Sample records for washington ranch storage

  1. Archaeological survey of the McGee Ranch vicinity, Hanford Site, Washington

    SciTech Connect (OSTI)

    Gard, H.A.; Poet, R.M.

    1992-09-01T23:59:59.000Z

    In response to a request for a cultural resources review from Westinghouse Hanford Company for the Action Plan for Characterization of McGee Ranch Soil, Pacific Northwest Laboratory`s Hanford Cultural Resources Laboratory (HCRL) conducted an archaeological survey of the McGee Ranch vicinity, located in the northwest portion of the Hanford Site. Staff members covered 8.4 km{sup 2} and recorded 42 cultural resources; 22 sites, and 20 isolated artifacts. Only 2 sites and 3 isolates were attributed to a prehistoric Native American occupation. The historic sites date from the turn of the century to the 1940s and are representative of the settlement patterns that occurred throughout the Columbia Basin. In addition to an archaeological pedestrian survey of the project area, we conducted literature and records searches and examined available aerial photographs. Records kept at HCRL were reviewed to determine if any archaeological survey had been conducted previously within the project area. Although no survey had been conducted, portions of the area adjacent to project boundaries were surveyed in 1988 and 1990. During those surveys, historic and prehistoric cultural resources were observed, increasing the possibility that similar land usage had taken place within the current project boundaries. Literature searches established a general historical sequence for this area. Aerial photographs alerted researchers to homesteads and linear features, such as roads and irrigation ditches, that might not be apparent from ground level.

  2. Archaeological survey of the McGee Ranch vicinity, Hanford Site, Washington

    SciTech Connect (OSTI)

    Gard, H.A.; Poet, R.M.

    1992-09-01T23:59:59.000Z

    In response to a request for a cultural resources review from Westinghouse Hanford Company for the Action Plan for Characterization of McGee Ranch Soil, Pacific Northwest Laboratory's Hanford Cultural Resources Laboratory (HCRL) conducted an archaeological survey of the McGee Ranch vicinity, located in the northwest portion of the Hanford Site. Staff members covered 8.4 km{sup 2} and recorded 42 cultural resources; 22 sites, and 20 isolated artifacts. Only 2 sites and 3 isolates were attributed to a prehistoric Native American occupation. The historic sites date from the turn of the century to the 1940s and are representative of the settlement patterns that occurred throughout the Columbia Basin. In addition to an archaeological pedestrian survey of the project area, we conducted literature and records searches and examined available aerial photographs. Records kept at HCRL were reviewed to determine if any archaeological survey had been conducted previously within the project area. Although no survey had been conducted, portions of the area adjacent to project boundaries were surveyed in 1988 and 1990. During those surveys, historic and prehistoric cultural resources were observed, increasing the possibility that similar land usage had taken place within the current project boundaries. Literature searches established a general historical sequence for this area. Aerial photographs alerted researchers to homesteads and linear features, such as roads and irrigation ditches, that might not be apparent from ground level.

  3. EA-1211: Relocation and Storage of Isotopic Heat Sources, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal for relocation and storage of the isotopic heat sources at the U.S. Department of Energy Hanford Site in Richland, Washington.

  4. White Ranch Wetlands Biological Survey

    E-Print Network [OSTI]

    White Ranch Wetlands Biological Survey and Permanent Vegetation Monitoring Plots Prepared for: U Services Building Colorado State University Fort Collins, CO 80523 March 1998 #12;WHITE RANCH WETLANDS assessment of the White Ranch wetlands. In addition we set up permanent plots along transects to collect

  5. EIS-0063: Waste Management Operations, Double-Shell Tanks for Defense High Level Radioactive Waste Storage, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the existing tank design and consider additional specific design and safety feature alternatives for the thirteen tanks being constructed for storage of defense high-level radioactive liquid waste at the Hanford Site in Richland, Washington. This statement supplements ERDA-1538, "Final Environmental Statement on Waste Management Operation."

  6. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

  7. The Farm and Ranch Corporation.

    E-Print Network [OSTI]

    Brints, Norman; Sartin, Marvin

    1980-01-01T23:59:59.000Z

    rooc - ~ TA245.7 1873 0.1302 The Texas A&M University System Texas Agricultural Extension Service 8-1302 Director Daniel C. Pfannstiel College Station, Texas 77843 The Farm and Ranch Corporation Farm and Ranch Busin 0 nization... in Texas CONTENTS Alternative Forms of Business Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3 Closely Held Farm Corporations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4...

  8. California Valley Solar Ranch Biological Assessment

    Broader source: Energy.gov [DOE]

    Biological Assessment for the California Valley Solar Ranch Project San Luis Obispo County, California

  9. Grazing Systems for Profitable Ranching

    E-Print Network [OSTI]

    Hanselka, C. Wayne; Ragsdale, Bobby; Rector, Barron S.

    2000-05-03T23:59:59.000Z

    Grazing management is essential to a successful ranching enterprise. Ranchers have several options, including continuous grazing, deferred rotation systems, and short duration grazing. Details about each system are included....

  10. Farm and Ranch Personnel Management

    E-Print Network [OSTI]

    Bevers, Stan; McCorkle, Dean; Hanselka, Daniel

    2009-05-01T23:59:59.000Z

    People--human capital--are an important resource in making a farm or ranch business more competitive in today's business environment. This publication summarizes the ideas about modern personnel management that illustrate ways to attain a farm...

  11. Potential for Natural Gas Storage in Deep Basalt Formations at Canoe Ridge, Washington State: A Hydrogeologic Assessment

    SciTech Connect (OSTI)

    Reidel, Steve P.; Spane, Frank A.; Johnson, Vernon G.

    2005-09-24T23:59:59.000Z

    Between 1999 and 2002, Pacific Gas Transmission Company (PGT) (now TransCanada Pipeline Company) and AVISTA Corporation, together with technical support provided by the Pacific Northwest National Laboratory and the U.S. Department of Energy (DOE) examined the feasibility of developing a subsurface, natural gas-storage facility in deep, underlying Columbia River basalt in south-central Washington state. As part of this project, the 100 Circles #1 well was drilled and characterized in addition to surface studies. This report provides data and interpretations of the geology and hydrology collected specific to the Canoe Ridge site as part of the U.S. DOE funding to the Pacific Northwest National Laboratory in support of this project.

  12. Lamar Buffalo Ranch, Yellowstone National Park, Wyoming | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lamar Buffalo Ranch, a ranch that was set up in the early 1900s to breed buffalo for replacement stock within the park during a time when their numbers were very low. The ranch...

  13. Waunita Hot Springs Ranch Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Springs Ranch Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Waunita Hot Springs Ranch Space Heating Low Temperature Geothermal Facility...

  14. Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature Geothermal Facility Facility...

  15. Linden Ranch | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolar (Texas) Jump to:LignoKemLincoln,Linden Ranch

  16. Busch Ranch | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis a city in Chittenden County, Vermont. It fallsBusch Ranch

  17. Environmental assessment for the relocation and storage of isotopic heat sources, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    As part of a bilateral agreement between the Federal Minister for Research and Technology of the Federal Republic of Germany (FRG) and the DOE, Pacific Northwest National Laboratory (PNNL) developed processes for the treatment and immobilization of high-level radioactive waste. One element of this bilateral agreement was the production of sealed isotopic heat sources. During the mid-1980s, 30 sealed isotopic heat sources were manufactured. The sources contain a total of approximately 8.3 million curies consisting predominantly of cesium-137 and strontium-90 with trace amounts of transuranic contamination. Currently, the sources are stored in A-Cell of the 324 Building. Intense radiation fields from the sources are causing the cell windows and equipment to deteriorate. Originally, it was not intended to store the isotopic heat sources for this length of time in A-cell. The 34 isotopic heat sources are classified as remote handled transuranic wastes. Thirty-one of the isotopic heat sources are sealed, and seals on the three remaining isotopic heat sources have not been verified. However, a decision has been made to place the remaining three isotopic heat sources in the CASTOR cask(s). The Washington State Department of Health (WDOH) has concurred that isotopic heat sources with verified seals or those placed into CASTOR cask(s) can be considered sealed (no potential to emit radioactive air emissions) and are exempt from WAC Chapter 246-247, Radiation Protection-Air Emissions.

  18. ,"Washington Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"BruneiReserves in NonproducingU.S.Summary"LNGShale ProvedLNG Storage

  19. Farm and Ranch Business Management Functions

    E-Print Network [OSTI]

    McCorkle, Dean; Anderson, David P.

    2009-02-04T23:59:59.000Z

    This publication discussess several management functions, including organization, staffing and direction and control. Suggested activities help managers learn how to implement these functions in their farm and ranch businesses....

  20. HENDRY COUNTY CATTLEMEN'S ASSOCIATION YOUTH RANCH RODEO

    E-Print Network [OSTI]

    Watson, Craig A.

    HENDRY COUNTY CATTLEMEN'S ASSOCIATION YOUTH RANCH RODEO February 26, 2012 LaBelle Rodeo Grounds a meeting at 1:00pm prior to rodeo. 3. Arena dress code will be enforced. All contestants must wear cowboy

  1. Incorporating game management into the ranching enterprise

    E-Print Network [OSTI]

    Eaglesham, Mary Judith

    1986-01-01T23:59:59.000Z

    Record of Study INCORPORATING GAME MANAGEMENT INTO THE RANCHING ENTERPRISE A PROFESSIONAL PAPER by MARY JUDITH EAGLESHAM Submitted to the College of Agriculture of Texas A & M University in partial fulfillment of the requirements... for the degree of MASTER OF AGRICULTURE August, 1986 Wildlife Science Department of Wildlife and Fisheries Sciences INCORPORATING GAME MANAGEMENT INTO THE RANCHING ENTERPRISE A Professional Paper by MARY JUDITH EAGLESHAM Approved as to style a Ja . I...

  2. Range Condition: Key to Sustained Ranch Productivity

    E-Print Network [OSTI]

    McGinty, Allan; White, Larry D.

    2000-04-25T23:59:59.000Z

    species composition is the criteria used to make this determination. Range condition is evaluated for each range site on a ranch. Range sites are areas with the potential for producing similar amounts and kinds of vegetation (for example, shallow hillside... site, deep upland site, draw site, etc.). Sites are determined by climatic, soil, topographic and vegetation features. A complete listing and description of all range sites on a ranch can be obtained from the Soil Conservation Service (SCS). Range...

  3. EA-1959: Eightmile Ranch Coho Acclimation Site, Okanogan County, Washington

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant PotomacFinal1935: FinalDraftDraft EnvironmentalofDraftFinal|

  4. Russell Ranch Sustainable Agriculture Facility Agricultural Sustainability Institute

    E-Print Network [OSTI]

    California at Davis, University of

    Russell Ranch Sustainable Agriculture Facility Agricultural Sustainability Institute College of Agricultural Sustainability Institute Professor, Department of LAWR With input from Steve Kaffka, Ford Denison Sustainability Institute The Russell Ranch Sustainable Agriculture Facility is a unique 300-acre facility near

  5. Sandwiches Chicken Bacon Ranch Flatbread .............................3.99

    E-Print Network [OSTI]

    .99 Seasoned chicken strips, bacon, cheddar cheese, tomatoes and ranch dressing on soft, warm flatbread Buffalo ............................................2.99 Cheddar cheese, green pepper, red onion, tomato, lettuce and ranch dressing Salads Wraps BLT cheese and ranch dressing in a soft flour tortilla Chicken Caesar Wrap

  6. Hudson Ranch Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer,Hubbardston, Massachusetts:Clean EnergyHudson Ranch

  7. Warner Springs Ranch Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Facility Facility Warner...

  8. An internship on the Beaverhead Ranch in Southwest Montana

    E-Print Network [OSTI]

    Donnelly, George Arthur

    1997-01-01T23:59:59.000Z

    The Beaverhead Ranch is located in Southwest Montana and operates a 7,000 head cow-calf operation on 257,000 acres. This ranch has been in operation under the management of Koch Beef since 195 1, a subsidiary of Koch Industries in Wichita, KS. My...

  9. Spinning Spur Wind Ranch | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA Region -SonelgazSunbeltSpinning Spur Wind Ranch Jump

  10. Betty Van Dyke: The Van Dyke Ranch

    E-Print Network [OSTI]

    Rabkin, Sarah

    2010-01-01T23:59:59.000Z

    Then I had to go into cold storage, because we would have aman. He would let me cold-storage all my apricots there.day, keep the rest of it in cold storage, and it would last.

  11. Grand Challenge for Basic and Applied Research in Hydrogen Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Grand Challenge for Basic and Applied Research in Hydrogen Storage Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC....

  12. An internship on two experimental ranches

    E-Print Network [OSTI]

    Donges, Randel D

    1994-01-01T23:59:59.000Z

    YER003 YER003 YER007 YER003 YER004 YER003 YER004 YER 003 17 M~aUnit VcC WeC WmB Ya no id river tanks Table 2 (cont'd. ) M~attitI3~sc 'ation VERNON SOILS WEYMOUTH CLAY LOAM 3-5'Yo WINTERS (WICHITA) LOAM 1-3/o WESTOLA VERY FINE... Y Ranch Soils Ilk Range Sites Ori 'nal percents e * M~aUnit Ba Ba Ba Bo Bo M~aUnit Dessrinttoa BADLAND KNOCO OTHER SOILS BADLAND KNOCO '/o 24 23 53 24 23 REDID none YER007 mixed none YER007 18 Table 3 (cont'd. ) M~aUnit ~a...

  13. Using Options to Hedge Farm and Ranch Inputs

    E-Print Network [OSTI]

    Anderson, David P.; McCorkle, Dean; Schwart Jr., Robert B.; O'Brien, Daniel

    1999-09-29T23:59:59.000Z

    A call option is a pricing tool that helps producers manage the price risks associated with farm and ranch inputs. This publication offers a thorough explanation of the way call options work. It includes various strategies producers might use...

  14. A management plan for the Douthitt Ranch Sterling County, Texas

    E-Print Network [OSTI]

    Trail, Justin Neil

    1996-01-01T23:59:59.000Z

    habitat improvement practices will provide increased habitat suitability for wildlife on the ranch. The objectives of habitat management are to maintain optimum cover while providing an abundance of food throughout the year and increased hunting...

  15. Taking stock of renewables: NREL teaches farm and ranch appliations

    SciTech Connect (OSTI)

    Marsh, M.G. [NREL, Golden, CO (United States)

    1996-09-01T23:59:59.000Z

    NREL workshop leaders find a receptive audience for renewable energy technologies among farmers and ranchers. As an exhibitor/participant in Denver`s National Western Stock Show, the National Renewable Energy Laboratory (NREL) of Golden, Colorado sponsored an educational workshop to demonstrate applications of solar and wind energy on the farm and ranch, offering a very non-traditional energy approach to people who pride themselves in tradition. This article describes solar and wind energy applications to farms and ranches.

  16. Seattle, Washington

    Broader source: Energy.gov [DOE]

    Location: Seattle, WashingtonSeed Funding: $20 millionTarget Building Types: Residential, commercial, and institutionalWebsites: www.communitypowerworks.orgwww.seattle.gov/environment/CPWmain...

  17. Agua Caliente Wind/Solar Project at Whitewater Ranch

    SciTech Connect (OSTI)

    Hooks, Todd; Stewart, Royce

    2014-12-16T23:59:59.000Z

    Agua Caliente Band of Cahuilla Indians (ACBCI) was awarded a grant by the Department of Energy (DOE) to study the feasibility of a wind and/or solar renewable energy project at the Whitewater Ranch (WWR) property of ACBCI. Red Mountain Energy Partners (RMEP) was engaged to conduct the study. The ACBCI tribal lands in the Coachella Valley have very rich renewable energy resources. The tribe has undertaken several studies to more fully understand the options available to them if they were to move forward with one or more renewable energy projects. With respect to the resources, the WWR property clearly has excellent wind and solar resources. The DOE National Renewable Energy Laboratory (NREL) has continued to upgrade and refine their library of resource maps. The newer, more precise maps quantify the resources as among the best in the world. The wind and solar technology available for deployment is also being improved. Both are reducing their costs to the point of being at or below the costs of fossil fuels. Technologies for energy storage and microgrids are also improving quickly and present additional ways to increase the wind and/or solar energy retained for later use with the network management flexibility to provide power to the appropriate locations when needed. As a result, renewable resources continue to gain more market share. The transitioning to renewables as the major resources for power will take some time as the conversion is complex and can have negative impacts if not managed well. While the economics for wind and solar systems continue to improve, the robustness of the WWR site was validated by the repeated queries of developers to place wind and/or solar there. The robust resources and improving technologies portends toward WWR land as a renewable energy site. The business case, however, is not so clear, especially when the potential investment portfolio for ACBCI has several very beneficial and profitable alternatives.

  18. EA-1840: California Valley Solar Ranch Project in San Luis Obispo...

    Broader source: Energy.gov (indexed) [DOE]

    0: California Valley Solar Ranch Project in San Luis Obispo County, CA EA-1840: California Valley Solar Ranch Project in San Luis Obispo County, CA August 3, 2011 EA-1840: Final...

  19. Mozzarella Cheese Sticks served with ranch dressing & marinara $4 Potato Croquettes

    E-Print Network [OSTI]

    Glasser, Adrian

    Mozzarella Cheese Sticks­ served with ranch dressing & marinara $4 Potato Croquettes $4 S T A R T E

  20. Reproductive and carcass characteristics of nilgai antelope on the King Ranch

    E-Print Network [OSTI]

    Schulze, Steve Ray

    1985-01-01T23:59:59.000Z

    Division, King Ranch. 29 31 Seasonal variations of mean live-bled weights of nil gai harvested on the Norias Division, King Ranch. 32 Year-class variations in dressing percentages (Dp) of nil gai harvested on the Norias Division, King Ranch. 34... Mean dressing percentages and standard deviations of female ni1 gai, one-year -old and older, according to reproductive condition. Norias Division, King Ranch. 36 10 Seasonal variations in dressing percentage (Dp) of nilgai harvested on the Norias...

  1. Blasting Attenuation Study Crystal Ridge, MacDonald Ranch and MacDonald Highlands

    E-Print Network [OSTI]

    #12;#12;#12;#12;Blasting Attenuation Study Crystal Ridge, MacDonald Ranch and MacDonald Highlands Ridge, MacDonald Ranch, and MacDonald Highlands. The purpose of this study was to · evaluate seismograph recorded in the Crystal Ridge, MacDonald Ranch, and MacDonald Highlands areas from 2/25/05 to 3

  2. What's Happening in the Texas Farm and Ranch Land Market.

    E-Print Network [OSTI]

    Andrews, F. B.; Wooten, A. B.

    1965-01-01T23:59:59.000Z

    of the 1963 Texas land market activity is based on information JJ. obtained from 26 sample counties in 16 of the 17 type-of-farming area\\. In each sample county, specific data were obtained from warranty deed recortl\\ cri all bona fide sales containing 20... farm and ranch income has fluctuated. Results of the 196r land market study deviated from this pattern. Land prices continued to ~icr and volume of land sales increased, reversing its position from the trend of a constant decrease. Net farm and ranch...

  3. Hot Springs Ranch Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska:Horace,Geothermal Area Jump to:RanchRanch

  4. NATURAL RESOURCE SURVEY AND INVENTORY B-BAR RANCH, MONTANA

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    the best management decisions for the property. The Land Resources and Environmental Sciences senior and Environmental Sciences Montana State University Fall 2005 #12;Table of Contents 1. Introduction on production into a focus on conservation and holistic practices. The goals of these ranches are shifting from

  5. Energy Storage Systems 2014 Peer Review Presentations - Poster...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Energy Storage Systems 2014 Peer Review Presentations - Poster Session 4 OE's Energy Storage Systems (ESS) Program conducted a peer review and update meeting in Washington, DC on...

  6. Energy Storage Systems 2014 Peer Review Presentations - Poster...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Energy Storage Systems 2014 Peer Review Presentations - Poster Session 8 OE's Energy Storage Systems (ESS) Program conducted a peer review and update meeting in Washington, DC on...

  7. President Reagan Calls for a National Spent Fuel Storage Facility...

    National Nuclear Security Administration (NNSA)

    Spent Fuel Storage Facility Washington, DC The Reagan Administration announces a nuclear energy policy that anticipates the establishment of a facility for the storage of...

  8. EA-0981: Solid Waste Retrieval Complex, Enhanced Radioactive and Mixed Waste Storage Facility, Infrastructure Upgrades, and Central Waste Support Complex, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to retrieve transuranic waste (TRU), provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3, and mixed...

  9. Caldwell Ranch Exploration and Confirmation Project, Northwest Geysers, CA

    SciTech Connect (OSTI)

    Walters, Mark A.

    2013-04-25T23:59:59.000Z

    The purpose of the Caldwell Ranch Exploration and Confirmation Project was to drill, test, and confirm the present economic viability of the undeveloped geothermal reservoir in the 870 acre Caldwell Ranch area of the Northwest Geysers that included the CCPA No.1 steam field. All of the drilling, logging, and sampling challenges were met. ? Three abandoned wells, Prati 5, Prati 14 and Prati 38 were re-opened and recompleted to nominal depths of 10,000 feet in 2010. Two of the wells required sidetracking. ? The flow tests indicated Prati 5 Sidetrack 1 (P-5 St1), Prati 14 (P-14) and Prati 38 Sidetrack 2 (P-38 St2) were collectively capable of initially producing an equivalent of 12 megawatts (MWe) of steam using a conversion rate of 19,000 pounds of steam/hour

  10. Geothermometry At Hot Springs Ranch Area (Szybinski, 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico - AInformation Hot Springs Ranch

  11. Rafter J Ranch, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosource HistoryRaft River Sector GeothermalRafter J Ranch,

  12. The impact of cooperative, group, and individual ranching systems on resource productivity in South-Central Kenya

    E-Print Network [OSTI]

    Onchoke, Sospeter Nyamwaro

    1986-01-01T23:59:59.000Z

    , company, cooperative, individual, group, and grazing blocks) in Kenya's rangelands began about 15 years ago. This study analy- izes the impact of group cooperative and individual ranching sys- tems on resource productivity in South-Central Kenya...-ranch grazing, annual ranch incomes and expenditures, and ranch assets. To measure livestock productivity, net returns per unit of some specified resources (people, land, and livestock) were used; hence budget analysis was adopted as the primary analytical...

