Sample records for washington disposal site

  1. EA-1889: Disposal of Decommissioned, Defueled Naval Reactor Plants from USS Enterprise (CVN 65) at the Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA, prepared by the Department of the Navy, evaluates the environmental impacts of the disposal of decommissioned, defueled, naval reactor plants from the USS Enterprise at DOE’s Hanford Site, Richland, Washington. DOE participated as a cooperating agency in the preparation of this EA. The Department of the Navy issued its FONSI on August 23, 2012.

  2. Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site, Southeast Washington

    SciTech Connect (OSTI)

    Kincaid, Charles T.; Bergeron, Marcel P.; Cole, Charles R.; Freshley, Mark D.; Johnson, Vernon G.; Kaplan, D. I.; Serne, R. Jeffrey; Streile, Gary P.; Strenge, Dennis L.; Thorne, Paul D.; Vail, Lance W.; Whyatt, Greg A.; Wurstner, Signe K.

    2000-03-01T23:59:59.000Z

    A composite analysis of low-level radioactive waste disposal and other radioactive sources was recently completed for the Hanford Site in Southeast Washington State. Impacts from source release and environmental transport were estimated for a 1000-year period following Site closure in a multi-step process involving 1) estimation of radiological inventories and release, 2) assessment of contaminant migration through the vadose zone, groundwater, and atmospheric pathways, 3) and estimation of doses. The analysis showed that most of the radionuclide inventory in past-practice liquid discharge sites and pre-1988 solid waste burial grounds on the 200 Area Plateau will be released in the first several hundred years following Hanford Site closure, well before projected releases from active and planned disposals of solid waste. The maximum predicted agricultural dose was less than 6 mrem/y in 2050 and declined thereafter. The maximum doses for the residential, industrial, and recreational scenarios, were 2.2, 0.7, and 0.04 mrem/y, respectively, and also declined after 2050.

  3. EIS-0113: Disposal of Hanford Defense High-Level, Transuranic and Tank Waste, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to examine the potential environmental impacts of final disposal options for legacy and future radioactive defense wastes stored at the Hanford Site.

  4. Hazardous Waste Disposal Sites (Iowa)

    Broader source: Energy.gov [DOE]

    These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

  5. Washington Energy Facility Site Evalutation Council - Generalized...

    Open Energy Info (EERE)

    Washington Energy Facility Site Evalutation Council - Generalized Siting Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Chart: Washington Energy...

  6. Title I Disposal Site

    E-Print Network [OSTI]

    Mr. Bill; Von Till

    2006-01-01T23:59:59.000Z

    The Office of Legacy Management and the Navajo Nation have been discussing an item specified in the Long Term Surveillance Plan (LTSP) for the Mexican Hat site for some time now, and we have come to a resolution on the matter. The LTSP specifies seep sampling at the site to confirm that the disposal cell is operating as designed. Typically, this is to be done for a specific time and then reevaluated, but, in this LTSP there is no time frame given. After 8 years of experience in sampling and observing these six seeps, it has been found that most are not flowing at all, and those that have any water running are so limited in flow that it is difficult to obtain a sample. In addition, several risk assessments have been performed over the years to evaluate the possible ecological risks associated with exposure to this seep water. The analysis indicates there would be no eco-risk based on the historic data to any wildlife or livestock. This information and a full analysis of the situation was submitted to the Navajo Nation for their consideration, and, in further discussions, they have agreed to limit the sampling to only making observations during the annual cell inspection, and if water is observed to be increased compared to historic observations, then sampling will resume. Their agreement to this change is noted in the enclosed copy of their letter to DOE dated July 25, 2006. I have enclosed a copy of this report,

  7. ENVIRONMENTAL IMPACTS ASSOCIATED WITH STORAGE, TREATMENT, AND DISPOSAL OF SOLID RADIOACTIVE AND CHEMICALLY HAZARDOUS WASTE AT THE HANFORD SITE, RICHLAND, WASHINGTON

    SciTech Connect (OSTI)

    Johnson, Wayne L.; Nelson, Iral C.; Payson, David R.; Rhoads, Kathleen

    2004-03-01T23:59:59.000Z

    The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) provides environmental and technical information concerning U.S. Department of Energy (DOE) proposed waste management practices for certain solid radioactive wastes at the Hanford Site through the year 2046. The HSW EIS covers four primary aspects of waste management at Hanford – storage, treatment, transportation, and disposal. It also addresses four types of solid waste – low-level waste, mixed low-level waste that contains both radioactive and chemically hazardous constituents, immobilized low-activity waste from processing Hanford tank waste, and transuranic waste. The HSW EIS was prepared to assist DOE in determining which specific Hanford Site facilities will continue to be used, will be modified, or need to be constructed, to safely treat, store, and dispose of these wastes.

  8. Commencement Bay nearshore/tideflats Superfund site, Tacoma, Washington remedial investigations. Evaluation of alternative dredging methods and equipment, disposal methods and sites, and site control and treatment practices for contaminated sediments. Final report

    SciTech Connect (OSTI)

    Phillips, K.E.; Malek, J.F.; Hammer, W.B.

    1985-06-01T23:59:59.000Z

    Alternative technologies and techniques for dredging, disposal, and treatment of contaminated sediments are reviewed. Implications of alternative technologies for management of contaminated sediments are discussed. Selection of appropriate technologies for contaminated sediments management depends on the physical and chemical profile of the sediments, and particularly on the physical state (liquid, solid, or gaseous) of contaminants of concern and changes in state that may occur at different phases of dredging, disposal, control, and treatment. Determination of acceptable criteria governing concentrations of contaminants in water, sediments, and soils, and air is the major requirement for selecting specific technologies for managing contaminated sediments. Technologies should be used which ensure that criteria will be met at all phases in the handling operations. Cost is most variable for disposal-site effluent-treatment options.

  9. Disposal Information - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscovering How Muscles Really WorkHanford Site Solid Waste

  10. Disposal of Hanford site tank wastes

    SciTech Connect (OSTI)

    Kupfer, M.J.

    1993-09-01T23:59:59.000Z

    Between 1943 and 1986, 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs) were built and used to store radioactive wastes generated during reprocessing of irradiated uranium metal fuel elements at the U.S. Department of Energy (DOE) Hanford Site in Southeastern Washington state. The 149 SSTs, located in 12 separate areas (tank farms) in the 200 East and 200 West areas, currently contain about 1.4 {times} 10{sup 5} m{sup 3} of solid and liquid wastes. Wastes in the SSTs contain about 5.7 {times} 10{sup 18} Bq (170 MCi) of various radionuclides including {sup 90}Sr, {sup 99}Tc, {sup 137}Cs, and transuranium (TRU) elements. The 28 DSTs also located in the 200 East and West areas contain about 9 {times} 10{sup 4} m{sup 3} of liquid (mainly) and solid wastes; approximately 4 {times} 10{sup 18}Bq (90 MCi) of radionuclides are stored in the DSTs. Important characteristics and features of the various types of SST and DST wastes are described in this paper. However, the principal focus of this paper is on the evolving strategy for final disposal of both the SST and DST wastes. Also provided is a chronology which lists key events and dates in the development of strategies for disposal of Hanford Site tank wastes. One of these strategies involves pretreatment of retrieved tank wastes to separate them into a small volume of high-level radioactive waste requiring, after vitrification, disposal in a deep geologic repository and a large volume of low-level radioactive waste which can be safely disposed of in near-surface facilities at the Hanford Site. The last section of this paper lists and describes some of the pretreatment procedures and processes being considered for removal of important radionuclides from retrieved tank wastes.

  11. Deep Borehole Disposal Research: Demonstration Site Selection...

    Office of Environmental Management (EM)

    Site Selection Guidelines, Borehole Seals Design, and RD&D Needs The U.S. Department of Energy has been investigating deep borehole disposal as one alternative for the disposal...

  12. Sherwood, Washington, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3u ;;;::Sampling at

  13. Title I Disposal Sites Annual Report | Department of Energy

    Office of Environmental Management (EM)

    Sites Annual Report 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites (March 2014) 2013 Annual Site...

  14. Potential Federal On-Site Solar Aggregation in Washington, D...

    Broader source: Energy.gov (indexed) [DOE]

    Shah 2 Presentation Overview * Federal Renewable Requirements * On-site Renewable Energy Purchase Overview * Washington DCMaryland Solar Options * Case Studies * Federal...

  15. alcatraz disposal site: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Radium-226 are the predominant radioactive contaminents on Formerly Utilized Sites Remedial Action Plan (FUSRAP) sites. Engineering Websites Summary: by the nearby disposal...

  16. Specialized Disposal Sites for Different Reprocessing Plant Wastes

    SciTech Connect (OSTI)

    Forsberg, Charles W. [Nuclear Science and Technology Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831 (United States); Driscoll, Michael J. [Department of Nuclear Science and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139 (United States)

    2007-07-01T23:59:59.000Z

    Once-through fuel cycles have one waste form: spent nuclear fuel (SNF). In contrast, the reprocessed SNF yields multiple wastes with different chemical, physical, and radionuclide characteristics. The different characteristics of each waste imply that there are potential cost and performance benefits to developing different disposal sites that match the disposal requirements of different waste. Disposal sites as defined herein may be located in different geologies or in a single repository containing multiple sections, each with different characteristics. The paper describes disposal options for specific wastes and the potential for a waste management system that better couples various reprocessing plant wastes with disposal facilities. (authors)

  17. EA-0915: Waste Tank Safety Program Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to resolve waste tank safety issues at the Hanford Site near the City of Richland, Washington, and to reduce the risks associated with...

  18. Waste Disposal Site and Radioactive Waste Management (Iowa)

    Broader source: Energy.gov [DOE]

    This section describes the considerations of the Commission in determining whether to approve the establishment and operation of a disposal site for nuclear waste. If a permit is issued, the...

  19. Spook, Wyoming, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O'1 ~(3JlpV Project ProposalFirstI

  20. HANFORD SITE SUSTAINABILITY PROGRAM RICHLAND WASHINGTON - 12464

    SciTech Connect (OSTI)

    FRITZ LL

    2012-01-12T23:59:59.000Z

    In support of implementation of Executive Order (EO) 13514, Federal Leadership in Environmental, Energy and Economic Performance, the Hanford Site Sustainability Plan was developed to implement strategies and activities required to achieve the prescribed goals in the EO as well as demonstrate measurable progress in environmental stewardship at the Hanford Site. The Hanford Site Sustainability Program was developed to demonstrate progress towards sustainability goals as defined and established in Executive Order (EO) 13514, Federal Leadership in Environmental, Energy and Economic Performance; EO 13423, Strengthening Federal Environmental, Energy and Transportation Management, and several applicable Energy Acts. Multiple initiatives were undertaken in Fiscal Year (FY) 2011 to implement the Program and poise the Hanford Site as a leader in environmental stewardship. In order to implement the Hanford Site Sustainability Program, a Sustainability Plan was developed in conjunction with prime contractors, two U.S. Department of Energy (DOE) Offices, and key stakeholders to serve as the framework for measuring progress towards sustainability goals. Based on the review of these metrics and future plans, several activities were initiated to proactively improve performance or provide alternatives for future consideration contingent on available funding. A review of the key metric associated with energy consumption for the Hanford Site in FY 2010 and 2011 indicated an increase over the target reduction of 3 percent annually from a baseline established in FY 2003 as illustrated in Figure 1. This slight increase was attributed primarily from the increased energy demand from the cleanup projects funded by the American Recovery and Reinvestment Act (ARRA) in FY 2010 and 2011. Although it is forecasted that the energy demand will decrease commensurate with the completion of ARRA projects, several major initiatives were launched to improve energy efficiency.

  1. Remediation of a Former USAF Radioactive Material Disposal Site

    SciTech Connect (OSTI)

    Hoffman, D. E.; Cushman, M; Tupyi, B.; Lambert, J.

    2003-02-25T23:59:59.000Z

    This paper describes the remediation of a low-level radiological waste burial site located at the former James Connally Air Force Base in Waco, Texas. Burial activities at the site occurred during the 1950's when the property was under the ownership of the United States Air Force. Included is a discussion of methods and strategies that were used to successfully exhume and characterize the wastes for proper disposal at offsite disposal facilities. Worker and environmental protection measures are also described. Information gained from this project may be used at other similar project sites. A total of nine burial tubes had been identified for excavation, characterization, and removal from the site. The disposal tubes were constructed of 4-ft lengths of concrete pipe buried upright with the upper ends flush with ground surface. Initial ground level observations of the burial tubes indicated that some weathering had occurred; however, the condition of the subsurface portions of the tubes was unknown. Soil excavation occurred in 1-foot lifts in order that the tubes could be inspected and to allow for characterization of the soils at each stage of the excavation. Due to the weight of the concrete pipe and the condition of the piping joints it was determined that special measures would be required to maintain the tubes intact during their removal. Special tube anchoring and handling methods were required to relocate the tubes from their initial positions to a staging area where they could be further characterized. Characterization of the disposal tubes was accomplished using a combination of gamma spectroscopy and activity mapping methods. Important aspects of the project included the use of specialized excavation and disposal tube reinforcement measures to maintain the disposal tubes intact during excavation, removal and subsequent characterization. The non-intrusive gamma spectroscopy and data logging methods allowed for effective characterization of the wastes while minimizing disposal costs. In addition, worker exposures were maintained ALARA as a result of the removal and characterization methods employed.

  2. Radionuclide limits for vault disposal at the Savannah River Site

    SciTech Connect (OSTI)

    Cook, J.R.

    1992-02-04T23:59:59.000Z

    The Savannah River Site is developing a facility called the E-Area Vaults which will serve as the new radioactive waste disposal facility beginning early in 1992. The facility will employ engineered below-grade concrete vaults for disposal and above-grade storage for certain long-lived mobile radionuclides. This report documents the determination of interim upper limits for radionuclide inventories and concentrations which should be allowed in the disposal structures. The work presented here will aid in the development of both waste acceptance criteria and operating limits for the E-Area Vaults. Disposal limits for forty isotopes which comprise the SRS waste streams were determined. The limits are based on total facility and vault inventories for those radionuclides which impact groundwater, and or waste package concentrations for those radionuclides which could affect intruders.

  3. On-Site Disposal Facility Inspection Report

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona,Site Operations Guide Doc. No.GS05:or _^rOak

  4. On-Site Disposal Facility Inspection Report

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona,Site Operations Guide Doc. No.GS05:or _^rOak72.1 06/14

  5. Three-Dimensional Groundwater Models of the 300 Area at the Hanford Site, Washington State

    SciTech Connect (OSTI)

    Williams, Mark D.; Rockhold, Mark L.; Thorne, Paul D.; Chen, Yousu

    2008-09-01T23:59:59.000Z

    Researchers at Pacific Northwest National Laboratory developed field-scale groundwater flow and transport simulations of the 300 Area to support the 300-FF-5 Operable Unit Phase III Feasibility Study. The 300 Area is located in the southeast portion of the U.S. Department of Energy’s Hanford Site in Washington State. Historical operations involving uranium fuel fabrication and research activities at the 300 Area have contaminated engineered liquid-waste disposal facilities, the underlying vadose zone, and the uppermost aquifer with uranium. The main objectives of this research were to develop numerical groundwater flow and transport models to help refine the site conceptual model, and to assist assessment of proposed alternative remediation technologies focused on the 300 Area uranium plume.

  6. Long-term surveillance plan for the Canonsburg, Pennsylvania, disposal site

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    This document establishes elements of the US Department of Energy`s (DOE) Long-Term Surveillance Plan for the Canonsburg, Pennsylvania, disposal site. The US Nuclear Regulatory Commission (NRC) will use this plan in support of license issuance for the long-term surveillance of the Canonsburg site. The Canonsburg (CAN) site is located within the borough of Canonsburg, Washington County, in southwestern Pennsylvania. The Canonsburg site covers approximately 30 acres (74 hectares). The disposal cell contains approximately 226,000 tons (241,000 tons) of residual radioactive material (RRM). Area C is southeast of the Canonsburg site, between Strabane Avenue and Chartiers Creek. Contaminated soils were removed from Area C during the remedial action, and the area was restored with uncontaminated fill material.After this cleanup, residual quantities of thorium-230 were detected at several Area C locations. The remedial action plan did not consider the ingrowth of radium-226 from thorium-230 as part of the Area C cleanup, and only two locations contained sufficient thorium-230 concentrations to result in radium-226 concentrations slightly above the US Environmental Protection Agency (EPA) standards.

  7. Assessment of unsaturated zone radionuclide contamination in the 200 areas of the Hanford site, Washington

    SciTech Connect (OSTI)

    Brodeur, J.R.; Wittreich, C.D.

    1993-03-01T23:59:59.000Z

    The 200 East and 200 West Areas at the Department of Energy`s Hanford site in southeastern Washington, contain chemical and nuclear fuel processing facilities that disposed of large volumes of chemical and radionuclide effluents to the ground via various structures such as ponds, cribs and ditches. A geophysical logging investigation was implemented in 1992 to assess the nature and extent of contamination beneath select liquid disposal sites in the 200 Areas. The borehole geophysical logging was accomplished with a recently developed spectral gamma-ray logging system called the Radionuclide Logging System (RLS). This system has a high-resolution, intrinsic germanium detector mounted in a downhole probe and is calibrated and operated specifically for use in a borehole environment. It provides a means to develop in-situ, gamma-emitting radioelement concentration profiles. Approximately 50 boreholes were logged in this study. The RLS log data provided information about the migration and deposition patterns of specific radionuclides in the unsaturated zone and their impacts on the groundwater. Approximately 10 radionuclide species were detected and quantified. Results of the field investigation are being used to refine site specific conceptual models, support Hanford Site remediation decisions and focus future characterization activities.

  8. Routine environmental audit of the Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    This report documents the results of the routine environmental audit of the Hanford Site (Hanford), Richland, Washington. During this audit, the activities conducted by the audit team included reviews of internal documents an reports from previous audits and assessments; interviews with US Department of Energy (DOE), State of Washington regulatory, and contractor personnel; and inspections and observations of selected facilities and operations. The onsite portion of the audit was conducted May 2--13, 1994, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety and Health (EH). The audit evaluated the status of programs to ensure compliance with Federal, State, and local environmental laws and regulations; compliance with DOE orders, guidance, and directives; and conformance with accepted industry practices and standards of performance. The audit also evaluated the status and adequacy of the management systems developed to address environmental requirements.

  9. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2009-07-31T23:59:59.000Z

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was implemented. (6) At CAS 09-23-01, Area 9 Gravel Gertie, a UR was implemented. (7) At CAS 09-34-01, Underground Detection Station, no work was performed.

  10. Grand Junction, Colorado, Processing Site and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN551 - g 7 s %Grand

  11. EIS-0356: Retrieval, Treatment and Disposal of Tank Wastes and Closure of Single-Shell Tanks at the Hanford Site, Richland, WA

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed retrieval, treatment, and disposal of the waste being managed in the high-level waste (HLW) tank farms at the Hanford Site near Richland, Washington, and closure of the 149 single-shell tanks (SSTs) and associated facilities in the HLW tank farms.

  12. INCO-WBC-1-509173 Reintegration of coal ash disposal sites and mitigation of

    E-Print Network [OSTI]

    1 INCO-WBC-1-509173 RECOAL Reintegration of coal ash disposal sites and mitigation of pollution of coal ash disposal sites Due date of deliverable: 12.2007 Actual submission date: 02.2008 Start date of the consortium (including the Commission Services) #12;2 Handbook on treatment of coal ash disposal sites Preface

  13. Final Site-Specific Decommissioning Inspection Report for the University of Washington Research and Test Reactor

    SciTech Connect (OSTI)

    Sarah Roberts

    2006-10-18T23:59:59.000Z

    Report of site-specific decommissioning in-process inspection activities at the University of Washington Research and Test Reactor Facility.

  14. EIS-0119: Decommissioning of Eight Surplus Production Reactors at the Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EIS presents analyses of potential environmental impacts of decommissioning the eight surplus production reactors at the Hanford Site near Richland, Washington.

  15. Pyramiding tumuli waste disposal site and method of construction thereof

    DOE Patents [OSTI]

    Golden, Martin P. (Hamburg, NY)

    1989-01-01T23:59:59.000Z

    An improved waste disposal site for the above-ground disposal of low-level nuclear waste as disclosed herein. The disposal site is formed from at least three individual waste-containing tumuli, wherein each tumuli includes a central raised portion bordered by a sloping side portion. Two of the tumuli are constructed at ground level with adjoining side portions, and a third above-ground tumulus is constructed over the mutually adjoining side portions of the ground-level tumuli. Both the floor and the roof of each tumulus includes a layer of water-shedding material such as compacted clay, and the clay layer in the roofs of the two ground-level tumuli form the compacted clay layer of the floor of the third above-ground tumulus. Each tumulus further includes a shield wall, preferably formed from a solid array of low-level handleable nuclear wate packages. The provision of such a shield wall protects workers from potentially harmful radiation when higher-level, non-handleable packages of nuclear waste are stacked in the center of the tumulus.

  16. Application for Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-08-05T23:59:59.000Z

    The NTS is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. NNSA/NSO is the federal lands management authority for the NTS and NSTec is the Management & Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The U10C Disposal Site is located in the northwest corner of Area 9 at the NTS (Figure 1) and is located in a subsidence crater created by two underground nuclear events, one in October 1962 and another in April 1964. The disposal site opened in 1971 for the disposal of rubbish, refuse, pathological waste, asbestos-containing material, and industrial solid waste. A Notice of Intent form to operate the disposal site as a Class II site was submitted to the state of Nevada on January 26, 1994, and was acknowledged in a letter to the DOE on February 8, 1994. It operated as a state of Nevada Class II Solid Waste Disposal Site (SWDS) until it closed on October 5, 1995, for retrofit as a Class III SWDS. The retrofit consisted of the installation of a minimum four-foot compacted soil layer to segregate the different waste types and function as a liner to inhibit leachate and water flow into the lower waste zone. Five neutron monitoring tubes were installed in this layer to monitor possible leachate production and water activity. Upon acceptance of the installed barrier and approval of an Operating Plan by NDEP/BFF, the site reopened in January 1996 as a Class III SWDS for the disposal of industrial solid waste and other inert waste.

  17. Slick Rock, Colorado, Processing Sites and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona,Site Operations Guide Doc.5 R A D I O L2-341-FOS

  18. Title I Disposal Sites Annual Report | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy SolarRadioactiveI Disposal Sites Annual Report Title I

  19. Title II Disposal Sites Annual Report | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy SolarRadioactiveI Disposal Sites Annual Report Title III

  20. DOE - Office of Legacy Management -- Maryland Disposal Site - MD 05

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizonaBuffaloJohns0-04Maryland Disposal Site -

  1. Prioritization and accelerated remediation of groundwater contamination in the 200 Areas of the Hanford Site, Washington

    SciTech Connect (OSTI)

    Wittreich, C.D.; Ford, B.H.

    1993-04-01T23:59:59.000Z

    The Hanford Site, operated by the US Department of Energy (DOE), occupies about 1,450 km{sup 2} (560 mi{sup 2}) of the southeastern part of Washington State north of the confluence of the Yakima and Columbia Rivers. The Hanford Site is organized into numerically designated operational areas. The 200 Areas, located near the center of the Hanford Site, encompasses the 200 West, East and North Areas and cover an area of over 40 km{sup 2}. The Hanford Site was originally designed, built, and operated to produce plutonium for nuclear weapons using production reactors and chemical reprocessing plants. Operations in the 200 Areas were mainly related to separation of special nuclear materials from spent nuclear fuel and contain related chemical and fuel processing and waste management facilities. Large quantities of chemical and radioactive waste associated with these processes were often disposed to the environment via infiltration structures such as cribs, ponds, ditches. This has resulted in over 25 chemical and radionuclide groundwater plumes, some of which have reached the Columbia River. An Aggregate Area Management Study program was implemented under the Hanford Federal Facility Agreement and Consent Order to assess source and groundwater contamination and develop a prioritized approach for managing groundwater remediation in the 200 Areas. This included a comprehensive evaluation of existing waste disposal and environmental monitoring data and the conduct of limited field investigations (DOE-RL 1992, 1993). This paper summarizes the results of groundwater portion of AAMS program focusing on high priority contaminant plume distributions and the groundwater plume prioritization process. The objectives of the study were to identify groundwater contaminants of concern, develop a conceptual model, refine groundwater contaminant plume maps, and develop a strategy to expedite the remediation of high priority contaminants through the implementation of interim actions.

  2. 1997 Hanford site report on land disposal restrictions for mixed waste

    SciTech Connect (OSTI)

    Black, D.G.

    1997-04-07T23:59:59.000Z

    The baseline land disposal restrictions (LDR) plan was prepared in 1990 in accordance with the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tn-Party Agreement) Milestone M-26-00 (Ecology et al, 1989). The text of this milestone is below. ''LDR requirements include limitations on storage of specified hazardous wastes (including mixed wastes). In accordance with approved plans and schedules, the U.S. Department of Energy (DOE) shall develop and implement technologies necessary to achieve full compliance with LDR requirements for mixed wastes at the Hanford Site. LDR plans and schedules shall be developed with consideration of other action plan milestones and will not become effective until approved by the U.S. Environmental Protection Agency (EPA) (or Washington State Department of Ecology [Ecology]) upon authorization to administer LDRs pursuant to Section 3006 of the Resource Conservation and Recovery Act of 1976 (RCRA). Disposal of LDR wastes at any time is prohibited except in accordance with applicable LDR requirements for nonradioactive wastes at all times. The plan will include, but not be limited to, the following: Waste characterization plan; Storage report; Treatment report; Treatment plan; Waste minimization plan; A schedule depicting the events necessary to achieve full compliance with LDR requirements; and A process for establishing interim milestones.

  3. Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement Richland, Washington

    SciTech Connect (OSTI)

    N /A

    2004-02-13T23:59:59.000Z

    This Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) provides environmental and technical information concerning U.S. Department of Energy (DOE) ongoing and proposed waste management practices at the Hanford Site in Washington State. The HSW EIS updates some analyses of environmental consequences from previous documents and provides evaluations for activities that may be implemented consistent with the Waste Management Programmatic Environmental Impact Statement (WM PEIS; DOE 1997c) Records of Decision (RODs). The draft HSW EIS was initially issued in April 2002 for public comment (DOE 2002b). A revised draft HSW EIS was issued in March 2003 to address new waste management alternatives that had been proposed since the initial draft HSW EIS was prepared, and to address comments received during the public review period for the first draft (DOE 2003d). The revised draft HSW EIS also incorporated alternatives for disposal of immobilized low-activity waste (ILAW) from treatment of Hanford Site tank waste in the waste treatment plant (WTP) currently under construction, an activity that was not included in the first draft (68 FR 7110). This final HSW EIS describes the DOE preferred alternative, and in response to public comments received on the March 2003 revised draft, provides additional analyses for some environmental consequences associated with the preferred alternative, with other alternatives, and with cumulative impacts. Public comments on the revised draft HSW EIS are addressed in the comment response document (Volume III of this final EIS). This HSW EIS describes the environmental consequences of alternatives for constructing, modifying, and operating facilities to store, treat, and/or dispose of low-level (radioactive) waste (LLW), transuranic (TRU) waste, ILAW, and mixed low-level waste (MLLW) including WTP melters at Hanford. In addition, the potential long-term consequences of LLW, MLLW, and ILAW disposal on groundwater and surface water are evaluated for a 10,000-year period, although the DOE performance standards only require assessment for the first 1000 years after disposal (DOE 2001f). This document does not address non-radioactive waste that contains ''hazardous'' or ''dangerous'' waste, as defined under the Resource Conservation and Recovery Act (RCRA) of 1976 (42 USC 6901) and Washington State Dangerous Waste regulations (WAC 173-303). Following a previous National Environmental Policy Act (NEPA, 42 USC 4321) review (DOE 1997d), DOE decided to dispose of TRU waste in New Mexico at the Waste Isolation Pilot Plant (WIPP), a repository that meets the requirements of 40 CFR 191 (63 FR 3623). This HSW EIS has been prepared in accordance with NEPA, the DOE implementing procedures for NEPA 10 CFR 1021, and the Council on Environmental Quality (CEQ) Regulations for Implementing the Procedural Provisions of NEPA (40 CFR 1500-1508).

  4. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-09-14T23:59:59.000Z

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan for the Disposal of Low-Level Waste with Regulated Asbestos Waste.'' A requirement of the authorization was that on or before October 9, 1999, a permit was required to be issued. Because of NDEP and NNSA/NSO review cycles, the final permit was issued on April 5, 2000, for the operation of the Area 5 Low-Level Waste Disposal Site, utilizing Pit 7 (P07) as the designated disposal cell. The original permit applied only to Pit 7, with a total design capacity of 5,831 cubic yards (yd{sup 3}) (157,437 cubic feet [ft{sup 3}]). NNSA/NSO is expanding the SWDS to include the adjacent Upper Cell of Pit 6 (P06), with an additional capacity of 28,037 yd{sup 3} (756,999 ft{sup 3}) (Figure 3). The proposed total capacity of ALLW in Pit 7 and P06 will be approximately 33,870 yd{sup 3} (0.9 million ft{sup 3}). The site will be used for the disposal of regulated ALLW, small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. The only waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM). The term asbestiform is used throughout this document to describe this waste. Other TSCA waste (i.e., polychlorinated biphenyls [PCBs]) will not be accepted for disposal at the SWDS. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the U.S. Department of Energy, Nevada Operations Office (DOE/NV) 325

  5. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2007-07-01T23:59:59.000Z

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report.

  6. Melter Disposal Strategic Planning Document

    SciTech Connect (OSTI)

    BURBANK, D.A.

    2000-09-25T23:59:59.000Z

    This document describes the proposed strategy for disposal of spent and failed melters from the tank waste treatment plant to be built by the Office of River Protection at the Hanford site in Washington. It describes program management activities, disposal and transportation systems, leachate management, permitting, and safety authorization basis approvals needed to execute the strategy.

  7. 1995 Report on Hanford site land disposal restrictions for mixed waste

    SciTech Connect (OSTI)

    Black, D.G.

    1995-04-01T23:59:59.000Z

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order Milestone M-26-01E. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal restricted mixed waste at the Hanford Site. The U.S. Department of Energy, its predecessors, and contractors at the Hanford Site were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 and Atomic Energy Act of 1954. This report covers mixed waste only. The Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDRs) plan and its annual updates to comply with LDR requirements for radioactive mixed waste. This report is the fifth update of the plan first issued in 1990. Tri-Party Agreement negotiations completed in 1993 and approved in January 1994 changed and added many new milestones. Most of the changes were related to the Tank Waste Remediation System and these changes are incorporated into this report.

  8. Application for Permit to Operate a Class II Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-03-31T23:59:59.000Z

    The Nevada Test Site (NTS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NTS and National Security Technologies LLC (NSTec) is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The site will be used for the disposal of refuse, rubbish, garbage, sewage sludge, pathological waste, Asbestos-Containing Material (ACM), industrial solid waste, hydrocarbon-burdened soil, hydrocarbon-burdened demolition and construction waste, and other inert waste (hereafter called permissible waste). Waste containing free liquids or regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA) will not be accepted for disposal at the site. Waste regulated under the Toxic Substance Control Act (TSCA), excluding Polychlorinated Biphenyl [PCB], Bulk Product Waste (see Section 6.2.5) and ACM (see Section 6.2.2.2) will not be accepted for disposal at the site. The disposal site will be used as the sole depository of permissible waste which is: (1) Generated by entities covered under the U.S. Environmental Protection Agency (EPA) Hazardous Waste Generator Identification Number for the NTS; (2) Generated at sites identified in the Federal Facilities Agreement and Consent Order (FFACO); (3) Sensitive records and media, including documents, vugraphs, computer disks, typewriter ribbons, magnetic tapes, etc., generated by NNSA/NSO or its contractors; (4) ACM generated by NNSA/NSO or its contractors according to Section 6.2.2.2, as necessary; (5) Hydrocarbon-burdened soil and solid waste from areas covered under the EPA Hazardous Waste Generator Identification Number for the NTS; (6) Other waste on a case-by-case concurrence by NDEP/BFF. The generator of permissible waste is responsible for preparing documentation related to waste acceptance criteria, waste characterization, and load verification. Waste and Water (WW) personnel are responsible for operating the disposal site and reviewing documentation to determine if the waste is acceptable.

  9. Updated Site Response Analyses for the Waste Treatment Plant, DOE Hanford, Site, Washington.

    SciTech Connect (OSTI)

    Youngs, Robert R.

    2007-06-29T23:59:59.000Z

    This document describes the calculations performed to develop updated relative amplification functions for the Waste Treatment and Immobilization Plant (WTP) facility at the DOE Hanford Site, Washington State. The original 2,000-year return period design spectra for the WTP were based on the results of a probabilistic seismic hazard analysis (PSHA) performed for the DOE Hanford Site by Geomatrix (1996). Geomatrix (1996) performed the PSHA using empirical soil-site ground motion models based primarily on recordings from California. As part of that study, site response analyses were performed to evaluate ground motions at the Hanford sites and California deep soil sites. As described in Appendix A of Geomatrix (1996), characteristic site profiles and dynamic soil properties representative of conditions at various Hanford sites and California deep soil strong motion recording stations were defined. Relative site responses of the Hanford profiles and California profiles were then compared. Based on the results of those site response analyses, it was concluded that ground motions at the Hanford sites underlain by deep soil deposits are similar in character to those on California deep soil sites and it was judged appropriate to use empirical deep soil site attenuation relationships based primarily on California ground motion data to develop design spectra for the Hanford sites. In a subsequent analysis, Geomatrix (2003) updated the site response analyses of Geomatrix (1996, Appendix A) to incorporate randomization of the California and Hanford profiles. The results of that analysis also led to the conclusion that the response of the Hanford profiles was similar to the response of deep soil sites in California.

  10. Risk assessment of landfill disposal sites - State of the art

    SciTech Connect (OSTI)

    Butt, Talib E. [Sustainability Centre in Glasgow (SCG), George Moore Building, 70 Cowcaddens Road, Glasgow Caledonian University, Glasgow G4 0BA, Scotland (United Kingdom)], E-mail: t_e_butt@hotmail.com; Lockley, Elaine [Be Environmental Ltd. Suite 213, Lomeshaye Business Village, Turner Road, Nelson, Lancashire, BB9 7DR, England (United Kingdom); Oduyemi, Kehinde O.K. [Built and Natural Environment, Baxter Building, University of Abertay Dundee, Bell Street, Dundee DD1 1HG, Scotland (United Kingdom)], E-mail: k.oduyemi@abertay.ac.uk

    2008-07-01T23:59:59.000Z

    A risk assessment process can assist in drawing a cost-effective compromise between economic and environmental costs, thereby assuring that the philosophy of 'sustainable development' is adhered to. Nowadays risk analysis is in wide use to effectively manage environmental issues. Risk assessment is also applied to other subjects including health and safety, food, finance, ecology and epidemiology. The literature review of environmental risk assessments in general and risk assessment approaches particularly regarding landfill disposal sites undertaken by the authors, reveals that an integrated risk assessment methodology for landfill gas, leachate or degraded waste does not exist. A range of knowledge gaps is discovered in the literature reviewed to date. From the perspective of landfill leachate, this paper identifies the extent to which various risk analysis aspects are absent in the existing approaches.

  11. Licensing plan for UMTRA project disposal sites. Final [report

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Office developed a plan to define UMTRA Project licensing program objectives and establish a process enabling the DOE to document completion of remedial actions in compliance with 40 CFR 1 92 and the requirements of the NRC general license. This document supersedes the January 1987 Project Licensing Plan (DOE, 1987). The plan summarizes the legislative and regulatory basis for licensing, identifies participating agencies and their roles and responsibilities, defines key activities and milestones in the licensing process, and details the coordination of these activities. This plan provides an overview of the UMTRA Project from the end of remedial actions through the NRC`s acceptance of a disposal site under the general license. The licensing process integrates large phases of the UMTRA Project. Other programmatic UMTRA Project documents listed in Section 6.0 provide supporting information.

  12. Remedial actions at the former Vitro Rare Metals plant site, Canonsburg, Washington County, Pennsylvania. Final Environmental Impact Statement. Volume I

    SciTech Connect (OSTI)

    Not Available

    1983-07-01T23:59:59.000Z

    The environmental impacts associated with remedial actions in connection with residual radioactive materials remaining at the inactive uranium processing site located in Canonsburg, Washington County, Pennsylvania are evaluated. The Canonsburg site is an 18.5-acre property that was formerly owned by the Vitro Rare Metals Company. The expanded Canonsburg site would be 30-acre property that would include the Canonsburg site (the former Vitro Rare Metals plant), seven adjacent private houses, and the former Georges Pottery property. During the period 1942 through 1957 the Vitro Manufacturing Company and its successor, the Vitro Corporation of America, processed onsite residues and ores, and government-owned ores, concentrates, and scraps to extract uranium and other rare metals. The Canonsburg site is now the Canon Industrial Park. In addition to storing the residual radioactive materials of this process at the Canonsburg site, about 12,000 tons of radioactively contaminated materials were transferred to a railroad landfill in Burrell Township, Indiana County, Pennsylvania. This Canonsburg FEIS evaluates five alternatives for removing the potential public health hazard associated with the radioactively contaminated materials. In addition to no action, these alternatives involve various combinations of stabilization of the radioactively contaminated materials in place or decontamination of the Canonsburg and Burrell sites by removing the radioactively contaminated materials to another location. In addition to the two sites mentioned, a third site located in Hanover Township, Washington County, Pennsylvania has been considered as a disposal site to which the radioactively contaminated materials presently located at either of the other two sites might be moved.

  13. Disposal Activities and the Unique Waste Streams at the Nevada National Security Site (NNSS)

    SciTech Connect (OSTI)

    Arnold, P.

    2012-10-31T23:59:59.000Z

    This slide show documents waste disposal at the Nevada National Security Site. Topics covered include: radionuclide requirements for waste disposal; approved performance assessment (PA) for depleted uranium disposal; requirements; program approval; the Waste Acceptance Review Panel (WARP); description of the Radioactive Waste Acceptance Program (RWAP); facility evaluation; recent program accomplishments, nuclear facility safety changes; higher-activity waste stream disposal; and, large volume bulk waste streams.

  14. EA-1211: Relocation and Storage of Isotopic Heat Sources, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal for relocation and storage of the isotopic heat sources at the U.S. Department of Energy Hanford Site in Richland, Washington.

  15. 1993 report on Hanford Site land disposal restrictions for mixed wastes

    SciTech Connect (OSTI)

    Black, D.

    1993-04-01T23:59:59.000Z

    Since the early 1940s, the contractors at the Hanford Site have been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste (RMW). This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976{sup 2}(RCRA) and Atomic Energy Act{sup 3}. This report covers mixed waste only. Hazardous waste that is not contaminated with radionuclides is not addressed in this report. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order{sup 1} (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for RMW. This report is the third update of the plan first issued in 1990. The Tri-Party Agreement requires, and the baseline plan and annual update reports provide, the information that follows: Waste characterization information; storage data; treatment information; waste reduction information; schedule; and progress.

  16. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  17. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  18. Long-term surveillance plan for the Gunnison, Colorado disposal site

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  19. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  20. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0

    SciTech Connect (OSTI)

    Wickline, Alfred

    2005-12-01T23:59:59.000Z

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting corrective action alternatives.

  1. EA-1097: Solid waste Disposal- Nevada Test Site, Nye County, Nevada

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to continue the on-site disposal of solid waste at the Area 9 and Area 23 landfills at the U.S. Department of Energy Nevada Test Site...

  2. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    SciTech Connect (OSTI)

    Mohamed, Yasser T. [Hot Laboratories and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)] [Hot Laboratories and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)

    2013-07-01T23:59:59.000Z

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Center has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)

  3. ash disposal site: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OF PRINCE GEORGE: SNOW DISPOSAL AT THE LANSDOWNE ROAD WASTEWATER TREATMENT CENTRE DOE FRAP WASTEWATER TREATMENT CENTRE ACKNOWLEDGEMENTS Funding for this study was provided...

  4. ash disposal sites: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OF PRINCE GEORGE: SNOW DISPOSAL AT THE LANSDOWNE ROAD WASTEWATER TREATMENT CENTRE DOE FRAP WASTEWATER TREATMENT CENTRE ACKNOWLEDGEMENTS Funding for this study was provided...

  5. Hanford Site waste treatment/storage/disposal integration

    SciTech Connect (OSTI)

    MCDONALD, K.M.

    1999-02-24T23:59:59.000Z

    In 1998 Waste Management Federal Services of Hanford, Inc. began the integration of all low-level waste, mixed waste, and TRU waste-generating activities across the Hanford site. With seven contractors, dozens of generating units, and hundreds of waste streams, integration was necessary to provide acute waste forecasting and planning for future treatment activities. This integration effort provides disposition maps that account for waste from generation, through processing, treatment and final waste disposal. The integration effort covers generating facilities from the present through the life-cycle, including transition and deactivation. The effort is patterned after the very successful DOE Complex EM Integration effort. Although still in the preliminary stages, the comprehensive onsite integration effort has already reaped benefits. These include identifying significant waste streams that had not been forecast, identifying opportunities for consolidating activities and services to accelerate schedule or save money; and identifying waste streams which currently have no path forward in the planning baseline. Consolidation/integration of planned activities may also provide opportunities for pollution prevention and/or avoidance of secondary waste generation. A workshop was held to review the waste disposition maps, and to identify opportunities with potential cost or schedule savings. Another workshop may be held to follow up on some of the long-term integration opportunities. A change to the Hanford waste forecast data call would help to align the Solid Waste Forecast with the new disposition maps.

  6. Long-term surveillance plan for the Maybell, Colorado Disposal Site

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Maybell disposal site in Moffat County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Maybell disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete for the Maybell site and the NRC formally accepts this LTSP. This document describes the long-term surveillance program the DOE will implement to ensure the Maybell disposal site performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance document and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  7. Long-term surveillance plan for the South Clive Disposal Site, Clive, Utah

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the US Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project South Clive disposal site in Clive, Utah. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CRF Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the South Clive disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the South Clive site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the South Clive disposal site performs as designed. The program`s primary activity is site inspections to identify threats to disposal cell integrity.

  8. Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney disposal site. The site is in Mesa County near Grand Junction, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects public health and safety and the environment. Before each disposal site may be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Cheney disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete and the NRC formally accepts this plan. This document describes the long-term surveillance program the DOE will implement to ensure that the Cheney disposal site performs as designed. The program is based on site inspections to identify potential threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  9. Long-term surveillance plan for the Maybell, Colorado Disposal Site

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Maybell disposal site in Moffat County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Maybell disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete for the Maybell site and the NRC formally accepts this LTSP. This document describes the long-term surveillance program the DOE will implement to ensure the Maybell disposal site performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance document and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  10. 1994 Report on Hanford Site land disposal restrictions for mixed waste

    SciTech Connect (OSTI)

    Black, D.G.

