National Library of Energy BETA

Sample records for washita grady cle

  1. abstract-grady

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building An Integrated Activity-Based and Dynamic Network Assignment Model For Sacramento Area Council of Governments (SACOG) Brian Grady (RSG) and/or Joe Castiglione (RSG) List of Authors ================ Joe Castiglione, Resource Systems Group, Inc. 29 Belmont Street, Somerville, MA 02143 This email address is being protected from spambots. You need JavaScript enabled to view it. Brian Grady, Resource Systems Group, Inc. 55 Railroad Row, White River Junction, VT 05001 802-295-4999 This email

  2. Grady County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Places in Grady County, Oklahoma Alex, Oklahoma Amber, Oklahoma Blanchard, Oklahoma Bradley, Oklahoma Bridge Creek, Oklahoma Chickasha, Oklahoma Minco,...

  3. Washita County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype A. Places in Washita County, Oklahoma Bessie, Oklahoma Burns Flat, Oklahoma Canute, Oklahoma Clinton, Oklahoma Colony, Oklahoma Corn, Oklahoma Dill...

  4. German Club for Rural Electrification CLE | Open Energy Information

    Open Energy Info (EERE)

    Electrification CLE Jump to: navigation, search Name: German Club for Rural Electrification (CLE) Place: Freiburg, Germany Zip: 79114 Sector: Renewable Energy Product: German...

  5. Microsoft Word - CLE_2.1_Post-Mortem_2009-v9-Accepted.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    08 Proceedings 1 of 8 Post-Mortem of the NERSC Franklin XT Upgrade to CLE 2.1 James M. Craw, Nicholas P. Cardo, Yun (Helen) He Lawrence Berkeley National Laboratory National Energy Research Scientific Computing Center Berkeley, CA 94720 craw@nersc.gov, cardo@nersc.gov, yhe@lbl.gov And Janet M. Lebens Cray, Inc. jml@cray.com ABSTRACT: This paper will discuss the lessons learned of the events leading up to the production deployment of CLE 2.1 and the post install issues experienced in upgrading

  6. Grady Electric Membership Corp | Open Energy Information

    Open Energy Info (EERE)

    2010 - File1a1 EIA Form 861 Data Utility Id 7450 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Retail Marketing Yes This article is a stub. You can...

  7. Cle Elum Lake Anadromous Salmon Restoration Feasibility Study: Summary of Research, 1986-1999 Progress Report.

    SciTech Connect (OSTI)

    Dey, Douglas

    2000-04-01

    The focus of this research was to study the feasibility for anadromous salmonids to recolonize the habitat above reservoirs in the Yakima River without disruption to irrigation withdrawals. A primary concern was whether anadromous fish could successfully exit reservoirs and survive downstream passage through the Yakima and Columbia Rivers to the ocean.

  8. Newsletter Southern Great Plains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    over the SGP Central Facility and Little Washita surface sites. Figure 1. A flooded cotton field near Chickasha, Oklahoma, on June 27, 2007 (photo courtesy of Tom Jackson,...

  9. p

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Texas Ellis Beaver Hall Gray Caddo Woods Major Kiowa Potter Blaine Harper Custer Dewey Moore Alfalfa Donley Carson Washita Briscoe Randall Roberts Woodward Swisher Greer Wheeler ...

  10. EIS-0169-SA-02: Supplement Analysis

    Broader source: Energy.gov [DOE]

    Yakima Fisheries Project-Natural Spawning Channels, Increased On-site Housing, and Upgrades to the Prosser Hatchery. Cle Elum Supplementation and Research Facility, Cle Elum, Washington

  11. EIS-1069-SA-07: Supplement Analysis

    Broader source: Energy.gov [DOE]

    Yakima/Kilickitat Fisheries Project, Noxious Weed Control at Cle Elum and Jack Creek, Cle Elum Supplementation and Research Facility and Jack Creek Acclimation Site, Kittitas County, Washington

  12. EIS-0169-SA-08: Supplement Analysis

    Broader source: Energy.gov [DOE]

    Yakima/Klickitat Fisheries Project, Boone Pond Acclimation Site, Cle Elum, Kittitas County, Washington

  13. SciTech Connect:

    Office of Scientific and Technical Information (OSTI)

    Grady, Nathaniel" Name Name ORCID Search Authors Type: All BookMonograph ConferenceEvent Journal Article Miscellaneous Patent Program Document Software Manual Technical Report...

  14. SC15_poster_HPX_edit_17.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    centered), a par+cle pusher using the Boris algorithm, and an energy conserving field gathering with high order par+cle shape factors. - miniTri: A newly developed triangle...

  15. X:\\ARM_19~1\\P397-400.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cle ( ) " " P cle P lay , , S S A s , P St ( ), P Cu ( ) 80 , Session Papers 397 (1) Absorption of Solar Radiation in Broken Clouds V. E. Zuev, G. A. Titov, and T. B. Zhuravleva...

  16. European Wind Atlas: France | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontenteuropean-wind-atlas-france,http:cle Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This...

  17. Response of High-Tc Superconductor Metamaterials to High Intensity...

    Office of Scientific and Technical Information (OSTI)

    Springfield, VA at www.ntis.gov. No abstract prepared. Authors: Grady, Nathaniel 1 ; Perkins, Bradford G. Jr. 2 ; Hwang, Harold Y. 2 ; Singh, Ranjan 1 ; Yang, Hao 3 ;...

  18. Energy Efficiency in New Mexico Frees Money in Local Coffers...

    Energy Savers [EERE]

    By saving energy, municipalities can save money on their energy bills - money which can then be used for other public services. Grady, New Mexico, population 98, received 431,908 ...

  19. EIS-0169-SA-05: Supplement Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to include a hatchery control line, maintained entirely by spawning hatchery-origin fish. DOEEIS-0169-SA-05, Supplement Analysis for YakimaKlickitat Fisheries Project, Cle...

  20. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compilers GNUIntel Compilers Cray Linux Environment MOABLSFPBS Pro ALPS LustreDVSNFS CLE SuSE components Intel Processors Components Gemini Networks Gemini API's on Aries...

  1. Supplement Analyses (SA) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerators September 2, 2002 EIS-0169-SA-05: Supplement Analysis YakimaKlickitat Fisheries Project, Cle Elum, Kittitas County, Washington September 2, 2002...

  2. --No Title--

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cray Linux Environment (CLE) DESCRIPTION The ftn command invokes the Cray Fortran Compiler. Typically, the command processes the input files named on the command line...

  3. Hawaii Department of Health Clean Air Branch Webpage | Open Energy...

    Open Energy Info (EERE)

    Branch Webpage Internet. cited 20141013. Available from: http:health.hawaii.govcab Retrieved from "http:en.openei.orgwindex.php?titleHawaiiDepartmentofHealthCle...

  4. Aircraft

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SGP Central Facility - surrounded by wheat felds, the heavily instrumented Central Facility served as the primary source of information about cloud and carbon feedbacks. * Little Washita Watershed - located in a mix of pasture land and winter wheat, three carbon fux towers and associ ated instruments were added at this site. Two additional fux towers were located at Fort Cobb, in nearby croplands, to supplement the data set from this area. * Okmulgee - amid oak forests, the existing fux tower

  5. Enhancement and Suppression of Photocurrent in Si Photodiodes by

    Office of Scientific and Technical Information (OSTI)

    Nanoparticles and Nonlinear Terahertz Superconducting Metamaterials (Technical Report) | SciTech Connect Enhancement and Suppression of Photocurrent in Si Photodiodes by Nanoparticles and Nonlinear Terahertz Superconducting Metamaterials Citation Details In-Document Search Title: Enhancement and Suppression of Photocurrent in Si Photodiodes by Nanoparticles and Nonlinear Terahertz Superconducting Metamaterials Authors: Grady, Nathaniel [1] + Show Author Affiliations Los Alamos National

  6. Category:Cleveland, OH | Open Energy Information

    Open Energy Info (EERE)

    Cle... 69 KB SVOutPatient Cleveland OH Ohio Power Co.png SVOutPatient Cleveland... 68 KB SVPrimarySchool Cleveland OH Ohio Power Co.png SVPrimarySchool Clevel... 68 KB...