  13. UNIVERSITY OF WASHINGTON SEATTLE, WASHINGTON 98195

    E-Print Network [OSTI]

    and recommendations. In reviewing the current status of fusion research and its place in the world energy picture, weUNIVERSITY OF WASHINGTON SEATTLE, WASHINGTON 98195 College of Engineering Department of Nuclear of Energy 1000 Independence Avenue Washington, D.C. 20585 Dear Dr. Hunter: The Magnetic Fusion Advisory

  14. Some Economic Effects of Drouth on Ranch Resources.

    E-Print Network [OSTI]

    Ward, J. M.; Bonnen, C. A.

    1955-01-01T23:59:59.000Z

    expected outside income averaging $3,800. By 1953, the? number had increased to 25 and the average amount was $3,865. Most of this outside income was from mineral leases, rentals and royalties and from wages but the source was not always specified...,900 in 1953. These fluctuations were largely the result of shifting leases. The average cost of leases fell from 53 cents per acre in 1950 to 48 cents in Figure 8. This picture, also taken on the Ranch Experi- ment Station on the same type of soil and near...

  15. Forrest Ranch Acquisition, Annual Report 2001-2002.

    SciTech Connect (OSTI)

    Smith, Brent

    2003-08-01T23:59:59.000Z

    Through their John Day Basin Office, the Confederated Tribes of Warm Springs Reservation of Oregon (Tribes) acquired the Forrest Ranch during July of 2002. The property consists of two parcels located in the John Day subbasin within the Columbia basin. The mainstem parcel consists of 3,503 acres and is located 1/2 mile to the east of Prairie City, Oregon on the mainstem of the John Day River. The middle fork parcel consists of 820 acres and is located one mile to the west of the town of Austin, OR on the middle fork John Day River. The Forrest Ranch Project is under a memorandum of agreement with the Bonneville Power Administration (BPA) to provide an annual written report generally describing the real property interests of the project and management activities undertaken or in progress. The Forrest Ranch acquisition was funded by BPA as part of their program to protect, mitigate, and enhance fish and wildlife habitat affected by the operation of their hydroelectric facilities on the Columbia River and its tributaries. Following lengthy negotiations with the BPA and property owner, the Tribes were able to conclude the acquisition of the Forrest Ranch in July of 2002. The intent of the acquisition project was to partially mitigate fish and wildlife impacts for the John Day Dam on the Columbia River as outlined in the Northwest Power Planning Council's Wildlife Program (NPPC 1994, section 11.1, section 7.6). While the Tribes hold fee-title to the property, the BPA has assured a level of program funding through a memorandum of agreement and annual statement of work. As early as 1997, the Tribes identified this property as a priority for restoration in the John Day basin. In 2000, the Tribes arranged an agreement with the landowner to seek funds for the acquisition of both the Middle Fork and upper Mainstem John Day River holdings of Mr. John Forrest. This property had been a priority of not only the Tribes, but of many other basin natural resource agencies. The contract period was the first year of the program with December 2001 through July 2nd 2002 being previous to acquisition of the property. The majority of the activities conducted under the contract period were spent on O&M and pre acquisition activities.

  16. Forrest Ranch Management and Implementation, Annual Report 2002-2003.

    SciTech Connect (OSTI)

    Smith, Brent

    2004-01-01T23:59:59.000Z

    Through their John Day Basin Office, the Confederated Tribes of Warm Springs Reservation of Oregon (Tribes) acquired the Forrest Ranch during July of 2002. The property consists of two parcels located in the John Day subbasin within the Columbia basin. The mainstem parcel consists of 3,503 acres and is located 1/2 mile to the east of Prairie City, Oregon on the mainstem of the John Day River. The middle fork parcel consists of 820 acres and is located one mile to the west of the town of Austin, OR on the middle fork John Day River. The Forrest Ranch Project is under a memorandum of agreement with the Bonneville Power Administration (BPA) to provide an annual written report generally describing the real property interests of the project and management activities undertaken or in progress. The Forrest Ranch acquisition was funded by BPA as part of their program to protect, mitigate, and enhance fish and wildlife habitat affected by the operation of their hydroelectric facilities on the Columbia River and its tributaries. Following lengthy negotiations with the BPA and property owner, the Tribes were able to conclude the acquisition of the Forrest Ranch in July of 2002. The intent of the acquisition project was to partially mitigate fish and wildlife impacts for the John Day Dam on the Columbia River as outlined in the Northwest Power Planning Council's Wildlife Program (NPPC 1994, section 11.1, section 7.6). While the Tribes hold fee-title to the property, the BPA has assured a level of program funding through a memorandum of agreement and annual statement of work. As early as 1997, the Tribes identified this property as a priority for restoration in the John Day basin. In 2000, the Tribes arranged an agreement with the landowner to seek funds for the acquisition of both the Middle Fork and upper Mainstem John Day River holdings of Mr. John Forrest. This property had been a priority of not only the Tribes, but of many other basin natural resource agencies. The contract period was the first year of the program with December 2001 through July 2nd 2002 being previous to acquisition of the property. The majority of the activities conducted under the contract period were spent on O&M and pre acquisition activities.

  17. Hot Springs Ranch Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska:Horace,Geothermal Area Jump to:Ranch

  18. Brazos Wind Ranch Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGEFairfield(CTIAdvancedOffshore Jump to:Ranch

  19. Fly Ranch Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlintFlux Power Incorporated Jump to:Fly Ranch

  20. Golden Spread Panhandle Wind Ranch | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place: Golden, CO Website:Panhandle Wind Ranch Facility

  1. King Mountain Wind Ranch I | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:Keystone Clean Air Jump to:King Abdulaziz City forRanch

  2. Production, Storage, and FC Analysis

    Broader source: Energy.gov [DOE]

    Presentation on Production, Storage, and FC Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

  3. EA-1826: AV Solar Ranch One Project in Los Angeles and Kern Counties...

    Broader source: Energy.gov (indexed) [DOE]

    Angeles and Kern Counties, CA August 1, 2011 EA-1826: Final Environmental Assessment AV Solar Ranch One Project, Los Angeles and Kern Counties, California August 2, 2011 EA-1826:...

  4. The Price of Texas Farm and Ranch Lands 1920-1945.

    E-Print Network [OSTI]

    Crockett, Samuel L.; Southern, John H. (John Hoyle); Motheral, Joe R. (Joe Rankin)

    1947-01-01T23:59:59.000Z

    1 r -- --I TEXAS AGRICULTURAL EXPERIBIENT STATION I i R. D. LEWIS, DIRECTOR College Station. 'Texas i i BULLETIN NO. 688 ..\\l'RIIJ, 1947 i THE PRICE OF TEXAS FARM AND RANCH LANDS JOE R. MOTHERAL Department of Agricultural Economics... of'serious concern, particularly during periods of rising land prices. During the past five years there has been an insistent demand for information about trends in the market for farm and ranch land in Texas. The Texas Agricultural Experiment...

  5. An overview of an extensively managed beef cattle operation: King Ranch, Kingsville, Texas

    E-Print Network [OSTI]

    Hanselka, Jeffrey John

    1994-01-01T23:59:59.000Z

    AN OVERVIEW OF AN EXTENSIVELY MANAGED BEEF CATTLE OPERATION: KING RANCH KINGSVILLE, TEXAS A PROFESSIONAL PAPER by Jeffrey John Hanselka Submitted to the College of Agriculture of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF AGRICULTURE November 1994 Major Subject: Animal Science Beef Cattle Science AN OVERVIEW OF AN EXTENSIVELY MANAGED BEEF CATTLE OPERATION: KING RANCH KINGSVILLE, TEXAS A Professional Paper by Jeffrey John...

  6. Response of Vegetation to Livestock Grazing at the Texas Experimental Ranch.

    E-Print Network [OSTI]

    Heitschmidt, R.K.; Dowhower, S.L.; Gordon, R.A.; Price, D.L.

    1986-01-01T23:59:59.000Z

    . Specific appreciation is expressed to the many project leaders, research associates, technicians, and student workers who assisted in this endeavor. Specific thanks are ex tended to Dr. W. J. (Dub) Waldrip, initial project leader at the ranch, for his... temperatures range from 11?C in January to 36?C in July. The frost free growing season generally ex tends from March to November. Physiography and Soils The ranch is located in the Cen tral Lowland Physiographic Pro vince (Godfrey et al., 1973...

  7. Most Viewed Documents for Energy Storage, Conversion, and Utilization...

    Office of Scientific and Technical Information (OSTI)

    of American Railroads, Washington, DC (United States) (1996) 30 THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER PROJECT STAFF (2011) 30 High-albedo materials...

  8. Hydrogen Storage Systems Anlaysis Working Group Meeting, December...

    Broader source: Energy.gov (indexed) [DOE]

    This document provides a summary of the Hydrogen Storage Systems Anlaysis Working Group meeting in December 2006 in Washington, D.C. ssawgminutes1206.pdf More Documents &...

  9. Washington Underground Natural Gas Storage - All Operators

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980Additions89 5.87Same1.7 1.8,800

  10. Washington Underground Natural Gas Storage Capacity

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980Additions89 5.87Same1.7

  11. Washington: Putting More Solar on More Rooftops in Washington...

    Energy Savers [EERE]

    Putting More Solar on More Rooftops in Washington State Washington: Putting More Solar on More Rooftops in Washington State November 8, 2013 - 12:00am Addthis EERE SunShot...

  12. DOE Issues Final Mercury Storage Environmental Impact Statement: Texas Site Is Preferred for Long-Term Mercury Storage

    Broader source: Energy.gov [DOE]

    WASHINGTON The Department of Energy has prepared a Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement to analyze the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven locations

  13. Barron's Own Chicken-Fried Carrot Sticks breaded and lightly fried until golden brown; served with homemade sriracha ranch $4

    E-Print Network [OSTI]

    Azevedo, Ricardo

    with homemade sriracha ranch $4 Potato Croquettes-- whipped potatoes blended with seasonal ingredients Cheese Sticks­ served with homemade ranch and marinara $4 S T A R T E R S SERVING LUNCH * Monday ­ Friday-- fresh romaine, penne pasta, chicken breast and parmesan cheese tossed in Caesar dressing; finished

  14. 2015 Washington Auto Show

    Broader source: Energy.gov [DOE]

    Secretary of Energy Ernest Moniz attended the 2015 Washington Auto Show in Washington, DC on January 22, 2015. He delivered brief remarks on the Energy Department's role in electric and fuel cell vehicle technology, and visited several of the exhibits featuring recent additions to the vehicles market.

  15. George Washington Carver Recognition Day

    Broader source: Energy.gov [DOE]

    In commemoration of George Washington Carvers life and work, Congress declared January 5 as George Washington Carver Recognition Day.

  16. Origin of abnormal pressures in the lower Vicksburg, McAllen Ranch field, Hidalgo County, Texas

    E-Print Network [OSTI]

    Habeck, Mark Frederick

    1982-01-01T23:59:59.000Z

    for the degree of MASTER OF SCIENCE May 1982 Ma]or Subject: Geology ORIGIN OF ABNORMAL PRESSURES IN THE LONER VICKSBURG, MCALLEN RANCH FIELD, HIDALGO COUNTY, TEXAS A Thesis by MARK FREDERICK HABECK Approved as to style and content by: (Chairman... of Committee) / 'c. ' yi~y ~ ~ ~ "C' '"I (Member) (Member) gpss (H o epart nt) May 1982 ABSTRACT Origin of Abnormal Pressures in the Lower Vicksburg, McAllen Ranch Field, Hidalgo County, Texas. (May, 1982) Mark Frederick Habeck, B. A. , Tri. nity...

  17. Energy Matters in Washington State

    E-Print Network [OSTI]

    Collins, Gary S.

    Energy Matters in Washington State Energy Matters in Washington State www.energy.wsu.edu/library/ November 2009 #12;905 Plum Street SE, Building 3 P.O. Box 43169 Olympia, Washington 98504-3169 Energy University Extension Energy Program. 905 Plum Street SE, Building 3, P.O. Box 43169, Olympia, Washington

  18. Deforestation and Cattle Ranching in the Brazilian Amazon: External Capital and Household Processes

    E-Print Network [OSTI]

    Walker, Robert T.

    Deforestation and Cattle Ranching in the Brazilian Amazon: External Capital and Household Processes decomposes recent deforestation in four study areas in the Brazilian Amazon into components associated deforestation with respect to the proximate causes of their farming systems, and the household drivers

  19. Hydrogeologic Assessment of the 4-S Land and Cattle CompanyRanch

    SciTech Connect (OSTI)

    Quinn, Nigel W.T.

    2006-04-10T23:59:59.000Z

    Hydrogeological assessment of the 4-S Land and Cattle Company (4-S Ranch) was conducted using a combination of field investigations and a survey of available literature from nearby agricultural water districts and other entities. The 4-S Ranch has been able to meet most of its own water needs providing irrigated pasture for beef cattle by an active program of shallow groundwater pumping in these miconfined aquifer above the Corcoran Clay. Comparison of groundwater pumping on the 4-S Ranch property with groundwater pumping in the adjacent Merquin and Stevinson Water Districts shows great similarity in the well screened depths and the quality of the groundwater produced by the well fields. The pump yield for the eight active production wells on the 4-S property are comparable to the production and drainage wells in the adjacent water districts. Like these Districts the 4-S Ranch lies close to the Valley trough in a historic discharge area. The 4-S Ranch is unique in that it is bounded and bisected by several major water conveyance facilities including Bear Creek. Although the large number of potential recharge structures would suggest significant groundwater conjunctive use potential the major well field development has occurred along the length of the Eastside Canal. The Eastside Canal is known to be leaky above the ''A'' Clay the Canal passes through sandy areas and experiences significant groundwater seepage. This seepage can be intercepted by adjacent groundwater wells. Pumping adjacent to, and along the alignment of the Canal, may induce higher rates of seepage from the Eastside Canal. Groundwater quality below and adjacent to the Eastside Canal is very good, reflecting the origin of this diverted water from the Merced River. Most of the pumpage occurs in a depth interval between 30 ft and 130 ft. Safe yield estimates made using the available data show that the 4-S Ranch has sufficient resources to meet its own needs. Further exploitation of the groundwater will be limited if the leakage from the Eastside Bypass, Mariposa Bypass and Bear Creek are insufficient to replace the pumped water on an average annual basis. Should any future lining of the Eastside Canal occur, it would have a significant impact on the groundwater resource potential of the 4-S Ranch and impair the overall quality of the available water supply.

  20. Preliminary Notice of Violation, Washington Closure Hanford,...

    Broader source: Energy.gov (indexed) [DOE]

    Washington Closure Hanford, LLC - WEA-2010-02 Preliminary Notice of Violation, Washington Closure Hanford, LLC - WEA-2010-02 August 19, 2010 Issued to Washington Closure Hanford,...

  1. US DOE Hydrogen and Fuel Cell Technology - Composites in H2 Storage...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Hydrogen and Fuel Cell Technology - Composites in H 2 Storage & Delivery Fiber Reinforced Polymer Composite Manufacturing Workshop Washington, DC January 13, 2014 Scott...

  2. The Senescent Mimbres Population: An Application of the Transition Analysis to the NAN Ranch Ruin Skeletal Sample

    E-Print Network [OSTI]

    Lovings, Aline

    2012-02-14T23:59:59.000Z

    This study uses Transition Analysis on the Mimbres skeletal remains of the NAN Ranch Ruin to provide a more complete picture of its demography. Previous attempts to reconstruct the demographic structure of prehistoric populations have been hindered...

  3. Washington: Washington's Clean Energy Resources and Economy (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Washington.

  4. Washington Residents, Agencies, NGOs Specialists

    E-Print Network [OSTI]

    Collins, Gary S.

    Washington Residents, Agencies, NGOs Specialists County Directors, County Faculty, Staff, and Volunteers Department Chairs District Directors County Government Issue Teams Research and Extension Centers WASHINGTON STATE UNIVERSITY CAMPUSES Pullman Spokane Tri-Cities Vancouver Agriculture Program Director R

  5. Pacific AC Intertie (Oregon -Washington -Canada)

    E-Print Network [OSTI]

    HOOPA WILLOW CREEK RUSS RANCH MAPLE CREEK GROUSE CREEK BIG BAR Weaverville FRENCH GULCH ORICK BIG LAGOON TRINITY LEWISTON WEAVERVILLE DOUGLAS CITY WEAVERVILLE TRINITY HEADGATE CAPAY GLENN HIGH LINE ORLAND B

  6. Quantitative analyses of plant remains from the NAN Ranch Ruin, Grant County, New Mexico

    E-Print Network [OSTI]

    Rose, Carolyn June

    2004-11-15T23:59:59.000Z

    cottonwood, ponderosa pine (Pinus ponderosa Lawson), oak, unspecified pine, Douglas fir [Pseudotsuga menziesii (Mirb.) Franco], boxelder, walnut, ash, and alder in macrobotanical samples from the NAN Ranch Ruin. Ponderosa pine and Douglas fir, typical... (N440/W510) consisted of 1.00 m2 stratigraphic blocks that were excavated in 10 cm levels. Late Pithouse midden deposits in the Southeast Midden area were 60 to 80 cm thick and contained ash lenses that Shafer (1991a:4,6) attributed to fire...

  7. Washington State Electric Vehicle

    E-Print Network [OSTI]

    California at Davis, University of

    Washington State Electric Vehicle Implementation Bryan Bazard Maintenance and Alternate Fuel Technology Manager #12;Executive Order 14-04 Requires the procurement of electric vehicles where and equipment with electricity or biofuel to the "extent practicable" by June 2015 1. The vehicle is due

  8. Hydrogen Storage Systems Analysis Working Group Meeting Argonne DC Offices

    E-Print Network [OSTI]

    Hydrogen Storage Systems Analysis Working Group Meeting Argonne DC Offices L'Enfant Plaza, Washington, DC December 4, 2007 SUMMARY REPORT Compiled by Romesh Kumar Argonne National Laboratory Working Group Meeting December 4, 2007 Argonne DC Offices, L'Enfant Plaza, Washington, DC Meeting

  9. northeastern Washington's Okanogan County. The

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7.31 acre habitat acquisition in Washington's Okanogan River Watershed for fish habitat mitigation (see map). The Okanogan River Watershed was selected as a focus for restoration...

  10. Washington City Power- Net Metering

    Broader source: Energy.gov [DOE]

    Washington City adopted a net-metering program, including interconnection procedures, in January 2008.* Net metering is available to residential and commercial customers that generate electricity...

  11. Trend of Taxes on Farm and Ranch Real Estate in Texas.

    E-Print Network [OSTI]

    Gabbard, L. P. (Letcher P.)

    1935-01-01T23:59:59.000Z

    Extension Service. *In moperation with State Department of Agriculture. The average tax per acre on farm and ranch real estate rose gradually from 8.4 cents in 1913' to 26 cents in 1931, and fell to 19.6 cents in 1933. Concurrently, the prices of farm... products in Texas rose from the base level (100 per cent) in 1913 to 222 per cent in 1919, the highest point reached by prices during the period of twenty-one years. From this high level reached in 1919, prices declined to 51 per cent in 1932...

  12. Cow-Calf and Vegetation Response to Heavy Rates of Stocking at the Texas Experimental Ranch.

    E-Print Network [OSTI]

    Heitschmidt, R.K.; Johnson, A.B.; Frasure, J.R.; Price, D.L.

    1983-01-01T23:59:59.000Z

    TRIAL J A 0 D F A J A 0 D F A J 1978 1979 1980 Figure 2. Monthly precipitation (em) from June 1978 through August 1980 at the Texas Experimental Ranch and 20-year monthly average. A 3 that the most frequently occurring species on this site... from November 1979 through August 1980 showed both date and grazing treatment effects were highly signif icant (P<0.01). Both-years the date effect reflected annual variations in weight considered normal for producing cows in this region (Fig. 3...

  13. Biofuels in Oregon and Washington

    E-Print Network [OSTI]

    PNNL-17351 Biofuels in Oregon and Washington A Business Case Analysis of Opportunities and Challenges Prepared by Pacific Northwest National Laboratory #12;#12;Biofuels in Oregon and Washington, particularly in light of the recent growth experienced by the biofuels industry in the Midwest. Policymakers

  14. Harold Washington Social Security Administration (SSA) Center...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Harold Washington Social Security Administration (SSA) Center Water Conservation and Green Energy Harold Washington Social Security Administration (SSA) Center Water Conservation...

  15. Washington: Graphene Nanostructures for Lithium Batteries Recieves...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

  16. Washington Energy Facility Site Evalutation Council - Generalized...

    Open Energy Info (EERE)

    Washington Energy Facility Site Evalutation Council - Generalized Siting Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Chart: Washington Energy...

  17. Rosedale Ranch oil field, new shallow pay in an old field

    SciTech Connect (OSTI)

    Nahama, R.; Sterling, R. (Nahama and Weagant Energy Co., Bakersfield, CA (United States))

    1991-02-01T23:59:59.000Z

    The Rosedale Ranch oil field, located on Sec. 1,2, T29S, R26E, in Kern County, California, was discovered by Chevron in 1959. The main pay zone was the Miocene Lerdo sandstone at 4,400 ft depth. Sixty-four wells have been drilled to date by Chevron to develop the lower zone. Five wells were completed in the shallower Pliocene Etchegoin Formation. Nahama and Weagant Energy Company in 1985 drilled 3,800 ft well based on a prospect by consultant Ernie Rennie to test the Etchegoin, resulting in a discovery. a total of 13 wells have been drilled to date producing approximately 500 BOPD from the Etchegoin with additional development potential present. The completion technique proved to be critical to good initial production. Nahama and Weagant Energy Company tried slotted lines against the formation with poor results. Subsequent recompletions with undereaming, gravelpacking, and larger slotted lines have resulted in commercial rates out of the Etchegoin. The Rosedale Ranch oil field is located on a faulted anticlinal structure. The main fault is north-trending down to the basin normal fault. Oil produced from the Etchegoin is 13{degree} gravity.

  18. The Intersection of Ownership and Leadership in Texas Ranch House: Lessons in Leadership for the Family Business

    E-Print Network [OSTI]

    Brown, Tony

    2012-04-21T23:59:59.000Z

    to a focus on the application of the leadership lessons learned to the roles and functions of the owner-leader and his spouse in a start-up, family-owned business enterprise. The examined case is the short-lived Cooke Ranch, documented...