    1994-04-01T23:59:59.000Z

    The baseline land disposal restrictions (LDR) plan was prepared in 1990 in accordance with the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) Milestone M-26-00 (Ecology et al. 1992). The text of this milestone is below. LDR requirements include limitations on storage of specified hazardous wastes (including mixed wastes). In accordance with approved plans and schedules, the US Department of Energy (DOE) shall develop and implement technologies necessary to achieve full compliance with LDR requirements for mixed wastes at the Hanford Site. LDR plans and schedules shall be developed with consideration at other action plan milestones and will not become effective until approved by the US Environmental Protection Agency (EPA) (or Washington State Department of Ecology [Ecology]) upon authorization to administer LDRs pursuant to Section 3006 of the Resource Conservation and Recovery Act of 1976 (RCRA). Disposal of LDR wastes at any time is prohibited except in accordance with applicable LDR requirements for nonradioactive wastes at all times. The plan will include, but not be limited to, the following: waste characterization plan; storage report; treatment report; treatment plan; waste minimization plan; a schedule depicting the events necessary to achieve full compliance with LDR requirements; a process for establishing interim milestones. The original plan was published in October 1990. This is the fourth of a series of annual updates required by Tri-Party Agreement Milestone M-26-01. A Tri-Party Agreement change request approved in March 1992 changed the annual due date from October to April and consolidated this report with a similar one prepared under Milestone M-25-00. The reporting period for this report is from April 1, 1993, to March 31, 1994.

  11. Long-term surveillance plan for the Mexican Hat disposal site Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Mexican Hat, Utah, disposal site. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Mexican Hat disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

  12. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-09-01T23:59:59.000Z

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  13. Long-term surveillance plan for the Gunnison, Colorado disposal site. Revision 2

    SciTech Connect (OSTI)

    NONE

    1997-02-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the US Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance.

  14. Framework for DOE mixed low-level waste disposal: Site fact sheets

    SciTech Connect (OSTI)

    Gruebel, M.M.; Waters, R.D.; Hospelhorn, M.B.; Chu, M.S.Y. [eds.

    1994-11-01T23:59:59.000Z

    The Department of Energy (DOE) is required to prepare and submit Site Treatment Plans (STPS) pursuant to the Federal Facility Compliance Act (FFCAct). Although the FFCAct does not require that disposal be addressed in the STPS, the DOE and the States recognize that treatment of mixed low-level waste will result in residues that will require disposal in either low-level waste or mixed low-level waste disposal facilities. As a result, the DOE is working with the States to define and develop a process for evaluating disposal-site suitability in concert with the FFCAct and development of the STPS. Forty-nine potential disposal sites were screened; preliminary screening criteria reduced the number of sites for consideration to twenty-six. The DOE then prepared fact sheets for the remaining sites. These fact sheets provided additional site-specific information for understanding the strengths and weaknesses of the twenty-six sites as potential disposal sites. The information also provided the basis for discussion among affected States and the DOE in recommending sites for more detailed evaluation.

  15. 100/300 Area Aquifer Tube Task: Annual Sampling for Fiscal Year 2006, Hanford Site, Washington

    SciTech Connect (OSTI)

    Peterson, Robert E.; Hartman, Mary J.; Raidl, Robert F.; Borghese, Jane V.

    2005-11-01T23:59:59.000Z

    This letter report has been prepared to provide the U.S. Department of Energy, U.S. Environmental Protection Agency, Washington State Department of Ecology, and Hanford Site contractors with logistical information pertaining to the use of certain environmental monitoring sites. Although the distribution is not limited, It is not intended for general distribution beyond that audience.

  16. Long-term surveillance plan for the Mexican Hat disposal site, Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSPC documents the land ownership interests and details how the long-term care of the disposal site will be accomplished.

  17. Washington

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell Director ofDepartment of Energy Washington , DC

  18. Long-term surveillance plan for the Mexican Hat disposal site Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Mexican Hat, Utah, disposal site. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Mexican Hat disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the disposal site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Mexican Hat disposal site performs as designed. The program is based on two distinct types of activities: (1) site inspections to identify potential threats to disposal cell integrity, and (2) monitoring of selected seeps to observe changes in flow rates and water quality. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03. 18 refs., 6 figs., 1 tab.

  19. Disposal site-selection technical appendix. Phase 2. (North and South Puget Sound)

    SciTech Connect (OSTI)

    Kendall, D.; Jamison, D.; Malek, J.; Ehlers, P.

    1989-09-01T23:59:59.000Z

    This document is a technical appendix to both the Proposed Management Plan Report and the Environmental Impact Statement (EIS) for the Puget Sound Dredged Disposal Analysis (PSDDA) Phase II study covering north and south Puget Sound. Results of disposal-site-selection studies for Phase II of PSDDA, are summarized herein. Phase II includes the southern portion of Puget Sound south of the Tacoma Narrows and the northern portion of Puget Sound north of Admiralty Inlet to the U.S./Canadian border and west to Port Angeles. DSWG's task in Phase II was to identify suitable unconfined, open-water disposal sites. This technical appendix summarizes the process by which DSWG carried out its task. Each site includes a 900-foot radius, 58-acre surface disposal zone within which all dredged material must be released. Each of the dispersive sites includes a 1,500-foot radius, 162-acre surface disposal zone within which all dredgfed material must be released. The capacities of the nondispersive disposal sites in the Phase II area are estimated to be several times the probable volume of dredged material projected for disposal through the year 2000.

  20. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2009-01-31T23:59:59.000Z

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP).

  1. Long-term surveillance plan for the Lowman, Idaho, Disposal site. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The long-term surveillance plan (LTSP) for the Lowman, Idaho, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lowman disposal site, which will be referred to as the Lowman site throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. The radioactive sands at the Lowman site were stabilized on the site. This final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. The LTSP documents whether the land and interests are owned by the United States or a state, and describes, in detail, how the long-term care of the disposal site will be carried out through the UMTRA Project long-term surveillance program. The Lowman, Idaho, LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program, (DOE, 1992).

  2. Crescent Junction Disposal Site Diversion Channel Design, North Side Disposal Cell Sources of Data:

    E-Print Network [OSTI]

    unknown authors

    Checked b"t me-Kao a MName A e4719 lProblem Statement: " Design erosion protection for the north slope of the disposal cell to prevent detrimental erosion from surface water flows from upland area, consistent with the requirements of 40 CFR Part 192 and NRC guidance in NUREG 1623.

  3. Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations

    SciTech Connect (OSTI)

    J.T. Carilli; S.K. Krenzien; R.G. Geisinger; S.J. Gordon; B. Quinn

    2009-03-01T23:59:59.000Z

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams.

  4. National Register of Historic Places multiple property documentation form -- Historic, archaeological, and traditional cultural properties of the Hanford Site, Washington

    SciTech Connect (OSTI)

    Nickens, P.R.

    1997-08-01T23:59:59.000Z

    The US Department of Energy`s Hanford Site encompasses an area of 560 square miles on the Columbia River in southeastern Washington. Since 1943, the Hanford Site has existed as a protected area for activities primarily related to the production of radioactive materials for national defense uses. For cultural resources on the Hanford Site, establishment of the nuclear reservation as a high security area, with public access restricted, has resulted in a well-protected status, although no deliberate resource protection measures were in effect to mitigate effects of facilities construction and associated activities. Thus, the Hanford Site contains an extensive record of aboriginal archaeological sites and Native American cultural properties, along with pre-Hanford Euro-American sites (primarily archaeological in nature with the removal of most pre-1943 structures), and a considerable number of Manhattan Project/Cold War era buildings and structures. The recent mission change from production to clean up and disposal of DOE lands created a critical need for development and implementation of new and different cultural resource management strategies. DOE-RL has undertaken a preservation planning effort for the Hanford Site. The intent of this Plan is to enable DOE-RL to organize data and develop goals, objectives, and priorities for the identification, evaluation, registration, protection, preservation, and enhancement of the Site`s historical and cultural properties. Decisions made about the identification, evaluation, registration and treatment of historic properties are most aptly made when relationships between individual properties and other similar properties are considered. The historic context and the multiple property documentation (NTD) process provides DOE-RL the organizational framework for these decisions. Once significant patterns are identified, contexts developed, and expected properties are defined, the NTD process provides the foundation for future decisions concerning the management of significant cultural resources on the Hanford Site.

  5. Long-term surveillance plan for the Shiprock disposal site, Shiprock, New Mexico

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    The long-term surveillance plan (LTSP) for the Shiprock, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Shiprock disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. This Shiprock, New Mexico, LTSP documents whether the land and interests are owned by the US or an Indian tribe and describes in detail the long-term care program through the UMTRA Project Office.

  6. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites

    SciTech Connect (OSTI)

    None

    2013-11-01T23:59:59.000Z

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management in 2013 at six uranium mill tailings disposal sites reclaimed under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title II disposal sites remain in compliance with license requirements. DOE manages six UMTRCA Title II disposal sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) established at Title 10 Code of Federal Regulations Part 40.28. Reclamation and site transition activities continue at other sites, and DOE ultimately expects to manage approximately 27 Title II disposal sites. Long-term surveillance and maintenance activities and services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective action; and performing administrative, records, stakeholder services, and other regulatory functions. Annual site inspections and monitoring are conducted in accordance with site-specific long-term surveillance plans (LTSPs) and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up inspections, or corrective action. LTSPs and site compliance reports are available online at http://www.lm.doe.gov

  7. Long-term surveillance plan for the Ambrosia Lake, New Mexico disposal site

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Ambrosia Lake disposal site in McKinley County, New Mexico, describes the U.S. Department of Energy`s (DOE) long-term care program for the disposal site. The DOE will carry out this program to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials.

  8. Siting Study for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego; Joan Connolly; Lance Peterson; Brennon Orr; Bob Starr

    2010-10-01T23:59:59.000Z

    The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.

  9. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.

  10. Siting of low-level radioactive waste disposal facilities in Texas

    E-Print Network [OSTI]

    Isenhower, Daniel Bruce

    1982-01-01T23:59:59.000Z

    University property was evaluated for suitability for disposal of low-level radioactive waste. This site was evaluated to demonstrate, briefly, the site characterization process and to determine the ability of the statewide study to accurately predict... these boreholes. Literature review was an additional method employed to characterize the site. The results of this site characterization reveal that a more extensive investigation would be necessary to completely evaluate the site and that the state- wide...

  11. Potential Federal On-Site Solar Aggregation in Washington, D...

    Energy Savers [EERE]

    solarppapepcojan2014.pdf More Documents & Publications Federal On-Site Renewable Power Purchasing Issues Quick Guide: Power Purchase Agreements Power Purchase Agreements...

  12. Long-term surveillance plan for the Rifle, Colorado, Disposal site

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Estes Gulch disposal site in Garfield County, Colorado. The U.S. Environmental Protection Agency (EPA) has developed regulations for the issuance of a general license by the U.S. Nuclear Regulatory Commission (NRC) for the custody and long-term care of UMTRA Project disposal Sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites, will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Estes Gulch disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Estes Gulch site and the NRC formally accepts this LTSP.

  13. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the US Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment.For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP.

  14. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    SciTech Connect (OSTI)

    none,

    2014-03-01T23:59:59.000Z

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) in 2013 at 19 uranium mill tailings disposal sites established under Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978.1 These activities verified that the UMTRCA Title I disposal sites remain in compliance with license requirements. DOE operates 18 UMTRCA Title I sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) in accordance with Title 10 Code of Federal Regulations Part 40.27 (10 CFR 40.27). As required under the general license, a long-term surveillance plan (LTSP) for each site was prepared by DOE and accepted by NRC. The Grand Junction, Colorado, Disposal Site, one of the 19 Title I sites, will not be included under the general license until the open, operating portion of the cell is closed. The open portion will be closed either when it is filled or in 2023. This site is inspected in accordance with an interim LTSP. Long-term surveillance and maintenance services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective actions; and performing administrative, records, stakeholder relations, and other regulatory stewardship functions. Annual site inspections and monitoring are conducted in accordance with site-specific LTSPs and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up or contingency inspections, or corrective action in accordance with the LTSP. LTSPs and site compliance reports are available on the Internet at http://www.lm.doe.gov/.

  15. Environmental Survey preliminary report, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1987-08-01T23:59:59.000Z

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Hanford Site, conducted August 18 through September 5, 1986. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the Hanford Site. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the Hanford Site, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the Hanford Site. The Interim Report will reflect the final determinations of the Hanford Site Survey. 44 refs., 88 figs., 74 tabs.

  16. DOE - Office of Legacy Management -- Pennsylvania Disposal Site - PA 43

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp - CTOregon MetallurgicalWestPaulDisposal

  17. Salt Lake City, Utah, Processing and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O 1 8B100B100WWNASCUBA80 ' ,19.7Salt

  18. Shirley Basin South, Wyoming, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O

  19. Gunnison, Colorado, Processing and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN551 - g 7 s

  20. Research Summary RECOAL: Reintegration of coal ash disposal sites and mitigation

    E-Print Network [OSTI]

    Research Summary RECOAL: Reintegration of coal ash disposal sites and mitigation of pollution being used for coal ash deposits. Pollutants present in the ash can contaminate water resources and soil its research on the thermo-electric plant (TEP) and associated coal ash sites at Tuzla, Bosnia

  1. Modeling transport of disposed dredged material from placement sites in Grays Harbor, WA

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Modeling transport of disposed dredged material from placement sites in Grays Harbor, WA E- to mid- term dredge material management strategies for the Federal Navigation Project at Grays Harbor dredging quantities. However, the most heavily used dredged material placement sites lie in proximity

  2. EM Completes Salt Waste Disposal Units $8 Million under Budget at Savannah River Site

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – The EM program at Savannah River Site (SRS) has built two more low-level salt waste disposal units ahead of schedule and under budget. This work is essential to the mission of cleaning and closing the site's underground waste tanks.

  3. EA-1959: Eightmile Ranch Coho Acclimation Site, Okanogan County, Washington

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration and USDA Forest Service, Okanogan-Wenatchee National Forest, are jointly preparing an EA to assess the potential environmental impacts of funding a proposal by the Confederated Tribes and Bands of the Yakama Nation to construct and operate a coho salmon acclimation pond at Eightmile Ranch, which is owned and operated by the Forest Service. BPA's Mid-Columbia Coho Restoration Program EIS (DOE/EIS-0425) addressed the overall coho restoration program, with 11 acclimation sites. Some of these sites proved infeasible, so the Yakama Nation is proposing a new site at Eightmile Ranch. Young coho would be held in the pond from March to May and then released into the Chewuch River approximately 10 miles above its confluence with the Methow River.

  4. Long-term surveillance plan for the Lowman, Idaho, disposal site

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The long-term surveillance plan (LTSP) for the Lowman, Idaho, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lowman disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This preliminary final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. The LTSP documents whether the land and interests are owned by the United States or an Indian tribe, and describes, in detail, how the long-term care of the disposal site will be carried out through the UMTRA Project long-term surveillance program. The Lowman, Idaho, LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program, (DOE, 1992).

  5. A data base for low-level radioactive waste disposal sites

    SciTech Connect (OSTI)

    Daum, M.L.; Moskowitz, P.D.

    1989-07-01T23:59:59.000Z

    A computerized database was developed to assist the US Environmental Protection Agency (EPA) in evaluating methods and data for characterizing health hazards associated with land and ocean disposal options for low-level radioactive wastes. The data cover 1984 to 1987. The types of sites considered include Nuclear Regulatory Commission (NRC) licensed commercial disposal sites, EPA National Priority List (NPL) sites, US Department of Energy (DOE) Formerly Utilized Sites Remedial Action Project (FUSRAP) and DOE Surplus Facilities Management Program (SFMP) sites, inactive US ocean disposal sites, and DOE/Department of Defense facilities. Sources of information include reports from EPA, the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC), as well as direct communication with individuals associated with specific programs. The data include site descriptions, waste volumes and activity levels, and physical and radiological characterization of low-level wastes. Additional information on mixed waste, packaging forms, and disposal methods were compiled, but are not yet included in the database. 55 refs., 4 figs., 2 tabs.

  6. A hydrochemical data base for the Hanford Site, Washington

    SciTech Connect (OSTI)

    Early, T.O.; Mitchell, M.D.; Spice, G.D.

    1986-05-01T23:59:59.000Z

    This data package contains a revision of the Site Hydrochemical Data Base for water samples associated with the Basalt Waste Isolation Project (BWIP). In addition to the detailed chemical analyses, a summary description of the data base format, detailed descriptions of verification procedures used to check data entries, and detailed descriptions of validation procedures used to evaluate data quality are included. 32 refs., 21 figs., 3 tabs.

  7. Long-term surveillance plan for the Mexican Hat Disposal Site, Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSP (based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program), documents the land ownership interests and details how the long-term care of the disposal site will be accomplished.

  8. CHARACTERIZATION OF DEFENSE NUCLEAR WASTE USING HAZARDOUS WASTE GUIDANCE. APPLICATIONS TO HANFORD SITE ACCELERATED HIGH-LEVEL WASTE TREATMENT AND DISPOSAL MISSION0

    SciTech Connect (OSTI)

    Hamel, William; Huffman, Lori; Lerchen, Megan; Wiemers, Karyn

    2003-02-27T23:59:59.000Z

    Federal hazardous waste regulations were developed for management of industrial waste. These same regulations are also applicable for much of the nation's defense nuclear wastes. At the U.S. Department of Energy's (DOE) Hanford Site in southeast Washington State, one of the nation's largest inventories of nuclear waste remains in storage in large underground tanks. The waste's regulatory designation and its composition and form constrain acceptable treatment and disposal options. Obtaining detailed knowledge of the tank waste composition presents a significant portion of the many challenges in meeting the regulatory-driven treatment and disposal requirements for this waste. Key in applying the hazardous waste regulations to defense nuclear wastes is defining the appropriate and achievable quality for waste feed characterization data and the supporting evidence demonstrating that applicable requirements have been met at the time of disposal. Application of a performance-based approach to demonstrating achievable quality standards will be discussed in the context of the accelerated high-level waste treatment and disposal mission at the Hanford Site.

  9. Isotope Production at the Hanford Site in Richland, Washington

    SciTech Connect (OSTI)

    Ammoniums

    1999-06-01T23:59:59.000Z

    This report was prepared in response to a request from the Nuclear Energy Research Advisory Committee (NERAC) subcommittee on ''Long-Term Isotope Research and Production Plans.'' The NERAC subcommittee has asked for a reply to a number of questions regarding (1) ''How well does the Department of Energy (DOE) infrastructure sme the need for commercial and medical isotopes?'' and (2) ''What should be the long-term role of the federal government in providing commercial and medical isotopes?' Our report addresses the questions raised by the NERAC subcommittee, and especially the 10 issues that were raised under the first of the above questions (see Appendix). These issues are related to the isotope products offered by the DOE Isotope Production Sites, the capabilities and condition of the facilities used to produce these products, the management of the isotope production programs at DOE laboratories, and the customer service record of the DOE Isotope Production sites. An important component of our report is a description of the Fast Flux Test Facility (FFTF) reactor at the Hbford Site and the future plans for its utilization as a source of radioisotopes needed by nuclear medicine physicians, by researchers, and by customers in the commercial sector. In response to the second question raised by the NERAC subcommittee, it is our firm belief that the supply of isotopes provided by DOE for medical, industrial, and research applications must be strengthened in the near future. Many of the radioisotopes currently used for medical diagnosis and therapy of cancer and other diseases are imported from Canada, Europe, and Asia. This situation places the control of isotope availability, quality, and pricing in the hands of non-U.S. suppliers. It is our opinion that the needs of the U.S. customers for isotopes and isotope products are not being adequately served, and that the DOE infrastructure and facilities devoted to the supply of these products must be improved This perception forms one of the fundamental bases for our proposal that the FFTF, which is currently in a standby condition, be reactivated to supply nuclear services and products such as radioisotopes needed by the U.S. medical, industrial, and research communities.

  10. Guidance for implementing the long-term surveillance program for UMTRA Project Title I Disposal Sites

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    This guidance document has two purposes: it provides guidance for writing site-specific long-term surveillance plans (LTSP) and it describes site surveillance, monitoring, and long-term care techniques for Title I disposal sites of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.). Long-term care includes monitoring, maintenance, and emergency measures needed to protect public health and safety and the environment after remedial action is completed. This document applies to the UMTRCA-designated Title I disposal sites. The requirements for long-term care of the Title I sites and the contents of the LTSPs are provided in U.S. Nuclear Regulatory Commission (NRC) regulations (10 CFR Section 40.27) provided in Attachment 1.

  11. EA-0904: Access Road from State Route 240 to the 200 West Area Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to construct an access road on the U.S. Department of Energy's Hanford Site in Richland, Washington, from State Route 240 to Beloit Avenue...

  12. 1996 Hanford site report on land disposal restrictions for mixed waste

    SciTech Connect (OSTI)

    Black, D.G.

    1996-04-01T23:59:59.000Z

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order milestone M-26-OIF. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal-restricted mixed waste management at the Hanford Site.

  13. Naturita, Colorado, Processing and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona,Site Operations Guide Doc. No.GS05: WomanAppendixKNY

  14. Comparative approaches to siting low-level radioactive waste disposal facilities

    SciTech Connect (OSTI)

    Newberry, W.F.

    1994-07-01T23:59:59.000Z

    This report describes activities in nine States to select site locations for new disposal facilities for low-level radioactive waste. These nine States have completed processes leading to identification of specific site locations for onsite investigations. For each State, the status, legal and regulatory framework, site criteria, and site selection process are described. In most cases, States and compact regions decided to assign responsibility for site selection to agencies of government and to use top-down mapping methods for site selection. The report discusses quantitative and qualitative techniques used in applying top-down screenings, various approaches for delineating units of land for comparison, issues involved in excluding land from further consideration, and different positions taken by the siting organizations in considering public acceptance, land use, and land availability as factors in site selection.

  15. Evaluation of the Acceptability of Potential Depleted Uranium Hexafluoride Conversion Products at the Envirocare Disposal Site

    SciTech Connect (OSTI)

    Croff, A.G.

    2001-01-11T23:59:59.000Z

    The purpose of this report is to review and document the capability of potential products of depleted UF{sub 6} conversion to meet the current waste acceptance criteria and other regulatory requirements for disposal at the facility in Clive, Utah, owned by Envirocare of Utah, Inc. The investigation was conducted by identifying issues potentially related to disposal of depleted uranium (DU) products at Envirocare and conducting an initial analysis of them. Discussions were then held with representatives of Envirocare, the state of Utah (which is a NRC Agreement State and, thus, is the cognizant regulatory authority for Envirocare), and DOE Oak Ridge Operations. Provisional issue resolution was then established based on the analysis and discussions and documented in a draft report. The draft report was then reviewed by those providing information and revisions were made, which resulted in this document. Issues that were examined for resolution were (1) license receipt limits for U isotopes; (2) DU product classification as Class A waste; (3) use of non-DOE disposal sites for disposal of DOE material; (4) historical NRC views; (5) definition of chemical reactivity; (6) presence of mobile radionuclides; and (7) National Environmental Policy Act coverage of disposal. The conclusion of this analysis is that an amendment to the Envirocare license issued on October 5, 2000, has reduced the uncertainties regarding disposal of the DU product at Envirocare to the point that they are now comparable with uncertainties associated with the disposal of the DU product at the Nevada Test Site that were discussed in an earlier report.

  16. NRC Monitoring of Salt Waste Disposal at the Savannah River Site - 13147

    SciTech Connect (OSTI)

    Pinkston, Karen E.; Ridge, A. Christianne; Alexander, George W.; Barr, Cynthia S.; Devaser, Nishka J.; Felsher, Harry D. [U.S. Nuclear Regulatory Commission (United States)] [U.S. Nuclear Regulatory Commission (United States)

    2013-07-01T23:59:59.000Z

    As part of monitoring required under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the NRC staff reviewed an updated DOE performance assessment (PA) for salt waste disposal at the Saltstone Disposal Facility (SDF). The NRC staff concluded that it has reasonable assurance that waste disposal at the SDF meets the 10 CFR 61 performance objectives for protection of individuals against intrusion (chap.61.42), protection of individuals during operations (chap.61.43), and site stability (chap.61.44). However, based on its evaluation of DOE's results and independent sensitivity analyses conducted with DOE's models, the NRC staff concluded that it did not have reasonable assurance that DOE's disposal activities at the SDF meet the performance objective for protection of the general population from releases of radioactivity (chap.61.41) evaluated at a dose limit of 0.25 mSv/yr (25 mrem/yr) total effective dose equivalent (TEDE). NRC staff also concluded that the potential dose to a member of the public is expected to be limited (i.e., is expected to be similar to or less than the public dose limit in chap.20.1301 of 1 mSv/yr [100 mrem/yr] TEDE) and is expected to occur many years after site closure. The NRC staff used risk insights gained from review of the SDF PA, its experience monitoring DOE disposal actions at the SDF over the last 5 years, as well as independent analysis and modeling to identify factors that are important to assessing whether DOE's disposal actions meet the performance objectives. Many of these factors are similar to factors identified in the NRC staff's 2005 review of salt waste disposal at the SDF. Key areas of interest continue to be waste form and disposal unit degradation, the effectiveness of infiltration and erosion controls, and estimation of the radiological inventory. Based on these factors, NRC is revising its plan for monitoring salt waste disposal at the SDF in coordination with South Carolina Department of Health and Environmental Control (SCDHEC). DOE has completed or begun additional work related to salt waste disposal to address these factors. NRC staff continues to evaluate information related to the performance of the SDF and has been working with DOE and SCDHEC to resolve NRC staff's technical concerns. (authors)

  17. Site-Specific Seismic Site Response Model for the Waste Treatment Plant, Hanford, Washington

    SciTech Connect (OSTI)

    Rohay, Alan C.; Reidel, Steve P.

    2005-02-24T23:59:59.000Z

    This interim report documents the collection of site-specific geologic and geophysical data characterizing the Waste Treatment Plant site and the modeling of the site-specific structure response to earthquake ground motions.

  18. Site Selection and Geological Research Connected with High Level Waste Disposal Programme in the Czech Republic

    SciTech Connect (OSTI)

    Tomas, J.

    2003-02-25T23:59:59.000Z

    Attempts to solve the problem of high-level waste disposal including the spent fuel from nuclear power plants have been made in the Czech Republic for over the 10 years. Already in 1991 the Ministry of Environment entitled The Czech Geological Survey to deal with the siting of the locality for HLW disposal and the project No. 3308 ''The geological research of the safe disposal of high level waste'' had started. Within this project a sub-project ''A selection of perspective HLW disposal sites in the Bohemian Massif'' has been elaborated and 27 prospective areas were identified in the Czech Republic. This selection has been later narrowed to 8 areas which are recently studied in more detail. As a parallel research activity with siting a granitic body Melechov Massif in Central Moldanubian Pluton has been chosen as a test site and the 1st stage of research i.e. evaluation and study of its geological, hydrogeological, geophysical, tectonic and structural properties has been already completed. The Melechov Massif was selected as a test site after the recommendation of WATRP (Waste Management Assessment and Technical Review Programme) mission of IAEA (1993) because it represents an area analogous with the host geological environment for the future HLW and spent fuel disposal in the Czech Republic, i.e. variscan granitoids. It is necessary to say that this site would not be in a locality where the deep repository will be built, although it is a site suitable for oriented research for the sampling and collection of descriptive data using up to date and advanced scientific methods. The Czech Republic HLW and spent fuel disposal programme is now based on The Concept of Radioactive Waste and Spent Nuclear Fuel Management (''Concept'' hereinafter) which has been prepared in compliance with energy policy approved by Government Decree No. 50 of 12th January 2000 and approved by the Government in May 2002. Preparation of the Concept was required, amongst other reasons in connection with preparations for the Czech Republic's accession to the European Union and in connection with the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management adopted under the auspices of the International Atomic Energy Agency, which was signed by the Czech Republic in 1997. According to the approved Concept it is expected that a deep geological repository in the Czech Republic will be built in granitic rocks.

  19. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    Grant Evenson

    2006-04-01T23:59:59.000Z

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139.

  20. Inadvertent Intruder Analysis For The Portsmouth On-Site Waste Disposal Facility (OSWDF)

    SciTech Connect (OSTI)

    Smith, Frank G.; Phifer, Mark A.

    2014-01-22T23:59:59.000Z

    The inadvertent intruder analysis considers the radiological impacts to hypothetical persons who are assumed to inadvertently intrude on the Portsmouth OSWDF site after institutional control ceases 100 years after site closure. For the purposes of this analysis, we assume that the waste disposal in the OSWDF occurs at time zero, the site is under institutional control for the next 100 years, and inadvertent intrusion can occur over the following 1,000 year time period. Disposal of low-level radioactive waste in the OSWDF must meet a requirement to assess impacts on such individuals, and demonstrate that the effective dose equivalent to an intruder would not likely exceed 100 mrem per year for scenarios involving continuous exposure (i.e. chronic) or 500 mrem for scenarios involving a single acute exposure. The focus in development of exposure scenarios for inadvertent intruders was on selecting reasonable events that may occur, giving consideration to regional customs and construction practices. An important assumption in all scenarios is that an intruder has no prior knowledge of the existence of a waste disposal facility at the site. Results of the analysis show that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, resides on the site and consumes vegetables from a garden established on the site using contaminated soil (chronic agriculture scenario) would receive a maximum chronic dose of approximately 7.0 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE chronic dose limit of 100 mrem/yr. Results of the analysis also showed that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, excavates a basement in the soil that reaches the waste (acute basement construction scenario) would receive a maximum acute dose of approximately 0.25 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE acute dose limit of 500 mrem/yr. Disposal inventory constraints based on the intruder analysis are well above conservative estimates of the OSWDF inventory and, based on intruder disposal limits; about 7% of the disposal capacity is reached with the estimated OSWDF inventory.

  1. Long-term surveillance plan for the Falls City Disposal Site, Falls City, Texas. Revision 2

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    The need for ground water monitoring at the Falls City disposal site was evaluated in accordance with NRC regulations and guidelines established by the DOE in Guidance for Implementing the Long-term Surveillance Program for UMTRA Project Title 1 Disposal Sites (DOE, 1996). Based on evaluation of site characterization data, it has been determined that a program to monitor ground water for demonstration of disposal cell performance based on a set of concentration limits is not appropriate because ground water in the uppermost aquifer is of limited use, and a narrative supplemental standard has been applied to the site that does not include numerical concentration limits or a point of compliance. The limited use designation is based on the fact that ground water in the uppermost aquifer is not currently or potentially a source of drinking water in the area because it contains widespread ambient contamination that cannot be cleaned up using methods reasonably employed by public water supply systems. Background ground water quality varies by orders of magnitude since the aquifer is in an area of redistribution of uranium mineralization derived from ore bodies. The DOE plans to perform post-closure ground water monitoring in the uppermost aquifer as a best management practice (BMP) as requested by the state of Texas.

  2. Puget Sound Dredged Disposal Analysis: Management plan assessment report. Dredged Material Management Year 1990

    SciTech Connect (OSTI)

    Not Available

    1991-03-01T23:59:59.000Z

    Puget Sound Dredged Disposal Analysis (PSDDA) is an interagency program for the management of unconfined, open-water disposal of dredged material into Puget Sound, Washington. The Management Plans for the PSDDA program identify disposal sites, describe dredged material evaluation procedures, and establish site monitoring and management practices. The plans also commit the involved agencies to a cooperative annual review process which evaluates disposal site use and conditions, dredged material testing results, and new scientific information, in order to determine if changes to the evaluation procedures and/or disposal site management practices are needed. Sampling was conducted to determine any chemical/biological contamination.

  3. The Assessment of Future Human Actions at Radioactive Waste Disposal Sites: An international perspective

    SciTech Connect (OSTI)

    Anderson, D.R. [Sandia National Labs., Albuquerque, NM (United States); Galson, D.A. [Galson Sciences Ltd., (United Kindgom); Patera, E.S. [Nuclear Energy Agency, 75 - Paris (France)

    1994-04-01T23:59:59.000Z

    For some deep geological disposal systems, the level of confinement provided by the natural and engineered barriers is considered to be so high that the greatest long-term risks associated with waste disposal may arise from the possibility of future human actions breaching the natural and/or engineered barrier systems. Following a Workshop in 1989, the OECD Nuclear Energy Agency established a Working Group on Assessment of Future Human Actions (FHA) a Radioactive Waste Disposal Sites. This Group met four times in the period 1991--1993, and has extensively reviewed approaches to and experience of incorporating the effects of FHA into long-term performance assessments (PAs). The Working Group`s report reviews the main issues concerning the treatment of FHA, presents a general framework for the quantitative, consideration of FHA in radioactive waste disposal programmes, and discusses means in reduce the risks associated with FHA. The Working Group concluded that FHA must be considered in PAs, although FHA where the actors were cognizant of the risks could be ignored. Credit can be taken for no more than several hundred years of active site control; additional efforts should therefore be taken to reduce the risks associated with FHA. International agreement on principles for the construction of FHA scenarios would build confidence, as would further discussion concerning regulatory policies for judging risks associated with FHA.

  4. Lead test assembly irradiation and analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) needs to confirm the viability of using a commercial light water reactor (CLWR) as a potential source for maintaining the nation`s supply of tritium. The Proposed Action discussed in this environmental assessment is a limited scale confirmatory test that would provide DOE with information needed to assess that option. This document contains the environmental assessment results for the Lead test assembly irradiation and analysis for the Watts Bar Nuclear Plant, Tennessee, and the Hanford Site in Richland, Washington.

  5. Assessment of microbial processes on gas production at radioactive low-level waste disposal sites

    SciTech Connect (OSTI)

    Weiss, A.J.; Tate, R.L. III; Colombo, P.

    1982-05-01T23:59:59.000Z

    Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches.

  6. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-10-04T23:59:59.000Z

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is used throughout this document to describe RACM. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the DOE/NV-325, Nevada National Security Site Waste Acceptance Criteria (NNSSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, or contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, or small quantities of LLHB demolition and construction waste and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NNSSWAC.

  7. Approaches to LLW disposal site selection and current progress of host states

    SciTech Connect (OSTI)

    Walsh, J.J.; Kerr, T.A.

    1990-11-01T23:59:59.000Z

    In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985 and under the guidance of 10 CFR 61, States have begun entering into compacts to establish and operate regional disposal facilities for low-level radioactive waste. The progress a state makes in implementing a process to identify a specific location for a disposal site is one indication of the level of a state's commitment to meeting its responsibilities under Federal law and interstate compact agreements. During the past few years, several States have been engaged in site selection processes. The purpose of this report is to summarize the site selection approaches of some of the Host States (California, Michigan, Nebraska, New York, North Carolina, Texas, and Illinois), and their progress to date. An additional purpose of the report is to discern whether the Host States's site selection processes were heavily influenced by any common factors. One factor each state held in common was that political and public processes exerted a powerful influence on the site selection process at virtually every stage. 1 ref.

  8. Archaeological survey of the 200 East and 200 West Areas, Hanford Site, Washington

    SciTech Connect (OSTI)

    Chatters, J.C.; Cadoret, N.A.

    1990-03-01T23:59:59.000Z

    Responding to a heavy demand for cultural resource reviews of excavation sites, the Westinghouse Hanford Company contracted with Pacific Northwest Laboratory to conduct a comprehensive archaeological resource review for the 200 Areas of the Hanford Site, Washington. This was accomplished through literature and records review and an intensive pedestrian survey of all undisturbed portions of the 200 East Area and a stratified random sample of the 200 West Area. The survey, followed the Secretary of the Interior's guidelines for the identification of historic properties. The result of the survey is a model of cultural resource distributions that has been used to create cultural resource zones with differing degrees of sensitivity. 11 refs., 7 figs., 1 tab.

  9. Final Site Specific Decommissioning Inspection Report #2 for the University of Washington Research and Test Reactor, Seattle, Washington

    SciTech Connect (OSTI)

    S.J. Roberts

    2007-03-20T23:59:59.000Z

    During the period of August through November 2006, ORISE performed a comprehensive IV at the University of Washington Research and Test Reactor Facility. The objective of the ORISE IV was to validate the licensee’s final status survey processes and data, and to assure the requirements of the DP and FSSP were met.

  10. Use of engineered soils and other site modifications for low-level radioactive waste disposal

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    The U.S. Nuclear Regulatory Commission requires that low-level radioactive waste (LLW) disposal facilities be designed to minimize contact between waste and infiltrating water through the use of site design features. The purpose of this investigation is to identify engineered barriers and evaluate their ability to enhance the long-term performance of an LLW disposal facility. Previously used barriers such as concrete overpacks, vaults, backfill, and engineered soil covers, are evaluated as well as state-of-the-art barriers, including an engineered sorptive soil layer underlying a facility and an advanced design soil cover incorporating a double-capillary layer. The purpose of this investigation is also to provide information in incorporating or excluding specific engineered barriers as part of new disposal facility designs. Evaluations are performed using performance assessment modeling techniques. A generic reference disposal facility design is used as a baseline for comparing the improvements in long-term performance offered by designs incorporating engineered barriers in generic and humid environments. These evaluations simulate water infiltration through the facility, waste leaching, radionuclide transport through the facility, and decay and ingrowth. They also calculate a maximum (peak annual) dose for each disposal system design. A relative dose reduction factor is calculated for each design evaluated. The results of this investigation are presented for concrete overpacks, concrete vaults, sorptive backfill, sorptive engineered soil underlying the facility, and sloped engineered soil covers using a single-capillary barrier and a double-capillary barrier. Designs using combinations of barriers are also evaluated. These designs include a vault plus overpacks, sorptive backfill plus overpacks, and overpack with vault plus sorptive backfill, underlying sorptive soil, and engineered soil cover.

  11. Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Dorries, Alison M [Los Alamos National Laboratory

    2010-11-09T23:59:59.000Z

    Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

  12. Baseline avian use and behavior at the CARES wind plant site, Klickitat County, Washington

    SciTech Connect (OSTI)

    Erickson, W.P.; Johnson, G.D.; Strickland, M.D.; Kronner, K.; Becker, P.S.; Orloff, S.

    2000-01-03T23:59:59.000Z

    This report presents a literature review on avian-wind turbine interactions and the results of a one-year avian baseline study conducted in 1998 at the proposed Conservation and Renewable Energy System (CARES) wind development site in Klickitat County, Washington. Avian use of the site ranged from 1.11/survey in the winter to 5.69/survey in the spring. Average use by passerines in the study plots ranged from 1.15 minutes/survey in the winter to 40.98 minutes/survey in the spring. Raptors spent much less time within plots than other groups, ranging from 0.05 minutes/survey in the winter to 0.77 minutes/survey during the fall. Thirteen percent of all flying birds were within the rotor-swept height (25 to 75 m); 41.6% of all raptors were flying at this height. Raptors with the greatest potential turbine exposure are red-tailed hawks and golden eagles. Passerines with the highest turbine exposure are common ravens, American robins, and horned larks. Spatial use data for the site indicate that avian use tends to be concentrated near the rim, indicating that placing turbines away from the rim may reduce risk. Avian use data at the CARES site indicate that if a wind plant is constructed in the future, avian mortality would likely be relatively low.

  13. An aerial radiological survey of the Hanford Site and surrounding area, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1990-10-01T23:59:59.000Z

    An aerial radiological survey was conducted over the Department of Energy's Hanford Site near Richland, Washington, during the period 5 July through 26 August 1988. The survey was expanded, and additional flights were conducted to the east of the site and along the banks of the Columbia River down to McNary Dam near Umatilla. The survey was flown at altitude of 61 meters (200 feet) by a helicopter containing 17 liters (eight 2 in. {times} 4 in. {times} 16 in.) of sodium iodide detectors. Gamma ray data were collected over the survey area by flying north-south lines spaced 122 meters (400 feet) apart. The processed data indicated that detected radioisotopes and their associated gamma ray exposure rates were generally consistent with those expected from normal background emitters and man-made fission/activation products resulting from activities at the site. External exposure rates were generally 10 microroentgens per hour ({mu}R/h) with some operating areas over 1000 {mu}R/h. The radiation levels over more than 95% of the site are due to normal background exposure rates. 3 refs., 25 figs.

  14. 1998 report on Hanford Site land disposal restrictions for mixed waste

    SciTech Connect (OSTI)

    Black, D.G.

    1998-04-10T23:59:59.000Z

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-01H. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility. The US Department of Energy, its predecessors, and contractors on the Hanford Facility were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid mixed waste. This waste is regulated under authority of both the Resource Conservation and Recovery Act of l976 and the Atomic Energy Act of 1954. This report covers only mixed waste. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into the Tri-Party Agreement to bring the Hanford Facility operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for mixed waste. This report is the eighth update of the plan first issued in 1990. The Tri-Party Agreement requires and the baseline plan and annual update reports provide the following information: (1) Waste Characterization Information -- Provides information about characterizing each LDR mixed waste stream. The sampling and analysis methods and protocols, past characterization results, and, where available, a schedule for providing the characterization information are discussed. (2) Storage Data -- Identifies and describes the mixed waste on the Hanford Facility. Storage data include the Resource Conservation and Recovery Act of 1976 dangerous waste codes, generator process knowledge needed to identify the waste and to make LDR determinations, quantities stored, generation rates, location and method of storage, an assessment of storage-unit compliance status, storage capacity, and the bases and assumptions used in making the estimates.

  15. Closure Report for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2008-01-01T23:59:59.000Z

    This Closure Report (CR) documents closure activities for Corrective Action Unit (CAU) 543, Liquid Disposal Units, according to the Federal Facility Agreement and Consent Order (FFACO, 1996) and the Corrective Action Plan (CAP) for CAU 543 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2007). CAU 543 is located at the Nevada Test Site (NTS), Nevada (Figure 1), and consists of the following seven Corrective Action Sites (CASs): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; CAS 15-23-03, Contaminated Sump, Piping; and CAS 06-07-01 is located at the Decontamination Facility in Area 6, adjacent to Yucca Lake. The remaining CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm in Area 15. The purpose of this CR is to provide a summary of the completed closure activities, to document waste disposal, and to present analytical data confirming that the remediation goals were met. The closure alternatives consisted of closure in place for two of the CASs, and no further action with implementation of best management practices (BMPs) for the remaining five CASs.

  16. Mineralogical study of borehole MW-206 Asarco smelter site, Tacoma, Washington

    SciTech Connect (OSTI)

    Frank, D.

    1998-10-01T23:59:59.000Z

    The mobility of metals in ground water is an important consideration for evaluating remedial options at the Asarco smelter site. Tacoma, Washington. One factor in assessing metal mobility is the degree of secondary mineralization in a slag-fill aquifer extending into the intertidal zone along the Puget Sound shoreline. Samples of aquifer material were collected for mineralogical analysis from borehole MW-206 at five-foot intervals within the slag fill from 5 to 25 feet below the ground surface, and in the underlying marine sand and gravel at 27 feet. Grab samples of slag fragments with visually apparent secondary minerals were also collected at five intermediate depths between 12 and 19 feet. Samples were analyzed by a variety of techniques including hydride generation/atomic absorption for arsenic concentration, scanning electron microscopy/electron microprobe for mineralogical texture and microanalysis, powder x-ray diffraction for mineral identification, and optical microscopy for textural observations.

  17. EIS-0063: Waste Management Operations, Double-Shell Tanks for Defense High Level Radioactive Waste Storage, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the existing tank design and consider additional specific design and safety feature alternatives for the thirteen tanks being constructed for storage of defense high-level radioactive liquid waste at the Hanford Site in Richland, Washington. This statement supplements ERDA-1538, "Final Environmental Statement on Waste Management Operation."

