National Library of Energy BETA

Sample records for washington closure hanford

  1. Washington Closure Hanford: Cleanup Progress Along Hanford's...

    Broader source: Energy.gov (indexed) [DOE]

    Sax, President, Washington Closure Hanford. Washington Closure Hanford: Cleanup Progress Along Hanford's River Corridor More Documents & Publications 2014 Congressional Nuclear...

  2. Washington Closure Hanford - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Contracting ORP Contracts and Procurements RL Contracts and Procurements CH2M HILL Plateau Remediation Company Mission Support Alliance Washington Closure Hanford HPM...

  3. Washington Closure Hanford, LLC., Hanford, June 2012

    Office of Environmental Management (EM)

    Washington Closure Hanford, LLC Report from the Department of Energy Voluntary Protection Program Onsite Review June 11-14, 2012 U.S. Department of Energy Office of Health, Safety and Security Office of Health and Safety Office of Worker Safety and Health Assistance Washington, DC 20585 Washington Closure Hanford DOE-VPP Onsite Review June 2012 i Foreword The Department of Energy (DOE) recognizes that true excellence can be encouraged and guided, but not standardized. For this reason, on January

  4. Preliminary Notice of Violation, Washington Closure Hanford,...

    Office of Environmental Management (EM)

    Issued to Washington Closure Hanford, LLC related an Employee Fall at the High Bay Testing ... At Washington Closure Hanford, LLC, Employee Fall Injury on July 1, 2009, At The 336 ...

  5. Washington Closure Hanford: Cleanup Progress Along Hanford's River Corridor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Washington Closure Hanford: Cleanup Progress Along Hanford's River Corridor Washington Closure Hanford: Cleanup Progress Along Hanford's River Corridor Presentation from the 2015 DOE National Cleanup Workshop by Scott Sax, President, Washington Closure Hanford. Washington Closure Hanford: Cleanup Progress Along Hanford's River Corridor (10.41 MB) More Documents & Publications 2014 Congressional Nuclear Cleanup Caucus Briefings 2013 Congressional Nuclear Cleanup

  6. Type B Accident Investigation At Washington Closure Hanford,...

    Energy Savers [EERE]

    LLC, Employee Fall Injury on July 1, 2009, At The 336 Building, Hanford Site, Washington Type B Accident Investigation At Washington Closure Hanford, LLC, Employee Fall Injury ...

  7. Type B Accident Investigation At Washington Closure Hanford, LLC, Employee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fall Injury on July 1, 2009, At The 336 Building, Hanford Site, Washington | Department of Energy At Washington Closure Hanford, LLC, Employee Fall Injury on July 1, 2009, At The 336 Building, Hanford Site, Washington Type B Accident Investigation At Washington Closure Hanford, LLC, Employee Fall Injury on July 1, 2009, At The 336 Building, Hanford Site, Washington July 30, 2009 During D4 project demolition preparation work on the morning of July 1, 2009, in Hanford's 300 Area, a millwright

  8. Washington Closure Hanford: Ten Years of River Corridor Cleanup |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Washington Closure Hanford: Ten Years of River Corridor Cleanup Washington Closure Hanford: Ten Years of River Corridor Cleanup December 17, 2015 - 12:30pm Addthis Contract-Timeline-E1511010_4-B_756px.jpg This timeline shows contractor Washington Closure Hanford's accomplishments over the past 10 years through its River Corridor Closure Contract. Addthis Related Articles EM Update Newsletter Spotlights River Corridor Cleanup at Hanford Site River Corridor Achievements

  9. Institute Recognizes Washington Closure Hanford as International Award

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Finalist | Department of Energy Institute Recognizes Washington Closure Hanford as International Award Finalist Institute Recognizes Washington Closure Hanford as International Award Finalist December 17, 2015 - 12:05pm Addthis RICHLAND, Wash. - The Project Management Institute (PMI) honored Hanford Site contractor Washington Closure Hanford (WCH) as a finalist for the international Project of the Year Award. WCH and the River Corridor team were recognized for their cleanup progress in this

  10. Preliminary Notice of Violation, Washington Closure Hanford, LLC -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WEA-2010-02 | Department of Energy Closure Hanford, LLC - WEA-2010-02 Preliminary Notice of Violation, Washington Closure Hanford, LLC - WEA-2010-02 August 19, 2010 Issued to Washington Closure Hanford, LLC related an Employee Fall at the High Bay Testing Facility (336 Building) at the Hanford Site On August 19, 2010, the U.S. Department of Energy (DOE) Office of Health, Safety and Security's Office of Enforcement issued a Preliminary Notice of Violation (WEA-2010-02) to Washington Closure

  11. DOE Cites Washington Closure Hanford for Safety Violations | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Closure Hanford for Safety Violations DOE Cites Washington Closure Hanford for Safety Violations August 19, 2010 - 12:00am Addthis WASHINGTON, D.C. - The U.S. Department of Energy has issued a Preliminary Notice of Violation (PNOV) to contractor Washington Closure Hanford (WCH) for violations of DOE's worker safety and health program regulations in 2009 at the Hanford Site in southeast Washington State. In a continued effort to maintain the highest level of worker safety at DOE sites,

  12. Fiscal Year 2006 Washington Closure Hanford Science & Technology Plan

    SciTech Connect (OSTI)

    K.J. Kroegler, M. Truex, D.J. McBride

    2006-01-19

    This Washington Closure Hanford science and technology (S&T) plan documents the activities associated with providing S&T support to the River Corridor Closure Project for fiscal year 2006.

  13. DOE, Washington Closure complete recycling project at Hanford | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy DOE, Washington Closure complete recycling project at Hanford DOE, Washington Closure complete recycling project at Hanford October 28, 2014 - 4:00pm Addthis Media Contacts Cameron Hardy, DOE, 509-376-5365, Cameron.Hardy@rl.doe.gov Peter Bengtson, Washington Closure Hanford, 509-372-9031, Peter.Bengtson@wch-rcc.com About $400,000 saved by recycling electrical substation components in 300 Area RICHLAND, Wash. - The U.S. Department of Energy (DOE) recently teamed with contractor

  14. Voluntary Protection Program Onsite Review, Washington Closure...

    Office of Environmental Management (EM)

    Washington Closure Hanford VPP Report - March 2009 Voluntary Protection Program Onsite Review, Washington Closure Hanford VPP Report - March 2009 March 2009 Evaluation to determine...

  15. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R-1 APPENDIX R CUMULATIVE IMPACTS: ASSESSMENT METHODOLOGY This appendix describes the cumulative impacts methodology for the U.S. Department of Energy's Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington. The appendix is organized into sections on (1) regulations and guidance, (2) previous studies, (3) history of land use at the Hanford Site and in surrounding regions, (4) future land use at the Hanford Site, (5) future land use in

  16. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -1 CHAPTER 1 PROPOSED ACTIONS: BACKGROUND, PURPOSE AND NEED Chapter 1 describes the background, purpose and need for the agency action presented in this Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (TC & WM EIS). Section 1.1 provides summary information on the size and distribution of the waste inventory at the Hanford Site (Hanford), the specific objectives of this TC & WM EIS, and the regulatory basis for the proposed

  17. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    E-1 APPENDIX E DESCRIPTIONS OF FACILITIES, OPERATIONS, AND TECHNOLOGIES Appendix E provides additional information about the technologies, processes, and facilities for the three key activities of this Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington: tank closure, Fast Flux Test Facility decommissioning, and waste management. Section E.1 includes this information for tank closure; Section E.2, for Fast Flux Test Facility

  18. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-1 APPENDIX P ECOLOGICAL RESOURCES AND RISK ANALYSIS This appendix presents the ecological resources (see Section P.1) at the Hanford Site and lists the plants and animals evaluated in this Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington. Potential impacts of both airborne releases during operations and groundwater discharges under the various alternatives are evaluated in this appendix. The purpose of the risk analysis is to compare

  19. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volume 3, Book 1 Section 1: Overview Section 2: Topics of Interest Section 3: Individual Commentors U.S. Department of Energy November 2012 1 Cover Sheet Responsible Agency: U.S. Department of Energy (DOE) Cooperating Agencies: Washington State Department of Ecology (Ecology) U.S. Environmental Protection Agency (EPA) Title: Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (TC & WM EIS) (DOE/EIS-0391) Location: Benton County,

  20. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ▪ Public Comments and DOE Responses 3-1053 Campaign A March 16, 2010 As a resident of the Pacifc Northwest, I oppose the "preferred alternative" to ship nuclear waste from other Department of Energy sites to Hanford, as outlined in the Draft Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (DOE/EIS--0391). I vehemently oppose the plan to add more radioactive waste to the Hanford site. Shipping this waste along Northwest

  1. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    F-1 APPENDIX F DIRECT AND INDIRECT IMPACTS: ASSESSMENT METHODOLOGY This appendix briefly describes the methods used to assess the potential direct and indirect effects of the alternatives in this Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington. Included in this appendix are discussions of general impact assessment methodologies for land resources, infrastructure, noise and vibration, air quality, geology and soils, water resources,

  2. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L-1 APPENDIX L GROUNDWATER FLOW FIELD DEVELOPMENT This appendix describes the development of the regional-scale groundwater flow field used for the groundwater modeling that supports assessment of the groundwater quality impacts discussed in the Draft and Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (TC & WM EIS), Chapters 5 and 6 and Appendices O and V. Included are an overview of groundwater flow at the site; the purpose

  3. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APPENDIX S WASTE INVENTORIES FOR CUMULATIVE IMPACT ANALYSES Integral to development of the inventory data set for the cumulative impact analyses presented in this Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington was identification of those waste sites potentially contributing to cumulative impacts on groundwater. Their identification involved two semi-independent, convergent processes: a Waste Information Data System screen and a

  4. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-1 APPENDIX X SUPPLEMENT ANALYSIS OF THE DRAFT TANK CLOSURE AND WASTE MANAGEMENT ENVIRONMENTAL IMPACT STATEMENT FOR THE HANFORD SITE, RICHLAND, WASHINGTON Consistent with U.S. Department of Energy (DOE) Regulations (10 CFR 1021.314(c)(3)), "DOE shall make the determination and the related Supplement Analysis available to the public for information. Copies of the determination and Supplement Analysis shall be provided upon written request. DOE shall make copies available for inspection in

  5. The River Corridor Closure Contract How Washington Closure Hanford is Closing A Unique Department of Energy Project - 12425

    SciTech Connect (OSTI)

    Feist, E.T.

    2012-07-01

    Cleanup of the Hanford River Corridor has been one of Hanford Site's top priorities since the early 1990's. This urgency is due to the proximity of hundreds of waste sites to the Columbia River and the groundwater that continues to threaten the Columbia River. In April 2005, the U.S. Department of Energy, Richland Operations Office (DOE-RL) awarded the Hanford River Corridor Closure Contract (RCCC), a cost-plus incentive-fee closure contract with a 2015 end date and first of its kind at Hanford Site, to Washington Closure Hanford (WCH), a limited-liability company owned by URS, Bechtel National, and CH2M HILL. WCH is a single-purpose company whose goal is to safely, compliantly, and efficiently accelerate cleanup in the Hanford River Corridor and reduce or eliminate future obligations to DOE-RL for maintaining long-term stewardship over the site. Accelerated performance of the work-scope while keeping a perspective on contract completion presents challenges that require proactive strategies to support the remaining work-scope through the end of the RCCC. This paper outlines the processes to address the challenges of completing work-scope while planning for contract termination. WCH is responsible for cleanup of the River Corridor 569.8 km{sup 2} (220 mi{sup 2}) of the 1,517.7 km{sup 2} (586 mi{sup 2}) Hanford Site's footprint reduction. At the end of calendar year 2011, WCH's closure implementation is well underway. Fieldwork is complete in three of the largest areas within the RCCC scope (Segments 1, 2, and 3), approximately 44.5% of the River Corridor (Figure 3). Working together, DOE-RL and WCH are in the process of completing the 'paper work' that will document the completion of the work-scope and allow DOE-RL to relieve WCH of contractual responsibilities and transition the completed areas to the Long-Term Stewardship Program, pending final action RODs. Within the next 4 years, WCH will continue to complete cleanup of the River Corridor following the

  6. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 OVERVIEW OF THE PUBLIC COMMENT PROCESS 1-1 SECTION 1 OVERVIEW OF THE PUBLIC COMMENT PROCESS This section of this Comment-Response Document (CRD) describes the public comment process for the Draft Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (Draft TC & WM EIS) and the procedures used to respond to public comments. Section 1.1 summarizes the organization of this CRD. Section 1.2 discusses the public comment process and the means

  7. Bat Surveys of Retired Facilitiies Scheduled for Demolition by Washington Closure Hanford

    SciTech Connect (OSTI)

    Gano, K. A.; Lucas, J. G.; Lindsey, C. T.