  19. Transformative Wave Technologies Kent, Washington

    E-Print Network [OSTI]

    California at Davis, University of

    Transformative Wave Technologies Kent, Washington www.transformativewave.com #12;#12;North America are shifted to off peak times #12;#12;Transformative Wave Technologies www.transformativewave.com #12

  20. EA-1840: Department of Energy Loan Guarantee for the SunPower, Systems California Valley Solar Ranch Project in San Luis Obispo County, California

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) conducted an environmental assessment (EA)that analyzed the potential environmental impacts associated with the California Valley Solar Ranch(CVSR) project, a...

  1. Geology of the McMillan Ranch in Mason, Texas: An Assessment of the Nature of Normal Faults in the Mason Area

    E-Print Network [OSTI]

    Harper, Rebecca Anne

    2011-10-21T23:59:59.000Z

    fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2011 Major Subject: Geology Geology of the McMillan Ranch in Mason, Texas; An Assessment of the Nature of Normal Faults... of Department, Andreas Kronenberg August 2011 Major Subject: Geology iii ABSTRACT Geology of the McMillan Ranch in Mason, Texas: An Assessment of the Nature of Normal Faults in the Mason Area. August 2011 Rebecca Anne Harper, B.S., Texas A...

  2. Type B Accident Investigation At Washington Closure Hanford,...

    Broader source: Energy.gov (indexed) [DOE]

    Investigation At Washington Closure Hanford, LLC, Employee Fall Injury on July 1, 2009, At The 336 Building, Hanford Site, Washington Type B Accident Investigation At Washington...

  3. Effects of commercialized deer hunting arrangements on ranch organization, management, costs, and income--the Llano Basin of Texas

    E-Print Network [OSTI]

    Forrest, Nathan Kelly

    1968-01-01T23:59:59.000Z

    . To determine the returns possible from deer hunting leases on the representative ranches if the harvest rate recommen- dations of wildlife management personnel are followed. 18 This research ccntributes to Regional Research project W-79, "Economic Analysis... Income and Expense Summary Leasing Arrangements Used to Operate Shooting Preserves Description of Hunting Systems Season lease Day lease Season lease with doe hunting option Season and day lease combination Relative Profitability of the Various...

  4. University of Washington DIRECTORY OF CLASSESlU

    E-Print Network [OSTI]

    Kaminsky, Werner

    "'\\ University of Washington O' .... DIRECTORY OF CLASSESl .........................................................................................................5 Phone Directory

  5. Washington Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYearFeet) Year Jan Feb% ofYear Jan FebNet

  6. Washington Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYearFeet) Year Jan Feb% ofYear3.99 4.22

  7. Washington Natural Gas Underground Storage Net Withdrawals (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYearFeet) Year Jan Feb% ofYear3.99

  8. Washington Natural Gas Underground Storage Volume (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYearFeet) Year Jan Feb% ofYear3.99Underground

  9. Washington Liquefied Natural Gas Additions to and Withdrawals from Storage

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980 267,227Thousand-657 532 0 100 16

  10. Washington Natural Gas Injections into Underground Storage (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980 267,227Thousand-657DecadeFeet)

  11. Washington Natural Gas Injections into Underground Storage (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980

  12. Washington Natural Gas LNG Storage Additions (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980Additions (Million Cubic Feet)

  13. Washington Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980Additions (Million Cubic

  14. Washington Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980Additions89 5.87 5.38 5.15

  15. Washington Natural Gas Underground Storage Net Withdrawals (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980Additions89 5.87 5.38 5.15Feet)

  16. Washington Natural Gas Underground Storage Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980Additions89 5.87 5.38

  17. Washington Natural Gas Underground Storage Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980Additions89 5.87 5.38Year Jan Feb

  18. Washington Natural Gas in Underground Storage (Base Gas) (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980Additions89 5.87 5.38YearFeet)

  19. Washington Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980Additions89 5.87

  20. Washington Working Natural Gas Underground Storage Capacity (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980Additions89 5.87Same1.7Feet)

  1. Washington Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007York"Hawaii" "Sector",Foot)Vented and FlaredYearYear Jan Feb Mar Apr May Jun

  2. EIS-0456: Cushman Hydroelectric Project, Tacoma, Washington

    Broader source: Energy.gov [DOE]

    This EIS is for the design and construction of certain components of the Cushman Hydroelectric Project in Mason County, Washington.

  3. Denman Forestry Issues Series: Washington's Forest Regulations

    E-Print Network [OSTI]

    Borenstein, Elhanan

    Denman Forestry Issues Series: Washington's Forest Regulations and Their Impacts on The Private College of Forest Resources continued its Denman Forestry Issues Series on May 30, 2001. Alumni landowners. Policy analysts and speakers representing the Washington Farm Forestry Assn., Washington Forest

  4. Energy Storage

    ScienceCinema (OSTI)

    Paranthaman, Parans

    2014-06-23T23:59:59.000Z

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  5. Energy Storage

    SciTech Connect (OSTI)

    Paranthaman, Parans

    2014-06-03T23:59:59.000Z

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  6. Radiological Survey Results for Areas A1 North, A5A, A6, and B2 at the Molycorp Washington Remediation Project, Washington, Pennsylvania

    SciTech Connect (OSTI)

    W.C. Adams

    2007-03-13T23:59:59.000Z

    Perform radiological surveys of the Molycorp Washington Remediation Project (MWRP) facility in Washington, Pennsylvania

  7. ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE

    SciTech Connect (OSTI)

    NONE

    1998-09-01T23:59:59.000Z

    Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered and a typical plant layout was developed. In addition a geomechanical review of the proposed cavern design was performed, evaluating the stability of the mine rooms and shafts, and the effects of the refrigerated gas temperatures on the stability of the cavern. Capital and operating cost estimates were also developed for the various temperature cases considered. The cost estimates developed were used to perform a comparative market analysis of this type of gas storage system to other systems that are commercially used in the region of the study.

  8. Spent fuel storage system for LMFBR fuel experiments

    SciTech Connect (OSTI)

    Seay, J.M.; Gruber, W.J.

    1983-01-01T23:59:59.000Z

    Fuel that had been irradiated in the Argonne National Laboratory Experimental Breeder Reactor II (EBR-II) at Idaho Falls, Idaho, and examined at the Hanford Engineering Development Laboratory at Richland, Washington, was placed in long term retrievable storage utilizing a system designed at Hanford. The Spent Fuel Storage Cask system was designed for transport and storage of a large quantity of spent fuel at the Hanford 200 Area transuranic (TRU) asphalt storage pad. The entire system is designed for long term retrievable storage to allow future reprocessing of the fuel. The system was designed to meet the criticality, shielding, and thermal requirements for a maximum fuel load of four kilograms fissile. The Spent Fuel Storage Cask was built to transport and store the fuel from EBR-II on the TRU asphalt storage pad.

  9. Energy Northwest, Washington Bonneville Power Administration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    And Research WWW.STANDARDANDPOORS.COMRATINGSDIRECT APRIL 9, 2015 1 1393164 | 300019859 Energy Northwest, Washington Bonneville Power Administration, Oregon; Wholesale Electric...

  10. Bonneville Power Administration, Oregon Energy Northwest, Washington...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bonneville Power Administration, Oregon Energy Northwest, Washington; Wholesale Electric Primary Credit Analyst: David N Bodek, New York (1) 212-438-7969; david.bodek@standardandpo...

  11. Washington: a guide to geothermal energy development

    SciTech Connect (OSTI)

    Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

    1980-06-01T23:59:59.000Z

    Washington's geothermal potential is discussed. The following topics are covered: exploration, drilling, utilization, legal and institutional setting, and economic factors of direct use projects. (MHR)

  12. HH-sII in small, icy bodies? Hydrogen Storage in Molecular Compounds

    E-Print Network [OSTI]

    Downs, Robert T.

    · HH-sII in small, icy bodies? Hydrogen Storage in Molecular Compounds 0.2 GPa 10 kPa 77 K 110 140Geophysical Laboratory, Carnegie Institution of Washington Hydrogen Storage H4M holds the largest amount of its atomic number. So: it is easier to sense light atoms, such as hydrogen, in the presence of heavier

  13. Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

  14. Exploration of the Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada

    SciTech Connect (OSTI)

    Dick Benoit; David Blackwell

    2006-01-01T23:59:59.000Z

    The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some exploration activity. Permitting activities began in Dec. 2004 for the temperature-gradient holes but took much longer than expected with all drilling permits finally being received in early August 2005. The drilling and geochemical sampling occurred in August 2005. Ten temperature gradient holes up to 500 deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300 to 400 encountered temperatures close to the expected regional thermal background conditions. These four holes failed to find any evidence of a large thermal anomaly surrounding the UHCR hot springs. The fifth hole, located within a narrow part of Hot Creek Canyon, encountered a maximum temperature of 81 oF at a depth of 105 but had cooler temperatures at greater depth. Temperature data from this hole can not be extrapolated to greater depths. Any thermal anomaly associated with the UHCR geothermal system is apparently confined to the immediate vicinity of Hot Creek Canyon where challenges such as topography, a wilderness study area, and wetlands issues will make further exploration time consuming and costly. Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all three thermometers closely agree gives the predictions added credibility. Unfortunately, the final result of this exploration is that a moderate temperature geothermal resource has been clearly identified but it appears to be restricted to a relatively small area that would be difficult to develop.

  15. Washington

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradley Nickell02-03 AUDIT REPORTWas hingtonApril

  16. Washington

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradley Nickell02-03 AUDIT REPORTWas hingtonApril

  17. Washington,

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradley Nickell02-03 AUDITMotion | Department of DC

  18. Informal and formal channels of communication preferred and used in adoption of ranching practices by cattle producers in the state of Nuevo Leon, Mexico

    E-Print Network [OSTI]

    Freund, Tamara Marie

    2012-06-07T23:59:59.000Z

    performed a descriptive analysis of the communication channels that exist and are preferred by the cattle ranchers of the State of Nuevo Lean, Mexico when they are deciding to adopt or reject a ranching practice. The results were summarized to make...

  19. Industrial & Systems Engineering University of Washington

    E-Print Network [OSTI]

    Anderson, Richard

    Industrial & Systems Engineering University of Washington Linda Ng Boyle, Ph.D. Associate Professor linda@u.washington.edu #12;Agenda · What is Industrial & Systems Engineering? · Where do Industrial Engineers get jobs? · What classes would you take in ISE? · Where do UW graduates with ISE degrees

  20. Seattle, Washington: Solar in Action (Brochure), Solar America...

    Broader source: Energy.gov (indexed) [DOE]

    Seattle, Washington: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Seattle, Washington: Solar in Action (Brochure), Solar America...

  1. Thanks, George Washington, for the Energy Efficient Washing Machine...

    Broader source: Energy.gov (indexed) [DOE]

    Thanks, George Washington, for the Energy Efficient Washing Machine Thanks, George Washington, for the Energy Efficient Washing Machine February 20, 2012 - 5:00am Addthis Kristin...

  2. Baer selected to join Washington Academy of Sciences | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    selected to join Washington Academy of Sciences Baer selected to join Washington Academy of Sciences Released: July 21, 2014 He is being honored for outstanding scientific...

  3. Washington Success Story-A Performance Contracting Program |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Success Story-A Performance Contracting Program Washington Success Story-A Performance Contracting Program Provides an overview case study of Washington's Performance Contracting...

  4. SEP Success Story: Washington State Becomes Largest Public Consumer...

    Energy Savers [EERE]

    SEP Success Story: Washington State Becomes Largest Public Consumer of Biodiesel SEP Success Story: Washington State Becomes Largest Public Consumer of Biodiesel December 14, 2011...

  5. Washington State biomass data book

    SciTech Connect (OSTI)

    Deshaye, J.A.; Kerstetter, J.D.

    1991-07-01T23:59:59.000Z

    This is the first edition of the Washington State Biomass Databook. It assess sources and approximate costs of biomass fuels, presents a view of current users, identifies potential users in the public and private sectors, and lists prices of competing energy resources. The summary describes key from data from the categories listed above. Part 1, Biomass Supply, presents data increasing levels of detail on agricultural residues, biogas, municipal solid waste, and wood waste. Part 2, Current Industrial and Commercial Use, demonstrates how biomass is successfully being used in existing facilities as an alternative fuel source. Part 3, Potential Demand, describes potential energy-intensive public and private sector facilities. Part 4, Prices of Competing Energy Resources, shows current suppliers of electricity and natural gas and compares utility company rates. 49 refs., 43 figs., 72 tabs.

  6. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  7. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  8. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

  9. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

  10. Hanford facility dangerous waste permit application, PUREX storage tunnels

    SciTech Connect (OSTI)

    Price, S.M.

    1997-09-08T23:59:59.000Z

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the US Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the PUREX Storage Tunnels permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents Section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the PUREX Storage Tunnels permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this PUREX Storage Tunnels permit application documentation is current as of April 1997.

  11. SCHOOL OF BUSINESS THE GEORGE WASHINGTON UNIVERSITY INVESTORS

    E-Print Network [OSTI]

    Vertes, Akos

    SCHOOL OF BUSINESS THE GEORGE WASHINGTON UNIVERSITY INVESTORS REPORT2011 #12;#12;SCHOOL OF BUSINESS THE GEORGE WASHINGTON UNIVERSITY INVESTORS REPORT2011 #12;4 | THE GEORGE WASHINGTON UNIVERSITY SCHOOL OF BUSINESS |2011INVESTORSREPORT 4 THE GEORGE WASHINGTON UNIVERSITY SCHOOL OF BUSINESS | 2011 INVESTORS REPORT

  12. Energy Matters in Washington State Page 1 Energy Matters

    E-Print Network [OSTI]

    Collins, Gary S.

    Energy Matters in Washington State ­ Page 1 Energy Matters in Washington State June 2008 Updated November 2009 Updated and Revised October 2013 Grand Coulee Dam #12;Energy Matters in Washington State ­ Page 2 Copyright © 2013 Washington State University Energy Program. 905 Plum Street SE, P.O. Box 43169

  13. Federal Utility Partnership Working Group Seminar: Washington Update

    Broader source: Energy.gov [DOE]

    Presentation covers the Federal Utility Partnership Working Group Seminar: Washington Update on May 22, 2013.

  14. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    of Discharge Using Ground- Water Storage," Transactions1971. "Storage of Solar Energy in a Sandy-Gravel Ground,"

  15. Charging Up in King County, Washington

    Broader source: Energy.gov [DOE]

    King County, Washington is spearheading a regional effort to develop a network of electric vehicle charging stations. It is also improving its vehicle fleet and made significant improvements to a...

  16. Charging Up in King County, Washington

    ScienceCinema (OSTI)

    Constantine, Dow; Oliver, LeAnn; Inslee, Jay; Sahandy, Sheida; Posthuma, Ron; Morrison, David;

    2013-05-29T23:59:59.000Z

    King County, Washington is spearheading a regional effort to develop a network of electric vehicle charging stations. It is also improving its vehicle fleet and made significant improvements to a low-income senior housing development.

  17. Robert Wood, University of Washington many contributors

    E-Print Network [OSTI]

    Wood, Robert

    Robert Wood, University of Washington many contributors VOCALS Education and Outreach Snider (Wyoming) · Dave Spencer (NCSU) · Cindy Twohy (OSU) · Rob Wood/Chris Bretherton/Rhea George

  18. National Aeronautics and Space Administration Washington, DC

    E-Print Network [OSTI]

    Rathbun, Julie A.

    National Aeronautics and Space Administration Washington, DC NASA ADVISORY COUNCIL PLANETARY, including Discovery @15 and Satellites of the Outer Solar System. The next workshop, Planetary Atmospheres (GRAIL)--a lunar mission, Origins Spectral Interpretation, Resource Identification, and Security (OSIRIS

  19. University of Washington School of Forest Resources

    E-Print Network [OSTI]

    Borenstein, Elhanan

    limited staff and financial resources Opportunities: Where are opportunities facing you; i1 University of Washington School of Forest Resources Communications Plan 2010-2011 6 resource programs in the country, the School of Forest Resources (SFR) provides world class

  20. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  1. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  2. Early Adopter PDC AtEarly Adopter PDC At Washington and LeeWashington and Lee

    E-Print Network [OSTI]

    Stough, Joshua

    Early Adopter ­ PDC AtEarly Adopter ­ PDC At Washington and LeeWashington and Lee Four-year Liberal with and manipulation of collections of stuff.manipulation of collections of stuff. · PDC applications: sorting, recursive treePDC applications: sorting, recursive tree structures, image processing,...structures, image

  3. Toward a Unique UnderstandingToward a Unique Understanding Washington SquareWashington Square

    E-Print Network [OSTI]

    Hung, I-Kuai

    ;LagniappeLagniappe 1837 Map of Nacogdoches1837 Map of Nacogdoches 1846 Map of Nacogdoches1846 Map #12;The Sanborn MapsThe Sanborn Maps #12;Georeferenced RepresentationGeoreferenced Representation #12 excavations atbelow from the 1979 excavations at Washington Square.Washington Square. #12;The GridThe Grid #12

  4. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Abstract: Solid-state reversible...

  5. Seasonal thermal energy storage

    SciTech Connect (OSTI)

    Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

    1984-05-01T23:59:59.000Z

    This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

  6. Federal Government Congressional Budget Office, Budget Analysis Division Washington, DC

    E-Print Network [OSTI]

    Shyy, Wei

    Administration, Center for Drug Evaluation and Research Washington, DC Federal Energy Regulatory CommissionFederal Government Congressional Budget Office, Budget Analysis Division Washington, DC Department Environmental Protection Agency, Office of Transportation & Air Quality Ann Arbor, MI Federal Drug

  7. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    to MW/40 MWI-IR Battery Energy Storage Facility", proc. 23rdcompressed air, and battery energy storage are all only 65

  8. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    hydro, compressed air, and battery energy storage are allenergy storage sys tem s suc h as pumped hydro and compressed air.

  9. Late Quaternary history of Washington Land, North Greenland OLE BENNIKE

    E-Print Network [OSTI]

    Inglfsson, lafur

    Late Quaternary history of Washington Land, North Greenland OLE BENNIKE Bennike, O. 2002 (September): Late Quaternary history of Washington Land, North Greenland. Boreas, Vol. 31, 260272. Oslo. ISSN 0300-9483. During the last glacial stage, Washington Land in western North Greenland was probably completely inun

  10. 1979-1980 Geothermal Resource Assessment Program in Washington

    SciTech Connect (OSTI)

    Korosec, M.A.; Schuster, J.E.

    1980-01-01T23:59:59.000Z

    Separate abstracts were prepared for seven papers. Also included are a bibliography of geothermal resource information for the State of Washington, well temperature information and locations in the State of Washington, and a map of the geology of the White Pass-Tumac Mountain Area, Washington. (MHR)

  11. SAN JOSE STATE UNIVERSITY ONE WASHINGTON SQUARE

    E-Print Network [OSTI]

    Gleixner, Stacy

    Public Safety Funding). RESOLVED That the San José State University (SJSU) commend the CSU BoardSAN JOSE STATE UNIVERSITY ONE WASHINGTON SQUARE SAN JOSE, CA 95192 SS-F12-2, Sense of the Senate Resolution, Urging that California Voters Become Well Informed About the Current State of Funding

  12. George Washington University The Department of Philosophy

    E-Print Network [OSTI]

    Vertes, Akos

    George Washington University The Department of Philosophy Announces The Thacher-Reynolds Memorial Fellowship The Department of Philosophy invites applications for the Thacher-Reynolds Memorial Fellowship for a philosophy major in the senior year who has strong interests in graduate or professional studies. At the end

  13. FEDERAL ENERGY WASHINGTON, D.C. 20426

    E-Print Network [OSTI]

    Laughlin, Robert B.

    FEDERAL ENERGY REGULATORY COMMISSION WASHINGTON, D.C. 20426 NEWS RELEASE NEWS MEDIA CONTACT judge, the Federal Energy Regulatory Commission today ordered an expedited fact-finding hearing of the discussions. #12;Chairman Curt L. Hébert, Jr. stated as follows: "At some point, regulatory and R-01-33 (more

  14. WWU Sustainability Academy Western Washington University

    E-Print Network [OSTI]

    Zaferatos, Nicholas C.

    WWU Sustainability Academy Western Washington University Dear colleagues, We cordially extend to you this invitation to join the WWU Sustainability Academy! Following several years of discussion, a group of faculty has started the (tentatively named) "WWU Sustainability Academy." Our goal is to build

  15. Natural phenomena hazards, Hanford Site, Washington

    SciTech Connect (OSTI)

    Conrads, T.J.

    1998-09-29T23:59:59.000Z

    This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity.

  16. EIS-0205: Joint NEPA/SEPA Final Environmental Impact Statement Washington Windplant No. 1, Goldendale, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energys Bonneville Power Administration prepared this statement in order to fulfill its National Environmental Policy Act obligations ahead of signing an agreement with the utilities that would purchase the Windplants power from KENETECH. KENETECH Windpower, Inc., proposes to construct and operate Washington Windplant No. 1 in the Columbia Hills area, southeast of Goldendale, in Klickitat County, Washington.

  17. Remote Sensing Analysis of the Sierra Blanca (Faskin Ranch) Low-Level Radioactive Waste Disposal Site, Hudspeth County, Texas

    SciTech Connect (OSTI)

    LeMone, D. V.; Dodge, R.; Xie, H.; Langford, R. P.; Keller, G. R.

    2002-02-26T23:59:59.000Z

    Remote sensing images provide useful physical information, revealing such features as geological structure, vegetation, drainage patterns, and variations in consolidated and unconsolidated lithologies. That technology has been applied to the failed Sierra Blanca (Faskin Ranch) shallow burial low-level radioactive waste disposal site selected by the Texas Low-Level Radioactive Waste Disposal Authority. It has been re-examined using data from LANDSAT satellite series. The comparison of the earlier LANDSAT V (5/20/86) (30-m resolution) with the later new, higher resolution ETM imagery (10/23/99) LANDSAT VII data (15-m resolution) clearly shows the superiority of the LANDSAT VII data. The search for surficial indications of evidence of fatal flaws at the Sierra Blanca site utilizing was not successful, as it had been in the case of the earlier remote sensing analysis of the failed Fort Hancock site utilizing LANDSAT V data. The authors conclude that the tectonic activity at the Sierra Blanca site is much less recent and active than in the previously studied Fort Hancock site. The Sierra Blanca site failed primarily on the further needed documentation concerning a subsurface fault underneath the site and environmental justice issues. The presence of this fault was not revealed using the newer LANDSAT VII data. Despite this fact, it must be remembered that remote sensing provides baseline documentation for determining future physical and financial remediation responsibilities. On the basis of the two sites examined by LANDSAT remote sensing imaging, it is concluded that it is an essential, cost-effective tool that should be utilized not only in site examination but also in all nuclear-related facilities.