  7. CX-006312: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Small-Scale Spring Chinook and Coho ReintroductionCX(s) Applied: B1.20Date: 07/21/2011Location(s): Cle Elum, WashingtonOffice(s): Bonneville Power Administration

  8. BPA offering grants in science and energy education

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    offering grants in science and energy education 462015 12:00 AM Tweet Page Content Students from East Valley Central School in Yakima, Washington took a field trip to the Cle...

  9. Nuclear and Particle Physics, Astrophysics, and Cosmology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Nuclear and Particle Physics, Astrophysics, and Cosmology Providing scientific and technical leadership in fundamental and applied theoretical research on nuclear, particle, astrophysics, and cosmology theory and simulations Leadership Group Leader Joe Carlson Email Deputy Group Leader Gerry Hale Email Contact Us Administrator Kay Grady Email Administrator Karla Jackson Email Dark sky Simulation of the cosmic web of the dark matter mass distribution. This region represents about 1/10,000 of

  10. Manipulation of Electromagnetic Fields with Plasmonic Nanostructures and

    Office of Scientific and Technical Information (OSTI)

    Metamaterials (Technical Report) | SciTech Connect Manipulation of Electromagnetic Fields with Plasmonic Nanostructures and Metamaterials Citation Details In-Document Search Title: Manipulation of Electromagnetic Fields with Plasmonic Nanostructures and Metamaterials Authors: Grady, Nathaniel [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2014-08-04 OSTI Identifier: 1148947 Report Number(s): LA-UR-14-26158 DOE Contract Number: AC52-06NA25396 Resource Type:

  11. Contacts for the Office of Administrative Operations | Department of Energy

    Energy Savers [EERE]

    Administrative Operations Contacts for the Office of Administrative Operations John D. (Dan) Bullington, Director of Administrative Operations 202-586-7364 dan.bullington@hq.doe.gov Valerie Mills, Management and Program Analysis Officer 202-586-8533 Valerie.mills@hq.doe.gov Claude Barnes, Management Analyst 202-586-2957 Dorothy Cofield, Computer Technician 202-586-9525 Robert Grady, Computer Technician 202-586-9525 Diane Himes, Administrative Officer 202-586-2941 Laura Ryan, Clerk 202-586-1634

  12. Los Alamos honors computer code team with Feynman Innovation Prize

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Team honored with Feynman Innovation Prize Los Alamos honors computer code team with Feynman Innovation Prize This year's honorees for the Richard P. Feynman Innovation Prize at Los Alamos National Laboratory are the Monte Carlo Radiation Transport Team members. July 22, 2015 Winners of the 2015 Richard P. Feynman Innovation Prize at Los Alamos National Laboratory, from left, are Larry J. Cox, Forrest B. Brown, Avneet Sood, Gregg W. McKinney, Jeffrey S. Bull and H. Grady Hughes. Also on the

  13. Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links: CAMD's SAXS beamline sister page By Derek Dorman General Reference: Glatter and Kratky Small Angle X-ray Scattering Book (subject to the permission letter and terms of use) SAXS Presentation by Jianhua Li SAXS Presentation by John Pople Dr. Brian Grady's Polymer Characterization Group SAXS page Jun, Y., Waychunas, G. "Molecular-Level Investigations of Nucleation Mechanisms and Kinetics of Formation of Environmental Nanoparticles" Poster SAXS Analysis/Simulation: Paul Scherrer

  14. Response of High-Tc Superconductor Metamaterials to High Intensity THz

    Office of Scientific and Technical Information (OSTI)

    Radiation (Conference) | SciTech Connect SciTech Connect Search Results Conference: Response of High-Tc Superconductor Metamaterials to High Intensity THz Radiation Citation Details In-Document Search Title: Response of High-Tc Superconductor Metamaterials to High Intensity THz Radiation Authors: Grady, Nathaniel [1] ; Perkins Jr., Bradford G. [2] ; Hwang, Harold Y. [2] ; Brandt, Nate [2] ; Torchinsky, Darius [2] ; Singh, Ranjan [1] ; Yan, Li [3] ; Jia, Quanxi [1] ; Trugman, Stuart A. [1] ;

  15. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Grady, Kevin" Name Name ORCID Search Authors Type: All Book/Monograph Conference/Event Journal Article Miscellaneous Patent Program Document Software Manual Technical Report Thesis/Dissertation Subject: Identifier Numbers: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium,

  16. James M. Craw, Nicholas P. Cardo, Yun (Helen) He Lawrence Berkeley National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Post-Mortem of the NERSC Franklin XT Upgrade to CLE 2.1 James M. Craw, Nicholas P. Cardo, Yun (Helen) He Lawrence Berkeley National Laboratory Berkeley, CA craw@nersc.gov, cardo@nersc.gov, yhe@lbl.gov And Janet M. Lebens Cray, Inc. jml@cray.com May 4, 2009 Atlanta CUG This presentation will discuss the lessons learned of the events leading up to the production deployment of CLE 2.1 and the post install issues experienced in upgrading NERSC's XT4(tm) system called Franklin CUG 2008 page 2

  17. LANL: AOT & LANSCE The Pulse November 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 los AlAmos lenDs its exPertise to cleAn energy AnD cArbon sequestrAtion Projects 6 ... Hye Young Lee Putting together pieces of the nuclear astrophysics puzzle By Francisco ...

  18. E I

    Office of Scientific and Technical Information (OSTI)

    I . < 58A//39§-Q334! -- - , - r , 15th International Symposium on B a l l i s t i c s Jerusalem, Israel, 21-24 May, 1995 - HIGH STRAIN U T E PROPERTIES AND CONSTITu?TvE MO13ELNG OF GLASS Tim J. Holmquist (l), Gordon R. Johnson (l), Dennis E. Grady (2), Craig M."Lopatin (1) and Eugene S. Hertel Jr. (2) (1) Alliant Techsystems Inc., 600 2nd St. NE., Hopkins, MN, USA (2) Sandia National Laboratto$, P. 0. Box 5800, Albuquerque, NM, USA This paper presents experimental data and

  19. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search SciTech Connect Search Results Page 1 of 1 Search for: All records Creators/Authors contains: "Grady, Nathaniel" × Sort by Relevance Sort by Date (newest first) Sort by Date (oldest first) Sort by Relevance « Prev Next » Everything6 Electronic Full Text5 Citations1 Multimedia0 Datasets0 Software0 Filter Results Filter by Subject materials science(36) (3) materials science (2) nanoscience & nanotechnology(77) material science (2) bio-inspired

  20. Snowmass. Colorado,

    Office of Scientific and Technical Information (OSTI)

    * - ' E 1 1" International Detonation Symposium, Snowmass. Colorado, August 3 1-September 4, 199s DYSAhIIC EQUATION OF STATE AKD STREXGTH PROPERTIES 56 N o 7 %@ I ' OF USREACTED PBSW-128 ESPLOSIVE D. E. Grady*, L. C. C h h a b i l d a P , IV. D. Reinhart**, L. T. Wilson*** *Applied Research Associates, 4300 San RIateo Blvd, A-220, Albuquerque, 831,87185 ** Sandia Kational Laboratories,'Albuquerque, KhI, 87185-1 181 *** Saval Surface Warfare Center, Dahlgren Division, Dahlgren, VX,

  1. January 2013 Most Viewed Documents for National Defense | OSTI, US Dept of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Office of Scientific and Technical Information January 2013 Most Viewed Documents for National Defense Dynamic equation of state and strength properties of unreacted PBXW-128 explosive Chhabildas, L.C.; Grady, D.E.; Reinhart, W.D.; Wilson, L.T. From separations to reconstitution - a short history of Plutonium in the U.S. and Russia Gray, L W Condensation induced water hammer safety Gintner, M.A. Direct calibration of the yield of nuclear explosion Nakanishi, K.; Nikolayev, A.

