this process will introduce a significant amount of sodium hydroxide into the waste stream and consequently will increase the volume of waste to be dispositioned. A sodium recovery process is needed to remove the sodium hydroxide and recycle it back to the aluminum dissolution process. The resulting LAW waste stream has a high concentration of aluminum and sodium and will require alternative immobilization methods. Five waste forms were evaluated for immobilization of LAW at Hanford after the sodium recovery process. The waste forms considered for these two waste streams include low temperature processes (Saltstone/Cast stone and geopolymers), intermediate temperature processes (steam reforming and phosphate glasses) and high temperature processes (vitrification). These immobilization methods and the waste forms produced were evaluated for (1) compliance with the Performance Assessment (PA) requirements for disposal at the IDF, (2) waste form volume (waste loading), and (3) compatibility with the tank farms and systems. The iron phosphate glasses tested using the product consistency test had normalized release rates lower than the waste form requirements although the CCC glasses had higher release rates than the quenched glasses. However, the waste form failed to meet the vapor hydration test criteria listed in the WTP contract. In addition, the waste loading in the phosphate glasses were not as high as other candidate waste forms. Vitrification of HLW waste as borosilicate glass is a proven process; however the HLW and LAW streams at Hanford can vary significantly from waste currently being immobilized. The ccc glasses show lower release rates for B and Na than the quenched glasses and all glasses meet the acceptance criterion of < 4 g/L. Glass samples spiked with Re{sub 2}O{sub 7} also passed the PCT test. However, further vapor hydration testing must be performed since all the samples cracked and the test could not be performed. The waste loading of the iron phosphate and borosilicate glasses are approximately 20 and 25% respectively. The steam reforming process produced the predicted waste form for both the high and low aluminate waste streams. The predicted waste loadings for the monolithic samples is approximately 39%, which is higher than the glass waste forms; however, at the time of this report, no monolithic samples were made and therefore compliance with the PA cannot be determined. The waste loading in the geopolymer is approximately 40% but can vary with the sodium hydroxide content in the waste stream. Initial geopolymer mixes revealed compressive strengths that are greater than 500 psi for the low aluminate mixes and less than 500 psi for the high aluminate mixes. Further work testing needs to be performed to formulate a geopolymer waste form made using a high aluminate salt solution. A cementitious waste form has the advantage that the process is performed at ambient conditions and is a proven process currently in use for LAW disposal. The Saltstone/Cast Stone formulated using low and high aluminate salt solutions retained at least 97% of the Re that was added to the mix as a dopant. While this data is promising, additional leaching testing must be performed to show compliance with the PA. Compressive strength tests must also be performed on the Cast Ston

Reigel, M.; Johnson, F.; Crawford, C.; Jantzen, C.

2011-09-20T23:59:59.000Z

254

Pre-title I safety evaluation for the retrieval operations of transuranic waste drums in the Solid Waste Disposal Facility. Revision 2  

SciTech Connect

Phase I of the Transuranic (TRU) Waste Facility Line Item Project includes the retrieval and safe storage of the pad drums that are stored on TRU pads 2-6 in the Solid Waste Disposal Facility (SWDF). Drums containing TRU waste were placed on these pads as early as 1974. The pads, once filled, were mounded with soil. The retrieval activities will include the excavation of the soil, retrieval of the pad drums, placing the drums in overpacks (if necessary) and venting and purging the retrieved drums. Once the drums have been vented and purged, they will be transported to other pads within the SWDF or in a designated area until they are eventually treated as necessary for ultimate shipment to the Waste Isolation Pilot Plant in Carlsbad, New Mexico. This safety evaluation provides a bounding assessment of the radiological risk involved with the drum retrieval activities to the maximally exposed offsite individual and the co-located worker. The results of the analysis indicate that the risk to the maximally exposed offsite individual and the co-located worker using maximum frequencies and maximum consequences are within the acceptance criteria defined in WSRC Procedural Manual 9Q. The purpose of this evaluation is to demonstrate the incremental risk from the SWDF due to the retrieval activities for use as design input only. As design information becomes available, this evaluation can be revised to satisfy the safety analysis requirements of DOE Orders 4700 and 5480.23.

Rabin, M.S.

1992-08-01T23:59:59.000Z

255

Tank Farm Waste Transfer Compatibility Program  

SciTech Connect

The compatibility program described in this document formalizes the process for determining waste compatibility. The primary goal of the program is to ensure that sufficient controls are in place to prevent the formation of incompatible mixtures during future operations. The process described involves characterizing waste, comparing characteristics with criteria, resolving potential incompatibilities and documenting the process.

FOWLER, K.D.

2000-07-12T23:59:59.000Z

256

Railcar waste transfer system hydrostatic test  

SciTech Connect

Recent modifications have been performed on the T-Plant Railcar Waste Transfer System, This Acceptance Test Procedure (ATP) has been prepared to demonstrate that identified piping welds and mechanical connections incorporated during the modification are of high integrity and are acceptable for service. This will be achieved by implementation of a hydrostatic leak test.

Ellingson, S.D.

1997-03-31T23:59:59.000Z

257

Early Site Permit Demonstration Program: Regulatory criteria evaluation report  

Science Conference Proceedings (OSTI)

The primary objective of the ESPDP is to demonstrate successfully the use of 10CFR52 to obtain ESPs for one or more US sites for one (or more) ALWR nuclear power plants. It is anticipated that preparation of the ESP application and interaction with NRC during the application review process will result not only in an ESP for the applicant(s) but also in the development of criteria and definition of processes, setting the precedent that facilitates ESPs for subsequent ESP applications. Because siting regulatory processes and acceptance criteria are contained in over 100 separate documents, comprehensive licensing and technical reviews were performed to establish whether the requirements and documentation are self-consistent, whether the acceptance criteria are sufficiently well-defined and clear, and whether the licensing process leading to the issuance of an ESP is unambiguously specified. The results of the technical and licensing evaluations are presented in this report. The purpose, background, and organization of the ESPDP is delineated in Section 1. Section 11 contains flowcharts defining siting application requirements, environmental report requirements, and emergency planning/preparedness requirements for ALWRS. The licensing and technical review results are presented in Section III.

Not Available

1993-03-01T23:59:59.000Z

258

MEASUREMENTS TAKEN IN SUPPORT OF QUALIFICATION OF PROCESSING SAVANNAH RIVER SITE LOW-LEVEL LIQUID WASTE INTO SALTSTONE  

Science Conference Proceedings (OSTI)

The Saltstone Facility at the Savannah River Site (SRS) immobilizes low-level liquid waste into Saltstone to be disposed of in the Z-Area Saltstone Disposal Facility, Class Three Landfill. In order to meet the permit conditions and regulatory limits set by the South Carolina Department of Health and Environmental Control (SCDHEC), the Resource Conservation and Recovery Act (RCRA) and the Environmental Protection Agency (EPA), both the low-level salt solution and Saltstone samples are analyzed quarterly. Waste acceptance criteria (WAC) are designed to confirm the salt solution sample from the Tank Farm meets specific radioactive and chemical limits. The toxic characteristic leaching procedure (TCLP) is used to confirm that the treatment has immobilized the hazardous constituents of the salt solution. This paper discusses the methods used to characterize the salt solution and final Saltstone samples from 2007-2009.

Reigel, M.; Bibler, N.; Diprete, C.; Cozzi, A.; Staub, A.; Ray, J.

2010-01-27T23:59:59.000Z

259

3G Mobile TV Acceptance in Indonesia  

Science Conference Proceedings (OSTI)

Studies on intention to use, adopting the technology acceptance model (TAM), have been reported but their extended models do not provide a good explanation of the determinants of intention to use 3G mobile TV. The present study develops and examines ... Keywords: mobile communication system, 3G mobile TV, behavioral intention to use, Technology Acceptance Model

Andri Qiantori; Agung Budi Sutiono; Hirohiko Suwa; Toshizumi Ohta

2010-09-01T23:59:59.000Z

260

Development of small and powdery waste management  

Science Conference Proceedings (OSTI)

The actual world is facing a dilemma: to have in present a great welfare without any care concerning the future and the natural environment or the acceptance of the opportunity cost generated by adopting clean, green technologies or of those which fundamentally ... Keywords: pollution, products, pulverous waste, recovery, siderurgy, waste management

Socalici Ana; Harau Carmen; Heput Teodor; Ardelean Erika

2012-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste acceptance criteria" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Hanford Tank Waste - Near Source Treatment of Low Activity Waste  

SciTech Connect

Treatment and disposition of Hanford Site waste as currently planned consists of I 00+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory ofthis waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most ofthe leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper describes the potential near source treatment and waste disposition options as well as the impact these options could have on reducing infrastructure requirements, project cost and mission schedule.

Ramsey, William Gene

2013-08-15T23:59:59.000Z

262

Flammable gas tank waste level reconciliation for 241-S-111  

SciTech Connect

Fluor Daniel Northwest (FDNW) was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 241-S-111. The trapped gas evaluation document states that Tank S-111 exceeds the 25% of the lower flammable-limit criterion, based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the Welty Report is the basis for this letter report. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unaccounted for surface level rise. From 1973 through 1980, the Welty Report tracked Tank S-111 transfers. This surface level increase is from an unknown source or is unaccounted for. Duke Engineering and Services Hanford and Lockheed Martin Hanford Corporation are interested in determining the validity of the unexplained surface level changes reported in the Welty Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unaccounted for surface level changes as shown in the Welty Report from 1973 through 1980. Tank S-111 initially received waste from REDOX in 1952, and after April 1974, primarily received processed waste slurry from the 242-S Evaporator/Crystallizer and transferred supernatant waste to Tank S-102. From the FDNW review and comparisons of the Welty Report versus other daily records for Tank S-111, FDNW determined that the majority of the time, the Welty Report is consistent with daily records. Surface level decreases that occurred following saltwell pumping were identified as unaccounted for decreases in the Welty Report, however they were probably a continued settlement caused by saltwell pumping of the interstitial liquids. Because the flammable/trapped gas issue is linked to the unexplained increase in the surface level, FDNW recommends that all occurrence reports, concerning tank waste level increases or decreases from 1970 through 1980, be reevaluated for acceptability of the evaluation as to the root cause of the occurrence.

Brevick, C.H.; Gaddis, L.A.

1997-06-23T23:59:59.000Z

263

ZERO WASTE.  

E-Print Network (OSTI)

??The aim of the thesis was to develop a clear vision on better waste management system. The thesis introduced the sustainable waste management along with… (more)

Upadhyaya, Luv

2013-01-01T23:59:59.000Z

264

DOE G 435.1-1 Chapter 4, Low-Level Waste Requirements  

Directives, Delegations, and Requirements

The guide provides criteria for determining which DOE radioactive wastes are to be managed as low-level waste in accordance with DOE M 435.1-1, Chapter IV.

1999-07-09T23:59:59.000Z

265

DOE G 435.1-1 Chapter 2, High-Level Waste Requirements  

Directives, Delegations, and Requirements

The guide provides the criteria for determining which DOE radioactive wastes are to be managed as high-level waste in accordance with DOE M 435.1-1.

1999-07-09T23:59:59.000Z

266

Nuclear waste/nuclear power: their futures are linked  

SciTech Connect

This paper briefly reviews current aspects of radioactive waste disposal techniques and transportation. Addressed are high-level and low-level radioactive wastes, interim spent fuel storage and transportation. The waste options being explored by DOE are listed. Problems of public acceptance will be more difficult to overcome than technical problems. (DMC)

Skoblar, L.T.

1981-01-01T23:59:59.000Z

267

Screening criteria for microbial for processes  

SciTech Connect

The National Institute for Petroleum and Energy Research (NIPER) has maintained a microbial enhanced oil recovery (MEOR) field project data base since 1985. One of the major goals of this data base is to continue to document characteristics of reservoirs used for MEOR field projects and to assist the US Department of Energy by revising published screening criteria for MEOR processes. Since the last update of this data base in 1987, the number of MEOR field projects entered has increased from 39 to 65. Microbial EOR has been recognized as a potentially cost-effective method, particularly for stripper well production. Stripper wells are particularly in need of cost-effective EOR because independent operators produce about 40% of the total oil recovered, but cannot conduct needed EOR research. Microbial methods for improving oil recovery are potentially cost-effective and particularly well suited to be applied in today's economic climate. The lower price of crude oil as well as a more general acceptance of use of biotechnological processes has probably contributed to this increase. Although in some instances information was unavailable or not reported for each element of the data base, there exists adequate data to demonstrate both the viability and variety of options for using microbial technology for improved oil production. this report updates the data base and provides summary of several of the more important MEOR field experiments conducted during the 1970s and 1980s. 19 refs., 1 fig., 11 tabs.

Bryant, R.S.

1990-12-01T23:59:59.000Z

268

Repository disposal requirements for commercial transuranic wastes (generated without reprocessing)  

SciTech Connect

This report forms a preliminary planning basis for disposal of commercial transuranic (TRU) wastes in a geologic repository. Because of the unlikely prospects for commercial spent nuclear fuel reprocessing in the near-term, this report focuses on TRU wastes generated in a once-through nuclear fuel cycle. The four main objectives of this study were to: develop estimates of the current inventories, projected generation rates, and characteristics of commercial TRU wastes; develop proposed acceptance requirements for TRU wastes forms and waste canisters that ensure a safe and effective disposal system; develop certification procedures and processing requirements that ensure that TRU wastes delivered to a repository for disposal meet all applicable waste acceptance requirements; and identify alternative conceptual strategies for treatment and certification of commercial TRU first objective was accomplished through a survey of commercial producers of TRU wastes. The TRU waste acceptance and certification requirements that were developed were based on regulatory requirements, information in the literature, and from similar requirements already established for disposal of defense TRU wastes in the Waste Isolation Pilot Plant (WIPP) which were adapted, where necessary, to disposal of commercial TRU wastes. The results of the TRU waste-producer survey indicated that there were a relatively large number of producers of small quantities of TRU wastes.

Daling, P.M.; Ludwick, J.D.; Mellinger, G.B.; McKee, R.W.

1986-06-01T23:59:59.000Z

269

Radiological control criteria for materials considered for recycle and reuse  

Science Conference Proceedings (OSTI)

Pacific Northwest Laboratory (PNL) is conducting technical analyses to support the US Department of Energy (DOE), Office of Environmental Guidance, Air, Water, and Radiation Division (DOE/EH-232) in developing radiological control criteria for recycling or reuse of metals or equipment containing residual radioactive contamination from DOE operations. The criteria, framed as acceptable concentrations for release of materials for recycling or reuse, are risk-based and were developed through analysis of generic radiation exposure scenarios and pathways. The analysis includes evaluation of relevant radionuclides, potential mechanisms of exposure, and non-health-related impacts of residual radioactivity on electronics and film. The analysis considers 42 key radionuclides that DOE operations are known to generate and that may be contained in recycled or reused metals or equipment. Preliminary results are compared with similar results reported by the International Atomic Energy Agency, by radionuclide grouping.

Kennedy, W.E. Jr.; Hill, R.L.; Aaberg, R.L. [Pacific Northwest Lab., Richland, WA (United States); Wallo, A. III [USDOE Assistant Secretary for Environment, Safety, and Health, Washington, DC (United States). Office of Environmental Guidance

1994-11-01T23:59:59.000Z

270

Radiological design criteria for fusion power test facilities  

Science Conference Proceedings (OSTI)

The quest for fusion power and understanding of plasma physics has resulted in planning, design, and construction of several major fusion power test facilities, based largely on magnetic and inertial confinement concepts. We have considered radiological design aspects of the Joint European Torus (JET), Livermore Mirror and Inertial Fusion projects, and Princeton Tokamak. Our analyses on radiological design criteria cover acceptable exposure levels at the site boundary, man-rem doses for plant personnel and population at large, based upon experience gained for the fission reactors, and on considerations of cost-benefit analyses.