  18. US DOE-EM On-Site Disposal Cell Working Group - Fostering Communication On Performance Assessment Challenges

    SciTech Connect (OSTI)

    Seitz, Roger R. [Savannah River Site (SRS), Aiken, SC (United States); Suttora, Linda C. [U.S. Department of Energy, Office of Site Restoration, Germantown, MD (United States); Phifer, Mark [Savannah River Site (SRS), Aiken, SC (United States)

    2014-03-01T23:59:59.000Z

    On-site disposal cells are in use and being considered at several U.S. Department of Energy (USDOE) sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These facilities are typically developed with regulatory oversight from States and/or the US Environmental Protection Agency (USEPA) in addition to USDOE. The facilities are developed to meet design standards for disposal of hazardous waste as well as the USDOE performance based standards for disposal of radioactive waste. The involvement of multiple and different regulators for facilities across separate sites has resulted in some differences in expectations for performance assessments and risk assessments (PA/RA) that are developed for the disposal facilities. The USDOE-EM Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) disposal cells and work towards more consistent assumptions, as appropriate, for technical and policy considerations related to performance and risk assessments in support of a Record of Decision and Disposal Authorization Statement. The working group holds teleconferences, as needed, focusing on specific topics of interest. The topics addressed to date include an assessment of the assumptions used for performance assessments and risk assessments (PA/RAs) for on-site disposal cells, requirements and assumptions related to assessment of inadvertent intrusion, DOE Manual 435.1-1 requirements, and approaches for consideration of the long-term performance of liners and covers in the context of PAs. The working group has improved communication among the staff and oversight personnel responsible for onsite disposal cells and has provided a forum to identify and resolve common concerns.

  19. Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site

    SciTech Connect (OSTI)

    L. Desotell; D. Wieland; V. Yucel; G. Shott; J. Wrapp

    2008-03-01T23:59:59.000Z

    The U.S. Department of Energy, National Security Administration Nevada Site Office (NNSA/NSO) is planning to close the 92-Acre Area of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), which is about 65 miles northwest of Las Vegas, Nevada. Closure planning for this facility must take into account the regulatory requirements for a diversity of waste streams, disposal and storage configurations, disposal history, and site conditions. This paper provides a brief background of the Area 5 RWMS, identifies key closure issues, and presents the closure strategy. Disposals have been made in 25 shallow excavated pits and trenches and 13 Greater Confinement Disposal (GCD) boreholes at the 92-Acre Area since 1961. The pits and trenches have been used to dispose unclassified low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform waste, and to store classified low-level and low-level mixed materials. The GCD boreholes are intermediate-depth disposal units about 10 feet (ft) in diameter and 120 ft deep. Classified and unclassified high-specific activity LLW, transuranic (TRU), and mixed TRU are disposed in the GCD boreholes. TRU waste was also disposed inadvertently in trench T-04C. Except for three disposal units that are active, all pits and trenches are operationally covered with 8-ft thick alluvium. The 92-Acre Area also includes a Mixed Waste Disposal Unit (MWDU) operating under Resource Conservation and Recovery Act (RCRA) Interim Status, and an asbestiform waste unit operating under a state of Nevada Solid Waste Disposal Site Permit. A single final closure cover is envisioned over the 92-Acre Area. The cover is the evapotranspirative-type cover that has been successfully employed at the NTS. Closure, post-closure care, and monitoring must meet the requirements of the following regulations: U.S. Department of Energy Order 435.1, Title 40 Code of Federal Regulations (CFR) Part 191, Title 40 CFR Part 265, Nevada Administrative Code (NAC) 444.743, RCRA requirements as incorporated into NAC 444.8632, and the Federal Facility Agreement and Consent Order (FFACO). A grouping of waste disposal units according to waste type, location, and similarity in regulatory requirements identified six closure units: LLW Unit, Corrective Action Unit (CAU) 111 under FFACO, Asbestiform LLW Unit, Pit 3 MWDU, TRU GCD Borehole Unit, and TRU Trench Unit. The closure schedule of all units is tied to the closure schedule of the Pit 3 MWDU under RCRA.

  20. Corrective Action Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2007-04-01T23:59:59.000Z

    Corrective Action Unit (CAU) 543: Liquid Disposal Units is listed in Appendix III of the ''Federal Facility Agreement and Consent Order'' (FFACO) which was agreed to by the state of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). CAU 543 sites are located in Areas 6 and 15 of the Nevada Test Site (NTS), which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 543 consists of the following seven Corrective Action Sites (CASs) (Figure 1): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; and CAS 15-23-03, Contaminated Sump, Piping. All Area 15 CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm, which operated from 1963 to 1981 and was used to support animal experiments involving the uptake of radionuclides. Each of the Area 15 CASs, except CAS 15-23-01, is associated with the disposal of waste effluent from Building 15-06, which was the primary location of the various tests and experiments conducted onsite. Waste effluent disposal from Building 15-06 involved piping, sumps, outfalls, a septic tank with leachfield, underground storage tanks, and an aboveground storage tank (AST). CAS 15-23-01 was associated with decontamination activities of farm equipment potentially contaminated with radiological constituents, pesticides, and herbicides. While the building structures were removed before the investigation took place, all the original tanks, sumps, piping, and concrete building pads remain in place. The Area 6 CAS is located at the Decontamination Facility in Area 6, a facility which operated from 1971 to 2001 and was used to decontaminate vehicles, equipment, clothing, and other materials that had become contaminated during nuclear testing activities. The CAS includes the effluent collection and distribution systems for Buildings 6-605, 6-606, and 6-607, which consists of septic tanks, sumps, piping, floor drains, drain trenches, cleanouts, and a concrete foundation. Additional details of the site history are provided in the CAU 543 Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2004a), and the CAU 543 Corrective Action Decision Document (CADD) (NNSA/NSO, 2005).

  1. Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement Richland, Washington

    SciTech Connect (OSTI)

    M.S. Collins C.M. Borgstrom

    2004-01-01T23:59:59.000Z

    The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) provides environmental and technical information concerning U.S. Department of Energy (DOE) proposed waste management practices at the Hanford Site. The HSW EIS updates analyses of environmental consequences from previous documents and provides evaluations for activities that may be implemented consistent with the Waste Management Programmatic Environmental Impact Statement (WM PEIS) Records of Decision (RODs). Waste types considered in the HSW EIS include operational low-level radioactive waste (LLW), mixed low-level waste (MLLW), immobilized low-activity waste (ILAW), and transuranic (TRU) waste (including TRU mixed waste). MLLW contains chemically hazardous components in addition to radionuclides. Alternatives for management of these wastes at the Hanford Site, including the alternative of No Action, are analyzed in detail. The LLW, MLLW, and TRU waste alternatives are evaluated for a range of waste volumes, representing quantities of waste that could be managed at the Hanford Site. A single maximum forecast volume is evaluated for ILAW. The No Action Alternative considers continuation of ongoing waste management practices at the Hanford Site and ceasing some operations when the limits of existing capabilities are reached. The No Action Alternative provides for continued storage of some waste types. The other alternatives evaluate expanded waste management practices including treatment and disposal of most wastes. The potential environmental consequences of the alternatives are generally similar. The major differences occur with respect to the consequences of disposal versus continued storage and with respect to the range of waste volumes managed under the alternatives. DOE's preferred alternative is to dispose of LLW, MLLW, and ILAW in a single, modular, lined facility near PUREX on Hanford's Central Plateau; to treat MLLW using a combination of onsite and offsite facilities; and to certify TRU waste onsite using a combination of existing, upgraded, and mobile facilities. DOE issued the Notice of Intent to prepare the HSW EIS on October 27, 1997, and held public meetings during the scoping period that extended through January 30, 1998. In April 2002, DOE issued the initial draft of the EIS. During the public comment period that extended from May through August 2002, DOE received numerous comments from regulators, tribal nations, and other stakeholders. In March 2003, DOE issued a revised draft of the HSW EIS to address those comments, and to incorporate disposal of ILAW and other alternatives that had been under consideration since the first draft was published. Comments on the revised draft were received from April 11 through June 11, 2003. This final EIS responds to comments on the revised draft and includes updated analyses to incorporate information developed since the revised draft was published. DOE will publish the ROD(s) in the ''Federal Register'' no sooner than 30 days after publication of the Environmental Protection Agency's Notice of Availability of the final HSW EIS.

  2. Preliminary Closure Plan for the Immobilized Low Activity Waste (ILAW) Disposal Facility

    SciTech Connect (OSTI)

    BURBANK, D.A.

    2000-08-31T23:59:59.000Z

    This document describes the preliminary plans for closure of the Immobilized Low-Activity Waste (ILAW) disposal facility to be built by the Office of River Protection at the Hanford site in southeastern Washington. The facility will provide near-surface disposal of up to 204,000 cubic meters of ILAW in engineered trenches with modified RCRA Subtitle C closure barriers.

  3. Engineering study of 50 miscellaneous inactive underground radioactive waste tanks located at the Hanford Site, Washington

    SciTech Connect (OSTI)

    Freeman-Pollard, J.R.

    1994-03-02T23:59:59.000Z

    This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handling and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970`s and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D&RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program.

  4. Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, Richland, Washington

    SciTech Connect (OSTI)

    N /A

    2003-04-11T23:59:59.000Z

    This ''Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement'' (HSW EIS) covers three primary aspects of waste management at Hanford--waste treatment, storage, and disposal. It also addresses four kinds of solid waste--low-level waste (LLW), mixed (radioactive and chemically hazardous) low-level waste (MLLW), transuranic (TRU) waste, and immobilized low-activity waste (ILAW). It fundamentally asks the question: how should we manage the waste we have now and will have in the future? This EIS analyzes the impacts of the LLW, MLLW, TRU waste, and ILAW we currently have in storage, will generate, or expect to receive at Hanford. The HSW EIS is intended to help us determine what specific facilities we will continue to use, modify, or construct to treat, store, and dispose of these wastes (Figure S.1). Because radioactive and chemically hazardous waste management is a complex, technical, and difficult subject, we have made every effort to minimize the use of acronyms (making an exception for our four waste types listed above), use more commonly understood words, and provide the ''big picture'' in this summary. An acronym list, glossary of terms, and conversions for units of measure are provided in a readers guide in Volume 1 of this EIS.

  5. Interpretation of Ground Penetrating Radar data at the Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Bergstrom, K.A.; Mitchell, T.H.; Kunk, J.R.

    1993-07-01T23:59:59.000Z

    Ground Penetrating Radar (GPR) is being used extensively during characterization and remediation of chemical and radioactive waste sites at the Hanford Site in Washington State. Time and money for GPR investigations are often not included during the planning and budgeting phase. Therefore GPR investigations must be inexpensive and quick to minimize impact on already established budgets and schedules. An approach to survey design, data collection, and interpretation has been developed which emphasizes speed and budget with minimal impact on the integrity of the interpretation or quality of the data. The following simple rules of thumb can be applied: (1) Assemble as much pre-survey information as possible, (2) Clearly define survey objectives prior to designing the survey and determine which combination of geophysical methods will best meet the objectives, (3) Continuously communicate with the client, before, during and after the investigation, (4) Only experienced GPR interpreters should acquire the field data, (5) Use real-time monitoring of the data to determine where and how much data to collect and assist in the interpretation, (6) Always ``error`` in favor of collecting too much data, (7) Surveys should have closely spaced (preferably 5 feet, no more than 10 feet), orthogonal profiles, (8) When possible, pull the antenna by hand.

  6. Corrective Action Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2006-09-01T23:59:59.000Z

    Corrective Action Unit (CAU) 543, Liquid Disposal Units, is listed in Appendix III of the Federal Facility Agreement and Consent Order of 1996. CAU 543 consists of seven Corrective Action Sites (CASs) located in Areas 6 and 15 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 543 consists of the following seven CASs: {sm_bullet} CAS 06-07-01, Decon Pad {sm_bullet} CAS 15-01-03, Aboveground Storage Tank {sm_bullet} CAS 15-04-01, Septic Tank {sm_bullet} CAS 15-05-01, Leachfield {sm_bullet} CAS 15-08-01, Liquid Manure Tank {sm_bullet} CAS 15-23-01, Underground Radioactive Material Area {sm_bullet} CAS 15-23-03, Contaminated Sump, Piping From January 24, 2005 through April 14, 2005, CAU 543 site characterization activities were conducted, and are reported in Appendix A of the CAU 543 Corrective Action Decision Document (CADD) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2005). The recommended corrective action as stated in the approved CADD is No Further Action for five of the CAU 543 CASs, and Closure In Place for the remaining two CASs.

  7. Impact of Construction Waste Disposal Charging Scheme on work practices at construction sites in Hong Kong

    SciTech Connect (OSTI)

    Yu, Ann T.W., E-mail: bsannyu@polyu.edu.hk [Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Poon, C.S.; Wong, Agnes; Yip, Robin; Jaillon, Lara [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2013-01-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer A significant reduction of construction waste was achieved at the first 3 years of CWDCS implementation. Black-Right-Pointing-Pointer However, the reduction cannot be sustained. Black-Right-Pointing-Pointer Implementation of the CWDCS has generated positive effects in waste reduction by all main trades. - Abstract: Waste management in the building industry in Hong Kong has become an important environmental issue. Particularly, an increasing amount of construction and demolition (C and D) waste is being disposed at landfill sites. In order to reduce waste generation and encourage reuse and recycling, the Hong Kong Government has implemented the Construction Waste Disposal Charging Scheme (CWDCS) to levy charges on C and D waste disposal to landfills. In order to provide information on the changes in reducing waste generation practice among construction participants in various work trades, a study was conducted after 3 years of implementation of the CWDCS via a structured questionnaire survey in the building industry in Hong Kong. The study result has revealed changes with work flows of the major trades as well as differentiating the levels of waste reduced. Three building projects in the public and private sectors were selected as case studies to demonstrate the changes in work flows and the reduction of waste achieved. The research findings reveal that a significant reduction of construction waste was achieved at the first 3 years (2006-2008) of CWDCS implementation. However, the reduction cannot be sustained. The major trades have been influenced to a certain extent by the implementation of the CWDCS. Slight improvement in waste management practices was observed, but reduction of construction waste in the wet-finishing and dry-finishing trades has undergone little improvement. Implementation of the CWDCS has not yet motivated subcontractors to change their methods of construction so as to reduce C and D waste.

  8. Regulatory Framework for Salt Waste Disposal and Tank Closure at the Savannah River Site - 13663

    SciTech Connect (OSTI)

    Thomas, Steve; Dickert, Ginger [Savannah River Remediation LLC, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River Remediation LLC, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    The end of the Cold War has left a legacy of approximately 37 million gallons of radioactive waste in the aging waste tanks at the Department of Energy's Savannah River Site (SRS). A robust program is in place to remove waste from these tanks, treat the waste to separate into a relatively small volume of high-level waste and a large volume of low-level waste, and to actively dispose of the low-level waste on-site and close the waste tanks and associated ancillary structures. To support performance-based, risk-informed decision making and to ensure compliance with all regulatory requirements, the U.S. Department of Energy (DOE) and its current and past contractors have worked closely with the South Carolina Department of Health and Environmental Control (SCDHEC), the U.S. Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC) to develop and implement a framework for on-site low-level waste disposal and closure of the SRS waste tanks. The Atomic Energy Act of 1954, as amended, provides DOE the authority to manage defense-related radioactive waste. DOE Order 435.1 and its associated manual and guidance documents detail this radioactive waste management process. The DOE also has a requirement to consult with the NRC in determining that waste that formerly was classified as high-level waste can be safely managed as either low-level waste or transuranic waste. Once DOE makes a determination, NRC then has a responsibility to monitor DOE's actions in coordination with SCDHEC to ensure compliance with the Title 10 Code of Federal Regulations Part 61 (10CFR61), Subpart C performance objectives. The management of hazardous waste substances or components at SRS is regulated by SCDHEC and the EPA. The foundation for the interactions between DOE, SCDHEC and EPA is the SRS Federal Facility Agreement (FFA). Managing this array of requirements and successfully interacting with regulators, consultants and stakeholders is a challenging task but ensures thorough and thoughtful processes for disposing of the SRS low-level waste and the closure of the tank farm facilities. (authors)

  9. Technical Scope and Approach for the 2004 Composite Analysis of Low Level Waste Disposal at the Hanford Site

    SciTech Connect (OSTI)

    Kincaid, Charles T.; Bryce, Robert W.; Buck, John W.

    2004-07-09T23:59:59.000Z

    A composite analysis is required by U.S. Department of Energy (DOE) Manual 435.1-1 to ensure public safety through the management of active and planned low-level radioactive waste disposal facilities associated with the Hanford Site (DOE/HQ-Manual 435.1-1). A Composite Analysis is defined as ''a reasonably conservative assessment of the cumulative impact from active and planned low-level waste disposal facilities, and all other sources from radioactive contamination that could interact with the low-level waste disposal facility to affect the dose to future members of the public''. At the Hanford Site, a composite analysis is required for continued disposal authorization for the immobilized low-activity waste, tank waste vitrification plant melters, low level waste in the 200 East and 200 West Solid Waste Burial Grounds, and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) waste in the Environmental Restoration Disposal Facility. The 2004 Composite Analysis will be a site-wide analysis, considering final remedial actions for the Columbia River corridor and the Central Plateau at the Hanford Site. The river corridor includes waste sites and facilities in each of the 100 Areas as well as the 300, 400, and 600 Areas. The remedial actions for the river corridor are being conducted to meet residential land use standards with the vision of the river corridor being devoted to a combination of recreation and preservation. The ''Central Plateau'' describes the region associated with operations and waste sites of the 200 Areas. DOE is developing a strategy for closure of the Central Plateau area by 2035. At the time of closure, waste management activities will shrink to a Core Zone within the Central Plateau. The Core Zone will contain the majority of Hanford's permanently disposed waste

  10. DEVELOPMENT QUALIFICATION AND DISPOSAL OF AN ALTERNATIVE IMMOBILIZED LOW-ACTIVITY WASTE FORM AT THE HANFORD SITE

    SciTech Connect (OSTI)

    SAMS TL; EDGE JA; SWANBERG DJ; ROBBINS RA

    2011-01-13T23:59:59.000Z

    Demonstrating that a waste form produced by a given immobilization process is chemically and physically durable as well as compliant with disposal facility acceptance criteria is critical to the success of a waste treatment program, and must be pursued in conjunction with the maturation of the waste processing technology. Testing of waste forms produced using differing scales of processing units and classes of feeds (simulants versus actual waste) is the crux of the waste form qualification process. Testing is typically focused on leachability of constituents of concern (COCs), as well as chemical and physical durability of the waste form. A principal challenge regarding testing immobilized low-activity waste (ILAW) forms is the absence of a standard test suite or set of mandatory parameters against which waste forms may be tested, compared, and qualified for acceptance in existing and proposed nuclear waste disposal sites at Hanford and across the Department of Energy (DOE) complex. A coherent and widely applicable compliance strategy to support characterization and disposal of new waste forms is essential to enhance and accelerate the remediation of DOE tank waste. This paper provides a background summary of important entities, regulations, and considerations for nuclear waste form qualification and disposal. Against this backdrop, this paper describes a strategy for meeting and demonstrating compliance with disposal requirements emphasizing the River Protection Project (RPP) Integrated Disposal Facility (IDF) at the Hanford Site and the fluidized bed steam reforming (FBSR) mineralized low-activity waste (LAW) product stream.

  11. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    SciTech Connect (OSTI)

    Carr, M.D.; Yount, J.C. (eds.)

    1988-12-31T23:59:59.000Z

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation`s first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey`s continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base.

  12. Corrective Action Investigation Plan for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2007-06-01T23:59:59.000Z

    Corrective Action Unit 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, consists of seven inactive sites located in the Yucca Flat area and one inactive site in the Pahute Mesa area. The eight CAU 545 sites consist of craters used for mud disposal, surface or buried waste disposed within craters or potential crater areas, and sites where surface or buried waste was disposed. The CAU 545 sites were used to support nuclear testing conducted in the Yucca Flat area during the 1950s through the early 1990s, and in Area 20 in the mid-1970s. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval.

  13. GROUDWATER REMEDIATION AT THE 100-HR-3 OPERABLE UNIT HANFORD SITE WASHINGTON USA - 11507

    SciTech Connect (OSTI)

    SMOOT JL; BIEBESHEIMER FH; ELUSKIE JA; SPILIOTOPOULOS A; TONKIN MJ; SIMPKIN T

    2011-01-12T23:59:59.000Z

    The 100-HR-3 Groundwater Operable Unit (OU) at the Hanford Site underlies three former plutonium production reactors and the associated infrastructure at the 100-D and 100-H Areas. The primary contaminant of concern at the site is hexavalent chromium; the secondary contaminants are strontium-90, technetium-99, tritium, uranium, and nitrate. The hexavalent chromium plume is the largest plume of its type in the state of Washington, covering an area of approximately 7 km{sup 2} (2.7 mi{sup 2}) with concentrations greater than 20 {micro}g/L. Concentrations range from 60,000 {micro}g/L near the former dichromate transfer station in the 100-D Area to large areas of 20 to 100 {micro}g/L across much of the plume area. Pump-and-treat operations began in 1997 and continued into 2010 at a limited scale of approximately 200 gal/min. Remediation of groundwater has been fairly successful in reaching remedial action objectives (RAOs) of 20 {micro}g/L over a limited region at the 100-H, but less effective at 100-D. In 2000, an in situ, permeable reactive barrier was installed downgradient of the hotspot in 100-D as a second remedy. The RAOs are still being exceeded over a large portion of the area. The CH2M HILL Plateau Remediation Company was awarded the remediation contract for groundwater in 2008 and initiated a remedial process optimization study consisting of modeling and technical studies intended to enhance the remediation. As a result of the study, 1,400 gal/min of expanded treatment capacity are being implemented. These new systems are designed to meet 2012 and 2020 target milestones for protection of the Columbia River and cleanup of the groundwater plumes.

  14. Puget Sound Dredged Disposal Analysis

    SciTech Connect (OSTI)

    Urabeck, F.J.; Phillips, K.E.

    1992-04-01T23:59:59.000Z

    Future disposal of dredged material in the Puget Sound estuary of the State of Washington is of major interest to Federal, state, and local governmental regulatory agencies, as well as those responsible for maintaining existing waterways and harbors. Elevated levels of toxic chemicals exist in bottom sediments of all the urban bays, with tumors and other biological abnormalities found in bottom fish associated with these water bodies. Public awareness of this situation has been heightened by extensive media coverage of recent government investigations of environmental conditions in Puget Sound. These investigations and public concerns have led to three ongoing regional planning efforts, all of which deal with Puget Sound water quality and marine bottom sediments. This paper reports on the Puget Sound Dredged Disposal Analysis (PSDDA), a 3-year joint Federal-state study primarily focusing on unconfined, open-water disposal of material dredged from Federal and non-Federal navigation projects. Study objectives include (a) selection of unconfined, open-water disposal sites; (b) development of sampling, testing, and test interpretation procedures to be used in evaluating the suitability of dredged material for disposal in Puget Sound waters; and (c) formulation of disposal site management plans. Preliminary findings for each of these objectives are discussed for central Puget Sound, which includes the ports of Seattle, Tacoma, and Everett.

  15. LOCAL ARRANGEMENTS FOR WASTE DISPOSAL (MAIN SITE) Landfill (England & Wales) Regulations 2002

    E-Print Network [OSTI]

    Paxton, Anthony T.

    the Chemicals Technicians when they have empty glass bottles for disposal. EMPTY PLASTIC CHEMICAL BOTTLES Plastic containers that have open necks, e.g. solvent bottles, may be washed out and disposed of via be disposed of as non-hazardous waste. EMPTY (GLASS) CHEMICAL BOTTLES University regulations governing

  16. EFFECTIVE ENVIRONMENTAL COMPLIANCE STRATEGY FOR THE CLEANUP OF K BASINS AT HANFORD SITE WASHINGTON

    SciTech Connect (OSTI)

    AMBALAM, T.

    2004-12-01T23:59:59.000Z

    K Basins, consisting of two water-filled storage basins (KW and KE) for spent nuclear fuel (SNF), are part of the 100-K Area of the Hanford Site, along the shoreline of the Columbia River, situated approximately 40 km (25 miles) northwest of the City of Richland, Washington. The KW contained 964 metric tons of SNF in sealed canisters and the KE contained 1152 metric tons of SNF under water in open canisters. The cladding on much of the fuel was damaged allowing the fuel to corrode and degrade during storage underwater. An estimated 1,700 cubic feet of sludge, containing radionuclides and sediments, have accumulated in the KE basin. Various alternatives for removing and processing the SNF, sludge, debris and water were originally evaluated, by USDOE (DOE), in the Environmental Impact Statement (EIS) with a preferred alternative identified in the Record of Decision. The SNF, sludge, debris and water are ''hazardous substances'' under the Comprehensive, Environmental, Response, Compensation and Liability Act of 1980 (CERCLA). Leakage of radiologically contaminated water from one of the basins and subsequent detection of increased contamination in a down-gradient monitoring well helped to form the regulatory bases for cleanup action under CERCLA. The realization that actual or threatened release of hazardous substances from the waste sites and K Basins, if not addressed in a timely manner, may present an imminent and substantial endangerment to public health, welfare and environment led to action under CERCLA, with EPA as the lead regulatory agency. Clean-up of the K Basins as a CERCLA site required SNF retrieval, processing, packaging, vacuum drying and transport to a vaulted storage facility for storage, in conformance with a quality assurance program approved by the Office of Civilian Radioactive Waste Management (OCRWM). Excluding the facilities built for SNF drying and vaulted storage, the scope of CERCLA interim remedial action was limited to the removal of fuel, sludge, debris and water. At present, almost all of the spent fuel has been removed from the basins and other activities to remove sludge, debris and water are scheduled to be completed in 2007. Developing environmental documentation and obtaining regulatory approvals for a project which was initiated outside CERCLA and came under CERCLA during execution, was a significant priority to the successful completion of the SNF retrieval, transfer, drying, transport and storage of fuel, within the purview of strong conduct-of-operations culture associated with nuclear facilities. Environmental requirements promulgated in the state regulations by Washington Department of Public Health for radiation were recognized as ''applicable or relevant and appropriate.'' Effective implementation of the environmental compliance strategy in a project that transitioned to CERCLA became a significant challenge involving multiple contractors. This paper provides an overview of the development and implementation of an environmental permitting and surveillance strategy that enabled us to achieve full compliance in a challenging environment, with milestones and cost constraints, while meeting the high safety standards. The details of the strategy as to how continuous rapport with the regulators, facility operators and surveillance groups helped to avoid impacts on the clean-up schedule are discussed. Highlighted are the role of engineered controls, surveillance protocols and triggers for monitoring and reporting, and active administrative controls that were established for the control of emissions, water loss and transport of waste shipments, during the different phases of the project.

  17. Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste: Volume 3, Site evaluations

    SciTech Connect (OSTI)

    Waters, R.D.; Gruebel, M.M. [eds.] [eds.

    1996-03-01T23:59:59.000Z

    A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 provides details about the site-selection process, the performance-evaluation methodology, and the overall results of the analysis. Volume 3 contains detailed evaluations of the fifteen sites and discussion of the results for each site.

  18. Native Plant Uptake Model for Radioactive Waste Disposal Areas at the Nevada Test Site

    SciTech Connect (OSTI)

    BROWN,THERESA J.; WIRTH,SHARON

    1999-09-01T23:59:59.000Z

    This report defines and defends the basic framework, methodology, and associated input parameters for modeling plant uptake of radionuclides for use in Performance Assessment (PA) activities of Radioactive Waste Management Sites (RWMS) at the Nevada Test Site (NTS). PAs are used to help determine whether waste disposal configurations meet applicable regulatory standards for the protection of human health, the environment, or both. Plants adapted to the arid climate of the NTS are able to rapidly capture infiltrating moisture. In addition to capturing soil moisture, plant roots absorb nutrients, minerals, and heavy metals, transporting them within the plant to the above-ground biomass. In this fashion, plant uptake affects the movement of radionuclides. The plant uptake model presented reflects rooting characteristics important to plant uptake, biomass turnover rates, and the ability of plants to uptake radionuclides from the soil. Parameters are provided for modeling plant uptake and estimating surface contaminant flux due to plant uptake under both current and potential future climate conditions with increased effective soil moisture. The term ''effective moisture'' is used throughout this report to indicate the soil moisture that is available to plants and is intended to be inclusive of all the variables that control soil moisture at a site (e.g., precipitation, temperature, soil texture, and soil chemistry). Effective moisture is a concept used to simplify a number of complex, interrelated soil processes for which there are too little data to model actual plant available moisture. The PA simulates both the flux of radionuclides across the land surface and the potential dose to humans from that flux. Surface flux is modeled here as the amount of soil contamination that is transferred from the soil by roots and incorporated into aboveground biomass. Movement of contaminants to the surface is the only transport mechanism evaluated with the model presented here. Parameters necessary for estimating surface contaminant flux due to native plants expected to inhabit the NTS RWMSS are developed in this report. The model is specific to the plant communities found at the NTS and is designed for both short-term (<1,000 years) and long-term (>1,000 years) modeling efforts. While the model has been crafted for general applicability to any NTS PA, the key radionuclides considered are limited to the transuranic (TRU) wastes disposed of at the NTS.

  19. Long-Term Performance of Transuranic Waste Inadvertently Disposed in a Shallow Land Burial Trench at the Nevada Test Site

    SciTech Connect (OSTI)

    Gregory J. Shott; Vefa Yucel

    2009-07-16T23:59:59.000Z

    In 1986, 21 m3 of transuranic (TRU) waste was inadvertently disposed in a shallow land burial trench at the Area 5 Radioactive Waste Management Site on the Nevada Test Site. U.S. Department of Energy (DOE) TRU waste must be disposed in accordance with Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standard for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes. The Waste Isolation Pilot Plant is the only facility meeting these requirements. The National Research Council, however, has found that exhumation of buried TRU waste for disposal in a deep geologic repository may not be warranted when the effort, exposures, and expense of retrieval are not commensurate with the risk reduction achieved. The long-term risks of leaving the TRU waste in-place are evaluated in two probabilistic performance assessments. A composite analysis, assessing the dose from all disposed waste and interacting sources of residual contamination, estimates an annual total effective dose equivalent (TEDE) of 0.01 mSv, or 3 percent of the dose constraint. A 40 CFR 191 performance assessment also indicates there is reasonable assurance of meeting all requirements. The 40 CFR 191.15 annual mean TEDE for a member of the public is estimated to reach a maximum of 0.055 mSv at 10,000 years, or approximately 37 percent of the 0.15 mSv individual protection requirement. In both assessments greater than 99 percent of the dose is from co-disposed low-level waste. The simulated probability of the 40 CFR 191.13 cumulative release exceeding 1 and 10 times the release limit is estimated to be 0.0093 and less than 0.0001, respectively. Site characterization data and hydrologic process modeling support a conclusion of no groundwater pathway within 10,000 years. Monte Carlo uncertainty analysis indicates that there is reasonable assurance of meeting all regulatory requirements. Sensitivity analysis indicates that the results are insensitive to TRU waste-related parameters. Limited quantities of TRU waste in a shallow land burial trench can meet DOE performance objectives for disposal of TRU waste and contribute negligibly to disposal site risk. Leaving limited quantities of buried TRU waste in-place may be preferred over retrieval for disposal in a deep geologic repository.

  20. EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA.

  1. Physical oceanographic processes at candidate dredged-material disposal sites B1B and 1M offshore San Francisco

    SciTech Connect (OSTI)

    Sherwood, C.R.; Denbo, D.W.; Downing, J.P. (Pacific Northwest Lab., Richland, WA (USA)); Coats, D.A. (Marine Research Specialists, Ventura, CA (USA))

    1990-10-01T23:59:59.000Z

    The US Army Corps of Engineers (USACE), San Francisco District, has identified two candidate sites for ocean disposal of material from several dredging projects in San Francisco Bay. The disposal site is to be designated under Section 103 of the Ocean Dumping Act. One of the specific criteria in the Ocean Dumping Act is that the physical environments of the candidate sites be considered. Toward this goal, the USACE requested that the Pacific Northwest Laboratory conduct studies of physical oceanographic and sediment transport processes at the candidate sites. Details of the methods and complete listing or graphical representation of the results are contained in this second volume of the two-volume report. Appendix A describes the methods and results of a pre-disposal bathymetric survey of Site B1B, and provides an analysis of the accuracy and precision of the survey. Appendix B describes the moorings and instruments used to obtain physical oceanographic data at the candidate sites, and also discussed other sources of data used in the analyses. Techniques used to analyze the formation, processed data, and complete results of various analyses are provided in tabular and graphical form. Appendix C provides details of the sediment transport calculations. Appendix D describes the format of the archived current meter data, which is available through the National Oceanographic Data Center. 43 refs., 54 figs., 58 tabs.

  2. Remedial investigation/feasibility study work plan for the 100-BC-2 operable unit, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    This work plan and attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial investigation/feasibility study (RI/FS) for the 100-BC-2 operable unit in the 100 Area of the Hanford Site. The 100 Area is one of four areas at the Hanford Site that are on the US Environmental Protection Agency`s (EPA) National Priorities List under CERCLA. The 100-BC-2 operable unit is one of two source operable units in the 100-B/C Area (Figure ES-1). Source operable units are those that contain facilities and unplanned release sites that are potential sources of hazardous substance contamination. The 100-BC-2 source operable unit contains waste sites that were formerly in the 100-BC-2, 100-BC-3, and 100-BC-4 operable units. Because of their size and geographic location, the waste sites from these two operable units were added to 100-BC-2. This allows for a more efficient and effective investigation of the remaining 100-B/C Reactor area waste sites. The investigative approach to waste sites associated with the 100-BC-2 operable unit are listed in Table ES-1. The waste sites fall into three general categories: high priority liquid waste disposal sites, low priority liquid waste disposal sites, and solid waste burial grounds. Several sites have been identified as candidates for conducting an IRM. Two sites have been identified as warranting additional limited field sampling. The two sites are the 116-C-2A pluto crib, and the 116-C-2C sand filter.

  3. Corrective Action Decision Document/Closure Report for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2008-04-01T23:59:59.000Z

    This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, in Areas 2, 3, 9, and 20 of the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (1996, as amended February 2008). Corrective Action Unit 545 is comprised of the following eight Corrective Action Sites (CASs): • 02-09-01, Mud Disposal Area • 03-08-03, Mud Disposal Site • 03-17-01, Waste Consolidation Site 3B • 03-23-02, Waste Disposal Site • 03-23-05, Europium Disposal Site • 03-99-14, Radioactive Material Disposal Area • 09-23-02, U-9y Drilling Mud Disposal Crater • 20-19-01, Waste Disposal Site While all eight CASs are addressed in this CADD/CR, sufficient information was available for the following three CASs; therefore, a field investigation was not conducted at these sites: • For CAS 03-08-03, though the potential for subsidence of the craters was judged to be extremely unlikely, the data quality objective (DQO) meeting participants agreed that sufficient information existed about disposal and releases at the site and that a corrective action of close in place with a use restriction is recommended. Sampling in the craters was not considered necessary. • For CAS 03-23-02, there were no potential releases of hazardous or radioactive contaminants identified. Therefore, the Corrective Action Investigation Plan for CAU 545 concluded that: “Sufficient information exists to conclude that this CAS does not exist as originally identified. Therefore, there is no environmental concern associated with CAS 03-23-02.” This CAS is closed with no further action. • For CAS 03-23-05, existing information about the two buried sources and lead pig was considered to be sufficient, and safety concerns existed about the stability of the crater component. Therefore, a corrective action of close in place with a use restriction is recommended, and sampling at the site was not considered necessary. The purpose of this CADD/CR is to provide justification and documentation to support the recommendation for closure of CAU 545 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed from August 20 through November 02, 2007, as set forth in the CAU 545 Corrective Action Investigation Plan. The purpose of the CAI was to fulfill the following data needs as defined during the DQO process: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent. • Provide sufficient information and data to complete appropriate corrective actions. The CAU 545 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against final action levels established in this CADD/CR. The results of the CAI identified no COCs at the five CASs investigated in CAU 545. As a best management practice, repair of the fence enclosing CAS 03-08-03 has been completed. Therefore, the DOE, National Nuclear Security Administration Nevada Site Office provides the following recommendations: • Close in place COCs at CASs 03-08-03 and 03-23-05 with use restrictions. • No further corrective action for CAU 545. • No Corrective Action Plan. • Corrective Action Unit 545 should be moved from Appendix III to Appendix IV of the Federal Facility Agreement and Consent Order. • A Notice of Completion to the DOE, National Nuclear Security Administration Nevada Site Office is requested from the Nevada Division of Environmental Protection for closure of CAU 545.

  4. Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous...

    Office of Environmental Management (EM)

    risks associated with worker safety and the environment (e.g., resource consumption, air pollution, air dispersal) that may be associated with exhumation and re-disposal of...

  5. PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364

    SciTech Connect (OSTI)

    CORBETT JE; TEDESCH AR; WILSON RA; BECK TH; LARKIN J

    2011-02-14T23:59:59.000Z

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

  6. Closure Report for Corrective Action Unit 356: Mud Pits and Disposal Sites, Nevada Test Site, Nevada with Errata Sheet

    SciTech Connect (OSTI)

    NNSA /NV

    2002-11-12T23:59:59.000Z

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 356, Mud Pits and Disposal Sites, in accordance with the Federal Facility Agreement and Consent Order. This CAU is located in Areas 3 and 20 of the Nevada Test Site (NTS) approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 356 consists of seven Corrective Action Sites (CASs): 03-04-01, Area 3 Change House Septic System; 03-09-01, Mud Pit Spill Over; 03-09-03, Mud Pit; 03-09-04, Mud Pit; 03-09-05, Mud Pit; 20-16-01, Landfill; and 20-22-21, Drums. This CR identifies and rationalizes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office's (NNSA/NV's) recommendation that no further corrective action and closure in place is deemed necessary for CAU 356. This recommendation is based on the results of field investigation/closure activities conducted November 20, 2001, through January 3, 2002, and March 11 to 14, 2002. These activities were conducted in accordance with the Streamlined Approach for Environmental Restoration Plan (SAFER) for CAU 356. For CASs 03-09-01, 03-09-03, 20-16-01, and 22-20-21, analytes detected in soil during the corrective action investigation were evaluated against Preliminary Action Levels (PALs) and it was determined that no Contaminants of Concern (COCs) were present. Therefore, no further action is necessary for the soil at these CASs. For CASs 03-04-01, 03-09-04, and 03-09-05, analytes detected in soil during the corrective action investigation were evaluated against PALs and identifies total petroleum hydrocarbons (TPHs) and radionuclides (i.e., americium-241 and/or plutonium 239/240) as COCs. The nature, extent, and concentration of the TPH and radionuclide COCs were bounded by sampling and shown to be relatively immobile. Therefore, closure in place is recommended for these CASs in CAU 356. Further, use restrictions are not required at this CAU beyond the NTS use restrictions identified in the SAFER Plan. In addition, the septic tank associated with CAU 356 will be closed in accordance with applicable regulations.

  7. PORTSMOUTH ON-SITE DISPOSAL CELL HIGH DENSITY POLYETHYLENE GEOMEMBRANE LONGEVITY

    SciTech Connect (OSTI)

    Phifer, M.

    2012-01-31T23:59:59.000Z

    It is anticipated that high density polyethylene (HDPE) geomembranes will be utilized within the liner and closure cap of the proposed On-Site Disposal Cell (OSDC) at the Portsmouth Gaseous Diffusion Plant. The likely longevity (i.e. service life) of HDPE geomembranes in OSDC service is evaluated within the following sections of this report: (1) Section 2.0 provides an overview of HDPE geomembranes, (2) Section 3.0 outlines potential HDPE geomembranes degradation mechanisms, (3) Section 4.0 evaluates the applicability of HDPE geomembrane degradation mechanisms to the Portsmouth OSDC, (4) Section 5.0 provides a discussion of the current state of knowledge relative to the longevity (service life) of HDPE geomembranes, including the relation of this knowledge to the Portsmouth OSDC, and (5) Section 6.0 provides summary and conclusions relative to the anticipated service life of HDPE geomembranes in OSDC service. Based upon this evaluation it is anticipated that the service life of HDPE geomembranes in OSDC service would be significantly greater than the 200 year service life assumed for the OSDC closure cap and liner HDPE geomembranes. That is, a 200 year OSDC HDPE geomembrane service life is considered a conservative assumption.

  8. Management plan report. Unconfined open-water disposal of dredged material. Phase 2. (North and south puget sound)

    SciTech Connect (OSTI)

    Not Available

    1989-09-01T23:59:59.000Z

    This report contains the findings of Phase II of the Puget Sound Dredged Disposal Analysis (PSDDA), a comprehensive study of unconfined dredged material disposal in deep waters of Puget Sound. The study was undertaken as a cooperative effort by the U.S. Army Corps of Engineers (Corps), U.S. Environmental Protection Agency (EPA), and the State of Washington Departments of Natural Resources (DNR) and Ecology (Ecology). A management plan for the Phase II area (North and South Puget Sound) is presented which identifies selected unconfined, open-water disposal sites, evaluation procedures for dredged material being considered for disposal at these sites, and site management considerations including environmental monitoring.

  9. Tank Waste Disposal Program redefinition

    SciTech Connect (OSTI)

    Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

    1991-10-01T23:59:59.000Z

    The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

  10. Addendum to Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site

    SciTech Connect (OSTI)

    Bergeron, Marcel P.; Freeman, Eugene J.; Wurstner, Signe K.; Kincaid, Charles T.; Coony, Mike M.; Strenge, Dennis L.; Aaberg, Rosanne L.; Eslinger, Paul W.

    2001-09-28T23:59:59.000Z

    This report summarizes efforts to complete an addendum analysis to the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis). This document describes the background and performance objectives of the Composite Analysis and this addendum analysis. The methods used, results, and conclusions for this Addendum analysis are summarized, and recommendations are made for work to be undertaken in anticipation of a second analysis.

  11. Health assessment for Fadrowski Drum Disposal Site, Franklin, Wisconsin, Region 5. CERCLIS No. WID980901227. Preliminary report

    SciTech Connect (OSTI)

    Not Available

    1989-06-06T23:59:59.000Z

    The Fadrowski Drum Disposal Site is listed on the National Priorities List. Virtually no testing has been conducted at the Fadrowski site. Site characterization was only beginning at the time of the site visit. The only testing that had been done was of the contents of drums uncovered during excavations involved in construction. Samples of the contents of the drums - sludges, oily water, and paint waste - showed concentrations of lead (400 - 32,700 ppm), chromium (< 100 - 6,800 ppm), DDT (p.p. DDT - 1,000 ppm; o.p. DDT - 450 ppm), and petroleum distillates. The uncovered wastes were re-covered with clay. At that time, the presence of hazardous materials on site was verified, but the extent and limits of contamination were not and have not yet been determined.

  12. Remote Sensing Analysis of the Sierra Blanca (Faskin Ranch) Low-Level Radioactive Waste Disposal Site, Hudspeth County, Texas

    SciTech Connect (OSTI)

    LeMone, D. V.; Dodge, R.; Xie, H.; Langford, R. P.; Keller, G. R.