    2011-06-30

    This project was conducted to evaluate buildings and facilities remaining in the Washington Closure Hanford (WCH) deactivation, decontamination, decommissioning, and demolition schedule for bat roost sites. The project began in spring of 2009 and was concluded in spring of 2011. A total of 196 buildings and facilities were evaluated for the presence of bat roosting sites. The schedule for the project was prioritized to accommodate the demolition schedule. As the surveys were completed, the results were provided to the project managers to facilitate planning and project completion. The surveys took place in the 300 Area, 400 Area, 100-H, 100-D, 100-N, and 100-B/C Area. This report is the culmination of all the bat surveys and summarizes the findings by area and includes recommended mitigation actions where bat roosts were found.

  8. Department of Energy Awards Hanford River Corridor Contract To Washington Closure, LLC

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC U.S. Energy Secretary Samuel Bodman today announced that Washington Closure, LLC has been awarded the contract to manage the clean up and remediation of the Columbia River Corridor...

  9. Risk and Performance Analyses Supporting Closure of WMA C at the Hanford Site in Southeast Washington

    SciTech Connect (OSTI)

    Eberlein, Susan J.; Bergeron, Marcel P.; Kemp, Christopher J.; Hildebrand, R. Douglas; Aly, Alaa; Kozak, Matthew; Mehta, Sunil; Connelly, Michael

    2013-11-11

    The Office of River Protection under the U.S. Department of Energy (DOE) is pursuing closure of the Single-Shell Tank (SST) Waste Management Area (WMA) C as stipulated by the Hanford Federal Facility Agreement and Consent Order (HFFACO) under federal requirements and work tasks will be done under the State-approved closure plans and permits. An initial step in meeting the regulatory requirements is to develop a baseline risk assessment representing current conditions based on available characterization data and information collected at the WMA C location. The baseline risk assessment will be supporting a Resource Conservation and Recovery Act of 1976 (RCRA) Field Investigation (RFI)/Corrective Measures Study (CMS) for WMA closure and RCRA corrective action. Complying with the HFFACO conditions also involves developing a long-term closure Performance Assessment (PA) that evaluates human health and environmental impacts resulting from radionuclide inventories in residual wastes remaining in WMA C tanks and ancillary equipment. This PA is being developed to meet the requirements necessary for closure authorization under DOE Order 435.1 and Washington State Hazardous Waste Management Act. To meet the HFFACO conditions, the long-term closure risk analysis will include an evaluation of human health and environmental impacts from hazardous chemical inventories along with other performance Comprehensive Environmental Response, Compensation, and Liability Act Appropriate and Applicable Requirements (CERCLA ARARs) in residual wastes left in WMA C facilities after retrieval and removal. This closure risk analysis is needed to needed to comply with the requirements for permitted closure. Progress to date in developing a baseline risk assessment of WMA C has involved aspects of an evaluation of soil characterization and groundwater monitoring data collected as a part of the RFI/CMS and RCRA monitoring. Developing the long-term performance assessment aspects has involved the

  10. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the Hanford Site, Richland, Washington 5-394 5.2 FFTF DECOMMISSIONING ALTERNATIVES This section describes the potential long-term environmental and human health impacts associated with implementation of alternatives considered to decommission FFTF and auxiliary facilities at Hanford; to manage waste from the decommissioning process, including waste designated as remote-handled special components (RH-SCs); and to manage the disposition of the Hanford inventory of radioactively contaminated

  11. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -1 CHAPTER 7 ENVIRONMENTAL CONSEQUENCES AND MITIGATION DISCUSSION Chapter 7 discusses environmental consequences that would occur due to implementation of the reasonable alternatives for each of the following: (1) tank waste retrieval, treatment, and disposal and single-shell tank system closure at the Hanford Site (i.e., tank closure); (2) decommissioning of the Fast Flux Test Facility and auxiliary facilities and disposition of the inventory of radioactively contaminated bulk sodium (i.e.,

  12. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -1 TC & WM EIS Proposed Actions (1) Retrieve, treat, and dispose of waste in single-shell tank (SST) and double-shell tank (DST) farms and close the SST system. (2) Decommission the Fast Flux Test Facility, manage the resulting waste, and manage the disposition of the Hanford Site's (Hanford's) inventory of bulk sodium. (3) Manage waste from tank closure and other Hanford activities, as well as limited volumes received from U.S. Department of Energy sites. CHAPTER 2 PROPOSED ACTIONS AND

  13. The Hanford Story | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Hanford Story The Hanford Story Addthis Description Washington Closure Hanford depicting The Hanford Story

  14. Baseline Risk Assessment Supporting Closure at Waste Management Area C at the Hanford Site Washington

    SciTech Connect (OSTI)

    Singleton, Kristin M.

    2015-01-07

    The Office of River Protection under the U.S. Department of Energy is pursuing closure of the Single-Shell Tank (SST) Waste Management Area (WMA) C under the requirements of the Hanford Federal Facility Agreement and Consent Order (HFFACO). A baseline risk assessment (BRA) of current conditions is based on available characterization data and information collected at WMA C. The baseline risk assessment is being developed as a part of a Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI)/Corrective Measures Study (CMS) at WMA C that is mandatory under Comprehensive Environmental Response, Compensation, and Liability Act and RCRA corrective action. The RFI/CMS is needed to identify and evaluate the hazardous chemical and radiological contamination in the vadose zone from past releases of waste from WMA C. WMA C will be under Federal ownership and control for the foreseeable future, and managed as an industrial area with restricted access and various institutional controls. The exposure scenarios evaluated under these conditions include Model Toxics Control Act (MTCA) Method C, industrial worker, maintenance and surveillance worker, construction worker, and trespasser scenarios. The BRA evaluates several unrestricted land use scenarios (residential all-pathway, MTCA Method B, and Tribal) to provide additional information for risk management. Analytical results from 13 shallow zone (0 to 15 ft. below ground surface) sampling locations were collected to evaluate human health impacts at WMA C. In addition, soil analytical data were screened against background concentrations and ecological soil screening levels to determine if soil concentrations have the potential to adversely affect ecological receptors. Analytical data from 12 groundwater monitoring wells were evaluated between 2004 and 2013. A screening of groundwater monitoring data against background concentrations and Federal maximum concentration levels was used to determine vadose zone

  15. EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA.

  16. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Q-1 APPENDIX Q LONG-TERM HUMAN HEALTH DOSE AND RISK ANALYSIS This appendix presents methods and results for assessment of potential human health impacts due to releases of radionuclides and chemicals from the high-level radioactive waste tanks, Fast Flux Test Facility decommissioning, and waste management activities over long periods of time following stabilization or closure. Q.1 INTRODUCTION Adverse impacts on human health and the environment may occur over long periods of time following

  17. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T-1 Cumulative Impacts Effects on the environment that result from the proposed action when added to other past, present, and reasonably foreseeable future actions, regardless of what agency or person undertakes such other actions (40 CFR 1508.7). APPENDIX T SUPPORTING INFORMATION FOR THE SHORT-TERM CUMULATIVE IMPACT ANALYSES This appendix contains the detailed tables that support the short-term cumulative impacts presented in Chapter 6 of this Tank Closure and Waste Management Environmental

  18. Washington River Protection Solutions - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection Solutions, LLC logo The operation of maintaining the underground waste storage tanks at Hanford falls under the jurisdiction of Washington River Protection...

  19. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2016 June 29, 2016 Washington Closure Hanford reaches a new safety milestone Washington Closure Hanford (WCH) and its subcontractor employees have achieved a significant safety milestone by working 7 million hours without a lost workday injury

  20. Department of Energy Awards Hanford River Corridor Contract To...

    Energy Savers [EERE]

    Hanford River Corridor Contract To Washington Closure, LLC Department of Energy Awards Hanford River Corridor Contract To Washington Closure, LLC March 23, 2005 - 10:56am Addthis ...

  1. Memorandum of Understanding Between the United States Department of Energy and the Washington State Department of Ecology for Development of the Hanford Site Tank Closure and Waste Management EIS ("TC&WM EIS")

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) and Washington State Department of Ecology (Ecology) have mutual responsibilities for accomplishing cleanup of the Hanford Site as well as continuing ongoing...

  2. Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Import Statement, Richland, Washington

    Office of Environmental Management (EM)

    Department of Energy Small Businesses Secure $8.9 Billion in Subcontracts Hanford Site Small Businesses Secure $8.9 Billion in Subcontracts June 30, 2014 - 12:00pm Addthis Washington Closure Hanford, the contractor managing the River Corridor Closure Project for the Richland Operations Office, leveraged subcontractor expertise and equipment to remove a 1,082-ton nuclear test reactor and dispose of it in an approved landfill. The reactor was the largest of Hanford’s experimental reactors

  3. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2016 June 30, 2016 Hanford Cleanup Progress Fact Sheet June 2016 The updated Hanford Site progress fact sheet through June 30, 2016. June 29, 2016 Washington Closure Hanford reaches a new safety milestone - 7 million safe work hours Washington Closure Hanford (WCH) and its subcontractor employees have achieved a significant safety milestone by working 7 million hours without a lost workday injury. June 01, 2016 Registration for Additional Hanford Site Cleanup Tours Begin on June 1 Due to

  4. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TANK FARM CLOSURE

    SciTech Connect (OSTI)

    JARAYSI, M.N.; SMITH, Z.; QUINTERO, R.; BURANDT, M.B.; HEWITT, W.

    2006-01-30

    The U. S. Department of Energy, Office of River Protection and the CH2M HILL Hanford Group, Inc. are responsible for the operations, cleanup, and closure activities at the Hanford Tank Farms. There are 177 tanks overall in the tank farms, 149 single-shell tanks (see Figure 1), and 28 double-shell tanks (see Figure 2). The single-shell tanks were constructed 40 to 60 years ago and all have exceeded their design life. The single-shell tanks do not meet Resource Conservation and Recovery Act of 1976 [1] requirements. Accordingly, radioactive waste is being retrieved from the single-shell tanks and transferred to double-shell tanks for storage prior to treatment through vitrification and disposal. Following retrieval of as much waste as is technically possible from the single-shell tanks, the Office of River Protection plans to close the single-shell tanks in accordance with the Hanford Federal Facility Agreement and Consent Order [2] and the Atomic Energy Act of 1954 [3] requirements. The double-shell tanks will remain in operation through much of the cleanup mission until sufficient waste has been treated such that the Office of River Protection can commence closing the double-shell tanks. At the current time, however, the focus is on retrieving waste and closing the single-shell tanks. The single-shell tanks are being managed and will be closed in accordance with the pertinent requirements in: Resource Conservation and Recovery Act of 1976 and its Washington State-authorized Dangerous Waste Regulations [4], US DOE Order 435.1 Radioactive Waste Management [5], the National Environmental Policy Act of 1969 [6], and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [7]. The Hanford Federal Facility Agreement and Consent Order, which is commonly referred to as the Tri-Party Agreement or TPA, was originally signed by Department of Energy, the State of Washington, and the U. S. Environmental Protection Agency in 1989. Meanwhile, the

  5. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 2013 December 16, 2013 DOE Exercises Option for Mission Support Contract The Department of Energy is extending Mission Support Alliance's contract for infrastructure and site services at the Hanford Site in southeastern Washington state by three years. December 13, 2013 DOE Announces Record of Decision on Hanford Tank Closure and Waste Management December 05, 2013 Washington Closure Hanford Reaches $1 billion in Small Business Subcontracting $783 million goes to businesses in Washington

  6. Institute Recognizes Washington Closure Hanford as International...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 17, 2015 - 12:05pm Addthis RICHLAND, Wash. - The Project Management Institute (PMI) ... "This was a very special honor for me to attend the PMI Global Congress award ...

  7. EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    07: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and...

  8. Record of Decision Issued for the Hanford Tank Closure and Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Record of Decision Issued for the Hanford Tank Closure and Waste Management EIS Record of Decision Issued for the Hanford Tank Closure and Waste Management EIS December 13, 2013 - ...

  9. Cultural Resources Review for Closure of the nonradioactive Dangerous Waste Landfill and Solid Waste Landfill in the 600 Area, Hanford Site, Benton County, Washington, HCRC# 2010-600-018R

    SciTech Connect (OSTI)

    Gutzeit, Jennifer L.; Kennedy, Ellen P.; Bjornstad, Bruce N.; Sackschewsky, Michael R.; Sharpe, James J.; DeMaris, Ranae; Venno, M.; Christensen, James R.

    2011-02-02

    The U.S. Department of Energy Richland Operations Office is proposing to close the Nonradioactive Dangerous Waste Landfill (NRDWL) and Solid Waste Landfill (SWL) located in the 600 Area of the Hanford Site. The closure of the NRDWL/SWL entails the construction of an evapotranspiration cover over the landfill. This cover would consist of a 3-foot (1-meter) engineered layer of fine-grained soil, modified with 15 percent by weight pea gravel to form an erosion-resistant topsoil that will sustain native vegetation. The area targeted for silt-loam borrow soil sits in Area C, located in the northern central portion of the Fitzner/Eberhardt Arid Lands Ecology (ALE) Reserve Unit. The pea gravel used for the mixture will be obtained from both off-site commercial sources and an active gravel pit (Pit #6) located just west of the 300 Area of the Hanford Site. Materials for the cover will be transported along Army Loop Road, which runs from Beloit Avenue (near the Rattlesnake Barricade) east-northeast to the NRDWL/SWL, ending at State Route 4. Upgrades to Army Loop Road are necessary to facilitate safe bidirectional hauling traffic. This report documents a cultural resources review of the proposed activity, conducted according to Section 106 of the National Historic Preservation Act of 1966.