Singh, M.S.; Campbell, G.W.

1982-02-12T23:59:59.000Z

271

Selection Criteria for Demonstration Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Selection Criteria: Selection Criteria: Energy Savings: * If a building were to apply this technology, how much energy could it save compared to a "typical" existing building? How much energy could it save compared to a typical "new" building built to the latest (IECC 2007) code? Provide references, calculations, and documentation. * If the technology is a drop-in replacement, how much energy could it save compared to "typical" new equipment? Provide references, calculations, and documentation. Market & Job Creation Potential: * What is the market potential for this technology? * What types of buildings is this technology best suited for? What types of buildings is this technology ill-suited for? * How many US buildings that could potentially benefit from/utilize this technology? What % of U.S.

272

Consumer Acceptance and Public Policy - Consumer Acceptance Group B Breakout Session  

NLE Websites -- All DOE Office Websites (Extended Search)

'B' 'B' Consumer Acceptance Breakout Session #1 - Brainstorm Consumer Acceptance Barriers and Infrastructure Scenarios * Consumer Education/Emotion * Vehicle Exposure - butts in seats (ride & drive, car sharing, IT/phones, rental fleets) * Consumers understanding their needs * Range anxiety/opportunity * Customer Personal Value Proposition * Charging Exposure * Start small (battery size and charging level), move complicated * Marketing * Got Milk? * Patriotism, etc., in place of only green focus * Creating Demand * Emphasize fun/cool/patriotism (again) * Make & model availability * Workplace/public Charging * Multi-unit * V2G * Signage * Financial Incentives Consumer Acceptance 'B' July 30, 2012 Consumer Acceptance Breakout Session #1 - Brainstorm Consumer Acceptance Barriers and Infrastructure

273

Cleanup Verification Package for the 118-B-1, 105-B Solid Waste Burial Ground  

SciTech Connect

This cleanup verification package documents completion of remedial action, sampling activities, and compliance criteria for the 118-B-1, 105-B Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-B Reactor and P-10 Tritium Separation Project and also received waste from the 105-N Reactor. The burial ground received reactor hardware, process piping and tubing, fuel spacers, glassware, electrical components, tritium process wastes, soft wastes and other miscellaneous debris.

J. M. Capron

2008-01-21T23:59:59.000Z

274

Waste management system alternatives for treatment of wastes from spent fuel reprocessing  

SciTech Connect

This study was performed to help identify a preferred TRU waste treatment alternative for reprocessing wastes with respect to waste form performance in a geologic repository, near-term waste management system risks, and minimum waste management system costs. The results were intended for use in developing TRU waste acceptance requirements that may be needed to meet regulatory requirements for disposal of TRU wastes in a geologic repository. The waste management system components included in this analysis are waste treatment and packaging, transportation, and disposal. The major features of the TRU waste treatment alternatives examined here include: (1) packaging (as-produced) without treatment (PWOT); (2) compaction of hulls and other compactable wastes; (3) incineration of combustibles with cementation of the ash plus compaction of hulls and filters; (4) melting of hulls and failed equipment plus incineration of combustibles with vitrification of the ash along with the HLW; (5a) decontamination of hulls and failed equipment to produce LLW plus incineration and incorporation of ash and other inert wastes into HLW glass; and (5b) variation of this fifth treatment alternative in which the incineration ash is incorporated into a separate TRU waste glass. The six alternative processing system concepts provide progressively increasing levels of TRU waste consolidation and TRU waste form integrity. Vitrification of HLW and intermediate-level liquid wastes (ILLW) was assumed in all cases.

McKee, R.W.; Swanson, J.L.; Daling, P.M.; Clark, L.L.; Craig, R.A.; Nesbitt, J.F.; McCarthy, D.; Franklin, A.L.; Hazelton, R.F.; Lundgren, R.A.

1986-09-01T23:59:59.000Z

275

Wind Energy Community Acceptance | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Wind Energy Community Acceptance Jump to: navigation, search In 2012 in Lamar, Colorado, Bob Emick (center, back to camera and Greg Emich (right in cowboy hat) talk about the 98 1.5-megawatt wind turbines on their ranch. Photo by Dennis Schroeder, NREL 21768 The following resources address community acceptance topics. Baring-Gould, I. (June 5, 2012). Social Acceptance of Wind Energy: Managing and Evaluating Its Market Impacts. National Renewable Energy Laboratory. Accessed August 14, 2013. This presentation offers background information on social acceptance issues, results of surveys conducted by the New England Wind Forum at a

276

Modeling gap acceptance at freeway merges  

E-Print Network (OSTI)

This thesis develops a merging model that captures the gap acceptance behavior of drivers that merge from a ramp into a congested freeway. Merging can be classified into three types: normal, forced and cooperative lane ...

Lee, Gunwoo

2006-01-01T23:59:59.000Z

277

Environmentally Acceptable Transformer Fluids: An Update  

Science Conference Proceedings (OSTI)

This report offers information about the physical, dielectric, chemical, and environmental properties of transformer fluids and their operational impacts. Companies can use this information to choose environmentally acceptable green fluids.

2010-07-14T23:59:59.000Z

278

Baseline Glass Development for Combined Fission Products Waste Streams  

SciTech Connect

Borosilicate glass was selected as the baseline technology for immobilization of the Cs/Sr/Ba/Rb (Cs), lanthanide (Ln) and transition metal fission product (TM) waste steams as part of a cost benefit analysis study.[1] Vitrification of the combined waste streams have several advantages, minimization of the number of waste forms, a proven technology, and similarity to waste forms currently accepted for repository disposal. A joint study was undertaken by Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) to develop acceptable glasses for the combined Cs + Ln + TM waste streams (Option 1) and Cs + Ln combined waste streams (Option 2) generated by the AFCI UREX+ set of processes. This study is aimed to develop baseline glasses for both combined waste stream options and identify key waste components and their impact on waste loading. The elemental compositions of the four-corners study were used along with the available separations data to determine the effect of burnup, decay, and separations variability on estimated waste stream compositions.[2-5] Two different components/scenarios were identified that could limit waste loading of the combined Cs + LN + TM waste streams, where as the combined Cs + LN waste stream has no single component that is perceived to limit waste loading. Combined Cs + LN waste stream in a glass waste form will most likely be limited by heat due to the high activity of Cs and Sr isotopes.

Crum, Jarrod V.; Billings, Amanda Y.; Lang, Jesse B.; Marra, James C.; Rodriguez, Carmen P.; Ryan, Joseph V.; Vienna, John D.

2009-06-29T23:59:59.000Z

279

DEVELOPMENT OF A MACRO-BATCH QUALIFICATION STRATEGY FOR THE HANFORD TANK WASTE TREATMENT AND IMMOBILIZATION PLANT  

Science Conference Proceedings (OSTI)

The Savannah River National Laboratory (SRNL) has evaluated the existing waste feed qualification strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) based on experience from the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) waste qualification program. The current waste qualification programs for each of the sites are discussed in the report to provide a baseline for comparison. Recommendations on strategies are then provided that could be implemented at Hanford based on the successful Macrobatch qualification strategy utilized at SRS to reduce the risk of processing upsets or the production of a staged waste campaign that does not meet the processing requirements of the WTP. Considerations included the baseline WTP process, as well as options involving Direct High Level Waste (HLW) and Low Activity Waste (LAW) processing, and the potential use of a Tank Waste Characterization and Staging Facility (TWCSF). The main objectives of the Hanford waste feed qualification program are to demonstrate compliance with the Waste Acceptance Criteria (WAC), determine waste processability, and demonstrate unit operations at a laboratory scale. Risks to acceptability and successful implementation of this program, as compared to the DWPF Macro-Batch qualification strategy, include: ? Limitations of mixing/blending capability of the Hanford Tank Farm; ? The complexity of unit operations (i.e., multiple chemical and mechanical separations processes) involved in the WTP pretreatment qualification process; ? The need to account for effects of blending of LAW and HLW streams, as well as a recycle stream, within the PT unit operations; and ? The reliance on only a single set of unit operations demonstrations with the radioactive qualification sample. This later limitation is further complicated because of the 180-day completion requirement for all of the necessary waste feed qualification steps. The primary recommendations/changes include the following: ? Collection and characterization of samples for relevant process analytes from the tanks to be blended during the staging process; ? Initiation of qualification activities earlier in the staging process to optimize the campaign composition through evaluation from both a processing and glass composition perspective; ? Definition of the parameters that are important for processing in the WTP facilities (unit operations) across the anticipated range of wastes and as they relate to qualification-scale equipment; ? Performance of limited testing with simulants ahead of the waste feed qualification sample demonstration as needed to determine the available processing window for that campaign; and ? Demonstration of sufficient mixing in the staging tank to show that the waste qualification sample chemical and physical properties are representative of the transfers to be made to WTP. Potential flowcharts for derivatives of the Hanford waste feed qualification process are also provided in this report. While these recommendations are an extension of the existing WTP waste qualification program, they are more in line with the processes currently performed for SRS. The implementation of these processes at SRS has been shown to offer flexibility for processing, having identified potential processing issues ahead of the qualification or facility processing, and having provided opportunity to optimize waste loading and throughput in the DWPF.

Herman, C.

2013-09-30T23:59:59.000Z

280

Ris DTU 09-06-08 Waste-to-energy technologies in TIMES models  

E-Print Network (OSTI)

-to-energy technologies in the Pan-European NEEDS- TIMES model Waste incineration for electricity and heat, landfill gas legislation on waste Directives · Waste Framework Directive, 1975 (75/442/EEC) · Directive on the landfill be accepted as recovery) Avoid · Landfill #12;Risø DTU 09-06-08 4 European waste model Econometric model

Note: This page contains sample records for the topic "waste acceptance criteria" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Estimating Waste Inventory and Waste Tank Characterization |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating Waste Inventory and Waste Tank Characterization Estimating Waste Inventory and Waste Tank Characterization Summary Notes from 28 May 2008 Generic Technical Issue...

282

The Nuclear Energy Option for the U.S.--How Far Are We from Public Acceptance?  

DOE Green Energy (OSTI)

The recent rise of oil and gasoline prices accompanied by reluctant acknowledgement that traditional sources of energy are limited has renewed public interest in renewable energy sources. This perspective on energy is focusing attention on and facilitating acceptance of alternative energy concepts, such as solar, wind, and biomass. The nuclear energy alternative, while clean with potentially abundant fuel supplies and associated with low costs, is burdened with the frequently negative public opinion reserved for things nuclear. Coincident with the heightened examination of alternative energy concepts, 2004 marks the 25-year anniversary of the Three Mile Island accident. Since this pivotal accident in 1979, no new reactor licenses have been granted in the U.S. The resolution of the issues of nuclear waste management and disposition are central to and may advance public discussions of the future use of nuclear energy. The U.S. Department of Energy (DOE) is currently preparing the licensing application for Yucca Mountain, which was designated in 2003 as the site for a high-level waste and spent nuclear fuel repository in the U.S. The DOE also has been operating a deep geologic repository for the permanent disposal of transuranic (TRU) waste since 1999. The operational status of the Waste Isolation Pilot Plant (WIPP) as a repository for TRU waste was successfully realized along with the lesson learned that stakeholder trust and acceptance are as critical to the success of a repository program as the resolution of technical issues and obtaining regulatory approvals. For the five years of its operation and for decades prior, the challenge of attaining public acceptance of the WIPP has persisted for reasons aligned with the opposition to nuclear energy. Due to this commonality, the nuclear waste approach to public acceptance, with its pros and cons, provides a baseline for the examination of an approach for the public acceptance of nuclear energy in the U.S. This paper will present these concepts and discuss the future of nuclear energy in the U.S. in light of the challenge of gaining public acceptance.

Biedscheid, J.A.; Devarakonda, M.

2004-10-03T23:59:59.000Z

283

Waste disposal options report. Volume 2  

SciTech Connect

Volume 2 contains the following topical sections: estimates of feed and waste volumes, compositions, and properties; evaluation of radionuclide inventory for Zr calcine; evaluation of radionuclide inventory for Al calcine; determination of k{sub eff} for high level waste canisters in various configurations; review of ceramic silicone foam for radioactive waste disposal; epoxides for low-level radioactive waste disposal; evaluation of several neutralization cases in processing calcine and sodium-bearing waste; background information for EFEs, dose rates, watts/canister, and PE-curies; waste disposal options assumptions; update of radiation field definition and thermal generation rates for calcine process packages of various geometries-HKP-26-97; and standard criteria of candidate repositories and environmental regulations for the treatment and disposal of ICPP radioactive mixed wastes.

Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

1998-02-01T23:59:59.000Z

284

Waste form product characteristics  

SciTech Connect

The Department of Energy has operated nuclear facilities at the Idaho National Engineering Laboratory (INEL) to support national interests for several decades. Since 1953, it has supported the development of technologies for the storage and reprocessing of spent nuclear fuels (SNF) and the resultant wastes. However, the 1992 decision to discontinue reprocessing of SNF has left nearly 768 MT of SNF in storage at the INEL with unspecified plans for future dispositioning. Past reprocessing of these fuels for uranium and other resource recovery has resulted in the production of 3800 M{sup 3} calcine and a total inventory of 7600 M{sup 3} of radioactive liquids (1900 M{sup 3} destined for immediate calcination and the remaining sodium-bearing waste requiring further treatment before calcination). These issues, along with increased environmental compliance within DOE and its contractors, mandate operation of current and future facilities in an environmentally responsible manner. This will require satisfactory resolution of spent fuel and waste disposal issues resulting from the past activities. A national policy which identifies requirements for the disposal of SNF and high level wastes (HLW) has been established by the Nuclear Waste Policy Act (NWPA) Sec.8,(b) para(3)) [1982]. The materials have to be conditioned or treated, then packaged for disposal while meeting US Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) regulations. The spent fuel and HLW located at the INEL will have to be put into a form and package that meets these regulatory criteria. The emphasis of Idaho Chemical Processing Plant (ICPP) future operations has shifted toward investigating, testing, and selecting technologies to prepare current and future spent fuels and waste for final disposal. This preparation for disposal may include mechanical, physical and/or chemical processes, and may differ for each of the various fuels and wastes.

Taylor, L.L.; Shikashio, R.

1995-01-01T23:59:59.000Z

285

The room noise criteria (RNC) metric.  

Science Conference Proceedings (OSTI)

The recent ANSI S12.2:2008 room noise criteria contains both a survey and an engineering method to specify room noise criteria. The methods use A?weighting and extended NC

2009-01-01T23:59:59.000Z

286

Waste systems. Progress report, January 1982-February 1983  

SciTech Connect

A laboratory-scale beryllium electrorefining cell has been placed in operation and metallic beryllium with a purity greater than 99.95% has been produced. Methods of uranium chip disposal have been evaluated by performing bench- and pilot-scale testing and by surveying present chip disposal methods. A design criteria has been completed for a new production uranium chip disposal facility. Two types of cementation immobilization processes are being developed to treat several Rocky Flats wastes which do not currently meet repository acceptance criteria. The nitrate salts, as now shipped, are an extremely fine powder, composed chiefly of sodium and potassium nitrate. Nitrates are an oxidizer, and their behavior in a possible fire would be of concern. Accident caused fires involving a cargo of boxed nitrate salts were modeled and the burning characteristics noted. In addition, gypsum cement was tested as an immobilization matrix to reduce dispersibility. A program is in process to construct a facility to remotely size reduce gloveboxes and miscellaneous equipment contaminated with plutonium and other radioactive nuclides. The Title II engineering package is completed and the construction of the facility has been initiated. Modification and additions to the 82 kg/h Fluidized Bed Incinerator were made in preparation for turning the unit over to Production. A program was initiated to identify, characterize, and evaluate for recycle all the spent oil and solvent streams which are immobilized and disposed as Transuranic (TRU) waste. Three technologies were evaluted for denitrification method was studied at Rocky Flats while a thermal decomposition process and a molten salt chemical conversion technique were investigated on a subcontract basis with Thagard Research Corporation and Rockwell International, Energy Systems Group, respectively.