    2002-02-26T23:59:59.000Z

    Remote sensing images provide useful physical information, revealing such features as geological structure, vegetation, drainage patterns, and variations in consolidated and unconsolidated lithologies. That technology has been applied to the failed Sierra Blanca (Faskin Ranch) shallow burial low-level radioactive waste disposal site selected by the Texas Low-Level Radioactive Waste Disposal Authority. It has been re-examined using data from LANDSAT satellite series. The comparison of the earlier LANDSAT V (5/20/86) (30-m resolution) with the later new, higher resolution ETM imagery (10/23/99) LANDSAT VII data (15-m resolution) clearly shows the superiority of the LANDSAT VII data. The search for surficial indications of evidence of fatal flaws at the Sierra Blanca site utilizing was not successful, as it had been in the case of the earlier remote sensing analysis of the failed Fort Hancock site utilizing LANDSAT V data. The authors conclude that the tectonic activity at the Sierra Blanca site is much less recent and active than in the previously studied Fort Hancock site. The Sierra Blanca site failed primarily on the further needed documentation concerning a subsurface fault underneath the site and environmental justice issues. The presence of this fault was not revealed using the newer LANDSAT VII data. Despite this fact, it must be remembered that remote sensing provides baseline documentation for determining future physical and financial remediation responsibilities. On the basis of the two sites examined by LANDSAT remote sensing imaging, it is concluded that it is an essential, cost-effective tool that should be utilized not only in site examination but also in all nuclear-related facilities.

  13. Composite analysis for low-level waste disposal in the 200 area plateau of the Hanford Site

    SciTech Connect (OSTI)

    Kincaid, C.T.; Bergeron, M.P.; Cole, C.R. [and others

    1998-03-01T23:59:59.000Z

    This report presents the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis) prepared in response to the U.S. Department of Energy Implementation Plan for the Defense Nuclear Facility Safety Board Recommendation 94-2. The Composite Analysis is a companion document to published analyses of four active or planned low-level waste disposal actions: the solid waste burial grounds in the 200 West Area, the solid waste burial grounds in the 200 East Area, the Environmental Restoration Disposal Facility, and the disposal facilities for immobilized low-activity waste. A single Composite Analysis was prepared for the Hanford Site considering only sources on the 200 Area Plateau. The performance objectives prescribed in U.S. Department of Energy guidance for the Composite Analysis were 100 mrem in a year and examination of a lower dose (30 mrem in a year) to ensure the {open_quotes}as low as reasonably achievable{close_quotes} concept is followed. The 100 mrem in a year limit was the maximum allowable all-pathways dose for 1000 years following Hanford Site closure, which is assumed to occur in 2050. These performance objectives apply to an accessible environment defined as the area between a buffer zone surrounding an exclusive waste management area on the 200 Area Plateau, and the Columbia River. Estimating doses to hypothetical future members of the public for the Composite Analysis was a multistep process involving the estimation or simulation of inventories; waste release to the environment; migration through the vadose zone, groundwater, and atmospheric pathways; and exposure and dose. Doses were estimated for scenarios based on agriculture, residential, industrial, and recreational land use. The radionuclides included in the vadose zone and groundwater pathway analyses of future releases were carbon-14, chlorine-36, selenium-79, technetium-99, iodine-129, and uranium isotopes.

  14. Washington Environmental Permit Handbook - Dangerous Waste Treatment...

    Open Energy Info (EERE)

    Washington Environmental Permit Handbook - Dangerous Waste Treatment Storage Disposal Facility New Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Web...

  15. ALL-PATHWAYS DOSE ANALYSIS FOR THE PORTSMOUTH ON-SITE WASTE DISPOSAL FACILITY

    SciTech Connect (OSTI)

    Smith, F.; Phifer, M.

    2014-04-10T23:59:59.000Z

    A Portsmouth On-Site Waste Disposal Facility (OSWDF) All-Pathways analysis has been conducted that considers the radiological impacts to a resident farmer. It is assumed that the resident farmer utilizes a farm pond contaminated by the OSWDF to irrigate a garden and pasture and water livestock from which food for the resident farmer is obtained, and that the farmer utilizes groundwater from the Berea sandstone aquifer for domestic purposes (i.e. drinking water and showering). As described by FBP 2014b the Hydrologic Evaluation of Landfill Performance (HELP) model (Schroeder et al. 1994) and the Surface Transport Over Multiple Phases (STOMP) model (White and Oostrom 2000, 2006) were used to model the flow and transport from the OSWDF to the Points of Assessment (POAs) associated with the 680-ft elevation sandstone layer (680 SSL) and the Berea sandstone aquifer. From this modeling the activity concentrations radionuclides were projected over time at the POAs. The activity concentrations were utilized as input to a GoldSimTM (GTG 2010) dose model, described herein, in order to project the dose to a resident farmer over time. A base case and five sensitivity cases were analyzed. The sensitivity cases included an evaluation of the impacts of using a conservative inventory, an uncased well to the Berea sandstone aquifer, a low waste zone uranium distribution coefficient (Kd), different transfer factors, and reference person exposure parameters (i.e. at 95 percentile). The maximum base case dose within the 1,000 year assessment period was projected to be 1.5E-14 mrem/yr, and the maximum base case dose at any time less than 10,000 years was projected to be 0.002 mrem/yr. The maximum projected dose of any sensitivity case was approximately 2.6 mrem/yr associated with the use of an uncased well to the Berea sandstone aquifer. This sensitivity case is considered very unlikely because it assumes leakage from the location of greatest concentration in the 680 SSL in to the Berea sandstone aquiver over time and does not conform to standard private water well construction practices. The bottom-line is that all predicted doses from the base case and five sensitivity cases fall well below the DOE all-pathways 25 mrem/yr Performance Objective.

  16. Geohydrologic evaluation for the 200 Area Effluent Treatment Facility State-Approved Land Disposal Site: Addendum to WAC 173-240 Engineering Report

    SciTech Connect (OSTI)

    Ballantyne, N.A.

    1993-08-01T23:59:59.000Z

    This document provides a geohydrologic evaluation for the disposal of liquid effluent from the 200 Area Effluent Treatment Facility (ETF) at the Hanford Site. This work forms an addendum to the engineering report that supports the completion of the ETF.

  17. EA-1793: Replacement Capability for Disposal of Remote-handled Low-level Waste Generated at the Department of Energy's Idaho Site

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of replacement capability for disposal of remote-handled low-level radioactive waste (LLW) generated at the Idaho National Laboratory (INL) site beginning in October 2017.

  18. Hydrologic evaluation methodology for estimating water movement through the unsaturated zone at commercial low-level radioactive waste disposal sites

    SciTech Connect (OSTI)

    Meyer, P.D.; Rockhold, M.L.; Nichols, W.E.; Gee, G.W. [Pacific Northwest Lab., Richland, WA (United States)

    1996-01-01T23:59:59.000Z

    This report identifies key technical issues related to hydrologic assessment of water flow in the unsaturated zone at low-level radioactive waste (LLW) disposal facilities. In addition, a methodology for incorporating these issues in the performance assessment of proposed LLW disposal facilities is identified and evaluated. The issues discussed fall into four areas: estimating the water balance at a site (i.e., infiltration, runoff, water storage, evapotranspiration, and recharge); analyzing the hydrologic performance of engineered components of a facility; evaluating the application of models to the prediction of facility performance; and estimating the uncertainty in predicted facility performance. To illustrate the application of the methodology, two examples are presented. The first example is of a below ground vault located in a humid environment. The second example looks at a shallow land burial facility located in an arid environment. The examples utilize actual site-specific data and realistic facility designs. The two examples illustrate the issues unique to humid and arid sites as well as the issues common to all LLW sites. Strategies for addressing the analytical difficulties arising in any complex hydrologic evaluation of the unsaturated zone are demonstrated.

  19. 1999 Report on Hanford Site land disposal restriction for mixed waste

    SciTech Connect (OSTI)

    BLACK, D.G.

    1999-03-25T23:59:59.000Z

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-011. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility.

  20. LOCAL ARRANGEMENTS FOR WASTE DISPOSAL (BEGBROKE SITE) Landfill (England & Wales) Regulations 2002

    E-Print Network [OSTI]

    Paxton, Anthony T.

    are to be disposed of as hazardous waste in the same way as chemicals. EMPTY CHEMICAL BOTTLES Empty plastic chemical washed them out and have cleaned the outside of the bottles before throwing them in the skips. Bottles that cannot be washed out (e.g. hydrofluoric acid bottles) or bottles that stubbornly resist cleaning must

  1. Scoping evaluation of the technical capabilities of DOE sites for disposal of hazardous metals in mixed low-level waste

    SciTech Connect (OSTI)

    Gruebel, M.M.; Waters, R.D.; Langkopf, B.S.

    1997-05-01T23:59:59.000Z

    A team of analysts designed and conducted a scoping evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of the hazardous metals in mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Eight hazardous metals were evaluated: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analysis considered transport only through the groundwater pathway. The results are reported as site-specific estimates of maximum concentrations of each hazardous metal in treated mixed low-level waste that do not exceed the performance measures established for the analysis. Also reported are site-specific estimates of travel times of each hazardous metal to the point of compliance.

  2. RADIOACTIVE WASTE DISPOSAL IN GRANITE

    E-Print Network [OSTI]

    Witherspoon, P.A.

    2010-01-01T23:59:59.000Z

    RADIOACTIVE WASTE DISPOSAL IN GRANITE Paul A. WitherspoonRADIOACTIVE WASTE DISPOSAL IN GRANITE Paul A. Wither spoona repository site in granite are to evaluate the suitability

  3. Hanford annual second quarter seismic report, fiscal year 1998: Seismicity on and near the Hanford Site, Pasco, Washington

    SciTech Connect (OSTI)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1998-06-01T23:59:59.000Z

    Hanford Seismic Monitoring provides an uninterrupted collection of high quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (ENN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the second quarter of FY98 for stations in the HSN was 99.92%. The operational rate for the second quarter of FY98 for stations of the EWRN was 99.46%. For the second quarter of FY98, the acquisition computer triggered 159 times. Of these triggers 14 were local earthquakes: 7 (50%) in the Columbia River Basalt Group, 3 (21%) in the pre-basalt sediments, and 4 (29%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report. The most significant seismic event for the second quarter was on March 23, 1998 when a 1.9 Mc occurred near Eltopia, WA and was felt by local residents. Although this was a small event, it was felt at the surface and is an indication of the potential impact on Hanford of seismic events that are common to the Site.

  4. Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site

    SciTech Connect (OSTI)

    Waugh, W.J.; Kastens, M.K.; Sheader, L.R.L. [Environmental Sciences Laboratory, Grand Junction, CO (United States); Benson, C.H. [University of Wisconsin, Madison, WI (United States); Albright, W.H. [Desert Research Institute, Reno, NV (United States); Mushovic, P.S. [U.S. Environmental Protection Agency, Denver, CO (United States)

    2008-07-01T23:59:59.000Z

    The U.S. Department of Energy Office of Legacy Management (DOE) and the U.S. Environmental Protection Agency (EPA) collaborated on the design and monitoring of an alternative cover for the Monticello uranium mill tailings disposal cell, a Superfund site in southeastern Utah. Ground-water recharge is naturally limited at sites like Monticello where thick, fine-textured soils store precipitation until evaporation and plant transpiration seasonally return it to the atmosphere. The cover at Monticello uses local soils and a native plant community to mimic the natural soil water balance. The cover is fundamentally an evapotranspiration (ET) design with a capillary barrier. A 3-hectare drainage lysimeter was embedded in the cover during construction of the disposal cell in 2000. The lysimeter consists of a geo-membrane liner below the capillary barrier that directs percolation water to a monitoring system. Soil water storage is determined by integration of point water content measurements. Meteorological parameters are measured nearby. Plant cover, shrub density, and leaf area index (LAI) are monitored annually. The cover performed well over the 7-year monitoring period (2000-2007). The cumulative percolation was 4.2 mm (0.6 mm yr{sup -1}), satisfying an EPA goal of an average percolation of <3.0 mm yr{sup -1}. Almost all percolation can be attributed to the exceptionally wet winter and spring of 2004-2005 when soil water content slightly exceeded the water storage capacity of the cover. The diversity, percent cover, and LAI of vegetation increased over the monitoring period, although the density of native shrubs that extract water from deeper in the cover has remained less than revegetation targets. DOE and EPA are applying the monitoring results to plan for long-term surveillance and maintenance and to evaluate alternative cover designs for other waste disposal sites. (authors)

  5. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    L.C. Hulstrom

    2010-08-11T23:59:59.000Z

    This report summarizes field sampling activities conducted in support of WCH’s Remedial Investigation of Hanford Site Releases to the Columbia River. This work was conducted form 2008 through 2010. The work included preliminary mapping and measurement of Hanford Site contaminants in sediment, pore water, and surface water located in areas where groundwater upwelling were found.

  6. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Coumbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    L.C. Hulstrom

    2010-11-10T23:59:59.000Z

    This report summarizes field sampling activities conducted in support of WCH’s Remedial Investigation of Hanford Site Releases to the Columbia River. This work was conducted form 2008 through 2010. The work included preliminary mapping and measurement of Hanford Site contaminants in sediment, pore water, and surface water located in areas where groundwater upwelling were found.

  7. Guidance on the application of quality assurance for characterizing a low-level radioactive waste disposal site

    SciTech Connect (OSTI)

    Pittiglio, C.L. Jr.; Starmer, R.J.; Hedges, D.

    1990-10-01T23:59:59.000Z

    This document provides the Nuclear Regulatory Commission's staff guidance to an applicant on meeting the quality control (QC) requirements of Title 10 of the Code of Federal Regulations, Part 61, Section 61.12 (10 CFR 61.12), for a low-level waste disposal facility. The QC requirements combined with the requirements for managerial controls and audits are the basis for developing a quality assurance (QA) program and for the guidance provided herein. QA guidance is specified for site characterization activities necessary to meet the performance objectives of 10 CFR Part 61 and to limit exposure to or the release of radioactivity. 1 tab.

  8. Evaluation and Screening of Remedial Technologies for Uranium at the 300-FF-5 Operable Unit, Hanford Site, Washington

    SciTech Connect (OSTI)

    Nimmons, Michael J.

    2007-08-01T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) is presently conducting a re-evaluation of remedies addressing persistent dissolved uranium concentrations in the upper aquifer under the 300 Area of the Hanford Site in southeastern Washington State. This work is being conducted as a Phase III feasibility study for the 300-FF-5 Operable Unit on behalf of the U.S. Department of Energy. As part of the feasibility study process, a comprehensive inventory of candidate remedial technologies was conducted by PNNL. This report documents the identification and screening of candidate technologies. The screening evaluation was conducted in accordance with guidance and processes specified by U.S. Environmental Protection Agency regulations associated with implementation of the Comprehensive Environmental Response, Compensation, and Liability Act process.

  9. Corrective Action Investigation Plan for Corrective Action Unit 542: Disposal Holes, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    Laura Pastor

    2006-05-01T23:59:59.000Z

    Corrective Action Unit (CAU) 542 is located in Areas 3, 8, 9, and 20 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 542 is comprised of eight corrective action sites (CASs): (1) 03-20-07, ''UD-3a Disposal Hole''; (2) 03-20-09, ''UD-3b Disposal Hole''; (3) 03-20-10, ''UD-3c Disposal Hole''; (4) 03-20-11, ''UD-3d Disposal Hole''; (5) 06-20-03, ''UD-6 and UD-6s Disposal Holes''; (6) 08-20-01, ''U-8d PS No.1A Injection Well Surface Release''; (7) 09-20-03, ''U-9itsy30 PS No.1A Injection Well Surface Release''; and (8) 20-20-02, ''U-20av PS No.1A Injection Well Surface Release''. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 30, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 542. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the CAI for CAU 542 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct radiological surveys. (3) Conduct geophysical surveys to locate previously unidentified features at CASs 03-20-07, 03-20-09, 03-20-10, 03-20-11, and 06-20-03. (4) Perform field screening. (5) Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern (COCs) are present. (6) Collect quality control samples for laboratory analyses to evaluate the performance of measurement systems and controls based on the requirements of the data quality indicators. (7) If COCs are present at the surface/near surface (< 15 feet below ground surface), collect additional step-out samples to define the extent of the contamination. (8) If COCs are present in the subsurface (i.e., base of disposal hole), collect additional samples to define the vertical extent of contamination. A conservative use restriction will be used to encompass the lateral extent of subsurface contamination. (9) Stake or flag sample locations in the field, and record coordinates through global positioning systems surveying. (10) Collect samples of investigation-derived waste, as needed, for waste management and minimization purposes. This Corrective Action Investigation Plan has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the ''Federal Facility Agreement and Consent Order'', this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Field work will be conducted following approval of the plan.

  10. CENSUS AND STATISTICAL CHARACTERIZATION OF SOIL AND WATER QUALITY AT ABANDONED AND OTHER CENTRALIZED AND COMMERCIAL DRILLING-FLUID DISPOSAL SITES IN LOUISIANA, NEW MEXICO, OKLAHOMA, AND TEXAS

    SciTech Connect (OSTI)

    Alan R. Dutton; H. Seay Nance

    2003-06-01T23:59:59.000Z

    Commercial and centralized drilling-fluid disposal (CCDD) sites receive a portion of spent drilling fluids for disposal from oil and gas exploration and production (E&P) operations. Many older and some abandoned sites may have operated under less stringent regulations than are currently enforced. This study provides a census, compilation, and summary of information on active, inactive, and abandoned CCDD sites in Louisiana, New Mexico, Oklahoma, and Texas, intended as a basis for supporting State-funded assessment and remediation of abandoned sites. Closure of abandoned CCDD sites is within the jurisdiction of State regulatory agencies. Sources of data used in this study on abandoned CCDD sites mainly are permit files at State regulatory agencies. Active and inactive sites were included because data on abandoned sites are sparse. Onsite reserve pits at individual wells for disposal of spent drilling fluid are not part of this study. Of 287 CCDD sites in the four States for which we compiled data, 34 had been abandoned whereas 54 were active and 199 were inactive as of January 2002. Most were disposal-pit facilities; five percent were land treatment facilities. A typical disposal-pit facility has fewer than 3 disposal pits or cells, which have a median size of approximately 2 acres each. Data from well-documented sites may be used to predict some conditions at abandoned sites; older abandoned sites might have outlier concentrations for some metal and organic constituents. Groundwater at a significant number of sites had an average chloride concentration that exceeded nonactionable secondary drinking water standard of 250 mg/L, or a total dissolved solids content of >10,000 mg/L, the limiting definition for underground sources of drinking water source, or both. Background data were lacking, however, so we did not determine whether these concentrations in groundwater reflected site operations. Site remediation has not been found necessary to date for most abandoned CCDD sites; site assessments and remedial feasibility studies are ongoing in each State. Remediation alternatives addressed physical hazards and potential for groundwater transport of dissolved salt and petroleum hydrocarbons that might be leached from wastes. Remediation options included excavation of wastes and contaminated adjacent soils followed by removal to permitted disposal facilities or land farming if sufficient on-site area were available.

  11. Hanford annual first quarter seismic report, fiscal year 1998: Seismicity on and near the Hanford Site, Pasco Basin, Washington

    SciTech Connect (OSTI)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1998-02-01T23:59:59.000Z

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the first quarter of FY98 for stations in the HSN was 98.5%. The operational rate for the first quarter of FY98 for stations of the EWRN was 99.1%. For the first quarter of FY98, the acquisition computer triggered 184 times. Of these triggers 23 were local earthquakes: 7 in the Columbia River Basalt Group, and 16 in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report. The most significant earthquakes in this quarter were a series of six events which occurred in the Cold Creek depression (approximately 4 km SW of the 200 West Area), between November 6 and November 11, 1997. All events were deep (> 15 km) and were located in the crystalline basement. The first event was the largest, having a magnitude of 3.49 M{sub c}. Two events on November 9, 1997 had magnitudes of 2.81 and 2.95 M{sub c}, respectively. The other events had magnitudes between 0.7 and 1.2 M{sub c}.

  12. Water Quality Sampling Locations Along the Shoreline of the Columbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    Peterson, Robert E.; Patton, Gregory W.

    2009-12-14T23:59:59.000Z

    As environmental monitoring evolved on the Hanford Site, several different conventions were used to name or describe location information for various sampling sites along the Hanford Reach of the Columbia River. These methods range from handwritten descriptions in field notebooks to the use of modern electronic surveying equipment, such as Global Positioning System receivers. These diverse methods resulted in inconsistent archiving of analytical results in various electronic databases and published reports because of multiple names being used for the same site and inaccurate position data. This document provides listings of sampling sites that are associated with groundwater and river water sampling. The report identifies names and locations for sites associated with sampling: (a) near-river groundwater using aquifer sampling tubes; (b) riverbank springs and springs areas; (c) pore water collected from riverbed sediment; and (d) Columbia River water. Included in the listings are historical names used for a particular site and the best available geographic coordinates for the site, as of 2009. In an effort to create more consistency in the descriptive names used for water quality sampling sites, a naming convention is proposed in this document. The convention assumes that a unique identifier is assigned to each site that is monitored and that this identifier serves electronic database management requirements. The descriptive name is assigned for the convenience of the subsequent data user. As the historical database is used more intensively, this document may be revised as a consequence of discovering potential errors and also because of a need to gain consensus on the proposed naming convention for some water quality monitoring sites.

  13. Recommended Method To Account For Daughter Ingrowth For The Portsmouth On-Site Waste Disposal Facility Performance Assessment Modeling

    SciTech Connect (OSTI)

    Phifer, Mark A.; Smith, Frank G. III

    2013-06-21T23:59:59.000Z

    A 3-D STOMP model has been developed for the Portsmouth On-Site Waste Disposal Facility (OSWDF) at Site D as outlined in Appendix K of FBP 2013. This model projects the flow and transport of the following radionuclides to various points of assessments: Tc-99, U-234, U-235, U-236, U-238, Am-241, Np-237, Pu-238, Pu-239, Pu-240, Th-228, and Th-230. The model includes the radioactive decay of these parents, but does not include the associated daughter ingrowth because the STOMP model does not have the capability to model daughter ingrowth. The Savannah River National Laboratory (SRNL) provides herein a recommended method to account for daughter ingrowth in association with the Portsmouth OSWDF Performance Assessment (PA) modeling.

  14. EXECUTIVE SUMMARY OF STATE DATA RELATED TO ABANDONED CENTRALIZED AND COMMERCIAL DRILLING-FLUID DISPOSAL SITES IN LOUISIANA, NEW MEXICO, OKLAHOMA, AND TEXAS

    SciTech Connect (OSTI)

    H. Seay Nance

    2003-03-01T23:59:59.000Z

    This 2003 Spring Semi-Annual Report contains a summary of the Final Technical Report being prepared for the Soil Remediation Requirements at Commercial and Centralized Drilling-Fluid Disposal (CCDD) Sites project funded by the United States Department of Energy under DOE Award No. DE-AC26-99BC15225. The summary describes (1) the objectives of the investigation, (2) a rationale and methodology of the investigation, (3) sources of data, assessment of data quality, and data availability, (4) examples of well documented centralized and commercial drilling-fluid disposal (CCDD) sites and other sites where drilling fluid was disposed of, and (5) examples of abandoned sites and measures undertaken for their assessment and remediation. The report also includes most of the figures, tables, and appendices that will be included in the final report.

  15. DOE - Office of Legacy Management -- Carnegie Institute of Washington...

    Office of Legacy Management (LM)

    Carnegie Institute of Washington Dept of Genetics - NY 0-07 FUSRAP Considered Sites Site: Carnegie Institute of Washington (Dept. of Genetics) (NY.0-07 ) Eliminated from...

  16. LGRJ Interim Long-Term Surveillance Plan for the Cheney Disposal Site Near Grand Junction, Colorado

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN551 - g 7635U: .'j', J o R-

  17. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

  18. Final Hanford Comprehensive Land-Use Plan Environmental Impact Statement, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    N /A

    1999-10-01T23:59:59.000Z

    This Final ''Hanford Comprehensive Land-Use Plan Environmental Impact Statement'' (HCP EIS) is being used by the Department of Energy (DOE) and its nine cooperating and consulting agencies to develop a comprehensive land-use plan (CLUP) for the Hanford Site. The DOE will use the Final HCP EIS as a basis for a Record of Decision (ROD) on a CLUP for the Hanford Site. While development of the CLUP will be complete with release of the HCP EIS ROD, full implementation of the CLUP is expected to take at least 50 years. Implementation of the CLUP would begin a more detailed planning process for land-use and facility-use decisions at the Hanford Site. The DOE would use the CLUP to screen proposals. Eventually, management of Hanford Site areas would move toward the CLUP land-use goals. This CLUP process could take more than 50 years to fully achieve the land-use goals.

  19. DOE issues Finding of No Significant Impact on Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low Level Radioactive Waste Generated at Idaho Site

    Broader source: Energy.gov [DOE]

    Idaho Falls, ID – After completing a careful assessment, the U.S. Department of Energy has determined that building a new facility at its Idaho National Laboratory site for continued disposal of remote-handled low level radioactive waste generated by operations at the site will not have a significant impact on the environment.

  20. Accelerated cleanup of mixed waste units on the Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Patterson, J.K.; Johnson, W.L.; Downey, H.D.

    1993-09-01T23:59:59.000Z

    This report provides a status of the expedited response action (ERA) projects currently being implemented at the Hanford Site. A detailed review of the accomplishments to date, the technologies employed, the problems encountered, and an analysis of the lessons learned are included. A total of nine ERAs have been initiated at the Hanford Site and are presented in a case study format with emphasis on the progress being made and the challenges ahead.

  1. UW-Approved Waste Disposal, Recycling and Treatment Sites Hazardous waste disposal at the University of Washington is coordinated by the EH&S Environmental Programs Office

    E-Print Network [OSTI]

    Wilcock, William

    solid waste, use the approved facilities listed below. This document is primarily intended & sludge Seattle, WA Ventilation Power Cleaning Vactor & parking garage waste Seattle, WA King County Treatment Plant Liquids & sludge Seattle, WA La Farge Cement Kiln Liquids & sludge Seattle, WA Cemex Liquids

  2. Summary - Proposed On-Site Disposal Facility (OSDF) at the Paducah...

    Office of Environmental Management (EM)

    site considerations such as seismic and brown versus green field, (3) the public communication plan, (4) future public use options, and (5) the baseline schedule. What the ETR...

  3. Conversion of Hanford site well locations to Washington coordinate system of 1983, South Zone 1991 (WCS83S)

    SciTech Connect (OSTI)

    Burnett, R.A.; Tzemos, S. [Pacific Northwest Lab., Richland, WA (United States); Dietz, L.A. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-12-01T23:59:59.000Z

    Past construction and survey practices have resulted in the use of multiple local coordinate systems for measuring and reporting the horizontal position of wells and other facilities and locations on the Hanford Site. This report describes the development of a coordinate transformation process and algorithm and its application to the conversion of the horizontal coordinates of Hanford site wells from the various local coordinate systems and datums to a single standard coordinate system, the Washington Coordinate system of 1983, South Zone 1991 (WCS83S). The coordinate transformation algorithm, implemented as a computer program called CTRANS, uses standard two-dimensional translation, rotation, and scaling transformation equations and can be applied to any set of horizontal point locations. For each point to be transformed, the coefficients of the transformation equations are calculated locally, using the coordinates of the three nearest registration points (points with known locations in both coordinate systems). The report contains a discussion of efforts to verify and validate both the software and the well location data, a description of the methods used to estimate transformation and registration point accuracy, instructions for using the computer program, and a summary of the Hanford well conversion results for each local coordinate system and datum. Also included are the results of using recent U.S. Army Corps of Engineers survey data to obtain estimated measures of location errors in wells for which the local coordinate data source is undocumented, unverified, and therefore of unknown accuracy.

  4. Data Summary Report for teh Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    Hulstrom, L.

    2011-02-07T23:59:59.000Z

    This data summary report summarizes the investigation results to evaluate the nature and distribution of Hanford Site-related contaminants present in the Columbia River. As detailed in DOE/RL-2008-11, more than 2,000 environmental samples were collected from the Columbia River between 2008 and 2010. These samples consisted of island soil, sediment, surface water, groundwater upwelling (pore water, surface water, and sediment), and fish tissue.

  5. EIS-0089: PUREX Plant and Uranium Oxide Plant Facilities, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of resumption of operations of the PUREX/Uranium Oxide facilities at the Hanford Site to produce plutonium and other special nuclear materials for national defense needs.

  6. EIS-0096: Remedial Actions at the Former Vitro Rare Metals Plant Site, Canonsburg, Washington County, Pennsylvania

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this statement to evaluate the environmental impacts associated with five potential sets of actions to address the potential public health hazards of residual radioactive materials remaining at the inactive uranium processing site in Canonsburg, Pennsylvania.

  7. Archaeological survey of the McGee Ranch vicinity, Hanford Site, Washington

    SciTech Connect (OSTI)

    Gard, H.A.; Poet, R.M.

    1992-09-01T23:59:59.000Z

    In response to a request for a cultural resources review from Westinghouse Hanford Company for the Action Plan for Characterization of McGee Ranch Soil, Pacific Northwest Laboratory's Hanford Cultural Resources Laboratory (HCRL) conducted an archaeological survey of the McGee Ranch vicinity, located in the northwest portion of the Hanford Site. Staff members covered 8.4 km{sup 2} and recorded 42 cultural resources; 22 sites, and 20 isolated artifacts. Only 2 sites and 3 isolates were attributed to a prehistoric Native American occupation. The historic sites date from the turn of the century to the 1940s and are representative of the settlement patterns that occurred throughout the Columbia Basin. In addition to an archaeological pedestrian survey of the project area, we conducted literature and records searches and examined available aerial photographs. Records kept at HCRL were reviewed to determine if any archaeological survey had been conducted previously within the project area. Although no survey had been conducted, portions of the area adjacent to project boundaries were surveyed in 1988 and 1990. During those surveys, historic and prehistoric cultural resources were observed, increasing the possibility that similar land usage had taken place within the current project boundaries. Literature searches established a general historical sequence for this area. Aerial photographs alerted researchers to homesteads and linear features, such as roads and irrigation ditches, that might not be apparent from ground level.

  8. Archaeological survey of the McGee Ranch vicinity, Hanford Site, Washington

    SciTech Connect (OSTI)

    Gard, H.A.; Poet, R.M.

    1992-09-01T23:59:59.000Z

    In response to a request for a cultural resources review from Westinghouse Hanford Company for the Action Plan for Characterization of McGee Ranch Soil, Pacific Northwest Laboratory`s Hanford Cultural Resources Laboratory (HCRL) conducted an archaeological survey of the McGee Ranch vicinity, located in the northwest portion of the Hanford Site. Staff members covered 8.4 km{sup 2} and recorded 42 cultural resources; 22 sites, and 20 isolated artifacts. Only 2 sites and 3 isolates were attributed to a prehistoric Native American occupation. The historic sites date from the turn of the century to the 1940s and are representative of the settlement patterns that occurred throughout the Columbia Basin. In addition to an archaeological pedestrian survey of the project area, we conducted literature and records searches and examined available aerial photographs. Records kept at HCRL were reviewed to determine if any archaeological survey had been conducted previously within the project area. Although no survey had been conducted, portions of the area adjacent to project boundaries were surveyed in 1988 and 1990. During those surveys, historic and prehistoric cultural resources were observed, increasing the possibility that similar land usage had taken place within the current project boundaries. Literature searches established a general historical sequence for this area. Aerial photographs alerted researchers to homesteads and linear features, such as roads and irrigation ditches, that might not be apparent from ground level.

  9. Risk and Performance Analyses Supporting Closure of WMA C at the Hanford Site in Southeast Washington

    SciTech Connect (OSTI)

    Eberlein, Susan J. [Washington River Protection Systems, Richland, WA (United States); Bergeron, Marcel P. [Washington River Protection Systems, Richland, WA (United States); Kemp, Christopher J. [USDOE Office of River Protection, Richland, WA (United States); Hildebrand, R. Douglas [USDOE Office of River Protection, Richland, WA (United States); Aly, Alaa [INTERA, Inc., Richland, WA (United States); Kozak, Matthew [INTERA, Inc., Richland, WA (United States); Mehta, Sunil [INTERA, Inc., Richland, WA (United States); Connelly, Michael [Freestone Environmental Services, Richland, WA (United States)

    2013-11-11T23:59:59.000Z

    The Office of River Protection under the U.S. Department of Energy (DOE) is pursuing closure of the Single-Shell Tank (SST) Waste Management Area (WMA) C as stipulated by the Hanford Federal Facility Agreement and Consent Order (HFFACO) under federal requirements and work tasks will be done under the State-approved closure plans and permits. An initial step in meeting the regulatory requirements is to develop a baseline risk assessment representing current conditions based on available characterization data and information collected at the WMA C location. The baseline risk assessment will be supporting a Resource Conservation and Recovery Act of 1976 (RCRA) Field Investigation (RFI)/Corrective Measures Study (CMS) for WMA closure and RCRA corrective action. Complying with the HFFACO conditions also involves developing a long-term closure Performance Assessment (PA) that evaluates human health and environmental impacts resulting from radionuclide inventories in residual wastes remaining in WMA C tanks and ancillary equipment. This PA is being developed to meet the requirements necessary for closure authorization under DOE Order 435.1 and Washington State Hazardous Waste Management Act. To meet the HFFACO conditions, the long-term closure risk analysis will include an evaluation of human health and environmental impacts from hazardous chemical inventories along with other performance Comprehensive Environmental Response, Compensation, and Liability Act Appropriate and Applicable Requirements (CERCLA ARARs) in residual wastes left in WMA C facilities after retrieval and removal. This closure risk analysis is needed to needed to comply with the requirements for permitted closure. Progress to date in developing a baseline risk assessment of WMA C has involved aspects of an evaluation of soil characterization and groundwater monitoring data collected as a part of the RFI/CMS and RCRA monitoring. Developing the long-term performance assessment aspects has involved the construction of detailed numerical models of WMA C using the Subsurface Transport Over Multiple Phases (STOMP©) computer code, the development of a technical approach for abstraction of a range of representative STOMP© simulations into a system-level model based on the GoldSim© system-level model software.The STOMP©-based models will be used to evaluate local-scale impacts and closed facility performance over a sufficient range of simulations to allow for development of the system-level model of the WMA C. The GoldSim©-based system-level model will be used to evaluate overall sensitivity of modeled parameters and the estimate the uncertainty in potential future impacts from a closed WMA C facility.

  10. Sampling and analysis of sediments in dredged material from Wilma Uplands Disposal Site

    SciTech Connect (OSTI)

    Pinza, M.R.; Karle, L.M.; Mayhew, H.L.; Word, J.Q. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

    1992-09-01T23:59:59.000Z

    The Lower Granite Reservoir provides slack-water navigation for the Lewiston, Idaho, and Clarkston, Washington area. The levee system associated with the reservoir protects industrial, commercial, and residential areas from inundation of waters impounded behind the dam. Sediment deposition at the confluence of the Snake and Clearwater rivers has required frequent dredging events In past years, Including two recent events in 1986 and 1987. Dredged material from the 1986 and 1987 events was placed in three containment ponds located on the north bank of the Snake River, near River Mile 134.7. The ponds were used to hold approximately 400,000 cubic yards of dredged material removed from the port areas at the confluence of the Snake and Clearwater rivers. Prior to dredging, the river sediments were tested and found to be typical of non-contaminated sediment. Since that testing, dioxins and furans have been found in the effluent from a Kraft pulp mill in Lewiston that discharges directly into the confluence of the Snake and Clearwater rivers. The US Army Corps of Engineers (USACE) believed that dredged material placed in the containment ponds may contain contaminated levels of dioxins and furans. At their request, Battelle/Marine Sciences Laboratory (MSL) sampled sediments from these ponds and performed a chemical analysis.

  11. Environmental Assessment: Relocation and storage of TRIGA{reg_sign} reactor fuel, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    In order to allow the shutdown of the Hanford 308 Building in the 300 Area, it is proposed to relocate fuel assemblies (101 irradiated, three unirradiated) from the Mark I TRIGA Reactor storage pool. The irradiated fuel assemblies would be stored in casks in the Interim Storage Area in the Hanford 400 Area; the three unirradiated ones would be transferred to another TRIGA reactor. The relocation is not expected to change the offsite exposure from all Hanford Site 300 and 400 Area operations.

  12. Uranium Contamination in the Subsurface Beneath the 300 Area, Hanford Site, Washington

    SciTech Connect (OSTI)

    Peterson, Robert E.; Rockhold, Mark L.; Serne, R. Jeffrey; Thorne, Paul D.; Williams, Mark D.

    2008-02-29T23:59:59.000Z

    This report provides a description of uranium contamination in the subsurface at the Hanford Site's 300 Area. The principal focus is a persistence plume in groundwater, which has not attenuated as predicted by earlier remedial investigations. Included in the report are chapters on current conditions, hydrogeologic framework, groundwater flow modeling, and geochemical considerations. The report is intended to describe what is known or inferred about the uranium contamination for the purpose of making remedial action decisions.

  13. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TRANSURANIC (TRU) TANK WASTE IDENTIFICATION & PLANNING FOR REVRIEVAL TREATMENT & EVENTUAL DISPOSAL AT WIPP

    SciTech Connect (OSTI)

    KRISTOFZSKI, J.G.; TEDESCHI, R.; JOHNSON, M.E.; JENNINGS, M

    2006-01-18T23:59:59.000Z

    The CH2M HILL Manford Group, Inc. (CHG) conducts business to achieve the goals of the Office of River Protection (ORP) at Hanford. As an employee owned company, CHG employees have a strong motivation to develop innovative solutions to enhance project and company performance while ensuring protection of human health and the environment. CHG is responsible to manage and perform work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of legacy mixed radioactive waste currently at the Hanford Site tank farms. Safety and environmental awareness is integrated into all activities and work is accomplished in a manner that achieves high levels of quality while protecting the environment and the safety and health of workers and the public. This paper focuses on the innovative strategy to identify, retrieve, treat, and dispose of Hanford Transuranic (TRU) tank waste at the Waste Isolation Pilot Plant (WIPP).

  14. NRC Consultation and Monitoring at the Savannah River Site: Focusing Reviews of Two Different Disposal Actions - 12181

    SciTech Connect (OSTI)

    Ridge, A. Christianne; Barr, Cynthia S.; Pinkston, Karen E.; Parks, Leah S.; Grossman, Christopher J.; Alexander, George W. [U.S. Nuclear Regulatory Commission (United States)

    2012-07-01T23:59:59.000Z

    Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) requires the U.S. Department of Energy (DOE) to consult with the U.S. Nuclear Regulatory Commission (NRC) for certain non-high level waste determinations. The NDAA also requires NRC to monitor DOE's disposal actions related to those determinations. In Fiscal Year 2011, the NRC staff reviewed DOE performance assessments for tank closure at the F-Tank Farm (FTF) Facility and salt waste disposal at the Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) as part of consultation and monitoring, respectively. Differences in inventories, waste forms, and key barriers led to different areas of focus in the NRC reviews of these two activities at the SRS. Because of the key role of chemically reducing grouts in both applications, the evaluation of chemical barriers was significant to both reviews. However, radionuclide solubility in precipitated metal oxides is expected to play a significant role in FTF performance whereas release of several key radionuclides from the SDF is controlled by sorption or precipitation within the cementitious wasteform itself. Similarly, both reviews included an evaluation of physical barriers to flow, but differences in the physical configurations of the waste led to differences in the reviews. For example, NRC's review of the FTF focused on the modeled degradation of carbon steel tank liners while the staff's review of the SDF performance included a detailed evaluation of the physical degradation of the saltstone wasteform and infiltration-limiting closure cap. Because of the long time periods considered (i.e., tens of thousands of years), the NRC reviews of both facilities included detailed evaluation of the engineered chemical and physical barriers. The NRC staff reviews of residual waste disposal in the FTF and salt waste disposal in the SDF focused on physical barriers to flow and chemical barriers to radionuclide release from the waste. Because the waste inventory and concentration at both sites is sufficient to generate unacceptable doses to an off-site member of the public or inadvertent intruder in the absence of engineered barriers, the NRC staff review focused on the engineering features DOE plans to put in place to limit radionuclide release. At the FTF, DOE expects that peak doses are delayed beyond a 10,000 year performance period by a combination of (1) the flow-limiting effect of the steel tank liner and (2) chemical conditions created by the stabilizing grout overlying the waste that limit the solubility of key radionuclides for tens of thousands of years. At the SDF, DOE expects that flow will be significantly limited by water shedding along the closure cap lower drainage layer and that radionuclide release will be further limited by radionuclide precipitation or sorption within the high pH, chemically reducing conditions created within the saltstone waste form. Because the performance of both facilities depends on the performance of engineered barriers for thousands of years, the reviews included a detailed evaluation of the expected long-term behavior of these barriers. As previously discussed, NRC staff reviews of DOE waste determinations during consultation are designed to evaluate the three NDAA criteria, whereas the review of an updated PA during monitoring only addresses whether the NRC staff has reasonable assurance that the planned disposal action will meet the performance objectives of 10 CFR Part 61. The NRC staff review of the Waste Determination for the FTF did not include conclusions about whether the planned disposal of residual waste at the FTF would meet the NDAA criteria because of the substantial uncertainties in the degree of waste removal DOE would achieve and other technical uncertainties. The main product of the NRC staff review of the planned FTF disposal action is the recommendation that DOE should conduct waste release experiments to increase support for key modeling assumptions related to: (1) the evolution of pH and Eh in the grouted tank syst

  15. Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site

    SciTech Connect (OSTI)

    D. Wieland, V. Yucel, L. Desotell, G. Shott, J. Wrapp

    2008-04-01T23:59:59.000Z

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) plans to close the waste and classified material storage cells in the southeast quadrant of the Area 5 Radioactive Waste Management Site (RWMS), informally known as the '92-Acre Area', by 2011. The 25 shallow trenches and pits and the 13 Greater Confinement Disposal (GCD) borings contain various waste streams including low-level waste (LLW), low-level mixed waste (LLMW), transuranic (TRU), mixed transuranic (MTRU), and high specific activity LLW. The cells are managed under several regulatory and permit programs by the U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP). Although the specific closure requirements for each cell vary, 37 closely spaced cells will be closed under a single integrated monolayer evapotranspirative (ET) final cover. One cell will be closed under a separate cover concurrently. The site setting and climate constrain transport pathways and are factors in the technical approach to closure and performance assessment. Successful implementation of the integrated closure plan requires excellent communication and coordination between NNSA/NSO and the regulators.

  16. Revegetation and rock cover for stabilization of inactive uranium mill tailings disposal sites. Final report

    SciTech Connect (OSTI)

    Beedlow, P.A.

    1984-05-01T23:59:59.000Z

    Guidelines for using vegetation and rock to protect inactive uranium mill tailings from erosion were developed by Pacific Northwest Laboratory as part of the Department of Energy's Uranium Mill Tailings Remedial Action Project (UMTRAP) Technology Development program. Information on soils, climate, and vegetation were collected for 20 inactive tailings sites in the western United States. Sites were grouped according to similarities in climate and vegetation. Soil loss for those sites was characterized using the Universal Soil Loss Equation. Test plots were used to evaluate (1) the interaction between vegetation and sealant barrier systems and (2) the effects of surface rock on soil water and vegetation. Lysimeter and simulation studies were used to direct and support field experiments. 49 references, 17 figures, 16 tables.