  2. AVRAM user's manual

    SciTech Connect (OSTI)

    McGrady, P.W.

    1988-02-01

    This document details the use of the reliability code for the Atomic Vapor Laser Isotope Separation (AVLIS) project. This code was designed by Tom Anklam and John Harris. In late 1984 Patrick McGrady and Elena Koontz of C and TD/TA were assigned the task of improving the code and converting it for use on the DEC-10 system. In early 1986, Patric McGrady converted it to the CRAY. The AVRAM code is divided into distinct parts (often referred to as programs in this document). There is a COSMOS file that controls the execution of the FORTRAN code and controls the naming of output datasets and the deletion of temporary datasets created by the code. The FORTRAN code consists of a main program as a driver and of three main subroutines: EDIT, PARAM, and AVRAM. The EDIT program allows the user to create a new user defined system or add to an existing system or to change certain parameters. The PARAM program allows the user to alter system parameters and to select options such as economics run, criticality analysis or sensitivity studies. The AVRAM program does a reliability analysis of the system.

  3. Physically consistent simulation of mesoscale chemical kinetics: The non-negative FIS-{alpha} method

    SciTech Connect (OSTI)

    Dana, Saswati, E-mail: saswatid@rishi.serc.iisc.ernet.in [Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560012 (India); Raha, Soumyendu, E-mail: raha@serc.iisc.ernet.in [Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560012 (India)

    2011-10-01

    Biochemical pathways involving chemical kinetics in medium concentrations (i.e., at mesoscale) of the reacting molecules can be approximated as chemical Langevin equations (CLE) systems. We address the physically consistent non-negative simulation of the CLE sample paths as well as the issue of non-Lipschitz diffusion coefficients when a species approaches depletion and any stiffness due to faster reactions. The non-negative Fully Implicit Stochastic {alpha} (FIS {alpha}) method in which stopped reaction channels due to depleted reactants are deleted until a reactant concentration rises again, for non-negativity preservation and in which a positive definite Jacobian is maintained to deal with possible stiffness, is proposed and analysed. The method is illustrated with the computation of active Protein Kinase C response in the Protein Kinase C pathway.

  4. Holistic Evaluation of Lightweight Operating Systems using the PERCU Method

    SciTech Connect (OSTI)

    Kramer, William T.C.; He, Yun; Carter, Jonathan; Glenski, Joseph; Rippe, Lynn; Cardo, Nicholas

    2008-05-01

    The scale of Leadership Class Systems presents unique challenges to the features and performance of operating system services. This paper reports results of comprehensive evaluations of two Light Weight Operating Systems (LWOS), Cray's Catamount Virtual Node (CVN) and Linux Environment (CLE) operating systems, on the exact same large-scale hardware. The evaluation was carried out over a 5-month period on NERSC's 19,480 core Cray XT-4, Franklin, using a comprehensive evaluation method that spans Performance, Effectiveness, Reliability, Consistency and Usability criteria for all major subsystems and features. The paper presents the results of the comparison between CVN and CLE, evaluates their relative strengths, and reports observations regarding the world's largest Cray XT-4 as well.

  5. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Experiences Helen He, William Kramer, Jonathan Carter, Nicholas Cardo Cray User Group Meeting May 5-8, 2008 1 Outline * Introduction * Franklin Early User Program * CVN vs. CLE * Franklin Into Production * Selected Successful User Stories * Top Issues Affecting User Experiences * Other Topics * Summary 2 Benjamin Franklin, one of America's first scientists, performed ground breaking work in energy efficiency, electricity, materials, climate, ocean currents, transportation, health, medicine,

  6. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Performance Impacts from Franklin Upgrades Yun (Helen) He National Energy Research Supercomputing Center Cray User Group Meeting May 4-7, 2009 1 Outline * Franklin Introduction * Benchmarks * Quad Core Upgrade * CLE 2.1 Upgrade * IO Upgrade * Summary 2 Franklin's Role at NERSC * NERSC is the US DOE's keystone high performance computing center. * Franklin is the "flagship" system at NERSC serving ~3,100 scientific users in different application disciplines. * Serves the needs for

  7. Goals:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CUG 2009 Proceedings 1 of 8 User and Performance Impacts from Franklin Upgrades Yun (Helen) He National Energy Research Supercomputing Center Lawrence Berkeley National Laboratory Berkeley, CA 94720 ABSTRACT: The NERSC flagship computer Cray XT4 system "Franklin" has gone through three major upgrades: quad core upgrade, CLE 2.1 upgrade, and IO upgrade, during the past year. In this paper, we will discuss the various aspects of the user impacts such as user access, user environment, and

  8. Roberson Letter - June 25, 2003

    Office of Environmental Management (EM)

    , 2003 The purpose of this letter is to reiterate the mission, objectives, and scope of the local Site Specific Advisory Boards (SSABs) associated with nine Department of Energy (DOE) environmental cle an-up sites, and also to restate my commitment to support the Boards activities. The SSABs are organized and managed by the Office of Environmental Management (EM) and, in accordance with the Environmental Management Site -Specific Advisory Board (EMSSAB) authorized charter, provide me, the

  9. Towards assessing the violence of reaction during cookoff of confined energetic materials

    SciTech Connect (OSTI)

    Baer, M.R.; Kipp, M.E.; Schmitt, R.G.; Hobbs, M.L.

    1996-11-01

    An analysis of post-ignition events in a variable confinement cookoff test (VCCT) geometry is presented aimed toward predicting the level of violence during cookoff of confined thermally-degraded energetic materials. This study focuses on the dynamic events following thermal initiation whereby accelerated combustion interacts with confinement. Numerical simulations, based on a model of reactive multiphase mixtures, indicate that the response of energetic material is highly dependent upon thermal/mechanical damage states prior to ignition. These damaged states affect the rate of pressurization, dynamic compaction behavior and subsequent growth to detonation. Variations of the specific surface area and porosity produced by decomposition of the energetic material causes different responses ranging from pressure burst to detonation. Calculated stress histories are used in estimating breakup of the VCCT confinement based on Grady-Kipp fragmentation theory.

  10. Rear surface spallation on single-crystal silicon in nanosecond laser micromachining

    SciTech Connect (OSTI)

    Ren, Jun; Orlov, Sergei S.; Hesselink, Lambertus

    2005-05-15

    Rear surface spallation of single-crystal silicon under 5-ns laser pulse ablation at intensities of 0.6-60 GW/cm{sup 2} is studied through postablation examination of the ablated samples. The spallation threshold energy and the spallation depth's dependences on the energy and target thickness are measured. From the linear relation between the spallation threshold energy and the target thickness, an estimation of the material spall strength around 1.4 GPa is obtained, in reasonable agreement with the spall strength estimation of 0.8-1.2 GPa at a strain rate of 10{sup 7} s{sup -1} using Grady's model for brittle materials. The experiment reveals the internal fracturing process over an extended zone in silicon, which is controlled by the competition between the shock pressure load and the laser ablation rate. The qualities of the laser microstructuring and micromachining results are greatly improved by using an acoustic impedance matching approach.

  11. An efficient method for unfolding kinetic pressure driven VISAR data

    SciTech Connect (OSTI)

    Mark Harry Hess; Peterson, Kyle; Harvey-Thompson, Adam James

    2015-08-18

    Velocity Interferometer System for Any Reflector (VISAR) [Barker and Hollenbach, J. Appl. Phys. 43, 4669 (1972)] is a well-known diagnostic that is employed on many shock physics and pulsed-power experiments. With the VISAR diagnostic, the velocity on the surface of any metal flyer can be found. For most experiments employing VISAR, either a kinetic pressure [Grady, Mech. Mater. 29, 181 (1998)] or a magnetic pressure [Lemke et al., Intl J. Impact Eng. 38, 480 (2011)] drives the motion of the flyer. Moreover, reliable prediction of the time-dependent pressure is often a critical component to understanding the physics of these experiments. Although VISAR can provide a precise measurement of a flyers surface velocity, the real challenge of this diagnostic implementation is using this velocity to unfold the time-dependent pressure. The purpose of this study is to elucidate a new method for quickly and reliably unfolding VISAR data.