Hickle, G.L.

1983-10-24T23:59:59.000Z

287

Lakeview GCAP Acceptance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lakeview GCAP Acceptance Lakeview GCAP Acceptance Lakeview GCAP Acceptance July 12, 2013 - 1:19pm Addthis The Lakeview, Oregon, Processing Site's groundwater compliance action plan (GCAP) received U.S. Nuclear Regulatory Commission (NRC) concurrence last month. This makes Lakeview the first Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, as amended, Title I site where a finalized GCAP has selected a "no remediation" compliance strategy because concentration limits for regulated constituents have been met. Lakeview, Oregon, location map. The Lakeview processing site, located in south-central Oregon, was once a privately owned and operated facility that processed uranium ore from the nearby Lucky Lass and White King mines from 1958 through 1960. The 258-acre site, including the areas formerly occupied

288

Mixed Waste Focus Area program management plan  

SciTech Connect

This plan describes the program management principles and functions to be implemented in the Mixed Waste Focus Area (MWFA). The mission of the MWFA is to provide acceptable technologies that enable implementation of mixed waste treatment systems developed in partnership with end-users, stakeholders, tribal governments and regulators. The MWFA will develop, demonstrate and deliver implementable technologies for treatment of mixed waste within the DOE Complex. Treatment refers to all post waste-generation activities including sampling and analysis, characterization, storage, processing, packaging, transportation and disposal.

Beitel, G.A.

1996-10-01T23:59:59.000Z

289

THE ENVIRONMENTAL TECHNOLOGIES ACCEPTANCE (ETA) PROGRAM  

Science Conference Proceedings (OSTI)

The Environmental Technologies Acceptance (ETA) Program at the Energy and Environmental Research Center (EERC) is intended to advance the development, commercial acceptance, and timely deployment of selected private sector technologies for the cleanup of sites in the nuclear defense complex as well as the greater market. As shown in Table 1, this cooperative agreement funded by the National Energy Technology Laboratory (NETL) consists of three tasks: Technology Selection, Technology Development, and Technology Verification. As currently conceived, the ETA will address the needs of as many technologies as appropriate under its current 3-year term. This report covers activities during the first 6 months of the 3-year ETA program.

Christina B. Behr-Andres

2001-04-01T23:59:59.000Z

290

2007 Annual Mitigation Report for the Waste Isolation Pilot Plant...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CFR Part 194, Criteria for the Certification and Re-Certification of the Waste Isolation Pilot Plant's Compliance with the 40 CFR Part 191 Disposal Regulations. 25. U.S....

291

Hazardous Waste  

Science Conference Proceedings (OSTI)

Table 6   General refractory disposal options...D landfill (b) Characterized hazardous waste by TCLP

292

Analyzing Electronic Book Acceptance: A Compatibility Perspective  

Science Conference Proceedings (OSTI)

The digitization is posing great challenges to the European book industry. While some national markets show a fair diffusion of electronic book (ebook) technology, others are still resisting the digital trend. The lack of differentiated knowledge about ... Keywords: Electronic Book Adoption, Technology Acceptance, Compatibility

Jin Gerlach, Peter Buxmann

2013-01-01T23:59:59.000Z

293

Void fraction instrument acceptance test procedure  

DOE Green Energy (OSTI)

This acceptance test procedure (ATP) was written to test the void fraction instrument (VFI) and verify that the unit is ready for field service. The procedure verifies that the mechanical and electrical features (not specifically addressed in the software ATP) and software alarms are operating as designed.

Pearce, K.L.

1994-09-15T23:59:59.000Z

294

WIPP Facility Work Plan for Solid Waste Management Units  

Science Conference Proceedings (OSTI)

This Facility Work Plan (FWP) has been prepared as required by Module VII,Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a). This work plan describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current New Mexico Environment Department (NMED) guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility’s Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to NMED’s guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The scope of work for the RFI Work Plan or SAP is being developed by the Permittees. The final content of the RFI Work Plan or SAP will be coordinated with the NMED for submittal on May 24, 2000. Specific project-related planning information will be included in the RFI Work Plan or SAP. The SWMU program at WIPP began in 1994 under U.S. Environmental Protection Agency (EPA) regulatory authority. NMED subsequently received regulatory authority from EPA. A Phase I RFI was completed at WIPP as part of a Voluntary Release Assessment (VRA). The risk-based decision criteria recommended by EPA for the VRA were contained in a proposed Corrective Action rule for SWMUs (EPA, 1990). EPA Region VI has issued new risk-based screening criteria applicable to the WIPP SWMUs and AOCs.

Washington TRU Solutions LLC

2000-02-25T23:59:59.000Z

295

Partial Acceptance for Beneficial Use (ABU) for the Type 4 In Situ Vapor Sampler (ISVS) Carts  

Science Conference Proceedings (OSTI)

This document provides the Acceptance for Beneficial Use (ABU) for the Type 4 in-situ vapor sampler (ISVS) system. This document is generated to support the completion of equipment modifications and engineering documentation for the ISVS system that is used for sampling gaseous vapors in the Hanford single shell radioactive waste storage tanks. This ABU documents items for transferring the ISVS system to operations for field use. This document is generated following Characterization Engineering Desk Instruction DI-CE-004-001.

BOGER, R.M.

2000-05-19T23:59:59.000Z

296

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste  

E-Print Network (OSTI)

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 9500 Gilman Drive La Jolla, CA 92093 (858) 534) and identity of liquid waste Biohazard symbol Address: UCSD 9500 Gilman Drive La Jolla, CA 92093 (858) 534

Russell, Lynn

297

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste  

E-Print Network (OSTI)

2/2009 Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 200 West Arbor Dr. San Diego, CA 92103 (619 (9:1) OR Biohazard symbol (if untreated) and identity of liquid waste Biohazard symbol Address

Firtel, Richard A.

298

The Waste Management Quality Assurance Implementing Management Plan (QAIMP)  

E-Print Network (OSTI)

meeting applicable requirements of LBL, DOE, DOT, and otherDOE Orders, and waste management acceptance requirements ofwith the requirements of this QAIMP and DOE Order 1324.2A.

Albert editor, R.

2009-01-01T23:59:59.000Z

299

Acceptance test report, 241-SY-101 Flexible Receiver System, Phase 3 testing  

DOE Green Energy (OSTI)

This document summarizes the results of the phase 3 acceptance test of the 241-SY-101 Flexible Receiver System (FRS). The purpose of this acceptance test is to verify the sealing integrity of the FRS to ensure that the release of waste and aerosols will be minimized during the removal of the test mixer pump from Tank 241-SY-101. The FRS is one of six major components of the Equipment Removal System, which has been designed to retrieve, transport, and store the mixer pump. This acceptance test was performed at the 306E Facility in the 300 area from January 10, 1995 to January 17, 1995. The Phase 3 test consisted of two parts. Part one was a water leak test of the seal between the blast shield and mock load distribution frame (LDF) to ensure that significant contamination of the pump pit and waste interaction with the aluminum impact-limiting material under the LDF are prevented during the pump removal operation. The second part of this acceptance test was an air leak test of the assembled flexible receiver system. The purpose of this test was to verify that the release of hazardous aerosols will be minimized if the tank dome pressure becomes slightly positive during the decontamination of the mixer pump.

Ritter, G.A.

1995-02-06T23:59:59.000Z

300

Process Design Concepts for Stabilization of High Level Waste Calcine  

Science Conference Proceedings (OSTI)

The current baseline assumption is that packaging ¡§as is¡¨ and direct disposal of high level waste (HLW) calcine in a Monitored Geologic Repository will be allowed. The fall back position is to develop a stabilized waste form for the HLW calcine, that will meet repository waste acceptance criteria currently in place, in case regulatory initiatives are unsuccessful. A decision between direct disposal or a stabilization alternative is anticipated by June 2006. The purposes of this Engineering Design File (EDF) are to provide a pre-conceptual design on three low temperature processes under development for stabilization of high level waste calcine (i.e., the grout, hydroceramic grout, and iron phosphate ceramic processes) and to support a down selection among the three candidates. The key assumptions for the pre-conceptual design assessment are that a) a waste treatment plant would operate over eight years for 200 days a year, b) a design processing rate of 3.67 m3/day or 4670 kg/day of HLW calcine would be needed, and c) the performance of waste form would remove the HLW calcine from the hazardous waste category, and d) the waste form loadings would range from about 21-25 wt% calcine. The conclusions of this EDF study are that: (a) To date, the grout formulation appears to be the best candidate stabilizer among the three being tested for HLW calcine and appears to be the easiest to mix, pour, and cure. (b) Only minor differences would exist between the process steps of the grout and hydroceramic grout stabilization processes. If temperature control of the mixer at about 80„aC is required, it would add a major level of complexity to the iron phosphate stabilization process. (c) It is too early in the development program to determine which stabilizer will produce the minimum amount of stabilized waste form for the entire HLW inventory, but the volume is assumed to be within the range of 12,250 to 14,470 m3. (d) The stacked vessel height of the hot process vessels in the hydroceramic grout process (i.e., 21 m) appears to be about the same as that estimated by the Direct Cementitious Waste Process in 1998, for which a conceptual design was developed. Some of the conceptual design efforts in the 1998 study may be applicable to the stabilizer processes addressed in this EDF. (e) The gamma radiation fields near the process vessels handling HLW calcine would vary from a range of about 300-350 R/hr at a distance of 2.5 cm from the side of the vessels to a range of about 50-170 R/hr at a distance of 100 cm from the side of the vessels. The calculations were made for combined calcine, which was defined as the total HLW calcine inventory uniformly mixed. (f) The gamma radiation fields near the stabilized waste in canisters would range from about 25-170 R/hr at 2.5 cm from the side of the canister and 5-35 R/hr at 100 cm from the side of the canister, depending on the which bin set was the source of calcine.

T. R. Thomas; A. K. Herbst

2005-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste acceptance criteria" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)  

E-Print Network (OSTI)

Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB) to cool process syngas. The gas enters satisfies all 3 design criteria. · Correlations relating our experimental results to a waste heat boiler

Demirel, Melik C.

302

Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL2A  

SciTech Connect

This hazardous waste determination report (Report) describes the process and information used on the Hanford Site to determine that waste stream number NPFPDLZA, consisting of 30 containers of contact-handled transuranic debris waste, is not hazardous waste regulated by the Resource Conservation and Recovery Act (RCRA) or the New Mexico Hazardous Waste Act. For a waste to be hazardous under these statutes, the waste either must be specifically listed as a hazardous waste, or exhibit one or more of the characteristics of a hazardous waste, Le., ignitability, corrosivity, reactivity, or toxicity. Waste stream NPFPDLZA was generated, packaged, and placed into storage between 1993 and 1997. Extensive knowledge of the waste generating process, facility operational history, and administrative controls and operating procedures in effect at the time of generation, supported the initial nonhazardous waste determination. Because of the extent and reliability of information pertaining to this waste type, and the total volume of waste in the debris matrix parameter category, the Hanford Site is focusing initial efforts on this and similar waste streams for the first shipment to the Waste Isolation Pilot Plant (WIPP). RCRA regulations authorize hazardous waste determinations to be made either by using approved sampling and analysis methods or by applying knowledge of the waste in light of the materials or the process(es) used. This latter approach typically is referred to as process knowledge. The Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) for WIPP refers to acceptable knowledge in essentially the same terms; acceptable knowledge as used throughout this Report is synonymous with the term process knowledge. The 30 containers addressed in this Report were characterized by the following methods: Acceptable knowledge; Nondestructive examination using real-time radiography; Visual examination; and Headspace gas sampling and analysis. The initial nonhazardous waste determination was based solely on acceptable knowledge. Relevant administrative documents and operating methods in effect at the time of waste generation were reviewed, generator waste profiles and certifications were examined, and personnel interviews were conducted. The acceptable knowledge information and supporting data were further evaluated based on the results of nondestructive examination, visual examination, and container headspace gas analysis. In all cases, the physical examination processes supported the initial nonhazardous waste determination, and in effect served to validate and finalize that determination. Sections 2.0 through 5.0 of this Report describe in more detail the actions taken and conclusions reached with respect to this nonhazardous waste determination, The hazardous waste determination process described in this Report fully satisfies the requirements of 40 CFR 261, and the Memorandum of Agreement (MOA-June 16, 1999) signed by the U.S. Department of Energy (DOE) and the New Mexico Environment Department pertaining to the exchange of waste stream information.

WINTERHALDER, J.A.

1999-09-29T23:59:59.000Z

303

Special Analysis for the Disposal of the Consolidated Edison Uranium Solidification Project Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada  

Science Conference Proceedings (OSTI)

The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLB disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management,” for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high likelihood of compliance with all performance objectives. Tier II results indicate that the long-term performance of the OR CEUSP 233U waste stream is protective of human health and the environment. The Area 5 RWMS is located in one of the least populated and most arid regions of the U.S. Site characterization data indicate that infiltration of precipitation below the plant root zone at 2.5 meters (8.2 feet) ceased 10,000 to 15,000 y ago. The site is not expected to have a groundwater pathway as long as the current arid climate persists. The national security mission of the NNSS and the location of the Area 5 RWMS within the Frenchman Flat Corrective Action Unit require that access controls and land use restrictions be maintained indefinitely. PA modeling results for 10,000 to 60,000 y also indicate that the OR CEUSP 233U waste stream is acceptable for near-surface disposal. The mean resident air pathway annual total effective dose (TED), the resident all-pathways annual TED, and the acute drilling TED are less than their performance objectives for 10,000 y after closure. The mean radon-222 (222Rn) flux density exceeds the performance objective at 4,200 y, but this is due to waste already disposed at the Area 5 RWMS and is only slightly affected by disposal of the CEUSP 233U. The peak resident all-pathways annual TED from CEUSP key radionuclides occurs at 48,000 y and is less than the 0.25 millisievert performance objective. Disposal of the OR CEUSP 233U waste stream in a typical SLB trench slightly increases PA results. Increasing the depth was found to eliminate any impacts of the OR CEUSP 233U waste stream. Containers could not be shown to have any significant impact on performance due to the long half-life of the waste stream and a lack of data for pitting corrosion rates of stainless steel in soil. The results of the SA indicate that all performance objectives can be met with disposal of the OR CEUSP 233U waste stream in the SLB units at the Area 5 RWMS. The long-term performance of the OR CEUSP 233U waste stream disposed in the near surface is protective of human health

NSTec Environmental Management

2013-01-31T23:59:59.000Z

304

Special Analysis for the Disposal of the Consolidated Edison Uranium Solidification Project Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada  