  17. INTERIM BARRIER AT HANFORDS TY FARM TO PROTECT GROUNDWATER AT THE HANFORD SITE WASHINGTON USA

    SciTech Connect (OSTI)

    PARKER DL; HOLM MJ; HENDERSON JC; LOBER RW

    2011-01-13T23:59:59.000Z

    An innovative interim surface barrier was constructed as a demonstration project at the Hanford Site's TY Tank Farm. The purpose of the demonstration barrier is to stop rainwater and snowmelt from entering the soils within the tank farm and driving contamination from past leaks and spills toward the ground water. The interim barrier was constructed using a modified asphalt material with very low permeability developed by MatCon{reg_sign}. Approximately 2,400 cubic yards of fill material were added to the tank farm to create a sloped surface that will gravity drain precipitation to collection points where it will be routed through buried drain lines to an evapotranspiration basin adjacent to the farm. The evapotranspiration basin is a lined basin with a network of perforated drain lines covered with soil and planted with native grasses. The evapotranspiration concept was selected because it prevents the runoff from percolating into the soil column and also avoids potential monitoring and maintenance issues associated with standing water in a traditional evaporation pond. Because of issues associated with using standard excavation and earth moving equipment in the farm a number of alternate construction approaches were utilized to perform excavations and prepare the site for the modified asphalt.

  18. Spectroscopic and Diffraction Study of Uranium Speciation in Contaminated Vadose Zone Sediments from the Hanford Site, Washington State

    SciTech Connect (OSTI)

    Catalano, Jeffrey G.; Heald, Steve M.; Zachara, John M.; Brown Jr., G E.

    2004-05-15T23:59:59.000Z

    Contamination of vadose zone sediments under tank BX-102 at the Hanford site, Washington, resulted from the accidental release of 7-8 metric tons of uranium dissolved in caustic aqueous sludge in 1951. We have applied synchrotron-based X-ray spectroscopic and diffraction techniques to characterize the speciation of uranium in samples of these contaminated sediments. U LIII-edge X-ray absorption fine structure (XAFS) spectroscopic studies demonstrate that uranium occurs predominantly as a uranium-(VI) silicate from the uranophane group of minerals. XAFS cannot distinguish between the members of this mineral group due to the near identical local coordination environments of uranium in these phases. However, these phases differ crystallographically, and can be distinguished using X-ray diffraction (XRD) methods. As the concentration of uranium was too low for conventional XRD to detect these phases, X-ray microdiffraction (?XRD) was used to collect diffraction patterns on {approx}20 ?m diameter areas of localized high uranium concentration found using microscanning X-ray fluorescence (?SXRF). Only sodium boltwoodite, Na(UO2)(SiO3OH)?1.5H2O, was observed; no other uranophane group minerals were present. Sodium boltwoodite formation has effectively sequestered uranium in these sediments under the current geochemical and hydrologic conditions. Attempts to remediate the uranium contamination will likely face significant difficulties because of the speciation and distribution of uranium in the sediments.

  19. Analysis of the technical capabilities of DOE sites for disposal of residuals from the treatment of mixed low-level waste

    SciTech Connect (OSTI)

    Waters, R.D.; Gruebel, M.M.; Langkopf, B.S.; Kuehne, P.B.

    1997-04-01T23:59:59.000Z

    The US Department of Energy (DOE) has stored or expects to generate over the next five years more than 130,000 m{sup 3} of mixed low-level waste (MLLW). Before disposal, MLLW is usually treated to comply with the land disposal restrictions of the Resource Conservation and Recovery Act. Depending on the type of treatment, the original volume of MLLW and the radionuclide concentrations in the waste streams may change. These changes must be taken into account in determining the necessary disposal capacity at a site. Treatment may remove the characteristic in some waste that caused it to be classified as mixed. Treatment of some waste may, by reduction of the mass, increase the concentrations of some transuranic radionuclides sufficiently so that it becomes transuranic waste. In this report, the DOE MLLW streams were analyzed to determine after-treatment volumes and radionuclide concentrations. The waste streams were reclassified as residual MLLW or low-level or transuranic waste resulting from treatment. The volume analysis indicated that about 89,000 m{sup 3} of waste will require disposal as residual MLLW. Fifteen DOE sites were then evaluated to determine their capabilities for hosting disposal facilities for some or all of the residual MLLW. Waste streams associated with about 90% of the total residual MLLW volume are likely to present no significant issues for disposal and require little additional analysis. Future studies should focus on the remaining waste streams that are potentially problematic by examining site-specific waste acceptance criteria, alternative treatment processes, alternative waste forms for disposal, and pending changes in regulatory requirements.

  20. The determination of settling velocities for sewage sludge disposed at 106-Mile Site

    E-Print Network [OSTI]

    Hernandez, Daniel Saul

    1991-01-01T23:59:59.000Z

    THE DBTERMZNATZON OF SETTLING VELOCZTZES FOR SEWAGE SLUDGE DZSPOSED AT 106-MILE SITE A Thesis by DANIEL SAUL HERNANDEZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of requirements for the degree... of MASTER OF SCIENCE December 1991 Major Subject: Civil Engineering THB DETERMZNATZON OF SBTTLZNG VELOCZTZES FOR SEWAGE SLUDGE DZSPOSBD AT 106-MZLE SZTB A Thesis by DANIEL SAUL HERNANDEZ Approved as to style and content by: James S. Bonner '(Chair...

  1. Safety assessment for proposed pump mixing operations to mitigate episodic gas releases in tank 241-101-SY: Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Lentsch, J.W., Westinghouse Hanford

    1996-05-16T23:59:59.000Z

    This safety assessment addresses each of the elements required for the proposed action to remove a slurry distributor and to install, operate, and remove a mixing pump in Tank 241-SY-101, which is located within the Hanford Site, Richland, Washington. The proposed action is required as part of an ongoing evaluation of various mitigation concepts developed to eliminate episodic gas releases that result in hydrogen concentrations in the tank dome space that exceed the lower flammability limit.

  2. A safety assessment for proposed pump mixing operations to mitigate episodic gas releases in tank 241-SY-101: Hanford Site,Richland, Washington

    SciTech Connect (OSTI)

    Lentsch, J.W.

    1996-07-01T23:59:59.000Z

    This safety assessment addresses each of the elements required for the proposed action to remove a slurry distributor and to install, operate, and remove a mixing pump in Tank 241-SY-101,which is located within the Hanford Site, Richland, Washington.The proposed action is required as part of an ongoing evaluation of various mitigation concepts developed to eliminate episodic gas releases that result in hydrogen concentrations in the tank dome space that exceed the lower flammability limit.

  3. Environmental remediation of contamination sites at the Hanford Site

    SciTech Connect (OSTI)

    Wittreich, C.D.; Johnson, W.L. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-12-31T23:59:59.000Z

    Efforts currently are under way to remediate the 200 Areas of the US Department of Energy`s (DOE) Hanford Site in Washington State. Because of the complexity and extent of environmental contamination that has resulted from decades of hazardous and radioactive waste disposal practices, an innovative approach to remediating the site was required. A comprehensive study of waste disposal and environmental monitoring data with field investigations, referred to as the 200 Aggregate Area Management Study (AAMS) program, was conducted in 1992 to assess the scope of the remediation effort and to develop a plan to expedite the cleanup progress.

  4. Microscale Controls on the Fate of Contaminant Uranium in the Vadose Zone, Hanford Site, Washington

    SciTech Connect (OSTI)

    McKinley, James P.; Zachara, John M.; Liu, Chongxuan; Heald, Steve M.; Prenitzer, Brenda I.; Kempshall, Brian

    2006-04-15T23:59:59.000Z

    An alkaline brine containing uranyl (UO22+) leaked to the thick unsaturated zone at the Hanford Site. X-ray and electron microprobe imaging showed that the uranium was associated with a minority of clasts, specifically granitic clasts occupying less than four percent of the sediment volume. XANES analysis at micron resolution showed the uranium to be hexavalent. The uranium was precipitated in microfractures as radiating clusters of uranyl silicates, and sorbed uranium was not observed on other surfaces. Compositional determinations of the 1-3 µm precipitates were difficult, but indicated a sodium potassium uranyl silicate, likely sodium boltwoodite. Observations suggested that uranyl was removed from pore waters by diffusion and precipitation in microfractures, where dissolved silica within the granite-equilibrated solution would cause supersaturation with respect to sodium boltwoodite. This hypothesis was tested using a diffusion reaction model operating at microscale. Conditions favoring precipitation were simulated to be transient, and driven by the compositional contrast between pore and fracture space. Pore-space conditions, including alkaline pH, were eventually imposed on the microfracture environment. However, conditions favoring precipitation were prolonged within the microfracture by reaction at the silicate mineral surface to buffer pH in a solubility limiting acidic state, and to replenish dissolved silica. During this time, uranyl was additionally removed to the fracture space by diffusion from pore space. Uranyl is effectively immobilized within the microfracture environment within the presently unsaturated vadose zone.

  5. Pore Water Extraction Test Near 241-SX Tank Farm at the Hanford Site, Washington, USA

    SciTech Connect (OSTI)

    Eberlein, Susan J. [Washington River Protection Systems, Richland, WA (United States); Parker, Danny L. [Washington River Protection Systems, Richland, WA (United States); Tabor, Cynthia L. [Washington River Protection Systems, Richland, WA (United States); Holm, Melissa J. [Washington River Protection Systems, Richland, WA (United States)

    2013-11-11T23:59:59.000Z

    A proof-of-principle test is underway near the Hanford Site 241-SX Tank Farm. The test will evaluate a potential remediation technology that will use tank farm-deployable equipment to remove contaminated pore water from vadose zone soils. The test system was designed and built to address the constraints of working within a tank farm. Due to radioactive soil contamination and limitations in drilling near tanks, small-diameter direct push drilling techniques applicable to tank farms are being utilized for well placement. To address space and weight limitations in working around tanks and obstacles within tank farms, the above ground portions of the test system have been constructed to allow deployment flexibility. The test system utilizes low vacuum over a sealed well screen to establish flow into an extraction well. Extracted pore water is collected in a well sump,and then pumped to the surface using a small-diameter bladder pump.If pore water extraction using this system can be successfully demonstrated, it may be possible to target local contamination in the vadose zone around underground storage tanks. It is anticipated that the results of this proof-of-principle test will support future decision making regarding interim and final actions for soil contamination within the tank farms.

  6. Addendum to the Closure Report for Corrective Action Unit 356: Mud Pits and Disposal Sites Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Lynn Kidman

    2008-10-01T23:59:59.000Z

    This document constitutes an addendum to the November 2002, Closure Report for Corrective Action Unit 356: Mud Pits and Disposal Sites as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • This cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the URs for: • CAS 03-04-01, Area 3 Change House Septic System • CAS 03-09-04, Mud Pit These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove these URs because contamination is not present at these sites above the risk-based FALs. Requirements for inspecting and maintaining these URs will be canceled, and the postings and signage at each site will be removed. Fencing and posting may be present at these sites that are unrelated to the FFACO URs such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004f). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at these sites.

  7. Los Alamos Lab Completes Excavation of Waste Disposal Site Used in the 1940s

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheney suggesting a bill entitledIncreaseSites |Lorrenda

  8. Storage for the Fast Flux Test Facility unirradiated fuel in the Plutonium Finishing Plant Complex, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    This Environmental Assessment evaluates the proposed action to relocate and store unirradiated Fast Flux Test Facility fuel in the Plutonium Finishing Plant Complex on the Hanford Site, Richland, Washington. The US Department of Energy has decided to cease fuel fabrication activities in the 308 Building in the 300 Area. This decision was based on a safety concern over the ability of the fuel fabrication portion of the 308 Building to withstand a seismic event. The proposed action to relocate and store the fuel is based on the savings that could be realized by consolidating security costs associated with storage of the fuel. While the 308 Building belowgrade fuel storage areas are not at jeopardy by a seismic event, the US Department of Energy is proposing to cease storage operations along with the related fabrication operations. The US Department of Energy proposes to remove the unirradiated fuel pins and fuel assemblies from the 308 Building and store them in Room 192A, within the 234-5Z Building, a part of the Plutonium Finishing Plant Complex, located in the 200 West Area. Minor modifications to Room 192A would be required to accommodate placement of the fuel. The US Department of Energy estimates that removing all of the fuel from the 308 Building would save $6.5 million annually in security expenditures for the Fast Flux Test Facility. Environmental impacts of construction, relocation, and operation of the proposed action and alternatives were evaluated. This evaluation concluded that the proposed action would have no significant impacts on the human environment.

  9. Type B Accident Investigation At Washington Closure Hanford,...

    Broader source: Energy.gov (indexed) [DOE]

    Fall Injury on July 1, 2009, At The 336 Building, Hanford Site, Washington Type B Accident Investigation At Washington Closure Hanford, LLC, Employee Fall Injury on July 1,...

  10. Hanford Site, Richland, Washington

    Broader source: Energy.gov (indexed) [DOE]

    intended to have activity levels in the microcurie range. in addition, natural or depleted uranium may be used as a salt in 200- to 250-gram quantities annually for subsurface...

  11. Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanford LEED&soil Hanford Traffic Department of144

  12. Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste. Volume 2: Technical basis and discussion of results

    SciTech Connect (OSTI)

    Waters, R.D.; Gruebel, M.M.; Hospelhorn, M.B. [and others

    1996-03-01T23:59:59.000Z

    A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 first describes the screening process used to determine the sites to be considered in the PEs. This volume then provides the technical details of the methodology for conducting the performance evaluations. It also provides a comparison and analysis of the overall results for all sites that were evaluated. Volume 3 contains detailed evaluations of the fifteen sites and discussions of the results for each site.

  13. Technical assistance to Ohio closure sites; Technologies to address leachate from the on-site disposal facility at Fernald Environmental Management Project, Ohio

    SciTech Connect (OSTI)

    Hazen, Terry

    2002-08-26T23:59:59.000Z

    On August 6-7, 2002, a Technical Assistance Team (''Team'') from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with Fernald Environmental Management Project (FEMP) personnel in Ohio to assess approaches to remediating uranium-contaminated leachate from the On-Site Disposal Facility (OSDF). The Team was composed of technical experts from national labs, technology centers, and industry and was assembled in response to a request from the FEMP Aquifer Restoration Project. Dave Brettschneider of Fluor Fernald, Inc., requested that a Team of experts be convened to review technologies for the removal of uranium in both brine ion exchange regeneration solution from the Advanced Wastewater Treatment facility and in the leachate from the OSDF. The Team was asked to identify one or more technologies for bench-scale testing as a cost effective alternative to remove uranium so that the brine regeneration solution from the Advanced Waste Water Treatment facility and the leachate from the OSDF can be discharged without further treatment. The Team was also requested to prepare a recommended development and demonstration plan for the alternative technologies. Finally, the Team was asked to make recommendations on the optimal technical solution for field implementation. The Site's expected outcomes for this effort are schedule acceleration, cost reduction, and better long-term stewardship implementation. To facilitate consideration of the most appropriate technologies, the Team was divided into two groups to consider the brine and the leachate separately, since they represent different sources with different constraints on solutions, e.g., short-term versus very long-term and concentrated versus dilute contaminant matrices. This report focuses on the technologies that are most appropriate for the leachate from the OSDF. Upon arriving at FEMP, project personnel asked the Team to concentrate its efforts on evaluating potential technologies and strategies to reduce uranium concentration in the leachate.

  14. Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste. Volume 1: Executive summary

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    A team of analysts designed and conducted a performance evaluation (PE) to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 1 is an executive summary both of the PE methodology and of the results obtained from the PEs. While this volume briefly reviews the scope and method of analyses, its main objective is to emphasize the important insights and conclusions derived from the conduct of the PEs. Volume 2 provides details about the site-selection process, the performance-evaluation methodology, and the overall results of the analysis. Volume 3 contains detailed evaluations of the fifteen sites and discussions of the results for each site.

  15. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 356: Mud Pits and Disposal Sites, Nevada Test Site, Nevada (Revision No. 0, August 2001)

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office (NNSA/NV)

    2001-08-21T23:59:59.000Z

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions necessary for the characterization and closure of Corrective Action Unit (CAU) 356, Mud Pits and Disposal Sites, as identified in the Federal Facility Agreement and Consent Order (FFACO). The CAU, located on the Nevada Test Site in Nevada, consists of seven Corrective Action Sites (CASs): CAS 03-04-01, Area 3 Change House Septic System; CAS 03-09-01, Mud Pit Spill Over; CAS 03-09-03, Mud Pit; CAS 03-09-04, Mud Pit; CAS 03-09-05, Mud Pit; CAS 20-16-01, Landfill; CAS 20-22-21, Drums. Sufficient information and process knowledge from historical documentation and investigations are the basis for the development of the phased approach chosen to address the data collection activities prior to implementing the preferred closure alternative for each CAS. The Phase I investigation will determine through collection of environmental samples from targeted populations (i.e., mud/soil cuttings above textural discontinuity) if contaminants of potential concern (COPCs) are present in concentrations exceeding preliminary action levels (PALs) at each of the CASs. If COPCs are present above PALs, a Phase II investigation will be implemented to determine the extent of contamination to support the appropriate corrective action alternative to complete closure of the site. Groundwater impacts from potentially migrating contaminants are not expected due to the depths to groundwater and limiting hydrologic drivers of low precipitation and high evaporation rates. Future land-use scenarios limit future uses to industrial activities; therefore, future residential uses are not considered. Potential exposure routes to site workers from contaminants of concern in septage and soils include oral ingestion, inhalation, or dermal contact (absorption) through in-advertent disturbance of contaminated structures and/or soils. Diesel within drilling muds is expected to be the primary COPC based on process knowledge. Recirculation processes within the mud pits enhance volatilization of volatile organic compounds (VOCs), thereby reducing the potential concentrations of any VOCs that may be present. A secondary source of contaminants from random truck dumping activities and leaking vehicle discharge may have released fuels, grease, motor oil, and hydraulic fluids into the mud pit effluent stream. Radionuclide contamination is not expected at these CASs based on historical information. The primary radioisotopes that could be expected, if present, are cesium-137, tritium, and strontium-90. The SAFER process ends with closure of the site based on the laboratory analytical results of the environmental samples. There is sufficient information and process knowledge from historical documentation regarding the expected nature and extent of potential contaminants to recommend closure of CAU 356 using the SAFER process. On completion of the field activities, a Closure Report will be prepared and submitted to the Nevada Division of Environmental Protection for review and approval.

  16. Hanford quarterly seismic report - 97B seismicity on and near the Hanford Site, Pasco Basin, Washington, January 1, 1997--March 31, 1997

    SciTech Connect (OSTI)

    Hartshorn, D.C.; Reidel, S.P.

    1997-05-01T23:59:59.000Z

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organizations works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 97.23% and for stations of the EWRN was 99.93%. For fiscal year (FY) 1997 second quarter (97B), the acquisition computer triggered two hundred and forth-eight times. Of these triggers three were local earthquakes: one in the pre-basalt sediments, and two in the crystalline basement. The geologic and tectonic environments are discussed in the report.

  17. Hanford quarterly seismic report - 97C seismicity on and near the Hanford Site, Pasco Basin, Washington. Quarterly report, April 1, 1997--June 30, 1997

    SciTech Connect (OSTI)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1997-08-01T23:59:59.000Z

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 100% and for stations of the EWRN was 99.99%. For fiscal year (FY) 1997 third quarter (97C), the acquisition computer triggered 183. Of these triggers twenty one were local earthquakes: sixteen in the Columbus River Basalt Group, one in the pre-basalt sediments, and four in the crystalline basement. The geologic and tectonic environments are discussed in the report.

  18. EA-1276: Widening Trench 36 of the 218-E-12B Low-level Burial Ground, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to widen and operate unused Trench 36 in the 218-E-12B Low-Level Burial Ground for disposal of low-level waste at the U.S. Department of...

  19. Postconstruction report of the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Oakley, L.B.; Siberell, J.K.; Voskuil, T.L.

    1993-06-01T23:59:59.000Z

    Remedial actions conducted under the auspices of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) were completed at the Y-12 United Nuclear Corporation (UNC) Disposal Site in August 1992. The purpose of this Postconstruction Report is to summarize numerous technical reports and provide CERCLA documentation for completion of the remedial actions. Other CERCLA reports, such as the Feasibility Study for the UNC Disposal Site, provide documentation leading up to the remedial action decision. The remedial action chosen, placement of a modified RCRA cap, was completed successfully, and performance standards were either met or exceeded. This remedial action provided solutions to two environmentally contaminated areas and achieved the goal of minimizing the potential for contamination of the shallow groundwater downgradient of the site, thereby providing protection of human health and the environment. Surveillance and maintenance of the cap will be accomplished to ensure cap integrity, and groundwater monitoring downgradient of the site will continue to confirm the acceptability of the remedial action chosen.

  20. Closure Plan for Corrective Action Unit 110: Area 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    T. M. Fitzmaurice

    2000-08-01T23:59:59.000Z

    This Closure Plan has been prepared for the Area 3 RWMS U-3ax/bl Disposal Unit Corrective Action Unit 110 in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection [NDEP] et al., 1996). The U-3ax/bl is a historic disposal unit within the Area 3 Radioactive Waste Management Site located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit is scheduled for permanent closure under the Resource Conservation and Recovery Act as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10{sup 5} cubic meters (8.12 x 10{sup 6} cubic feet) of waste. NTS nuclear device testing generated approximately 95 percent of the total volume disposed of in U-3ax/bl, the majority of which came from the Waste Consolidation Project (80 percent of the total volume) (Elletson and Johnejack, 1995). Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is continuously in a state of moisture deficit. The U-3ax/bl Disposal Unit will be closed in place by installing a Resource Conservation and Recovery Act equivalent cover. Following cover construction a fence will be installed around the cover to prevent accidental damage to the cover. Post-closure monitoring will consist of site inspections to determine the condition of the engineered cover and cover performance monitoring using Time-Domain Reflectometry arrays to monitor moisture migration in the cover. Any identified maintenance and repair requirements will be remedied within 60 working days of discovery and documented in writing at the time of repair. Results of all inspections/repairs for a given year will be addressed in a single report submitted annually to the NDEP. Soil moisture will be monitored within the cover for a period of at least two years prior to establishing performance criteria for NDEP regulatory purposes.

  1. Washington Update

    Energy Savers [EERE]

    Text eere.energy.gov Federal Energy Management Program FederalUtility Partnership Working Group David McAndrew April 14, 2010 Providence RI Washington Update Federal Energy...

  2. Special Analysis for the Disposal of the Neutron Products Incorporated Sealed Source Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Shott, Gregory

    2014-08-31T23:59:59.000Z

    The purpose of this special analysis (SA) is to determine if the Neutron Products Incorporated (NPI) Sealed Sources waste stream (DRTK000000056, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The NPI Sealed Sources waste stream consists of 850 60Co sealed sources (Duratek [DRTK] 2013). The NPI Sealed Sources waste stream requires a special analysis (SA) because the waste stream 60Co activity concentration exceeds the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  3. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site: Proposed Mixed Waste Disposal Unit (MWSU)

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2010-07-19T23:59:59.000Z

    The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When the proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.

  4. Test Plan for Field Experiments to Support the Immobilized Low-Activity Waste Disposal Performance Assessment at the Hanford Site

    SciTech Connect (OSTI)

    Meyer, Philip D.; McGrail, B. Peter; Bacon, Diana H.

    2001-09-01T23:59:59.000Z

    Much of the data collected to support the Immobilized Low-Activity Waste Performance Assessment (ILAW PA) simulations have been obtained in the laboratory on a relatively small scale (less than 10 cm). In addition, the PA simulations themselves are currently the only means available to integrate the chemical and hydrologic processes involved in the transport of contaminants from the disposal facility into the environment. This report describes the test plan for field experiments to provide data on the hydraulic, transport, and geochemical characteristics of the near-field materials on a more representative (i.e., larger) scale than the laboratory data currently available. The experiments will also provide results that encompass a variety of transport processes likely to occur within the actual disposal facility. These experiments will thus provide the first integrated data on the ILAW facility performance and will provide a crucial dataset to evaluate the simulation-based estimates of overall facility performance used in the PA.

  5. Seismic Characterization of Basalt Topography at Two Candidate Sites for the INL Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Jeff Sondrup; Gail Heath; Trent Armstrong; Annette Shafer; Jesse Bennett; Clark Scott

    2011-04-01T23:59:59.000Z

    This report presents the seismic refraction results from the depth to bed rock surveys for two areas being considered for the Remote-Handled Low-Level Waste (RH-LLW) disposal facility at the Idaho National Laboratory. The first area (Site 5) surveyed is located southwest of the Advanced Test Reactor Complex and the second (Site 34) is located west of Lincoln Boulevard near the southwest corner of the Idaho Nuclear Technology and Engineering Center (INTEC). At Site 5, large area and smaller-scale detailed surveys were performed. At Site 34, a large area survey was performed. The purpose of the surveys was to define the topography of the interface between the surficial alluvium and underlying basalt. Seismic data were first collected and processed using seismic refraction tomographic inversion. Three-dimensional images for both sites were rendered from the data to image the depth and velocities of the subsurface layers. Based on the interpreted top of basalt data at Site 5, a more detailed survey was conducted to refine depth to basalt. This report briefly covers relevant issues in the collection, processing and inversion of the seismic refraction data and in the imaging process. Included are the parameters for inversion and result rendering and visualization such as the inclusion of physical features. Results from the processing effort presented in this report include fence diagrams of the earth model, for the large area surveys and iso-velocity surfaces and cross sections from the detailed survey.

  6. Washington Environmental Permit Handbook - Underground Injection...

    Open Energy Info (EERE)

    Washington Environmental Permit Handbook - Underground Injection Control Registration webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site:...

  7. A thick homogeneous vegetated cover design proves cost - and schedule-effective for the reclamation of uranium mills sites near Spokane, Washington

    SciTech Connect (OSTI)

    Blacklaw, J.; Robertson, G.; Stoffel, D.; Ahmad, J.; Fordham, E. [Washington State Dept. of Health, Olympia, WA (United States)] [and others

    1997-08-01T23:59:59.000Z

    The Washington State Department of Health (WDOH) has licensed two medium sized uranium mills with tailings impoundments covering 28 and 40 hectares (70 and 100 acres), respectively, The uranium mill licensees have submitted closure and reclamation plans to the state, and site-specific conditions have determined the closure design features, Conventional uranium mill cover designs usually incorporate an overall cap of one to three meters, which includes a low-permeability clay barrier layer. A technical evaluation of several uranium mill facilities that used this design was published in the fall of 1994 and reported that unexpected vegetation root damage had occurred in the low-permeability clay (or bentonite amended) barrier layers. The technical report suggested that the low-permeability design feature at some sites could be compromised within a very short time and the regulatory goal of 1,000 years performance might not be achieved. In October 1994, WDOH sponsored a technical forum meeting to consider design alternatives to address these reliability concerns. Representatives from the federal government, nuclear industry, licensees, engineering firms, and state regulatory agencies attended the workshop. Risk factors considered in the evaluation of the uranium mill reclamation plans include: (1) radon gas emanation through the cover (the air pathway), and (2) migration of hazardous and/or radioactive constituents (the groundwater pathway). Additional design considerations include site structural stability, longevity of 1,000 years, and no active (ongoing) maintenance. 9 refs.

  8. Environmental assessment for the resiting, construction, and operation of the Environmental and Molecular Sciences Laboratory at the Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    This environmental assessment (EA) presents estimated environmental impacts from the resiting, construction, and operation of the US Department of Energy`s (DOE`s) Environmental and Molecular Sciences Laboratory (EMSL), which is proposed to be constructed and operated on land near the south boundary of the Hanford Site near Richland, Washington. The EMSL, if constructed, would be a modern research facility in which experimental, theoretical, and computational techniques can be focused on environmental restoration problems, such as the chemical and transport behavior of complex mixtures of contaminants in the environment. The EMSL design includes approximately 18,500 square meters (200,000 square feet) of floor space on a 12-hectare (30-acre) site. The proposed new site is located within the city limits of Richland in north Richland, at the south end of DOE`s 300 Area, on land to be deeded to the US by the Battelle Memorial Institute. Approximately 200 persons are expected to be employed in the EMSL and approximately 60 visiting scientists may be working in the EMSL at any given time. State-of-the-art equipment is expected to be installed and used in the EMSL. Small amounts of hazardous substances (chemicals and radionuclides) are expected to be used in experimental work in the EMSL.

  9. Evaluation of Heavy Metals in Solid Waste Disposal Sites in Campinas City, Brazil Using Synchrotron Radiation Total Reflection X-Ray Fluorescence

    SciTech Connect (OSTI)

    Faria, Bruna Fernanda de; Moreira, Silvana [University of Campinas, Civil Engineering College, P.O. BOX 6021 Zip Code 13083-952, Campinas, Sao Paulo State (Brazil)

    2011-12-13T23:59:59.000Z

    The problem of solid waste in most countries is on the rise as a result of rapid population growth, urbanization, industrial development and changes in consumption habits. Amongst the various forms of waste disposals, landfills are today the most viable for the Brazilian reality, both technically and economically. Proper landfill construction practices allow minimizing the effects of the two main sources of pollution from solid waste: landfill gas and slurry. However, minimizing is not synonymous with eliminating; consequently, the landfill alone cannot resolve all the problems with solid waste disposal. The main goal of this work is to evaluate the content of trace elements in samples of groundwater, surface water and slurry arising from local solid waste disposals in the city of Campinas, SP, Brazil. Samples were collected at the Delta, Santa Barbara and Pirelli landfills. At the Delta and Santa Barbara sites, values above the maximum permitted level established by CETESB for Cr, Mn, Fe, Ni and Pb were observed in samples of groundwater, while at the Pirelli site, elements with concentrations above the permitted levels were Mn, Fe, Ba and Pb. At Delta, values above levels permitted by the CONAMA 357 legislation were still observed in surface water samples for Cr, Mn, Fe and Cu, whereas in slurry samples, values above the permitted levels were observed for Cr, Mn, Fe, Ni, Cu, Zn and Pb. Slurry samples were prepared in accordance with two extraction methodologies, EPA 3050B and EPA 200.8. Concentrations of Cr, Ni, Cu and Pb were higher than the limit established by CONAMA 357 for most samples collected at different periods (dry and rainy) and also for the two extraction methodologies employed.

  10. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Snohomish County Cathcart Landfill Site in Snohomish County, Washington. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Olis, D.; Salasovich, J.; Mosey, G.; Healey, V.

    2013-04-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Snohomish County Cathcart Landfill Site in Snohomish County, Washington, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  11. Solid Waste Disposal Facilities (Massachusetts)

    Broader source: Energy.gov [DOE]

    These sections articulate rules for the maintenance and operation of solid waste disposal facilities, as well as site assignment procedures. Applications for site assignment will be reviewed by the...

  12. Restoration potential of diked estuarine wetlands in Washington and Oregon. Phase 2: Identification of candidate sites in puget sound

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    Under the auspices of the Clean Water Act, Section 404, one of the missions of the U.S. Environmental Protection Agency (EPA) is to enhance and protect wetland resources. In EPA Region 10, specifically in the Puget Sound area, there is opportunity to enhance aquatic resources by restoring some of the thousands of acres of wetlands that have been historically diked. The objectives of Work Assignment 24 is to field identify and prioritize areas in Puget Sound and the Straits of Juan de Fuca that were tidally influenced wetlands which are now either not functioning as wetlands or are providing limited wetland functions due to dike construction. This report is the field confirmation of the non-field data compiled in Phase I. The objective of the Phase I study was to identify areas in Washington and Oregon that: (1) once were estuarine wetlands but are not currently functioning as such due to dike construction; (2) were greater than five acres in size; and (3) may be suitable for restoration.

  13. Electromagnetism, Site Formation, and Conflict Event Theory at the San Jacinto Battleground and Washington-on-the-Brazos, Texas

    E-Print Network [OSTI]

    Pertermann, Dana Lee

    2012-10-19T23:59:59.000Z

    Conflict Event theory has the potential to change how archaeologists investigate battlefield sites. As a theoretical paradigm, eventful archaeology allows us to give agency to social-structure changing events, going beyond collect artifacts after...

  14. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington, Collection of Surface Water, River Sediments, and Island Soils

    SciTech Connect (OSTI)

    L. C. Hulstrom

    2009-09-28T23:59:59.000Z

    This report has been prepared in support of the remedial investigation of Hanford Site Releases to the Columbia River and describes the 2008/2009 data collection efforts. This report documents field activities associated with collection of sediment, river water, and soil in and adjacent to the Columbia River near the Hanford Site and in nearby tributaries.

  15. Special Analysis for the Disposal of the Consolidated Edison Uranium Solidification Project Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2013-01-31T23:59:59.000Z

    The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLB disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management,” for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high likelihood of compliance with all performance objectives. Tier II results indicate that the long-term performance of the OR CEUSP 233U waste stream is protective of human health and the environment. The Area 5 RWMS is located in one of the least populated and most arid regions of the U.S. Site characterization data indicate that infiltration of precipitation below the plant root zone at 2.5 meters (8.2 feet) ceased 10,000 to 15,000 y ago. The site is not expected to have a groundwater pathway as long as the current arid climate persists. The national security mission of the NNSS and the location of the Area 5 RWMS within the Frenchman Flat Corrective Action Unit require that access controls and land use restrictions be maintained indefinitely. PA modeling results for 10,000 to 60,000 y also indicate that the OR CEUSP 233U waste stream is acceptable for near-surface disposal. The mean resident air pathway annual total effective dose (TED), the resident all-pathways annual TED, and the acute drilling TED are less than their performance objectives for 10,000 y after closure. The mean radon-222 (222Rn) flux density exceeds the performance objective at 4,200 y, but this is due to waste already disposed at the Area 5 RWMS and is only slightly affected by disposal of the CEUSP 233U. The peak resident all-pathways annual TED from CEUSP key radionuclides occurs at 48,000 y and is less than the 0.25 millisievert performance objective. Disposal of the OR CEUSP 233U waste stream in a typical SLB trench slightly increases PA results. Increasing the depth was found to eliminate any impacts of the OR CEUSP 233U waste stream. Containers could not be shown to have any significant impact on performance due to the long half-life of the waste stream and a lack of data for pitting corrosion rates of stainless steel in soil. The results of the SA indicate that all performance objectives can be met with disposal of the OR CEUSP 233U waste stream in the SLB units at the Area 5 RWMS. The long-term performance of the OR CEUSP 233U waste stream disposed in the near surface is protective of human health

  16. THE INTEGRATION OF A PROPOSED ZONE CLOSURE APPROACH FOR THE PLUTONIUM FINISHING PLANT (PFP) DECOMMISSIONING & THE PFP ZONE HANFORD SITE WASHINGTON

    SciTech Connect (OSTI)

    HOPKINS, A.M.

    2005-02-23T23:59:59.000Z

    The Plutonium Finishing Plant (PFP) and associated processing facilities are located in the 200 area of the Hanford Site in Eastern Washington. This area is part of what is now called the Central Plateau. In order to achieve closure of the contaminated facilities and waste sites at Hanford on the Central Plateau (CP), a geographic re-districting of the area into zones has been proposed in the recently published Plan for Central Plateau Closure. One of the 22 zones proposed in the Central Plateau encompasses the PFP and ancillary facilities. Approximately eighty six buildings are included in the PFP Zone. This paper addresses the approach for the closure of the PFP Zone within the Central Plateau. The PFP complex of buildings forms the bulk of the structures in the PFP Zone. For closure of the above-grade portion of structures within the PFP complex, the approach is to remove them to a state called ''slab-on-grade'' per the criteria contained in PFP End Point Criteria document and as documented in action memoranda. For below-grade portions of the structures (such as below-grade rooms, pipe trenches and underground ducts), the approach is to remove as much residual contamination as practicable and to fill the void spaces with clean fill material such as sand, grout, or controlled density fill. This approach will be modified as planning for the waste sites progresses to ensure that the actions of the PFP decommissioning projects do not negatively impact future planned actions under the CERCLA. Cribs, settling tanks, septic tanks and other miscellaneous below-grade void spaces will either be cleaned to the extent practicable and filled or will be covered with an environmental barrier as determined by further studies and CERCLA decision documents. Currently, between two and five environmental barriers are proposed to be placed over waste sites and remaining building slabs in the PFP Zone.

  17. Corrective Action Investigation Plan for Corrective Action Unit 561: Waste Disposal Areas, Nevada Test Site, Nevada with ROTC 1, Revision 0

    SciTech Connect (OSTI)

    Grant Evenson

    2008-07-01T23:59:59.000Z

    Corrective Action Unit (CAU) 561 is located in Areas 1, 2, 3, 5, 12, 22, 23, and 25 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 561 is comprised of the 10 corrective action sites (CASs) listed below: • 01-19-01, Waste Dump • 02-08-02, Waste Dump and Burn Area • 03-19-02, Debris Pile • 05-62-01, Radioactive Gravel Pile • 12-23-09, Radioactive Waste Dump • 22-19-06, Buried Waste Disposal Site • 23-21-04, Waste Disposal Trenches • 25-08-02, Waste Dump • 25-23-21, Radioactive Waste Dump • 25-25-19, Hydrocarbon Stains and Trench These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2008, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 561. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the Corrective Action Investigation for CAU 561 includes the following activities: • Move surface debris and/or materials, as needed, to facilitate sampling. • Conduct radiological surveys. • Perform exploratory excavations. • Perform field screening. • Collect and submit environmental samples for laboratory analysis to determine the nature and extent of any contamination released by each CAS. • Collect samples of source material to determine the potential for a release. • Collect samples of potential remediation wastes. • Collect quality control samples.

  18. RCRA facility investigation/corrective measures study work plan for the 200-UP-2 Operable Unit, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    The 200-UP-2 Operable Unit is one of two source operable units at the U Plant Aggregate Area at the Hanford Site. Source operable units include waste management units and unplanned release sites that are potential sources of radioactive and/or hazardous substance contamination. This work plan, while maintaining the title RFI/CMS, presents the background and direction for conducting a limited field investigation in the 200-UP-2 Operable Unit, which is the first part of the process leading to final remedy selection. This report discusses the background, prior recommendations, goals, organization, and quality assurance for the 200-UP-2 Operable Unit Work Plan. The discussion begins with a summary of the regulatory framework and the role of the work plan. The specific recommendations leading into the work plan are then addressed. Next, the goals and organization of the report are discussed. Finally, the quality assurance and supporting documentation are presented.

  19. Remedial investigation/feasibility study work plan for the 100-KR-4 operable unit, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1992-09-01T23:59:59.000Z

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency`s (EPA`s) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-KR-4 operable unit. The 100-K Area consists of the 100-KR-4 groundwater operable unit and three source operable units. The 100-KR-4 operable unit includes all contamination found in the aquifer soils and water beneath the 100-K Area. Source operable units include facilities and unplanned release sites that are potential sources of contamination.

  20. Special Analysis for the Disposal of the Idaho National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Shott, Gregory [NSTec

    2014-08-31T23:59:59.000Z

    The purpose of this special analysis (SA) is to determine if the Idaho National Laboratory (INL) Unirradiated Light Water Breeder Reactor (LWBR) Rods and Pellets waste stream (INEL103597TR2, Revision 2) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The INL Unirradiated LWBR Rods and Pellets waste stream consists of 24 containers with unirradiated fabricated rods and pellets composed of uranium oxide (UO2) and thorium oxide (ThO2) fuel in zirconium cladding. The INL Unirradiated LWBR Rods and Pellets waste stream requires an SA because the 229Th, 230Th, 232U, 233U, and 234U activity concentrations exceed the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  1. Environmental assessment: Transfer of normal and low-enriched uranium billets to the United Kingdom, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    Under the auspices of an agreement between the U.S. and the United Kingdom, the U.S. Department of Energy (DOE) has an opportunity to transfer approximately 710,000 kilograms (1,562,000 pounds) of unneeded normal and low-enriched uranium (LEU) to the United Kingdom; thus, reducing long-term surveillance and maintenance burdens at the Hanford Site. The material, in the form of billets, is controlled by DOE`s Defense Programs, and is presently stored as surplus material in the 300 Area of the Hanford Site. The United Kingdom has expressed a need for the billets. The surplus uranium billets are currently stored in wooden shipping containers in secured facilities in the 300 Area at the Hanford Site (the 303-B and 303-G storage facilities). There are 482 billets at an enrichment level (based on uranium-235 content) of 0.71 weight-percent. This enrichment level is normal uranium; that is, uranium having 0.711 as the percentage by weight of uranium-235 as occurring in nature. There are 3,242 billets at an enrichment level of 0.95 weight-percent (i.e., low-enriched uranium). This inventory represents a total of approximately 532 curies. The facilities are routinely monitored. The dose rate on contact of a uranium billet is approximately 8 millirem per hour. The dose rate on contact of a wooden shipping container containing 4 billets is approximately 4 millirem per hour. The dose rate at the exterior of the storage facilities is indistinguishable from background levels.

  2. Justification Of The Use Of Boreholes For Disposal Of Sealed Radiological Sources

    SciTech Connect (OSTI)

    Zarling, John [Los Alamos National Laboratory; Johnson, Peter [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Soon there will be only 14 states in two compacts that are able to dispose of Low Level Waste (LLW): the Northwest and Rocky Mountain compact with disposal options in Richland, Washington, and the Atlantic compact with disposal options in Barnwell, South Carolina. How do states not in one of the two compacts dispose of their LLW? The Off-Site Source Recovery Project can take possession and dispose of some of the unwanted transuranic sources at the Waste Isolation Pilot Plant (WIPP). However, there will be no path forward for states outside of the two compacts for disposal of their non-transuranic LLW. A solution that has been much discussed, debated and researched, but has not been put into wide scale practice, is the borehole disposal concept. It is the author's position that companies that drill and explore for oil have been disposing of sources in borehole-like structures for years. It should be noted that these companies are not purposely disposing of these sources, but the sources are irretrievable and must be abandoned. Additionally, there are Nuclear Regulatory Commission (NRC) regulations that must be followed to seal the well that contains the lost and abandoned source. According to the NRC Event Notification Reports database, there were a minimum of 29 reports of lost and abandoned sources in oil wells between December 1999 and October 2006. The sources were lost at depths between 2,018-18,887 feet, or 600-5,750 meters. The companies that are performing explorations with the aid of sealed radiological sources must follow regulation 10 CFR Part 39. Subsection 15 outlines the procedures that must be followed if sources are determined to be irretrievable and abandoned in place. If the NRC allows and has regulations in place for oil companies, why can't states and/or companies be allowed to dispose of LLW in a similar fashion?

  3. West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume III. Biological oceanography. Final report

    SciTech Connect (OSTI)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

    1983-02-01T23:59:59.000Z

    The Department of Energy's Strategic Petroleum Reserve Program began discharging brine into the Gulf of Mexico from its West Hackberry site near Cameron, Louisiana in May 1981. The brine originates from underground salt domes being leached with water from the Intracoastal Waterway, making available vast underground storage caverns for crude oil. The effects of brine discharge on aquatic organisms are presented in this volume. The topics covered are: benthos; nekton; phytoplankton; zooplankton; and data management.

  4. Ambient Airborne Solids Concentrations Including Volcanic Ash at Hanford, Washington Sampling Sites Subsequent to the Mount St. Helens Eruption

    SciTech Connect (OSTI)

    Sehmel, G.A.