  12. Scientific Achievement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovered the reactive Leidenfrost' effect in cellulose & transition temperature (750 °C). Structured materials with engineered macropores (e.g. catalysts) allow for its tunable control. Controlling Biomass Leidenfrost Liftoff and Heat Transfer Work w as p erformed a t t he U niversity o f M innesota b y t he g roup o f Dauenhauer Research Details --- Cellulose par=cles levitate above 750 o C from generated v apor fl ow --- Onset o f p ar=cle l evita=on d rama=cally l owers heat t ransfer

  13. Tracking tumor boundary in MV-EPID images without implanted markers: A feasibility study

    SciTech Connect (OSTI)

    Zhang, Xiaoyong Homma, Noriyasu; Ichiji, Kei; Takai, Yoshihiro; Yoshizawa, Makoto

    2015-05-15

    Purpose: To develop a markerless tracking algorithm to track the tumor boundary in megavoltage (MV)-electronic portal imaging device (EPID) images for image-guided radiation therapy. Methods: A level set method (LSM)-based algorithm is developed to track tumor boundary in EPID image sequences. Given an EPID image sequence, an initial curve is manually specified in the first frame. Driven by a region-scalable energy fitting function, the initial curve automatically evolves toward the tumor boundary and stops on the desired boundary while the energy function reaches its minimum. For the subsequent frames, the tracking algorithm updates the initial curve by using the tracking result in the previous frame and reuses the LSM to detect the tumor boundary in the subsequent frame so that the tracking processing can be continued without user intervention. The tracking algorithm is tested on three image datasets, including a 4-D phantom EPID image sequence, four digitally deformable phantom image sequences with different noise levels, and four clinical EPID image sequences acquired in lung cancer treatment. The tracking accuracy is evaluated based on two metrics: centroid localization error (CLE) and volume overlap index (VOI) between the tracking result and the ground truth. Results: For the 4-D phantom image sequence, the CLE is 0.23 0.20 mm, and VOI is 95.6% 0.2%. For the digital phantom image sequences, the total CLE and VOI are 0.11 0.08 mm and 96.7% 0.7%, respectively. In addition, for the clinical EPID image sequences, the proposed algorithm achieves 0.32 0.77 mm in the CLE and 72.1% 5.5% in the VOI. These results demonstrate the effectiveness of the authors proposed method both in tumor localization and boundary tracking in EPID images. In addition, compared with two existing tracking algorithms, the proposed method achieves a higher accuracy in tumor localization. Conclusions: In this paper, the authors presented a feasibility study of tracking tumor boundary in EPID images by using a LSM-based algorithm. Experimental results conducted on phantom and clinical EPID images demonstrated the effectiveness of the tracking algorithm for visible tumor target. Compared with previous tracking methods, the authors algorithm has the potential to improve the tracking accuracy in radiation therapy. In addition, real-time tumor boundary information within the irradiation field will be potentially useful for further applications, such as adaptive beam delivery, dose evaluation.

  14. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2011 Resolved: some OpenMP flags ignored in PGI C/C++ compiler March 29, 2011 by Helen He Description: OpenMP flags other than -mp=nonuma are ignored with the PGI C and C++ wrapper on Hopper. The PGI Fortran wrapper behaves correctly. Read the full post "gni_pub.h" not found in compilation March 29, 2011 by Helen He Description: After the OS upgrade to CLE3.1UP03, codes using "gni_pub.h" are getting the "gni_pub.h not found" error at compile time. The

  15. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2015 runtime error message: "readControlMsg: System returned error Connection timed out on TCP socket fd" June 30, 2015 Symptom User jobs with sinlge or multiple apruns in a batch script may get this run time error: "readControlMsg: System returned error Connection timed out on TCP socket fd". This problem is intermittent, sometimes resubmit works. This error message started to appear after the Hopper OS upgrade to CLE52UP02 on March 11, 2015.

  16. Geddes_ LPAv3.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P lasma A ccelerator S imula0on U sing L aser a nd Par0cle B eam D rivers C.G.R. G eddes, L BNL F.S. T sung, U CLA 27 November 2012 Office of Science Office of Science SciDAC-2&3 Compass Approach: plasma wave accelerator structure, laser & particle beam evolution excited by laser or particle beam ! λ p ~100µm at 10 17 /cc Laser or beam Trapped particles L plasma ~ mm-m Approach: plasma wave accelerator structure, laser & particle beam evolution excited by laser or particle beam !

  17. H

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innova've u se o f H igh P erformance C ompu'ng through t he M odeling o f P ar'cle A ccelerators. J.---L. V ay Lawrence B erkeley N a'onal L aboratory NUG 2 014: N ERSC @ 40 February 3 ---6, 2 014 Physics Applied Math Equa3ons Computer Science Algo--- rithms Codes Science Using physics to influence HPC accelerator modeling Conven'onal w isdom a ssumes serial process for building codes: but r eality i s m uch m ore complex, w / p hysics e ven b eing used t o a lter a lgorithms & c odes. -50

  18. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Issues Open Issues runtime error message: "readControlMsg: System returned error Connection timed out on TCP socket fd" June 30, 2015 Symptom User jobs with sinlge or multiple apruns in a batch script may get this run time error: "readControlMsg: System returned error Connection timed out on TCP socket fd". This problem is intermittent, sometimes resubmit works. This error message started to appear after the Hopper OS upgrade to CLE52UP02 on March 11, 2015. Read the full

  19. Aprun MAN Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aprun » Aprun MAN Page Aprun MAN Page aprun [-a arch ] [-b ] [-B] [-cc cpu_list | keyword ] [-cp cpu_placement_file_name ] [-d depth ] [-D value ] [-L node_list ] [-m size[h|hs] ] [-n pes ] [-N pes_per_node ][-F access mode ] [-q ] [-r cores][-S pes_per_numa_node ] [-sl list_of_numa_nodes ] [-sn numa_nodes_per_node ] [-ss ] [-T ] [-t sec ] executable [ arguments_for_executable ] IMPLEMENTATION Cray Linux Environment (CLE) DESCRIPTION To run an application on CNL compute nodes, use the

  20. NERSC Data Efforts Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Efforts Update --- 1 --- Prabhat Data and Analytics Group Lead February 23, 2015 A little bit about myself * Computer S cien.st - Brown, I IT D elhi * Real---3me G raphics, V irtual R eality, H CI - Computa3onal R esearch D ivision * Scien3fic V isualiza3on, H PC * Data M anagement, P arallel I /O * Sta3s3cs, M achine L earning, B ig D ata * Climate S cien.st - Pursuing P hD i n U C B erkeley w / B ill C ollins * Broadly i nterested i n: - Physics ( Par3cle P hysics, A stronomy) - Chemistry

  1. I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jects the remainder of the fuel early in the cy- cle during the compression stroke. This pro- vides equivalence ratio stratification in the combustion chamber and it is thought that by varying the level of stratification, the combus- tion process can be controlled. Dual-fuel RCCI is similar in that it premixes a high oc- tane number fuel like gasoline, but the direct injected fuel has a low octane number, like diesel fuel, which is direct injected during the compression stroke. Thus, in addition

  2. WASH-

    Office of Legacy Management (LM)

    rcc.p,anc. 01 thts arf~cle. tha yubl~rhe, "r ~u~~iunl riknouu~adqnS the U.S. C;ov.rnmmnf' s rayhr (0 retam l nOn*aClulive.roy~ltV (r-0 ltconso In ma IO Dny Copvrlqhl WASH- covrrm~ the wtvdo. ISADIOLOGICAL SURVEY OF THE SEAWAY INDUSTRIAL PARK W . D. Cottrell, R. W . Leggett and H. W . Dickson Health Physics Division, Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 December 1976 CONTENTS l&t of Tab1 es - . . . List of Illustrations . . Abstract . . . . . . Introduction . . . .