  10. Contractors Cleaned Up Most of Hanford Site's River Corridor, But Work Remains

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – Washington Closure Hanford and previous contractors have completed much of the cleanup work in the River Corridor.

  11. HPM Corporation (HPMC) - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (HPMC) Contracting ORP Contracts and Procurements RL Contracts and Procurements CH2M HILL Plateau Remediation Company Mission Support Alliance Washington Closure Hanford HPM...

  12. Hanford Site Sustainability Program, Richland, Washington - 12464

    SciTech Connect (OSTI)

    Fritz, Lori

    2012-07-01

    In support of implementation of Executive Order (EO) 13514, Federal Leadership in Environmental, Energy and Economic Performance, the Hanford Site Sustainability Plan [1] was developed to implement strategies and activities required to achieve the prescribed goals in the EO as well as demonstrate measurable progress in environmental stewardship at the Hanford Site. The Hanford Site has made significant progress in the area of environmental stewardship through multiple initiatives to reduce energy consumption and GHG emissions, despite increased demands in those areas due to accelerated cleanup work driven by ARRA funding. Future plans, contingent on available funding, include additional enhancements in the areas of fleet management, including installation of additional charging stations and continued acquisition of alternate fueled vehicles, implementation of one or more of the recommendations from the Feasibility Study on reducing GHG emissions from employee commuting, and potential diversion of solid waste from on-site landfills. (author)

  13. HANFORD SITE SUSTAINABILITY PROGRAM RICHLAND WASHINGTON - 12464

    SciTech Connect (OSTI)

    FRITZ LL

    2012-01-12

    In support of implementation of Executive Order (EO) 13514, Federal Leadership in Environmental, Energy and Economic Performance, the Hanford Site Sustainability Plan was developed to implement strategies and activities required to achieve the prescribed goals in the EO as well as demonstrate measurable progress in environmental stewardship at the Hanford Site. The Hanford Site Sustainability Program was developed to demonstrate progress towards sustainability goals as defined and established in Executive Order (EO) 13514, Federal Leadership in Environmental, Energy and Economic Performance; EO 13423, Strengthening Federal Environmental, Energy and Transportation Management, and several applicable Energy Acts. Multiple initiatives were undertaken in Fiscal Year (FY) 2011 to implement the Program and poise the Hanford Site as a leader in environmental stewardship. In order to implement the Hanford Site Sustainability Program, a Sustainability Plan was developed in conjunction with prime contractors, two U.S. Department of Energy (DOE) Offices, and key stakeholders to serve as the framework for measuring progress towards sustainability goals. Based on the review of these metrics and future plans, several activities were initiated to proactively improve performance or provide alternatives for future consideration contingent on available funding. A review of the key metric associated with energy consumption for the Hanford Site in FY 2010 and 2011 indicated an increase over the target reduction of 3 percent annually from a baseline established in FY 2003 as illustrated in Figure 1. This slight increase was attributed primarily from the increased energy demand from the cleanup projects funded by the American Recovery and Reinvestment Act (ARRA) in FY 2010 and 2011. Although it is forecasted that the energy demand will decrease commensurate with the completion of ARRA projects, several major initiatives were launched to improve energy efficiency.

  14. Routine environmental audit of the Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    This report documents the results of the routine environmental audit of the Hanford Site (Hanford), Richland, Washington. During this audit, the activities conducted by the audit team included reviews of internal documents an reports from previous audits and assessments; interviews with US Department of Energy (DOE), State of Washington regulatory, and contractor personnel; and inspections and observations of selected facilities and operations. The onsite portion of the audit was conducted May 2--13, 1994, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety and Health (EH). The audit evaluated the status of programs to ensure compliance with Federal, State, and local environmental laws and regulations; compliance with DOE orders, guidance, and directives; and conformance with accepted industry practices and standards of performance. The audit also evaluated the status and adequacy of the management systems developed to address environmental requirements.

  15. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2014 July 31, 2014 FACT SHEET: Hanford Cleanup Progress Fact Sheet Check the latest stats on Hanford cleanup progress and employment at the site. July 31, 2014 Washington Closure Hanford reaches 4 million safe hours For the second time since beginning work on the River Corridor Closure Project in 2005 July 02, 2014 NEWS RELEASE: Workers Prepare to Enter One of Hanford's Most Hazardous Rooms When workers enter the hazardous and historic McCluskey Room at the Hanford Site this summer, they

  16. EIS-0356: Retrieval, Treatment and Disposal of Tank Wastes and Closure of Single-Shell Tanks at the Hanford Site, Richland, WA

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed retrieval, treatment, and disposal of the waste being managed in the high-level waste (HLW) tank farms at the Hanford Site near Richland, Washington, and closure of the 149 single-shell tanks (SSTs) and associated facilities in the HLW tank farms.

  17. Preliminary Performance Assessment for the Waste Management Area C at the Hanford Site in Southeast Washington

    SciTech Connect (OSTI)

    Bergeron, Marcel P.; Singleton, Kristin M.; Eberlein, Susan J.

    2015-01-07

    A performance assessment (PA) of Single-Shell Tank (SST) Waste Management Area C (WMA C) located at the U.S. Department of Energy's (DOE) Hanford Site in southeastern Washington is being conducted to satisfy the requirements of the Hanford Federal Facility Agreement and Consent Order (HFFACO), as well as other Federal requirements and State-approved closure plans and permits. The WMP C PA assesses the fate, transport, and impacts of radionuclides and hazardous chemicals within residual wastes left in tanks and ancillary equipment and facilities in their assumed closed configuration and the subsequent risks to humans into the far future. The part of the PA focused on radiological impacts is being developed to meet the requirements for a closure authorization under DOE Order 435.1 that includes a waste incidental to reprocessing determination for residual wastes remaining in tanks, ancillary equipment, and facilities. An additional part of the PA will evaluate human health and environmental impacts from hazardous chemical inventories in residual wastes remaining in WMA C tanks, ancillary equipment, and facilities needed to meet the requirements for permitted closure under RCRA.

  18. Washington DC Reliability Requirements and the Need to Operate Mirant's Potomac River Generation Station to Support Local Area Reliability.pdf

    Office of Environmental Management (EM)

    Department of Energy Washington Closure Hanford: Ten Years of River Corridor Cleanup Washington Closure Hanford: Ten Years of River Corridor Cleanup December 17, 2015 - 12:30pm Addthis Contract-Timeline-E1511010_4-B_756px.jpg This timeline shows contractor Washington Closure Hanford's accomplishments over the past 10 years through its River Corridor Closure Contract. Addthis Related Articles EM Update Newsletter Spotlights River Corridor Cleanup at Hanford Site River Corridor Achievements

  19. EIS-0119: Decommissioning of Eight Surplus Production Reactors at the Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EIS presents analyses of potential environmental impacts of decommissioning the eight surplus production reactors at the Hanford Site near Richland, Washington.

  20. Voluntary Protection Program Onsite Review, Washington River Protection Solutions, LLC, Hanford – Feb 2014

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Washington River Protection Solutions, LLC, Hanford is performing at a level deserving DOE-VPP Star recognition.

  1. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 APPENDIX V RECHARGE SENSITIVITY ANALYSIS In the Draft Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (Draft TC & WM...

  2. Environmental assessment: Reference repository location, Hanford site, Washington

    SciTech Connect (OSTI)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford Site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites suitable for characterization.

  3. Environmental assessment: Reference repository location, Hanford site, Washington

    SciTech Connect (OSTI)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. The DOE has also found that is is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites available for characterization.

  4. WMA-C - Waste Management Area C Closure Process - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documents > WMA-C - Waste Management Area C Closure Process Documents DOE - RL ContractsProcurements DOE-ORP ContractsProcurements CERCLA Five-Year Review Hanford Site Safety...

  5. MANHATTAN PROJECT B REACTOR HANFORD WASHINGTON [HANFORD'S HISTORIC B REACTOR (12-PAGE BOOKLET)

    SciTech Connect (OSTI)

    GERBER MS

    2009-04-28

    The Hanford Site began as part of the United States Manhattan Project to research, test and build atomic weapons during World War II. The original 670-square mile Hanford Site, then known as the Hanford Engineer Works, was the last of three top-secret sites constructed in order to produce enriched uranium and plutonium for the world's first nuclear weapons. B Reactor, located about 45 miles northwest of Richland, Washington, is the world's first full-scale nuclear reactor. Not only was B Reactor a first-of-a-kind engineering structure, it was built and fully functional in just 11 months. Eventually, the shoreline of the Columbia River in southeastern Washington State held nine nuclear reactors at the height of Hanford's nuclear defense production during the Cold War era. The B Reactor was shut down in 1968. During the 1980's, the U.S. Department of Energy began removing B Reactor's support facilities. The reactor building, the river pumphouse and the reactor stack are the only facilities that remain. Today, the U.S. Department of Energy (DOE) Richland Operations Office offers escorted public access to B Reactor along a designated tour route. The National Park Service (NPS) is studying preservation and interpretation options for sites associated with the Manhattan Project. A draft is expected in summer 2009. A final report will recommend whether the B Reactor, along with other Manhattan Project facilities, should be preserved, and if so, what roles the DOE, the NPS and community partners will play in preservation and public education. In August 2008, the DOE announced plans to open B Reactor for additional public tours. Potential hazards still exist within the building. However, the approved tour route is safe for visitors and workers. DOE may open additional areas once it can assure public safety by mitigating hazards.

  6. Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor

    Office of Environmental Management (EM)

    removed from Hanford's 300 Area | Department of Energy Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed from Hanford's 300 Area Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed from Hanford's 300 Area January 22, 2014 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE 509-376-5365 Cameron.Hardy@re.doe.gov Mark McKenna, Washington Closure 509-372-9032 media@wch-rcc.com RICHLAND, WA - Hanford's River Corridor contractor, Washington

  7. Microsoft Word - DOE-EA-1707D_Revised_Predecisional_EA Closure...

    Office of Environmental Management (EM)

    2011 Environmental Assessment Closure of Nonradioactive Dangerous Waste Landfill (NRDWL) and Solid Waste Landfill (SWL), Hanford Site, Richland, Washington U.S. Department of ...

  8. EA-1211: Relocation and Storage of Isotopic Heat Sources, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal for relocation and storage of the isotopic heat sources at the U.S. Department of Energy Hanford Site in Richland, Washington.

  9. Washington Closure Hanford System Engineer Program FY2010 Annual Report

    SciTech Connect (OSTI)

    J.N. Winters

    2010-11-02

    This report is a summary of the assessments of the vital safety systems (VSS) that are administered under WCH’s system engineer program.

  10. Voluntary Protection Program Onsite Review, Washington Closure Hanford VPP

    Office of Environmental Management (EM)

    Solutions, Llc Savannah River Site - October 2014 | Department of Energy Savannah River Nuclear Solutions, Llc Savannah River Site - October 2014 Voluntary Protection Program Onsite Review, Savannah River Nuclear Solutions, Llc Savannah River Site - October 2014 October 2014 Recertification of SRNS as a Star Participant in the Department of Energy Voluntary Protection Program. This report summarizes the results from the evaluation of Savannah River Nuclear Solutions, LLC (SRNS), at the

  11. Incentive Fee Determination Summary Contractor: Washington Closure Hanford LLC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Incandescent Lighting Basics Incandescent Lighting Basics August 16, 2013 - 10:00am Addthis Incandescent lamps consist of a wire filament inside a glass bulb that is usually filled with inert gas, and they produce light when an electric current heats the filament to a high temperature. Incandescent lamps have a low efficacy (10-17 lumens per watt) compared with other lighting options-because most of the energy released is in the form of heat rather than light-and a short average operating life

  12. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

  13. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2014 October 30, 2014 Hanford Tank Vapor Assessment Report The Department of Energy remains committed to protecting workers, members of the public and the environment. October 28, 2014 DOE, Washington Closure complete recycling project at Hanford About $400,000 saved by recycling electrical substation components in 300 Area October 22, 2014 Workers Enter Cocooned F Reactor for Scheduled Inspection Inspection by DOE ensures reactors are safe, secure

  14. Tank Closure & Waste Management (DOE/EIS-0391) FINAL - Hanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documents Environmental NEPA - Environmental Impact Statements Tank Closure & Waste Management EIS 2012 Documents CERCLA Five-Year Review NEPA - Categorical Exclusions NEPA -...

  15. EIS-0391: Hanford Tank Closure and Waste Management, Richland...

    Broader source: Energy.gov (indexed) [DOE]

    decommissioning of the Fast Flux Test Facility, a nuclear test reactor, and (3) disposal of Hanford's waste and other DOE sites' low-level and mixed low-level radioactive waste. ...