    1982-12-20T23:59:59.000Z

    A major eruption of Mount St. Helens occurred on May 18, 1980. Subsequently, airborne solid concentrations were measured as a function of time at two sites within the southern edge of the fallout plume about 211 km east of Mount St. Helens. This ash was a source for investigating area-wide resuspension. Rain had a variable effect on decreasing airborne concentrations from resuspension. From 0.5 to 1.5 cm of rain were required to significantly reduce airborne solid concentrations through July. For a more aged resuspension source in September, a rain of 2.0 cm had a negligible effect. A monthly average threshold-wind speed for resuspension was defined as 3.6 m/s. For monthly-average wind speeds less than the threshold wind speed, monthly-average airborne concentrations tended to decrease with time. A decrease was recorded between September and October. For this 4-month time period, the half-life was on the order of 50 days, corresponding to a weathering rate of 5.1 year/sup -1/.

  5. Public Invited to Comment on Draft Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low Level Radioactive Waste Generated at the U.S. Department of Energy’s Idaho Site

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy invites the public to read and comment on a draft environmental assessment it has prepared, for a proposal to provide a replacement capability for continued disposal of remote-handled low-level radioactive waste that is generated at the Idaho National Laboratory site.

  6. Hanford land disposal restrictions plan for mixed wastes

    SciTech Connect (OSTI)

    Not Available

    1990-10-01T23:59:59.000Z

    Since the early 1940s, the Hanford Site has been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 (RCRA) and the Atomic Energy Act. The State of Washington Department of Ecology (Ecology), the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) to bring Hanford Site Operations into compliance with dangerous waste regulations. The Tri-Party Agreement was amended to require development of the Hanford Land Disposal Restrictions Plan for Mixed Wastes (this plan) to comply with land disposal restrictions requirements for radioactive mixed waste. The Tri-Party Agreement requires, and the this plan provides, the following sections: Waste Characterization Plan, Storage Report, Treatment Report, Treatment Plan, Waste Minimization Plan, a schedule, depicting the events necessary to achieve full compliance with land disposal restriction requirements, and a process for establishing interim milestones. 34 refs., 28 figs., 35 tabs.

  7. Depleted uranium disposal options.

    SciTech Connect (OSTI)

    Biwer, B. M.; Ranek, N. L.; Goldberg, M.; Avci, H. I.

    2000-04-01T23:59:59.000Z

    Depleted uranium hexafluoride (UF{sub 6}) has been produced in the United States since the 1940s as part of both the military program and the civilian nuclear energy program. The U.S. Department of Energy (DOE) is the agency responsible for managing most of the depleted UF{sub 6} that has been produced in the United States. The total quantity of depleted UF{sub 6} that DOE has to or will have to manage is approximately 700,000 Mg. Studies have been conducted to evaluate the various alternatives for managing this material. This paper evaluates and summarizes the alternative of disposal as low-level waste (LLW). Results of the analysis indicate that UF{sub 6} needs to be converted to a more stable form, such as U{sub 3}O{sub 8}, before disposal as LLW. Estimates of the environmental impacts of disposal in a dry environment are within the currently applicable standards and regulations. Of the currently operating LLW disposal facilities, available information indicates that either of two DOE facilities--the Hanford Site or the Nevada Test Site--or a commercial facility--Envirocare of Utah--would be able to dispose of up to the entire DOE inventory of depleted UF{sub 6}.

  8. Waste disposal options report. Volume 1

    SciTech Connect (OSTI)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01T23:59:59.000Z

    This report summarizes the potential options for the processing and disposal of mixed waste generated by reprocessing spent nuclear fuel at the Idaho Chemical Processing Plant. It compares the proposed waste-immobilization processes, quantifies and characterizes the resulting waste forms, identifies potential disposal sites and their primary acceptance criteria, and addresses disposal issues for hazardous waste.

  9. EM Completes Salt Waste Disposal Units $8 Million under Budget...

    Office of Environmental Management (EM)

    EM Completes Salt Waste Disposal Units 8 Million under Budget at Savannah River Site EM Completes Salt Waste Disposal Units 8 Million under Budget at Savannah River Site February...

  10. Field study for disposal of solid wastes from Advanced Coal Processes: Ohio LIMB Site Assessment. Final report, April 1986--November 1994

    SciTech Connect (OSTI)

    Weinberg, A.; Coel, B.J.; Butler, R.D.

    1994-10-01T23:59:59.000Z

    New air pollution regulations will require cleaner, more efficient processes for converting coal to electricity, producing solid byproducts or wastes that differ from conventional pulverized-coal combustion ash. Large scale landfill test cells containing byproducts were built at 3 sites and are to be monitored over at least 3 years. This report presents results of a 3-y field test at an ash disposal site in northern Ohio; the field test used ash from a combined lime injection-multistage burner (LIMB) retrofit at the Ohio Edison Edgewater plant. The landfill test cells used LIMB ash wetted only to control dusting in one cell, and LIMB ash wetted to optimize compaction density in the other cell. Both test cells had adequate load-bearing strength for landfill stability but had continuing dimensional instability. Heaving and expansion did not affect the landfill stability but probably contributed to greater permeability to infiltrating water. Leachate migration occurred from the base, but effects on downgradient groundwater were limited to increased chloride concentration in one well. Compressive strength of landfilled ash was adequate to support equipment, although permeability was higher and strength was lower than anticipated. Average moisture content has increased to about 90% (dry weight basis). Significant water infiltration has occurred; the model suggests that as much as 20% of the incident rainfall will pass through and exit as leachate. However, impacts on shallow ground water is minimal. Results of this field study suggest that LIMB ash from combustion of moderate to high sulfur coals will perform acceptably if engineering controls are used to condition and compact the materials, reduce water influx to the landfill, and minimize leachate production. Handling of the ash did not pose serious problems during cell construction; steaming and heat buildup were moderate.

  11. Estimating Groundwater Concentrations from Mass Releases to the Aquifer at Integrated Disposal Facility and Tank Farm Locations Within the Central Plateau of the Hanford Site

    SciTech Connect (OSTI)

    Bergeron, Marcel P.; Freeman, Eugene J.

    2005-06-09T23:59:59.000Z

    This report summarizes groundwater-related numerical calculations that will support groundwater flow and transport analyses associated with the scheduled 2005 performance assessment of the Integrated Disposal Facility (IDF) at the Hanford Site. The report also provides potential supporting information to other ongoing Hanford Site risk analyses associated with the closure of single-shell tank farms and related actions. The IDF 2005 performance assessment analysis is using well intercept factors (WIFs), as outlined in the 2001 performance assessment of the IDF. The flow and transport analyses applied to these calculations use both a site-wide regional-scale model and a local-scale model of the area near the IDF. The regional-scale model is used to evaluate flow conditions, groundwater transport, and impacts from the IDF in the central part of the Hanford Site, at the core zone boundary around the 200 East and 200 West Areas, and along the Columbia River. The local-scale model is used to evaluate impacts from transport of contaminants to a hypothetical well 100 m downgradient from the IDF boundaries. Analyses similar to the regional-scale analysis of IDF releases are also provided at individual tank farm areas as additional information. To gain insight on how the WIF approach compares with other approaches for estimating groundwater concentrations from mass releases to the unconfined aquifer, groundwater concentrations were estimated with the WIF approach for two hypothetical release scenarios and compared with similar results using a calculational approach (the convolution approach). One release scenario evaluated with both approaches (WIF and convolution) involved a long-term source release from immobilized low-activity waste glass containing 25,550 Ci of technetium-99 near the IDF; another involved a hypothetical shorter-term release of {approx}0.7 Ci of technetium over 600 years from the S-SX tank farm area. In addition, direct simulation results for both release scenarios were provided to compare with the results of the WIF and convolution approaches.

  12. Washington Closure Hanford - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural PublicRates > RateWannier90

  13. Removal site evaluation report L-area rubble pile (131-3L) gas cylinder disposal facility (131-2L)

    SciTech Connect (OSTI)

    Palmer, E.R. [Westinghouse Savannah River Company, AIKEN, SC (United States); Mason, J.T.

    1997-10-01T23:59:59.000Z

    This Removal Site Evaluation Report (RSER) is prepared in accordance with Sections 300.410 and 300.415 of the National Contingency Plan and Section XIV of the Savannah River Site (SRS) Federal Facility Agreement (FFA). The purpose of this investigation is to report information concerning conditions at the L-Area Rubble Pile (LRP) (131-3L) and the L-Area Gas Cylinder Disposal Facility (LGCDF) (131- 2L) sufficient to assess the threat posed to human health and the environment. This investigation also assesses the need for additional Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) actions. The scope of this investigation included a review of files, limited sampling efforts, and visits to the area. An investigation of the LRP (1131-3L) indicates the presence of semi volatile organic compounds (SVOCs), volatile organic compounds (VOCs), metals, and asbestos. Potential contaminants in the waste piles could migrate into the secondary media (soils and groundwater), and the presence of some of the contaminants in the piles poses an exposure threat to site works. The Department of Energy (DOE), United States Environmental Protection Agency (EPA) and South Carolina Department of Health and Environmental Control (SCDHEC) discussed the need for a removal action at the Resource Conservation and Recovery Act (RCRA) Facility Investigation/Remedial Investigation (RFI/RI) work plan scoping meetings on the waste unit, and agreed that the presence of the waste piles limits the access to secondary media for sampling, and the removal of the piles would support future characterization of the waste unit. In addition, the DOE, EPA, and SCDHEC agreed that the proposed removal action for the LRP (131-3L) would be documented in the RFI/RI work plan. The LGCDF (131-2L) consists of a backfilled pit containing approximately 28 gas cylinders. The gas cylinders were supposed to have been vented prior to burial; however, there is a potential that a number of the cylinders are still pressurized. (Abstract Truncated)

  14. Disposal rabbit

    DOE Patents [OSTI]

    Lewis, L.C.; Trammell, D.R.

    1983-10-12T23:59:59.000Z

    A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

  15. Disposable rabbit

    DOE Patents [OSTI]

    Lewis, Leroy C. (Idaho Falls, ID); Trammell, David R. (Rigby, ID)

    1986-01-01T23:59:59.000Z

    A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

  16. Integrated Disposal Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National Nuclear Security Administration Facebook Twitter

  17. DOE Media Advisory- DOE extends public comment period on Draft Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the U.S. Department of Energy’s Idaho Site

    Broader source: Energy.gov [DOE]

    In response to requests from people interested in National Environmental Policy Act activities occurring at the U.S. Department of Energy’s Idaho Operations Office, the department has extended the public comment period that began September 1 on the Draft Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the U.S. Department of Energy’s Idaho Site.

  18. Radium bearing waste disposal

    SciTech Connect (OSTI)

    Tope, W.G.; Nixon, D.A.; Smith, M.L.; Stone, T.J.; Vogel, R.A. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Schofield, W.D. [Foster Wheeler Environmental Corp. (United States)

    1995-07-01T23:59:59.000Z

    Fernald radium bearing ore residue waste, stored within Silos 1 and 2 (K-65) and Silo 3, will be vitrified for disposal at the Nevada Test Site (NTS). A comprehensive, parametric evaluation of waste form, packaging, and transportation alternatives was completed to identify the most cost-effective approach. The impacts of waste loading, waste form, regulatory requirements, NTS waste acceptance criteria, as-low-as-reasonably-achievable principles, and material handling costs were factored into the recommended approach.

  19. EIS-0259: Disposal of Decommissioned, Defueled Cruiser, Ohio Class and Los Angeles Class Naval Reactor Plants, Hanford Site, Richland (adopted from Navy)

    Broader source: Energy.gov [DOE]

    This EIS analyzes the alternate ways for disposing of decommissioned, defieled reactor compliments from U.S. Navy nuclear-powered cruisers, (Bainbridge, Truxtun, Long Beach, California Class and Virginia Class) and Los Angeles Class, and Ohio Class submarines.

  20. Hazardous-Substance Generator, Transporter and Disposer Liability under the Federal and California Superfunds

    E-Print Network [OSTI]

    Vernon, James; Dennis, Patrick W.

    1981-01-01T23:59:59.000Z

    Carpenter-Presley-Tanner Hazardous Substance Account Act ofincluding spills and hazardous- waste disposal sites thatlabel for the disposal of hazardous wastes. Id. at 607. The

  1. Corrective Action Decision Document/Closure Report for Corrective Action Unit 561: Waste Disposal Areas, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Mark Krauss

    2011-08-01T23:59:59.000Z

    CAU 561 comprises 10 CASs: (1) 01-19-01, Waste Dump; (2) 02-08-02, Waste Dump and Burn Area; (3) 03-19-02, Debris Pile; (4) 05-62-01, Radioactive Gravel Pile; (5) 12-23-09, Radioactive Waste Dump; (6) 22-19-06, Buried Waste Disposal Site; (7) 23-21-04, Waste Disposal Trenches ; (8) 25-08-02, Waste Dump; (9) 25-23-21, Radioactive Waste Dump; and (10) 25-25-19, Hydrocarbon Stains and Trench. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure of CAU 561 with no further corrective action. The purpose of the CAI was to fulfill the following data needs as defined during the DQO process: (1) Determine whether COCs are present; (2) If COCs are present, determine their nature and extent; and (3) Provide sufficient information and data to complete appropriate corrective actions. The following contaminants were determined to be present at concentrations exceeding their corresponding FALs: (1) No contamination exceeding FALs was identified at CASs 01-19-01, 03-19-02, 05-62-01, 12-23-09, and 22-19-06. (2) The surface and subsurface soil within the burn area at CAS 02-08-02 contains arsenic and lead above the FALs of 23 milligrams per kilogram (mg/kg) and 800 mg/kg, respectively. The surface and subsurface soil within the burn area also contains melted lead slag (potential source material [PSM]). The soil within the waste piles contains polyaromatic hydrocarbons (PAHs) above the FALs. The contamination within the burn area is spread throughout the area, as it was not feasible to remove all the PSM (melted lead), while at the waste piles, the contamination is confined to the piles. (3) The surface and subsurface soils within Trenches 3 and 5 at CAS 23-21-04 contain arsenic and polychlorinated biphenyls (PCBs) above the FALs of 23 mg/kg and 0.74 mg/kg, respectively. The soil was removed from both trenches, and the soil that remains at this CAS does not contain contamination exceeding the FALs. Lead bricks and counterweights were also removed, and the soil below these items does not contain contamination that exceeds the FAL for lead. (4) The concrete-like material at CAS 25-08-02 contains arsenic above the FAL of 23 mg/kg. This concrete-like material was removed, and the soil that remains at this CAS does not contain contamination exceeding the FALs. Lead-acid batteries were also removed, and the soil below the batteries does not contain contamination that exceeds the FAL for lead. (5) The surface soils within the main waste dump at the posted southern radioactive material area (RMA) at CAS 25-23-21 contain cesium (Cs)-137 and PCBs above the FALs of 72.9 picocuries per gram (pCi/g) and 0.74 mg/kg, respectively. The soil was removed from the RMA, and the soil that remains at this CAS does not contain contamination exceeding the FALs. (6) The surface and subsurface soils at CAS 25-25-19 do not contain contamination exceeding the FALs. In addition, lead bricks were removed, and the soil below these items does not contain contamination that exceeds the FAL for lead. The following best management practices were implemented: (1) Housekeeping debris at CASs 02-08-02, 23-21-04, 25-08-02, 25-23-21, and 25-25-19 was removed and disposed of; (2) The open trenches at CAS 23-21-04 were backfilled; (3) The waste piles at CAS 25-08-02 were removed and the area leveled to ground surface; and (4) The remaining waste piles at the main waste dump at CAS 25-23-21 were leveled to ground surface. Therefore, NNSA/NSO provides the following recommendations: (1) No further action for CASs 01-19-01, 03-19-02, 05-62-01, 12-23-09, and 22-19-06; (2) Closure in place with an FFACO use restriction (UR) at CAS 02-08-02 for the remaining PAH-, arsenic-, and lead-contaminated soil, and the melted lead PSM. The UR form and map have been filed in the NNSA/NSO Facility Information Management System, the FFACO database, and the NNSA/NSO CAU/CAS files; (3) No further corrective action at CAS 23-21-04, as the lead bricks and counterweights (PSM) have been removed, and the COCs of arsenic and PCBs in soil have be

  2. Hanford Site ground-water monitoring for 1994

    SciTech Connect (OSTI)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01T23:59:59.000Z

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  3. Planning a site investigation using analogous groups

    SciTech Connect (OSTI)

    Pak, P.M. [USDOE Richland Operations Office, WA (United States); Galgoul, M.J.; Wittreich, C.D. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-09-01T23:59:59.000Z

    A limited field investigation (LFI) has been designed for the 200-UP-2 Operable Unit within the 200 Areas of the US Department of Energy (DOE) Hanford Site in Washington state using the concept of analogous groups. The LFI is part of a RCRA facility investigation (RFI) corrective measures study (CMS) being conducted in this operable unit. The concept emphasizes that characterization activities can be reduced by identifying select sites (analogous sites) for characterization that represents a group of sites (analogous groups). This concept is particularly applicable to operable units that contain several waste management units that are similar in design, disposal history, and geology. Application of this concept reduced the number of waste management units initially undergoing characterization by more than two-thirds. The work plan is presently in the approval cycle with the field characterization phase expected to begin August 1993.

  4. Portsmouth Site Delivers First Radioactive Waste Shipment to...

    Office of Environmental Management (EM)

    Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas...

  5. EM Sites Honored for Bird Protection Practices

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – A federal council recently recognized two EM sites for efforts to protect migratory birds.

  6. Hanford Site Secondary Waste Roadmap

    SciTech Connect (OSTI)

    Westsik, Joseph H.

    2009-01-29T23:59:59.000Z

    Summary The U.S. Department of Energy (DOE) is making plans to dispose of 54 million gallons of radioactive tank wastes at the Hanford Site near Richland, Washington. The high-level wastes and low-activity wastes will be vitrified and placed in permanent disposal sites. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents, and these need to be processed and disposed of also. The Department of Energy Office of Waste Processing sponsored a meeting to develop a roadmap to outline the steps necessary to design the secondary waste forms. Representatives from DOE, the U.S. Environmental Protection Agency, the Washington State Department of Ecology, the Oregon Department of Energy, Nuclear Regulatory Commission, technical experts from the DOE national laboratories, academia, and private consultants convened in Richland, Washington, during the week of July 21-23, 2008, to participate in a workshop to identify the risks and uncertainties associated with the treatment and disposal of the secondary wastes and to develop a roadmap for addressing those risks and uncertainties. This report describes the results of the roadmap meeting in Richland. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents. The secondary waste roadmap workshop focused on the waste streams that contained the largest fractions of the 129I and 99Tc that the Integrated Disposal Facility risk assessment analyses were showing to have the largest contribution to the estimated IDF disposal impacts to groundwater. Thus, the roadmapping effort was to focus on the scrubber/off-gas treatment liquids with 99Tc to be sent to the Effluent Treatment Facility for treatment and solidification and the silver mordenite and carbon beds with the captured 129I to be packaged and sent to the IDF. At the highest level, the secondary waste roadmap includes elements addressing regulatory and performance requirements, waste composition, preliminary waste form screening, waste form development, process design and support, and validation. The regulatory and performance requirements activity will provide the secondary waste-form performance requirements. The waste-composition activity will provide workable ranges of secondary waste compositions and formulations for simulants and surrogates. Preliminary waste form screening will identify candidate waste forms for immobilizing the secondary wastes. The waste form development activity will mature the waste forms, leading to a selected waste form(s) with a defensible understanding of the long-term release rate and input into the critical decision process for a secondary waste treatment process/facility. The process and design support activity will provide a reliable process flowsheet and input to support a robust facility design. The validation effort will confirm that the selected waste form meets regulatory requirements. The final outcome of the implementation of the secondary waste roadmap is the compliant, effective, timely, and cost-effective disposal of the secondary wastes. The work necessary to address the programmatic, regulatory, and technical risks and uncertainties identified through the Secondary Waste Roadmap Workshop are assembled into several program needs elements. Programmatic/Regulatory needs include: • Select and deploy Hanford tank waste supplemental treatment technology • Provide treatment capability for secondary waste streams from tank waste treatment • Develop consensus on secondary waste form acceptance. Technology needs include: • Define secondary waste composition ranges and uncertainties • Identify and develop waste forms for secondary waste immobilization and disposal • Develop test methods to characterize secondary waste form performance. Details for each of these program elements are provided.

  7. Radioactive mixed waste disposal

    SciTech Connect (OSTI)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01T23:59:59.000Z

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

  8. Long-Term Surveillance Plan for South Clive Disposal Site, Clive, Utah, DOE/AL/62350-228, Revision 2, September 1997

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN551 - g 7635U: .'j', J o R-

  9. Long-Term Surveillance Plan for the Gunnison, Colorado, Disposal Site, DOE/AL/62350-222, Revision 2, April 1997

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN551 - g 7635U: .'j', J o

  10. DREDGED MATERIAL DISPOSAL ECONOMICS By Jay R. Lund,1

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    DREDGED MATERIAL DISPOSAL ECONOMICS By Jay R. Lund,1 Associate Member, ASCE ABSTRACT: Recent difficulties in siting dredged material disposal facilities are increasing interests in alternative disposal or reuse of dredged material and the possible adverse consequences of any increases in the generation

  11. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    SciTech Connect (OSTI)

    Hladek, K.L.

    1997-10-07T23:59:59.000Z

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together) buried in three rows in the northeast comer. In addition, five eight-foot diameter caissons are located at the west end of the center row of the drum storage units. Initially, wastes disposed to the caissons and drum storage units were from the 325 and 327 building hot cells. Later, a small amount of remote-handled (RH) waste from the 309 building Plutonium Recycle Test Reactor (PRTR) cells, and the newly built 324 building hot cells, was disposed at the site.

  12. Grout disposal facility vault exhauster: Technical background document on demonstration of best available control technology for toxics

    SciTech Connect (OSTI)

    Glissmeyer, J.A.; Glantz, C.S. [Pacific Northwest Lab., Richland, WA (United States); Rittman, P.D. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-09-01T23:59:59.000Z

    The Grout Disposal Facility (GDF) is currently operated on the US Department of Energy`s Hanford Site. The GDF is located near the east end of the Hanford Site`s 200 East operations area, and is used for the treatment and disposal of low-level radioactive liquid wastes. In the grout treatment process, selected radioactive wastes from double-shell tanks are mixed with grout-forming solids; the resulting grout slurry is pumped to near-surface concrete vaults for solidification and permanent disposal. As part of this treatment process, small amounts of toxic particles and volatile organic compounds (VOCs) may be released to the atmosphere through the GDF`s exhaust system. This analysis constitutes a Best Available Control Technology for Toxics (T-BACT) study, as required in the Washington Administrative Code (WAC 173-460) to support a Notice of Construction for the operation of the GDF exhaust system at a modified flow rate that exceeds the previously permitted value. This report accomplishes the following: assesses the potential emissions from the GDF; estimates air quality impacts to the public from toxic air pollutants; identifies control technologies that could reduce GDF emissions; evaluates impacts of the control technologies; and recommends appropriate emissions controls.

  13. Native copper deposits of the Portage Lake volcanics, Michigan: their implications with respect to canister stability for nuclear waste isolation in the Columbia River basalts beneath the Hanford Site, Washington

    SciTech Connect (OSTI)

    Crisman, D.P.; Jacobs, G.K.

    1982-01-01T23:59:59.000Z

    Copper deposits in the Portage Lake Volcanics of northern Michigan have been evaluated as a natural analogue for canister material to be emplaced in a nuclear waste repository located in the basalts beneath the Hanford Site near Richland, Washington. Te native copper, which precipitated from high temperature (200/sup 0/C to 300/sup 0/C) hydrothermal solutions between 500 and 800 million yr ago, has remained relatively unaltered in the Portage lake basalt-groundwater system. The results of this study illustrate the stability of copper in solutions of moderate pH, low to moderate Eh, and low total dissolved solids. Chemical trends and geochemical modeling of te near-surface waters suggestthat similarities (moderate pH, low E, low total dissolved solids) exist between the groundwater-basalt system of the Keweenaw Peninsula and the groundwater-basalt system at the Hanford Site. These similarities and the stability of copper in the Keweenswan basalts imply that copper alloys are adequate materials for nuclear waste canisters emplaced in a repository located in basalt.

  14. Washington: Putting More Solar on More Rooftops in Washington...

    Office of Environmental Management (EM)

    Putting More Solar on More Rooftops in Washington State Washington: Putting More Solar on More Rooftops in Washington State November 8, 2013 - 12:00am Addthis Mercer Island...

  15. Remedial actions at the former Vitro Rare Metals plant site, Canonsburg, Washington County, Pennsylvania. Final Environmental Impact Statement. Volume II. Appendices

    SciTech Connect (OSTI)

    Not Available

    1983-07-01T23:59:59.000Z

    This report provides a summary of the conceptual design and other information necessary to understand the proposed remedial action at the expanded Canonsburg, Pennsylvania site. This design constitutes the current approach to stabilizing the radioactively contaminated materials in place in a manner that would fully protect the public health and environment. This summary is intended to provide sufficient detail for the reader to understand the proposed remedial action and the anticipated environmental impacts. The site conceptual design has been developed using available data. In some cases, elements of the design have not been developed fully and will be made final during the detailed design process.

  16. Hanford Site ground-water monitoring for 1993

    SciTech Connect (OSTI)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01T23:59:59.000Z

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  17. Sample storage/disposal study

    SciTech Connect (OSTI)

    Valenzuela, B.D.

    1994-09-29T23:59:59.000Z

    Radioactive waste from defense operations has accumulated at the Hanford Site`s underground waste tanks since the late 1940`s. Each tank must be analyzed to determine whether it presents any harm to the workers at the Hanford Site, the public or the environment. Analyses of the waste aids in the decision making process in preparation of future tank waste stabilization procedures. Characterization of the 177 waste tanks on the Hanford Site will produce a large amount of archived material. This also brings up concerns as to how the excess waste tank sample material from 325 and 222-S Analytical Laboratories will be handled. Methods to archive and/or dispose of the waste have been implemented into the 222-S and 325 Laboratory procedures. As the amount of waste characterized from laboratory analysis grows, an examination of whether the waste disposal system will be able to compensate for this increase in the amount of waste needs to be examined. Therefore, the need to find the safest, most economically sound method of waste storage/disposal is important.

  18. Potential Release Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    found. Some examples of potential release sites include septic tanks and associated drain lines chemical storage areas wastewater outfalls material disposal areas incinerators...

  19. George Washington Carver Recognition Day

    Broader source: Energy.gov [DOE]

    In commemoration of George Washington Carver’s life and work, Congress declared January 5 as George Washington Carver Recognition Day.

  20. Environmental Assessment and Finding of No Significant Impact: Widening Trench 36 of the 218-E-12B Low-Level Burial Ground, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    N /A

    1999-02-11T23:59:59.000Z

    This environmental assessment was prepared to assess potential environmental impacts associated with the proposed action to widen and operate unused Trench 36 in the 218-E-12B Low-Level Burial Ground for disposal of low-level waste. Information contained herein will be used by the Manager, U.S. Department of Energy, Richland Operations Office, to determine if the Proposed Action is a major federal action significantly affecting the quality of the human environment. If the Proposed Action is determined to be major and significant, an environmental impact statement will be prepared. If the Proposed Action is determined not to be major and significant, a Finding of No Significant Impact will be issued and the action may proceed. Criteria used to evaluate significance can be found in Title 40, Code of Federal Regulations 1508.27. This environmental assessment was prepared in compliance with the ''National Environmental Policy Act of1969'', as amended, the Council on Environmental Quality Regulations for Implementing the Procedural Provisions of ''National Environmental Policy Act'' (Title 40, Code of Federal Regulations 1500-1508), and the U.S. Department of Energy Implementing Procedures for ''National Environmental Polio Act'' (Title 10, Code of Federal Regulations 1021). The following is a description of each section of this environmental assessment. (1) Purpose and Need for Action. This section provides a brief statement concerning the problem or opportunity the U.S, Department of Energy is addressing with the Proposed Action. Background information is provided. (2) Description of the Proposed Action. This section provides a description of the Proposed Action with sufficient detail to identify potential environmental impacts. (3) Alternatives to the Proposed Action. This section describes reasonable,alternative actions to the Proposed Action, which addresses the Purpose and Need. A No Action Alternative, as required by Title 10, Code of Federal Regulations 1021, also is described. (4) Affected Environment. This section provides a brief description of the locale in which the Proposed Action would take place. (5) Environmental Impacts. This section describes the range of environmental impacts, beneficial and adverse, of the Proposed Action. Impacts of alternatives briefly are discussed. (6) Permits and Regulatory Requirements. This section provides a brief description of permits and regulatory requirements for the Proposed Action. (7) Organizations Consulted. This section lists any outside groups, agencies, or individuals contacted as part of the environmental assessment preparation and/or review. (8) References. This section provides a list of documents used to contribute information or data in preparation of this environmental assessment.

  1. Washington State Ergonomics Tool: predictive validity in the waste industry 

    E-Print Network [OSTI]

    Eppes, Susan Elise

    2004-09-30T23:59:59.000Z

    This study applies the Washington State Ergonomics Tool to waste industry jobs in Texas. Exposure data were collected by on-site observation of fourteen different multi-task jobs in a major national solid waste management ...

  2. Waste Disposal (Illinois)

    Broader source: Energy.gov [DOE]

    This article lays an outline of waste disposal regulations, permits and fees, hazardous waste management and underground storage tank requirements.

  3. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado: Final report

    SciTech Connect (OSTI)

    Not Available

    1992-02-01T23:59:59.000Z

    This volume contains Appendix F, bid schedule and specifications for remedial action on three sites: Old Rifle processing site; New Rifle processing site and Estes Gulch disposal site.

  4. Report on the emergency response to the event on May 14, 1997, at the plutonuim reclamation facility, Hanford Site, Richland,Washington

    SciTech Connect (OSTI)

    Shoop, D.S.

    1997-08-20T23:59:59.000Z

    On the evening of May 14,1997, a chemical explosion Occurred at the Plutonium Reclamation Facility (PRF) in the 200 West Area(200-W) of the Hanford Site. The event warranted the declaration of an Alert emergency, activation of the Hanford Emergency Response Organization (BRO), and notification of offsite agencies. As a result of the emergency declaration, a subsequent evaluation was conducted to assess: 9 the performance of the emergency response organization o the occupational health response related to emergency activities o event notifications to offsite and environmental agencies. Additionally, the evaluation was designed to: 9 document the chronology of emergency and occupational health responses and environmental notifications connected with the explosion at the facility 0 assess the adequacy of the Hanford Site emergency preparedness activities; response readiness; and emergency management actions, occupational health, and environmental actions 0 provide an analysis of the causes of the deficiencies and weaknesses in the preparedness and response system that have been identified in the evaluation of the response a assign organizational responsibility to correct deficiencies and weaknesses a improve future performance 0 adjust elements of emergency implementing procedures and emergency preparedness activities.

  5. Archaeological mounds as analogs of engineered covers for waste disposal sites: Literature review and progress report. [Appendix contains bibliography and data on archaeological mounds

    SciTech Connect (OSTI)

    Chatters, J C; Gard, H A

    1991-09-01T23:59:59.000Z

    Closure caps for low-level radioactive waste disposal facilities are typically designed as layered earthen structures, the composition of which is intended to prevent the infiltration of water and the intrusion of the public into waste forms. Federal regulations require that closure caps perform these functions well enough that minimum exposure guidelines will be met for at least 500 years. Short-term experimentation cannot mimic the conditions that will affect closure caps on the scale of centuries, and therefore cannot provide data on the performance of cap designs over long periods of time. Archaeological mounds hundreds to thousands of years old which are closely analogous to closure caps in form, construction details, and intent can be studied to obtain the necessary understanding of design performance. Pacific Northwest Laboratory conducted a review and analysis of archaeological literature on ancient human-made mounds to determine the quality and potential applicability of this information base to assessments of waste facility design performance. A bibliography of over 200 English-language references was assembled on mound structures from the Americas, Europe, and Asia. A sample of these texts was read for data on variables including environmental and geographic setting, condition, design features, construction. Detailed information was obtained on all variables except those relating to physical and hydrological characteristics of the mound matrix, which few texts presented. It is concluded that an extensive amount of literature and data are available on structures closely analogous to closure caps and that this information is a valuable source of data on the long-term performance of mounded structures. Additional study is recommended, including an expanded analysis of design features reported in the literature and field studies of the physical and hydraulic characteristics of different mound designs. 23 refs., 10 figs., 12 tabs.

  6. Assessment of Preferred Depleted Uranium Disposal Forms

    SciTech Connect (OSTI)

    Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

    2000-06-01T23:59:59.000Z

    The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

  7. Evaluation of conceptual, mathematical and physical-and-chemical models for describing subsurface radionuclide transport at the Lake Karachai Waste Disposal Site

    SciTech Connect (OSTI)

    Rumynin, V.G.; Mironenko, V.A.; Sindalovsky, L.N.; Boronina, A.V.; Konosavsky, P.K.; Pozdniakov, S.P.

    1998-06-01T23:59:59.000Z

    The goal of this work was to develop the methodology and to improve understanding of subsurface radionuclide transport for application to the Lake Karachai Site and to identify the influence of the processes and interactions involved into transport and fate of the radionuclides. The report is focused on two sets of problems, which have to do both with, hydrodynamic and hydrogeochemical aspects of the contaminant transport.

  8. Hanford Site Environmental Report for Calendar Year 2001

    SciTech Connect (OSTI)

    Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.; Morasch, Launa F.

    2002-09-02T23:59:59.000Z

    This report summarizes environmental information for the Hanford Site in Washington State for the calendar year 2001.

  9. Biological assessment for the remedial action at the chemical plant area of the Weldon Spring site

    SciTech Connect (OSTI)

    Hlohowskyj, I.; Dunn, C.P.

    1992-11-01T23:59:59.000Z

    The Weldon Spring site in St.Charles County, Missouri, became contaminated during the 1940s through the 1960s as a result of explosives production by the US Army and uranium and thorium processing by the predecessor agency of the US Department of Energy (DOE). The site is listed on the National Priorities List of the US Environmental Protection Agency, and DOE is responsible for its cleanup. Contaminants are present in soil, surface water, and aquatic sediments. Alternatives identified for site remediation are no action (included as baseline for comparison), treatment and disposal of the wastes at the Weldon Spring site, and on-site treatment followed by off-site disposal at either a commercial facility near Clive, Utah, or at DOE`s Hanford site near Richland, Washington. In accordance with the requirements of the Endangered Species Act, this biological assessment has been prepared to evaluate the potential effects of proposed remedial action alternatives on federal listed (endangered or threatened) and candidate species at the respective sites. The assessment includes consideration of the environmental setting at each site; the federal listed and candidate species that could occur at each site; the construction, excavation, and treatment activities under each alternative; and the amount of land area affected at each site.

  10. Biological assessment for the remedial action at the chemical plant area of the Weldon Spring site

    SciTech Connect (OSTI)

    Hlohowskyj, I.; Dunn, C.P.

    1992-11-01T23:59:59.000Z

    The Weldon Spring site in St.Charles County, Missouri, became contaminated during the 1940s through the 1960s as a result of explosives production by the US Army and uranium and thorium processing by the predecessor agency of the US Department of Energy (DOE). The site is listed on the National Priorities List of the US Environmental Protection Agency, and DOE is responsible for its cleanup. Contaminants are present in soil, surface water, and aquatic sediments. Alternatives identified for site remediation are no action (included as baseline for comparison), treatment and disposal of the wastes at the Weldon Spring site, and on-site treatment followed by off-site disposal at either a commercial facility near Clive, Utah, or at DOE's Hanford site near Richland, Washington. In accordance with the requirements of the Endangered Species Act, this biological assessment has been prepared to evaluate the potential effects of proposed remedial action alternatives on federal listed (endangered or threatened) and candidate species at the respective sites. The assessment includes consideration of the environmental setting at each site; the federal listed and candidate species that could occur at each site; the construction, excavation, and treatment activities under each alternative; and the amount of land area affected at each site.

  11. Energy Matters in Washington State

    E-Print Network [OSTI]

    Collins, Gary S.

    Energy Matters in Washington State Energy Matters in Washington State www.energy.wsu.edu/library/ November 2009 #12;905 Plum Street SE, Building 3 P.O. Box 43169 Olympia, Washington 98504-3169 Energy University Extension Energy Program. 905 Plum Street SE, Building 3, P.O. Box 43169, Olympia, Washington

  12. Wellfield installation and investigations, Creston Study Area, Eastern Washington

    SciTech Connect (OSTI)

    Paschis, J.A.; Kunkel, J.R.; Koenig, R.A.

    1988-11-01T23:59:59.000Z

    The report summarizes the design and implementation of field testing used to characterize the Roza Member basalt aquifer of the Wanapum Formation of the Columbia River Basalt Group. A research wellfield was implemented and tests conducted to lithologically classify subsurface conditions underlying an 800- by 1400-foot area located in the northwest quarter of Section 16, T.25N, R.34E, six miles south of the town of Creston in Lincoln County, Washington. The relatively high-yielding aquifers of the Roza Member basalt are separated by claystone aquitards and are hydrologically interrupted by at least two different subsurface hydrologic structures. Water-level data were used to determine the regional and local hydraulic gradient. Wellbore slug tests and passive (nonpumping) tracer tests permitted calculation of equivalent hydraulic apertures and effective porosities for the Roza basalt flow top and flow interiors. Analysis of data from pumping tests permitted calculation of transmissivities and storage coefficients for the Roza basalt. Measurements of water level are continuing, and additional tracer tests have been conducted both in the wellfield proper and in the larger study area. Applicable wellfield aquifer analyses along with model studies will provide guidelines for use in evaluating proposed sites for disposing of high-level nuclear waste in saturated fractured geologic media. 36 refs., 72 figs., 16 tabs.

  13. DETECTION OF HISTORICAL PIPELINE LEAK PLUMES USING NON-INTRUSIVE SURFACE-BASED GEOPHYSICAL TECHNIQUES AT THE HANFORD NUCLEAR SITE WASHINGTON USA

    SciTech Connect (OSTI)

    SKORSKA MB; FINK JB; RUCKER DF; LEVITT MT

    2010-12-02T23:59:59.000Z

    Historical records from the Department of Energy Hanford Nuclear Reservation (in eastern WA) indicate that ruptures in buried waste transfer pipelines were common between the 1940s and 1980s, which resulted in unplanned releases (UPRs) of tank: waste at numerous locations. A number of methods are commercially available for the detection of active or recent leaks, however, there are no methods available for the detection of leaks that occurred many years ago. Over the decades, leaks from the Hanford pipelines were detected by visual observation of fluid on the surface, mass balance calculations (where flow volumes were monitored), and incidental encounters with waste during excavation or drilling. Since these detection methods for historic leaks are so limited in resolution and effectiveness, it is likely that a significant number of pipeline leaks have not been detected. Therefore, a technology was needed to detect the specific location of unknown pipeline leaks so that characterization technologies can be used to identify any risks to groundwater caused by waste released into the vadose zone. A proof-of-concept electromagnetic geophysical survey was conducted at an UPR in order to image a historical leak from a waste transfer pipeline. The survey was designed to test an innovative electromagnetic geophysical technique that could be used to rapidly map the extent of historical leaks from pipelines within the Hanford Site complex. This proof-of-concept test included comprehensive testing and analysis of the transient electromagnetic method (TEM) and made use of supporting and confirmatory geophysical methods including ground penetrating radar, magnetics, and electrical resistivity characterization (ERC). The results for this initial proof-of-concept test were successful and greatly exceeded the expectations of the project team by providing excellent discrimination of soils contaminated with leaked waste despite the interference from an electrically conductive pipe.

  14. West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume II. Physical and chemical oceanography. Final report

    SciTech Connect (OSTI)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

    1983-02-01T23:59:59.000Z

    This project centers around the Strategic Petroleum Site (SPR) known as the West Hackberry salt dome which is located in southwestern Louisiana, and which is designed to store 241 million barrels of crude oil. Oil storage caverns are formed by injecting water into salt deposits, and pumping out the resulting brine. Studies described in this report were designed as follow-on studies to three months of pre-discharge characterization work, and include data collected during the first year of brine leaching operations. The objectives were to: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significant adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. Contents of Volume II include: introduction; physical oceanography; estuarine hydrology and hydrography; analysis of discharge plume; and water and sediment quality.

  15. Savannah River Site Waste Isolation Pilot Plant Disposal Program - Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221-HET

    SciTech Connect (OSTI)

    Lunsford, G.F.

    2001-01-24T23:59:59.000Z

    This document, along with referenced supporting documents provides a defensible and auditable record of acceptable knowledge for one of the waste streams from the FB-Line. This heterogeneous debris transuranic waste stream was generated after January 25, 1990 and before March 20, 1997. The waste was packaged in 55-gallon drums, then shipped to the transuranic waste storage facility in ''E'' area of the Savannah River Site. This acceptable knowledge report includes information relating to the facility's history, configuration, equipment, process operations and waste management practices. Information contained in this report was obtained from numerous sources including: facility safety basis documentation, historical document archives, generator and storage facility waste records and documents, and interviews with cognizant personnel.

  16. FUPWG Spring 2010 Providence: Washington Update | Department...

    Energy Savers [EERE]

    Spring 2010 Providence: Washington Update FUPWG Spring 2010 Providence: Washington Update Presentation covers an update on Washington and is given at the Spring 2010 Federal...

  17. A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford

    SciTech Connect (OSTI)

    Neeway, James J.; Pierce, Eric M.; Freedman, Vicky L.; Ryan, Joseph V.; Qafoku, Nikolla

    2014-08-04T23:59:59.000Z

    The federal facilities located on the Hanford Site in southeastern Washington State have been used extensively by the U.S. government to produce nuclear materials for the U.S. strategic defense arsenal. Currently, the Hanford Site is under the stewardship of the U.S. Department of Energy (DOE) Office of Environmental Management (EM). A large inventory of radioactive and mixed waste resulting from the production of nuclear materials has accumulated, mainly in 177 underground single- and double-shell tanks located in the central plateau of the Hanford Site (Mann et al., 2001). The DOE-EM Office of River Protection (ORP) is proceeding with plans to immobilize and permanently dispose of the low-activity waste (LAW) fraction onsite in a shallow subsurface disposal facility (the Integrated Disposal Facility [IDF]). Pacific Northwest National Laboratory (PNNL) was contracted to provide the technical basis for estimating radionuclide release from the engineered portion of the IDF (the source term) as part of an immobilized low-activity waste (ILAW) glass testing program to support future IDF performance assessments (PAs).

  18. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Poultry Farm Daily Disposal Methods 0;Disposal: Science and Theory First Composter in Delaware · Delmarva was of the first daily composting · 120 in USA over next 10 years #12;Disposal: Science and Theory Composting Procedure · Mixture ­ 1 ½ to 2

  19. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Table of Contents · Disposal options emergency mortality composting procedure · Use of composting during outbreaks #12;Disposal: Science and disinfection of farms and surveillance around affected flocks. " USDA APHIS VS EMD, 2007 #12;Disposal: Science

  20. Environmental effects of dredging. Implementation approach for thalweg disposal of dredged material. Technical notes

    SciTech Connect (OSTI)

    Olin, T.J.; Miller, A.C.; Palermo, M.R.