SciTech Connect

The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLB disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management,” for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high likelihood of compliance with all performance objectives. Tier II results indicate that the long-term performance of the OR CEUSP 233U waste stream is protective of human health and the environment. The Area 5 RWMS is located in one of the least populated and most arid regions of the U.S. Site characterization data indicate that infiltration of precipitation below the plant root zone at 2.5 meters (8.2 feet) ceased 10,000 to 15,000 y ago. The site is not expected to have a groundwater pathway as long as the current arid climate persists. The national security mission of the NNSS and the location of the Area 5 RWMS within the Frenchman Flat Corrective Action Unit require that access controls and land use restrictions be maintained indefinitely. PA modeling results for 10,000 to 60,000 y also indicate that the OR CEUSP 233U waste stream is acceptable for near-surface disposal. The mean resident air pathway annual total effective dose (TED), the resident all-pathways annual TED, and the acute drilling TED are less than their performance objectives for 10,000 y after closure. The mean radon-222 (222Rn) flux density exceeds the performance objective at 4,200 y, but this is due to waste already disposed at the Area 5 RWMS and is only slightly affected by disposal of the CEUSP 233U. The peak resident all-pathways annual TED from CEUSP key radionuclides occurs at 48,000 y and is less than the 0.25 millisievert performance objective. Disposal of the OR CEUSP 233U waste stream in a typical SLB trench slightly increases PA results. Increasing the depth was found to eliminate any impacts of the OR CEUSP 233U waste stream. Containers could not be shown to have any significant impact on performance due to the long half-life of the waste stream and a lack of data for pitting corrosion rates of stainless steel in soil. The results of the SA indicate that all performance objectives can be met with disposal of the OR CEUSP 233U waste stream in the SLB units at the Area 5 RWMS. The long-term performance of the OR CEUSP 233U waste stream disposed in the near surface is protective of human health

NSTec Environmental Management

2013-01-31T23:59:59.000Z

305

Determinations of TSD facility acceptability under the CERCLA Off-Site Rule  

Science Conference Proceedings (OSTI)

On September 22, 1993, the US Environmental Protection Agency (EPA) published the ``Off-Site Rule`` to implement section 121(d)(3) of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). CERCLA {section}121(d)(3) requires that wastes generated as a result of remediation activities taken under CERCLA authority and transferred off-site be managed only at facilities that comply with the Resource Conservation and Recovery Act. In 1994, the DOE`s Office of Environmental Policy and Assistance (OEPA), RCRA/CERCLA Division (EH-413) published a CERCLA Information Brief titled ``The Off-Site Rule`` which describes the content of the Off-Site Rule and clarifies some of its implications for DOE remedial actions under CERCLA. Additionally, EH-413 published the Guide on Selecting Compliant Off-Site Hazardous Waste Treatment, Storage and Disposal Facilities which provides a regulatory roadmap for accomplishing off-site transfers of environmental restoration and process hazardous waste at DOE facilities in a manner compliant with the Off-Site Rule and other relevant Federal regulations. Those guidance documents concentrate primarily on DOE`s perspective as a hazardous waste generator. The purpose of this Information Brief is to address the implications of the Off-Site Rule for DOE-owned hazardous waste treatment, storage or disposal facilities that accept CERCLA remediation wastes from off-site locations.

NONE

1997-06-01T23:59:59.000Z

306

Acceptance test report 2721-Z upgrades  

SciTech Connect

This test procedure provides instructions for acceptance testing of modifications to the 2721-Z diesel-generator system made by Project C-189. The modifications include (1) replacing the generator NUMA-LOGIC controller with connection to the PFP distributed control system (DCS), (2) replacing ATSI with a breaker switching scheme for 2736-ZB backup power and (3) providing a method for generator load and system testing.

Keck, R.D.

1998-02-03T23:59:59.000Z

307

Security Enforcement Reporting Criteria | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Security Enforcement Reporting Criteria Security Enforcement Reporting Criteria Security Enforcement Reporting Criteria Classified information security noncompliances are categorized according to the disclosure or potential disclosure of DOE classified information placed at risk. There are two categories of noncompliances that are based on the relative severity of a classified information security incident. The categories are identified by an event category and type. Each of the two categories is further subdivided into three types based on the type of interest (security interest, management interest, and procedural interest). Security Enforcement Reporting Criteria More Documents & Publications Safety and Security Enforcement Coordinator Handbook DOE-STD-1210-2012 HQFMSP Chapter 11, Incidents of Security Concern

308

Membership Criteria: Better Buildings Residential network  

NLE Websites -- All DOE Office Websites (Extended Search)

Criteria BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.govbbrn Better Buildings Residential Network (BBRN) members must be supportive of residential...

309

Environmental Radiation Protection, Inspection Criteria, Approach...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is approved for use by the Office of ES&H Evaluations. Subject: Environmental Radiation Protection, Inspection Criteria, Approach, and Lines of Inquiry Director, ffice of...

310

Gas characterization system functional design criteria  

DOE Green Energy (OSTI)

This is the functional design criteria for the gas characterization systems being placed on selected flammable gas watch-list tanks in support of the hydrogen mitigation tests.

Straalsund, E.K.

1995-01-05T23:59:59.000Z

311

Low-Level Radioactive Waste Disposal Act (Pennsylvania) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Level Radioactive Waste Disposal Act (Pennsylvania) Low-Level Radioactive Waste Disposal Act (Pennsylvania) Low-Level Radioactive Waste Disposal Act (Pennsylvania) < Back Eligibility Utility Commercial Investor-Owned Utility State/Provincial Govt Municipal/Public Utility Local Government Rural Electric Cooperative Transportation Program Info State Pennsylvania Program Type Environmental Regulations Provider Pennsylvania Department of Environmental Protection This act provides a comprehensive strategy for the siting of commercial low-level waste compactors and other waste management facilities, and to ensure the proper transportation, disposal and storage of low-level radioactive waste. Commercial incineration of radioactive wastes is prohibited. Licenses are required for low-level radioactive waste disposal facilities not licensed to accept low-level radioactive waste. Disposal at

312

ICPP Waste Management Technology Development Program  

SciTech Connect

As a result of the decision to curtail reprocessing at the Idaho Chemical Processing Plant (ICPP), a Spent fuel and Waste Management Technology Development plan has been implemented to identify acceptable options for disposing of the (1) sodium-bearing liquid radioactive waste, (2) radioactive calcine, and (3) irradiated spent fuel stored at the Idaho National Engineering Laboratory (INEL). The plan was developed jointly by DOE and WINCO.

Hogg, G.W.; Olson, A.L.; Knecht, D.A. [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States); Bonkoski, M.J. [USDOE, Washington, DC (United States)

1993-01-01T23:59:59.000Z

313

Thermal impact of waste emplacement and surface cooling associated with geologic disposal of nuclear waste  

Science Conference Proceedings (OSTI)

The thermal effects associated with the emplacement of aged radioactive wastes in a geologic repository were studied, with emphasis on the following subjects: the waste characteristics, repository structure, and rock properties controlling the thermally induced effects; the current knowledge of the thermal, thermomechanical, and thermohydrologic impacts, determined mainly on the basis of previous studies that assume 10-year-old wastes; the thermal criteria used to determine the repository waste loading densities; and the technical advantages and disadvantages of surface cooling of the wastes prior to disposal as a means of mitigating the thermal impacts. The waste loading densities determined by repository designs for 10-year-old wastes are extended to older wastes using the near-field thermomechanical criteria based on room stability considerations. Also discussed are the effects of long surface cooling periods determined on the basis of far-field thermomechanical and thermohydrologic considerations. The extension of the surface cooling period from 10 years to longer periods can lower the near-field thermal impact but have only modest long-term effects for spent fuel. More significant long-term effects can be achieved by surface cooling of reprocessed high-level waste.

Wang, J.S.Y.; Mangold, D.C.; Spencer, R.K.; Tsang, C.F.

1982-08-01T23:59:59.000Z

314

Cementitious Stabilization of Mixed Wastes with High Salt Loadings  

SciTech Connect

Salt loadings approaching 50 wt % were tolerated in cementitious waste forms that still met leach and strength criteria, addressing a Technology Deficiency of low salt loadings previously identified by the Mixed Waste Focus Area. A statistical design quantified the effect of different stabilizing ingredients and salt loading on performance at lower loadings, allowing selection of the more effective ingredients for studying the higher salt loadings. In general, the final waste form needed to consist of 25 wt % of the dry stabilizing ingredients to meet the criteria used and 25 wt % water to form a workable paste, leaving 50 wt % for waste solids. The salt loading depends on the salt content of the waste solids but could be as high as 50 wt % if all the waste solids are salt.

Spence, R.D.; Burgess, M.W.; Fedorov, V.V.; Downing, D.J.

1999-04-01T23:59:59.000Z

315

Waste site grouping for 200 Areas soil investigations  

Science Conference Proceedings (OSTI)

The purpose of this document is to identify logical waste site groups for characterization based on criteria established in the 200 Areas Soil Remediation Strategy (DOE-RL 1996a). Specific objectives of the document include the following: finalize waste site groups based on the approach and preliminary groupings identified in the 200 Areas Soil Remediation Strategy; prioritize the waste site groups based on criteria developed in the 200 Areas Soil Remediation Strategy; select representative site(s) that best represents typical and worse-case conditions for each waste group; develop conceptual models for each waste group. This document will serve as a technical baseline for implementing the 200 Areas Soil Remediation Strategy. The intent of the document is to provide a framework, based on waste site groups, for organizing soil characterization efforts in the 200 Areas and to present initial conceptual models.

NONE

1997-01-01T23:59:59.000Z

316

Environmental Management Waste Management Facility Waste Lot Profile for the K-770 Scrap Yard Soils and Miscellaneous Debris, East Tennessee Technology Park, Oak Ridge, Tennessee - EMWMF Waste Lot 4.12  

Science Conference Proceedings (OSTI)

Waste Lot 4.12 consists of approximately 17,500 yd{sup 3} of low-level, radioactively contaminated soil, concrete, and incidental metal and debris generated from remedial actions at the K-770 Scrap Metal Yard and Contaminated Debris Site (the K-770 Scrap Yard) at the East Tennessee Technology Park (ETTP). The excavated soil will be transported by dump truck to the Environmental Management Waste Management Facility (EMWMF). This profile provides project-specific information to demonstrate compliance with Attainment Plan for Risk/Toxicity-based Waste Acceptance Criteria at the Oak Ridge Reservation, Oak Ridge, Tennessee (DOE 2001). The K-770 Scrap Yard is an approximately 36-acre storage area located southwest of the main portion of ETTP, outside the security perimeter fence in the Powerhouse Area adjacent to the Clinch River. The K-770 area was used to store radioactively contaminated or suspected contaminated materials during and previous to the K-25 Site cascade upgrading program. The waste storage facility began operation in the 1960s and is estimated to at one time contain in excess of 40,000 tons of low-level, radioactively contaminated scrap metal. Scrap metal was taken to the site when it was found to contain alpha or beta/gamma activity on the surface or if the scrap metal originated from a process building. The segregated metal debris was removed from the site as part of the K-770 Scrap Removal Action (RA) Project that was completed in fiscal year (FY) 2007 by Bechtel Jacobs Company LLC (BJC). An area of approximately 10 acres is located in EUs 29 and 31 where the scrap was originally located in the 100-year floodplain. In the process of moving the materials around and establishing segregated waste piles above the 100-year floodplain, the footprint of the site was expanded by 10-15 acres in EUs 30 and 32. The area in EUs 29 and 31 that was cleared of metallic debris in the floodplain was sown with grass. The areas in EUs 30 and 32 have some scattered vegetation but are generally open and accessible. With limited exception, all materials contained in the scrap yard have been removed and disposed at the EMWMF. Soils that underlay the original waste storage area in EUs 29 and 31 as well as soils that underlay the scrap piles in EUs 30 and 32 show substantially elevated radioactivity. In addition to soils present at the site, remaining portions of foundations/floor slabs for Bldgs. K-725, K-726, and K-736 as well as the unnamed pad at the northeast corner of the site constructed to support the sort and segregation operations at the K-770 Scrap Removal Project in 2006 and several other small, unnamed concrete pads are included in this waste lot. While many of these foundations/floor slabs will be removed because they are contaminated, some of the smaller unamed concrete pads will be removed in order to access contaminated soils that are around and under the pads and regrade the site. Appendix E contains a map showing the areas of soil and concrete pads that are expected to be excavated. Soils in the areas indicated on this map will be removed to approximately one foot below the surface. (This corresponds to the soil interval sampled and analyzed to characterize this waste lot.) Contaminants present in the soils are directly derived from metallic debris and rubbish handled by the waste storage operations, are concentrated in the top few inches, and include the predominant constituents of concern associated with the metallic waste already disposed at EMWMF. Additionally, some residual metallic debris remains embedded in the shallow soils that underlay the former debris piles. This residual metallic debris is eligible for disposal in the EMWMF WAC criteria as defined in Waste Profile for: Disposal of the Scrap Removal Project Waste Lot 65.1 East Tennessee Technology Park, Oak Ridge, Tennessee (BJC 2004a). This waste, however, has been included in Waste Lot 4.12 to conform to the more rigorous profiling requirements currently contained in Waste Acceptance Criteria Attainment Team Project Execution Plan Environmental Manag

Davenport M.

2009-04-15T23:59:59.000Z

317

CRAD, Training - Los Alamos National Laboratory Waste Characterization,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Waste Characterization, Reduction, and Repackaging Facility CRAD, Training - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Training Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Training - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

318

CRAD, Quality Assurance - Los Alamos National Laboratory Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Waste Characterization, Reduction, and Repackaging Facility CRAD, Quality Assurance - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Quality Assurance Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Quality Assurance - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

319

CRAD, Engineering - Los Alamos National Laboratory Waste Characterization,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Engineering - Los Alamos National Laboratory Waste Engineering - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Engineering - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Engineering Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Engineering - Los Alamos National Laboratory Waste Characterization,

320

Alternatives Generation and Analysis for Phase 1 High Level Waste Feed Tanks Selection  

Science Conference Proceedings (OSTI)

A recent revision of the US. Department of Energy privatization contract for the immobilization of high-level waste (HLW) at Hanford necessitates the investigation of alternative waste feed sources to meet contractual feed requirements. This analysis identifies wastes to be considered as HLW feeds and develops and conducts alternative analyses to comply with established criteria. A total of 12,426 cases involving 72 waste streams are evaluated and ranked in three cost-based alternative models. Additional programmatic criteria are assessed against leading alternative options to yield an optimum blended waste feed stream.

CRAWFORD, T.W.

1999-08-16T23:59:59.000Z

Note: This page contains sample records for the topic "waste acceptance criteria" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Environmental assessment, finding of no significant impact, and response to comments. Radioactive waste storage  

Science Conference Proceedings (OSTI)

The Department of Energy`s (DOE) Rocky Flats Environmental Technology Site (the Site), formerly known as the Rocky Flats Plant, has generated radioactive, hazardous, and mixed waste (waste with both radioactive and hazardous constituents) since it began operations in 1952. Such wastes were the byproducts of the Site`s original mission to produce nuclear weapons components. Since 1989, when weapons component production ceased, waste has been generated as a result of the Site`s new mission of environmental restoration and deactivation, decontamination and decommissioning (D&D) of buildings. It is anticipated that the existing onsite waste storage capacity, which meets the criteria for low-level waste (LL), low-level mixed waste (LLM), transuranic (TRU) waste, and TRU mixed waste (TRUM) would be completely filled in early 1997. At that time, either waste generating activities must cease, waste must be shipped offsite, or new waste storage capacity must be developed.

NONE

1996-04-01T23:59:59.000Z

322

Waste= Capital.  

E-Print Network (OSTI)

??The evolution of manufacturing practices over the last century has led to the creation of excess waste during the production process, depleting resources and overwhelming… (more)

Stidham, Steve P.