  18. The effectiveness of chemical herbicides for the control of prickly pear cactus (Opuntia spp.) in the vicinity of the Sonora Ranch Experiment Station

    E-Print Network [OSTI]

    Gleason, Lowell S

    1951-01-01T23:59:59.000Z

    of sodium tricrcloroacetate and 2, 4, 5-T esters 22 VI Percentages of kill and regrowth of prickly pear cactus obtained from applications of various oils and mixtures of oils and 2, 4, 5-T eaters VII. The number of points affected by applications...THE EFFECTIVENESS OF CHEHICAL HERMCIDES FOR THE CONTROL OF PRICKLY PEAR CACTUS (~tia spp. ) IN THE VICINITY OF THE SONORA RANCH EXPERINENT STATION A Thesis LONELL S ~ GLEASCN Approved as to style and content bF Chairaan of Cosssittee August...

  19. Preliminary geology of eastern Umtanum Ridge, South-Central Washington

    SciTech Connect (OSTI)

    Goff, F.E.

    1981-01-01T23:59:59.000Z

    The basalt stratigraphy and geologic structures of eastern Umtanum Ridge have been mapped and studied in detail to help assess the feasibility of nuclear waste terminal storage on the Hanford Site in southeastern Washington State. Eastern Umtanum Ridge is an asymmetric east-west-trending anticline of Columbia River basalt that plunges 5 degrees eastward into the Pasco Basin. Geologic mapping and determination of natural remanent magnetic polarity and chemical composition reveal that flows of the Pomona and Umatilla Members (Saddle Mountains Basalt), Priest Rapids and Frenchman Springs Members (Wanapum Basalt), and Grande Ronde Basalt were erupted as fairly uniform sheets. The Wahluke and Huntzinger flows (Saddle Mountains Basalt) fill a paleovalley cut into Wanapum Basalt. No evidence was found to indicate Quaternary-age movement on any structures in the map area. The basalt strata on the south limb of the Umtanum anticline display relatively little tectonic deformation since Miocene-Pliocene time. Thus, the buried south flank of Umtanum Ridge may provide an excellent location for a nuclear waste repository beneath the Hanford Site.

  20. 2401-W Waste storage building closure plan

    SciTech Connect (OSTI)

    LUKE, S.M.

    1999-07-15T23:59:59.000Z

    This plan describes the performance standards met and closure activities conducted to achieve clean closure of the 2401-W Waste Storage Building (2401-W) (Figure I). In August 1998, after the last waste container was removed from 2401-W, the U.S. Department of Energy, Richland Operations Office (DOE-RL) notified Washington State Department of Ecology (Ecology) in writing that the 2401-W would no longer receive waste and would be closed as a Resource Conservation and Recovery Act (RCRA) of 1976 treatment, storage, and/or disposal (TSD) unit (98-EAP-475). Pursuant to this notification, closure activities were conducted, as described in this plan, in accordance with Washington Administrative Code (WAC) 173-303-610 and completed on February 9, 1999. Ecology witnessed the closure activities. Consistent with clean closure, no postclosure activities will be necessary. Because 2401-W is a portion of the Central Waste Complex (CWC), these closure activities become the basis for removing this building from the CWC TSD unit boundary. The 2401-W is a pre-engineered steel building with a sealed concrete floor and a 15.2-centimeter concrete curb around the perimeter of the floor. This building operated from April 1988 until August 1998 storing non-liquid containerized mixed waste. All waste storage occurred indoors. No potential existed for 2401-W operations to have impacted soil. A review of operating records and interviews with cognizant operations personnel indicated that no waste spills occurred in this building (Appendix A). After all waste containers were removed, a radiation survey of the 2401-W floor for radiological release of the building was performed December 17, 1998, which identified no radiological contamination (Appendix B).

  1. Othello, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County, Vermont: EnergyThisOthello, Washington: Energy

  2. Kirkland, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6Kentwood,George County isKingstonKirkland, Washington:

  3. Lacey, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington: Energy Resources Jump to: navigation, search Equivalent URI

  4. Categorical Exclusion Determinations: Washington | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:JuneNovemberWashington Categorical Exclusion Determinations:

  5. Vashon, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UCOpen Energy InformationVashon, Washington: Energy

  6. Good Energies (Washington DC) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: Energy Resources Jump to:GloriaGoldenGolden,CookWashington DC) Jump

  7. Redmond, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRausWyoming: EnergyElec AssnRedmond, Washington:

  8. Kent, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 ClimateKamas,KelseyMichigan:Kent, Washington: Energy

  9. Sandia National Laboratories: Energy Storage Multimedia Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StorageEnergy Storage Multimedia Gallery Energy Storage Multimedia Gallery Images Videos Energy Storage Image Gallery Energy Storage B-Roll Videos Battery Abuse Testing Laboratory...

  10. Cool Storage Performance

    E-Print Network [OSTI]

    Eppelheimer, D. M.

    1985-01-01T23:59:59.000Z

    Utilities have promoted the use of electric heat and thermal storage to increase off peak usage of power. High daytime demand charges and enticing discounts for off peak power have been used as economic incentives to promote thermal storage systems...

  11. Underground Storage Tank Regulations

    Broader source: Energy.gov [DOE]

    The Underground Storage Tank Regulations is relevant to all energy projects that will require the use and building of pipelines, underground storage of any sorts, and/or electrical equipment. The...

  12. Safe Home Food Storage

    E-Print Network [OSTI]

    Van Laanen, Peggy

    2002-08-22T23:59:59.000Z

    Proper food storage can preserve food quality and prevent spoilage and food/borne illness. The specifics of pantry, refrigerator and freezer storage are given, along with helpful information on new packaging, label dates, etc. A comprehensive table...

  13. Energy Storage Systems

    SciTech Connect (OSTI)

    Conover, David R.

    2013-12-01T23:59:59.000Z

    Energy Storage Systems An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

  14. FOREST CENTRE STORAGE BUILDING

    E-Print Network [OSTI]

    deYoung, Brad

    FOREST CENTRE STORAGE BUILDING 3 4 5 6 7 8 UniversityDr. 2 1 G r e n f e l l D r i v e MULTI PURPOSE COURT STUDENT RESIDENCES GREEN HOUSE STUDENT RESIDENCES STUDENT RESIDENCES RECPLEX STORAGE BUILDING STORAGE BUILDING LIBRARY & COMPUTING FINE ARTS FOREST CENTRE ARTS &SCIENCE BUILDING ARTS &SCIENCE

  15. Washington DC Reliability Requirements and the Need to Operate...

    Broader source: Energy.gov (indexed) [DOE]

    Washington DC Reliability Requirements and the Need to Operate Mirant's Potomac River Generation Station to Support Local Area Reliability (Oak Ridge National Laboratory 2005)...

  16. Potential Federal On-Site Solar Aggregation in Washington, D...

    Broader source: Energy.gov (indexed) [DOE]

    Requirements * On-site Renewable Energy Purchase Overview * Washington DCMaryland Solar Options * Case Studies * Federal Interest * Q&A * Resources 2 3 Federal Renewable...

  17. University ofWashington DIRECTORY*OF CLASSES,u

    E-Print Network [OSTI]

    Kaminsky, Werner

    University ofWashington DIRECTORY*OF CLASSES,u 8060- PUBLISHED IN BACK-TO-SCHOOL SERIES 1995 ©1995 Phone Directory.~........:....................................................................3 Address

  18. BOBBI M. JOHNSON Washington State University PO Box 644236

    E-Print Network [OSTI]

    Kemp, Brian M.

    , Washington-BC, Idaho/Palouse - Sections: Genetics, Education GRANTS AWARDED Northwest Scientific Association / 2011 - 2012 Palouse Audubon Society Research Grant Genetic Characterization of Historic Upper

  19. Washington: Community Power Works is Building a More Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Seattle and several community organizations are working to improve energy efficiency and reduce carbon emissions. Locations Seattle, Washington Partners Community Power Works...

  20. Lind, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster And Coolbaugh, 2007)is 109. It087103°,LincolnLind, Washington:

  1. University of Washington | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 etWisconsin: EnergyTown-EnergyMichiganWashington

  2. Washington, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:Coop IncInformation Washington.

  3. Energy Incentive Programs, Washington | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessin Jamaica,Idaho EnergyMontanaOregonTexasWashington

  4. Department.,of Energy Washington; DC'

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntownRocky FlatsOhio~. Washington,FILE&,of

  5. Recovery Act State Memos Washington, DC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment ofList?Department09Jersey ForDakota ForVirginWashington,

  6. Alternative Fuels Data Center: Washington Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropane TankWashington Information to someone by

  7. Carnation, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacility | OpenCarboPur84.3202194°Carnation, Washington: Energy

  8. Tanner, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to: navigation,OpenFlorida:Tangier,Tanner, Washington: Energy

  9. Storage Ring Revised March 1994

    E-Print Network [OSTI]

    Brookhaven National Laboratory - Experiment 821

    .5.4.3. Ground Plane Epoxy #12; 136 Storage Ring #12; Storage Ring 137 8.5.5. Coil Winding Process #12; 138Chapter 8. Storage Ring Revised March 1994 8.1. Introduction -- 107 -- #12; 108 Storage Ring 8.2. Magnetic Design and Field Calculations 8.2.1. Conceptual Approach #12; Storage Ring 109 #12; 110 Storage

  10. Idaho_PurcellRanch

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSLtheIndustryMitch204Peak Site

  11. Ranching and Rangeland Management

    E-Print Network [OSTI]

    Tate, Kenneth

    operations ­ Wyoming land: about 50% owned/regulated by the government ­ Reasonable Common interests of both · Solar Energy USFS - Pole Mountain Grazing · Before ­ Large numbers of stock on areas · Over utilization beneficiaries #12;2 USFS Grass/ Rangeland Conditions · Now ­ Better Utilization ­ Decreased Stock Numbers

  12. EM Publishes Federal Register Notice of Intent to Prepare Supplement to Long-Term Mercury Storage EIS

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. EM on Tuesday published a notice of intent in the Federal Register to prepare a supplement to its January 2011 Environmental Impact Statement for the Long-Term Management and Storage of Elemental Mercury to analyze additional alternatives, in accordance with the National Environmental Policy Act.

  13. MILKEN INSTITUTE SCHOOL OF PUBLIC HEALTH AT GEORGE WASHINGTON UNIVERISTY

    E-Print Network [OSTI]

    Vertes, Akos

    HANDBOOK ACADEMIC YEAR 2014-2015 950 New Hampshire Avenue, NW Washington, DC 20037 The Graduate Student1 MILKEN INSTITUTE SCHOOL OF PUBLIC HEALTH AT GEORGE WASHINGTON UNIVERISTY GRADUATE STUDENT can be found on the SPPHS website: http://publichealth.gwu.edu/services/students Note regarding

  14. Heat storage duration

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01T23:59:59.000Z

    Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

  15. Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage

    E-Print Network [OSTI]

    Minnesota, University of

    Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage Vishal Kher Yongdae Kim players. While storage outsourcing is cost-effective, many companies are hesitating to outsource their storage due to security concerns. The success of storage outsourcing is highly dependent on how well

  16. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    and R. W . BOOIll, "Superconductive Energy Storage Inducand H. A. Peterson, "Superconductive E nergy S torage forMeeting, Janua ry N. Mohan, "Superconductive Energy S torage

  17. Energy Storage and Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage and Transportation INL Logo Search Skip Navigation Links Home Newsroom About INL Careers Research Programs Energy and Environment National and Homeland Security New Energy...

  18. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  19. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Design of the BPA Superconducting 30-MJ Energy Storagefor a Utility Scale Superconducting Magnetic Energy Storagefor a Lnrge Scale Superconducting Magnetic Energy Storage

  20. 1 BASEMENT STORAGE 3 MICROSCOPE LAB

    E-Print Network [OSTI]

    Boonstra, Rudy

    MECHANICAL ROOM 13 SHOWER ROOMSAIR COMPRESSOR 14 NITROGEN STORAGE 15 DIESEL FUEL STORAGE 16 ACID NEUT. TANK 17a ACID STORAGE 17b INERT GAS STORAGE 17c BASE STORAGE 17d SHELVES STORAGE * KNOCK-OUT PANEL

  1. US hydropower resource assessment for Washington

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1997-07-01T23:59:59.000Z

    The U.S. Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Washington.

  2. Washington State Department of Transportation energy efficiency guidelines for small buildings

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    This document provides energy efficiency guidelines for the construction and remodel of small buildings owned by the Washington State Department of Transportation (DOT). For the purpose of these guidelines {open_quotes}small buildings{close_quotes} are defined as those under 25,000 square feet. However, many of the guidelines can also be used for larger buildings. DOT is responsible for 641 buildings totaling 2.2 million square feet and consuming approximately $1,087,500 dollars in energy costs each year. Building types covered by these guidelines are small offices, shop buildings, and heated and unheated storage. These building types can be expected to vary greatly in both the distribution and magnitude of energy use.

  3. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    The Legalization of Ground Water Storage," Water Resourcesprocedure to above ground storage of heat in huge insulatedthis project is heat storage in ground-water regions storage

  4. Sandia National Laboratories: Batteries & Energy Storage Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StorageBatteries & Energy Storage Publications Batteries & Energy Storage Publications Batteries & Energy Storage Fact Sheets Achieving Higher Energy Density in Flow Batteries at...

  5. Energy storage capacitors

    SciTech Connect (OSTI)

    Sarjeant, W.J.

    1984-01-01T23:59:59.000Z

    The properties of capacitors are reviewed in general, including dielectrics, induced polarization, and permanent polarization. Then capacitance characteristics are discussed and modelled. These include temperature range, voltage, equivalent series resistance, capacitive reactance, impedance, dissipation factor, humidity and frequency effects, storage temperature and time, and lifetime. Applications of energy storage capacitors are then discussed. (LEW)

  6. Heat flow and geothermal studies in the state of Washington

    SciTech Connect (OSTI)

    Blackwell, D.D.; Steele, J.L.; Kelley, S.A.

    1985-08-01T23:59:59.000Z

    Existing geothermal gradient and heat flow data for the state of Washington are summarized. In addition, information on mean-annual ground surface temperatures is included. The data consist of accurate, detailed temperature-depth measurements in selected available holes throughout the state of Washington made between 1979 and 1982. Measurements of thermal conductivity on selected rock samples from these drill holes and ancillary information required to assess the significance of the data and calculate heat flow values were obtained as well. Information is presented on the mean-annual ground-surface temperatures throughout the state of Washington. 32 refs., 15 figs., 4 tabs.

  7. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-07-06T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission & distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1 to June 30, 2006. Key activities during this time period include: (1) Develop and process subcontract agreements for the eight projects selected for cofunding at the February 2006 GSTC Meeting; (2) Compiling and distributing the three 2004 project final reports to the GSTC Full members; (3) Develop template, compile listserv, and draft first GSTC Insider online newsletter; (4) Continue membership recruitment; (5) Identify projects and finalize agenda for the fall GSTC/AGA Underground Storage Committee Technology Transfer Workshop in San Francisco, CA; and (6) Identify projects and prepare draft agenda for the fall GSTC Technology Transfer Workshop in Pittsburgh, PA.

  8. International Electric Propulsion Conference, The George Washington University, USA October 6 10, 2013

    E-Print Network [OSTI]

    Walker, Mitchell

    1 The 33rd International Electric Propulsion Conference, The George Washington University, USA Electric Propulsion Conference, The George Washington University · Washington, D.C. · USA October 6 ­ 10.t.yim@nasa.gov. #12;2 The 33rd International Electric Propulsion Conference, The George Washington University, USA

  9. ,"Washington Natural Gas Underground Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"BruneiReserves in NonproducingU.S.Summary"LNGShaleNet Withdrawals

  10. ,"Washington Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"BruneiReserves in NonproducingU.S.Summary"LNGShaleNet

  11. Washington Natural Gas in Underground Storage - Change in Working Gas from

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980Additions89 5.87Same Month Previous

  12. Washington Natural Gas in Underground Storage - Change in Working Gas from

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980Additions89 5.87Same Month

  13. EIS-0212: Safe Interim Storage of Hanford Tank Wastes, Hanford Site, Richland, WA

    Broader source: Energy.gov [DOE]

    This environmental impact statement asseses Department of Energy and Washington State Department of Ecology maintanence of safe storage of high-level radioactive wastes currently stored in the older single-shell tanks, the Watchlist Tank 101-SY, and future waste volumes associated with tank farm and other Hanford facility operations, including a need to provide a modern safe, reliable, and regulatory-compliant replacement cross-site transfer capability. The purpose of this action is to prevent uncontrolled releases to the environment by maintaining safe storage of high-level tank wastes.

  14. Secretary Chu Speaks at the 2010 Washington Auto Show

    Broader source: Energy.gov [DOE]

    at the 2010 Washington Auto Show, Secretary Chu lays out a roadmap for how the U.S. can lead the world in making the clean vehicles we need. He also announced that the Department of Energy had...

  15. ESPC Sucess Story- Harold Washington Social Security Administration Center

    Broader source: Energy.gov [DOE]

    Fact sheet describes the Federal Energy Management Program (FEMP) Energy Savings Performance Contract (ESPC) success story on environmental stewardship and cost savings at the Harold Washington Social Security Administration Center in Chicago, Illinois.

  16. Final Report: Feasibility Study of Biomass in Snohomish County, Washington

    SciTech Connect (OSTI)

    Daryl Williams (Tulalip Tribes); Ray Clark (Clark Group)

    2005-01-31T23:59:59.000Z

    This report and its attachments summarizes the results of a unique tribal-farmer cooperative study to evaluate the feasibility of building one or more regional anaerobic digestion systems in Snohomish County, Washington.

  17. Fiscal Year 2006 Washington Closure Hanford Science & Technology Plan

    SciTech Connect (OSTI)

    K.J. Kroegler, M. Truex, D.J. McBride

    2006-01-19T23:59:59.000Z

    This Washington Closure Hanford science and technology (S&T) plan documents the activities associated with providing S&T support to the River Corridor Closure Project for fiscal year 2006.

  18. ELECTRICITY ADVISORY COMMITTEE MEETING Washington, D.C.

    Broader source: Energy.gov (indexed) [DOE]

    Bose -- I'm not seeing -- Anjan Bose, if I may, is also joining DoE to help with electricity issues from Washington State University. So I think one message Pat would say is...

  19. MEDICAL FORM Washington and Lee University Outing Club

    E-Print Network [OSTI]

    Marsh, David

    Washington and Lee Outing Club trips are multi-day wilderness expeditions, operating in remote areas where No _____________________________________________________ 21. History of heat stroke or other heat related illness? 21. Yes No FITNESS 22. Do you exercise

  20. Washington State Department of Ecology: Replacement Wells Requiring...

    Open Energy Info (EERE)

    Ecology: Replacement Wells Requiring a Water Right Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Washington State Department of...

  1. Washington State Department of Ecology - Water Right Pre-Application...

    Open Energy Info (EERE)

    LibraryAdd to library Legal Document- OtherOther: Washington State Department of Ecology - Water Right Pre-Application Consultation FormLegal Published NA Year Signed or...

  2. Washington State Department of Ecology - Changing or Transferring...

    Open Energy Info (EERE)

    LibraryAdd to library Legal Document- OtherOther: Washington State Department of Ecology - Changing or Transferring an Existing Water RightLegal Published NA Year Signed or...

  3. Washington, D.C. and Indiana: Allison Hybrid Technology Achieves...

    Broader source: Energy.gov (indexed) [DOE]

    D.C. region, and demand continues to grow worldwide. The Washington Metropolitan Area Transit Authority (WMATA), with a total fleet of 1,480 buses, has more than 600 of them...

  4. Washington State Ergonomics Tool: predictive validity in the waste industry

    E-Print Network [OSTI]

    Eppes, Susan Elise

    2004-09-30T23:59:59.000Z

    This study applies the Washington State Ergonomics Tool to waste industry jobs in Texas. Exposure data were collected by on-site observation of fourteen different multi-task jobs in a major national solid waste management company employing more...

  5. EA-0915: Waste Tank Safety Program Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to resolve waste tank safety issues at the Hanford Site near the City of Richland, Washington, and to reduce the risks associated with...

  6. Ultrafine hydrogen storage powders

    DOE Patents [OSTI]

    Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

    2000-06-13T23:59:59.000Z

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  7. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-03-31T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

  8. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-06-30T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

  9. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison

    2005-09-14T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

  10. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-05-10T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

  11. Commercial Energy Code Enforcement in Oregon and Washington

    E-Print Network [OSTI]

    Johnson, M.; Miller, W.; O'Neill, M.

    1988-01-01T23:59:59.000Z

    COMUERCIAL ENERGY CODE ENFORCEMENT IN OREGON AND WASHINGTON WILL MILLER )(AURA O'NEILL UARK JOHNSON TECHNICAL DIRECTOR PRESIDENT PUBLIC UTILITIES SPECIALIST PORTLAND ENERGY CONSERVATION, IWC . , O'NEILL 6 CO., INC., BONNEVILLE POWER... ADHINISTBATION PORTLAND, OREGON SEATTLE, WASHINGTON PORTLAND. OREGON In recent years. many states and local jurisdictions have passed mandatory building codes to achieve energy efficiency in new construction. All too often the political bodies that pass...