  3. An efficient method for unfolding kinetic pressure driven VISAR data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mark Harry Hess; Peterson, Kyle; Harvey-Thompson, Adam James

    2015-08-18

    Velocity Interferometer System for Any Reflector (VISAR) [Barker and Hollenbach, J. Appl. Phys. 43, 4669 (1972)] is a well-known diagnostic that is employed on many shock physics and pulsed-power experiments. With the VISAR diagnostic, the velocity on the surface of any metal flyer can be found. For most experiments employing VISAR, either a kinetic pressure [Grady, Mech. Mater. 29, 181 (1998)] or a magnetic pressure [Lemke et al., Intl J. Impact Eng. 38, 480 (2011)] drives the motion of the flyer. Moreover, reliable prediction of the time-dependent pressure is often a critical component to understanding the physics of these experiments.more » Although VISAR can provide a precise measurement of a flyer’s surface velocity, the real challenge of this diagnostic implementation is using this velocity to unfold the time-dependent pressure. The purpose of this study is to elucidate a new method for quickly and reliably unfolding VISAR data.« less

  4. 20140115ColellaASCRNERSC.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Defining R equirements, M ee1ng R equirements Phillip C olella Applied N umerical A lgorithms G roup Computa1onal R esearch D ivision, L BNL NERSC ASCR Requirements for 2017 January 15, 2014 LBNL Research p rojects * Base p rogram r esearch i n n umerical m ethods f or par1al d ifferen1al e qua1ons. * Par1cipa1on S ciDAC F ASTMath I ns1tute a c1vi1es i n structured g rid a nd p ar1cle m ethods. * "Exascale" r esearch: p ar1cipa1on i n ExReDi p roject (RXSolver p rogram) a nd D ---TEC a

  5. LANL: AOT & LANSCE The Pulse April 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division I N S I D E 2 From Alex's Desk 3 lANsCe Former stuDeNt seleCteD to AtteND 61st liNDAu Nobel lAureAtes meetiNg iN germANy experimeNts At the NuCleAr sCieNCe leAD slowiNg-DowN speCtrometer 4 NeutroN sCAtteriNg exAmiNes DyNAmiC properties oF biomembrANes 5 NeutroN sChool will FoCus oN the eNviroNmeNt 6 heADsup! meetiNg plANNiNg serviCes

  6. LANL: AOT & LANSCE The Pulse May 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division I N S I D E 2 A nAno look At AmmoniA borAne And hydrogen storAge lujAn Center studies struCturAl mAteriAls for nuCleAr AppliCAtions And highly irrAdiAted steels 3 lAnsCe-ns hosts nAtionAl lAborAtories At fission meAsure- ment meeting 4 unrAveling the mysteries of lipid domAins in bio-membrAnes 5 heAds up! James Rhyne selected to be a

  7. LANL: AOT & LANSCE The Pulse November 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division I N S I D E 2 From Alex's Desk 3 First beAm tests with the time Projection chAmber 4 Discovery oF new Phys- ics in leAD-zirconium- titAnium voltAge bArs 5 los AlAmos lenDs its exPertise to cleAn energy AnD cArbon sequestrAtion Projects 6 electric-FielD moDiFicA- tion oF mAgnetism in A thin Film 7 Aot & lAnsce Division stAFF AwArDeD

  8. Evaluating operating system vulnerability to memory errors.

    SciTech Connect (OSTI)

    Ferreira, Kurt Brian; Bridges, Patrick G.; Pedretti, Kevin Thomas Tauke; Mueller, Frank; Fiala, David; Brightwell, Ronald Brian

    2012-05-01

    Reliability is of great concern to the scalability of extreme-scale systems. Of particular concern are soft errors in main memory, which are a leading cause of failures on current systems and are predicted to be the leading cause on future systems. While great effort has gone into designing algorithms and applications that can continue to make progress in the presence of these errors without restarting, the most critical software running on a node, the operating system (OS), is currently left relatively unprotected. OS resiliency is of particular importance because, though this software typically represents a small footprint of a compute node's physical memory, recent studies show more memory errors in this region of memory than the remainder of the system. In this paper, we investigate the soft error vulnerability of two operating systems used in current and future high-performance computing systems: Kitten, the lightweight kernel developed at Sandia National Laboratories, and CLE, a high-performance Linux-based operating system developed by Cray. For each of these platforms, we outline major structures and subsystems that are vulnerable to soft errors and describe methods that could be used to reconstruct damaged state. Our results show the Kitten lightweight operating system may be an easier target to harden against memory errors due to its smaller memory footprint, largely deterministic state, and simpler system structure.

  9. Optimal Conventional and Semi-Natural Treatments for the Upper Yakima Spring Chinook Salmon Supplementation Project; Treatment Definitions and Descriptions and Biological Specifications for Facility Design, 1995-1999 Final Report.

    SciTech Connect (OSTI)

    Hager, Robert C.; Costello, Ronald J.

    1999-10-01

    This report describes the Yakima Fisheries Project facilities (Cle Elum Hatchery and acclimation satellites) which provide the mechanism to conduct state-of-the-art research for addressing questions about spring chinook supplementation strategies. The definition, descriptions, and specifications for the Yakima spring chinook supplementation program permit evaluation of alternative fish culture techniques that should yield improved methods and procedures to produce wild-like fish with higher survival that can be used to rebuild depleted spring chinook stocks of the Columbia River Basin. The definition and description of three experimental treatments, Optimal Conventional (OCT), Semi-Natural (SNT), Limited Semi-Natural (LSNT), and the biological specifications for facilities have been completed for the upper Yakima spring chinook salmon stock of the Yakima Fisheries Project. The task was performed by the Biological Specifications Work Group (BSWG) represented by Yakama Indian Nation, Washington Department of Fish and Wildlife, National Marine Fisheries Service, and Bonneville Power Administration. The control and experimental variables of the experimental treatments (OCT, SNT, and LSNT) are described in sufficient detail to assure that the fish culture facilities will be designed and operated as a production scale laboratory to produce and test supplemented upper Yakima spring chinook salmon. Product specifications of the treatment groups are proposed to serve as the generic templates for developing greater specificity for measurements of product attributes. These product specifications will be used to monitor and evaluate treatment effects, with respect to the biological response variables (post release survival, long-term fitness, reproductive success and ecological interactions).

  10. Evaluation of Water Quality Conditions Near Proposed Fish Production Sites Associated with the Yakima Fisheries Project, 1991-1993 Final Report.

    SciTech Connect (OSTI)

    Dauble, Dennis D.

    1994-05-01

    In 1991, the Pacific Northwest Laboratory (PNL) began studying water quality at several sites in the Yakima River Basin for the Bonneville Power Administration. These sites were being proposed as locations for fish culture facilities as part of the Yakima Fisheries Project (YFP). Surface water quality parameters near the proposed fish culture facilities are currently suitable for fish production. Water quality conditions in the mainstream Yakima River and its tributaries are generally excellent in the upper part of the watershed (i.e., near Cle Elum), but they are only fair to poor for the river downstream of Union Gap (river mile 107). Water quality of the Naches River near Oak Flats is also suitable for fish production. Groundwater supplies near the proposed fish production facilities typically have elevated concentrations of metals and dissolved gases. These conditions can be mitigated using best engineering practices such as precipitation and degasification. Additionally, mixing with surface water may improve these conditions. Depending on the location and depth of the well, groundwater temperatures may be warmer than optimum for acclimating and holding juvenile and adult fish. Water quality parameters measured in the Yakima River and tributaries sometimes exceed the range of values described as acceptable for culture of salmonids and for the protection of other aquatic life. However, constituent concentrations are within ranges that exist in many northwest fish hatcheries. Additionally, site-specific tests conducted by PNL (i.e., live box exposures and egg incubation studies) indicate that fish can be successfully reared in surface and well water near the proposed facility sites. Thus, there appear to be no constraints to artificial production for the YFP.