2011-01-01T23:59:59.000Z

323

A Procedure for Determination of Degradation Acceptance Criteria for Structures and Passive Components in Nuclear Power Plants  

Science Conference Proceedings (OSTI)

The Korea Atomic Energy Research Institute (KAERI) has been collaborating with Brookhaven National Laboratory since 2007 to develop a realistic seismic risk evaluation system which includes the consideration of aging of structures and components in nuclear power plants (NPPs). This collaboration program aims at providing technical support to a five-year KAERI research project, which includes three specific areas that are essential to seismic probabilistic risk assessment: (1) probabilistic seismic hazard analysis, (2) seismic fragility analysis including the effects of aging, and (3) a plant seismic risk analysis. The understanding and assessment of age-related degradations of structures, systems, and components and their impact on plant safety is the major goal of this KAERI-BNL collaboration. Four annual reports have been published before this report as a result of the collaboration research.

Nie, J.; Braverman, J.; Hofmayer, C.; Choun, Y-S.; Hahm, D.; Choi, I-K.

2012-01-30T23:59:59.000Z

324

W-026, acceptance test report manipulator system  

Science Conference Proceedings (OSTI)

The purpose of the WRAP Manipulator System Acceptance Test Plan (ATP) is to verify that the 4 glovebox sets of WRAP manipulator components, including rail/carriage, slave arm, master controller and auxiliary equipment, meets the requirements of the functional segments of 14590 specification. The demonstration of performance elements of the ATP are performed as a part of the Assembly specifications. Manipulator integration is integrated in the performance testing of the gloveboxes. Each requirement of the Assembly specification will be carried out in conjunction with glovebox performance tests.

Watson, T.L.

1997-04-15T23:59:59.000Z

325

INEEL Radioactive Liquid Waste Reduction Program  

SciTech Connect

Reduction of radioactive liquid waste, much of which is Resource Conservation and Recovery Act (RCRA) listed, is a high priority at the Idaho National Technology and Engineering Center (INTEC). Major strides in the past five years have lead to significant decreases in generation and subsequent reduction in the overall cost of treatment of these wastes. In 1992, the INTEC, which is part of the Idaho National Environmental and Engineering Laboratory (INEEL), began a program to reduce the generation of radioactive liquid waste (both hazardous and non-hazardous). As part of this program, a Waste Minimization Plan was developed that detailed the various contributing waste streams, and identified methods to eliminate or reduce these waste streams. Reduction goals, which will reduce expected waste generation by 43%, were set for five years as part of this plan. The approval of the plan led to a Waste Minimization Incentive being put in place between the Department of Energy–Idaho Office (DOE-ID) and the INEEL operating contractor, Lockheed Martin Idaho Technologies Company (LMITCO). This incentive is worth $5 million dollars from FY-98 through FY-02 if the waste reduction goals are met. In addition, a second plan was prepared to show a path forward to either totally eliminate all radioactive liquid waste generation at INTEC by 2005 or find alternative waste treatment paths. Historically, this waste has been sent to an evaporator system with the bottoms sent to the INTEC Tank Farm. However, this Tank Farm is not RCRA permitted for mixed wastes and a Notice of Non-compliance Consent Order gives dates of 2003 and 2012 for removal of this waste from these tanks. Therefore, alternative treatments are needed for the waste streams. This plan investigated waste elimination opportunities as well as treatment alternatives. The alternatives, and the criteria for ranking these alternatives, were identified through Value Engineering meetings with all of the waste generators. The most promising alternatives were compared by applying weighting factors to each based on how well the alternative met the established criteria. From this information, an overall ranking of the various alternatives was obtained and a path forward recommended.

Tripp, Julia Lynn; Archibald, Kip Ernest; Argyle, Mark Don; Demmer, Ricky Lynn; Miller, Rose Anna; Lauerhass, Lance

1999-03-01T23:59:59.000Z

326

INEEL Radioactive Liquid Waste Reduction Program  

SciTech Connect

Reduction of radioactive liquid waste, much of which is Resource Conservation and Recovery Act (RCRA) listed, is a high priority at the Idaho National Technology and Engineering Center (INTEC). Major strides in the past five years have lead to significant decreases in generation and subsequent reduction in the overall cost of treatment of these wastes. In 1992, the INTEC, which is part of the Idaho National Environmental and Engineering Laboratory (INEEL), began a program to reduce the generation of radioactive liquid waste (both hazardous and non-hazardous). As part of this program, a Waste Minimization Plan was developed that detailed the various contributing waste streams, and identified methods to eliminate or reduce these waste streams. Reduction goals, which will reduce expected waste generation by 43%, were set for five years as part of this plan. The approval of the plan led to a Waste Minimization Incentive being put in place between the Department of Energy ? Idaho Office (DOE-ID) and the INEEL operating contractor, Lockheed Martin Idaho Technologies Company (LMITCO). This incentive is worth $5 million dollars from FY-98 through FY-02 if the waste reduction goals are met. In addition, a second plan was prepared to show a path forward to either totally eliminate all radioactive liquid waste generation at INTEC by 2005 or find alternative waste treatment paths. Historically, this waste has been sent to an evaporator system with the bottoms sent to the INTEC Tank Farm. However, this Tank Farm is not RCRA permitted for mixed wastes and a Notice of Non-compliance Consent Order gives dates of 2003 and 2012 for removal of this waste from these tanks. Therefore, alternative treatments are needed for the waste streams. This plan investigated waste elimination opportunities as well as treatment alternatives. The alternatives, and the criteria for ranking these alternatives, were identified through Value Engineering meetings with all of the waste generators. The most promising alternatives were compared by applying weighting factors to each based on how well the alternative met the established criteria. From this information, an overall ranking of the various alternatives was obtained and a path forward recommended.

C. B. Millet; J. L. Tripp; K. E. Archibald; L. Lauerhauss; M. D. Argyle; R. L. Demmer

1999-02-01T23:59:59.000Z

327

SRNL PHASE 1 ASSESSMENT OF THE WAC/DQO AND UNIT OPERATIONS FOR THE WTP WASTE QUALIFICATION PROGRAM  

SciTech Connect

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is currently transitioning its emphasis from a design and construction phase toward start-up and commissioning. With this transition, the WTP Project has initiated more detailed assessments of the requirements related to actual processing of the Hanford Site tank waste. One particular area of interest is the waste qualification program to be implemented to support the WTP. Given the successful implementation of similar waste qualification efforts at the Savannah River Site (SRS), based on critical technical support and guidance from the Savannah River National Laboratory (SRNL), WTP requested the utilization of subject matter experts from SRNL to support a technology exchange to perform a review of the WTP waste qualification program, discuss the general qualification approach at SRS, and to identify critical lessons learned through the support of DWPF's sludge batch qualification efforts. As part of Phase 1, SRNL subject matter experts in critical technical and/or process areas reviewed specific WTP waste qualification information. The Phase 1 review was a collaborative, interactive, and iterative process between the two organizations. WTP provided specific analytical procedures, descriptions of equipment, and general documentation as baseline review material. SRNL subject matter experts reviewed the information and, as appropriate, requested follow-up information or clarification to specific areas of interest. This process resulted in multiple teleconferences with key technical contacts from both organizations resolving technical issues that lead to the results presented in this report. This report provides the results of SRNL's Phase 1 review of the WAC-DQO waste acceptance criteria and processability parameters, and the specific unit operations which are required to support WTP waste qualification efforts. The review resulted in SRNL providing concurrence, alternative methods, or gap identification for the proposed WTP analytical methods or approaches. For the unit operations, the SRNL subject matter experts reviewed WTP concepts compared to what is used at SRS and provided thoughts on the outlined tasks with respect to waste qualification. Also documented in this report are recommendations and an outline on what would be required for the next phase to further mature the WTP waste qualification program.

Peeler, D.; Adamson, D.; Bannochie, C.; Cozzi, A.; Eibling, R.; Hay, M.; Hansen, E.; Herman, D.; Martino, C.; Nash, C.; Pennebaker, F.; Poirier, M.; Reboul, S.; Stone, M.; Taylor-Pashow, K.; White, T.; Wilmarth, B.

2012-05-16T23:59:59.000Z

328

MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT  

E-Print Network (OSTI)

#12;MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT PHASE I: AUDIT OF CURRENT PRACTICE The Mushroom Waste Management Project (MWMP) was initiated by Environment Canada, the BC Ministry of solid and liquid wastes generated at mushroom producing facilities. Environmental guidelines

329

The Surface of Acceptability in Virtual Faces  

E-Print Network (OSTI)

This paper explores the surface properties of skin and eyes and their importance in the acceptance and success of a digital human face, specifically in relation to the uncanny valley. The uncanny valley hypothesis states that as a human representation approaches photo-realism, subtle differences from reality become unsettling. Recent studies suggest that the uncanny valley could exist over a far greater range, affecting abstract human representations as well. These competing findings are explored by analyzing how changes to the surface of a digital character affect its level of acceptance. A female facial model is used as a base to compare a spectrum of different simulated real-world materials. The variations range from materials that are nearly identical to human skin, to those that are completely divergent from it, thus unnatural. After studying this catalogue of materials, it is concluded that given the right conditions, the uncanny valley can occur when facial representations are very near realism, as well as when human-likeness is quite distant from reality.

Andreason, Scot Philip

2013-08-01T23:59:59.000Z

330

TESTING AND ACCEPTANCE OF FUEL PLATES FOR RERTR FUEL DEVELOPMENT EXPERIMENTS  

SciTech Connect

This paper discusses how candidate fuel plates for RERTR Fuel Development experiments are examined and tested for acceptance prior to reactor insertion. These tests include destructive and nondestructive examinations (DE and NDE). The DE includes blister annealing for dispersion fuel plates, bend testing of adjacent cladding, and microscopic examination of archive fuel plates. The NDE includes Ultrasonic (UT) scanning and radiography. UT tests include an ultrasonic scan for areas of “debonds” and a high frequency ultrasonic scan to determine the "minimum cladding" over the fuel. Radiography inspections include identifying fuel outside of the maximum fuel zone and measurements and calculations for fuel density. Details of each test are provided and acceptance criteria are defined. These tests help to provide a high level of confidence the fuel plate will perform in the reactor without a breach in the cladding.

J.M. Wight; G.A. Moore; S.C. Taylor

2008-10-01T23:59:59.000Z

331

CRAD, Hazardous Waste Management - December 4, 2007 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CRAD, Hazardous Waste Management - December 4, 2007 CRAD, Hazardous Waste Management - December 4, 2007 CRAD, Hazardous Waste Management - December 4, 2007 December 4, 2007 Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-30) Line management ensures that the requirements for generating, storing, treating, transporting, and disposing of hazardous waste, universal waste, and used oil, established under 40 CFR Subchapter I, applicable permits, and DOE requirements have been effectively implemented for federal and contractor employees, including subcontractors. Written programs and plans are in place and updated when conditions or requirements change. Employees have been properly trained for the wastes they handle. Documentation of waste characterizations, manifests, land disposal restrictions,

332

Safety analysis report for the Waste Storage Facility. Revision 2  

SciTech Connect

This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

Bengston, S.J.

1994-05-01T23:59:59.000Z

333

Structural analysis of Hanford`s single-shell 241-C-106 tank: A first step toward waste-tank remediation  

SciTech Connect

The buried single-shell waste tank 241-C-106, located at the US Department of Energy`s Hanford Site, has been a repository for various liquid radioactive waste materials since its construction in 1943. A first step toward waste tank remediation is demonstrating that remediation activities can be performed safely. Determination of the current structural capacity of this high-heat tank is an important element in this assessment. A structural finite-element model of tank 241-C-106 has been developed to assess the tank`s structural integrity with respect to in situ conditions and additional remediation surface loads. To predict structural integrity realistically, the model appropriately addresses two complex issues: (1) surrounding soil-tank interaction associated with thermal expansion cycling and surcharge load distribution and (2) concrete-property degradation and creep resulting from exposure to high temperatures generated by the waste. This paper describes the development of the 241-C-106 structural model, analysis methodology, and tank-specific structural acceptance criteria.

Harris, J.P.; Julyk, L.J.; Marlow, R.S.; Moore, C.J. [Westinghouse Hanford Co., Richland, WA (United States); Day, J.P.; Dyrness, A.D.; Jagadish, P.; Shulman, J.S. [Advent Engineering Services, Inc., San Ramon, CA (United States)

1993-10-01T23:59:59.000Z

334

Greater-than-Class C low-level radioactive waste transportation regulations and requirements study. National Low-Level Waste Management Program  

SciTech Connect

The purpose of this report is to identify the regulations and requirements for transporting greater-than-Class C (GTCC) low-level radioactive waste (LLW) and to identify planning activities that need to be accomplished in preparation for transporting GTCC LLW. The regulations and requirements for transporting hazardous materials, of which GTCC LLW is included, are complex and include several Federal agencies, state and local governments, and Indian tribes. This report is divided into five sections and three appendices. Section 1 introduces the report. Section 2 identifies and discusses the transportation regulations and requirements. The regulations and requirements are divided into Federal, state, local government, and Indian tribes subsections. This report does not identify the regulations or requirements of specific state, local government, and Indian tribes, since the storage, treatment, and disposal facility locations and transportation routes have not been specifically identified. Section 3 identifies the planning needed to ensure that all transportation activities are in compliance with the regulations and requirements. It is divided into (a) transportation packaging; (b) transportation operations; (c) system safety and risk analysis, (d) route selection; (e) emergency preparedness and response; and (f) safeguards and security. This section does not provide actual planning since the details of the Department of Energy (DOE) GTCC LLW Program have not been finalized, e.g., waste characterization and quantity, storage, treatment and disposal facility locations, and acceptance criteria. Sections 4 and 5 provide conclusions and referenced documents, respectively.

Tyacke, M.; Schmitt, R.

1993-07-01T23:59:59.000Z

335

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE  

E-Print Network (OSTI)

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE January 2010 Prepared for the Interagency DE-AC05-76RL01830 Waste Disposal Workshops: Anthrax-Contaminated Waste AM Lesperance JF Upton SL #12;#12;PNNL-SA-69994 Waste Disposal Workshops: Anthrax- Contaminated Waste AM Lesperance JF Upton SL

336

Uncertainties in the effects of burnup and their impact on criticality safety licensing criteria  

SciTech Connect

Current criteria for criticality safety for spent fuel shipping and storage casks are conservative because no credit is permitted for the effects of burnup of the fuel inside the cask. Cask designs that will transport and store large numbers of fuel assemblies (20 or more) must devote a substantial part of their payload to criticality control measures if they are to meet this criteria. The Department of Energy is developing the data necessary to support safety analyses that incorporate the effects of burnup for the next generation of spent fuel shipping casks. The efforts described here are devoted to the development of acceptance criteria that will be the basis for accepting safety analyses. Preliminary estimates of the uncertainties of the effects of burnup have been developed to provide a basis for the consideration of critically safety criteria. The criticality safety margins in a spent fuel shipping or storage cask are dominated by the portions of a fuel assembly that are in low power regions of a reactor core, and the reactor operating conditions are very different from spent fuel storage or transport cask conditions. Consequently, the experience that has been gathered during years of reactor operation does not apply directly to the prediction of criticality safety margins for spent fuel shipping or storage casks. The preliminary estimates of the uncertainties presented in this paper must be refined by both analytical and empirical studies that address both the magnitude of the uncertainties and their interdependence. 9 refs., 5 figs.

Carlson, R.W.; Fisher, L.E.