    1993-05-01T23:59:59.000Z

    This technical note introduces the concept of thalweg disposal and associated considerations for implementation, including disposal site selection, environmental and regulatory considerations, and suitable dredging methods and equipment. Monitoring procedures are also outlined.

  1. EIS-0113: Record of Decision

    Broader source: Energy.gov [DOE]

    Disposal of Hanford Defense High-Level, Transuranic, and Tank Wastes, Hanford Site, Richland, Washington

  2. Hanford Site groundwater monitoring for fiscal year 1996

    SciTech Connect (OSTI)

    Hartman, M.J.; Dresel, P.E.; Borghese, J.V. [eds.] [and others] [eds.; and others

    1997-02-01T23:59:59.000Z

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems.

  3. Washington: Washington's Clean Energy Resources and Economy (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Washington.

  4. WASHINGTON TECHNICAL INSTITUTE WASHINGTON, D.C. 20008

    E-Print Network [OSTI]

    District of Columbia, University of the

    WASHINGTON TECHNICAL INSTITUTE WASHINGTON, D.C. 20008 WRRC REPORT NO. 9 CHARACTERIZATION-379, as amended. Agreement No. 14-34-0001-6066 Water Resources Research Center Washington Technical Institute Analysis of Composite Samples Before Concentration............ 16 5. Organic Losses During Concentration

  5. Washington River Protection Solutions - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural PublicRates >

  6. Washington Residents, Agencies, NGOs Specialists

    E-Print Network [OSTI]

    Collins, Gary S.

    Washington Residents, Agencies, NGOs Specialists County Directors, County Faculty, Staff, and Volunteers Department Chairs District Directors County Government Issue Teams Research and Extension Centers WASHINGTON STATE UNIVERSITY CAMPUSES Pullman Spokane Tri-Cities Vancouver Agriculture Program Director R

  7. Disposal of drilling fluids

    SciTech Connect (OSTI)

    Bryson, W.R.

    1983-06-01T23:59:59.000Z

    Prior to 1974 the disposal of drilling fluids was not considered to be much of an environmental problem. In the past, disposal of drilling fluids was accomplished in various ways such as spreading on oil field lease roads to stabilize the road surface and control dust, spreading in the base of depressions of sandy land areas to increase water retention, and leaving the fluid in the reserve pit to be covered on closure of the pit. In recent years, some states have become concerned over the indescriminate dumping of drilling fluids into pits or unauthorized locations and have developed specific regulations to alleviate the perceived deterioration of environmental and groundwater quality from uncontrolled disposal practices. The disposal of drilling fluids in Kansas is discussed along with a newer method or treatment in drilling fluid disposal.

  8. Annual Hanford Site Environmental Permitting status report

    SciTech Connect (OSTI)

    SONNICHSEN, J.C.

    1999-10-18T23:59:59.000Z

    The information contained in, and/or referenced in, this Annual Hanford Site Environmental Permitting Status Report addresses Permit Condition II.W (Other Permits and/or Approvals) of the Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, issued by the Washington State Department of Ecology (WA7890008967). Condition II.W specifies that the Permittees are responsible for obtaining all other applicable federal, state, and local permits authorizing the development and operation of the Hanford Facility. Condition II.W further specifies that the Permittees are to use their best efforts to obtain such permits. For the purposes of this Permit Condition, ''best efforts'' mean submittal of documentation and/or approval(s) in accordance with schedules specified in applicable regulations, or as determined through negotiations with the applicable regulatory agencies.

  9. Annual Hanford Site Environmental Permitting Status Report

    SciTech Connect (OSTI)

    HOMAN, N.A.

    2000-10-01T23:59:59.000Z

    The information contained in, and/or referenced in, this Annual Hanford Site Environmental Permitting Status Report addresses Permit Condition II.W (Other Permits and/or Approvals) of the Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, issued by the Washington State Department of Ecology (WA7890008967). Condition II.W specifies that the Permittees are responsible for obtaining all other applicable federal, state, and local permits authorizing the development and operation of the Hanford Facility. This status report also addresses Permit Condition I.E.22, as interpreted in Section 12.1.25 of the Hanford Facility Dangerous Waste Permit Application, General Information Portion (DOE/RL-91-28, Rev. 4), that states this report will be prepared annually and a copy of this report will be placed in the Facility Operating Record, General Information file by October 1 of each year.

  10. Low-Level Waste Disposal Alternatives Analysis Report

    SciTech Connect (OSTI)

    Timothy Carlson; Kay Adler-Flitton; Roy Grant; Joan Connolly; Peggy Hinman; Charles Marcinkiewicz

    2006-09-01T23:59:59.000Z

    This report identifies and compares on-site and off-site disposal options for the disposal of contract-handled and remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Potential disposal options are screened for viability by waste type resulting in a short list of options for further consideration. The most crediable option are selected after systematic consideration of cost, schedule constraints, and risk. In order to holistically address the approach for low-level waste disposal, options are compiled into comprehensive disposal schemes, that is, alternative scenarios. Each alternative scenario addresses the disposal path for all low-level waste types over the period of interest. The alternative scenarios are compared and ranked using cost, risk and complexity to arrive at the recommended approach. Schedule alignment with disposal needs is addressed to ensure that all waste types are managed appropriately. The recommended alternative scenario for the disposal of low-level waste based on this analysis is to build a disposal facility at the Idaho National Laboratory Site.

  11. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-06-17T23:59:59.000Z

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  12. Washington State Electric Vehicle

    E-Print Network [OSTI]

    California at Davis, University of

    Washington State Electric Vehicle Implementation Bryan Bazard Maintenance and Alternate Fuel Technology Manager #12;Executive Order 14-04 Requires the procurement of electric vehicles where and equipment with electricity or biofuel to the "extent practicable" by June 2015 1. The vehicle is due

  13. On-Site Disposal Facility Inspection Report

    Office of Legacy Management (LM)

    X HS7 East drain at Cell 23 X Callery pear and others X HS8 East drain at Cell 34 X Canada thistle in rocks X HS9 East drain at Cell 45 X Honeysuckle and others X HS10 East...

  14. Bluewater, New Mexico, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111A Lithologic and MonitorBayo

  15. Green River, Utah, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ," POSTGranite City,

  16. Maybell, Colorado, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E A research project inI UMTRCA Title

  17. Treated Effluent Disposal Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliances »Contact-InformationFuelsTravelTreated

  18. Maxey Flats, Kentucky, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF INDUSTRIES,L? .-IGYS,:?' _.JI' ;i.\'3

  19. Monticello, Utah, Disposal and Processing Sites

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 August 2008 Office7-TAC U.S.4 Through4 Fact

  20. Edgemont, South Dakota, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNew 1325.8.Enaineer;/:4,4 (; . 1.; e octo:

  1. Lowman, Idaho, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF INDUSTRIES,L? .-I I2 m.m\Ll 1v

  2. Environmental Restoration Disposal Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) / Environmental ImpactSmith's Marketplace

  3. Depleted uranium storage and disposal trade study: Summary report

    SciTech Connect (OSTI)

    Hightower, J.R.; Trabalka, J.R.

    2000-02-01T23:59:59.000Z

    The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

  4. Low-level radioactive mixed waste land disposal facility -- Permanent disposal

    SciTech Connect (OSTI)

    Erpenbeck, E.G.; Jasen, W.G.

    1993-03-01T23:59:59.000Z

    Radioactive mixed waste (RMW) disposal at US Department of Energy (DOE) facilities is subject to the Resource Conservation and Recovery Act of 1976 (RCRA) and the Hazardous and Solid Waste Amendments of 1984 (HSWA). Westinghouse Hanford Company, in Richland, Washington, has completed the design of a radioactive mixed waste land disposal facility, which is based on the best available technology compliant with RCRA. When completed, this facility will provide permanent disposal of solid RMW, after treatment, in accordance with the Land Disposal Restrictions. The facility includes a double clay and geosynthetic liner with a leachate collection system to minimize potential leakage of radioactive or hazardous constituents from the landfill. The two clay liners will be capable of achieving a permeability of less than 1 {times} 10{sup {minus}7} cm/s. The two clay liners, along with the two high density polyethylene (HDPE) liners and the leachate collection and removal system, provide a more than conservative, physical containment of any potential radioactive and/or hazardous contamination.

  5. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Foam Used in Actual Outbreak · Water #12;Disposal: Science and Theory Water Based Foam Culling Demo · First large scale comparison · Two:46 (m:s) #12;Disposal: Science and Theory WV H5N2 AIV 2007 · AIV positive turkeys ­ 25,000 turkey farm

  6. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Opciones para la producción de espuma espuma · Sistemas de boquilla #12;Disposal: Science and Theory Requisitos estimados: · Tiempo: 2 a 3 compactas ­ Equipo de respuesta propio de la industria Espuma de aire comprimido #12;Disposal: Science

  7. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Use of Composting · Composting has ­ British Columbia 2009 #12;Disposal: Science and Theory · Initial farm linked to NY LBM · Two additional and pile procedure Delmarva 2004 #12;Disposal: Science and Theory Delmarva 2004 · Composting used

  8. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · Las recomendaciones de campo se la espuma #12;Disposal: Science and Theory · Múltiples especies de aves pueden despoblarse con espuma cesación #12;Disposal: Science and Theory · Dentro de una especie, pueden existir variaciones ­ Los ánades

  9. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Foaming Options · Compressed Air Foam Systems (CAFS) · Foam Blower · Foam Generator · Nozzle Systems #12;Disposal: Science and Theory Compressed ­ Industry owned response team #12;Disposal: Science and Theory Commercial CAFS for Poultry · Poultry

  10. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · Procedimiento básico ­ Desarrollar una pila de carcasas y lecho. Compostaje masivo de emergencia #12;Disposal: Science and Theory de emergencia #12;Disposal: Science and Theory · Desarrollar planes antes de que ocurra una

  11. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory 0 20 40 60 80 100 Compostaje #12;Disposal: Science and Theory · Delmarva fue de las primeras granjas en realizar el compostaje de en EE.UU. en los próximos 10 años. Pionera en compostaje en Delaware #12;Disposal: Science and Theory

  12. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · Compostaje de aves de corralRouchey et al., 2005) Investigación previa #12;Disposal: Science and Theory · Se ha evaluado y documentado el, bovino Investigación previa #12;Disposal: Science and Theory · Experimento nro. 1 Impacto de la espuma en

  13. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Composting · Composting is defined drop #12;Disposal: Science and Theory Composting · Optimal composting ­ Carbon to nitrogen ratio (C;Disposal: Science and Theory Compost Composition · A variety of supplemental carbon materials have been

  14. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · Opciones para la eliminación · ¿Qué compostaje durante brotes de enfermedades Lista de contenido #12;Disposal: Science and Theory "Ante un brote brotes de IIAP #12;Disposal: Science and Theory · En 2004, se despoblaron 100 millones de aves en todo el

  15. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Brief History of Foam 2004 ­ Bud and foam 2009 ­ No advantage for gas #12;Disposal: Science and Theory What is foam? · What is fire fighting system. #12;Disposal: Science and Theory Foam Composition · Foam can include ­ Mixture of surfactants

  16. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · El compostaje se ha usado como Virginia (2007) ­ British Columbia (2009) Uso del compostaje #12;Disposal: Science and Theory · Primera apilamiento Delmarva (2004) #12;Disposal: Science and Theory · El compostaje se usó para proteger una densa

  17. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Mass Emergency Composting · Basic ­ Create carcass and litter windrow #12;Disposal: Science and Theory Mass Emergency Composting · Basic cover ­ Clean and disinfect house ­ Sample for virus again #12;Disposal: Science and Theory Mass

  18. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory 2004 ­ Participación de Bud Malone y la espuma 2009 ­ Ninguna ventaja para el gas Breve historia de la espuma #12;Disposal: Science sistema de boquilla ¿Qué es la espuma? #12;Disposal: Science and Theory · La espuma puede incluir: ­ Una

  19. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · Gassing is a preferred #12;Disposal: Science and Theory Carbon Dioxide Gassing · Carbon dioxide (CO2) one of the standard sensitivity time #12;Disposal: Science and Theory · Argon-CO2 gas depopulation evaluated under laboratory

  20. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Foam Generator Setup · Drop off foam generator cart at one end of house #12;Disposal: Science and Theory Foam Generator Setup · Trailer parked generator attached to hose #12;Disposal: Science and Theory Foam Generation Begins · Team of two to operate

  1. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Summary · Foam is currently a viable ­ Foam application directly to cage #12;Disposal: Science and Theory Legal Status of Foam · Procedure depopulation, culling, and euthanasia #12;Disposal: Science and Theory Acknowledgements · USDA AICAP2 · USDA

  2. Low-Level Radioactive Waste Disposal Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This act provides a comprehensive strategy for the siting of commercial low-level waste compactors and other waste management facilities, and to ensure the proper transportation, disposal and...

  3. Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This act establishes a low-level radioactive waste disposal regional facility siting fund that requires nuclear power reactor constructors and operators to pay to the Department of Environmental...

  4. Physical verification of contaminated sediment remediation: Capping, confined aquatic disposal, and enhanced natural recovery

    SciTech Connect (OSTI)

    Browning, D. [Science Applications International Corp., Bothell, WA (United States)

    1995-12-31T23:59:59.000Z

    Dredging and disposal in a confined aquatic disposal (CAD) site, capping with clean sediment, and natural recovery are commonly used, cost-effective remedial practices for contaminated sediments. Recent projects in Puget Sound, Washington and Southern California involved dredging and use of the material for capping and CAD fill. Both of these projects required physical monitoring to document sediment placement. Dredged sediments placed at these sites were optically identified using sediment vertical profile system (SVPS) photography. Optical criteria to distinguish cap/construction materials include grain-size, reflectance, and texture. Environmental parameters such as the extent and thickness of the CAD material or sediment cap deposits are evaluated against design and performance goals, typically the isolation of contaminants from the biologically active portion of the sediment column. Using SVPS, coring and other technologies, the stratigraphic contact between the capping/CAD sediment and the native sediment can be discerned. These measurements observations can ground-truth and be coupled with remote sensing to provide a more complete characterization of the entire remedial area. Physical isolation of the benthic community can be discerned by examining SVPS images for depth of bioturbation and sediment stratigraphy. On the periphery of cap/CAD deposits, thin layers of clean sediment ranging upwards from 1 mm thick can be identified. Dependent on the pre-remediation benthic community at the site, these thin layers of CAP/CAD sediment can be bioturbated by resident benthic infauna immediately after placement. The deposition and subsequent assimilation of the clean cap material into the contaminated sediments effectively reduces the concentration of contaminants in the biologically active zone thereby enhancing natural recovery in areas where regulatory criteria are focused on the biologically active zone.

  5. Hanford Site Tank Waste Remediation System. Waste management 1993 symposium papers and viewgraphs

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The US Department of Energy`s (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives.

  6. EIS-0484: Montana-to-Washington Transmission System Upgrade Project...

    Energy Savers [EERE]

    4: Montana-to-Washington Transmission System Upgrade Project in Washington, Idaho, and Montana EIS-0484: Montana-to-Washington Transmission System Upgrade Project in Washington,...

  7. Washington Energy Facility Site Evalutation Council - Generalized Siting

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide PermitInformationIsland: Energy ResourcesProcess | Open Energy

  8. Washington Energy Facility Site Evalutation Council - Siting and Review

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide PermitInformationIsland: Energy ResourcesProcess | Open

  9. Recovery Act State Memos Washington

    Broader source: Energy.gov (indexed) [DOE]

    Richart Family has hired 25 new workers since last September to help with the infusion of weatherization work in the southwestern part of Washington. Half of those workers...

  10. Washington City Power- Net Metering

    Broader source: Energy.gov [DOE]

    Washington City adopted a net-metering program, including interconnection procedures, in January 2008.* Net metering is available to residential and commercial customers that generate electricity...

  11. northeastern Washington's Okanogan County. The

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7.31 acre habitat acquisition in Washington's Okanogan River Watershed for fish habitat mitigation (see map). The Okanogan River Watershed was selected as a focus for restoration...

  12. Hanford Site Groundwater Monitoring for Fiscal Year 2000

    SciTech Connect (OSTI)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2001-03-01T23:59:59.000Z

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2000 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath each of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. RCRA groundwater monitoring continued during fiscal year 2000. Vadose zone monitoring, characterization, remediation, and several technical demonstrations were conducted in fiscal year 2000. Soil gas monitoring at the 618-11 burial ground provided a preliminary indication of the location of tritium in the vadose zone and in groundwater. Groundwater modeling efforts focused on 1) identifying and characterizing major uncertainties in the current conceptual model and 2) performing a transient inverse calibration of the existing site-wide model. Specific model applications were conducted in support of the Hanford Site carbon tetrachloride Innovative Treatment Remediation Technology; to support the performance assessment of the Immobilized Low-Activity Waste Disposal Facility; and in development of the System Assessment Capability, which is intended to predict cumulative site-wide effects from all significant Hanford Site contaminants.

  13. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado: Final report. Volume 3, Appendix F, Final design, specifications, and drawings

    SciTech Connect (OSTI)

    Not Available

    1992-02-01T23:59:59.000Z

    This volume contains Appendix F, bid schedule and specifications for remedial action on three sites: Old Rifle processing site; New Rifle processing site and Estes Gulch disposal site.

  14. Statement of position of the United States Department of Energy in the matter of proposed rulemaking on the storage and disposal of nuclear waste (waste confidence rulemaking)

    SciTech Connect (OSTI)

    None

    1980-04-15T23:59:59.000Z

    Purpose of this proceeding is to assess generically the degree of assurance that the radioactive waste can be safely disposed of, to determine when such disposal or off-site storage will be available, and to determine whether wastes can be safely stored on-site past license expiration until off-site disposal/storage is available. (DLC)

  15. Washington State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    The Washington State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Washington. The profile is the result of a survey of NRC licensees in Washington. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Washington.

  16. Waste disposal package

    DOE Patents [OSTI]

    Smith, M.J.

    1985-06-19T23:59:59.000Z

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  17. Radioactive waste disposal package

    DOE Patents [OSTI]

    Lampe, Robert F. (Bethel Park, PA)

    1986-01-01T23:59:59.000Z

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  18. Biofuels in Oregon and Washington

    E-Print Network [OSTI]

    PNNL-17351 Biofuels in Oregon and Washington A Business Case Analysis of Opportunities and Challenges Prepared by Pacific Northwest National Laboratory #12;#12;Biofuels in Oregon and Washington, particularly in light of the recent growth experienced by the biofuels industry in the Midwest. Policymakers

  19. Harold Washington Social Security Administration (SSA) Center...

    Office of Environmental Management (EM)

    Harold Washington Social Security Administration (SSA) Center Water Conservation and Green Energy Harold Washington Social Security Administration (SSA) Center Water Conservation...

  20. Washington: Graphene Nanostructures for Lithium Batteries Recieves...

    Energy Savers [EERE]

    Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

  1. Independent Activity Report, Washington River Protection Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington River Protection Solutions, LLC - October 2011 October 2011 Industrial Hygiene Surveillance of the Washington River Protection Solutions, LLC Industrial Hygiene...

  2. Federal Utility Partnership Working Group Meeting: Washington...

    Energy Savers [EERE]

    Federal Utility Partnership Working Group Meeting: Washington Update Federal Utility Partnership Working Group Meeting: Washington Update Presentation-given at the Fall 2012...

  3. Integrated Disposal Facility FY2011 Glass Testing Summary Report

    SciTech Connect (OSTI)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Westsik, Joseph H.

    2011-09-29T23:59:59.000Z

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.

  4. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14 million Title: Keywords: ERDF, landfill, disposal Description: Workers dispose of concrete debris off a dump ramp at the Environmental Restoration Disposal Facility. Several...

  5. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Table of Contents · Why Depopulate? · Depopulation Methods · Basics of Foam · Types of Foam Equipment · Science Behind Foam · Implementing Foam Depopulation · Use of Foam in the Field · Conclusions #12;Disposal: Science and Theory "When HPAI outbreaks

  6. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · El compostaje se define como la: Science and Theory · Compostaje óptimo ­ Relación carbono/nitrógeno (C:N): 20:1 a 35:1 ­ Contenido de Compostaje #12;Disposal: Science and Theory · Se ha utilizado satisfactoriamente una variedad de materiales

  7. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · Se ubica el carretón con el enfriamiento Ventiladores de túnel de viento #12;Disposal: Science and Theory · Se estaciona el remolque en uno: Science and Theory · Se usa un equipo de dos personas para hacer funcionar el sistema: ­ Operario del

  8. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · Field recommendations based of activity ­ Corticosterone ­ EEG, ECG and motion studies · Large scale testing ­ Field scale units Science of Foam #12;Disposal: Science and Theory Cessation Time · Multiple bird species can be depopulated

  9. Waste Disposal Guide HOW TO PROPERLY DISPOSE OF WASTE MATERIALS

    E-Print Network [OSTI]

    Schaefer, Marcus

    Waste Disposal Guide HOW TO PROPERLY DISPOSE OF WASTE MATERIALS GENERATED AT DEPAUL UNIVERSITY.4 Hazardous Waste Defined p.5 Chemical Waste Procedure for Generating Departments p.6 o A of Containers p.8 o E. Disposal of Empty Containers p.8 o F. Storage of Waste Chemicals p.8,9 o G

  10. Kent, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa:Washington: Energy Resources Jump to: navigation, search

  11. Kingsgate, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa:Washington:Kimble County,

  12. Kirkland, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa:Washington:KimbleKinnelon, NewOklahoma:(Redirected from

  13. Composite analysis E-area vaults and saltstone disposal facilities

    SciTech Connect (OSTI)

    Cook, J.R.

    1997-09-01T23:59:59.000Z

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.

  14. NOMINATION FOR THE PROJECT MANAGEMENT INSTITUTE (PMI) PROJECT OF THE YEAR AWARD INTEGRATED DISPOSAL FACILITY (IDF)

    SciTech Connect (OSTI)

    MCLELLAN, G.W.

    2007-02-07T23:59:59.000Z

    CH2M HILL Hanford Group, Inc. (CH2M HILL) is pleased to nominate the Integrated Disposal Facility (IDF) project for the Project Management Institute's consideration as 2007 Project of the Year, Built for the U.S, Department of Energy's (DOE) Office of River Protection (ORP) at the Hanford Site, the IDF is the site's first Resource Conservation and Recovery Act (RCRA)-compliant disposal facility. The IDF is important to DOE's waste management strategy for the site. Effective management of the IDF project contributed to the project's success. The project was carefully managed to meet three Tri-Party Agreement (TPA) milestones. The completed facility fully satisfied the needs and expectations of the client, regulators and stakeholders. Ultimately, the project, initially estimated to require 48 months and $33.9 million to build, was completed four months ahead of schedule and $11.1 million under budget. DOE directed construction of the IDF to provide additional capacity for disposing of low-level radioactive and mixed (i.e., radioactive and hazardous) solid waste. The facility needed to comply with federal and Washington State environmental laws and meet TPA milestones. The facility had to accommodate over one million cubic yards of the waste material, including immobilized low-activity waste packages from the Waste Treatment Plant (WTP), low-level and mixed low-level waste from WTP failed melters, and alternative immobilized low-activity waste forms, such as bulk-vitrified waste. CH2M HILL designed and constructed a disposal facility with a redundant system of containment barriers and a sophisticated leak-detection system. Built on a 168-area, the facility's construction met all regulatory requirements. The facility's containment system actually exceeds the state's environmental requirements for a hazardous waste landfill. Effective management of the IDF construction project required working through highly political and legal issues as well as challenges with permitting, scheduling, costs, stakeholders and technical issues. To meet the customer's needs and deadlines, the project was managed with conscientious discipline and application of sound project management principles in the Project Management Institute's Project Management Body of Knowledge. Several factors contributed to project success. Extensive planning and preparation were conducted, which was instrumental to contract and procurement management. Anticipating issues and risks, CH2M HILL prepared well defined scope and expectations, particularly for safety. To ensure worker safety, the project management team incorporated CH2M HILL's Integrated Safety Management System (ISMS) into the project and included safety requirements in contracting documents and baseline planning. The construction contractor DelHur Industries, Inc. adopted CH2M HILL's safety program to meet the procurement requirement for a comparable ISMS safety program. This project management approach contributed to an excellent safety record for a project with heavy equipment in constant motion and 63,555 man-hours worked. The project manager worked closely with ORP and Ecology to keep them involved in project decisions and head off any stakeholder or regulatory concerns. As issues emerged, the project manager addressed them expeditiously to maintain a rigorous schedule. Subcontractors and project contributors were held to contract commitments for performance of the work scope and requirements for quality, budget and schedule. Another element of project success extended to early and continual involvement of all interested in the project scope. Due to the public sensitivity of constructing a landfill planned for radioactive waste as well as offsite waste, there were many stakeholders and it was important to secure their agreement on scope and time frames. The project had multiple participants involved in quality assurance surveillances, audits and inspections, including the construction contractor, CH2M HILL, ORP, the Washington State Department of Ecology, and independent certified quality assurance an

  15. Engineering assessment of low-level liquid waste disposal caisson locations at the 618-11 Burial Grounds

    SciTech Connect (OSTI)

    Phillips, S.J.; Fischer, D.D.; Crawford, R.C. [Westinghouse Hanford Co., Richland, WA (United States); Rising, J.L. [Pacific Northwest Lab., Richland, WA (United States)

    1982-06-01T23:59:59.000Z

    Rockwell Hanford Operations is currently involved in an extensive effort to perform interim ground surface stabilization activities at retired low-level waste burial grounds located at the Hanford Site, Richland, Washington. The principal objective of these activities is to promote increased occupational and radiological safety at burial grounds. Interim stabilization activities include: (1) load testing (traversing burial ground surfaces with heavy equipment to promote incipient collapse of void spaces within the disposal structure and overburden), (2) barrier placement (placement of a {ge} 0.6 m soil barrier over existing overburden), and (3) revegetation (establishment of shallow rooted vegetation on the barrier to mitigate deep rooted plant growth and to reduce erosion). Low-level waste disposal caissons were used in 300 Area Burial Grounds as internment structures for containerized liquid wastes. These caissons, by virtue of their contents, design and methods of closure, require long-term performance evaluation. As an initial activity to evaluate long-term performance, the accurate location of these structures is required. This topical report summarizes engineering activities used to locate caissons in the subsurface environment at the Burial Ground. Activities were conducted to locate caissons during surface stabilization activities. The surface locations were marked, photographed, and recorded on an as built engineering drawing. The recorded location of these caissons will augment long-term observations of confinement structure and engineered surface barrier performance. In addition, accurate caisson location will minimize occupational risk during monitoring and observation activities periodically conducted at the burial ground.

  16. Regional Examples of Geological Settings for Nuclear Waste Disposal in Deep Boreholes

    E-Print Network [OSTI]

    Sapiie, B.

    This report develops and exercises broad-area site selection criteria for deep boreholes suitable for disposal of spent nuclear fuel and/or its separated constituents. Three candidates are examined: a regional site in the ...

  17. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    SciTech Connect (OSTI)

    THIELGES, J.R.; CHASTAIN, S.A.

    2007-06-21T23:59:59.000Z

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.

  18. Wind Powering America State Outreach. Final Technical Report: Washington State

    SciTech Connect (OSTI)

    Stearns, Tim

    2013-09-30T23:59:59.000Z

    The Washington Department of Commerce, via a U.S. Department of Energy grant, supported research into siting and permitting processes for wind projects by Skagit County, Washington. The goal was to help a local government understand key issues, consider how other areas have addressed wind siting, and establish a basis for enacting permitting and zoning ordinances that provided a more predictable permitting path and process for landowners, citizens, government and developers of small and community wind projects. The County?s contractor developed a report that looked at various approaches to wind siting, interviewed stakeholders, and examined technology options. The contractor outlined key issues and recommended the adoption of a siting process. The Skagit County Commission considered the report and directed the Skagit County Planning & Development Services Department to add development of wind guidelines to its work plan for potential changes to development codes.

  19. Disposal of liquid radioactive wastes through wells or shafts

    SciTech Connect (OSTI)

    Perkins, B.L.

    1982-01-01T23:59:59.000Z

    This report describes disposal of liquids and, in some cases, suitable solids and/or entrapped gases, through: (1) well injection into deep permeable strata, bounded by impermeable layers; (2) grout injection into an impermeable host rock, forming fractures in which the waste solidifies; and (3) slurrying into excavated subsurface cavities. Radioactive materials are presently being disposed of worldwide using all three techniques. However, it would appear that if the techniques were verified as posing minimum hazards to the environment and suitable site-specific host rock were identified, these disposal techniques could be more widely used.

  20. Study identifies two Northwest basalt rock caverns sites for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and BPA have identified two possible sites in eastern Washington to build compressed air energy storage facilities that could temporarily store the Northwest's excess wind power....

  1. ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM AT POTENTIAL OTEC SITES

    E-Print Network [OSTI]

    Wilde, P.

    2010-01-01T23:59:59.000Z

    Thermal Energy Conversion (OTEC) program preoperational testand biomass distribution at potential OTEC sites.6th OTEC conference, Washington, D.C. Payne, S.F. 1979. The

  2. Hanford Site Solid (Radioactive and Hazardous) Waste Program...

    Office of Environmental Management (EM)

    Office 2 3 TITLE: 4 Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact 5 Statement, Richland, Benton County, Washington (DOE...

  3. The siting record: An account of the programs of federal agencies and events that have led to the selection of a potential site for a geologic respository for high-level radioactive waste

    SciTech Connect (OSTI)

    Lomenick, T.F.

    1996-03-01T23:59:59.000Z

    This record of siting a geologic repository for high-level radioactive wastes (HLW) and spent fuel describes the many investigations that culminated on December 22, 1987 in the designation of Yucca Mountain (YM), as the site to undergo detailed geologic characterization. It recounts the important issues and events that have been instrumental in shaping the course of siting over the last three and one half decades. In this long task, which was initiated in 1954, more than 60 regions, areas, or sites involving nine different rock types have been investigated. This effort became sharply focused in 1983 with the identification of nine potentially suitable sites for the first repository. From these nine sites, five were subsequently nominated by the U.S. Department of Energy (DOE) as suitable for characterization and then, in 1986, as required by the Nuclear Waste Policy Act of 1982 (NWPA), three of these five were recommended to the President as candidates for site characterization. President Reagan approved the recommendation on May 28, 1986. DOE was preparing site characterization plans for the three candidate sites, namely Deaf Smith County, Texas; Hanford Site, Washington; and YM. As a consequence of the 1987 Amendment to the NWPA, only the latter was authorized to undergo detailed characterization. A final Site Characterization Plan for Yucca Mountain was published in 1988. Prior to 1954, there was no program for the siting of disposal facilities for high-level waste (HLW). In the 1940s and 1950s, the volume of waste, which was small and which resulted entirely from military weapons and research programs, was stored as a liquid in large steel tanks buried at geographically remote government installations principally in Washington and Tennessee.

  4. Hanford site near-facility environmental monitoring annual report, calendar year 1996

    SciTech Connect (OSTI)

    Perkins, C.J.

    1997-08-05T23:59:59.000Z

    This document summarizes the results of the near-facility environmental monitoring results for 1996 in the 100, 200/600, and 300/400 areas of the Hanford Site in south-central Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. The monitoring implements applicable portions of DOE Orders 5400.1 (DOE 1988a), 5400.5 (DOE 1990), and 5820.2A (DOE 1988b); Washington Administrative Code (WAC) 246-247; and Title 40 Code of Federal Regulations (CFR) Part 61, Subpart H (EPA 1989). In addition, diffuse sources were monitored to determine compliance with federal, state, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels were slightly elevated when compared to offsite locations, the differences are less than in previous years.

  5. Low level tank waste disposal study

    SciTech Connect (OSTI)

    Mullally, J.A.

    1994-09-29T23:59:59.000Z

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

  6. State of Washington Department of Ecology criteria pollutants and toxic air polluntants phase II notice of construction for the Hanford Site spent nuclear fuel project--cold vacuum dryingfacility, Project W-441

    SciTech Connect (OSTI)

    Jansky, M.T., Westinghouse Hanford

    1997-01-24T23:59:59.000Z

    This Phase 11 notice of construction (NOC) provides the additional information committed to in the Phase I NOC submittal (DOE/RL-96- 55) regarding the air toxic and criteria pollutants that could potentially be emitted during operation of the Cold Vacuum Drying Facility (CVDF). This Phase 11 NOC is being submitted to ensure the CVDF is in full compliance with Washington Administrative Code (WAC) 173-460-040(8), `Commencement of Construction`. The Phase I NOC (approved September 30, 1996) was defined as constructing the substructure, including but not limited to, pouring the concrete for the floor, and construction of the exterior. This Phase 11 NOC is being submitted for approval before installation and operation of the process equipment that will generate any potential air emissions at the CVDF, and installation and operation of the emissions control equipment.

  7. Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance

    SciTech Connect (OSTI)

    none,

    2012-03-01T23:59:59.000Z

    This document presents guidance for implementing the process that the U.S. Department of Energy (DOE) Office of Legacy Management (LM) will use for assuming perpetual responsibility for a closed uranium mill tailings site. The transition process specifically addresses sites regulated under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) but is applicable in principle to the transition of sites under other regulatory structures, such as the Formerly Utilized Sites Remedial Action Program.

  8. Long-term surveillance plan for the Burro Canyon disposal cell, Slick Rock, Colorado

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the US Department of Energy (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Burro Canyon disposal cell in San Miguel County, Colorado. The US Nuclear Regulatory Commission (NRC) developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Burro Canyon disposal cell. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete at the Burro Canyon disposal cell and the NRC formally accepts this LTSP. Attachment 1 contains the concurrence letters from NRC. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Burro Canyon disposal cell performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. Ground water monitoring will not be required at the Burro Canyon disposal cell because the ground water protection strategy is supplemental standards based on low yield from the uppermost aquifer.

  9. New Bedford Harbor Superfund Project, Acushnet River estuary engineering feasibility study of dredging and dredged-material disposal alternatives. Report 11. Evaluation of conceptual dredging and disposal alternatives. Technical report, August 1985-July 1988

    SciTech Connect (OSTI)

    Averett, D.E.; Palermo, M.R.; Otis, M.J.; Rubinoff, P.B.

    1989-07-01T23:59:59.000Z

    This report evaluates conceptual dredging and disposal alternatives for the Acushnet River Estuary, a part of the New Bedford Harbor Superfund Site. Dredging for removal of the highly contaminated sediment and subsequent disposal in upland or nearshore confined disposal facilities or disposal in contaminated aquatic disposal facilities are alternative considered in the Engineering Feasibility Study of Dredging and Dredged Material Disposal Alternatives. Sediment testing and sediment-transport modeling performed as earlier tasks of the study form the basis for evaluation of the alternatives. The technical feasibility of conceptual design options is based on site availability, capacity, and characteristics and on sediment physical characteristics and dredged-material settling behavior as defined by laboratory testing. Contamination releases during dredging and disposal operations are estimated for each disposal option. A preliminary cost estimate for implementation of each option evaluated is alo presented.

  10. Disposal of chemical agents and munitions stored at Anniston Army Depot, Anniston, Alabama

    SciTech Connect (OSTI)

    Hunsaker, D.B. Jr.; Zimmerman, G.P.; Hillsman, E.L.; Miller, R.L.; Schoepfle, G.M.; Johnson, R.O.; Tolbert, V.R.; Kroodsma, R.L.; Rickert, L.W.; Rogers, G.O.; Staub, W.P.

    1990-09-01T23:59:59.000Z

    The purpose of this Phase I report is to examined the proposed implementation of on-site disposal at Anniston Army Depot (ANAD) in light of more detailed and more recent data than those included in the Final Programmatic Environmental Impact Statement (EPEIS). Two principal issues are addressed: (1) whether or not the new data would result in identification of on-site disposal at ANAD as the environmentally preferred alternative (using the same selection method and data analysis tools as in the FPEIS), and (2) whether or not the new data indicate the presence of significant environmental resources that could be affected by on-site disposal at ANAD. In addition, a status report is presented on the maturity of the disposal technology (and now it could affect on-site disposal at ANAD). Inclusion of these more recent data into the FPEIS decision method resulted in confirmation of on-site disposal for ANAD. No unique resources with the potential to prevent or delay implementation of on-site disposal at ANAD have been identified. A review of the technology status identified four principal technology developments that have occurred since publication of the FPEIS and should be of value in the implementation of on-site disposal at ANAD: the disposal of nonlethal agent at Pine Bluff Arsenal, located near Pine Bluff, Arkansas; construction and testing of facilities for disposal of stored lethal agent at Johnston Atoll, located about 1300 km (800 miles) southwest of Hawaii in the Pacific Ocean; lethal agent disposal tests at the chemical agent pilot plant operations at Tooele Army Depot, located near Salt Lake City, Utah; and equipment advances. 18 references, 13 figs., 10 tabs.

  11. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24T23:59:59.000Z

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  12. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

    1995-01-01T23:59:59.000Z

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  13. Material Disposal Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMAR Os2010 TeppeiMaterial Disposal

  14. Annual Hanford Site environmental permitting status report

    SciTech Connect (OSTI)

    Sonnichsen, J.C.

    1998-09-17T23:59:59.000Z

    The information contained and/or referenced in this Annual Hanford Site Environmental Permitting Status Report (Status Report) addresses the State Environmental Policy Act (SEPA) of 1971 and Condition II.W. of the Resource Conservation and Recovery Act (RCRA) of 1976 Permit, Dangerous Waste Portion (DW Portion). Condition II.W. of the RCRA Permit specifies the Permittees are responsible for all other applicable federal, state, and local permits for the development and operation of the Hanford Facility. Condition II.W. of the RCRA Permit specifies that the Permittees are to use their best efforts to obtain such permits. For the purposes of permit condition, `best efforts` means submittal of documentation and/or approval(s) in accordance with schedules specified in applicable regulations, or as determined through negotiations with the applicable regulatory agencies. This Status Report includes information on all existing and anticipated environmental permitting. Environmental permitting required by RCRA, the Hazardous and Solid Waste Amendments (HSWA) of 1984, and non-RCRA permitting (solid waste handling, Clean Air Act Amendments of 1990, Clean Water Act Amendments of 1987, Washington State waste discharge, and onsite sewage system) is addressed. Information on RCRA and non-RCRA is current as of July 31, 1998. For the purposes of RCRA and the State of Washington Hazardous Waste Management Act of 1976 [as administered through the Dangerous Waste Regulations, Washington Active Code (WAC) 173-303], the Hanford Facility is considered a single facility. As such, the Hanford Facility has been issued one US Environmental Protection Agency (EPA)/State Identification Number (WA7890008967). This EPA/State identification number encompasses over 60 treatment, storage, and/or disposal (TSD) units. The Washington State Department of Ecology (Ecology) has been delegated authority by the EPA to administer the RCRA, including mixed waste authority. The RCRA permitting approach for the Hanford Facility is addressed in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). Pursuant to the Tri-Party Agreement, a single RCRA permit was issued by Ecology and the EPA to cover the Hanford Facility. The RCRA Permit, through the permit modification process, eventually will incorporate all TSD units.

  15. FUPWG Fall 2009 Washington Update | Department of Energy

    Office of Environmental Management (EM)

    FUPWG Fall 2009 Washington Update FUPWG Fall 2009 Washington Update Presentation covers the 2009 Federal Utility Partnership Working Group (FUPWG) Washington update to the Lighting...

  16. Soil Segregation Methods for Reducing Transportation and Disposal Costs - 13544

    SciTech Connect (OSTI)

    Frothingham, David; Andrews, Shawn; Barker, Michelle; Boyle, James; Buechi, Stephen; Graham, Marc; Houston, Linda; Polek, Michael; Simmington, Robert; Spector, Harold [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara St., Buffalo, NY 14207 (United States)] [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara St., Buffalo, NY 14207 (United States); Elliott, Robert 'Dan' [U.S. Army Reserve, 812A Franklin St.,Worcester, MA 01604 (United States)] [U.S. Army Reserve, 812A Franklin St.,Worcester, MA 01604 (United States); Durham, Lisa [Argonne National Laboratory, Environmental Science Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States)] [Argonne National Laboratory, Environmental Science Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

    2013-07-01T23:59:59.000Z

    At Formerly Utilized Sites Remedial Action Program (FUSRAP) sites where the selected alternative for contaminated soil is excavation and off-site disposal, the most significant budget items of the remedial action are the costs for transportation and disposal of soil at an off-site facility. At these sites, the objective is to excavate and dispose of only those soils that exceed derived concentration guideline levels. In situ soil segregation using gross gamma detectors to guide the excavation is often challenging at sites where the soil contamination is overlain by clean soil or where the contaminated soil is located in isolated, subsurface pockets. In addition, data gaps are often identified during the alternative evaluation and selection process, resulting in increased uncertainty in the extent of subsurface contamination. In response, the U.S. Army Corps of Engineers, Buffalo District is implementing ex situ soil segregation methods. At the remediated Painesville Site, soils were excavated and fed through a conveyor-belt system, which automatically segregated them into above- and below-cleanup criteria discharge piles utilizing gamma spectroscopy. At the Linde Site and the Shallow Land Disposal Area (SLDA) Site, which are both in the remediation phase, soils are initially segregated during the excavation process using gross gamma detectors and then transported to a pad for confirmatory manual surveying and sampling. At the Linde Site, the ex situ soils are analyzed on the basis of a site-specific method, to establish compliance with beneficial reuse criteria that were developed for the Linde remediation. At the SLDA Site, the ex situ soils are surveyed and sampled based on Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) final status survey guidance to demonstrate compliance with the derived concentration guideline levels. At all three sites, the ex situ soils that meet the site- specific DCGLs are retained on-site and used as backfill material. This paper describes the ex situ soil segregation methods, the considerations of each method, and the estimated cost savings from minimizing the volume of soil requiring transportation and off-site disposal. (authors)

  17. Geological Disposal Concept Selection Aligned with a Voluntarism Process - 13538

    SciTech Connect (OSTI)

    Crockett, Glenda; King, Samantha [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)] [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)

    2013-07-01T23:59:59.000Z

    The UK's Radioactive Waste Management Directorate (RWMD) is currently at a generic stage in its implementation programme. The UK site selection process is a voluntarist process and, as yet, no communities have decided to participate. RWMD has set out a process to describe how a geological disposal concept would be selected for the range of higher activity wastes in the UK inventory, including major steps and decision making points, aligned with the stages of the UK site selection process. A platform of information is being developed on geological disposal concepts at various stages of implementation internationally and, in order to build on international experience, RWMD is developing its approach to technology transfer. The UK has a range of different types of higher activity wastes with different characteristics; therefore a range of geological disposal concepts may be needed. In addition to identifying key aspects for considering the compatibility of different engineered barrier systems for different types of waste, RWMD is developing a methodology to determine minimum separation distances between disposal modules in a co-located geological disposal facility. RWMD's approach to geological disposal concept selection is intended to be flexible, recognising the long term nature of the project. RWMD is also committed to keeping alternative radioactive waste management options under review; an approach has been developed and periodic reviews of alternative options will be published. (authors)

  18. Evaluation of Low-Level Waste Disposal Receipt Data for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    SciTech Connect (OSTI)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Robert [WPS: WASTE PROJECTS AND SERVICES

    2012-04-17T23:59:59.000Z

    The Los Alamos National Laboratory (LANL or the Laboratory) generates radioactive waste as a result of various activities. Operational or institutional waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare and maintain site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on-site and off-site exposure scenarios. The assessments are based on existing site and disposal facility data and on assumptions about future rates and methods of waste disposal. The accuracy of the performance assessment and composite analysis depends upon the validity of the data used and assumptions made in conducting the analyses. If changes in these data and assumptions are significant, they may invalidate or call into question certain aspects of the analyses. For example, if the volumes and activities of waste disposed of during the remainder of the disposal facility's lifetime differ significantly from those projected, the doses projected by the analyses may no longer apply. DOE field sites are required to implement a performance assessment and composite analysis maintenance program. The purpose of this program is to ensure the continued applicability of the analyses through incremental improvement of the level of understanding of the disposal site and facility. Site personnel are required to conduct field and experimental work to reduce the uncertainty in the data and models used in the assessments. Furthermore, they are required to conduct periodic reviews of waste receipts, comparing them to projected waste disposal rates. The radiological inventory for Area G was updated in conjunction with Revision 4 of the performance assessment and composite analysis (Shuman, 2008). That effort used disposal records and other sources of information to estimate the quantities of radioactive waste that have been disposed of at Area G from 1959, the year the facility started receiving waste on a routine basis, through 2007. It also estimated the quantities of LLW that will require disposal from 2008 through 2044, the year in which it is assumed that disposal operations at Area G will cease. This report documents the fourth review of Area G disposal receipts since the inventory was updated and examines information for waste placed in the ground during fiscal years (FY) 2008 through 2011. The primary objective of the disposal receipt review is to ensure that the future waste inventory projections developed for the performance assessment and composite analysis are consistent with the actual types and quantities of waste being disposed of at Area G. Toward this end, the disposal data that are the subject of this review are used to update the future waste inventory projections for the disposal facility. These projections are compared to the future inventory projections that were develope

  19. WIPP 2004 Site Environmental Report

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC, Washington Regulatory and Environmental Services

    2005-09-30T23:59:59.000Z

    The mission of Waste Isolation Pilot Plant (WIPP) is to safely and permanently dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States (U.S.). In 2004, 8,839 cubic meters (m3) of TRU waste were emplaced at WIPP. From the first receipt of waste in March 1999 through the end of 2004, 25,809 m3 of TRU waste had been emplaced at WIPP. The U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of WIPP environmental resources. DOE Order 450.1, Environmental Protection Program; DOE Order 231.1A, Environment, Safety, and Health Reporting; and DOE Order 5400.5, Radiation Protection of the Public and Environment, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2004 Site Environmental Report (SER) summarizes environmental data from 2004 that characterize environmental management performance and demonstrate compliance with applicable federal and state regulations. This report was prepared in accordance with DOE Order 231.1A, and Guidance for the Preparation of DOE Annual Site Environmental Reports (ASERs) for Calendar Year 2004 (DOE, 2005). The order and the guidance require that DOE facilities submit an annual SER to the DOE Headquarters Office of the Assistant Secretary for Environment, Safety, and Health. The WIPP Hazardous Waste Facility Permit (HWFP) further requires that the SER be provided to the New Mexico Environment Department (NMED).