  16. Analytical Services - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contracting Wastren Advantage, Inc. Analytical Services Contracting ORP Contracts and Procurements RL Contracts and Procurements CH2M HILL Plateau Remediation Company Mission Support Alliance Washington Closure Hanford HPM Corporation (HPMC) Wastren Advantage, Inc. Analytical Services HASQARD Focus Group Bechtel National, Inc. Washington River Protection Solutions Analytical Services Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Analytical laboratory analyses

  17. PERFORMANCE ASSESSMENT TO SUPPORT CLOSURE OF SINGLE-SHELL TANK WASTE MANAGEMENT AREA C AT THE HANFORD SITE

    SciTech Connect (OSTI)

    BERGERON MP

    2010-01-14

    Current proposed regulatory agreements (Consent Decree) at the Hanford Site call for closure of the Single-Shell Tank (SST) Waste Management Area (WMA) C in the year 2019. WMA C is part of the SST system in 200 East area ofthe Hanford Site and is one of the first tank farm areas built in mid-1940s. In order to close WMA C, both tank and facility closure activities and corrective actions associated with existing soil and groundwater contamination must be performed. Remedial activities for WMA C and corrective actions for soils and groundwater within that system will be supported by various types of risk assessments and interim performance assessments (PA). The U.S. Department of Energy, Office of River Protection (DOE-ORP) and the State ofWashington Department of Ecology (Ecology) are sponsoring a series of working sessions with regulators and stakeholders to solicit input and to obtain a common understanding concerning the scope, methods, and data to be used in the planned risk assessments and PAs to support closure of WMA C. In addition to DOE-ORP and Ecology staff and contractors, working session members include representatives from the U.S. Enviromnental Protection Agency, the U.S. Nuclear Regulatory Commission (NRC), interested tribal nations, other stakeholders groups, and members of the interested public. NRC staff involvement in the working sessions is as a technical resource to assess whether required waste determinations by DOE for waste incidental to reprocessing are based on sound technical assumptions, analyses, and conclusions relative to applicable incidental waste criteria.

  18. Final closure cover for a Hanford radioactive mixed waste disposal facility

    SciTech Connect (OSTI)

    Johnson, K.D.

    1996-02-06

    This study provides a preliminary design for a RCRA mixed waste landfill final closure cover. The cover design was developed by a senior class design team from Seattle University. The design incorporates a layered design of indigenous soils and geosynthetics in a layered system to meet final closure cover requirements for a landfill as imposed by the Washington Administrative Code WAC-173-303 implementation of the Resource Conservation and Recovery Act.

  19. Regulatory issues associated with closure of the Hanford AX Tank Farm ancillary equipment

    SciTech Connect (OSTI)

    Becker, D.L.

    1998-09-02

    Liquid mixed, high-level radioactive waste has been stored in underground single-shell tanks at the US Department of Energy`s (DOE`s) Hanford Site. After retrieval of the waste from the single-shell tanks, the DOE will proceed with closure of the tank farm. The 241-AX Tank Farm includes four one-million gallon single-shell tanks in addition to sluice lines, transfer lines, ventilation headers, risers, pits, cribs, catch tanks, buildings, well and associated buried piping. This equipment is classified as ancillary equipment. This document addresses the requirements for regulatory close of the ancillary equipment in the Hanford Site 241-AX Tank Farm. The options identified for physical closure of the ancillary equipment include disposal in place, disposal in place after treatment, excavation and disposal on site in an empty single-shell tank, and excavation and disposal outside the AX Tank Farm. The document addresses the background of the Hanford Site and ancillary equipment in the AX Tank Farm, regulations for decontamination and decommissioning of radioactively contaminated equipment, requirements for the cleanup and disposal of radioactive wastes, cleanup and disposal requirements governing hazardous and mixed waste, and regulatory requirements and issues associated with each of the four physical closure options. This investigation was conducted by the Sandia National Laboratories, Albuquerque, New Mexico, during Fiscal Year 1998 for the Hanford Tanks Initiative Project.

  20. Environmental Survey preliminary report, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1987-08-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Hanford Site, conducted August 18 through September 5, 1986. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the Hanford Site. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the Hanford Site, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the Hanford Site. The Interim Report will reflect the final determinations of the Hanford Site Survey. 44 refs., 88 figs., 74 tabs.

  1. An Initial Evaluation Of Characterization And Closure Options For Underground Pipelines Within A Hanford Site Single-Shell Tank Farm

    SciTech Connect (OSTI)

    Badden, Janet W.; Connelly, Michael P.; Seeley, Paul N.; Hendrickson, Michelle L.

    2013-01-10

    The Hanford Site includes 149 single-shell tanks, organized in 12 'tank farms,' with contents managed as high-level mixed waste. The Hanford Federal Facility Agreement and Consent Order requires that one tank farm, the Waste Management Area C, be closed by June 30, 2019. A challenge to this project is the disposition and closure of Waste Management Area C underground pipelines. Waste Management Area C contains nearly seven miles of pipelines and 200 separate pipe segments. The pipelines were taken out of service decades ago and contain unknown volumes and concentrations of tank waste residuals from past operations. To understand the scope of activities that may be required for these pipelines, an evaluation was performed. The purpose of the evaluation was to identify what, if any, characterization methods and/or closure actions may be implemented at Waste Management Area C for closure of Waste Management Area C by 2019. Physical and analytical data do not exist for Waste Management Area C pipeline waste residuals. To develop estimates of residual volumes and inventories of contamination, an extensive search of available information on pipelines was conducted. The search included evaluating historical operation and occurrence records, physical attributes, schematics and drawings, and contaminant inventories associated with the process history of plutonium separations facilities and waste separations and stabilization operations. Scoping analyses of impacts to human health and the environment using three separate methodologies were then developed based on the waste residual estimates. All analyses resulted in preliminary assessments, indicating that pipeline waste residuals presented a comparably low long-term impact to groundwater with respect to soil, tank and other ancillary equipment residuals, but exceeded Washington State cleanup requirement values. In addition to performing the impact analyses, the assessment evaluated available sampling technologies and

  2. Final Hanford Comprehensive Land-Use Plan Environmental Impact Statement, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    N /A

    1999-10-01

    This Final ''Hanford Comprehensive Land-Use Plan Environmental Impact Statement'' (HCP EIS) is being used by the Department of Energy (DOE) and its nine cooperating and consulting agencies to develop a comprehensive land-use plan (CLUP) for the Hanford Site. The DOE will use the Final HCP EIS as a basis for a Record of Decision (ROD) on a CLUP for the Hanford Site. While development of the CLUP will be complete with release of the HCP EIS ROD, full implementation of the CLUP is expected to take at least 50 years. Implementation of the CLUP would begin a more detailed planning process for land-use and facility-use decisions at the Hanford Site. The DOE would use the CLUP to screen proposals. Eventually, management of Hanford Site areas would move toward the CLUP land-use goals. This CLUP process could take more than 50 years to fully achieve the land-use goals.

  3. Summary of 1990 eolian characterization studies, Hanford Site, Washington

    SciTech Connect (OSTI)

    Gaylord, D.R.; Stetler, L.D.; Smith, G.D.; Mars, R.W.

    1993-12-01

    A study of eolian activity was initiated to improve understanding of past climate change and the likely effect of wind on engineered protective barriers at the Hanford Site. Eolian features from a Holocene sand dune field located in the southeastern portion of the Hanford Site were investigated using a variety of field and laboratory techniques including stratigraphic examinations of hand-dug pits, textural and compositional analyses of dune sand and potential source detritus, and air photo interpretations. These investigations were undertaken to evaluate the provenance and eolian dynamics of the sand dunes. Interpretations of sand dune migration using archival air photo stereopairs document a 20% reduction in the volume of active sand dunes (measured from an approximate 15-km{sup 2} test area) between 1948 and 1987. Changes in annual precipitation appear to have influenced active dune migration strongly.

  4. DASHBOARDS & CONTROL CHARTS EXPERIENCES IN IMPROVING SAFETY AT HANFORD WASHINGTON

    SciTech Connect (OSTI)

    PREVETTE, S.S.

    2006-02-27

    The aim of this paper is to demonstrate the integration of safety methodology, quality tools, leadership, and teamwork at Hanford and their significant positive impact on safe performance of work. Dashboards, Leading Indicators, Control charts, Pareto Charts, Dr. W. Edward Deming's Red Bead Experiment, and Dr. Deming's System of Profound Knowledge have been the principal tools and theory of an integrated management system. Coupled with involved leadership and teamwork, they have led to significant improvements in worker safety and protection, and environmental restoration at one of the nation's largest nuclear cleanup sites.

  5. EA-0904: Access Road from State Route 240 to the 200 West Area Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to construct an access road on the U.S. Department of Energy's Hanford Site in Richland, Washington, from State Route 240 to Beloit Avenue...

  6. EIS-0245: Management of Spent Fuel from the K Basins at the Hanford Site- Supplement Analysis, Richland, Washington

    Broader source: Energy.gov [DOE]

    The identification of, and subsequent changes to the Preferred Alternative for the Management of Spent Nuclear Fuel from the K Basins at the Hanford Site in Richland, Washington, are analyzed in...

  7. Mission Support Alliance - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contracting Mission Support Alliance Contracting ORP Contracts and Procurements RL Contracts and Procurements CH2M HILL Plateau Remediation Company Mission Support Alliance Hanford Fire Department Washington Closure Hanford HPM Corporation (HPMC) Wastren Advantage, Inc. Bechtel National, Inc. Washington River Protection Solutions Mission Support Alliance Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Mission Support Alliance (MSA) logo Mission Support Alliance

  8. Regulatory Closure Options for the Residue in the Hanford Site Single-Shell Tanks

    SciTech Connect (OSTI)

    Cochran, J.R. Shyr, L.J.

    1998-10-05

    Liquid, mixed, high-level radioactive waste (HLW) has been stored in 149 single-shell tanks (SSTS) located in tank farms on the U.S. Department of Energy's (DOE's) Hanford Site. The DOE is developing technologies to retrieve as much remaining HLW as technically possible prior to physically closing the tank farms. In support of the Hanford Tanks Initiative, Sandia National Laboratories has addressed the requirements for the regulatory closure of the radioactive component of any SST residue that may remain after physical closure. There is significant uncertainty about the end state of each of the 149 SSTS; that is, the nature and amount of wastes remaining in the SSTS after retrieval is uncertain. As a means of proceeding in the face of these uncertainties, this report links possible end-states with associated closure options. Requirements for disposal of HLW and low-level radioactive waste (LLW) are reviewed in detail. Incidental waste, which is radioactive waste produced incidental to the further processing of HLW, is then discussed. If the low activity waste (LAW) fraction from the further processing of HLW is determined to be incidental waste, then DOE can dispose of that incidental waste onsite without a license from the U.S. Nuclear Regulatory Commissions (NRC). The NRC has proposed three Incidental Waste Criteria for determining if a LAW fraction is incidental waste. One of the three Criteria is that the LAW fraction should not exceed the NRC's Class C limits.

  9. Volatile Organic Compound Investigation Results, 300 Area, Hanford Site, Washington

    SciTech Connect (OSTI)

    Peterson, Robert E.; Williams, Bruce A.; Smith, Ronald M.

    2008-07-07

    Unexpectedly high concentrations of volatile organic compounds (VOC) were discovered while drilling in the unconfined aquifer beneath the Hanford Site’s 300 Area during 2006. The discovery involved an interval of relatively finer-grained sediment within the unconfined aquifer, an interval that is not sampled by routine groundwater monitoring. Although VOC contamination in the unconfined aquifer has been identified and monitored, the concentrations of newly discovered contamination are much higher than encountered previously, with some new results significantly higher than the drinking water standards. The primary contaminant is trichloroethene, with lesser amounts of tetrachloroethene. Both chemicals were used extensively as degreasing agents during the fuels fabrication process. A biological degradation product of these chemicals, 1,2-dichloroethene, was also detected. To further define the nature and extent of this contamination, additional characterization drilling was undertaken during 2007. Four locations were drilled to supplement the information obtained at four locations drilled during the earlier investigation in 2006. The results of the combined drilling indicate that the newly discovered contamination is limited to a relatively finer-grained interval of Ringold Formation sediment within the unconfined aquifer. The extent of this contamination appears to be the area immediately east and south of the former South Process Pond. Samples collected from the finer-grained sediment at locations along the shoreline confirm the presence of the contamination near the groundwater/river interface. Contamination was not detected in river water that flows over the area where the river channel potentially incises the finer-grained interval of aquifer sediment. The source for this contamination is not readily apparent. A search of historical documents and the Hanford Waste Information Data System did not provide definitive clues as to waste disposal operations and

  10. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2012 March 29, 2012 DOE Contractor Completes Massive Excavation Washington Closure disposes 650,000 tons of contaminated soil from the C-7 waste site March 09, 2012 DOE Lowers Age Limit for B Reactor Tours Families, schools invited to visit National Historic Landmark March 09, 2012 FACT SHEET: Removing Pencil Tanks Contractor CH2M HILL Plateau Remediation Company is removing plutonium processing equipment from the highest-hazard facility at Hanford. March 08, 2012 PRESS RELEASE: Fifth

  11. RL Contractors - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Richland Operations Office Richland Operations Office RL Contractors Richland Operations Office Richland Operations Office RL Cleanup Vision RL Contractors CH2M Mission Support Alliance Washington Closure Hanford HPM Corporation RL Contracts and Procurements Hanford Site Tours River Corridor Central Plateau Groundwater Mission Support Newsroom RL Contractors Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size The Richland Operations Office uses contractors to

  12. Lead test assembly irradiation and analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    1997-07-01

    The U.S. Department of Energy (DOE) needs to confirm the viability of using a commercial light water reactor (CLWR) as a potential source for maintaining the nation`s supply of tritium. The Proposed Action discussed in this environmental assessment is a limited scale confirmatory test that would provide DOE with information needed to assess that option. This document contains the environmental assessment results for the Lead test assembly irradiation and analysis for the Watts Bar Nuclear Plant, Tennessee, and the Hanford Site in Richland, Washington.