  12. Lakeland North, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington: EnergyPocotopaug,Wazeecha, Wisconsin:Washington: Energy

  13. Lakeland South, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington: EnergyPocotopaug,Wazeecha, Wisconsin:Washington:

  14. Lea Hill, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN)Lauderhill,5. ItLea Hill, Washington: Energy

  15. Lester Meadow, Washington- A Geothermal Anomaly | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville,LeightonLeola,Meadow, Washington- A Geothermal

  16. Corrective Action Decision Document/Closure Report for Corrective Action Unit 485: Cactus Spring Ranch Pu and DU Site, Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    US Department of Energy Nevada Operations Office

    1998-09-18T23:59:59.000Z

    This Corrective Action Decision Document/Closure Report (CADD/CR) has been prepared for Corrective Action Unit (CAU) 485: Cactus Spring Ranch Plutonium (Pu) and Depleted Uranium (DU) Site, in accordance with the Federal Facility Agreement and Consent Order. Located at the Cactus Spring Ranch on the Tonopah Test Range, Nevada, CAU 485 consists of Corrective Action Site (CAS) TA-39-001-TAGR. This CADD/CR identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's recommendation that no corrective action is deemed necessary for CAU 485. The Corrective Action Decision Document and Closure Report have been combined into one report because sample data collected during the preliminary assessment investigation (PAI) performed in January and February 1998 showed no evidence of contamination at the site. In the past, this CAU included holding pens which housed sheep and burros used to test inhalation uptake from atmospheric releases of Pu and DU, and the animals were sacrificed after the tests. Specifically, the investigation focused on data to determine: if surface activities of alpha, beta, and gamma-emitting radionuclides were present; if potential contaminants of concern (COCs) such as Pu and DU were present; and if plutonium was present in the soil and dung at levels significantly above background levels. Investigation results concluded that surface radiological activities of alpha, beta, and gamma-emitting radionuclides were within range of typical background levels. Evaluation of process knowledge determined plutonium to be the only potential COC, but soil and dung samples tested were not positive for plutonium-238 and only two samples had positive concentrations of plutonium 239/240 (subsequent plutonium alpha spectroscopy results demonstrated that there was no plutonium contamination in the Cactus Spring surface soil or dung). Therefore, the DOE/NV recommended that no corrective action was required at CAU 485; further, no Corrective Action Plan was required. No use restrictions were required to be placed on this CAU because the investigation showed no evidence of contamination at the site.

  17. 1999 GWU, RPI, VCU All Rights Reserved Washington State Ferries Risk Assessment Final Report The Washington State

    E-Print Network [OSTI]

    van Dorp, Johan René

    's Transportation Policy Advisor Representative Mike Cooper House Transportation Committee House of Representatives, the Washington State Office of Marine Safety, the Port of Houston, and The Government of Argentina. The tasks

  18. Multiported storage devices

    E-Print Network [OSTI]

    Grande, Marcus Bryan

    2012-06-07T23:59:59.000Z

    In the past decade the demand for systems that can process and deliver massive amounts of storage has increased. Traditionally, large disk farms have been deployed by connecting several disks to a single server. A problem with this configuration...

  19. Monitored Retrievable Storage Background

    Broader source: Energy.gov [DOE]

    `The U.S. Government is seeking a site for a monitored retrievable storage facility (MRS). Employing proven technologies used in this country and abroad, the MRS will be an Integral part of the...

  20. Gas Storage Act (Illinois)

    Broader source: Energy.gov [DOE]

    Any corporation which is engaged in or desires to engage in, the distribution, transportation or storage of natural gas or manufactured gas, which gas, in whole or in part, is intended for ultimate...

  1. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Encrgy Storage Plant" , EPRI Report EM-3457, April 1984. [4521st century. REFERENCES The EPRI Regional Systems preparedby J. J. Mulvaney, EPRI Report EPRI P-19S0SR, (1981). [2J O.

  2. Hydrogen storage compositions

    DOE Patents [OSTI]

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19T23:59:59.000Z

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH4- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH4- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  3. Storage Tanks (Arkansas)

    Broader source: Energy.gov [DOE]

    The Storage Tanks regulations is a set of rules and permit requirements mandated by the Arkansas Pollution and Ecology Commission in order to protect the public health and the lands and the waters...

  4. Analog storage integrated circuit

    DOE Patents [OSTI]

    Walker, J.T.; Larsen, R.S.; Shapiro, S.L.

    1989-03-07T23:59:59.000Z

    A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks. 6 figs.

  5. Communication accepte: Healthy Buildings/IAQ'97 Washington DC, septembre 1997Communication accepte: Healthy Buildings/IAQ'97 Washington DC, septembre 1997 DISCRIMINATION OF VOLATILE ORGANIC COMPOUNDS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Communication acceptée: Healthy Buildings/IAQ'97 Washington DC, septembre 1997Communication acceptée: Healthy Buildings/IAQ'97 Washington DC, septembre 1997 DISCRIMINATION OF VOLATILE ORGANIC manuscript, published in "4th International Conference on Healthy Buildings'97, Washington : United States

  6. National Press Club Washington, D.C.

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergyHydrogen Storage1, 2011 -with

  7. Washington -- SEP Data Dashboard | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy While dry storageMarch|WISCONSINDrewWarmDepartmentThe

  8. COLD STORAGE DESIGN REFRIGERATION EQUIPMENT

    E-Print Network [OSTI]

    COLD STORAGE DESIGN AND REFRIGERATION EQUIPMENT REFRIGERATION OF FISH - PART 1 \\ "..\\- ,,, T I (Section 1), and F. Bruce Sanford (Section 1) Table of Contents Pages Section 1 - Cold Storage Design to be Considered in the Freezing and Cold Storage of Fishery Products - Preparing, Freezing, and Cold Storage

  9. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-09-30T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

  10. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-04-17T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

  11. DOE Global Energy Storage Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOEs Sandia National Laboratories, and has been operating since January 2012.

  12. Shale mineralogy and burial diagenesis of Frio and Vicksburg Formations in two geopressured wells, McAllen Ranch area, Hidalgo County, Texas

    SciTech Connect (OSTI)

    Freed, R.L.

    1980-01-01T23:59:59.000Z

    Thirty-six shale samples ranging in depth from 1454 ft to 13,430 ft from Shell Oil Company No. 1 Dixie Mortage Loan well and 33 shale samples ranging in depth from 2183 ft to 13,632 ft from Shell Oil/Delhi-Taylor Oil Corporation No. 3 A.A. McAllen well were examined by x-ray techniques to determine the mineralogical parameters of the geopressured zone in the Vicksburg Fairway. Both wells have the same weight-percent trends with depth for the mineralogy: quartz, calcite, total clay, and potassium feldspar are constant; plagioclase feldspar gradually increases; kaolinite increases; discrete illite decreases; total mixed-layer illite-smectite (I/S) decreases; illite in mixed layer I/S increases; and smectite in mixed-layer I/S decreases. Chlorite is found only in the geopressured zone of each well. The Boles and Franks model is compatible with a steady supply of original mixed-layer I/S during the depositional history of the McAllen Ranch area. The constant content with depth of calcite, quartz, and potassium feldspar indicates that limited material, if any, is supplied by the shales to surrounding sands. The ions generated by changes within the clay minerals are involved in further clay mineral reactions as outlined above. In addition, magnesium and iron are involved in forming chlorite within the shales.

  13. 303-K Storage Facility closure plan. Revision 2

    SciTech Connect (OSTI)

    Not Available

    1993-12-15T23:59:59.000Z

    Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 303-K Storage Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 303-K Storage Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 303-K Storage Facility, the history of materials and waste managed, and the procedures that will be followed to close the 303-K Storage Facility. The 303-K Storage Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5.

  14. EFFECTIVE ENVIRONMENTAL COMPLIANCE STRATEGY FOR THE CLEANUP OF K BASINS AT HANFORD SITE WASHINGTON

    SciTech Connect (OSTI)

    AMBALAM, T.

    2004-12-01T23:59:59.000Z

    K Basins, consisting of two water-filled storage basins (KW and KE) for spent nuclear fuel (SNF), are part of the 100-K Area of the Hanford Site, along the shoreline of the Columbia River, situated approximately 40 km (25 miles) northwest of the City of Richland, Washington. The KW contained 964 metric tons of SNF in sealed canisters and the KE contained 1152 metric tons of SNF under water in open canisters. The cladding on much of the fuel was damaged allowing the fuel to corrode and degrade during storage underwater. An estimated 1,700 cubic feet of sludge, containing radionuclides and sediments, have accumulated in the KE basin. Various alternatives for removing and processing the SNF, sludge, debris and water were originally evaluated, by USDOE (DOE), in the Environmental Impact Statement (EIS) with a preferred alternative identified in the Record of Decision. The SNF, sludge, debris and water are ''hazardous substances'' under the Comprehensive, Environmental, Response, Compensation and Liability Act of 1980 (CERCLA). Leakage of radiologically contaminated water from one of the basins and subsequent detection of increased contamination in a down-gradient monitoring well helped to form the regulatory bases for cleanup action under CERCLA. The realization that actual or threatened release of hazardous substances from the waste sites and K Basins, if not addressed in a timely manner, may present an imminent and substantial endangerment to public health, welfare and environment led to action under CERCLA, with EPA as the lead regulatory agency. Clean-up of the K Basins as a CERCLA site required SNF retrieval, processing, packaging, vacuum drying and transport to a vaulted storage facility for storage, in conformance with a quality assurance program approved by the Office of Civilian Radioactive Waste Management (OCRWM). Excluding the facilities built for SNF drying and vaulted storage, the scope of CERCLA interim remedial action was limited to the removal of fuel, sludge, debris and water. At present, almost all of the spent fuel has been removed from the basins and other activities to remove sludge, debris and water are scheduled to be completed in 2007. Developing environmental documentation and obtaining regulatory approvals for a project which was initiated outside CERCLA and came under CERCLA during execution, was a significant priority to the successful completion of the SNF retrieval, transfer, drying, transport and storage of fuel, within the purview of strong conduct-of-operations culture associated with nuclear facilities. Environmental requirements promulgated in the state regulations by Washington Department of Public Health for radiation were recognized as ''applicable or relevant and appropriate.'' Effective implementation of the environmental compliance strategy in a project that transitioned to CERCLA became a significant challenge involving multiple contractors. This paper provides an overview of the development and implementation of an environmental permitting and surveillance strategy that enabled us to achieve full compliance in a challenging environment, with milestones and cost constraints, while meeting the high safety standards. The details of the strategy as to how continuous rapport with the regulators, facility operators and surveillance groups helped to avoid impacts on the clean-up schedule are discussed. Highlighted are the role of engineered controls, surveillance protocols and triggers for monitoring and reporting, and active administrative controls that were established for the control of emissions, water loss and transport of waste shipments, during the different phases of the project.

  15. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-10-18T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period July 1, 2004, through September 30, 2004. During this time period there were three main activities. First was the ongoing negotiations of the four sub-awards working toward signed contracts with the various organizations involved. Second, an Executive Council meeting was held at Penn State September 9, 2004. And third, the GSTC participated in the SPE Eastern Regional Meeting in Charleston, West Virginia, on September 16th and 17th. We hosted a display booth with the Stripper Well Consortium.

  16. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-07-15T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

  17. Energy storage connection system

    DOE Patents [OSTI]

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03T23:59:59.000Z

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  18. Approximate Storage in Solid-State Memories Adrian Sampson

    E-Print Network [OSTI]

    Ceze, Luis

    @cs.washington.edu Jacob Nelson University of Washington nelson@cs.washington.edu Karin Strauss Microsoft Research kstrauss provided that copies are not made or distributed for profit or commercial advantage and that copies bear

  19. Marketing Cool Storage Technology

    E-Print Network [OSTI]

    McCannon, L.

    storage has been substantiated. bv research conducted by Electric Power Research Institute, and by numerous installations, it has become acknowledged that cool stora~e can provide substantial benefits to utilities and end-users alike. A need was reco...~ned to improve utility load factors, reduce peak electric demands, and other-wise mana~e the demand-side use of electricity. As a result of these many pro~rams, it became apparent that the storage of coolin~, in the form of chilled water, ice, or other phase...

  20. Storage tracking refinery trends

    SciTech Connect (OSTI)

    Saunders, J. [ed.

    1996-05-01T23:59:59.000Z

    Regulatory and marketplace shakeups have made the refining and petrochemical industries highly competitive. The fight to survive has forced refinery consolidations, upgrades and companywide restructurings. Bulk liquid storage terminals are following suit. This should generate a flurry of engineering and construction by the latter part of 1997. A growing petrochemical industry translates into rising storage needs. Industry followers forecasted flat petrochemical growth in 1996 due to excessive expansion in 1994 and 1995. But expansion is expected to continue throughout this year on the strength of several products.

  1. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4American'! ITransportStorage RingStorage

  2. Spent-fuel-storage alternatives

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  3. Innovate Washington Group Looks to Create State Business

    SciTech Connect (OSTI)

    Madison, Alison L.

    2012-04-11T23:59:59.000Z

    Monthly column for TCH - April 2012. Excerpt here: Change is inevitable. In fact, many say its the only constant. One can either wait for the waves to hit and try not to drown, or get ahead of them and maximize the ride. I believe being proactive is the harder, but more powerful option. Over the past couple years numerous people have proactively worked to effect a particular change across the state of Washington: create a thriving ecosystem to accelerate technology-based economic development and achieve sustainable job growth. The result is an organization called Innovate Washington.

  4. PACIFIC NORTHWEST: CLIMATE IMPACTS GROUP http://www.cses.washington.edu/cig/

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    of Tualatin, Oregon · King County, Washington (County Council, Office of the Executive, Department of Natural · Tacoma Power and Light · Thurston County, Washington State Level · Alaska Department of Fish and Game

  5. Energy Secretary Moniz's Remarks at CSIS in Washington D.C. on...

    Office of Environmental Management (EM)

    Energy Secretary Moniz's Remarks at CSIS in Washington D.C. on Energy Security 40 Years after the Embargo - As Delivered Energy Secretary Moniz's Remarks at CSIS in Washington D.C....

  6. Understanding Long-Term Storage Access Patterns

    E-Print Network [OSTI]

    Adams, Ian Forrest

    2013-01-01T23:59:59.000Z

    4 Scientific Tertiary Storage System Behavior 4.1 Datasetof analyses based on storage system traces. Bibliography [1]in heterogeneous archival storage systems. In Proceedings of

  7. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01T23:59:59.000Z

    for Electrochemical Energy Storage Nanostructured Electrodesof the batteries and their energy storage efficiency. viifor Nanostructure-Based Energy Storage and Generation Tech-

  8. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

  9. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Survey of Thermal Energy Storage in Aquifers Coupled withconcept of thermal energy storage in aquifers was suggestedLow Temperature Thermal Energy Storage Program of Oak Ridge

  10. NERSC Frontiers in Advanced Storage Technology Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage R&D Frontiers in Advanced Storage Technologies (FAST) project Working with vendors to develop new functionality in storage technologies generally not yet available to...

  11. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

  12. NV Energy Electricity Storage Valuation

    SciTech Connect (OSTI)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30T23:59:59.000Z

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  13. Underground pumped hydroelectric storage

    SciTech Connect (OSTI)

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1984-07-01T23:59:59.000Z

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

  14. NGLW RCRA Storage Study

    SciTech Connect (OSTI)

    R. J. Waters; R. Ochoa; K. D. Fritz; D. W. Craig

    2000-06-01T23:59:59.000Z

    The Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory contains radioactive liquid waste in underground storage tanks at the INTEC Tank Farm Facility (TFF). INTEC is currently treating the waste by evaporation to reduce the liquid volume for continued storage, and by calcination to reduce and convert the liquid to a dry waste form for long-term storage in calcine bins. Both treatment methods and activities in support of those treatment operations result in Newly Generated Liquid Waste (NGLW) being sent to TFF. The storage tanks in the TFF are underground, contained in concrete vaults with instrumentation, piping, transfer jets, and managed sumps in case of any liquid accumulation in the vault. The configuration of these tanks is such that Resource Conservation and Recovery Act (RCRA) regulations apply. The TFF tanks were assessed several years ago with respect to the RCRA regulations and they were found to be deficient. This study considers the configuration of the current tanks and the RCRA deficiencies identified for each. The study identifies four potential methods and proposes a means of correcting the deficiencies. The cost estimates included in the study account for construction cost; construction methods to minimize work exposure to chemical hazards, radioactive contamination, and ionizing radiation hazards; project logistics; and project schedule. The study also estimates the tank volumes benefit associated with each corrective action to support TFF liquid waste management planning.

  15. Seed Cotton Handling & Storage

    E-Print Network [OSTI]

    Mukhtar, Saqib

    Seed Cotton Handling & Storage #12;S.W. Searcy Texas A&M University College Station, Texas M) Lubbock, Texas E.M. Barnes Cotton Incorporated Cary, North Carolina Acknowledgements: Special thanks for the production of this document has been provided by Cotton Incorporated, America's Cotton Producers

  16. PRELIMINARY NUCLEAR CRITICALITY NUCLEAR SAFETY EVLAUATION FOR THE CONTAINER SURVEILLANCE AND STORAGE CAPABILITY PROJECT

    SciTech Connect (OSTI)

    Low, M; Matthew02 Miller, M; Thomas Reilly, T

    2007-04-30T23:59:59.000Z

    Washington Safety Management Solutions (WSMS) provides criticality safety services to Washington Savannah River Company (WSRC) at the Savannah River Site. One activity at SRS is the Container Surveillance and Storage Capability (CSSC) Project, which will perform surveillances on 3013 containers (hereafter referred to as 3013s) to verify that they meet the Department of Energy (DOE) Standard (STD) 3013 for plutonium storage. The project will handle quantities of material that are greater than ANS/ANSI-8.1 single parameter mass limits, and thus required a Nuclear Criticality Safety Evaluation (NCSE). The WSMS methodology for conducting an NCSE is outlined in the WSMS methods manual. The WSMS methods manual currently follows the requirements of DOE-O-420.1B, DOE-STD-3007-2007, and the Washington Savannah River Company (WSRC) SCD-3 manual. DOE-STD-3007-2007 describes how a NCSE should be performed, while DOE-O-420.1B outlines the requirements for a Criticality Safety Program (CSP). The WSRC SCD-3 manual implements DOE requirements and ANS standards. NCSEs do not address the Nuclear Criticality Safety (NCS) of non-reactor nuclear facilities that may be affected by overt or covert activities of sabotage, espionage, terrorism or other security malevolence. Events which are beyond the Design Basis Accidents (DBAs) are outside the scope of a double contingency analysis.

  17. HYDROGEN STORAGE USINGHYDROGEN STORAGE USING COMPLEX HYDRIDESCOMPLEX HYDRIDES

    E-Print Network [OSTI]

    , Michael D. HamptonDarlene K. Slattery, Michael D. Hampton FL Solar Energy Center, U. of Central FLFL Solar Energy Center, U. of Central FL #12;Objective · Identify a hydrogen storage system that meets the DOEHYDROGEN STORAGE USINGHYDROGEN STORAGE USING COMPLEX HYDRIDESCOMPLEX HYDRIDES Darlene K. Slattery

  18. Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses

    SciTech Connect (OSTI)

    Melendez, M.; Taylor, J.; Wayne, W. S.; Smith, D.; Zuboy, J.

    2005-12-01T23:59:59.000Z

    An evaluation of emissions of natural gas and diesel buses operated by the Washington Metro Area Transit Authority.

  19. Washington State Department of Transportation Bridge Maintenance and Inspection Guidance for Protected Terrestrial Species

    E-Print Network [OSTI]

    Carey, Marion

    2007-01-01T23:59:59.000Z

    and addressing Migratory Bird Treaty Act issues. Chapter 5the federal Migratory Bird Treaty Act (MBTA) and Washington

  20. Silo Storage Preconceptual Design

    SciTech Connect (OSTI)

    Stephanie L. Austad; Patrick W. Bragassa; Kevin M Croft; David S Ferguson; Scott C Gladson; Annette L Shafer; John H Weathersby

    2012-09-01T23:59:59.000Z

    The National Nuclear Security Administration (NNSA) has a need to develop and field a low-cost option for the long-term storage of a variety of radiological material. The storage options primary requirement is to provide both environmental and physical protection of the materials. Design criteria for this effort require a low initial cost and minimum maintenance over a 50-year design life. In 1999, Argonne National Laboratory-West was tasked with developing a dry silo storage option for the BN-350 Spent Fuel in Aktau Kazakhstan. Argons design consisted of a carbon steel cylinder approximately 16 ft long, 18 in. outside diameter and 0.375 in. wall thickness. The carbon steel silo was protected from corrosion by a duplex coating system consisting of zinc and epoxy. Although the study indicated that the duplex coating design would provide a design life well in excess of the required 50 years, the review board was concerned because of the novelty of the design and the lack of historical use. In 2012, NNSA tasked Idaho National Laboratory (INL) with reinvestigating the silo storage concept and development of alternative corrosion protection strategies. The 2012 study, Silo Storage Concepts, Cathodic Protection Options Study (INL/EST-12-26627), concludes that the option which best fits the design criterion is a passive cathotic protection scheme, consisting of a carbon steel tube coated with zinc or a zinc-aluminum alloy encapsulated in either concrete or a cement grout. The hot dipped zinc coating option was considered most efficient, but the flame-sprayed option could be used if a thicker zinc coating was determined to be necessary.

  1. Compressed Air Energy Storage System

    E-Print Network [OSTI]

    Farzad A. Shirazi; Mohsen Saadat; Bo Yan; Perry Y. Li; Terry W. Simon

    /expanders are crucial for the economical viability of a Compressed Air Energy Storage (CAES) system such as the

  2. Webinar: Hydrogen Storage Materials Requirements

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled, Hydrogen Storage Materials Requirements, originally presented on June 25, 2013.

  3. Ecological Modelling 187 (2005) 140178 Eutrophication model for Lake Washington (USA)

    E-Print Network [OSTI]

    Arhonditsis, George B.

    Ecological Modelling 187 (2005) 140­178 Eutrophication model for Lake Washington (USA) Part I eutrophication model that has been developed to simulate plankton dynamics in Lake Washington, USA. Because loading scenarios. © 2005 Elsevier B.V. All rights reserved. Keywords: Eutrophication; Lake Washington

  4. November 2002 15th TOFE, Washington, D.C. 1 Thermal Behavior and Operating

    E-Print Network [OSTI]

    Raffray, A. René

    November 2002 15th TOFE, Washington, D.C. 1 Thermal Behavior and Operating Requirements of IFE Washington, D.C. November 2002 #12;November 2002 15th TOFE, Washington, D.C. 2 Abstract During injection the thermal behavior of the target under such conditions and explores possible ways of extending the target

  5. COMPLEXITY AND ADAPTIVE MANAGEMENT IN WASHINGTON STATE FOREST POLICY, 1987-2001

    E-Print Network [OSTI]

    COMPLEXITY AND ADAPTIVE MANAGEMENT IN WASHINGTON STATE FOREST POLICY, 1987-2001 by Mark Kepkay BA and Adaptive Management in Washington State Forest Policy, 1987-2001 PROJECT NUMBER: 345 SUPERVISORY COMMITTEE programs within Washington State forest policy. I focus on the Watershed Analysis program, 1992 to 1997

  6. Normal matter storage of antiprotons

    SciTech Connect (OSTI)

    Campbell, L.J.