  20. Laboratory Waste Disposal HAZARDOUS GLASS

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can without any treatment. Hazardous Glass and Plastic: Items that can puncture, cut or scratch if disposed of in normal trash containers. Pasteur pipettes Other pipettes and tips (glass or plastic) Slides and cover

  1. Integrated Disposal Facility Risk Assessment

    SciTech Connect (OSTI)

    MANN, F. M.

    2003-06-03T23:59:59.000Z

    An environmental risk assessment associated with the disposal of projected Immobilized Low-Activity Waste, solid wastes and failed or decommissioned melters in an Integrated Disposal Facility was performed. Based on the analyses all performance objectives associated with the groundwater, air, and intruder pathways were met.

  2. Nevada Test Site Waste Acceptance Criteria

    SciTech Connect (OSTI)

    U.S. Department of Energy, Nevada Operations Office, Waste Acceptance Criteria

    1999-05-01T23:59:59.000Z

    This document provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the Nevada Test Site.

  3. Site C

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O'1 ~(3JlpV Project Proposal -Site40s'

  4. Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site

    SciTech Connect (OSTI)

    Bechtel Nevada

    2005-06-01T23:59:59.000Z

    This document is an integrated plan for closing and monitoring two low-level radioactive waste disposal sites at the Nevada Test Site.

  5. Review: Rare Plants of Washington State

    E-Print Network [OSTI]

    Miller, Ryder W.

    2013-01-01T23:59:59.000Z

    Field Guide to the Rare Plants of Washington Pamela Camp andField Guide to the Rare Plants of Washington. Seattle, WA:State’s 3600 vascular plants, 600 mosses, and 1000-1500

  6. UNIVERSITY OF WASHINGTON SEATTLE, WASHINGTON 98195-7730

    E-Print Network [OSTI]

    Borenstein, Elhanan

    of Washington September 2006 #12;3) Rubber O-rings. We reuse the O-rings over and over. We purchase bags of 25 for applying vacuum grease. Puritan Applicator Sticks Harwood Products Guilford, ME 04443-0149 No. 807 1000 6 Number 1-000-0250 Drummond Scientific Company Broomall, PA 7) Schneider's tissue culture medium (500 ml

  7. Robert Blankenship Director Washington University Dewey Holten

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Washington University David Bocian, University of California, Riverside Donald Bryant, Pennsylvania State University Richard Cogdell, University of Glasgow P. Leslie...

  8. EIS-0456: Cushman Hydroelectric Project, Tacoma, Washington

    Broader source: Energy.gov [DOE]

    This EIS is for the design and construction of certain components of the Cushman Hydroelectric Project in Mason County, Washington.

  9. Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3

    SciTech Connect (OSTI)

    Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

    2013-07-29T23:59:59.000Z

    Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

  10. Beneficial Reuse at Bodo Canyon Site

    Broader source: Energy.gov [DOE]

    The George Washington UniversityEnvironmental Resource Policy Graduate Program Capstone ProjectBeneficial Reuse at Bodo Canyon SiteFeasibility and Community Support for Photovoltaic ArrayMay 2012

  11. MONITORING AND MODELING NEARSHORE DREDGE DISPOSAL FOR INDIRECT BEACH NOURISHMENT, OCEAN BEACH, SAN

    E-Print Network [OSTI]

    MONITORING AND MODELING NEARSHORE DREDGE DISPOSAL FOR INDIRECT BEACH NOURISHMENT, OCEAN BEACH, SAN FRANCISCO Patrick L. Barnard1 , Daniel M. Hanes1 , Jamie Lescinski1 and Edwin Elias2 Nearshore dredge toward the shore, providing evidence that annual dredge disposal at this site could be beneficial over

  12. Denman Forestry Issues Series: Washington's Forest Regulations

    E-Print Network [OSTI]

    Borenstein, Elhanan

    Denman Forestry Issues Series: Washington's Forest Regulations and Their Impacts on The Private College of Forest Resources continued its Denman Forestry Issues Series on May 30, 2001. Alumni landowners. Policy analysts and speakers representing the Washington Farm Forestry Assn., Washington Forest

  13. Hanford Site air operating permit application

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    The Clean Air Act Amendments of 1990, which amended the Federal Clean Air Act of 1977, required that the US Environmental Protection Agency develop a national Air Operating Permit Program, which in turn would require each state to develop an Air Operating Permit Program to identify all sources of ``regulated`` pollutants. Regulated pollutants include ``criteria`` pollutants (oxides of nitrogen, sulfur oxides, total suspended particulates, carbon monoxide, particulate matter greater than 10 micron, lead) plus 189 other ``Hazardous`` Air Pollutants. The Hanford Site, owned by the US Government and operated by the US Department of Energy, Richland Operations Office, is located in southcentral Washington State and covers 560 square miles of semi-arid shrub and grasslands located just north of the confluence of the Snake and Yakima Rivers with the Columbia River. This land, with restricted public access, provides a buffer for the smaller areas historically used for the production of nuclear materials, waste storage, and waste disposal. About 6 percent of the land area has been disturbed and is actively used. The Hanford Site Air Operating Permit Application consists of more than 1,100 sources and in excess of 300 emission points. Before January 1995, the maintenance and operations contractor and the environmental restoration contractor for the US Department of Energy completed an air emission inventory on the Hanford Site. The inventory has been entered into a database so that the sources and emission points can be tracked and updated information readily can be retrieved. The Hanford Site Air Operating Permit Application contains information current as of April 19, 1995.

  14. Laboratory to demolish excavation enclosures at Material Disposal Area B

    E-Print Network [OSTI]

    to hazardous and radiological contamination while excavating and packaging contaminated debris and soil from of a highly successful environmental cleanup project at Material Disposal Area B," said Ed Worth, federal project manager #12;- 2 - with the National Nuclear Security Administration's Los Alamos Site Office. "We

  15. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ERDF Expansion Title: Keywords: ERDF, Environmental Restoration Disposal Facility, landfill, supercell, Description: Disposal of waste continues while preparations are made to...

  16. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1Photo1EDFWasteDisposal.jpg Gallery: ERDF Reaches 14 million Title: Keywords: ERDF, landfill, disposal Description: Workers uses bulldozers and sheepsfoot compactors to spread...

  17. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10.jpg Gallery: ERDF Reaches 14 million Title: Keywords: ERDF, landfill, disposal Description: The Environmental Restoration Disposal Facility covers an area the size of 52...

  18. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8997.JPG Gallery: ERDF Reaches 14 million Title: Keywords: ERDF, landfill, disposal Description: The Environmental Restoration Disposal Facility currently has about 1,300 waste...

  19. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25.jpg Gallery: ERDF Reaches 14 million Title: Keywords: ERDF, landfill, disposal Description: The Environmental Restoration Disposal Facility has a stellar safety record. S.M....

  20. Transportation, Aging and Disposal Canister System Performance...

    Broader source: Energy.gov (indexed) [DOE]

    This document provides specifications for selected system components of the Transportation, Aging and Disposal (TAD) canister-based system. Transportation, Aging and Disposal...

  1. Ethidium Bromide: Disposal, Decontamination, and Destruction

    E-Print Network [OSTI]

    Jia, Songtao

    Ethidium Bromide: Disposal, Decontamination, and Destruction Procedure: 8.03 Created: 2 #12;Ethidium Bromide: Disposal, Decontamination, and Destruction Procedure: 8.03 Created: 2

  2. Cultural Resources Review for Closure of the nonradioactive Dangerous Waste Landfill and Solid Waste Landfill in the 600 Area, Hanford Site, Benton County, Washington, HCRC# 2010-600-018R

    SciTech Connect (OSTI)

    Gutzeit, Jennifer L.; Kennedy, Ellen P.; Bjornstad, Bruce N.; Sackschewsky, Michael R.; Sharpe, James J.; DeMaris, Ranae; Venno, M.; Christensen, James R.

    2011-02-02T23:59:59.000Z

    The U.S. Department of Energy Richland Operations Office is proposing to close the Nonradioactive Dangerous Waste Landfill (NRDWL) and Solid Waste Landfill (SWL) located in the 600 Area of the Hanford Site. The closure of the NRDWL/SWL entails the construction of an evapotranspiration cover over the landfill. This cover would consist of a 3-foot (1-meter) engineered layer of fine-grained soil, modified with 15 percent by weight pea gravel to form an erosion-resistant topsoil that will sustain native vegetation. The area targeted for silt-loam borrow soil sits in Area C, located in the northern central portion of the Fitzner/Eberhardt Arid Lands Ecology (ALE) Reserve Unit. The pea gravel used for the mixture will be obtained from both off-site commercial sources and an active gravel pit (Pit #6) located just west of the 300 Area of the Hanford Site. Materials for the cover will be transported along Army Loop Road, which runs from Beloit Avenue (near the Rattlesnake Barricade) east-northeast to the NRDWL/SWL, ending at State Route 4. Upgrades to Army Loop Road are necessary to facilitate safe bidirectional hauling traffic. This report documents a cultural resources review of the proposed activity, conducted according to Section 106 of the National Historic Preservation Act of 1966.

  3. mentor memo University of Washington

    E-Print Network [OSTI]

    Van Volkenburgh, Elizabeth

    mentor memo University of Washington the graduate school autumn quarter 2009 By Sabrina Bonaparte Network: Finding Mentors What do mentors do? Mentors help you learn and often share common topical a personal manner. Mentors understand you, see potential in you, and help you develop that potential

  4. Washington Update March 14, 2011

    E-Print Network [OSTI]

    Washington Update March 14, 2011 Nominations for the National Climate Assessment Development a very wide range of expertise is required on the NCADAC.Nominees are sought who have · sectoral expertise, including the natural environment, agriculture and forestry, energy, land cover and land use

  5. FEDERAL COMMUNICATIONS COMMISSION Washington, DC

    E-Print Network [OSTI]

    Peha, Jon M.

    1 Before the FEDERAL COMMUNICATIONS COMMISSION Washington, DC GN Docket No. 14-28 In the Matter 15213-3890 peha@cmu.edu July 15, 2014 #12;2 Executive Summary It is important for the Commission situated entity. This policy would particularly benefit new entrepreneurial ventures. The Commission should

  6. Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal...

    Energy Savers [EERE]

    ERDF comprises a series disposal areas called cells. Each pair of cells is 70 feet deep, 500 feet wide and 1,000 feet long at the base - large enough to hold about three million...

  7. Developing operating procedures for a low-level radioactive waste disposal facility

    SciTech Connect (OSTI)

    Sutherland, A.A.; Miner, G.L.; Grahn, K.F.; Pollard, C.G. [Rogers and Associates Engineering Corp., Salt Lake City, UT (United States)

    1993-10-01T23:59:59.000Z

    This document is intended to assist persons who are developing operating and emergency procedures for a low-level radioactive waste disposal facility. It provides 25 procedures that are considered to be relatively independent of the characteristics of a disposal facility site, the facility design, and operations at the facility. These generic procedures should form a good starting point for final procedures on their subjects for the disposal facility. In addition, this document provides 55 annotated outlines of other procedures that are common to disposal facilities. The annotated outlines are meant as checklists to assist the developer of new procedures.

  8. Remedial Action Plan and Site Design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Appendix C to Attachment 3, Calculations. Final

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This volume contains calculations for: Slick Rock processing sites background ground water quality; Slick Rock processing sites lysimeter water quality; Slick Rock processing sites on-site and downgradient ground water quality; Slick Rock disposal site background water quality; Burro Canyon disposal site, Slick Rock, Colorado, average hydraulic gradients and average liner ground water velocities in the upper, middle, and lower sandstone units of the Burro Canyon formation; Slick Rock--Burro Canyon disposal site, Burro Canyon pumping and slug tests--analyses; water balance and surface contours--Burro Canyon disposal cell; and analytical calculation of drawdown in a hypothetical well completed in the upper sandstone unit of the Burro Canyon formation.

  9. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    SciTech Connect (OSTI)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    2005-07-01T23:59:59.000Z

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.

  10. Solid Waste Disposal Act (Texas)

    Broader source: Energy.gov [DOE]

    The Texas Commission on Environmental Quality is responsible for the regulation and management of municipal solid waste and hazardous waste. A fee is applied to all solid waste disposed in the...

  11. EIS-0243: Nevada Test Site and Off-Site Locations in the State of Nevada

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of the management of low-level waste (LLW) at all sites and continue, to the extent practicable, disposal of on- site LLW at the Idaho...

  12. Hanford Site Pollution Prevention Plan progress report, 1994. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This report tracks progress made during 1994 against the goals stated in DOE/RL-92-62, Executive Summary, Hanford Site Pollution Prevention Plan. The Executive Summary of the plan was submitted to the Washington State Department of Ecology (Ecology) in September 1992. The plan, Executive Summary, and the progress reports are elements of a pollution prevention planning program that is required by WAC 173-307, ``Plans,`` for all hazardous substance users and/or all hazardous waste generators regulated by Ecology. These regulations implement RCW 70.95C, ``Waste Reduction,`` an act relating to hazardous waste reduction. The act encourages voluntary efforts to redesign industrial processes to help reduce or eliminate hazardous substances and hazardous waste byproducts, and to maximize the in-process reuse or reclamation of valuable spent material. The Hanford Site is voluntarily complying with this state regulatory-mandated program. All treatment, storage, or disposal (TSD) facilities are exempt from participating; the Hanford Site is classified as a TSD.

  13. Waset Isolation Pilot Plant Annual Site Environmental Report for 2006

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2007-09-26T23:59:59.000Z

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2006 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data that: (a) Characterize site environmental management performance; (b) Summarize environmental occurrences and responses reported during the calendar year; (c) Confirm compliance with environmental standards and requirements; and (d) Highlight significant facility programs and efforts. The DOE Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) maintain and preserve the environmental resources at the WIPP site. DOE Order 231.1A; DOE Order 450.1, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This report was prepared in accordance with DOE Order 231.1A. This order requires that DOE facilities submit an ASER to the DOE Headquarters Office of the Assistant Secretary for Environment, Safety, and Health. The WIPP Hazardous Waste Facility Permit (HWFP) (No. NM4890139088-TSDF [treatment, storage, and disposal facility]) further requires that the ASER be provided to the New Mexico Environment Department (NMED).

  14. Programmatic agreement among the USDOE/RL Operations Office, the Advisory Council on Historic Preservation, and the WA State Historic Preservation Office for the maintenance, deactivation, alteration and demolition of the built environment on the Hanford Site, Washington

    SciTech Connect (OSTI)

    Lloyd, D.W.

    1997-08-01T23:59:59.000Z

    This Programmatic Agreement (PA) addresses the built environment (i.e., buildings and structures) constructed during the Manhattan Project and Cold War Era periods of Hanford`s operational history. As such it encompasses the years 1943 through 1990. The identification, evaluation, and treatment of buildings and historic archeological remains on the Hanford Site predating 1943 will be accomplished through Sections 800.4 through 800.6 of the Council`s regulations. This PA will be in effect from the date of signature until September 30, 2000. Completion of the Sitewide Treatment Plan established under this PA satisfies all Section 106 requirements for identification, evaluation, and treatment necessary for all undertakings, up to and including demolition which may affect Manhattan Project and Cold War Era properties. This PA may be extended if the Sitewide Treatment Plan has not been completed by the end of FY 2000. Identification, evaluation, and treatment of properties constructed on the Hanford Site after 1990 will be handled pursuant to the regulations in effect at the time such properties are eligible for review.

  15. EIS-0425: Mid-Columbia Coho Restoration, Washington

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of DOE’s Bonneville Power Administration’s proposal to fund the construction, operation, and maintenance of a coho salmon restoration program sponsored by the Confederated Tribes and Bands of the Yakama Nation to help mitigate impacts to fish affected by the Federal Columbia River Power System dams on the Columbia River. The Proposed Action would involve building a new, small, in-basin adult holding/spawning, incubation and rearing facility on the Wenatchee River at one of two potential sites; and constructing and improving several sites in both the Wenatchee and Methow river basins in north central Washington State.

  16. The Texas Solution to the Nation's Disposal Needs for Irradiated Hardware - 13337

    SciTech Connect (OSTI)

    Britten, Jay M. [Waste Control Specialists LLC, Andrews, TX 79714 (United States)] [Waste Control Specialists LLC, Andrews, TX 79714 (United States)

    2013-07-01T23:59:59.000Z

    The closure of the disposal facility in Barnwell, South Carolina, to out-of-compact states in 2008 left commercial nuclear power plants without a disposal option for Class B and C irradiated hardware. In 2012, Waste Control Specialists LLC (WCS) opened a highly engineered facility specifically designed and built for the disposal of Class B and C waste. The WCS facility is the first Interstate Compact low-level radioactive waste disposal facility to be licensed and operated under the Low-level Waste Policy Act of 1980, as amended in 1985. Due to design requirements of a modern Low Level Radioactive Waste (LLRW) facility, traditional methods for disposal were not achievable at the WCS site. Earlier methods primarily utilized the As Low as Reasonably Achievable (ALARA) concept of distance to accomplish worker safety. The WCS method required the use of all three ALARA concepts of time, distance, and shielding to ensure the safe disposal of this highly hazardous waste stream. (authors)

  17. EIS-0119: Decommissioning of Eight Surplus Production Reactors at the Harford Site, Richland, WA

    Broader source: Energy.gov [DOE]

    This EIS presents analyses of potential environmental impacts of decommissioning the eight surplus production reactors at the Hanford Site near Richland, Washington.

  18. OAR 340-120 - Additional Siting and Permitting Requirements for...

    Open Energy Info (EERE)

    and Disposal Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: OAR 340-120 - Additional Siting and...

  19. Radiological Survey Results for Areas A1 North, A5A, A6, and B2 at the Molycorp Washington Remediation Project, Washington, Pennsylvania

    SciTech Connect (OSTI)

    W.C. Adams

    2007-03-13T23:59:59.000Z

    Perform radiological surveys of the Molycorp Washington Remediation Project (MWRP) facility in Washington, Pennsylvania

  20. Disposal of NORM-Contaminated Oil Field Wastes in Salt Caverns

    SciTech Connect (OSTI)

    Blunt, D.L.; Elcock, D.; Smith, K.P.; Tomasko, D.; Viel, J.A.; and Williams, G.P.

    1999-01-21T23:59:59.000Z

    In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean ''oil field waste contaminated by NORM''.

  1. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Washington. Preliminary background report

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01T23:59:59.000Z

    The Washinton State Constitution grants authority to the legislature to regulate railroads and other common carriers as well as telegraph and telephone companies in the state. No section of the constitution expressly provides for the regulation of electric, gas, water, or heating utilities. The authority to regulate public utilities is vested generally in the Utilities and Transportation Commission, formerly designated at the Public Service Commission. The Commission is composed of three members appointed by the governor, with the consent of the senate. The term of office for commissioners is six years. Recently enacted legislation provides for the implementation of tax incentives to encourage the development of cogeneration facilities in the state. This plan is to be administered by the Department of Revenue in conjunction with the Energy Office. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  2. Long-term surveillance plan for the Burro Canyon disposal cell Slick Rock, Colorado

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Burro Canyon disposal cell in San Miguel County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Burro Canyon disposal cell. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete at the Burro Canyon disposal cell and the NRC formally accepts this LTSP. Attachment 1 contains the concurrence letters from NRC. This LTSP describes the long-term surveillance program the DOE has implemented to ensure that the Burro Canyon disposal cell performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. Ground water monitoring will not be required at the Burro Canyon disposal cell because the ground water protection strategy is supplemental standards based on low yield from the uppermost aquifer. The LTSP is based on the UMTRA Project`s long-term surveillance program guidance and meets the requirements of 10 CFR 40.27(b) and 40 CFR 192.03.

  3. Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria

    SciTech Connect (OSTI)

    W. Mahlon Heileson

    2006-10-01T23:59:59.000Z

    The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

  4. Cleanup of the Western Research Institute North Site. Final report

    SciTech Connect (OSTI)

    Merriam, N.W.

    1996-09-01T23:59:59.000Z

    The objective of this project is to clean up the Western Research Institute`s North Site in an environmentally sound and cost-effective manner. Work is broken down into the following phases: Phase 1, definition of waste streams; Phase 2, disposal of hazardous wastes; Phase 3, disposal of nonhazardous materials; Phase 4, soil sampling and disposal of buried wastes; Phase 5, decontamination and disposal of equipment; Phase 5a, groundwater monitoring; and Phase 6, preparation of material inventory database.

  5. A new method of petroleum sludge disposal and utilization

    SciTech Connect (OSTI)

    Kanakamedala, R.D.; Islam, M.R. [South Dakota School of Mines and Technology, Rapid City, SD (United States)

    1995-12-31T23:59:59.000Z

    Disposal of the oil sludge is one of the fundamental problems of petroleum production. Increasingly stringent environmental control regulations, lack of final disposal sites, and high costs involved in disposal have resulted in limitations off oil sludge disposal options. In this study, two options for disposing the oil sludge are investigated. One option is the use of solid-liquid centrifugal separation. The second option is the use of the oil sludge as a cementing material. It is shown that the two options can be used in tandem for total remediation of the petroleum sludge. If the initial oil concentration in the sludge is high, high temperature centrifugation with biodegradable surfactant is recommended to lower the concentration to a reasonable value. The resulting solid extract was mixed with cement and silica fume and examined for cementing properties. Evaluation of compressive strengths of the mortar cubes indicates that it is possible to produce cement from the oil sludge which will satisfy the strength requirements in the ASTM standard for masonry cement.

  6. Depleted uranium disposal options evaluation

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D. [Science Applications International Corp., Idaho Falls, ID (United States). Waste Management Technology Div.

    1994-05-01T23:59:59.000Z

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

  7. Waste Isolation Pilot Plant Annual Site Enviromental Report for 2008

    SciTech Connect (OSTI)

    Washington Regulatory and Enviromnetal Services

    2009-09-21T23:59:59.000Z

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2008 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to characterize site environmental management performance; summarize environmental occurrences and responses reported during the calendar year; confirm compliance with environmental standards and requirements; highlight significant facility programs and efforts; and describe how compliance and environmental improvement is accomplished through the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the Waste Isolation Pilot Plant (WIPP). DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit (HWFP) Number NM4890139088-TSDF (treatment, storage, and disposal facility) further requires that the ASER be provided to the New Mexico Environment Department (NMED). The WIPP mission is to safely dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States. In 2008, 5,265 cubic meters (m3) of TRU waste were disposed of at the WIPP facility, including 5,216 m3 of contact-handled (CH) TRU waste and 49 m3 of remote-handled (RH) TRU waste. From the first receipt of waste in March 1999 through the end of 2008, 57,873 m3 of TRU waste had been disposed of at the WIPP facility.

  8. Reactor Pressure Vessel Head Packaging & Disposal

    SciTech Connect (OSTI)

    Wheeler, D. M.; Posivak, E.; Freitag, A.; Geddes, B.

    2003-02-26T23:59:59.000Z

    Reactor Pressure Vessel (RPV) Head replacements have come to the forefront due to erosion/corrosion and wastage problems resulting from the susceptibility of the RPV Head alloy steel material to water/boric acid corrosion from reactor coolant leakage through the various RPV Head penetrations. A case in point is the recent Davis-Besse RPV Head project, where detailed inspections in early 2002 revealed significant wastage of head material adjacent to one of the Control Rod Drive Mechanism (CRDM) nozzles. In lieu of making ASME weld repairs to the damaged head, Davis-Besse made the decision to replace the RPV Head. The decision was made on the basis that the required weld repair would be too extensive and almost impractical. This paper presents the packaging, transport, and disposal considerations for the damaged Davis-Besse RPV Head. It addresses the requirements necessary to meet Davis Besse needs, as well as the regulatory criteria, for shipping and burial of the head. It focuses on the radiological characterization, shipping/disposal package design, site preparation and packaging, and the transportation and emergency response plans that were developed for the Davis-Besse RPV Head project.

  9. Long-Term Performance of Uranium Tailings Disposal Cells - 13340

    SciTech Connect (OSTI)

    Bostick, Kent; Daniel, Anamary; Pill, Ken [Professional Project Services, Inc., 1100 Bethel Valley Road, Oak Ridge, TN, 37922 (United States)] [Professional Project Services, Inc., 1100 Bethel Valley Road, Oak Ridge, TN, 37922 (United States); Tachiev, Georgio; Noosai, Nantaporn; Villamizar, Viviana [Florida International University, 10555 W. Flagler St., EC 2100, Miami FL, 33174 (United States)] [Florida International University, 10555 W. Flagler St., EC 2100, Miami FL, 33174 (United States)

    2013-07-01T23:59:59.000Z

    Recently, there has been interest in the performance and evolution of Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cell covers because some sites are not compliant with groundwater standards. Field observations of UMTRA disposal cells indicate that rock covers tend to become vegetated and that saturated conductivities in the upper portion of radon barriers may increase due to freeze/thaw cycles and biointrusion. This paper describes the results of modeling that addresses whether these potential changes and transient drainage of moisture in the tailings affect overall performance of the disposal cells. A numerical unsaturated/saturated 3-dimensional flow model was used to simulate whether increases in saturated conductivities in radon barriers with rock covers affect the overall performance of the disposal cells using field data from the Shiprock, NM, UMTRA site. A unique modeling approach allowed simulation with daily climatic conditions to determine changes in moisture and moisture flux from the disposal cell. Modeling results indicated that increases in the saturated conductivity at the top of radon barrier do not influence flux from the tailings with time because the tailings behave similar hydraulically to the radon barrier. The presence of a thin layer of low conductivity material anywhere in the cover or tailings restricts flux in the worst case to the saturated conductivity of that material. Where materials are unsaturated at depth within the radon barrier of tailings slimes, conductivities are typically less than 10{sup -8} centimeters per second. If the low conductivity layer is deep within the disposal cell, its saturated properties are less likely to change with time. The significance of this modeling is that operation and maintenance of the disposal cells can be minimized if they are allowed to progress to a natural condition with some vegetation and soil genesis. Because the covers and underlying tailings have a very low saturated hydraulic conductivity after transient drainage, eventually the amount of moisture leaving the tailings has a negligible effect on groundwater quality. Although some of the UMTRA sites are not in compliance with the groundwater standards, the explanation may be legacy contamination from mining, or earlier higher fluxes from the tailings or unlined processing ponds. Investigation of other legacy sources at the UMTRA sites may help explain persistent groundwater contamination. (authors)

  10. Reducing biosolids disposal costs using land application in forested areas

    SciTech Connect (OSTI)

    Huffines, R.L.

    1995-11-01T23:59:59.000Z

    Switching biosolids land application from a reclamation site to a forested site significantly reduced the cost of biosolids disposal at the Savannah River Site. Previous beneficial reuse programs focused on reclamation of existing borrow pits. While extremely beneficial, this program became very costly due to the regulatory requirements for groundwater monitoring, soil monitoring and frequent biosolids analyses. A new program was developed to reuse biosolids in forested areas where the biosolids could be used as a soil conditioner and fertilizer to enhance timber yield. The forested land application site was designed so that groundwater monitoring and soil monitoring could be eliminated while biosolids monitoring and site maintenance were minimized. Monitoring costs alone were reduced by 80%. Capital costs for site preparation were also significantly reduced since there was no longer a need for expensive groundwater monitoring wells.

  11. Washington: a guide to geothermal energy development

    SciTech Connect (OSTI)

    Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

    1980-06-01T23:59:59.000Z

    Washington's geothermal potential is discussed. The following topics are covered: exploration, drilling, utilization, legal and institutional setting, and economic factors of direct use projects. (MHR)

  12. Bonneville Power Administration, Oregon Energy Northwest, Washington...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bonneville Power Administration, Oregon Energy Northwest, Washington; Wholesale Electric Primary Credit Analyst: David N Bodek, New York (1) 212-438-7969; david.bodek@standardandpo...

  13. Energy Northwest, Washington Bonneville Power Administration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Northwest, Washington Bonneville Power Administration, Oregon; Wholesale Electric Primary Credit Analyst: David N Bodek, New York (1) 212-438-7969; david.bodek@standardandpoors.com...

  14. USDA Rural Development Washington State Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Agriculture is hosting a Washington Rural Development Workshop. Speakers will cover local and regional broadband initiatives program and broadband success stories,...

  15. Washington Environmental Permit Handbook - NPDES Construction...

    Open Energy Info (EERE)

    Washington Environmental Permit Handbook - NPDES Construction Stormwater General Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory...

  16. Federal Utility Partnership Working Group Meeting: Washington...

    Broader source: Energy.gov (indexed) [DOE]

    Federal Utility Partnership Working Group Meeting: Washington Update fupwgspring12unruh.pdf More Documents & Publications Federal Utility Partnership Working Group Meeting:...

  17. Preliminary Notice of Violation, Washington Closure Hanford,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Notice of Violation, Savannah River Nuclear Solutions, LLC - WEA-2012-04 Type B Accident Investigation At Washington Closure Hanford, LLC, Employee Fall Injury on July 1,...

  18. Disposable telemetry cable deployment system

    DOE Patents [OSTI]

    Holcomb, David Joseph (Sandia Park, NM)

    2000-01-01T23:59:59.000Z

    A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.

  19. Confocal {mu}-XRF, {mu}-XAFS, and {mu}-XRD Studies of Sediment from a Nuclear Waste Disposal Natural Analogue Site and Fractured Granite Following a Radiotracer Migration Experiment

    SciTech Connect (OSTI)

    Denecke, Melissa A.; Brendebach, Boris; Rothe, Joerg; Simon, Rolf [Forschungszentrum Karlsruhe, P.O. Box 3640, D-76021 Karlsruhe (Germany); Janssens, Koen; Nolf, Wout de; Vekemans, Bart [Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp (Belgium); Falkenberg, Gerald [Hamburger Synchrotronstrahlungslabor (HASYLAB) at DESY, Notkestr. 85, D-22603 Hamburg (Germany); Somogyi, Andrea [Synchrotron Soleil, F-91192 Gif-sur-Yvette Cedex (France); Noseck, Ulrich [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Theodor-Heuss-Strasse 4, D-38122 Braunschweig (Germany)

    2007-02-02T23:59:59.000Z

    Combined {mu}-XRF, {mu}-XAFS, and {mu}-XRD investigations of a uranium-rich tertiary sediment, from a nuclear repository natural analogue site, and a fractured granite bore core section after a column tracer experiment using a Np(V) containing cocktail have been performed. Most {mu}-XRF/{mu}-XAFS measurements are recorded in a confocal geometry to provide added depth information. The U-rich sediment results show uranium to be present as a tetravalent phosphate and that U(IV) is associated with As(V). Arsenic present is either As(V) or As(0). The As(0) forms thin coatings on the surface of pyrite nodules. A hypothesis for the mechanism of uranium immobilization is proposed, where arsenopyrite acted as reductant of ground water dissolved U(VI) leading to precipitation of less soluble U(IV) and thereby forming As(V). Results for the granite sample show the immobilized Np to be tetravalent and associated with facture material.

  20. West Hackberry Strategic Petroleum Reserve site brine disposal monitoring, Year I report. Volume V. Supporting data for estuarine hydrology, discharge plume analysis, chemical oceanography, biological oceanography, and data management. Final report

    SciTech Connect (OSTI)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

    1983-02-01T23:59:59.000Z

    This project centers around the Strategic Petroleum Site (SPR) known as the West Hackberry salt dome which located in southwestern Louisiana, and which is designed to store 241 million barrels of crude oil. Oil storage caverns are formed by injecting water into salt deposits, and pumping out the resulting brine. Studies described in this report were designed as follow-on studies to three months of pre-discharge characterization work, and include data collected during the first year of brine leaching operations. The objectives were to: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significant adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. Volume V contains appendices for the following: supporting data for estuarine hydrology and hydrography; supporting data analysis of discharge plume; supporting data for water and sediment chemistry; CTD/DO and pH profiles during biological monitoring; supporting data for nekton; and supporting data for data management.

  1. Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.

    SciTech Connect (OSTI)

    Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr. (; .)

    2007-01-01T23:59:59.000Z

    Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

  2. Aerospace & Energetics Research Program -University of Washington Plasma Dynamics Group

    E-Print Network [OSTI]

    Shumlak, Uri

    - University of Washington Plasma Dynamics Group q The Boltzmann equation is seven dimensional. qAerospace & Energetics Research Program - University of Washington Plasma Dynamics Group Plasma Research Program - University of Washington Plasma Dynamics Group Abstract Many current plasma simulation

  3. Washington Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYearFuel Consumption0 0Feet)Same MonthWashington

  4. Washington Post editor David E.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOE AwardsD ContractBOE ReserveWashington Post

  5. Hanford Site Groundwater Monitoring for Fiscal Year 2002

    SciTech Connect (OSTI)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2003-02-28T23:59:59.000Z

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2002 on the U.S. Department of Energy's Hanford Site in Washington State. This report is written to meet the requirements in CERCLA, RCRA, the Atomic Energy Act of 1954, and Washington State Administrative Code.

  6. MATERIAL HANDLING, STORAGE, AND DISPOSAL

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Materials shall be stored in a manner that allows easy identification and access to labels, identification entering storage areas. All persons shall be in a safe position while materials are being loadedEM 385-1-1 XX Jun 13 14-1 SECTION 14 MATERIAL HANDLING, STORAGE, AND DISPOSAL 14.A MATERIAL

  7. TECHNICAL ASSESSMENT OF FRACTIONAL CRYSTALLIZATION FOR TANK WASTE PRETREATMENT AT THE DOE HANFORD SITE

    SciTech Connect (OSTI)

    HAMILTON, D.W.

    2006-01-03T23:59:59.000Z

    Radioactive wastes from one hundred seventy-seven underground storage tanks in the 200 Area of the Department of Energy (DOE) Hanford Site in Washington State will be retrieved, treated and stored either on site or at an approved off-site repository. DOE is currently planning to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions, which would be treated and permanently disposed in separate facilities. A significant volume of the wastes in the Hanford tanks is currently classified as medium Curie waste, which will require separation and treatment at the Waste Treatment Plant (WTP). Because of the specific challenges associated with treating this waste stream, DOE EM-21 funded a project to investigate the feasibility of using fractional crystallization as a supplemental pretreatment technology. The two process requirements for fractional crystallization to be successfully applied to Hanford waste include: (1) evaporation of water from the aqueous solution to enrich the activity of soluble {sup 137}Cs, resulting in a higher activity stream to be sent to the WTP, and (2) separation of the crystalline salts that are enriched in sodium, carbonate, sulfate, and phosphate and sufficiently depleted in {sup 137}Cs, to produce a second stream to be sent to Bulk Vitrification. Phase I of this project has just been completed by COGEMA/Georgia Institute of Technology. The purpose of this report is to document an independent expert review of the Phase I results with recommendations for future testing. A team of experts with significant experience at both the Hanford and Savannah River Sites was convened to conduct the review at Richland, Washington the week of November 14, 2005.

  8. DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER

    SciTech Connect (OSTI)

    G. Radulesscu; J.S. Tang

    2000-06-07T23:59:59.000Z

    The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container along with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable canisters. The intended use of this analysis is to support Site Recommendation reports and to assist in the development of WPD drawings. Activities described in this analysis were conducted in accordance with the Development Plan ''Design Analysis for the Defense High-Level Waste Disposal Container'' (CRWMS M&O 2000c) with no deviations from the plan.

  9. Navy aquatic hazardous waste sites: the problem and possible solutions. Final report

    SciTech Connect (OSTI)

    Johnston, R.K.; Wild, W.J.; Richter, K.E.; Lapota, D.; Stang, P.M.

    1989-08-01T23:59:59.000Z

    Data on 367 hazardous waste disposal sites at 58 Navy Marine Corps activities, located in the coastal zone, were reviewed to characterize the contaminants, disposal methods, and potentially impacted environments present at navy aquatic hazardous waste sites. This report identifies Navy aquatic hazardous waste site problems, assesses technology requirements, and describes remedial pilot projects being initiated at impacted aquatic sites.

  10. Disposal requirements for PCB waste

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    Polychlorinated biphenyls (PCBs) are a class of organic chemicals that had become widely used in industrial applications due to their practical physical and chemical properties. Historical uses of PCBs include dielectric fluids (used in utility transformers, capacitors, etc.), hydraulic fluids, and other applications requiring stable, fire-retardant materials. Due to findings that PCBs may cause adverse health effects and due to their persistence and accumulation in the environment, the Toxic Substances Control Act (TSCA), enacted on october 11, 1976, banned the manufacture of PCBs after 1978 [Section 6(e)]. The first PCB regulations, promulgated at 40 CFR Part 761, were finalized on February 17, 1978. These PCB regulations include requirements specifying disposal methods and marking (labeling) procedures, and controlling PCB use. To assist the Department of Energy (DOE) in its efforts to comply with the TSCA statute and implementing regulations, the Office of Environmental Guidance has prepared the document ``Guidance on the Management of Polychlorinated Biphenyls (PCBs).`` That document explains the requirements specified in the statute and regulations for managing PCBs including PCB use, storage, transport, and disposal. PCB materials that are no longer in use and have been declared a waste must be disposed of according to the requirements found at 40 CFR 761.60. These requirements establish disposal options for a multitude of PCB materials including soil and debris, liquid PCBs, sludges and slurries, containers, transformers, capacitors, hydraulic machines, and other electrical equipment. This Information Brief supplements the PCB guidance document by responding to common questions concerning disposal requirements for PCBs. It is one of a series of Information Briefs pertinent to PCB management issues.

  11. Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste

    SciTech Connect (OSTI)

    NONE

    1998-09-01T23:59:59.000Z

    DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km) (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).

  12. Washington,

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell Director ofDepartment ofof Energy Provides DC

  13. Washington

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian Nuclear Warheads| DepartmentVictorDepartmentMarksWalk-InWas hingtonApril

  14. Export Control Laws and Washingtonand Washington

    E-Print Network [OSTI]

    1 Export Control Laws and Washingtonand Washington University For Washington University Faculty Authors: Cindy White, Research Office Tina Tyson, Office of General Counsel May 2006 What are export of foreign policy and national security. *NOTE: Export control laws apply to all activities -- not just

  15. Baer selected to join Washington Academy of Sciences | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    selected to join Washington Academy of Sciences Baer selected to join Washington Academy of Sciences Released: July 21, 2014 He is being honored for outstanding scientific...

  16. Seattle, Washington: Solar in Action (Brochure), Solar America...

    Broader source: Energy.gov (indexed) [DOE]

    Seattle, Washington: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Seattle, Washington: Solar in Action (Brochure), Solar America...

  17. Federal Utility Partnership Working Group 2011 Meeting: Washington...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 Meeting: Washington Update Federal Utility Partnership Working Group 2011 Meeting: Washington Update Presentation-given at the Fall 2011 Federal Utility Partnership Working...

  18. Disposal of chemical agents and munitions stored at Pine Bluff Arsenal, Pine Bluff, Arkansas

    SciTech Connect (OSTI)

    Ensminger, J.T.; Hillsman, E.L.; Johnson, R.D.; Morrisey, J.A.; Staub, W.P.; Boston, C.R.; Hunsaker, D.B.; Leibsch, E.; Rickert, L.W.; Tolbert, V.R.; Zimmerman, G.P.

    1991-09-01T23:59:59.000Z

    The Pine Bluff Arsenal (PBA) near Pine Bluff, Arkansas, is one of eight continental United States (CONUS) Army installations where lethal unitary chemical agents and munitions are stored and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at PBA consists of approximately 12%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts). The purpose of this report is to examine the proposed implementation of on-site disposal at PBA in light of more recent and more detailed data than those on which the FPEIS is based. New population data were used to compute fatalities using the same computation methods and values for all other parameters as in the FPEIS. Results indicate that all alternatives are indistinguishable when the potential health impacts to the PBA community are considered. However, risks from on-site disposal are in all cases equal to or less than risks from other alternatives. Furthermore, no unique resources with the potential to prevent or delay implementation of on-site disposal at PBA have been identified.

  19. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility dispose of waste material off a dump ramp in super cell 9. In the foreground, pumps from the water intake structures associated with the K reactors are set for disposal...

  20. Dredged and Fill Material Disposal (North Dakota)

    Broader source: Energy.gov [DOE]

    This chapter provides regulations for the disposal of dredged and fill material. Any entity desiring to dispose of such material must first obtain a permit, and the State Engineer has the...