  13. An Integrated Site-Wide Assessment of Nuclear Wastes to Remain at the Hanford Site, Washington

    SciTech Connect (OSTI)

    Morse, J.G.; Bryce, R.W.; Hildebrand, R.D.; Kincaid, C.T.

    2004-10-06

    Since its creation in 1943 until 1988, the Hanford Site, a facility in the U.S. Department of Energy (DOE) nuclear weapons complex was dedicated to the production of weapons grade plutonium and other special nuclear materials. The Hanford Site is located in eastern Washington State and is bordered on the north and east by the Columbia River. Decades of creating fuel, irradiating it in reactors, and processing it to recover nuclear material left numerous waste sites that involved the discharge of contaminated liquids and the disposal of contaminated solid waste. Today, the primary mission of the Hanford Site is to safely cleanup and manage the site's legacy waste. A site-wide risk assessment methodology has been developed to assist the DOE, as well as state and federal regulatory agencies, in making decisions regarding needed remedial actions at past waste sites, and safe disposal of future wastes. The methodology, referred to as the System Assessment Capability (SAC), utilizes an integrated set of models that track potential contaminants from inventory through vadose zone, groundwater, Columbia River and air pathways to human and ecological receptors.

  14. GPR Imaging of Clastic Dikes at the Hanford Site, Hanford, Washington

    SciTech Connect (OSTI)

    Clement, William P.; Murray, Christopher J.

    2007-12-08

    We use ground penetrating radar (GPR) data to help determine the spatial distribution and the subsurface geometry of clastic injection dikes at the Hanford site. This information will help to improve the understanding of the hydrological role of these ubiquitous clastic dikes at the Han¬ford Site. We collected 100 MHz ground penetrating radar (GPR) 3D surface reflection data at two sites, the S-16 Pond and the Army Loop Road sites, and 2D reflection data along a 6.9 km lin¬ear transect near the Army Loop Road site. The dikes are distinguished in the GPR data by a strongly attenuated zone, disruptions in the continuity of reflections, and diffractions where reflections are disrupted. In general, the data quality is better at the Army Loop Road and Traverse sites than at the S-16 Pond site, probably due to the presence of cobbles at the S-16 Pond site. A high-moisture, fine-grained unit probably causes the strong reflections at the Army Loop Road site and the Traverse survey site. The signal penetration varies between 5 to 12 m below the land surface.

  15. INTERIM BARRIER AT HANFORDS TY FARM TO PROTECT GROUNDWATER AT THE HANFORD SITE WASHINGTON USA

    SciTech Connect (OSTI)

    PARKER DL; HOLM MJ; HENDERSON JC; LOBER RW

    2011-01-13

    An innovative interim surface barrier was constructed as a demonstration project at the Hanford Site's TY Tank Farm. The purpose of the demonstration barrier is to stop rainwater and snowmelt from entering the soils within the tank farm and driving contamination from past leaks and spills toward the ground water. The interim barrier was constructed using a modified asphalt material with very low permeability developed by MatCon{reg_sign}. Approximately 2,400 cubic yards of fill material were added to the tank farm to create a sloped surface that will gravity drain precipitation to collection points where it will be routed through buried drain lines to an evapotranspiration basin adjacent to the farm. The evapotranspiration basin is a lined basin with a network of perforated drain lines covered with soil and planted with native grasses. The evapotranspiration concept was selected because it prevents the runoff from percolating into the soil column and also avoids potential monitoring and maintenance issues associated with standing water in a traditional evaporation pond. Because of issues associated with using standard excavation and earth moving equipment in the farm a number of alternate construction approaches were utilized to perform excavations and prepare the site for the modified asphalt.

  16. Miles of Hanford Site Land Near River Restored During Planting Seasons

    Office of Energy Efficiency and Renewable Energy (EERE)

    RICHLAND, Wash. – EM’s Richland Operations Office (RL) and contractor Washington Closure Hanford (WCH) have cleaned, filled, and planted vegetation over hundreds of formers waste sites along the Columbia River in the past decade.

  17. N Reactor Placed In Interim Safe Storage: Largest Hanford Reactor Cocooning Project Now Complete

    Broader source: Energy.gov [DOE]

    RICHLAND, WASH. – The U.S. Department of Energy’s (DOE’s) River Corridor contractor, Washington Closure Hanford, has completed placing N Reactor in interim safe storage, a process also known as “cocooning.”

  18. EA-1889: Disposal of Decommissioned, Defueled Naval Reactor Plants from USS Enterprise (CVN 65) at the Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA, prepared by the Department of the Navy, evaluates the environmental impacts of the disposal of decommissioned, defueled, naval reactor plants from the USS Enterprise at DOE’s Hanford Site, Richland, Washington. DOE participated as a cooperating agency in the preparation of this EA. The Department of the Navy issued its FONSI on August 23, 2012.

  19. An Initial Evaluation of Characterization and Closure Options for Underground Pipelines within a Hanford Site Single-Shell Tank Farm - 13210

    SciTech Connect (OSTI)

    Badden, Janet W.; Connelly, Michael P.; Seeley, Paul N.; Hendrickson, Michelle L.

    2013-07-01

    The Hanford Site includes 149 single-shell tanks, organized in 12 'tank farms,' with contents managed as high-level mixed waste. The Hanford Federal Facility Agreement and Consent Order requires that one tank farm, the Waste Management Area C, be closed by June 30, 2019. A challenge to this project is the disposition and closure of Waste Management Area C underground pipelines. Waste Management Area C contains nearly seven miles of pipelines and 200 separate pipe segments. The pipelines were taken out of service decades ago and contain unknown volumes and concentrations of tank waste residuals from past operations. To understand the scope of activities that may be required for these pipelines, an evaluation was performed. The purpose of the evaluation was to identify what, if any, characterization methods and/or closure actions may be implemented at Waste Management Area C for closure of Waste Management Area C by 2019. Physical and analytical data do not exist for Waste Management Area C pipeline waste residuals. To develop estimates of residual volumes and inventories of contamination, an extensive search of available information on pipelines was conducted. The search included evaluating historical operation and occurrence records, physical attributes, schematics and drawings, and contaminant inventories associated with the process history of plutonium separations facilities and waste separations and stabilization operations. Scoping analyses of impacts to human health and the environment using three separate methodologies were then developed based on the waste residual estimates. All analyses resulted in preliminary assessments, indicating that pipeline waste residuals presented a comparably low long-term impact to groundwater with respect to soil, tank and other ancillary equipment residuals, but exceeded Washington State cleanup requirement values. In addition to performing the impact analyses, the assessment evaluated available sampling technologies and

  20. Richland Operations Office Makes Progress Removing Drums at Hanford Site

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – EM’s Richland Operations Office (RL) and cleanup contractor Washington Closure Hanford (WCH) have excavated and processed the majority of drums at the 618-10 Burial Ground, one of the Hanford Site’s most hazardous burial grounds.

  1. Engineering study of 50 miscellaneous inactive underground radioactive waste tanks located at the Hanford Site, Washington

    SciTech Connect (OSTI)

    Freeman-Pollard, J.R.

    1994-03-02

    This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handling and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970`s and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D&RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program.

  2. Three-Dimensional Groundwater Models of the 300 Area at the Hanford Site, Washington State

    SciTech Connect (OSTI)

    Williams, Mark D.; Rockhold, Mark L.; Thorne, Paul D.; Chen, Yousu

    2008-09-01

    Researchers at Pacific Northwest National Laboratory developed field-scale groundwater flow and transport simulations of the 300 Area to support the 300-FF-5 Operable Unit Phase III Feasibility Study. The 300 Area is located in the southeast portion of the U.S. Department of Energy’s Hanford Site in Washington State. Historical operations involving uranium fuel fabrication and research activities at the 300 Area have contaminated engineered liquid-waste disposal facilities, the underlying vadose zone, and the uppermost aquifer with uranium. The main objectives of this research were to develop numerical groundwater flow and transport models to help refine the site conceptual model, and to assist assessment of proposed alternative remediation technologies focused on the 300 Area uranium plume.

  3. Structural testing of corrugated asbestos-cement roof panels at the Hanford Facilities, Richland, Washington

    SciTech Connect (OSTI)

    Moustafa, S.E.; Rodehaver, S.M.; Frier, W.A.

    1993-10-01

    This report describes a roof testing program that was carried out at the 105KE/KW Spent Fuel Storage Basins and their surrounding facilities at the Hanford Site in Richland, Washington. The roof panels were constructed in the mid 1950`s of corrugated asbestos-cement (A/C), which showed common signs of aging. Based on the construction specifications, the panels capacity to meet current design standards was questioned. Both laboratory and in-situ load testing of the corrugated A/C panels was conducted. The objective of the complete test program was to determine the structural integrity of the existing A/C roof panels installed in the 105KE and 105KW facilities. The data from these tests indicated that the roofs are capable of resisting the design loads and are considered safe. A second phase test to address the roof resistance to personnel and roof removal/roofing system installation equipment was recommended and is underway.

  4. Environmental assessment of SP-100 ground engineering system test site: Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1988-12-01

    The US Department of Energy (DOE) proposes to modify an existing reactor containment building (decommissioned Plutonium Recycle Test Reactor (PRTR) 309 Building) to provide ground test capability for the prototype SP-100 reactor. The 309 Building (Figure 1.1) is located in the 300 Area on the Hanford Site in Washington State. The National Environmental Policy Act (NEPA) requires that Federal agencies assess the potential impacts that their actions may have on the environment. This Environmental Assessment describes the consideration given to environmental impacts during reactor concept and test site selection, examines the environmental effects of the DOE proposal to ground test the nuclear subsystem, describes alternatives to the proposed action, and examines radiological risks of potential SP-100 use in space. 73 refs., 19 figs., 7 tabs.

  5. Wastren Advantage, Inc. - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contracting Wastren Advantage, Inc. Contracting ORP Contracts and Procurements RL Contracts and Procurements CH2M HILL Plateau Remediation Company Mission Support Alliance Washington Closure Hanford HPM Corporation (HPMC) Wastren Advantage, Inc. Analytical Services HASQARD Focus Group Bechtel National, Inc. Washington River Protection Solutions Wastren Advantage, Inc. Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Wastren Advantage, Inc. One of the contractors

  6. HASQARD Focus Group - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contracting Wastren Advantage, Inc. HASQARD Focus Group Contracting ORP Contracts and Procurements RL Contracts and Procurements CH2M HILL Plateau Remediation Company Mission Support Alliance Washington Closure Hanford HPM Corporation (HPMC) Wastren Advantage, Inc. Analytical Services HASQARD Focus Group Bechtel National, Inc. Washington River Protection Solutions HASQARD Focus Group Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size HASQARD Document HASQARD

  7. Bechtel National, Inc. - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contracting Bechtel National, Inc. Contracting ORP Contracts and Procurements RL Contracts and Procurements CH2M HILL Plateau Remediation Company Mission Support Alliance Washington Closure Hanford HPM Corporation (HPMC) Wastren Advantage, Inc. Bechtel National, Inc. Washington River Protection Solutions Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Bechtel National, Inc. logo Bechtel National, Inc. (BNI), one of the prime contractors for DOE's Office of River

  8. HANFORD SITE RIVER CORRIDOR CLEANUP

    SciTech Connect (OSTI)

    BAZZELL, K.D.

    2006-02-01

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km{sup 2} Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal.

  9. Regulators, Boards, Councils - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regulators, Boards, Councils Hanford Advisory Board Hanford Natural Resource Trustee Council Environmental Protection Agency Washington State Department of Ecology Defense...