  11. SU-E-I-80: Beta-Minus Emitting Radiotracers Improves Molecular Endoscopy

    SciTech Connect (OSTI)

    Carpenter, C; Ma, X; Sun, C; Pratx, G; Cheng, Z; Xing, L

    2014-06-01

    Purpose: Molecular Endoscopy using Cerenkov Luminescence can be used to monitor the distribution of many clinically-available PET and SPECT probes for endoscopic applications. A main limitation of Cerenkov is its limited sensitivity to small concentrations of radiotracer when using light guides s. Herein we demonstrate that the use of a high energy beta emitting radioisotope, exemplified here with 90Y provides superior sensitivity to 18F because of its higher light output and its lack of corresponding gamma emission. Methods: A series of phantom experiments were performed to compare the sensitivity and noise of the CLE system for imaging 90Y and 18F. Three vials of known concentrations of 90Y (0.008 ?Ci, 0.08 ?Ci, 1 ?Ci) were placed in centrifuge tubes and isolated from each other. One vial of 18F (100 ?Ci) was placed in the imaging chamber and imaged over the course of decay (19 hours, 43 minutes, or ?10 half-lives). Image time-points were formed from 5-minute integrations. Results: Using an SNR of 10 to define the noise-floor, the 90Y minimum detectable activity was 0.056 ?Ci. To the contrast, the minimum detectable activity for 18F was 11.63 ?Ci. These data demonstrate a 207-fold improvement in SNR of 90Y compared to 18F, when controlled for activity. Conclusion: This study demonstrated that a pure ?- radionuclide such as 90Y be used is superior to 18F for Cerenkov Endoscopy. Further study is needed to demonstrate its utility in preclinical studies, endoscopic applications, intraoperative, and radiotherapy applications.

  12. La supraconductivité a 100 ans !

    ScienceCinema (OSTI)

    None

    2011-10-06

    Il y a 100 ans, le 8 avril 1911, une découverte majeure était réalisée : celle de la supraconductivité. La supraconductivité est la caractéristique qu?ont certains métaux et alliages de perdre toute résistance électrique en dessous d?une température donnée. Cette renversante découverte, réalisée de manière presque fortuite par Kammerlingh Onnes de l?Université de Leyde (Pays-Bas) et son étudiant Gilles Holst, a ouvert un nouveau champ de recherche en physique et de fabuleuses perspectives d?applications technologiques. Du point de vue scientifique, la supraconductivité est en effet l?une des rares manifestations de la physique quantique à l?échelle macroscopique.  Du point de vue des retombées techniques, elle est porteuse d?applications majeures dans le domaine de la santé, des communications et de l?énergie. 100 ans après, les physiciens n?ont toujours pas fini d?explorer ce phénomène et ses applications. Le CERN abrite des applications de la supraconductivité à des échelles inédites. L?accélérateur de particules LHC, avec ses milliers d?aimants supraconducteurs répartis sur 27 kilomètres de circonférence, est en effet la plus grande application mondiale de la supraconductivité. Il ne pourrait exister sans elle.  Le CERN fête donc la découverte de la supraconductivité avec une conférence exceptionnelle donnée par Philippe Lebrun. Au cours de cette conférence, l?expérience historique de Kammerlingh Onnes sera reproduite. Philippe Lebrun racontera l?histoire de cette étonnante découverte, en la replaçant dans le contexte scientifique de l?époque. Il racontera les développements scientifiques et les applications du premier siècle de la supraconductivité. Conférence en français Merci de bien vouloir vous inscrire au : +41 22 767 76 76 ou cern.reception@cern.ch