1990-07-13T23:59:59.000Z

337

ENGINEERING SPECIALTY ASSESSMENT OF TANK WASTE COMPATIBILITY REPORTING  

Science Conference Proceedings (OSTI)

This Engineering Specialty Assessment was conducted to review the Tank Farm Waste Transfer Compatibility Program to assess whether the program meets the needs of accelerated retrieval and closure and waste feed delivery and to identify areas and methods for streamlining the program. The assessment was conducted in June 2003 and resulted in two findings and thirteen observations. The assessment results indicate that significant opportunities exist for streamlining the program by reducing the number of criteria requiring evaluation from 21 to 11, with only six of the criteria requiring evaluation for the majority of transfers. The assessment identified areas where existing criteria require strengthening to ensure that the risks of undesirable solids precipitation, from either waste mixing or waste transfer, are minimized. The assessment further identified opportunities for using existing engineering tools to simplify the calculations involved with preparation of waste compatibility assessments. The need to ensure that a revision to the waste compatibility program is prepared to align the program criteria with those that will be implemented with the DSA approval was also identified. Finally, the assessment identified that corrective actions are required to implement a tank-by-tank PCB inventory within the Best Basis Inventory and to ensure that sample data from external waste generators is entered into the TWINS database.

KNIGHT, M.A.

2003-06-30T23:59:59.000Z

338

Multi-criteria scheduling of pipeline workflows  

E-Print Network (OSTI)

Mapping workflow applications onto parallel platforms is a challenging problem, even for simple application patterns such as pipeline graphs. Several antagonist criteria should be optimized, such as throughput and latency (or a combination). In this paper, we study the complexity of the bi-criteria mapping problem for pipeline graphs on communication homogeneous platforms. In particular, we assess the complexity of the well-known chains-to-chains problem for different-speed processors, which turns out to be NP-hard. We provide several efficient polynomial bi-criteria heuristics, and their relative performance is evaluated through extensive simulations.

Benoit, Anne; Robert, Yves

2007-01-01T23:59:59.000Z

339

Solid waste burial grounds interim safety analysis  

SciTech Connect

This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment.

Saito, G.H.

1994-10-01T23:59:59.000Z

340

Standard guide for design criteria for plutonium gloveboxes  

E-Print Network (OSTI)

1.1 This guide defines criteria for the design of glovebox systems to be used for the handling of plutonium in any chemical or physical form or isotopic composition or when mixed with other elements or compounds. Not included in the criteria are systems auxiliary to the glovebox systems such as utilities, ventilation, alarm, and waste disposal. Also not addressed are hot cells or open-face hoods. The scope of this guide excludes specific license requirements relating to provisions for criticality prevention, hazards control, safeguards, packaging, and material handling. Observance of this guide does not relieve the user of the obligation to conform to all federal, state, and local regulations for design and construction of glovebox systems. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user...

American Society for Testing and Materials. Philadelphia

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste acceptance criteria" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Satellite power system (SPS) public acceptance  

SciTech Connect

The purpose of this report is to develop a preliminary perspective on the public acceptability of the Solar Satellite Power System (SPS) Program, and a means to monitor it. A literature review and informal contacts with interest groups likely to take a position on the program reveal a number of concerns (anti-SPS arguments), as well as potential benefits (pro-SPS arguments). The concerns expressed include: environmental issues (microwaves, high altitude air pollution from space launches, land use), the program's cost in dollars, energy and other resources; communications interference; military implications; ownership and control of the system (particularly strengthening the power of utility monopolies); SPS as representing a centralized, high technology hard energy policy (rather than a decentralized smaller-scale soft approach); and the fear that SPS might dominate solar R and D budgets at the expense of decentralized solar technologies. Pro-SPS arguments stress its efficiency compared to terrestrial solar applications (i.e. virtually continuous exposure, no atmospheric attenuation). The program could be a major contributor to solving America's (and the world's) long-term energy crisis. It would improve our balance of payments; create many jobs both directly and through technology spinoffs; advance the space program; strengthen the U.S. position as a world leader in high technology; provide a great boost to American national pride; and would be environmentally preferable to alternative power generation technologies (e.g. coal, nuclear). Several key issues in SPS acceptability are: the outcome (and credibility) of future research into program environmental and non-environmental impacts, and the comparison of SPS impacts with those of alternative energy options. Recommendations for future research are given.

Bachrach, A.

1978-10-01T23:59:59.000Z

342

West Valley Demonstration Project DOE Manual 435.1-1 Waste Incidental to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project DOE Manual 435.1-1 Waste West Valley Demonstration Project DOE Manual 435.1-1 Waste Incidental to Reprocessing Evaluations and Determinations West Valley Demonstration Project DOE Manual 435.1-1 Waste Incidental to Reprocessing Evaluations and Determinations The U.S. Department of Energy (DOE) Manual 435.1-1, Radioactive Waste Management Manual, which accompanies DOE Order 435.1, provides that the DOE may determine that certain waste from reprocessing spent nuclear fuel is waste incidental to reprocessing, is not high-level waste and may be managed and disposed of as low-level waste if the waste meets the criteria in DOE Manual 435.1-1, Chapter II, Section B. To determine that waste is incidental to reprocessing using the evaluation process from the Manual, and shall be managed as low level waste, DOE must demonstrate three

343

Analyzing Losses: Transuranics into Waste and Fission Products into Recycled Fuel  

SciTech Connect

All mass streams from separations and fuel fabrication are products that must meet criteria. Those headed for disposal must meet waste acceptance criteria (WAC) for the eventual disposal sites corresponding to their waste classification. Those headed for reuse must meet fuel or target impurity limits. A “loss” is any material that ends up where it is undesired. The various types of losses are linked in the sense that as the loss of transuranic (TRU) material into waste is reduced, often the loss or carryover of waste into TRU or uranium is increased. We have analyzed four separation options and two fuel fabrication options in a generic fuel cycle. The separation options are aqueous uranium extraction plus (UREX+1), electrochemical, Atomics International reduction oxidation separation (AIROX), and melt refining. UREX+1 and electrochemical are traditional, full separation techniques. AIROX and melt refining are taken as examples of limited separations, also known as minimum fuel treatment. The fuels are oxide and metal. To define a generic fuel cycle, a fuel recycling loop is fed from used light water reactor (LWR) uranium oxide fuel (UOX) at 51 MWth-day/kg-iHM burnup. The recycling loop uses a fast reactor with TRU conversion ratio (CR) of 0.50. Excess recovered uranium is put into storage. Only waste, not used fuel, is disposed – unless the impurities accumulate to a level so that it is impossible to make new fuel for the fast reactor. Impurities accumulate as dictated by separation removal and fission product generation. Our model approximates adjustment to fast reactor fuel stream blending of TRU and U products from incoming LWR UOX and recycling FR fuel to compensate for impurity accumulation by adjusting TRU:U ratios. Our mass flow model ignores postulated fuel impurity limits; we compare the calculated impurity values with those limits to identify elements of concern. AIROX and melt refining cannot be used to separate used LWR UOX-51 because they cannot separate U from TRU, it is then impossible to make X% TRU for fast reactors with UOX-51 used fuel with 1.3% TRU. AIROX and melt refining can serve in the recycle loop for about 3 recycles, at which point the accumulated impurities displace fertile uranium and the fuel can no longer be as critical as the original fast reactor fuel recipe. UREX+1 and electrochemical can serve in either capacity; key impurities appear to be lanthanides and several transition metals.

Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Robert E. Cherry; Layne F. Pincock; Eric L. Shaber; Melissa C. Teague; Gregory M. Teske; Kurt G. Vedros; Candido Pereira; Denia Djokic

2010-11-01T23:59:59.000Z

344

AOCS Criteria M 5-09  

Science Conference Proceedings (OSTI)

Approved Chemists AOCS Criteria M 5-09 Methods Downloads Methods Downloads Official Methods and Recommended Practices of the AOCS (Methods) aocs applicants certified chemist chemists fats lab laboratories laboratory lipid Methods Methods book Me

345

AOCS Criteria M 6-09  

Science Conference Proceedings (OSTI)

Certified Laboratories AOCS Criteria M 6-09 Methods Downloads Methods Downloads Official Methods and Recommended Practices of the AOCS (Methods) aocs applicants certified chemist chemists fats lab laboratories laboratory lipid Methods Methods bo

346

Ambient Air Quality Criteria (Manitoba, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

The Manitoba Ambient Air Quality Criteria schedule lists maximum time-based pollutant concentration levels for the protection and preservation of ambient air quality within the Province of Manitoba...

347

Acceptance Test Report for 241-U compressed air system  

SciTech Connect

This Acceptance Test Report (ATR) documents the results of acceptance testing of a newly upgraded compressed air system at 241-U Farm. The system was installed and the test successfully performed under work package 2W-92-01027.

Freeman, R.D.

1994-10-20T23:59:59.000Z

348

User acceptance OTM machine: in the Arab culture  

Science Conference Proceedings (OSTI)

User acceptance and support is one of the most important factors in determining the success or failure of information technology systems. Behavioural biometrics mostly have the characteristics needed for effortless acceptance, such as easiness and usefulness ...

Abdullah A. Rashed; Henrique M. Dinis Santos

2010-01-01T23:59:59.000Z

349

Performance objectives and criteria for conducting DOE environmental audits  

SciTech Connect

This document contains the Performance Objectives and Criteria (POC) that have been developed for environmental audits and assessments conducted by the Office of the Assistant Secretary for Environment, Safety and Health. The Environmental POC can serve multiple purposes. Primarily, they are to serve as guidelines for the technical specialists conducted the audits and assessments, and for the team management. The POC can also serve as supporting documents for training of technical discipline specialists and Team Leaders and as bases for DOE programs and field offices and contractors conducting audit or assessment activities or improving environmental protection programs. It must be recognized that not all of the POC will necessarily apply to all DOE facilities. The users of this document must rely upon their knowledge of the facility and their professional judgment, or the judgment of qualified environmental professionals to determine the applicability of each POC. The POC cover eleven technical disciplines: air; surface water and drinking water quality; groundwater; waste management; toxic and chemical materials; radiation; quality assurance; inactive waste sites and releases; ecological and cultural resources; the National Environmental Policy Act (NEPA); and environmental management systems.

1994-01-01T23:59:59.000Z

350

Opening criteria for accelerated paving techniques  

E-Print Network (OSTI)

Fast track paving or accelerated pavement design is the rapid replacement of portland cement concrete pavement, allowing for the reopening to traffic under specific time requirements. The purpose of this research is to develop opening criteria for accelerated paving and implementing these criteria into a set of guidelines for fast track paving. This report is broken into three specific sections; review of practice, an analysis of field and lab research, and finally design guidelines for the opening criteria for accelerated paving techniques. A review of practice was developed to update the reader on the current "state of the art". This review outlines contruction techniques, fast track mix design, pavement design, and joint design. The analysis of field and lab research provides a synopsis of the experimentation used to develop design guidelines for opening criteria. This section includes crack surveys, coring tests, FWD testing, maturity testing, penetration testing and consistency testing. The design guidelines for early opening criteria provides guidelines for use in intersection design. The guideline outlines requirements for design, design of concrete pavement materials, mixture design, construction considerations, and requirements for opening criteria. This document will update the reader on the subject of fast track paving and the methods used to research it. Finally, with a design guidelines the reader will be able to apply the methods of analysis described in the field and lab testing section to create better pavements more efficiently.

Johnson, Jason Leonard

1993-01-01T23:59:59.000Z

351

Waste Hoist  

NLE Websites -- All DOE Office Websites (Extended Search)

45-ton Rope-Guide Friction Hoist Completely enclosed (for contamination control), the waste hoist at WIPP is a modern friction hoist with rope guides. With a 45-ton capacity, it...

352

ENHANCING STAKEHOLDER ACCEPTANCE OF BIOREMEDIATION TECHNOLOGIES  

SciTech Connect

This project inquired into the judgments and beliefs of people living near DOE reservations and facilities at Oak Ridge, Tennessee; Hanford, Washington; and Los Alamos, Tennessee about bioremediation of subsurface contamination. The purpose of the investigation was to identify strategies based on these judgments and beliefs for enhancing public support of bioremediation. Several methods were used to collect and analyze data including content analysis of transcripts of face-to-face personal interviews, factor analysis of subjective perspectives using Q methodology, and statistical analysis of results from a large-sample randomized telephone survey. Content analysis of interview transcripts identified themes about public perceptions and constructions of contamination risk, risk management, and risk managers. This analysis revealed that those who have no employment relationship at the sites and are not engaged in technical professions are most concerned about contamination risks. We also found that most interviewees are unfamiliar with subsurface contamination risks and how they can be reduced, believe they have little control over exposure, are frustrated with the lack of progress in remediation, are concerned about a lack of commitment of DOE to full remediation, and distrust site managers to act in the public interest. Concern is also expressed over frequent site management turnover, excessive secrecy, ineffective and biased communication, perceived attempts to talk the public into accepting risk, and apparent lack of concern about community welfare. In the telephone survey, we asked respondents who were aware of site contamination about their perceptions of risk from exposure to subsurface contamination. Response analysis revealed that most people believe that they are at significant risk from subsurface contamination but they acknowledge that more education is needed to calibrate risk perceptions against scientific risk assessments. Most rate their personal control over exposure as low. Slightly more than half believe that risk reduction should be balanced against cost. We also found that distrust of DOE and its contractors exists, primarily due to the perception that site managers do not share public values; hence, the public is generally unwilling to defer to DOE in its decision-making. The concomitant belief of inefficacy confounds distrust by generating frustration that DOE does not care. Moreover, the public is split with respect to trust of each other, primarily because of the belief that citizens lack technical competence. With respect to bioremediation support, we found that more than 40% of the public has no opinion. However, of those who do, 3 of 4 are favorably disposed – particularly among those who believe that risk is lower and who are more trusting of site management. We presented survey respondents with four alternative participation strategies based on the results of the Q analysis and asked their judgments of each. The public prefers strategies that shifts power to them. The least empowered strategy (feedback) was supported by 46%; support grew as public power increased, reaching 66% support for independently facilitated deliberation. More DOE distrust generates more support for high power strategies. We offer the following recommendations to enhance public acceptance. First, and perhaps most importantly, site managers should pursue robust trust-building efforts to gain public confidence in DOE risk management that meets public expectations. Public trust decreases risk perception, which increases public willingness to defer to site managers’ discretion in decision-making, which in turn increases public acceptance of the decisions that result. Second, site managers should address public concerns about bioremediation such as its effectiveness in reducing risk, performance compared to other remediation alternatives, costs compared against benefits, time required to start and complete remediation, level of risk that is currently posed by contamination, and scope of application. Third, more should be d

Focht, Will; Albright, Matt; Anex, Robert P., Jr., ed.

2009-04-21T23:59:59.000Z

353

Development of flaw evaluation and acceptance procedures for flaw indications in the cooling water system at the Savannah River Site K Reactor  

SciTech Connect

This paper describes the methodology used in determining the criteria for acceptance of inspection indications in the K-Reactor Cooling Water System at the Savannah River Plant. These criteria have been developed in a manner consistent with the development of similar criteria in the ASME Code Section 11 for commercial light water reactors, but with a realistic treatment of the operating conditions in the cooling water system. The technical basis for the development of these criteria called {open_quotes}Acceptance Standards{close_quotes} is contained in this paper. A second portion of this paper contains the methodology used in the construction of flaw evaluation charts which have been developed for each specific line size in the cooling water system. The charts provide the results of detailed fracture mechanics calculations which have been completed to determine the largest flaw which can be accepted in the cooling water system without repair. These charts are designed for use in conjunction with inservice inspections of the cooling water system, and only require inspection results to determine acceptability.