  10. Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement Richland, Washington

    SciTech Connect (OSTI)

    N /A

    2004-02-13

    This Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) provides environmental and technical information concerning U.S. Department of Energy (DOE) ongoing and proposed waste management practices at the Hanford Site in Washington State. The HSW EIS updates some analyses of environmental consequences from previous documents and provides evaluations for activities that may be implemented consistent with the Waste Management Programmatic Environmental Impact Statement (WM PEIS; DOE 1997c) Records of Decision (RODs). The draft HSW EIS was initially issued in April 2002 for public comment (DOE 2002b). A revised draft HSW EIS was issued in March 2003 to address new waste management alternatives that had been proposed since the initial draft HSW EIS was prepared, and to address comments received during the public review period for the first draft (DOE 2003d). The revised draft HSW EIS also incorporated alternatives for disposal of immobilized low-activity waste (ILAW) from treatment of Hanford Site tank waste in the waste treatment plant (WTP) currently under construction, an activity that was not included in the first draft (68 FR 7110). This final HSW EIS describes the DOE preferred alternative, and in response to public comments received on the March 2003 revised draft, provides additional analyses for some environmental consequences associated with the preferred alternative, with other alternatives, and with cumulative impacts. Public comments on the revised draft HSW EIS are addressed in the comment response document (Volume III of this final EIS). This HSW EIS describes the environmental consequences of alternatives for constructing, modifying, and operating facilities to store, treat, and/or dispose of low-level (radioactive) waste (LLW), transuranic (TRU) waste, ILAW, and mixed low-level waste (MLLW) including WTP melters at Hanford. In addition, the potential long-term consequences of LLW, MLLW, and ILAW disposal

  11. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    L.C. Hulstrom

    2010-08-11

    This report summarizes field sampling activities conducted in support of WCH’s Remedial Investigation of Hanford Site Releases to the Columbia River. This work was conducted form 2008 through 2010. The work included preliminary mapping and measurement of Hanford Site contaminants in sediment, pore water, and surface water located in areas where groundwater upwelling were found.

  12. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Coumbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    L.C. Hulstrom

    2010-11-10

    This report summarizes field sampling activities conducted in support of WCH’s Remedial Investigation of Hanford Site Releases to the Columbia River. This work was conducted form 2008 through 2010. The work included preliminary mapping and measurement of Hanford Site contaminants in sediment, pore water, and surface water located in areas where groundwater upwelling were found.

  13. Expanded public notice: Washington State notice of intent for corrective action management unit, Hanford Environmental Restoration Disposal

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This document is to serve notice of the intent to operate an Environmental Restoration Disposal Facility (ERDF), adjacent to the 200 West Area of the Hanford Facility, Richland, Washington, as a Corrective Action Management Unit (CAMU), in accordance with 40 Code of Federal Regulation (CFR) 264.552. The ERDF CAMU will serve as a management unit for the majority of waste (primarily soil) excavated during remediation of waste management sites on the Hanford Facility. Only waste that originates from the Hanford Facility can be accepted in this ERDF CAMU. The waste is expected to consist of dangerous waste, radioactive waste, and mixed waste. Mixed waste contains radioactive and dangerous components. The primary features of the ERDF could include the following: one or more trenches, rail and tractor/trailer container handling capability, railroads, an inventory control system, a decontamination building, and operational offices.

  14. Voluntary Protection Program Onsite Review, Fluor Hanford Closure Services and Infrastructure Recertification- September 2007

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Fluor Hanford is continuing to perform at a level deserving DOE-VPP Star recognition.

  15. EIS-0113: Disposal of Hanford Defense High-Level, Transuranic and Tank Waste, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to examine the potential environmental impacts of final disposal options for legacy and future radioactive defense wastes stored at the Hanford Site.

  16. National Register of Historic Places multiple property documentation form -- Historic, archaeological, and traditional cultural properties of the Hanford Site, Washington

    SciTech Connect (OSTI)

    Nickens, P.R.

    1997-08-01

    The US Department of Energy`s Hanford Site encompasses an area of 560 square miles on the Columbia River in southeastern Washington. Since 1943, the Hanford Site has existed as a protected area for activities primarily related to the production of radioactive materials for national defense uses. For cultural resources on the Hanford Site, establishment of the nuclear reservation as a high security area, with public access restricted, has resulted in a well-protected status, although no deliberate resource protection measures were in effect to mitigate effects of facilities construction and associated activities. Thus, the Hanford Site contains an extensive record of aboriginal archaeological sites and Native American cultural properties, along with pre-Hanford Euro-American sites (primarily archaeological in nature with the removal of most pre-1943 structures), and a considerable number of Manhattan Project/Cold War era buildings and structures. The recent mission change from production to clean up and disposal of DOE lands created a critical need for development and implementation of new and different cultural resource management strategies. DOE-RL has undertaken a preservation planning effort for the Hanford Site. The intent of this Plan is to enable DOE-RL to organize data and develop goals, objectives, and priorities for the identification, evaluation, registration, protection, preservation, and enhancement of the Site`s historical and cultural properties. Decisions made about the identification, evaluation, registration and treatment of historic properties are most aptly made when relationships between individual properties and other similar properties are considered. The historic context and the multiple property documentation (NTD) process provides DOE-RL the organizational framework for these decisions. Once significant patterns are identified, contexts developed, and expected properties are defined, the NTD process provides the foundation for future

  17. Preliminary Closure Plan for the Immobilized Low Activity Waste (ILAW) Disposal Facility

    SciTech Connect (OSTI)

    BURBANK, D.A.

    2000-08-31

    This document describes the preliminary plans for closure of the Immobilized Low-Activity Waste (ILAW) disposal facility to be built by the Office of River Protection at the Hanford site in southeastern Washington. The facility will provide near-surface disposal of up to 204,000 cubic meters of ILAW in engineered trenches with modified RCRA Subtitle C closure barriers.

  18. Voluntary Protection Program Onsite Review, Washington River...

    Energy Savers [EERE]

    Washington River Protection Solutions, LLC, Hanford - Feb 2014 Voluntary Protection Program Onsite Review, Washington River Protection Solutions, LLC, Hanford - Feb 2014 February...

  19. Washington Closure Hanford Report of Settlement Monitoring of the ERDF Landfill

    SciTech Connect (OSTI)

    J. T. Cameron

    2008-07-30

    This report summarizes the results of the ERDF Settlement Monitoring Program conducted between August 9, 2007, and April 29, 2008, on the 35-foot and 70-foot levels of the ERDF landfill. The purpose of this monitoring program was to verify that the materials already placed under the 35-foot and 70-foot levels satisfy the settlement criteria of the conceptual cap design.

  20. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H-1 APPENDIX H TRANSPORTATION This appendix provides an overview of the approach used to assess the potential human health risks from transportation activities. Topics include the scope of the assessment; packaging and transportation regulations; determination of potential transportation routes; analytical methods used for the risk assessment (e.g., computer models); and important assessment assumptions. The results of this assessment are expressed in terms of doses and risks to transportation

  1. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    K-1 APPENDIX K SHORT-TERM HUMAN HEALTH RISK ANALYSIS This appendix presents the methodologies and assumptions used for estimating potential impacts on, and risks to, individuals and the general public from exposure to releases of radioactive and hazardous chemical materials during normal operations and as a result of hypothetical accidents. It also presents the methodology that was used to assess industrial safety. This information is intended to support the public and occupational health and

  2. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chapter 5 ▪ Long-Term Environmental Consequences 5-1163 5.3.3 Ecological Risk This section presents the results of the evaluation of long-term impacts on ecological resources of releases to air and groundwater under the Waste Management alternatives. Risk indices-Hazard Quotient and Hazard Index-were calculated by comparing the predicted dose to the benchmark dose (see Appendix P). Risk indices could not be calculated for soil-dwelling invertebrates, lizards, toads, or birds exposed to organic

  3. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -1 CHAPTER 8 POTENTIALLY APPLICABLE LAWS, REGULATIONS, AND OTHER REQUIREMENTS Chapter 8 presents the laws, regulations, and other requirements that apply to the alternatives. Federal, state, and U.S. Department of Energy environmental, safety, and health requirements are summarized in Section 8.1. Permits or licenses that may be required to implement the alternatives are discussed in Section 8.2. Consultations with Federal, state, and local agencies and federally recognized American Indian

  4. EM Update Newsletter Spotlights River Corridor Cleanup at Hanford Site

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – In this issue of the EM Update newsletter, EM marks the many accomplishments the Richland Operations Office and its contractors have achieved in cleanup along the Columbia River corridor at the Hanford Site. This year marked the 10th anniversary of the River Corridor Closure Contract, the nation’s largest environmental cleanup closure project, managed by Washington Closure Hanford. The work has involved projects to clean up existing contamination and waste sites near the river, preventing contamination from reaching it, and cocooning or demolishing hundreds of structures no longer in use, including former reactors along the river that helped create materials for the U.S. nuclear weapons program.

  5. Data Summary Report for teh Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    Hulstrom, L.

    2011-02-07

    This data summary report summarizes the investigation results to evaluate the nature and distribution of Hanford Site-related contaminants present in the Columbia River. As detailed in DOE/RL-2008-11, more than 2,000 environmental samples were collected from the Columbia River between 2008 and 2010. These samples consisted of island soil, sediment, surface water, groundwater upwelling (pore water, surface water, and sediment), and fish tissue.

  6. Digging Begins at Hazardous Hanford Burial Ground- River Corridor Contractor Spent Two Years Preparing to Remediate 618-10

    Office of Energy Efficiency and Renewable Energy (EERE)

    RICHLAND, WASH. — After careful preparation and characterization, the Department of Energy’s (DOE) River Corridor contractor, Washington Closure Hanford, has begun remediation of one of the most hazardous burial grounds tackled to date on the Hanford Site’s River Corridor.

  7. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 2009 February 18, 2009 Briefing on Cleanup to Washington State Legislature Representatives of the two DOE field offices briefed Washington State legislators in Olympia on cleanup progress at the Hanford Site

  8. Startup of the New 200 West Pump-and-Treat, Hanford Site, Richland, Washington - 13214

    SciTech Connect (OSTI)

    Byrnes, Mark E.; Simmons, Sally; Morse, John

    2013-07-01

    On June 28, 2012, CH2M HILL Plateau Remediation Company (CHPRC) completed the construction and acceptance testing for a new 2,500 gallon-per-minute (gpm) pump-and-treat (P and T) system in the 200 West Area of the Hanford Site in Washington State. This system is designed to remove Tc-99, carbon tetrachloride, trichloroethene (TCE), nitrate, and total and hexavalent chromium from groundwater using ion exchange, anoxic and aerobic bioreactors, and air stripping. The system will eventually remove uranium from groundwater using ion exchange as well. The startup of the P and T system is important because it will ensure that contaminants from the 200 West Area never reach the Columbia River. When fully operational, the 200 West P and T will include approximately 23 extraction wells and 21 injection wells. The extraction wells are 8 inches in diameter, are completed with well screens 100 feet or more in length, and are distributed throughout the central portion of the 5-square-mile carbon tetrachloride plume. The injection wells are also 8 inches in diameter and are installed up-gradient of the plumes to recharge the aquifer and down-gradient of the plumes for flow-path control. Groundwater in the 200 West Area is approximately 250 feet below ground surface, and the aquifer is 200 feet or more in thickness. All of the contaminants (except nitrate) are found within the perimeter of the carbon tetrachloride plume and occur at various depths throughout the aquifer. The 200 West P and T consists of two separate buildings to conduct groundwater treatment. The RAD building contains an ion exchange system to remove Tc-99 from groundwater at a maximum flow rate of 600 gpm. The RAD building only accepts water from those extraction wells showing elevated Tc-99 concentrations. Groundwater initially fills an influent tank, is then pumped through particulate filters (to remove suspended materials), and then passes through two parallel treatment trains containing Purolite{sup R} A530E

  9. EIS-0017: Fusion Materials Irradiation Testing Facility, Hanford Reservation, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts associated with proposed construction and operation of an irradiation test facility, the Deuterium-Lithium High Flux Neutron Source Facility, at the Hanford Reservation.

  10. HAB Hanford Advisory Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HAB Hanford Advisory Board Annual Report 2014 On the cover: Demolition at Hanford's 300 Area. Hanford Advisory Board 2014 The Hanford Advisory Board would like to acknowledge the following resources used for the content of the Board's Annual Report: * Washington State Department of Ecology website (www.ecy.wa.gov/programs/nwp/index.html) * U.S. Department of Energy Hanford Site website (www.hanford.gov) * Hanford Facebook page (www.facebook.com/HanfordSite) * Tri-Party Agreement agency

  11. Hanford For Students and Kids - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford For Students and Kids Hanford For Students and Kids Hanford Fun Facts Classroom Projects Famous People of Hanford Hanford For Students and Kids Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size The Hanford Nuclear Reservation is a pretty amazing place. Located in the present-day southeast corner of Washington State, the area where Hanford sits has a history that actually began thousands of years ago when wild animals roamed free and Indians were the only

  12. EIS-0063: Waste Management Operations, Double-Shell Tanks for Defense High-Level Radioactive Waste Storage, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the existing tank design and consider additional specific design and safety feature alternatives for the thirteen tanks being constructed for storage of defense high-level radioactive liquid waste at the Hanford Site in Richland, Washington. This statement supplements ERDA-1538, "Final Environmental Statement on Waste Management Operation."

  13. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2015 May 07, 2015 Washington State University to Manage Hanford's Manhattan Project and Cold War-era Artifacts and Archives The U.S. Department of Energy's Richland Operations Office (RL), through site contractor Mission Support Alliance (MSA), has begun a new partnership with Washington State University Tri-Cities that will provide expert care of Hanford Site artifacts

  14. Revised Hydrogeology for the Suprabasalt Aquifer System, 200-West Area and Vicinity, Hanford Site, Washington

    SciTech Connect (OSTI)

    Williams, Bruce A.; Bjornstad, Bruce N.; Schalla, Ronald; Webber, William D.