    1987-01-01T23:59:59.000Z

    Various simple issues connected with the possible storage of anti p in relative proximity to normal matter are discussed. Although equilibrium storage looks to be impossible, condensed matter systems are sufficiently rich and controllable that nonequilibrium storage is well worth pursuing. Experiments to elucidate the anti p interactions with normal matter are suggested. 32 refs.

  7. Electrical Energy Storage: Stan Whittingham

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    1 p. 1 Electrical Energy Storage: Stan Whittingham Report of DOE workshop, April 2007 A Cleaner and Energy Independent America through Chemistry Chemical Storage: Batteries, today and tomorrow http needed in Energy Storage Lithium Economy not Hydrogen Economy #12;9 p. 9 Batteries are key to an economy

  8. The Power of Energy Storage

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    The Power of Energy Storage How to Increase Deployment in California to Reduce Greenhouse Gas;1Berkeley Law \\ UCLA Law The Power of Energy Storage: How to Increase Deployment in California to Reduce Greenhouse Gas Emissions Executive Summary: Expanding Energy Storage in California Sunshine and wind, even

  9. WASHINGTON STATE UNIVERSITY GRADUATE SCHOOL GRADUATE MENTOR ACADEMY OVERVIEW

    E-Print Network [OSTI]

    Collins, Gary S.

    WASHINGTON STATE UNIVERSITY GRADUATE SCHOOL GRADUATE MENTOR ACADEMY OVERVIEW 1 Graduate Mentor Academy Overview High quality graduate programs are those with notable faculty and systems for advising Academy 3. Representation on Graduate Exams and Examination Failure 4. Graduate and Professional Student

  10. University of Washington-Seattle College of Engineering Mathematics Academy

    E-Print Network [OSTI]

    Anderson, Richard

    #12;University of Washington-Seattle College of Engineering Mathematics Academy 2010 July 11 - August 6 2010 UW Mathematics Academy #12;About the College of Engineering MATHEMATICS ACADEMY The COLLEGE OF ENGINEERING MATHEMATICS ACADEMY is a mathematics intensive, four- week residential session , first held

  11. Washington University Can the Sound Generated by Modern Wind Turbines

    E-Print Network [OSTI]

    Salt, Alec N.

    Washington University Can the Sound Generated by Modern Wind Turbines Affect the Health of Those turbines haveWind turbines have been getting biggerbeen getting bigger and bigger....and bigger.... Lars Needs Wind turbines are "green" and areWind turbines are "green" and are contributing to our energy

  12. Natural Gas Pipeline Leaks Across Washington, DC Robert B. Jackson,,,

    E-Print Network [OSTI]

    Jackson, Robert B.

    Natural Gas Pipeline Leaks Across Washington, DC Robert B. Jackson,,, * Adrian Down, Nathan G increased in recent decades, but incidents involving natural gas pipelines still cause an average of 17 fatalities and $133 M in property damage annually. Natural gas leaks are also the largest anthropogenic

  13. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Wilcock, William

    project having the potential to impact lead-containing building materials, including lead paint. ResultsUNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Lead Basis, lead-containing materials have the potential to negatively impact the health of construction workers

  14. The Washington Post, April 16, 2006 Going Nuclear

    E-Print Network [OSTI]

    Bilbao Arrese, Jesús Mario

    The Washington Post, April 16, 2006 Going Nuclear A Green Makes the Case By Patrick Moore: pmoore@greenspirit.com In the early 1970s when I helped found Greenpeace, I believed that nuclear energy was synonymous with nuclear the spectacular rocky northwest coast to protest the testing of U.S. hydrogen bombs in Alaska's Aleutian Islands

  15. STATE OF WASHINGTON DEPARTMENT OF COMMUNITY, TRADE AND ECONOMIC DEVELOPMENT

    E-Print Network [OSTI]

    an addition $5 billion per year on energy costs an increase of nearly one and onehalf percent in our state GDP devoted to energy. Although we have little or no control over our petroleum and natural gasSTATE OF WASHINGTON DEPARTMENT OF COMMUNITY, TRADE AND ECONOMIC DEVELOPMENT Energy Policy Division

  16. Understanding African Poverty: Beyond the Washington Consensus to the

    E-Print Network [OSTI]

    23 2 Understanding African Poverty: Beyond the Washington Consensus to the Millennium Development Poverty he era of structural adjustment, which can be dated approximately to the last two decades-based development lending of structural adjustment, it remains mired in poverty and debt. What went wrong

  17. The Environmental Studies MAJOR The George Washington University

    E-Print Network [OSTI]

    Vertes, Akos

    Geol 3193 Environmental Law 3 Amst 2520-1 American Architecture 3 Anth 3502 Cultural Ecology 3 AnthThe Environmental Studies MAJOR The George Washington University To declare as an Environmental-8523 Program Advisor Prof. Melissa Keeley, keeley@gwu.edu, (202) 994-7156 Environmental Studies majors must

  18. GeoffBrumfiel,Washington Nuclear watchdogs and former weapons

    E-Print Network [OSTI]

    is supposed to help scientists assess the nation's ageing nuclear stockpile without testing the weaponsGeoffBrumfiel,Washington Nuclear watchdogs and former weapons scientists are taking issue existing bombs detonate, so that the stockpile can be maintained without testing the weapons it contains

  19. PC-Cluster based Storage System Architecture for Cloud Storage

    E-Print Network [OSTI]

    Yee, Tin Tin

    2011-01-01T23:59:59.000Z

    Design and architecture of cloud storage system plays a vital role in cloud computing infrastructure in order to improve the storage capacity as well as cost effectiveness. Usually cloud storage system provides users to efficient storage space with elasticity feature. One of the challenges of cloud storage system is difficult to balance the providing huge elastic capacity of storage and investment of expensive cost for it. In order to solve this issue in the cloud storage infrastructure, low cost PC cluster based storage server is configured to be activated for large amount of data to provide cloud users. Moreover, one of the contributions of this system is proposed an analytical model using M/M/1 queuing network model, which is modeled on intended architecture to provide better response time, utilization of storage as well as pending time when the system is running. According to the analytical result on experimental testing, the storage can be utilized more than 90% of storage space. In this paper, two parts...

  20. Panel 4, Hydrogen Energy Storage Policy Considerations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Policy Considerations Hydrogen Storage Workshop Jeffrey Reed Southern California Gas Company May 15, 2014 0 Methane is a Great Storage Medium 1 SoCalGas' storage...

  1. Evaluation of the Washington State Weatherization Assistance Program

    SciTech Connect (OSTI)

    Schweitzer, M.

    2001-02-23T23:59:59.000Z

    Since 1976, the national Weatherization Assistance Program has been working to improve the energy efficiency of dwelling units occupied by low-income residents. Sponsored by the U.S. Department of Energy and implemented by state and local agencies, the program is active in all 50 states and the District of Columbia. This report focuses on the recent outcomes of Washington State's weatherization efforts. The performance of the Washington Weatherization Program is of interest because few evaluations have been performed in this part of the country and because Washington contains a high proportion of electrically-heated houses, which have received relatively little examination in the past. This study, which calculates the magnitude of energy savings for both electrically-heated and gas-heated houses and compares program benefits and costs, was initiated by Oak Ridge National Laboratory (ORNL) in the summer of 1998. In conclusion, we find that the Washington State Weatherization Assistance Program has achieved substantial energy savings in both electrically-heated and gas-heated houses. A comparison of the findings from this study with those from many other evaluations of state weatherization efforts conducted over the past 10 years indicates that Washington is in the top one-third nationwide in terms of program-induced energy savings. In addition, the relationships between energy savings and both pre-weatherization consumption and weatherization expenditures reported in this document are consistent with the findings from earlier studies. These findings suggest that households with high energy consumption make effective targets for state weatherization efforts and that increasing the amount spent per household yields tangible returns in terms of energy savings.

  2. Hydrogen Compression, Storage, and Dispensing Cost Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Document states additional...

  3. Combinatorial Approaches for Hydrogen Storage Materials (presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approaches for Hydrogen Storage Materials (presentation) Combinatorial Approaches for Hydrogen Storage Materials (presentation) Presentation on NIST Combinatorial Methods at the...

  4. Webinar: Hydrogen Storage Materials Database Demonstration |...

    Broader source: Energy.gov (indexed) [DOE]

    Storage Materials Database Demonstration Webinar: Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen...

  5. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership...

  6. Superconducting magnetic energy storage

    SciTech Connect (OSTI)

    Hassenzahl, W.

    1988-08-01T23:59:59.000Z

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

  7. HYDROGEN USAGE AND STORAGE

    E-Print Network [OSTI]

    It is thought that it will be useful to inform society and people who are interested in hydrogen energy. The study below has been prepared due to this aim can be accepted as an article to exchange of information between people working on this subject. This study has been presented to reader to be utilized as a technical note. Main Energy sources coal, petroleum and natural gas are the fossil fuels we use today. They are going to be exhausted since careless usage in last decades through out the world, and human being is going to face the lack of energy sources in the near future. On the other hand as the fossil fuels pollute the environment makes the hydrogen important for an alternative energy source against to the fossil fuels. Due to the slow progress in hydrogens production, storage and converting into electrical energy experience, extensive usage of Hydrogen can not find chance for applications in wide technological practices. Hydrogen storage stands on an important point in the development of Hydrogen energy Technologies. Hydrogen is volumetrically low energy concentration fuel. Hydrogen energy, to meet the energy quantity necessary for the nowadays technologies and to be accepted economically and physically against fossil fuels, Hydrogen storage technologies have to be developed in this manner. Today the most common method in hydrogen storage may be accepted as the high pressurized composite tanks. Hydrogen is stored as liquid or gaseous phases. Liquid hydrogen phase can be stored by using composite tanks under very high pressure conditions. High technology composite material products which are durable to high pressures, which should not be affected by hydrogen embrittlement and chemical conditions.[1

  8. Final Site Specific Decommissioning Inspection Report #2 for the University of Washington Research and Test Reactor, Seattle, Washington

    SciTech Connect (OSTI)

    S.J. Roberts

    2007-03-20T23:59:59.000Z

    During the period of August through November 2006, ORISE performed a comprehensive IV at the University of Washington Research and Test Reactor Facility. The objective of the ORISE IV was to validate the licensees final status survey processes and data, and to assure the requirements of the DP and FSSP were met.

  9. Self-revegetation of disturbed ground in the deserts of Nevada and Washington

    SciTech Connect (OSTI)

    Rickard, W.H.; Sauer, R.H.

    1982-01-01T23:59:59.000Z

    Plant cover established without purposeful soil preparation or seeding was measured on ground disturbed by plowing in Washington and by aboveground nuclear explosions in Nevada. After a time lapse of three decades in Washington and two decades in Nevada, fewer species were self-established on the disturbed ground than the nearby undisturbed ground. Alien annual plants were the dominants on the disturbed ground. Cheatgrass (Bromus tectorum) dominated abandoned fields in Washington, and filaree (Erodium cicutarium) dominated disturbed ground in Nevada. Perennial grasses and shrubs appeared to be more successful as invaders in Nevada than in Washington. This distinction is attributed to the superior competitive ability of cheatgrass in Washington.

  10. Maui energy storage study.

    SciTech Connect (OSTI)

    Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

    2012-12-01T23:59:59.000Z

    This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

  11. University of Washington`s radioecological studies in the Marshall Islands, 1946-1977

    SciTech Connect (OSTI)

    Donaldson, L.R.; Seymour, A.H.; Nevissi, A.E. [Univ. of Washington, Seattle, WA (United States)

    1997-07-01T23:59:59.000Z

    Since 1946, personnel from the School of Fisheries, University of Washington, have studied the effects of nuclear detonations and the ensuing radioactivity on the marine and terrestrial environments throughout the Central Pacific. A collection of reports and publications about these activities plus a collection of several thousand samples from these periods are kept at the School of Fisheries. General findings from the surveys show that (1) fission products were prevalent in organisms of the terrestrial environment whereas activation products were prevalent in marine organisms; (2) the best biological indicators of fallout radionuclides by environments were (a) terrestrial-coconuts, land crabs; (b) reef-algae, invertebrates; and (c) marine-plankton, fish. Studies of plutonium and americium in Bikini Atoll showed that during 1971-1977 the highest concentrations of {sup 241}Am, 2.85 Bq g-{close_quote} (77 pCi g{sup -1}) and {sup 239,240}Pu, 4.44 Bq g{sup -1} (120 pCi g{sup -1}), in surface sediments were found in the northwest part of the lagoon. The concentrations in the bomb craters were substantially lower than these values. Concentrations of soluble and particulate plutonium and americium in surface and deep water samples showed distributions similar to the sediment samples. That is, the highest concentration of these radionuclides in the water column were at locations with highest sediment concentration. Continuous circulation of water in the lagoon and exchange of water with open ocean resulted in removal of 111 G Bq y{sup -1} (3 Ci y{sup -1}) {sup 241}Am and 222 G Bq y{sup -1} (6 Ci y{sup -1}) {sup 239,240}Pu into the North Equatorial Current. A summary of the surveys, findings, and the historical role of the Laboratory in radioecological studies of the Marshall Islands are presented. 23 refs., 1 fig., 1 tab.

  12. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Wilcock, William

    , fuel storage tanks, heating oil tanks, emergency generator tanks, industrial activities and landfills from an underground storage tank (UST) or associated piping are required within 24 hours of discovery Handling Facilities classify and manage petroleum-contaminated soils by the concentration of gas-, diesel

  13. Interim storage study report

    SciTech Connect (OSTI)

    Rawlins, J.K.

    1998-02-01T23:59:59.000Z

    High-level radioactive waste (HLW) stored at the Idaho Chemical Processing Plant (ICPP) in the form of calcine and liquid and liquid sodium-bearing waste (SBW) will be processed to provide a stable waste form and prepare the waste to be transported to a permanent repository. Because a permanent repository will not be available when the waste is processed, the waste must be stored at ICPP in an Interim Storage Facility (ISF). This report documents consideration of an ISF for each of the waste processing options under consideration.

  14. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30T23:59:59.000Z

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

  15. NERSC HPSS Storage Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challengeMultiscale SubsurfaceExascalePhase-1 HPSS ChargingArchive Storage

  16. Energy Storage Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE:2009Applications - Report |ofSectorSTORAGE 101The

  17. Sandia National Laboratories: Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandards Solar ThermochemicalStorage Protected: Hydrogen and

  18. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4American'! ITransportStorage Ring

  19. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4American'! ITransportStorage

  20. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout » Staff125,849 127,174 126,924Storage Ring Parameters

  1. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout » Staff125,849 127,174 126,924Storage Ring

  2. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout » Staff125,849 127,174 126,924Storage RingPhoton

  3. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout » Staff125,849 127,174 126,924Storage

  4. Heat storage with CREDA

    SciTech Connect (OSTI)

    Beal, T. (Fostoria Industries, Fostoria, OH (US))

    1987-01-01T23:59:59.000Z

    The principle of operation of ETS or Electric Thermal Storage is discussed in this book. As can be seen by the diagram presented, heating elements buried deep within the core are energized during off-peak periods or periods of lower cost energy. These elements charge the core to a per-determined level, then during the on-peak periods when the cost of electricity is higher or demand is higher, the heat is extracted from the core. The author discusses how this technology has progressed to the ETS equipment of today; this being the finer control of charging rates and extraction of heat from the core.

  5. Wind Powering America State Outreach. Final Technical Report: Washington State

    SciTech Connect (OSTI)

    Stearns, Tim

    2013-09-30T23:59:59.000Z

    The Washington Department of Commerce, via a U.S. Department of Energy grant, supported research into siting and permitting processes for wind projects by Skagit County, Washington. The goal was to help a local government understand key issues, consider how other areas have addressed wind siting, and establish a basis for enacting permitting and zoning ordinances that provided a more predictable permitting path and process for landowners, citizens, government and developers of small and community wind projects. The County?s contractor developed a report that looked at various approaches to wind siting, interviewed stakeholders, and examined technology options. The contractor outlined key issues and recommended the adoption of a siting process. The Skagit County Commission considered the report and directed the Skagit County Planning & Development Services Department to add development of wind guidelines to its work plan for potential changes to development codes.

  6. Routine environmental audit of the Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    This report documents the results of the routine environmental audit of the Hanford Site (Hanford), Richland, Washington. During this audit, the activities conducted by the audit team included reviews of internal documents an reports from previous audits and assessments; interviews with US Department of Energy (DOE), State of Washington regulatory, and contractor personnel; and inspections and observations of selected facilities and operations. The onsite portion of the audit was conducted May 2--13, 1994, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety and Health (EH). The audit evaluated the status of programs to ensure compliance with Federal, State, and local environmental laws and regulations; compliance with DOE orders, guidance, and directives; and conformance with accepted industry practices and standards of performance. The audit also evaluated the status and adequacy of the management systems developed to address environmental requirements.

  7. Enabling Utility-Scale Electrical Energy Storage through Underground Hydrogen-Natural Gas Co-Storage.

    E-Print Network [OSTI]

    Peng, Dan

    2013-01-01T23:59:59.000Z

    ??Energy storage technology is needed for the storage of surplus baseload generation and the storage of intermittent wind power, because it can increase the flexibility (more)

  8. Systems analysis of thermal storage

    SciTech Connect (OSTI)

    Copeland, R.J.

    1981-08-01T23:59:59.000Z

    During FY 1981, analyses were conducted on thermal storage concepts for solar thermal applications. These studies include estimates of both the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, an in-depth study evaluated thermal storage concepts for water/steam, organic fluid, and gas/Brayton solar thermal receivers. Promising and nonpromising concepts were identified. A study to evaluate thermal storage concepts for a liquid metal receiver was initiated. The value of thermal storage in a solar thermal industrial process heat application was analyzed. Several advanced concepts are being studied, including ground-mounted thermal storage for parabolic dishes with Stirling engines.

  9. Common Data Set 2005-06 Washington and Lee University

    E-Print Network [OSTI]

    Marsh, David

    Common Data Set 2005-06 Washington and Lee University 2005 Common Data Set Information Previous W:///Y|/ir/public_html/cds/cds2005.htm (1 of 28)12/1/2005 2:34:13 PM #12;Common Data Set 2005-06 Coeducational college Carnegie.htm (2 of 28)12/1/2005 2:34:13 PM #12;Common Data Set 2005-06 All other first- professionals 149 104

  10. Secretary Chu Speaks at the 2010 Washington Auto Show

    ScienceCinema (OSTI)

    Secretary Chu

    2010-09-01T23:59:59.000Z

    Secretary Chu lays out a roadmap for how the U.S. can lead the world in making the clean vehicles we need at the 2010 Washington Auto Show. He also announced that the Department of Energy had closed on a $1.4 billion loan to Nissan to build the all-electric LEAF in Tennessee and create up to 1,300 American jobs.

  11. Secretary Chu Speaks at the 2010 Washington Auto Show

    SciTech Connect (OSTI)

    Secretary Chu

    2010-02-03T23:59:59.000Z

    Secretary Chu lays out a roadmap for how the U.S. can lead the world in making the clean vehicles we need at the 2010 Washington Auto Show. He also announced that the Department of Energy had closed on a $1.4 billion loan to Nissan to build the all-electric LEAF in Tennessee and create up to 1,300 American jobs.

  12. Lake Marcel-Stillwater, Washington: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington: Energy ResourcesGas Location CookHart,Information

  13. Lake Morton-Berrydale, Washington: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington: Energy ResourcesGasInformation Morton-Berrydale,

  14. Lewis County, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville,LeightonLeola,Meadow,Levy County,41. It is

  15. Categorical Exclusion Determinations: Washington, D.C. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:JuneNovemberWashington Categorical Exclusion

  16. City of Richland, Washington (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby, Illinois (UtilityPortland Place:Radium,Washington (Utility

  17. City of Washington, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby,Sullivan, Missouri (UtilityUnionWahoo,Washington City of Place:

  18. City of Washington, North Carolina (Utility Company) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby,Sullivan, Missouri (UtilityUnionWahoo,Washington City of

  19. City of Washington, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby,Sullivan, Missouri (UtilityUnionWahoo,Washington City

  20. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, M.P.; Kedl, R.J.

    1984-09-12T23:59:59.000Z

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  1. Underground caverns for hydrocarbon storage

    SciTech Connect (OSTI)

    Barron, T.F. [Exeter Energy Services, Houston, TX (United States)

    1998-12-31T23:59:59.000Z

    Large, international gas processing projects and growing LPG imports in developing countries are driving the need to store large quantities of hydrocarbon liquids. Even though underground storage is common in the US, many people outside the domestic industry are not familiar with the technology and the benefits underground storage can offer. The latter include lower construction and operating costs than surface storage, added safety, security and greater environmental acceptance.

  2. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    2000-06-27T23:59:59.000Z

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  3. Savannah River Hydrogen Storage Technology

    Broader source: Energy.gov (indexed) [DOE]

    Member of DOE Carbon Working Group - Developed novel method for forming doped carbon nanotubes as part of DOE Storage Program (patent pending) - Collaborated with universities and...

  4. Energy Storage Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

  5. Underground Storage Tanks (West Virginia)

    Broader source: Energy.gov [DOE]

    This rule governs the construction, installation, upgrading, use, maintenance, testing, and closure of underground storage tanks, including certification requirements for individuals who install,...

  6. Underground Storage Tank Program (Vermont)

    Broader source: Energy.gov [DOE]

    These rules are intended to protect public health and the environment by establishing standards for the design, installation, operation, maintenance, monitoring, and closure of underground storage...

  7. Underground Storage Tanks (New Jersey)

    Broader source: Energy.gov [DOE]

    This chapter constitutes rules for all underground storage tank facilities- including registration, reporting, permitting, certification, financial responsibility and to protect human health and...

  8. CO2 Geologic Storage (Kentucky)

    Broader source: Energy.gov [DOE]

    Division staff, in partnership with the Kentucky Geological Survey (KGS), continued to support projects to investigate and demonstrate the technical feasibility of geologic storage of carbon...

  9. Flywheel energy storage workshop

    SciTech Connect (OSTI)

    O`Kain, D.; Carmack, J. [comps.

    1995-12-31T23:59:59.000Z

    Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

  10. Electrochemical hydrogen Storage Systems

    SciTech Connect (OSTI)

    Dr. Digby Macdonald

    2010-08-09T23:59:59.000Z

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

  11. Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Volume 2

    SciTech Connect (OSTI)

    Not Available

    2011-01-01T23:59:59.000Z

    Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723). DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 15001508), and DOEs NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations: Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho; Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOEs Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.