  13. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    UTILITY_ID","UTILITY_NAME","TRANSLINE_NO","TERMINAL_LOC_FROM","TERMINAL_LOC_TO","PERCENT_OWNED","LINE_LENGTH","LINE_TYPE","VOLTAGE_TYPE","VOLTAGE_OPERATING","VOLTAGE_DESIGN","CONDUCTOR_SIZE","CONDUCTOR_MAT_TYPE","CONDUCTOR_CONFIG","CIRCUIT_PERSTRUCT_PRES","CIRCUIT_PERSTRUCT_ULT","POLE_TOWER_TYPE","RATED_CAPACITY","LAND_LANDRIGHT_COSTS","POLE_TOWER_FIXTURE_COSTS","CONDUCTOR_DEVICE_COSTS","CONSTRUCTION_ETC_COSTS","TOTAL_LINE_COSTS","IN_SERVICE_DATE" 2003,1015,"Austin City of",1,"Northland","Magnesium Plant",100,4.11,"OH","AC",138,138,795,"ACSR Drake/ACSS Rail","Single",1,2,"Steel & Wood Poles",215,0,17500,8000,19500,45000,"application/vnd.ms-excel" 2003,1015,"Austin City of",2,"Grove","Met Center",100,3.1,"OH","AC",138,138,795,"ASCR Drake","Double",1,1,"Steel Pole",430,0,30000,10000,35000,75000,"application/vnd.ms-excel" 2003,1015,"Austin City of",3,"Dessau","Daffin Gin",100,6.01,"OH","AC",138,138,795,"ASCR Drake","Single",1,1,"Steel Pole",215,0,60000,15000,40000,115000,"application/vnd.ms-excel" 2003,1015,"Austin City of",4,"Burleson","AMD",100,2.2,"OH","AC",138,138,795,"ACR Drake","Double",2,2,"Steel Pole",430,0,75000,55000,120000,250000,"application/vnd.ms-excel" 2003,1015,"Austin City of",5,"Bergstrom","Kingsberry",100,4.2,"OH","AC",138,138,795,"ASCR Drake/AAAC","Single",1,2,"Steel & Wood Poles",215,0,75000,35000,340000,450000,"application/vnd.ms-excel" 2003,1015,"Austin City of",6,"Mcneil","Magnesium Plant",100,3.24,"OH","AC",138,138,795,"ACSR Drake","Double",1,2,"Steel Pole & Steel Tower",430,0,380000,76000,644000,1100000,"application/vnd.ms-excel" 2003,1015,"Austin City of",7,"Summit","Magnesium Plant",100,2.18,"OH","AC",138,138,795,"ACSR Drake","Double",1,2,"Steel Pole & Steel Tower",430,0,265000,125000,410000,800000,"application/vnd.ms-excel" 2003,1307,"Basin Electric Power Coop",1,"Rapid City","New Underwood",65,18.55,"OH","AC",230,230,1272,"ACSR","Single",1,1,"Single Pole, Steel",460,0,0,0,5300000,5300000,"application/vnd.ms-excel" 2003,1586,"Bentonville City of",1,"AEP/SWEPCO","City Substation F",100,1,"OH","AC",161,161,477,"ACSR","Single",1,1,"Wood and Steel Single Pole",199,18000,81522,28082,214516,342120,"application/vnd.ms-excel" 2003,2172,"Brazos Electric Power Coop",1,"Coppell","Lewisville",100,7.03,"OH","AC",138,138,1033,"ACSR","Double",1,1,"Concrete/Steel Single Pole",485,17577.55,2527717,537265.96,956475.39,4039035.9,"application/vnd.ms-excel" 2003,2172,"Brazos Electric Power Coop",2,"Boyd","Newark",100,1.8,"OH","AC",138,138,795,"ACSR","Single",2,2,"Concrete/Steel Single Pole",215,133929.08,538282.3,131112.75,246577.6,1049901.73,"application/vnd.ms-excel" 2003,2172,"Brazos Electric Power Coop",3,"Cedar Hill","Sardis",100,5.1,"OH","AC",138,138,795,"ACSR","Single",1,1,"Concrete Si ngle Ploe",215,24515.26,652910.22,246676.96,560582.43,1484684.87,"application/vnd.ms-excel" 2003,5580,"East Kentucky Power Coop Inc",1,"Jamestown Tap","Jamestown Tap",100,0.47,"OH","AC",161,161,556.5,"ACSR","Single",1,1,"Wood Single Pole",292,43326,160508,68789,0,272623,"application/vnd.ms-excel" 2003,5580,"East Kentucky Power Coop Inc",2,"Pulaski Co. Tap","Pulaski Co. Tap",100,5.88,"OH","AC",161,161,795,"ACSR","Single",1,1,"Wood H-Frame Structure",367,494183,1092462,468198,0,2054843,"application/vnd.ms-excel" 2003,7197,"Georgia Transmission Corp",1,"Shoal Creek","Spout Spring",100,10.83,"OH","AC",230,230,1351,"ACSR","Single",1,1,"Concrete, Single Pole & Steel",602,1277945,1685271,444690,6047603,9455509,"application/vnd.ms-excel" 2003,7197,"Georgia Transmission Corp",2,"Dresden","Yellowdirt",100,9.5,"OH","AC",230,230,795,"ACSR","Double",1,1,"Concrete, Single Pole",866,870826,772876,375515,3649376,5668593,"application/vnd.ms-excel" 2003,7197,"Georgia Transmission Corp",3,"East Moultrie","West Valdosta",100,38.46,"OH","AC",230,230,1622,"ACSR","Single",1,1,"Concrete, Single Pole",596,1191168,2829632,1476802,10279078,15776680,"application/vnd.ms-excel" 2003,7490,"Grand River Dam Authority",1,"Cowskin","Grove PSO",100,4.5,"OH","AC",138,138,795,"ACSR","Single/Twisted",1,1,"Wood Pole",223,287671,135402,156769,880890,1460732,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",1,"BASTROP","AUSTIN",100,0.32,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,9155828,155817297,37044659,47228709,249246493,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",2,"BASTROP","AUSTROP",100,0.32,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",3,"BASTROP","AUSTROP",100,0.32,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",4,"BASTROP","AUSTROP",100,0.32,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",5,"CANYON","SAN MARCOS/LOCKHART",100,0.31,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",6,"CANYON","SAN MARCOS/LOCKHART",100,0.31,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",7,"CANYON","SAN MARCOS/LOCKHART",100,0.31,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",8,"CANYON","SAN MARCOS/LOCKHART",100,0.31,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",9,"CANYON","SAN MARCOS/LOCKHART",100,0.31,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",10,"CICO","HELOTES",100,4,"OH","AC",138,138,795,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",11,"CICO","HELOTES",100,4,"OH","AC",138,138,795,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",12,"CICO","HELOTES",100,4,"OH","AC",138,138,795,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",13,"CICO","HELOTES",100,4,"OH","AC",138,138,795,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",14,"CICO","HELOTES",100,4,"OH","AC",138,138,795,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",15,"CICO","HELOTES",100,4,"OH","AC",138,138,795,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",16,"LOCKHART","DUMP HILL",100,1.6,"OH","AC",138,138,795,"ACSR","Single",1,1,"Concrete Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",17,"HILL POWER STATION","NUECES BAY",100,17.3,"OH","AC",138,138,795,"ACSR","Double",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",18,"NORTH OAK PARK","LON HILL",100,14.9,"OH","AC",138,138,795,"ACSR","Double",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",19,"STATE HIGHTWAY 80",,100,0.38,"OH","AC",138,138,211.5,"ACSR","Single",1,1,"Wood H-Frame Structure",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",20,"STATE HIGHWAY 80",,100,0.38,"OH","AC",138,138,211.5,"ACSR","Single",1,1,"Wood H-Frame Structure",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",21,"STERLING/MITCHELL LINE","TWINN BUTTES",100,135.08,"OH","AC",345,345,1590,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",22,"VERDE CREEK","KERRVILLE STADIUM",100,0.1,"OH","AC",138,138,336,"ACSR","Double",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",23,"VERDE CREEK","KERRVILLE STADIUM",100,0.1,"OH","AC",138,138,336,"ACSR","Double",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",24,"VERDE CREEK","KERRVILLE STADIUM",100,0.1,"OH","AC",138,138,336,"ACSR","Double",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",25,"VERDE CREEK","KERRVILLE STADIUM",100,0.1,"OH","AC",138,138,336,"ACSR","Double",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",26,"ZORN","MCCARTY LANE",100,4.2,"OH","AC",138,138,1433.6,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",27,"ZORN","MCCARTY LANE",100,4.2,"OH","AC",138,138,1433.6,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",28,"ZORN","MCCARTY LANE",100,4.2,"OH","AC",138,138,1433.6,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",29,"ZORN","MCCARTY LANE",100,4.2,"OH","AC",138,138,1433.6,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",30,"ZORN","MCCARTY LANE",100,4.2,"OH","AC",138,138,1433.6,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",31,"ZORN","MCCARTY LANE",100,4.2,"OH","AC",138,138,1433.6,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,15143,"Platte River Power Authority",1,"Rawhide","Timberline West",100,31.63,"OH","AC",230,230,954,"ACSR","Single",2,2,"Steel/Tower & Pole",378,5553,1928767,2385430,251850,4571600,"application/vnd.ms-excel" 2003,15159,"Plymouth City of",1,"Mullet River Sub","Sub # 1",100,0.8,"OH","AC",138,138,336.4,"ACSR","SINGLE",1,1,"Steel Double Pole",33,0,0,0,1492139,1492139,"application/vnd.ms-excel" 2003,16534,"Sacramento Municipal Util Dist",1,"Natomas","Elverta",100,4.3,"OH","AC",230,230,954,"Aluminum","Single",1,1,"Steel Tower",316,0,0,0,0,0,"application/vnd.ms-excel" 2003,17543,"South Carolina Pub Serv Auth",1,"Rainey - Anderson (Duke) #1","Rainey - Anderson (Duke) #1",100,9.51,"OH","AC",230,230,1272,"ACSR","Double",2,2,"Steel / Tower",956,840152,1230361,1207282,22364,3300159,"application/vnd.ms-excel" 2003,17543,"South Carolina Pub Serv Auth",2,"Rainey - Anderson (Duke) #2","Rainey - Anderson (Duke) #2",100,9.51,"OH","AC",230,230,1272,"ACSR","Double",2,2,"Steel / Tower",956,840152,1230361,1207282,22364,3300159,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",1,"West Ringgold","Center Point",100,7.94,"OH","AC",115,230,954,"ASCR","Single",1,2,"Steel