    2002-05-14

    The primary objective of this study was to refine the conceptual groundwater flow model for the 200-West Area and vicinity. This is the second of two reports that combine to cover the 200 Area Plateau, an area that holds the largest inventory of radionuclide and chemical waste on the Hanford Site.

  15. EIS-0089: PUREX Plant and Uranium Oxide Plant Facilities, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of resumption of operations of the PUREX/Uranium Oxide facilities at the Hanford Site to produce plutonium and other special nuclear materials for national defense needs.

  16. Evaluation and Screening of Remedial Technologies for Uranium at the 300-FF-5 Operable Unit, Hanford Site, Washington

    SciTech Connect (OSTI)

    Nimmons, Michael J.

    2007-08-01

    Pacific Northwest National Laboratory (PNNL) is presently conducting a re-evaluation of remedies addressing persistent dissolved uranium concentrations in the upper aquifer under the 300 Area of the Hanford Site in southeastern Washington State. This work is being conducted as a Phase III feasibility study for the 300-FF-5 Operable Unit on behalf of the U.S. Department of Energy. As part of the feasibility study process, a comprehensive inventory of candidate remedial technologies was conducted by PNNL. This report documents the identification and screening of candidate technologies. The screening evaluation was conducted in accordance with guidance and processes specified by U.S. Environmental Protection Agency regulations associated with implementation of the Comprehensive Environmental Response, Compensation, and Liability Act process.

  17. Characterization of solids in residual wastes from single-shell tanks at the Hanford site, Washington, USA.

    SciTech Connect (OSTI)

    Krupka, K. M.; Cantrell, K. J.; Todd Schaef, H.; Arey, B. W.; Heald, S. M.; Deutsch, W. J.; Lindberg, M. J.

    2010-03-01

    Solid phase physical and chemical characterization methods have been used in an ongoing study of residual wastes from several single-shell underground waste tanks at the U.S. Department of Energy's Hanford Site in southeastern Washington State. Because these wastes are highly-radioactive dispersible powders and are chemically-complex assemblages of crystalline and amorphous solids that contain contaminants as discrete phases and/or co-precipitated within oxide phases, their detailed characterization offers an extraordinary technical challenge. X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDS) are the two principal methods used, along with a limited series of analyses by synchrotron-based methods, to characterize solid phases and their contaminant associations in these wastes.

  18. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 2010 January 27, 2010 Radioactive Liquid Waste Retrieved from Hanford's 12th Single-Shell Tank Washington River Protection Solutions has started retrieving waste from another of Hanford's aging single-shell tanks, making it the 12th such tank to undergo waste retrieval. Click to view the full press release. January 15, 2010 Recovery Act Jobs Count Changes at Hanford The Hanford Site has implemented new guidance from the Department of Energy's Office of Environmental Management (EM) on

  19. CH2M HILL Plateau Remediation Company - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contracting CH2M HILL Plateau Remediation Company Contracting ORP Contracts and Procurements RL Contracts and Procurements CH2M HILL Plateau Remediation Company Mission Support Alliance Washington Closure Hanford HPM Corporation (HPMC) Wastren Advantage, Inc. Bechtel National, Inc. Washington River Protection Solutions CH2M HILL Plateau Remediation Company Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size CH2M CH2M HILL Plateau Remediation Company is the prime

  20. Turning the Corner on Hanford Tank Waste Cleanup-From Safe Storage to Closure

    SciTech Connect (OSTI)

    Boston, H. L.; Cruz, E. J.; Coleman, S. J.

    2002-02-25

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) is leading the River Protection Project (RPP) which is responsible for the disposition of 204,000 cubic meters (54 million gallons) of high-level radioactive waste that have accumulated in large underground tanks at the Hanford Site since 1944. ORP continues to make good progress on improving the capability to treat Hanford tank waste. Design of the waste vitrification facilities is proceeding well and construction will begin within the next year. Progress is also being made in reducing risk to the worker and the environment from the waste currently stored in the tank farms. Removal of liquids from single-shell tanks (SSTs) is on schedule and we will begin removing solids (salt cake) from a tank (241-U-107) in 2002. There is a sound technical foundation for the waste vitrification facilities. These initial facilities will be capable of treating (vitrifying) the bulk of Hanford tank waste and are the corners tone of the clean-up strategy. ORP recognizes that as the near-term work is performed, it is vital that there be an equally strong and defensible plan for completing the mission. ORP is proceeding on a three-pronged approach for moving the mission forward. First, ORP will continue to work aggressively to complete the waste vitrification facilities. ORP intends to provide the most capable and robust facilities to maximize the amount of waste treated by these initial facilities by 2028 (regulatory commitment for completion of waste treatment). Second, and in parallel with completing the waste vitrification facilities, ORP is beginning to consider how best to match the hazard of the waste to the disposal strategy. The final piece of our strategy is to continue to move forward with actions to reduce risk in the tank farms and complete cleanup.

  1. The role of plants and animals in isolation barriers at Hanford, Washington

    SciTech Connect (OSTI)

    Link, S.O.; Cadwell, L.L.; Petersen, K.L.; Sackschewsky, M.R.; Landeen, D.S.

    1995-09-01

    The Hanford Site Surface Barrier Development Program was organized in 1985 to test the effectiveness of various barrier designs in minimizing the effects of water infiltration; plant, animal, and human intrusion; and wind and water erosion on buried wastes, and in minimizing the emanation of noxious gases. Plants will serve to minimize drainage and erosion, but present,the potential for growing roots into wastes. Animals burrow holes into the soil, and the burrow holes could allow water to preferentially drain into the waste. They also bring soil to the surface which, if wastes are incorporated, could present a risk for the dispersion of wastes into the environment. This report reviews work done to assess the role of plants and animals in isolation barriers at Hanford. It also reviews work done to understand the potential effects from climate change on the plants and animals that may inhabit barriers in the future.

  2. Turning the Corner on Hanford Tank Waste Cleanup from Safe Storage to Closure

    SciTech Connect (OSTI)

    CRUZ, E.J.; BOSTON, H.L.

    2002-02-04

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) is leading the River Protection Project (RPP) which is responsible for the disposition of 204,000 cubic meters (54 million gallons) of high-level radioactive waste that have accumulated in large underground tanks at the Hanford Site since 1944. ORP continues to make good progress on improving the capability to treat Hanford tank waste. Design of the waste vitrification facilities is proceeding well and construction will begin within the next year. Progress is also being made in reducing risk to the worker and the environment from the waste currently stored in the tank farms. Removal of liquids from single-shell tanks (SSTs) is on schedule and we will begin removing solids (salt cake) from a tank (241-U-107) in 2002. There is a sound technical foundation for the waste vitrification facilities. These initial facilities will be capable of treating (vitrifying) the bulk of Hanford tank waste and are the cornerstone of the clean-up strategy. ORP recognizes that as the near-term work is performed, it is vital that there be an equally strong and defensible plan for completing the mission. ORP is proceeding on a three-pronged approach for moving the mission forward. First, ORP will continue to work aggressively to complete the waste vitrification facilities. ORP intends to provide the most capable and robust facilities to maximize the amount of waste treated by these Initial facilities by 2028 (regulatory commitment for completion of waste treatment). Second, and in parallel with completing the waste vitrification facilities, ORP is beginning to consider how best to match the hazard of the waste to the disposal strategy. The final piece of our strategy is to continue to move forward with actions to reduce risk in the tank farms and complete cleanup. The goal of these efforts is to keep the RPP on a success path for completing cleanup of Hanford tank waste. While all parties are aggressively moving

  3. Washington

    Office of Environmental Management (EM)

    Washington , DC 20585 April 15, 2013 Mr. David Martin, Chair Oak Ridge Site Specific Advisory Board P.O. Box 2001 Oak Ridge, Tennessee 37831 Dear Mr. Martin: Thank you for your February 27, 2013 , letter recognizing the Department of Energy's (DOE) considerable success in disposing of transuranic waste (TRU) and your interest in expansion of the Waste Isolation Pilot Plant (WIPP) mission. We are proud of having safely and effectively disposed of more than 85,000 cubic meters of TRU at WIPP since

  4. Uranium Contamination in the Subsurface Beneath the 300 Area, Hanford Site, Washington

    SciTech Connect (OSTI)

    Peterson, Robert E.; Rockhold, Mark L.; Serne, R. Jeffrey; Thorne, Paul D.; Williams, Mark D.

    2008-02-29

    This report provides a description of uranium contamination in the subsurface at the Hanford Site's 300 Area. The principal focus is a persistence plume in groundwater, which has not attenuated as predicted by earlier remedial investigations. Included in the report are chapters on current conditions, hydrogeologic framework, groundwater flow modeling, and geochemical considerations. The report is intended to describe what is known or inferred about the uranium contamination for the purpose of making remedial action decisions.

  5. Borehole Gravity Meter Surveys at the Waste Treatment Plant, Hanford, Washington.

    SciTech Connect (OSTI)

    MacQueen, Jeffrey D.; Mann, Ethan

    2007-04-06

    Microg-LaCoste (MGL) was contracted by Pacfic Northwest National Laboratories (PNNL) to record borehole gravity density data in 3 wells at the HanfordWaste Treatment Plant (WTP) site. The survey was designed to provide highly accurate density information for use in seismic modeling. The borehole gravity meter (BHGM) tool has a very large depth of investigation (hundreds of feet) compared to other density tools so it is not influenced by casing or near welbore effects, such as washouts.

  6. EA-1934: Expansion of Active Borrow Areas, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluate the potential environmental impacts of expansion or continued use of existing sand and gravel pits located on the Hanford Site (Pits F, H, N, 6, 9, 18, 21, 23, 24, 30, and 34) and establishing one new borrow area source in the 100 Area for ongoing construction activities and fill material following remediation activities. The scope of this EA does not include borrow sources for silt-loam material.

  7. Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement Richland, Washington

    Office of Environmental Management (EM)

    HSW EIS January 2004 1.6 Figure 1.2. States with Radioactive Waste Disposal Activities Final HSW EIS January 2004 1.12 Figure 1.3. Relationship of the HSW EIS to Other Hanford Cleanup Operations, Material Management Activities, and Key Environmental Reviews 2.17 Final HSW EIS January 2004 Figure 2.6. Waste Receiving and Processing Facility Figure 2.7. X-Ray Image of Transuranic Waste Drum Contents M0212-0286.11 HSW EIS 12-10-02 M0212-0286.12 HSW EIS 12-10-02 2.17 Final HSW EIS January 2004

  8. Draft Tank Closure & Waste Management EIS - Summary

    Office of Environmental Management (EM)

    Draft Tank Closure and Waste Management Environmental Impact Statement for the Hanford ... (Ecology) Title: Draft Tank Closure and Waste Management Environmental Impact Statement ...

  9. A safety assessment for proposed pump mixing operations to mitigate episodic gas releases in tank 241-SY-101: Hanford Site,Richland, Washington

    SciTech Connect (OSTI)

    Lentsch, J.W.

    1996-07-01

    This safety assessment addresses each of the elements required for the proposed action to remove a slurry distributor and to install, operate, and remove a mixing pump in Tank 241-SY-101,which is located within the Hanford Site, Richland, Washington.The proposed action is required as part of an ongoing evaluation of various mitigation concepts developed to eliminate episodic gas releases that result in hydrogen concentrations in the tank dome space that exceed the lower flammability limit.

  10. Safety assessment for proposed pump mixing operations to mitigate episodic gas releases in tank 241-101-SY: Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Lentsch, J.W., Westinghouse Hanford

    1996-05-16

    This safety assessment addresses each of the elements required for the proposed action to remove a slurry distributor and to install, operate, and remove a mixing pump in Tank 241-SY-101, which is located within the Hanford Site, Richland, Washington. The proposed action is required as part of an ongoing evaluation of various mitigation concepts developed to eliminate episodic gas releases that result in hydrogen concentrations in the tank dome space that exceed the lower flammability limit.

  11. Reducing Uncertainty in the Seismic Design Basis for the Waste Treatment Plant, Hanford, Washington

    SciTech Connect (OSTI)

    Brouns, Thomas M.; Rohay, Alan C.; Reidel, Steve; Gardner, Martin G.

    2007-02-27

    The seismic design basis for the Waste Treatment Plant (WTP) at the Department of Energys (DOE) Hanford Site near Richland was re-evaluated in 2005, resulting in an increase by up to 40% in the seismic design basis. The original seismic design basis for the WTP was established in 1999 based on a probabilistic seismic hazard analysis completed in 1996. The 2005 analysis was performed to address questions raised by the Defense Nuclear Facilities Safety Board (DNFSB) about the assumptions used in developing the original seismic criteria and adequacy of the site geotechnical surveys. The updated seismic response analysis used existing and newly acquired seismic velocity data, statistical analysis, expert elicitation, and ground motion simulation to develop interim design ground motion response spectra which enveloped the remaining uncertainties. The uncertainties in these response spectra were enveloped at approximately the 84th percentile to produce conservative design spectra, which contributed significantly to the increase in the seismic design basis.

  12. Ground water flow velocity in the bank of the Columbia River, Hanford, Washington

    SciTech Connect (OSTI)

    Ballard, S.