  12. Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Volume1

    SciTech Connect (OSTI)

    Not Available

    2011-01-01T23:59:59.000Z

    Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723).DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 15001508), and DOEs NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations:Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho;Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOEs Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.

  13. Reversible hydrogen storage materials

    DOE Patents [OSTI]

    Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

    2012-04-10T23:59:59.000Z

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  14. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01T23:59:59.000Z

    trates a design load profile for a partial storage system.load management / full storage / ice storage / partialfor partial storage) because part of the cooling load is

  15. Grid Storage and the Energy Frontier Research Centers | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Grid Storage and the Energy Frontier Research Centers Grid Storage and the Energy Frontier Research Centers DOE: Grid Storage and the Energy Frontier Research Centers Grid Storage...

  16. Perrin Ranch | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrange CountyPennsylvania/Geothermal Name:Woodland

  17. Allison Ranch | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil Jump to:Information332 UtilityAllicom Jump to: navigation,Allison

  18. MATERIAL HANDLING, STORAGE, AND DISPOSAL

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Materials shall be stored in a manner that allows easy identification and access to labels, identification entering storage areas. All persons shall be in a safe position while materials are being loadedEM 385-1-1 XX Jun 13 14-1 SECTION 14 MATERIAL HANDLING, STORAGE, AND DISPOSAL 14.A MATERIAL

  19. Nanostructured materials for hydrogen storage

    DOE Patents [OSTI]

    Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

    2007-12-04T23:59:59.000Z

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  20. Systems analysis of thermal storage

    SciTech Connect (OSTI)

    Copeland, R. J.

    1980-08-01T23:59:59.000Z

    During FY80 analyses were conducted on thermal storage concepts for solar thermal applications. These studies include both estimates of the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, promising thermal storage concepts are being identified. A preliminary screening was completed in FY80 and a more in-depth study was initiated. Value studies are being conducted to establish cost goals. A ranking of storage concepts based on value in solar thermal electric plants was conducted for both diurnal and long duration applications. Ground mounted thermal storage concepts for a parabolic dish/Stirling systtem are also being evaluated.

  1. Energy Secretary Chu, EPA Administrator Jackson, Washington State...

    Energy Savers [EERE]

    of the WTP and the retrieval of waste from the large underground single-shell storage tanks at Hanford. Hanford currently stores 53 million gallons of radioactive and chemical...

  2. E-Print Network 3.0 - annual meeting washington Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Medicine 11 KYLE CLARK BEARDSLEY Curriculum Vitae Summary: of the American Political Science Association, Washington, DC, 2005; and Annual Meeting of the Peace...

  3. E-Print Network 3.0 - area washington volume Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    search results for: area washington volume Page: << < 1 2 3 4 5 > >> 1 WRRC Report No. 153 Water Resources Publications Summary: of Water Resources in Metropolitan Environments...

  4. EIS-0119: Decommissioning of Eight Surplus Production Reactors at the Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EIS presents analyses of potential environmental impacts of decommissioning the eight surplus production reactors at the Hanford Site near Richland, Washington.

  5. Microsoft Word - DOE-ID-13-068 Washington State EC B3-6.doc

    Broader source: Energy.gov (indexed) [DOE]

    8 SECTION A. Project Title: Managing Zirconium Chemistry and Phase Compatibility in Combined Process Separations for Minor Actinide Partitioning- Washington State University...

  6. Final Site-Specific Decommissioning Inspection Report for the University of Washington Research and Test Reactor

    SciTech Connect (OSTI)

    Sarah Roberts

    2006-10-18T23:59:59.000Z

    Report of site-specific decommissioning in-process inspection activities at the University of Washington Research and Test Reactor Facility.

  7. 2005 Inventory of Greenhouse Gas Emissions Ascribable to the University of Washington

    E-Print Network [OSTI]

    Kaminsky, Werner

    2005 Inventory of Greenhouse Gas Emissions Ascribable to the University of Washington October 2007....................................................................................................................4 Corporate vs. Geographic Inventories...........................................................................4 Inventory Protocol

  8. Raymond A. Silverman, ed. Ethiopia: Traditions of Creativity. Seattle: University of Washington Press, 1999

    E-Print Network [OSTI]

    Lemma, Azeb

    1998-01-01T23:59:59.000Z

    Raymond A. , ed. , Ethiopia Traditions of Creativity (Washington Press, 1999). Ethiopia: Traditions of Creativity,on artists and artisans in Ethiopia. This research venture

  9. Microsoft Word - DOE-ID-12-020 Washington State.doc

    Broader source: Energy.gov (indexed) [DOE]

    0 SECTION A. Project Title: Upgrading Lanthanide & Actinide Spectroscopy Capabilities at Washington State University SECTION B. Project Description The principle objective of this...

  10. Technical Assessment: Cryo-Compressed Hydrogen Storage

    E-Print Network [OSTI]

    Technical Assessment: Cryo-Compressed Hydrogen Storage for Vehicular Applications October 30, 2006 .....................................................................................................................................................................8 APPENDIX A: Review of Cryo-Compressed Hydrogen Storage Systems ......................................................................................18 APPENDIX C: Presentation to the FreedomCAR & Fuel Hydrogen Storage Technical Team

  11. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01T23:59:59.000Z

    energy generation and battery storage via the use ofenergy generation and battery storage via the use of nanos-and storage (e.g lithium-ion rechargeable battery)

  12. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01T23:59:59.000Z

    in floor tiles for thermal energy storage, working paper,D. R. (2000). Thermal energy storage for space cooling,A simple model of thermal energy storage is developed as a

  13. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    and J. Schwarz, Survey of Thermal Energy Storage in AquifersLow Temperature Thermal Energy Storage Program of Oak RidgeAquifers for Seasonal Thermal Energy Storage: An Overview of

  14. NATURAL GAS STORAGE ENGINEERING Kashy Aminian

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    NATURAL GAS STORAGE ENGINEERING Kashy Aminian Petroleum & Natural Gas Engineering, West Virginia University, Morgantown, WV, USA. Shahab D. Mohaghegh Petroleum & Natural Gas Engineering, West Virginia University, Morgantown, WV, USA. Keywords: Gas Storage, Natural Gas, Storage, Deliverability, Inventory

  15. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    solid-fluid heat storage systems in the ground; extractions0 Thermal storage of cold water in ground water aquifers forA. 8 1971, Storage of solar energy in a sandy-gravel ground:

  16. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    and J. Schwarz, Survey of Thermal Energy Storage in AquifersB. Quale. Seasonal storage of thermal energy in water in theSecond Annual Thermal Energy Storage Contractors'

  17. Field project to obtain pressure core, wireline log, and production test data for evaluation of CO/sub 2/ flooding potential. Texas Pacific Bennett Ranch Unit well No. 310, Wasson (San Andres) Field, Yoakum County, Texas

    SciTech Connect (OSTI)

    Swift, T.E.; Goodrich, J.H.; Kumar, R.M.; McCoy, R.L.; Wilhelm, M.H.; Glascock, M.R.

    1982-01-01T23:59:59.000Z

    The coring, logging and testing of Bennett Ranch Unit well No. 310 was a cooperative effort between Texas Pacific, owner of the well, and Gruy Federal, Inc. The requirements of the contract, which are summarized in Enclosure 1, Appendix A, include drilling and coring activities. The pressure-coring and associated logging and testing programs in selected wells are intended to provide data on in-situ oil saturation, porosity and permeability distribution, and other data needed for resource characterization of fields and reservoirs in which CO/sub 2/ injection might have a high probability of success. This report presents detailed information on the first such project. This project demonstrates the usefulness of integrating pressure core, log and production data to realistically evaluate a reservoir for carbon dioxide flood. The engineering of tests and analysis of such experimental data requires original thinking, but the reliability of the results is higher than data derived from conventional tests.

  18. Harvesting and StorageHarvesting and Storage Importance of safe food handling during harvest and storage

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Harvesting and StorageHarvesting and Storage Importance of safe food handling during harvest illness. Steps to take prior to harvest When washing and sanitizing surfaces, use the appropriate. Pressure washing is a good way to clean. Clean and sanitize harvesting tools such as knives, pruners

  19. Investigations in cool thermal storage: storage process optimization and glycol sensible storage enhancement

    E-Print Network [OSTI]

    Abraham, Michaela Marie

    1993-01-01T23:59:59.000Z

    device in order to meet the utility's mandate. The first part of this study looks at the effects of adding propylene glycol to a static-water ice thermal storage tank, in the pursuit of increasing storage capacity. The effects of glycol addition...

  20. Organics Verification Study for Sinclair and Dyes Inlets, Washington

    SciTech Connect (OSTI)

    Kohn, Nancy P.; Brandenberger, Jill M.; Niewolny, Laurie A.; Johnston, Robert K.

    2006-09-28T23:59:59.000Z

    Sinclair and Dyes Inlets near Bremerton, Washington, are on the State of Washington 1998 303(d) list of impaired waters because of fecal coliform contamination in marine water, metals in sediment and fish tissue, and organics in sediment and fish tissue. Because significant cleanup and source control activities have been conducted in the inlets since the data supporting the 1998 303(d) listings were collected, two verification studies were performed to address the 303(d) segments that were listed for metal and organic contaminants in marine sediment. The Metals Verification Study (MVS) was conducted in 2003; the final report, Metals Verification Study for Sinclair and Dyes Inlets, Washington, was published in March 2004 (Kohn et al. 2004). This report describes the Organics Verification Study that was conducted in 2005. The study approach was similar to the MVS in that many surface sediment samples were screened for the major classes of organic contaminants, and then the screening results and other available data were used to select a subset of samples for quantitative chemical analysis. Because the MVS was designed to obtain representative data on concentrations of contaminants in surface sediment throughout Sinclair Inlet, Dyes Inlet, Port Orchard Passage, and Rich Passage, aliquots of the 160 MVS sediment samples were used in the analysis for the Organics Verification Study. However, unlike metals screening methods, organics screening methods are not specific to individual organic compounds, and are not available for some target organics. Therefore, only the quantitative analytical results were used in the organics verification evaluation. The results of the Organics Verification Study showed that sediment quality outside of Sinclair Inlet is unlikely to be impaired because of organic contaminants. Similar to the results for metals, in Sinclair Inlet, the distribution of residual organic contaminants is generally limited to nearshore areas already within the actively managed Puget Sound Naval Shipyard and Intermediate Maintenance Facility Superfund Site, where further source-control actions and monitoring are under way.

  1. Panel 2, Geologic Storage of Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geologic Storage - Types Types of Underground Storage Aquifers Aquifers are similar in geology to depleted reservoirs, but have not been proven to trap gas and must be developed....

  2. Combinatorial Approach for Hydrogen Storage Materials (presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approach for Hydrogen Storage Materials (presentation) Combinatorial Approach for Hydrogen Storage Materials (presentation) Presented at the U.S. Department of Energy's Hydrogen...

  3. Subsea Pumped Hydro Storage -A Technology Assessment.

    E-Print Network [OSTI]

    Falk, Johan

    2013-01-01T23:59:59.000Z

    ??A novel technology for energy storage called Subsea Pumped Hydro Storage (SPHS) has been evaluated from a techno-economical point of view. Intermittent renewable energy sources (more)

  4. NREL: Vehicles and Fuels Research - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Vehicles and Fuels Research Cutaway image of an automobile showing the location of energy storage components (battery and inverter), as well as electric motor, power...

  5. Structured Storage in ATLAS Distributed Data Management

    E-Print Network [OSTI]

    Lassnig, M; The ATLAS collaboration; Molfetas, A; Beermann, T; Dimitrov, G; Canali, L; Zang, D

    2012-01-01T23:59:59.000Z

    CHEP'12 Talk Structured Storage - Concepts - Technologies ATLAS DDM Use Cases - Storage facility - Data intensive analytics Operational Experiences - Software - Hardware Conclusions

  6. Overview of Gridscale Rampable Intermittent Dispatchable Storage...

    Broader source: Energy.gov (indexed) [DOE]

    Rampable Intermittent Dispatchable Storage (GRIDS) Program Presentation by Mark Johnson, Advanced Research Projects Agency - Energy, at the Flow Cells for Energy Storage...

  7. Migrating enterprise storage applications to the cloud

    E-Print Network [OSTI]

    Vrable, Michael Daniel

    2011-01-01T23:59:59.000Z

    2.1 Cloud Providers . . . . . . . . . . . .2.1.1 Cloud Storage . . . . . . . . .2.1.2 Cloud Computation . . . . . . 2.2 Enterprise Storage

  8. DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report: Revision 2 DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee Report: Revision 2 Energy storage plays a vital role in all forms of business and affects the...

  9. Webinar Presentation: Energy Storage Solutions for Microgrids...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation: Energy Storage Solutions for Microgrids (November 2012) Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) On November 7, 2012, Clean...

  10. Panel 3, Electrolysis for Grid Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolysis for Grid Energy Storage DOE-Industry Canada Workshop May 15, 2014 INTRODUCTION HYDROGEN ENERGY SYSTEMS FOR ENERGY STORAGE AND CLEAN FUEL PRODUCTION ITM POWER INC. ITM...

  11. Sandia National Laboratories: energy storage requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accomplishments On March 3, 2015, in Capabilities, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure...

  12. Underground Storage Tank Act (West Virginia)

    Broader source: Energy.gov [DOE]

    New underground storage tank construction standards must include at least the following requirements: (1) That an underground storage tank will prevent releases of regulated substances stored...

  13. Georgia Underground Storage Tank Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Underground Storage Act (GUST) provides a comprehensive program to prevent, detect, and correct releases from underground storage tanks (USTs) of regulated substances other than...

  14. Thermal Energy Storage Potential in Supermarkets.

    E-Print Network [OSTI]

    Ohannessian, Roupen

    2014-01-01T23:59:59.000Z

    ?? The objective of this research is to evaluate the potential of thermal energy storage in supermarkets with CO2 refrigeration systems. Suitable energy storage techniques (more)

  15. BNL Gas Storage Achievements, Research Capabilities, Interests...

    Broader source: Energy.gov (indexed) [DOE]

    Final Report for the DOE Metal Hydride Center of Excellence Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials...

  16. Lake Forest Park, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington: Energy Resources JumpFlorida:8461392°, -83.7077293°Park,

  17. Leasing State Trust Lands in Washington | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN)Lauderhill,5. ItLeaIncentives 2 ReferencesTrust

  18. Clyde Hill, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy ResourcesInformationWindpowerHill, Washington:

  19. Washington Lease Purchase Case Study | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy While dryWashington's Centralia School District pulled

  20. Washington State Becomes Largest Public Consumer of Biodiesel | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy While dryWashington's Centralia School District pulledof

  1. Washington County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana: EnergyWasco County,Washington County, Colorado:

  2. Washington County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana: EnergyWasco County,Washington County,

  3. Washington County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana: EnergyWasco County,Washington County,Georgia:

  4. Washington County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana: EnergyWasco County,Washington

  5. Washington County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana: EnergyWasco County,WashingtonIllinois: Energy

  6. Washington County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana: EnergyWasco County,WashingtonIllinois:

  7. Washington County, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana: EnergyWasco County,WashingtonIllinois:Iowa:

  8. Washington State Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:Coop Inc Place:Existing Water RightWashington

  9. Washington's 7th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:Coop IncInformation Washington. Contents 1

  10. Washington, District of Columbia: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:Coop IncInformation Washington. Contents

  11. EIS-0425: Mid-Columbia Coho Restoration, Washington

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of DOEs Bonneville Power Administrations proposal to fund the construction, operation, and maintenance of a coho salmon restoration program sponsored by the Confederated Tribes and Bands of the Yakama Nation to help mitigate impacts to fish affected by the Federal Columbia River Power System dams on the Columbia River. The Proposed Action would involve building a new, small, in-basin adult holding/spawning, incubation and rearing facility on the Wenatchee River at one of two potential sites; and constructing and improving several sites in both the Wenatchee and Methow river basins in north central Washington State.

  12. Energy Incentive Programs, Washington DC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessin Jamaica,Idaho EnergyMontanaOregonTexasWashington DC

  13. Washington - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data9c :0.17.1Year3 Meeting ofBOEWashingtonWashington

  14. Mercer Island, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellisMcDonald isMelletteEnclosed and StripMercerWashington:

  15. Washington's 3rd congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City,DivisionInformation Washington. Registered

  16. Washington's 4th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City,DivisionInformation Washington.

  17. Washington Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticutPhotos of AECSign UpWashington DC Regions

  18. Washington Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticutPhotos of AECSign UpWashington DC RegionsRegions

  19. Washington International Renewable Energy Conference | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is onModeling andReportandVDepartmentWarmWashPotomacWashington

  20. Clean Cities: Greater Washington Region Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreater New Haven CleanWashington

  1. Clean Cities: Western Washington Clean Cities (Seattle) coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth ShoreWashington Clean Cities

  2. Town of Steilacoom, Washington (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd JumpOperationsInformationRowley Town ofSteilacoom, Washington

  3. Fall City, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: Energy Resources Jump4748456°, -122.822032°City, Washington:

  4. Federal Way, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: Energy Resources44795°,FauquierGrantWashington: Energy

  5. Federal Way, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: Energy Resources44795°,FauquierGrantWashington: EnergyWay, WA)

  6. Underground Storage Tank Integrated Demonstration (UST-ID). Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The DOE complex currently has 332 underground storage tanks (USTs) that have been used to process and store radioactive and chemical mixed waste generated from weapon materials production. Very little of the over 100 million gallons of high-level and low-level radioactive liquid waste has been treated and disposed of in final form. Two waste storage tank design types are prevalent across the DOE complex: single-shell wall and double-shell wall designs. They are made of stainless steel, concrete, and concrete with carbon steel liners, and their capacities vary from 5000 gallons (19 m{sup 3}) to 10{sup 6} gallons (3785 m{sup 3}). The tanks have an overburden layer of soil ranging from a few feet to tens of feet. Responding to the need for remediation of tank waste, driven by Federal Facility Compliance Agreements (FFCAs) at all participating sites, the Underground Storage Tank Integrated Demonstration (UST-ID) Program was created by the US DOE Office of Technology Development in February 1991. Its mission is to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat to concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to the public and the regulators. The UST-ID has focused on five DOE locations: the Hanford Site, which is the host site, in Richland, Washington; the Fernald Site in Fernald, Ohio; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site in Savannah River, South Carolina.

  7. Waste Encapsulation and Storage Facility (WESF) Interim Status Closure Plan

    SciTech Connect (OSTI)

    SIMMONS, F.M.

    2000-12-01T23:59:59.000Z

    This document describes the planned activities and performance standards for closing the Waste Encapsulation and Storage Facility (WESF). WESF is located within the 225B Facility in the 200 East Area on the Hanford Facility. Although this document is prepared based on Title 40 Code of Federal Regulations (CFR), Part 265, Subpart G requirements, closure of the storage unit will comply with Washington Administrative Code (WAC) 173-303-610 regulations pursuant to Section 5.3 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Action Plan (Ecology et al. 1996). Because the intention is to clean close WESF, postclosure activities are not applicable to this interim status closure plan. To clean close the storage unit, it will be demonstrated that dangerous waste has not been left onsite at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or environmentally is impracticable, the interim status closure plan will be modified to address required postclosure activities. WESF stores cesium and strontium encapsulated salts. The encapsulated salts are stored in the pool cells or process cells located within 225B Facility. The dangerous waste is contained within a double containment system to preclude spills to the environment. In the unlikely event that a waste spill does occur outside the capsules, operating methods and administrative controls require that waste spills be cleaned up promptly and completely, and a notation made in the operating record. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

  8. Storage containers for radioactive material

    DOE Patents [OSTI]

    Groh, E.F.; Cassidy, D.A.; Dates, L.R.

    1980-07-31T23:59:59.000Z

    A radioactive material storage system is claimed for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together. The plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage.

  9. Conductive lithium storage electrode

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Chung, Sung-Yoon; Bloking, Jason T; Andersson, Anna M

    2014-10-07T23:59:59.000Z

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z, or (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001storage batteries.

  10. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1

    SciTech Connect (OSTI)

    none,

    1992-11-01T23:59:59.000Z

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.

  11. Energy Conservation Study on Darigold Fluid Milk Plant, Issaquah, Washington.

    SciTech Connect (OSTI)

    Seton, Johnson & Odell, Inc.

    1985-01-15T23:59:59.000Z

    This report presents the findings of an energy study done at Darigold dairy products plant in Issaquah, Washington. The study includes all electrical energy using systems at the plant, but does not address specific modifications to process equipment or the gas boilers. The Issaquah Darigold plant receives milk and cream, which are stored in large, insulated silos. These raw products are then processed into butter, cottage cheese, buttermilk, yogurt, sour cream, and powdered milk. This plant produces the majority of the butter used in the state of Washington. The Issaquah plant purchases electricity from Puget Sound Power and Light Company. The plant is on Schedule 31, primary metering. The plant provides transformers to step down the voltage to 480, 240, and 120 volts as needed. Based on utility bills for the period from July 1983 through July 1984, the Issaquah Darigold plant consumed 7,134,300 kWh at a total cost of $218,703.78 and 1,600,633 therms at a total cost of $889,687.48. Energy use for this period is shown in Figures 1.1 to 1.5. Demand charges account for approximately 23% of the total electrical bill for this period, while reactive charges account for less than 0.5%. The electrical usage for the plant was divided into process energy uses, as summarized in Figure 1.2. This breakdown is based on a 311-day processing schedule, with Sunday clean-up and holidays composing the 54 days of downtime.

  12. A Successful Cool Storage Rate

    E-Print Network [OSTI]

    Ahrens, A. C.; Sobey, T. M.

    1994-01-01T23:59:59.000Z

    Houston Lighting & Power (HL&P) initiated design and development of its commercial cool storage program as part of an integrated resource planning process with a targeted 225 MW of demand reduction through DSM. Houston's extensive commercial air...

  13. Efficient storage of versioned matrices

    E-Print Network [OSTI]

    Seering, Adam B

    2011-01-01T23:59:59.000Z

    Versioned-matrix storage is increasingly important in scientific applications. Various computer-based scientific research, from astronomy observations to weather predictions to mechanical finite-element analyses, results ...