Tower",,2086252,5658529,1502763,3053959,12301503,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",2,"NE Johnson City--Erwin 161kV T","Jonesborough 161 kV SS",100,0.28,"OH","AC",161,161,954,"ASCR","Single",1,1,"Steel Tower",,11050,191917,894933,714987,1812887,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",3,"Elizabethton","Pandara-Shouns",100,15.12,"OH","AC",161,161,636,"ASCR","Single",1,1,"Steel Tower",,282232,1797686,537733,2057572,4675223,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",4,"Sullivan","Blountville",100,0.63,"OH","AC",161,161,1590,"ASCR","Single",2,2,"Steel Tower",,547521,1134556,788061,1224067,3694205,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",5,"Pin Hook","Structure E 104A (NES)",100,1.74,"OH","DC",161,161,2034.5,"ASCR","Single",1,2,"Steel Tower",,179775,881877,641976,270782,1974410,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",6,"Dug Gap 115 kV SS","Center Point 230 kV SS",100,4.49,"OH","AC",115,230,954,"ASCR","Single",2,2,"Steel Tower",,3939251,3451555,545558,1026021,8962385,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",7,"Chickamauga-Ridgedale","Hawthorne 161 kV SS",100,2.82,"OH","AC",161,161,1590,"ASCR","Single",2,2,"Steel Tower",,87206,533582,342640,584799,1548227,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",8,"Ft. Loudoun-Elza 161 kV TL","Spallation Neutron Source 161",100,3.92,"OH","AC",161,161,954,"ASCR","Single",1,1,"Steel Tower",,2972,639541,373150,469765,1485428,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",9,"Leake","Sebastapol SW STA 161 kV",100,0.77,"OH","AC",161,161,636,"ASCR","Single",2,2,"Steel Tower",,36158,236368,103374,167311,543211,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",10,"Sebasatpol 161 kV Switching St","Five Point 161 kV Substation",100,0.13,"OH","AC",161,230,954,"ASCR","Single",1,1,"Steel Tower",,917304,1772761,931352,1477668,5099085,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",11,"Structure 170A","Structure 174",100,0.73,"OH","AC",161,161,636,"ASCR","Single",1,1,"Steel Tower",,0,445863,79638,194574,720075,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",12,"Ramer-Hickory Valley 161 kV TL","Middleton 46 kV SS",100,6.81,"OH","AC",161,161,954,"ASCR","Single",1,1,"Steel Tower",,566805,1162854,447607,787813,2965079,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",13,"Lowndes-Miller","Valley View",100,0.46,"OH","AC",500,500,954,"ASCR","Triple",1,2,"Steel Tower",,0,688737,255237,341129,1285103,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",14,"Sweetwater 161 kV SS","Madisonville 161 kV SS",100,8.95,"OH","AC",161,161,954,"ASCR","Single",1,1,"Steel Tower",,1066219,1474937,466681,797814,3805651,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",15,"East Point 500 kV SS","Hanceville 161 kV TL",100,11.25,"OH","AC",161,161,1351.5,"ASCR","Single",1,2,"Steel Tower",,1416513,1442382,606534,1427424,4892853,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",16,"W Cookeville-Crossville 161 kV","W. Crossville SS",100,4.37,"OH","AC",161,161,954,"ASCR","Single",1,2,"Steel Tower",,267463,1112667,651963,964407,2996500,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",17,"East Shelbyville-Unionville","Deason 161 kV SS",100,5.09,"OH","AC",161,161,636,"ASCR","Single",1,1,"Steel Tower",,1071199,931797,430714,320721,2754431,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",18,"Kentucky Hydro","Barkley Hydro",100,2,"OH","AC",161,161,2034.5,"ACSR","Single",1,1,"Steel Tower",,2845,406947,90111,155401,655304,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",19,"MEC Sw Station","Trinity Substation",100,2.9,"OH","AC",161,161,954,"ACSS","Single",2,2,"Steel Tower",,0,604526,474640,608702,1687868,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",20,"Hickory Valley Selmer 161 kV T","North Selmer 161 kV SS",100,4.88,"OH","AC",161,161,636,"ASCR","Single",1,1,"Steel Tower",,357578,632244,368993,899046,2257861,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",21,"Trinity","Morgan Energy Center",100,2.98,"OH","AC",161,161,1590,"ASCR","Single",2,2,"Steel Tower",,7155,647789,386671,513831,1555446,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",22,"MEC","Finley",100,0.61,"OH","AC",161,161,954,"ASCR","Single",1,2,"Steel Tower",,9879,303540,156165,181613,651197,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",23,"Pickwick-South Jackson","Magic Valley",100,1.38,"OH","AC",161,161,954,"ASCR","Single",1,1,"Steel Pole",,78377,284367,113237,237716,713697,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",24,"Wolf Creek-Choctaw 500 kV TL","Reliant French Camp Gener Plt",100,0.11,"OH","AC",500,500,954,"ASCR","Triple",1,2,"Steel Tower",,0,863770,411493,891161,2166424,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",25,"Widows Creek Ft. Payne 161 kV","Flat Rock 161 kV SS",100,2.05,"OH","AC",161,161,397.5,"ASCR","Single",1,1,"Steel Tower",,130460,443384,182965,410228,1167037,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",26,"Volunteer-Cherokee HP 161 kV T","Oakland 161 kV SS",100,0.5,"OH","AC",161,161,1351,"ASCR","Single",1,2,"Steel Tower",,0,159020,71787,133784,364591,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",27,"Cordell-Hull-Carthage 161 kV","South Carthage 161 kV SS",100,1.68,"OH","AC",161,161,636,"ASCR","Single",1,2,"Steel Tower",,0,209664,102390,256537,568591,"application/vnd.ms-excel" 2003,20447,"Western Farmers Elec Coop Inc",1,"Arco","Sprectrum",100,5.89,"OH","AC",138,138,336.4,"ACSR","Single",1,1,"Wood Pole",91,37547.56,399750.8,416067.16,0,853365.52,"application/vnd.ms-excel" 2003,20447,"Western Farmers Elec Coop Inc",2,"Hazel Dell Jct","Hazel Dell",100,3.12,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",158,72967.09,417464.37,285659.16,0,776090.62,"application/vnd.ms-excel" 2003,20447,"Western Farmers Elec Coop Inc",3,"Red River","Tenaska Kiowa Sw",100,75.75,"OH","AC",345,345,795,"ACSR","Single",1,1,"Combination Pole",158,0,0,0,47569327.23,47569327.23,"application/vnd.ms-excel" 2003,20447,"Western Farmers Elec Coop Inc",4,"Washita Sw","Blue Canyon",100,23.96,"OH","AC",138,138,1590,"ACSR","Single",1,1,"Wood Pole",239,0,0,0,5092171.22,5092171.22,"application/vnd.ms-excel" 2003,20447,"Western Farmers Elec Coop Inc",5,"Limestone Jct","Limestone",100,0.5,"OH","AC",138,138,336.4,"ACSR","Single",1,1,"Wood Pole",91,25673.08,159253.08,77468.07,0,262394.23,"application/vnd.ms-excel" 2003,20447,"Western Farmers Elec Coop Inc",6,"OGE Sunset Jct","Sunset Corner",100,0.15,"OH","AC",161,161,336.4,"ACSR","Singel",1,1,"Wood Pole",91,0,29315.87,35224.01,0,64539.88,"application/vnd.ms-excel" 2003,27000,"Western Area Power Admin",1,"Shiprock","Four Corners",100,8.2,"OH","AC",345,345,,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",2,"Coolidge","Sundance 1 and 2",100,9.8,"OH","AC",230,230,954,"ASCR",,2,2,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",3,"Structure 96/4","O/Banion 1",100,38,"OH","AC",230,230,,"ASCR",,2,2,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",4,"Mead","Market Place",100,12.9,"OH","AC",525,525,,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",5,"Bears Ears","Craig",100,1,"OH","AC",345,345,,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",6,"Glen Canyon Pumping Plant","Glen Canyon SW Yard",100,1,"OH","AC",345,345,,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",7,"Baker","Bowman",22.96,53.96,"OH","AC",230,230,954,"ASCR",,1,1,"Wood H",,0,0,0,0,0 2003,27000,"Western Area Power Admin",8,"Basin Tap #2","Washburn",100,2.23,"OH","AC",230,230,795,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",9,"Craig","Rifle",100,96,"OH","AC",230,230,1272,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",10,"Garrison","Basin Tap #1",100,20.97,"OH","AC",230,230,795,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",11,"Everta","Roseville",100,13.3,"OH","AC",230,230,,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",12,"Griffith","McConnico",100,8,"OH","AC",230,230,1272,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",13,"McConnico","Peacock",100,29.4,"OH","AC",230,230,795,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",14,"Liberty","Buckeye",100,6.7,"OH","AC",230,230,1272,"ASCR",,2,2,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",15,"Liberty","Parker",100,118.7,"OH","AC",230,230,1272,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",16,"Liberty","Estrella",100,10.8,"OH","AC",230,230,954,"ASCR",,2,2,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",17,"Liberty","Lone Batte",100,38.2,"OH","AC",230,230,954,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",18,"Lone Butte","Sundance",100,38.4,"OH","AC",230,230,954,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",19,"New Waddell","West Wing",100,10.1,"OH","AC",230,230,954,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",20,"South Point","Topock #1",100,6.46,"OH","AC",230,230,1590,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",21,"South Point","Topock #2",100,6.34,"OH","AC",230,230,1590,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0