Tandon, S.; Bamford, W.H. [Westinghouse Electric Corp., Pittsburgh, PA (US); Cowfer, C.D.; Ostrowski, R. [Westinghouse Savannah River Co., Aiken, SC (US)

1993-06-01T23:59:59.000Z

354

Development of flaw evaluation and acceptance procedures for flaw indications in the cooling water system at the Savannah River Site K Reactor  

SciTech Connect

This paper describes the methodology used in determining the criteria for acceptance of inspection indications in the K-Reactor Cooling Water System at the Savannah River Plant. These criteria have been developed in a manner consistent with the development of similar criteria in the ASME Code Section 11 for commercial light water reactors, but with a realistic treatment of the operating conditions in the cooling water system. The technical basis for the development of these criteria called [open quotes]Acceptance Standards[close quotes] is contained in this paper. A second portion of this paper contains the methodology used in the construction of flaw evaluation charts which have been developed for each specific line size in the cooling water system. The charts provide the results of detailed fracture mechanics calculations which have been completed to determine the largest flaw which can be accepted in the cooling water system without repair. These charts are designed for use in conjunction with inservice inspections of the cooling water system, and only require inspection results to determine acceptability.

Tandon, S.; Bamford, W.H. (Westinghouse Electric Corp., Pittsburgh, PA (United States)); Cowfer, C.D.; Ostrowski, R. (Westinghouse Savannah River Co., Aiken, SC (United States))

1993-01-01T23:59:59.000Z

355

Waste management/waste certification plan for the Oak Ridge National Laboratory Environmental Restoration Program  

Science Conference Proceedings (OSTI)

This Waste Management/Waste Certification (C) Plan, written for the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL), outlines the criteria and methodologies to be used in the management of waste generated during ORNL ER field activities. Other agreed upon methods may be used in the management of waste with consultation with ER and Waste Management Organization. The intent of this plan is to provide information for the minimization, handling, and disposal of waste generated by ER activities. This plan contains provisions for the safe and effective management of waste consistent with the U.S. Environmental Protection Agency`s (EPA`s) guidance. Components of this plan have been designed to protect the environment and the health and safety of workers and the public. It, therefore, stresses that investigation derived waste (IDW) and other waste be managed to ensure that (1) all efforts be made to minimize the amount of waste generated; (2) costs associated with sampling storage, analysis, transportation, and disposal are minimized; (3) the potential for public and worker exposure is not increased; and (4) additional contaminated areas are not created.

Clark, C. Jr.; Hunt-Davenport, L.D.; Cofer, G.H.

1995-03-01T23:59:59.000Z

356

Elastic-plastic strain acceptance criterion for structures subject to rapidly applied transient dynamic loading  

SciTech Connect

Rapidly applied transient dynamic loads produce stresses and deflections in structures that typically exceed those from static loading conditions. Previous acceptance criteria for structures designed for rapidly applied transient dynamic loading limited stresses to those determined from elastic analysis. Different stress limits were established for different grades of structure depending upon the amount of permanent set considered acceptable. Structure allowed to sustain very limited permanent set is designed to stress limits not significantly greater than yield stress. Greater permanent set in structure under rapidly applied transient dynamic loading conditions is permitted by establishing stress limits that are significantly greater than yield stress but still provide adequate safety margin (with respect to failure). This paper presents a strain-based elastic-plastic (i.e., inelastic) analysis criterion developed as an alternative to the more conservative stress-based elastic analysis stress criterion for structures subjected to rapidly applied transient dynamic loading. The strain limits established are based on a fraction of the strain at ultimate stress obtained from an engineering stress/strain curve of the material. Strains limits are categorized by type as membrane or surface and by region as general, local, or concentrated. The application of the elastic-plastic criterion provides a more accurate, less conservative design/analysis basis for structures than that used in elastic stress-based analysis criteria, while still providing adequate safety margins.

Solonick, W. [Electric Boat Corp., Groton, CT (United States)

1996-11-01T23:59:59.000Z

357

MIT validation probe acceptance test procedure  

SciTech Connect

As part of the Multi-Functional Instrument Trees (MITs) a Validation Probe is being fabricated by Los Alamos National Laboratories (LANL). The Validation Probe assembly is equipped with a Winch, depth counter, and a Resistance Temperature Detector (RTD) which will render a means for verifying the temperature readings of which will render a means for verifying the temperature readings of the MIT thermocouples. The purpose of this Acceptance Test Procedure (ATP) is to provide verification that the Validation Probe functions properly and accordingly to LANL design and specification. This ATP will be used for all Validation Probes procured from LANL. The ATP consists of a receiving inspection, RTD ambient temperature; RTD electrical failure, RTD insulation resistance, and accurate depth counter operation inspections. The Validation Probe is composed of an intank probe, a cable and winching system, and a riser extension (probe guide) which bolts onto the MIT. The validation`s thermal sensor is an RTD that is housed in a 0.062 inch diameter, magnesium oxide fill, 316 stainless steel tube. The sheath configuration provides a means for spring loading the sensor firmly against the validation tube`s inner wall. A 45 pound cylindrical body is connected above the sheath and is used as a force to lower the probe into the tank. This cylindrical body also provides the means to interconnect both electrically and mechanically to the winch system which lowers the probe to a specified location within the validation tube located in the tank.

Escamilla, S.A.

1994-08-23T23:59:59.000Z

358

Electric top drives gain wide industry acceptance  

Science Conference Proceedings (OSTI)

Since its introduction, the top drive drilling system has gained acceptance as a productive and safe method for drilling oil and gas wells. Originally, the system was used mostly for offshore and higher cost land drilling, and it had to be installed as a permanent installation because of its enormous weight and size. Essentially, a top drive replaces the kelly and rotary table as the means of rotating drillpipe on oil, gas and geothermal rigs and is considered to be 15% to 40% more efficient than a kelly drive. Top drive systems allow the operator to drill and maintain directional orientation for triple stands and provide tripping efficiency because of the ability to ream and circulate with triple stands, to reduce the risk of stuck pipe or lost wells, and to improve well control and pipe handling safety. The paper describes electric top drives with DC motors, top drives with AC motors, top drives with permanent magnet motors, and top drives with permanent magnet brushless synchronous motors.

Riahi, M.L.

1998-05-01T23:59:59.000Z

359

Analysis of waste treatment requirements for DOE mixed wastes: Technical basis  

SciTech Connect

The risks and costs of managing DOE wastes are a direct function of the total quantities of 3wastes that are handled at each step of the management process. As part of the analysis of the management of DOE low-level mixed wastes (LLMW), a reference scheme has been developed for the treatment of these wastes to meet EPA criteria. The treatment analysis in a limited form was also applied to one option for treatment of transuranic wastes. The treatment requirements in all cases analyzed are based on a reference flowsheet which provides high level treatment trains for all LLMW. This report explains the background and basis for that treatment scheme. Reference waste stream chemical compositions and physical properties including densities were established for each stream in the data base. These compositions are used to define the expected behavior for wastes as they pass through the treatment train. Each EPA RCRA waste code was reviewed, the properties, chemical composition, or characteristics which are of importance to waste behavior in treatment were designated. Properties that dictate treatment requirements were then used to develop the treatment trains and identify the unit operations that would be included in these trains. A table was prepared showing a correlation of the waste physical matrix and the waste treatment requirements as a guide to the treatment analysis. The analysis of waste treatment loads is done by assigning wastes to treatment steps which would achieve RCRA compliant treatment. These correlation`s allow one to examine the treatment requirements in a condensed manner and to see that all wastes and contaminant sets are fully considered.

1995-02-01T23:59:59.000Z

360

Plutonium-238 Transuranic Waste Decision Analysis  

DOE Green Energy (OSTI)

Five transuranic (TRU) waste sites in the Department of Energy (DOE) complex, collectively, have more than 2,100 cubic meters of Plutonium-238 (Pu-238) TRU waste that exceed the wattage restrictions of the Transuranic Package Transporter-II (TRUPACT-11). The Waste Isolation Pilot Plant (WIPP) is being developed by the DOE as a repository for TRU waste. With the Waste Isolation Pilot Plant (WIPP) opening in 1999, these sites are faced with a need to develop waste management practices that will enable the transportation of Pu-238 TRU waste to WIPP for disposal. This paper describes a decision analysis that provided a logical framework for addressing the Pu-238 TRU waste issue. The insights that can be gained by performing a formalized decision analysis are multifold. First and foremost, the very process. of formulating a decision tree forces the decision maker into structured, logical thinking where alternatives can be evaluated one against the other using a uniform set of criteria. In the process of developing the decision tree for transportation of Pu-238 TRU waste, several alternatives were eliminated and the logical order for decision making was discovered. Moreover, the key areas of uncertainty for proposed alternatives were identified and quantified. The decision analysis showed that the DOE can employ a combination approach where they will (1) use headspace gas analyses to show that a fraction of the Pu-238 TRU waste drums are no longer generating hydrogen gas and can be shipped to WIPP ''as-is'', (2) use drums and bags with advanced filter systems to repackage Pu-238 TRU waste drums that are still generating hydrogen, and (3) add hydrogen getter materials to the inner containment vessel of the TRUPACT-11to relieve the build-up of hydrogen gas during transportation of the Pu-238 TRU waste drums.

Brown, Mike; Lechel, David J.; Leigh, C.D.

1999-06-29T23:59:59.000Z

Note: This page contains sample records for the topic "waste acceptance criteria" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Federal Register Notice for the Waste Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Register Notice for the Waste Determination Federal Register Notice for the Waste Determination Federal Register Notice for the Waste Determination Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) provides that certain waste from reprocessing spent nuclear fuel is not considered high-level waste (HLW) if the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), determines that the waste meets the statutory criteria set forth in Section 3116(a). Federal Register Notice for the Waste Determination More Documents & Publications EIS-0287: Amended Record of Decision Application to Export Electric Energy OE Docket No. EA-296-B Rainbow Energy Marketing Corp: Federal Register Notice, Volume 77, No. 66 - April 4, 2012 SRS FTF Section 3116 Basis for Determination

362

NDAA Section 3116 Waste Determinations with Related Disposal Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NDAA Section NDAA Section 3116 Waste Determinations with Related Disposal Performance Assessments NDAA Section 3116 Waste Determinations with Related Disposal Performance Assessments Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 authorizes the Secretary of Energy, in consultation with the Nuclear Regulatory Commission, to reclassify certain waste from reprocessing spent nuclear fuel from high-level waste to low-level waste if it meets the criteria set forth in Section 3116. Section 3116 is currently only applicable to Idaho National Laboratory (INL) and the Savannah River Site (SRS). The other two DOE sites with similar waste (residuals remaining after cleaning out tanks and equipment that held liquid high-level waste)

363

Advanced Electrochemical Waste Forms  

Science Conference Proceedings (OSTI)

... of Fluidized Bed Steam Reforming (FBSR) with Hanford Low Activity Wastes ... Level Waste at the Defense Waste Processing Facility through Sludge Batch 7b.

364

ACCEPTANCE SUMMARY FOR LHC MAGNETS BUILT AT BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

1, D2L102 1, D2L102 Date of this summary: 30 December 2003. This document contains a short summary of the acceptance status (in italics, just below), the minutes of the acceptance meeting, and actions taken after the acceptance meeting [in square brackets with the text of the minutes, or as footnotes]. Acceptance status: The BNL committee has approved the magnets for shipment to CERN, assuming satisfactory completion of several items: * Survey of the pipe positions [completed-see [1]] * Sign "BNL acceptance" certificate -[signed 17 December 2003] * Make official nameplate - [completed as of 29 Dec.] * Apply "BNL" decal - [completed as of 29 Dec.] The following items are needed for MEB acceptance: * ·Review and acceptance of the survey data by CERN - see [4]

365

Design requirements document for project W-465, immobilized low activity waste interim storage  

SciTech Connect

The scope of this design requirements document is to identify the functions and associated requirements that must be performed to accept, transport, handle, and store immobilized low-activity waste produced by the privatized Tank Waste Remediation System treatment contractors. The functional and performance requirements in this document provide the basis for the conceptual design of the Tank Waste Remediation System Immobilized low-activity waste interim storage facility project and provides traceability from the program level requirements to the project design activity.

Burbank, D.A.

1997-01-27T23:59:59.000Z

366

Documented Safety Analysis for the Waste Storage Facilities March 2010  

SciTech Connect

This Documented Safety Analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements,' and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

Laycak, D T

2010-03-05T23:59:59.000Z

367

Documented Safety Analysis for the Waste Storage Facilities  

Science Conference Proceedings (OSTI)

This documented safety analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements', and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

Laycak, D

2008-06-16T23:59:59.000Z

368

Program for certification of waste from contained firing facility: Establishment of waste as non-reactive and discussion of potential waste generation problems  

SciTech Connect

Debris from explosives testing in a shot tank that contains 4 weight percent or less of explosive is shown to be non-reactive under the specified testing protocol in the Code of Federal Regulations. This debris can then be regarded as a non-hazardous waste on the basis of reactivity, when collected and packaged in a specified manner. If it is contaminated with radioactive components (e.g. depleted uranium), it can therefore be disposed of as radioactive waste or mixed waste, as appropriate (note that debris may contain other materials that render it hazardous, such as beryllium). We also discuss potential waste generation issues in contained firing operations that are applicable to the planned new Contained Firing Facility (CFF). The goal of this program is to develop and document conditions under which shot debris from the planned Contained Firing Facility (CFF) can be handled, shipped, and accepted for waste disposal as non-reactive radioactive or mixed waste. This report fulfills the following requirements as established at the outset of the program: 1. Establish through testing the maximum level of explosive that can be in a waste and still have it certified as non-reactive. 2. Develop the procedure to confirm the acceptability of radioactive-contaminated debris as non-reactive waste at radioactive waste disposal sites. 3. Outline potential disposal protocols for different CFF scenarios (e.g. misfires with scattered explosive).

Green, L., Garza, R., Maienschein, J., Pruneda, C.

1997-09-30T23:59:59.000Z

369

GTZ-Greenhouse Gas Calculator for Waste Management | Open Energy  

Open Energy Info (EERE)

GTZ-Greenhouse Gas Calculator for Waste Management GTZ-Greenhouse Gas Calculator for Waste Management Jump to: navigation, search Tool Summary Name: GTZ-Greenhouse Gas Calculator for Waste Management Agency/Company /Organization: GTZ Sector: Energy Website: www.gtz.de/en/themen/umwelt-infrastruktur/abfall/30026.htm References: GHG Calculator for Waste Management[1] Waste Management - GTZ Website[2] Logo: GTZ-Greenhouse Gas Calculator for Waste Management The necessity to reduce greenhouse gases and thus mitigate climate change is accepted worldwide. Especially in low- and middle-income countries, waste management causes a great part of the national greenhouse gas production, because landfills produce methane which has a particularly strong effect on climate change. Therefore, it is essential to minimize

370

Military Munitions Waste Working Group report  

SciTech Connect

This report presents the findings of the Military Munitions Waste Working Group in its effort to achieve the goals directed under the Federal Advisory Committee to Develop On-Site Innovative Technologies (DOIT Committee) for environmental restoration and waste management. The Military Munitions Waste Working Group identified the following seven areas of concern associated with the ordnance (energetics) waste stream: unexploded ordnance; stockpiled; disposed -- at known locations, i.e., disposal pits; discharged -- impact areas, unknown disposal sites; contaminated media; chemical sureties/weapons; biological weapons; munitions production; depleted uranium; and rocket motor and fuel disposal (open burn/open detonation). Because of time constraints, the Military Munitions Waste Working Group has focused on unexploded ordnance and contaminated media with the understanding that remaining waste streams will be considered as time permits. Contents of this report are as follows: executive summary; introduction; Military Munitions Waste Working Group charter; description of priority waste stream problems; shortcomings of existing approaches, processes and technologies; innovative approaches, processes and technologies, work force planning, training, and education issues relative to technology development and cleanup; criteria used to identify and screen potential demonstration projects; list of potential candidate demonstration projects for the DOIT committee decision/recommendation and appendices.