  14. CFES RESEARCH THRUSTS: Energy Storage

    E-Print Network [OSTI]

    L, James Jian-Qiang

    CFES RESEARCH THRUSTS: Energy Storage Wind Energy Solar Energy Smart Grids Smart Buildings For our with the student to finalize the project plan. To sponsor an Energy Scholar, a company agrees to: Assign

  15. Complex Hydrides for Hydrogen Storage

    SciTech Connect (OSTI)

    Slattery, Darlene; Hampton, Michael

    2003-03-10T23:59:59.000Z

    This report describes research into the use of complex hydrides for hydrogen storage. The synthesis of a number of alanates, (AIH4) compounds, was investigated. Both wet chemical and mechano-chemical methods were studied.

  16. Device-transparent personal storage

    E-Print Network [OSTI]

    Strauss, Jacob A. (Jacob Alo), 1979-

    2010-01-01T23:59:59.000Z

    Users increasingly store data collections such as digital photographs on multiple personal devices, each of which typically presents the user with a storage management interface isolated from the contents of all other ...

  17. Reviewer Institution Ahring, Birgitte Kiaer Washington State University Tri-Cities

    E-Print Network [OSTI]

    Central Washington University Kaplan, Daniel I Savannah River National Laboratory Kayani, Asghar Nawaz National Laboratory Bennett, Brian NMN Medical College of Wisconsin Berhe, Asmeret Asefaw University National Laboratory Goodlett, David R University of Washington Gorman, Brian P Colorado School of Mines

  18. Report of the Ad Hoc Committee on Washington Natural Resource Agency Reform

    E-Print Network [OSTI]

    Borenstein, Elhanan

    Report of the Ad Hoc Committee on Washington Natural Resource Agency Reform February 16, 2010 recommended formation of an ad hoc committee to evaluate opportunities for SFR and others in College. As a result, the Washington Natural Resource Agency Reform ad hoc Committee was established and given

  19. The 33st International Electric Propulsion Conference, The George Washington University, USA October 6 10, 2013

    E-Print Network [OSTI]

    Walker, Mitchell

    The 33st International Electric Propulsion Conference, The George Washington University, USA, 30332, USA Abstract: Accurate measurement of ion charge flux in the plume of spacecraft electric.walker@ae.gatech.edu #12;The 33st International Electric Propulsion Conference, The George Washington University, USA

  20. Electrical impedance tomography and Calderon's Department of Mathematics, University of Washington, Seattle, WA 98195, USA

    E-Print Network [OSTI]

    Uhlmann, Gunther

    Electrical impedance tomography and Calder´on's problem G Uhlmann Department of Mathematics, University of Washington, Seattle, WA 98195, USA E-mail: gunther@math.washington.edu Abstract. We survey mathematical developments in the inverse method of Electrical Impedance Tomography which consists

  1. FPA 30 year Anniversary Meeting, Washington, 2 December 2009 Slide 1 Status of ITER

    E-Print Network [OSTI]

    FPA 30 year Anniversary Meeting, Washington, 2 December 2009 Slide 1 Status of ITER Fusion Power, 2 December 2009 Slide 2 Machine mass: 23350 t (cryostat + VV + magnets) - shielding, divertor Anniversary Meeting, Washington, 2 December 2009 Slide 3 TheThe Final ITER SiteFinal ITER Site Tokamak Hall

  2. HYDROGEOMORPHIC CLASSIFICATION OF WASHINGTON STATE RIVERS TO SUPPORT EMERGING ENVIRONMENTAL FLOW MANAGEMENT STRATEGIES

    E-Print Network [OSTI]

    Olden, Julian D.

    , Seattle, Washington, USA b National Atmospheric and Oceanic Administration, Northwest Fishery Sciences C. P. KONRADe,f and H. IMAKIb a School of Aquatic and Fishery Sciences, University of Washington INTRODUCTION Societal dependence on freshwater ecosystems is increasing worldwide as growing human populations

  3. Federal Government Congressional Budget Office, Health & Human Services, Long Term Modeling Washington, DC

    E-Print Network [OSTI]

    Shyy, Wei

    Manila, Philippines BRAC Dhaka, Bangladesh California Forward San Francisco, CA CARE (WDI) Atlanta, GA and Dhaka, Bangladesh CARE USA Washington, DC SUMMER 2009 INTERNSHIPS #12;Center for Women Policy Studies Educational Resources Africa Kumasi, Ghana Pew Center on Global Climate Change Washington, DC Rick Snyder

  4. Compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

    1981-01-01T23:59:59.000Z

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  5. The Storage of Shelled Pecans.

    E-Print Network [OSTI]

    Brison, Fred R. (Fred Robert)

    1945-01-01T23:59:59.000Z

    AGRIC - KPERIA .. -. STATIC t,4L EI rlENT ! C. H. MCUOSELL, Act~ng mrector Collegz Station. Texas 'LLETIN NO. 667 MARCH, THE STORAGE OF SHELLED PEC-4NS FRED R. BRISON Division of Horticulture . AGRICULTURAL AND MECHANICAL COLLEGE OF TE... Gibb Gilchrist, President [Blank Page in Original Bulletin] Shelled pecans may change in flavor, texture, and color, while in storage. They may also change as a result of insect or disease damage. Kernels change in flavor by becoming progressively...

  6. Lih thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, Mitchell (Knoxville, TN); Morris, David G. (Knoxville, TN)

    1994-01-01T23:59:59.000Z

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

  7. Investigating leaking underground storage tanks

    E-Print Network [OSTI]

    Upton, David Thompson

    1989-01-01T23:59:59.000Z

    INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1989... Major Subject: Geology INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Approved as to sty)e and content by: P. A, Domenico (Chair of Committee) jj K. W. Brown (Member) C. C Mathewson (Member) J. H. S ng Head...

  8. FAFCO Ice Storage test report

    SciTech Connect (OSTI)

    Stovall, T.K.

    1993-11-01T23:59:59.000Z

    The Ice Storage Test Facility (ISTF) is designed to test commercial ice storage systems. FAFCO provided a storage tank equipped with coils designed for use with a secondary fluid system. The FAFCO ice storage system was tested over a wide range of operating conditions. Measured system performance during charging showed the ability to freeze the tank fully, storing from 150 to 200 ton-h. However, the charging rate showed significant variations during the latter portion of the charge cycle. During discharge cycles, the storage tank outlet temperature was strongly affected by the discharge rate and tank state of charge. The discharge capacity was dependent upon both the selected discharge rate and maximum allowable tank outlet temperature. Based on these tests, storage tank selection must depend on both charge and discharge conditions. This report describes FAFCO system performance fully under both charging and discharging conditions. While the test results reported here are accurate for the prototype 1990 FAFCO Model 200, currently available FAFCO models incorporate significant design enhancements beyond the Model 200. At least one major modification was instituted as a direct result of the ISTF tests. Such design improvements were one of EPRI`s primary goals in founding the ISTF.

  9. The High Performance Storage System

    SciTech Connect (OSTI)

    Coyne, R.A.; Hulen, H. [IBM Federal Systems Co., Houston, TX (United States); Watson, R. [Lawrence Livermore National Lab., CA (United States)

    1993-09-01T23:59:59.000Z

    The National Storage Laboratory (NSL) was organized to develop, demonstrate and commercialize technology for the storage system that will be the future repositories for our national information assets. Within the NSL four Department of Energy laboratories and IBM Federal System Company have pooled their resources to develop an entirely new High Performance Storage System (HPSS). The HPSS project concentrates on scalable parallel storage system for highly parallel computers as well as traditional supercomputers and workstation clusters. Concentrating on meeting the high end of storage system and data management requirements, HPSS is designed using network-connected storage devices to transfer data at rates of 100 million bytes per second and beyond. The resulting products will be portable to many vendor`s platforms. The three year project is targeted to be complete in 1995. This paper provides an overview of the requirements, design issues, and architecture of HPSS, as well as a description of the distributed, multi-organization industry and national laboratory HPSS project.

  10. Geologic map of the Richland 1:100,000 quadrangle, Washington

    SciTech Connect (OSTI)

    Reidel, S.P.; Fecht, K.R. [comps.

    1993-09-01T23:59:59.000Z

    This map of the Richland 1:100,000-scale quadrangle, Washington, shows the geology of one of fifteen complete or partial 1:100,000-scale quadrangles that cover the southeast quadrant of Washington. Geologic maps of these quadrangles have been compiled by geologists with the Washington Division of Geology and Earth Resources (DGER) and Washington State University and are the principal data sources for a 1:250,000-scale geologic map of the southeast quadrant of Washington, which is in preparation. Eleven of these quadrangles are being released as DGER open-file reports. The map of the Wenatchee quadrangle has been published by the US Geological Survey, and the Moses Lake, Ritzville quadrangles have already been released.

  11. Hydrogen Storage DOI: 10.1002/anie.200801163

    E-Print Network [OSTI]

    , is the development of a safe and practical storage system. As opposed to stationary storage, in which the tank volume required for storage near room temperature. 2. Hydrogen Storage Requirements 2.1. The US DoE Storage System

  12. Optimize Storage Placement in Sensor Networks

    E-Print Network [OSTI]

    Li, Qun

    of limited storage, communication capacity, and battery power is ameliorated. Placing storage nodesOptimize Storage Placement in Sensor Networks Bo Sheng, Member, IEEE, Qun Li, Member, IEEE, and Weizhen Mao Abstract--Data storage has become an important issue in sensor networks as a large amount

  13. Energy Storage Management for VG Integration (Presentation)

    SciTech Connect (OSTI)

    Kirby, B.

    2011-10-01T23:59:59.000Z

    This presentation describes how you economically manage integration costs of storage and variable generation.

  14. Energy Storage: Current landscape for alternative energy

    E-Print Network [OSTI]

    Energy Storage: Current landscape for alternative energy storage technologies and what the future may hold for multi-scale storage applications Presented by: Dave Lucero, Director Alternative Energy · Industry initiatives · Technology · Energy Storage Market · EaglePicher initiatives · Summary #12

  15. Presented by Robust Storage Management in the

    E-Print Network [OSTI]

    Vazhkudai, Sudharshan

    , intermediate checkpoint storage or a staging ground Job's own allocated nodes can contribute storage spacePresented by Robust Storage Management in the Machine Room and Beyond Sudharshan Vazhkudai Computer Problem space: HPC storage crisis Data checkpointing, staging, and offloading are all affected by data

  16. Carbon dioxide storage professor Martin Blunt

    E-Print Network [OSTI]

    of CCS storage there are over a hundred sites worldwide where Co2 is injected under- ground as partCarbon dioxide storage professor Martin Blunt executive summary Carbon Capture and Storage (CCS and those for injection and storage in deep geological formations. all the individual elements operate today

  17. Thermal storage module for solar dynamic receivers

    DOE Patents [OSTI]

    Beatty, Ronald L. (Farragut, TN); Lauf, Robert J. (Oak Ridge, TN)

    1991-01-01T23:59:59.000Z

    A thermal energy storage system comprising a germanium phase change material and a graphite container.

  18. Hydrogen Storage Technologies Roadmap, November 2005

    Fuel Cell Technologies Publication and Product Library (EERE)

    Document describing plan for research into and development of hydrogen storage technology for transportation applications.

  19. EA-0942: Return of Isotope Capsules to the Waste Encapsulation and Storage Facility, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal for the return of all leased cesium-137 and strontium-90 leased capsules to the U.S. Department of Energy's Waste Encapsulation and...

  20. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    In Switzerland, district heating accounts for 50% of totalproposed hot-water district heating system in the St. Paul/an industrial in a district heating Washington Market and

  1. PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364

    SciTech Connect (OSTI)

    CORBETT JE; TEDESCH AR; WILSON RA; BECK TH; LARKIN J

    2011-02-14T23:59:59.000Z

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

  2. Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage Vishal Kher and Yongdae Kim

    E-Print Network [OSTI]

    Kim, Dae-Shik

    Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage Vishal Kher and Yongdae. While storage outsourcing is cost-effective, many compa- nies are hesitating to outsource their storage due to security concerns. The success of storage outsourcing is highly de- pendent on how well

  3. Conductive lithium storage electrode

    DOE Patents [OSTI]

    Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Seoul, KR); Bloking, Jason T. (Cambridge, MA); Andersson, Anna M. (Uppsala, SE)

    2008-03-18T23:59:59.000Z

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z(A.sub.1-aM''.sub.a).s- ub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

  4. Conductive lithium storage electrode

    DOE Patents [OSTI]

    Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Incheon, KR); Bloking, Jason T. (Mountain View, CA); Andersson, Anna M. (Vasteras, SE)

    2012-04-03T23:59:59.000Z

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

  5. Small Wind Electric Systems: A Washington Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01T23:59:59.000Z

    Small Wind Electric Systems: A Washington Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  6. Cascade Apartments - Deep Energy Multifamily Retrofit , Kent, Washington (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01T23:59:59.000Z

    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions : 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofit package after considering utility window incentives and KCHA capitol improvement funding.

  7. University of Washington, Nuclear Physics Laboratory annual report, 1995

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The Nuclear Physics Laboratory of the University of Washington supports a broad program of experimental physics research. The current program includes in-house research using the local tandem Van de Graff and superconducting linac accelerators and non-accelerator research in double beta decay and gravitation as well as user-mode research at large accelerator and reactor facilities around the world. This book is divided into the following areas: nuclear astrophysics; neutrino physics; nucleus-nucleus reactions; fundamental symmetries and weak interactions; accelerator mass spectrometry; atomic and molecular clusters; ultra-relativistic heavy ion collisions; external users; electronics, computing, and detector infrastructure; Van de Graff, superconducting booster and ion sources; nuclear physics laboratory personnel; degrees granted for 1994--1995; and list of publications from 1994--1995.

  8. Washington State energy use profile 1960 to 1980

    SciTech Connect (OSTI)

    Hinman G.; Alguire, F.; Devlin, T.; Hanson, J.; Horton, D.; Olsen, D.

    1980-12-01T23:59:59.000Z

    A comprehensive energy data base for the state of Washington is presented to provide energy suppliers, consumers, and policy makers with the most current energy data and information possible so that energy planning and policy decisions may be made on an informed basis. The first section provides an overview of demographic and economic factors, energy use, energy resources, and prices. The second section provides greater detail on the uses, supplies, and prices of the principal energy resources used in the state. The third section focuses on electricity and describes uses, supplies, and prices for this intermediate energy form. The fourth section disaggregates energy consumption by users and provides additional detail on use in the residential, commercial, industrial, agricultural, and transportation sectors. The fifth section shows some comparisons of actual figures with those appearing in some recent forecasts. (MCW)

  9. The 1980-1982 Geothermal Resource Assessment Program in Washington

    SciTech Connect (OSTI)

    Korosec, Michael A.; Phillips, William M.; Schuster, J.Eric

    1983-08-01T23:59:59.000Z

    Since 1978, the Division of Geology and Earth Resources of the Washington Department of Natural Resources has participated in the U.S. Department of Energy's (USDOE) State-Coupled Geothermal Resource Program. Federal and state funds have been used to investigate and evaluate the potential for geothermal resources, on both a reconnaissance and area-specific level. Preliminary results and progress reports for the period up through mid-1980 have already been released as a Division Open File Report (Korosec, Schuster, and others, 1981). Preliminary results and progress summaries of work carried out from mid-1980 through the end of 1982 are presented in this report. Only one other summary report dealing with geothermal resource investigations in the state has been published. An Information Circular released by the Division (Schuster and others, 1978) compiled the geology, geochemistry, and heat flow drilling results from a project in the Indian Heaven area in the south Cascades. The previous progress report for the geothermal program (Korosec, Schuster, and others, 1981) included information on temperature gradients measured throughout the state, heat flow drilling in the southern Cascades, gravity surveys for the southern Cascades, thermal and mineral spring investigations, geologic mapping for the White Pass-Tumac Mountain area, and area specific studies for the Camas area of Clark County and Mount St. Helens. This work, along with some additional studies, led to the compilation of the Geothermal Resources of Washington map (Korosec, Kaler, and others, 1981). The map is principally a nontechnical presentation based on all available geothermal information, presented as data points, tables, and text on a map with a scale of 1:500,000.

  10. Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Summary and Guide for Stakeholders

    SciTech Connect (OSTI)

    Not Available

    2011-01-01T23:59:59.000Z

    Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723). DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 15001508), and DOEs NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations: Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho; Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOEs Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.

  11. Underground storage of oil and gas

    SciTech Connect (OSTI)

    Bergman, S.M.

    1984-09-01T23:59:59.000Z

    The environmental and security advantages of underground storage of oil and gas are well documented. In many cases, underground storage methods such as storage in salt domes, abandoned mines, and mined rock caverns have proven to be cost effective when compared to storage in steel tanks constructed for that purpose on the surface. In good rock conditions, underground storage of large quantities of hydrocarbon products is normally less costly--up to 50-70% of the surface alternative. Under fair or weak rock conditions, economic comparisons between surface tanks and underground caverns must be evaluated on a case to case basis. The key to successful underground storage is enactment of a realistic geotechnical approach. In addition to construction cost, storage of petroleum products underground has operational advantages over similar storage above ground. These advantages include lower maintenance costs, less fire hazards, less land requirements, and a more even storage temperature.

  12. GPUs as Storage System Accelerators

    E-Print Network [OSTI]

    Al-Kiswany, Samer; Ripeanu, Matei

    2012-01-01T23:59:59.000Z

    Massively multicore processors, such as Graphics Processing Units (GPUs), provide, at a comparable price, a one order of magnitude higher peak performance than traditional CPUs. This drop in the cost of computation, as any order-of-magnitude drop in the cost per unit of performance for a class of system components, triggers the opportunity to redesign systems and to explore new ways to engineer them to recalibrate the cost-to-performance relation. This project explores the feasibility of harnessing GPUs' computational power to improve the performance, reliability, or security of distributed storage systems. In this context, we present the design of a storage system prototype that uses GPU offloading to accelerate a number of computationally intensive primitives based on hashing, and introduce techniques to efficiently leverage the processing power of GPUs. We evaluate the performance of this prototype under two configurations: as a content addressable storage system that facilitates online similarity detectio...

  13. Natural gas cavern storage regulation

    SciTech Connect (OSTI)

    Heneman, H.

    1995-09-01T23:59:59.000Z

    Investigation of an incident at an LPG storage facility in Texas by U.S. Department of Transportation resulted in recommendation that state regulation of natural gas cavern storage might be improved. Interstate Oil & Gas Compact Commission has established a subcommittee to analyze the benefits and risks associated with natural gas cavern storage, and to draft a regulation model which will suggest engineering and performance specifications. The resulting analysis and regulatory language will be reviewed by I.O.G.C.C., and if approved, distributed to member states (including New York) for consideration. Should the states desire assistance in modifying the language to reflect local variables, such as policy and geology, I.O.G.C.C. may offer assistance. The proposed presentation will review the I.O.G.C.C. product (if published at that date), and discuss implications of its application in New York.

  14. Storage containers for radioactive material

    DOE Patents [OSTI]

    Groh, Edward F. (Naperville, IL); Cassidy, Dale A. (Valparaiso, IN); Dates, Leon R. (Elmwood Park, IL)

    1981-01-01T23:59:59.000Z

    A radioactive material storage system for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together, whereby the plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or

  15. Prestressed elastomer for energy storage

    DOE Patents [OSTI]

    Hoppie, Lyle O. (Birmingham, MI); Speranza, Donald (Canton, MI)

    1982-01-01T23:59:59.000Z

    Disclosed is a regenerative braking device for an automotive vehicle. The device includes a power isolating assembly (14), an infinitely variable transmission (20) interconnecting an input shaft (16) with an output shaft (18), and an energy storage assembly (22). The storage assembly includes a plurality of elastomeric rods (44, 46) mounted for rotation and connected in series between the input and output shafts. The elastomeric rods are prestressed along their rotational or longitudinal axes to inhibit buckling of the rods due to torsional stressing of the rods in response to relative rotation of the input and output shafts.

  16. Carbon Capture and Storage, 2008

    SciTech Connect (OSTI)

    2009-03-19T23:59:59.000Z

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  17. Carbon Capture and Storage, 2008

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  18. Catalyzed borohydrides for hydrogen storage

    DOE Patents [OSTI]

    Au, Ming (Augusta, GA)

    2012-02-28T23:59:59.000Z

    A hydrogen storage material and process is provided in which alkali borohydride materials are created which contain effective amounts of catalyst(s) which include transition metal oxides, halides, and chlorides of titanium, zirconium, tin, and combinations of the various catalysts. When the catalysts are added to an alkali borodydride such as a lithium borohydride, the initial hydrogen release point of the resulting mixture is substantially lowered. Additionally, the hydrogen storage material may be rehydrided with weight percent values of hydrogen at least about 9 percent.

  19. 222-S radioactive liquid waste line replacement and 219-S secondary containment upgrade, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) is proposing to: (1) replace the 222-S Laboratory (222-S) radioactive liquid waste drain lines to the 219-S Waste Handling Facility (219-S); (2) upgrade 219-S by replacing or upgrading the waste storage tanks and providing secondary containment and seismic restraints to the concrete cells which house the tanks; and (3) replace the transfer lines from 219-S to the 241-SY Tank Farm. This environmental assessment (EA) has been prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended, the Council on Environmental Quality Regulations for Implementing the Procedural Provisions of NEPA (40 Code of Federal Regulations [CFR] 1500-1508), and the DOE Implementing Procedures for NEPA (10 CFR 1021). 222-S is used to perform analytical services on radioactive samples in support of the Tank Waste Remediation System and Hanford Site environmental restoration programs. Activities conducted at 222-S include decontamination of analytical processing and support equipment and disposal of nonarchived radioactive samples. These activities generate low-level liquid mixed waste. The liquid mixed waste is drained through pipelines in the 222-S service tunnels and underground concrete encasements, to two of three tanks in 219-S, where it is accumulated. 219-S is a treatment, storage, and/or disposal (TSD) unit, and is therefore required to meet Washington Administrative Code (WAC) 173-303, Dangerous Waste Regulations, and the associated requirements for secondary containment and leak detection. The service tunnels are periodically inspected by workers and decontaminated as necessary to maintain as low as reasonably achievable (ALARA) radiation levels. Although no contamination is reaching the environment from the service tunnels, the risk of worker exposure is present and could increase. 222-S is expected to remain in use for at least the next 30 years to serve the Hanford Site environmental cleanup mission.

  20. Agenda for the Hydrogen Delivery and Onboard Storage Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Delivery and Onboard Storage Analysis Workshop Agenda for the Hydrogen Delivery and Onboard Storage Analysis Workshop Agenda for the Hydrogen Delivery and Onboard Storage...