Not Available

1993-11-30T23:59:59.000Z

371

New Waste Calciner High Temperature Operation  

SciTech Connect

A new Calciner flowsheet has been developed to process the sodium-bearing waste (SBW) in the INTEC Tank Farm. The new flowsheet increases the normal Calciner operating temperature from 500 C to 600 C. At the elevated temperature, sodium in the waste forms stable aluminates, instead of nitrates that melt at calcining temperatures. From March through May 2000, the new high-temperature flowsheet was tested in the New Waste Calcining Facility (NWCF) Calciner. Specific test criteria for various Calciner systems (feed, fuel, quench, off-gas, etc.) were established to evaluate the long-term operability of the high-temperature flowsheet. This report compares in detail the Calciner process data with the test criteria. The Calciner systems met or exceeded all test criteria. The new flowsheet is a visible, long-term method of calcining SBW. Implementation of the flowsheet will significantly increase the calcining rate of SBW and reduce the amount of calcine produced by reducing the amount of chemical additives to the Calciner. This will help meet the future waste processing milestones and regulatory needs such as emptying the Tank Farm.

Swenson, M.C.

2000-09-01T23:59:59.000Z

372

Multi-Criteria Optimisation using Past, Real Time and Predictive...  

NLE Websites -- All DOE Office Websites (Extended Search)

Multi-Criteria Optimisation using Past, Real Time and Predictive Performance Benchmarks Title Multi-Criteria Optimisation using Past, Real Time and Predictive Performance...

373

Guide to Setting Thermal Comfort Criteria and Minimizing Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Guide to Setting Thermal Comfort Criteria and Minimizing Energy Use in Delivering Thermal Comfort Title Guide to Setting Thermal Comfort Criteria and Minimizing Energy Use in...

374

U.S. Department of Energy Implements More Stringent Criteria...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Implements More Stringent Criteria for ENERGY STAR Clothes Washers, Expands CFL Program U.S. Department of Energy Implements More Stringent Criteria for ENERGY STAR Clothes...

375

Production and Handling Slide 32: Full Limit Criteria  

NLE Websites -- All DOE Office Websites (Extended Search)

Full Limit Criteria Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents Full Limit Criteria 250F is the maximum temperature to...

376

Acceptance of Classified Excess Components for Disposal at Area 5  

Science Conference Proceedings (OSTI)

This slide-show discusses weapons dismantlement and disposal, issues related to classified waste and their solutions.

Poling, J., and Saad, M.

2012-04-09T23:59:59.000Z

377

Statistical criteria for characterizing irradiance time series.  

SciTech Connect

We propose and examine several statistical criteria for characterizing time series of solar irradiance. Time series of irradiance are used in analyses that seek to quantify the performance of photovoltaic (PV) power systems over time. Time series of irradiance are either measured or are simulated using models. Simulations of irradiance are often calibrated to or generated from statistics for observed irradiance and simulations are validated by comparing the simulation output to the observed irradiance. Criteria used in this comparison should derive from the context of the analyses in which the simulated irradiance is to be used. We examine three statistics that characterize time series and their use as criteria for comparing time series. We demonstrate these statistics using observed irradiance data recorded in August 2007 in Las Vegas, Nevada, and in June 2009 in Albuquerque, New Mexico.

Stein, Joshua S.; Ellis, Abraham; Hansen, Clifford W.

2010-10-01T23:59:59.000Z

378

Criticality Safety Controls Implementation Inspection Criteria, Approach,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Criticality Safety Controls Implementation Inspection Criteria, Criticality Safety Controls Implementation Inspection Criteria, Approach, and Lines of Inquiry, October 23, 2009, (HSS CRAD 64-18, Rev 0 ) Criticality Safety Controls Implementation Inspection Criteria, Approach, and Lines of Inquiry, October 23, 2009, (HSS CRAD 64-18, Rev 0 ) DOE has set expectations for implementing criticality safety controls that are selected to provide preventive and/or mitigative functions for specific potential accident scenarios. There are additional expectations for criticality safety controls that are also designated as Specific Administrative Controls (SACs) (see HSS CRAD 64-32). Also, in instances when the review addresses functionality and operability of structures, systems, and components (SSCs) of nuclear facilities specifically required

379

Secondary Waste Form Development and Optimization—Cast Stone  

SciTech Connect

Washington River Protection Services is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF is a Resource Conservation and Recovery Act-permitted, multi-waste, treatment and storage unit and can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needs to be operational by 2018 to receive secondary liquid wastes generated during operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The STU to ETF will provide the additional capacity needed for ETF to process the increased volume of secondary wastes expected to be produced by WTP.

Sundaram, S. K.; Parker, Kent E.; Valenta, Michelle M.; Pitman, Stan G.; Chun, Jaehun; Chung, Chul-Woo; Kimura, Marcia L.; Burns, Carolyn A.; Um, Wooyong; Westsik, Joseph H.

2011-07-14T23:59:59.000Z

380

Selenide isotope generator for the Galileo mission. ETG acceptance test plan  

DOE Green Energy (OSTI)

Electrically-Heated Thermoelectric Generators (ETGs) shall be subjected to a flight level acceptance test program to certify the design of the SIG/Galileo flight generator. Each test in the test program is designed to simulate critical conditions and environments associated with generator ground handling, spacecraft launch and in-space operations. Successful completion of the test program shall be evidenced by the satisfactory performance of the ETG during and after the application of the various test environments. The ETG Acceptance Test Plan is designed to specify the testing sequence, the severity of the applied test environments and the acceptance criteria for assessing generator performance. Two test facilities shall be required for the execution of the proposed test program. The Teledyne Energy Systems (TES) facility in Timonium, Maryland shall be the site for the ETG thermal performance evaluation testing; and the Naval Surface Weapons Center (NSWC) facility in White Oak, Maryland, shall be the site of the dynamic, mass-properties and magnetic properties testing.

Not Available

1978-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste acceptance criteria" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Radioactive Waste Management Complex low-level waste radiological performance assessment  

Science Conference Proceedings (OSTI)

This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.

Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

1994-04-01T23:59:59.000Z

382

Scenarios of the TWRS low-level waste disposal program  

Science Conference Proceedings (OSTI)

As a result of past Department of Energy (DOE) weapons material production operations, Hanford now stores nuclear waste from processing facilities in underground tanks on the 200 Area plateau. An agreement between the DOE, the Environmental Protection Agency (EPA), and the Washington state Department of Ecology (the Tri-Party Agreement, or TPA) establishes an enforceable schedule and a technical framework for recovering, processing, solidifying, and disposing of the Hanford tank wastes. The present plan includes retrieving the tank waste, pretreating the waste to separate into low level and high level streams, and converting both streams to a glass waste form. The low level glass will represent by far the largest volume and lowest quantity of radioactivity (i.e., large volume of waste chemicals) of waste requiring disposal. The low level glass waste will be retrievably stored in sub-surface disposal vaults for several decades. If the low level disposal system proves to be acceptable, the disposal site will be closed with the low level waste in place. If, however, at some time the disposal system is found to be unacceptable, then the waste can be retrieved and dealt with in some other manner. WHC is planning to emplace the waste so that it is retrievable for up to 50 years after completion of the tank waste processing. Acceptability of disposal of the TWRS low level waste at Hanford depends on technical, cultural, and political considerations. The Performance Assessment is a major part of determining whether the proposed disposal action is technically defensible. A Performance Assessment estimates the possible future impact to humans and the environment for thousands of years into the future. In accordance with the TPA technical strategy, WHC plans to design a near-surface facility suitable for disposal of the glass waste.

NONE

1994-10-01T23:59:59.000Z

383

National Waste Terminal Storage Program: potenial problems in the waste transportation system  

SciTech Connect

Potential problems are identified which may impact the planning, organization, and operation of nuclear waste transportation systems serving federal repositories. These system-level problems have the potential of seriously interfering with the overall OWI Transportation/Logistics Study objective of having a viable nuclear waste transportation system in 1985. This report includes recommended action and priority judgments to address these problems and minimize their impact. The potential problems identified as most important have consequences which may impact the overall state of future preparedness for transporting nuclear waste. Other important concerns relate to the imposition of unnecessarily severe and costly restrictions on nuclear waste transportation, public and carrier acceptance, and the involvement of interested parties in planning and decision-making. The major recommendation of this report is that the planning and development of the waste transportation system should be controlled by a central planning activity which anticipates the impact of uncertainties and undesirable events.

DeSteese, J.G.; Rhoads, R.E.

1977-12-01T23:59:59.000Z

384

Exploratory study of complexant concentrate waste processing  

SciTech Connect

The purpose of this exploratory study, conducted by Pacific Northwest Laboratory for Westinghouse Hanford Company, was to determine the effect of applying advanced chemical separations technologies to the processing and disposal of high-level wastes (HLW) stored in underground tanks. The major goals of this study were to determine (1) if the wastes can be partitioned into a small volume of HLW plus a large volume of low-level waste (LLW), and (2) if the activity in the LLW can be lowered enough to meet NRC Class LLW criteria. This report presents the results obtained in a brief scouting study of various processes for separating radionuclides from Hanford complexant concentrate (CC) waste.

Lumetta, G.J.; Bray, L.A.; Kurath, D.E.; Morrey, J.R.; Swanson, J.L.; Wester, D.W.

1993-02-01T23:59:59.000Z

385

Yard-waste compost evaluation for soil amendment utilization| Elemental, thermal, and infrared analysis.  

E-Print Network (OSTI)

?? This research generates analytical criteria for the utilization of Northern California yard-waste composts, regardless of the sample’s feedstock, treatment facility, or final form. Several… (more)

Flock, Rebecca J.

2010-01-01T23:59:59.000Z

386

Minimum Additive Waste Stabilization (MAWS). Technology summary  

Science Conference Proceedings (OSTI)

In the Minimum Additive Waste Stabilization(MAWS) concept, actual waste streams are utilized as additive resources for vitrification, which may contain the basic components (glass formers and fluxes) for making a suitable glass or glassy slag. If too much glass former is present, then the melt viscosity or temperature will be too high for processing; while if there is too much flux, then the durability may suffer. Therefore, there are optimum combinations of these two important classes of constituents depending on the criteria required. The challenge is to combine these resources in such a way that minimizes the use of non-waste additives yet yields a processable and durable final waste form for disposal. The benefit to this approach is that the volume of the final waste form is minimized (waste loading maximized) since little or no additives are used and vitrification itself results in volume reduction through evaporation of water, combustion of organics, and compaction of the solids into a non-porous glass. This implies a significant reduction in disposal costs due to volume reduction alone, and minimizes future risks/costs due to the long term durability and leach resistance of glass. This is accomplished by using integrated systems that are both cost-effective and produce an environmentally sound waste form for disposal. individual component technologies may include: vitrification; thermal destruction; soil washing; gas scrubbing/filtration; and, ion-exchange wastewater treatment. The particular combination of technologies will depend on the waste streams to be treated. At the heart of MAWS is vitrification technology, which incorporates all primary and secondary waste streams into a final, long-term, stabilized glass wasteform. The integrated technology approach, and view of waste streams as resources, is innovative yet practical to cost effectively treat a broad range of DOE mixed and low-level wastes.

Not Available

1994-02-01T23:59:59.000Z

387

Understanding Cement Waste Forms  

Science Conference Proceedings (OSTI)

Oct 29, 2009 ... Ongoing nuclear operations, decontamination and decommissioning, salt waste disposal, and closure of liquid waste tanks result in ...

388

Waste Minimization Contents  

Science Conference Proceedings (OSTI)

About the 1996 International Symposium on Extraction and Processing for the Treatment and Minimization of Wastes: Waste Minimization Contents ...

389

Criticality safety considerations for low-level-waste facilities  

SciTech Connect

The nuclear criticality safety for handling and burial of certain special nuclear materials (SNM) at low-level-waste (LLW) facilities is licensed by the US Nuclear Regulatory Commission (NRC). Recently, Oak Ridge National Laboratory (ORNL) staff assisted the NRC Office of Nuclear Material Safety and Safeguards, Low-Level-Waste and Decommissioning Projects Branch, in developing technical specifications for the nuclear criticality safety of {sup 235}U and {sup 235}Pu in LLW facilities. This assistance resulted in a set of nuclear criticality safety criteria that can be uniformly applied to the review of LLW package burial facility license applications. These criteria were developed through the coupling of the historic surface-density criterion with current computational technique to establish safety criteria considering SNM material form and reflector influences. This paper presents a summary of the approach used to establish and to apply the criteria to the licensing review process.

Hopper, C.M.

1995-04-01T23:59:59.000Z

390

Comparison of borosilicate glass and synthetic minerals as media for the immobilization of high-level radioactive waste  

Science Conference Proceedings (OSTI)

In this paper, the structure and properties of the different solid forms currently being developed for high-level radioactive waste disposal are compared. Good capacity to accept all the elements in the waste and flexibility of composition range to accommodate variations in the waste, are primarily discussed. 13 refs.

Tempest, P.A.

1981-03-01T23:59:59.000Z

391

High-Level Waste Melter Study Report  

SciTech Connect

At the Hanford Site in Richland, Washington, the path to site cleanup involves vitrification of the majority of the wastes that currently reside in large underground tanks. A Joule-heated glass melter is the equipment of choice for vitrifying the high-level fraction of these wastes. Even though this technology has general national and international acceptance, opportunities may exist to improve or change the technology to reduce the enormous cost of accomplishing the mission of site cleanup. Consequently, the U.S. Department of Energy requested the staff of the Tanks Focus Area to review immobilization technologies, waste forms, and modifications to requirements for solidification of the high-level waste fraction at Hanford to determine what aspects could affect cost reductions with reasonable long-term risk. The results of this study are summarized in this report.

Perez, Joseph M.; Bickford, Dennis F.; Day, Delbert E.; Kim, Dong-Sang; Lambert, Steven L.; Marra, Sharon L.; Peeler, David K.; Strachan, Denis M.; Triplett, Mark B.; Vienna, John D.; Wittman, Richard S.

2001-07-13T23:59:59.000Z

392

Radioactive tank waste remediation focus area  

SciTech Connect

EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

1996-08-01T23:59:59.000Z

393

MINUTES -ACCEPTANCE MEETING FOR LHC MAGNETS BUILT AT BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnet: D2L105 Magnet: D2L105 Date of this summary: 20 August 2003 This document has a short summary of the acceptance status (in italics, just below), the minutes of the acceptance meeting, and actions taken after the acceptance meeting [in square brackets with the text of the minutes, or as footnotes]. Acceptance Status: The BNL committee has approved the magnet for shipment to CERN. However, several items need further work: * CERN acceptance of the waiver on pipe positions in the interconnect region * Determine LHC part number, sign "BNL acceptance" certificate, make official name plate * BNL/CERN resolve dry N2 fill of cold mass before shipment * Decision about tracking: use FQ data available now or wait for all D2 FQ data. * Software to rotate the survey and field angle data into the magnet frame

394

Special Analysis of Transuranic Waste in Trench T04C at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada, Revision 1  

SciTech Connect

This Special Analysis (SA) was prepared to assess the potential impact of inadvertent disposal of a limited quantity of transuranic (TRU) waste in classified Trench 4 (T04C) within the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS). The Area 5 RWMS is a low-level radioactive waste disposal site in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS is regulated by the U.S. Department of Energy (DOE) under DOE Order 435.1 and DOE Manual (DOE M) 435.1-1. The primary objective of the SA is to evaluate if inadvertent disposal of limited quantities of TRU waste in a shallow land burial trench at the Area 5 RWMS is in compliance with the existing, approved Disposal Authorization Statement (DAS) issued under DOE M 435.1-1. In addition, supplemental analyses are performed to determine if there is reasonable assurance that the requirements of Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes, can be met. The 40 CFR 191 analyses provide supplemental information regarding th