    1995-12-01

    To properly characterize the transport of contaminants from the sediments beneath the Hanford Site into the Columbia River, a suite of In Situ Permeable Flow Sensors was deployed to accurately characterize the hydrologic regime in the banks of the river. The three dimensional flow velocity was recorded on an hourly basis from mid May to mid July, 1994 and for one week in September. The first data collection interval coincided with the seasonal high water level in the river while the second interval reflected conditions during relatively low seasonal river stage. Two flow sensors located approximately 50 feet from the river recorded flow directions which correlated very well with river stage, both on seasonal and diurnal time scales. During time intervals characterized by falling river stage, the flow sensors recorded flow toward the river while flow away from the river was recorded during times of rising river stage. The flow sensor near the river in the Hanford Formation recorded a component of flow oriented vertically downward, probably reflecting the details of the hydrostratigraphy in close proximity to the probe. The flow sensor near the river in the Ringold Formation recorded an upward component of flow which dominated the horizontal components most of the time. The upward flow in the Ringold probably reflects regional groundwater flow into the river. The magnitudes of the flow velocities recorded by the flow sensors were lower than expected, probably as a result of drilling induced disturbance of the hydraulic properties of the sediments around the probes. The probes were installed with resonant sonic drilling which may have compacted the sediments immediately surrounding the probes, thereby reducing the hydraulic conductivity adjacent to the probes and diverting the groundwater flow away from the sensors.

  13. Water Quality Sampling Locations Along the Shoreline of the Columbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    Peterson, Robert E.; Patton, Gregory W.

    2009-12-14

    As environmental monitoring evolved on the Hanford Site, several different conventions were used to name or describe location information for various sampling sites along the Hanford Reach of the Columbia River. These methods range from handwritten descriptions in field notebooks to the use of modern electronic surveying equipment, such as Global Positioning System receivers. These diverse methods resulted in inconsistent archiving of analytical results in various electronic databases and published reports because of multiple names being used for the same site and inaccurate position data. This document provides listings of sampling sites that are associated with groundwater and river water sampling. The report identifies names and locations for sites associated with sampling: (a) near-river groundwater using aquifer sampling tubes; (b) riverbank springs and springs areas; (c) pore water collected from riverbed sediment; and (d) Columbia River water. Included in the listings are historical names used for a particular site and the best available geographic coordinates for the site, as of 2009. In an effort to create more consistency in the descriptive names used for water quality sampling sites, a naming convention is proposed in this document. The convention assumes that a unique identifier is assigned to each site that is monitored and that this identifier serves electronic database management requirements. The descriptive name is assigned for the convenience of the subsequent data user. As the historical database is used more intensively, this document may be revised as a consequence of discovering potential errors and also because of a need to gain consensus on the proposed naming convention for some water quality monitoring sites.

  14. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B - PPRP Closure Letter Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014 B.1 Appendix B PPRP Closure Letter 2014 Hanford Sitewide Probabilistic Seismic Hazard Analysis B.2 Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014 B.3 2014 Hanford Sitewide Probabilistic Seismic Hazard Analysis B.4 Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014 B.5

  15. The Hanford Story - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Hanford Story The Hanford Story The Hanford Story The Hanford Story Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size "A lot of the people come here with a lot of questions, and a lot of people come here with some concerns." Rich Buel, Department of Energy This quote by Rich Buel, a Department of Energy employee, summarizes a common public view of the Hanford site in southeastern Washington State. Many in the Pacific Northwest region are aware the

  16. Surface radiation survey and soil sampling of the 300-FF-1 operable unit, Hanford Site, southeastern Washington: A case study

    SciTech Connect (OSTI)

    Teel, S.S.; Olsen, K.B.

    1990-10-01

    The methods used for conducting a radiological characterization of the soil surface for the Phase I Remedial Investigation of a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) site is presented via a case study. The study site is an operable unit (300-FF-1) located in and adjacent to the 300 Area of the US Department of Energy's Hanford Site in southeastern Washington State. The operable unit contains liquid and solid waste disposal facilities associated with nuclear fuels fabrication. Continuous surface radiation surveying and soil sampling of selected locations were conducted. Contamination was found in several locations within the operable unit including areas near the liquid and solid waste disposal facilities. Instruments used during surveying included portable beta/gamma (P-11) detectors, and the Ultrasonic Ranging and Data System using an NaI (Tl) detector. Laboratory analyses results indicate that above-background radiation levels were primarily due to the presence of uranium. Both types of field instruments used in the study were effective in detecting surface contamination from radionuclides; however, each had specific advantages. Guidelines are presented for the optimum use of these instruments when performing a radiological characterization of the soil surface. 4 refs., 3 figs., 3 tabs.

  17. Site Index - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Index Site Index Calendar Hanford Blog Archive Search Site Feeds Site Index Weather What's New Site Index Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size About Us About Hanford Cleanup Regulators, Boards, Councils Hanford Advisory Board Hanford Natural Resource Trustee Council Environmental Protection Agency Washington State Department of Ecology Defense Nuclear Facilities Safety Board Hanford History Hanford Site Wide Programs DOE Human Resources Management

  18. Pore Water Extraction Test Near 241-SX Tank Farm at the Hanford Site, Washington, USA

    SciTech Connect (OSTI)

    Eberlein, Susan J.; Parker, Danny L.; Tabor, Cynthia L.; Holm, Melissa J.

    2013-11-11

    A proof-of-principle test is underway near the Hanford Site 241-SX Tank Farm. The test will evaluate a potential remediation technology that will use tank farm-deployable equipment to remove contaminated pore water from vadose zone soils. The test system was designed and built to address the constraints of working within a tank farm. Due to radioactive soil contamination and limitations in drilling near tanks, small-diameter direct push drilling techniques applicable to tank farms are being utilized for well placement. To address space and weight limitations in working around tanks and obstacles within tank farms, the above ground portions of the test system have been constructed to allow deployment flexibility. The test system utilizes low vacuum over a sealed well screen to establish flow into an extraction well. Extracted pore water is collected in a well sump,and then pumped to the surface using a small-diameter bladder pump.If pore water extraction using this system can be successfully demonstrated, it may be possible to target local contamination in the vadose zone around underground storage tanks. It is anticipated that the results of this proof-of-principle test will support future decision making regarding interim and final actions for soil contamination within the tank farms.

  19. Technical Basis for Certification of Seismic Design Criteria for the Waste Treatment Plant, Hanford, Washington

    SciTech Connect (OSTI)

    Brouns, Thomas M.; Rohay, Alan C.; Youngs, Robert R.; Costantino, Carl J.; Miller, Lewis F.

    2008-02-28

    In August 2007, Secretary of Energy Samuel W. Bodman approved the final seismic and ground motion criteria for the Waste Treatment and Immobilization Plant (WTP) at the Department of Energys (DOE) Hanford Site. Construction of the WTP began in 2002 based on seismic design criteria established in 1999 and a probabilistic seismic hazard analysis completed in 1996. The design criteria were re-evaluated in 2005 to address questions from the Defense Nuclear Facilities Safety Board (DNFSB), resulting in an increase by up to 40% in the seismic design basis. DOE announced in 2006 the suspension of construction on the pretreatment and high-level waste vitrification facilities within the WTP to validate the design with more stringent seismic criteria. In 2007, the U.S. Congress mandated that the Secretary of Energy certify the final seismic and ground motion criteria prior to expenditure of funds on construction of these two facilities. With the Secretarys approval of the final seismic criteria this past summer, DOE authorized restart of construction of the pretreatment and high-level waste vitrification facilities.

  20. Asbestos-cement panels test report, 100K Area, Hanford, Washington

    SciTech Connect (OSTI)

    Moustafa, S.E.

    1993-12-01

    The 105KE/105KW reactor facilities were constructed in the mid-1950s. The 105KE/105KW fuel-basin roof panels are in a radiation controlled area where there is smearable contamination. The roof panels in all of the inspected areas were constructed from corrugated asbestos-cement (A/C) panels. The corrugated A/C roof panels exhibit common signs of aging including cracking, chipping, spalling, or a combination of these processes. Westinghouse Hanford Company (WHC) has engaged Wiss, Janney, Elstner Associates, Inc. (WJE) to perform laboratory and field tests on A/C roof panels of the 105KW building and also to make recommendations for panel replacement, maintenance, or upgrade that will maintain the structural integrity of the roof panels for an additional 20 years of service. This report contains the results of laboratory and in-situ testing performed by WJE. A Roof Proof Load Test Plan was prepared for WJE and approved by WHC. Conclusions and recommendations based on test results are presented for the 190-KE wall panels and 105KW roof panels.

  1. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2015 March 31, 2015 Operation of Effluent Treatment Facility transitioning to Washington River Protection Solutions Click to view the full news release. March 19, 2015 DOE-NNSA, Washington to take part in regional exercise in Benton and Franklin Counties Training designed to enable responders to work together effectively during radiological emergencies March 16, 2015 Hanford Landfill Reaches 17 Million Tons Disposed Waste disposal measures tremendous cleanup progress along Hanford's River

  2. Workers Successfully Excavate Mother Lode of Chromium Contamination at Hanford Site

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – EM’s Richland Operations Office (RL) and contractor Washington Closure Hanford (WCH) have removed what is believed to be the primary source of chromium contamination to the Columbia River near Hanford’s D Reactor after workers excavated 2.2 million tons of material from waste sites.

  3. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2014 April 22, 2014 FACT SHEET: Cleanup Progress at Hanford Check the metrics on Hanford Site cleanup since 1989 in this fact sheet that is updated periodically (this version: March 2014). April 22, 2014 VIDEO: Managing Safety Equipment at Hanford Through teamwork and sharing of information, Plutonium Finishing Plant industrial hygiene employees increase safety for all plant employees. April 18, 2014 Department of Energy Responds to Washington State's Proposal to Amend the Consent Decree

  4. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington, Collection of Surface Water, River Sediments, and Island Soils

    SciTech Connect (OSTI)

    L. C. Hulstrom

    2009-09-28

    This report has been prepared in support of the remedial investigation of Hanford Site Releases to the Columbia River and describes the 2008/2009 data collection efforts. This report documents field activities associated with collection of sediment, river water, and soil in and adjacent to the Columbia River near the Hanford Site and in nearby tributaries.

  5. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 2016 February 25, 2016 Workers Remove Most Contaminated Processing Equipment from Hanford Plutonium Finishing Plant Workers have finished cutting up and removing the two most highly contaminated pieces of processing equipment, called glove boxes, from the Plutonium Finishing Plant at the Hanford Site in Washington state

  6. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 2015 August 25, 2015 Workers Remove Iconic Glove Boxes from Hanford's Historic McCluskey Room Workers recently finished removing three pieces of history from one of the most hazardous rooms at the Hanford Site in Washington State

  7. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 2016 February 25, 2016 Workers Remove Most Contaminated Processing Equipment from Hanford Plutonium Finishing Plant Workers have finished cutting up and removing the two most highly contaminated pieces of processing equipment, called glove boxes, from the Plutonium Finishing Plant at the Hanford Site in Washington state

  8. Technical Basis for Certification of Seismic Design Criteria for the Waste Treatment Plant, Hanford, Washington

    SciTech Connect (OSTI)

    Brouns, T.M.; Rohay, A.C. [Pacific Northwest National Laboratory, Richland, WA (United States); Youngs, R.R. [Geomatrix Consultants, Inc., Oakland, CA (United States); Costantino, C.J. [C.J. Costantino and Associates, Valley, NY (United States); Miller, L.F. [U.S. Department of Energy, Office of River Protection, Richland, WA (United States)

    2008-07-01

    In August 2007, Secretary of Energy Samuel W. Bodman approved the final seismic and ground motion criteria for the Waste Treatment and Immobilization Plant (WTP) at the Department of Energy's (DOE) Hanford Site. Construction of the WTP began in 2002 based on seismic design criteria established in 1999 and a probabilistic seismic hazard analysis completed in 1996. The design criteria were reevaluated in 2005 to address questions from the Defense Nuclear Facilities Safety Board (DNFSB), resulting in an increase by up to 40% in the seismic design basis. DOE announced in 2006 the suspension of construction on the pretreatment and high-level waste vitrification facilities within the WTP to validate the design with more stringent seismic criteria. In 2007, the U.S. Congress mandated that the Secretary of Energy certify the final seismic and ground motion criteria prior to expenditure of funds on construction of these two facilities. With the Secretary's approval of the final seismic criteria in the summer of 2007, DOE authorized restart of construction of the pretreatment and high-level waste vitrification facilities. The technical basis for the certification of seismic design criteria resulted from a two-year Seismic Boreholes Project that planned, collected, and analyzed geological data from four new boreholes drilled to depths of approximately 1400 feet below ground surface on the WTP site. A key uncertainty identified in the 2005 analyses was the velocity contrasts between the basalt flows and sedimentary interbeds below the WTP. The absence of directly-measured seismic shear wave velocities in the sedimentary interbeds resulted in the use of a wider and more conservative range of velocities in the 2005 analyses. The Seismic Boreholes Project was designed to directly measure the velocities and velocity contrasts in the basalts and sediments below the WTP, reanalyze the ground motion response, and assess the level of conservatism in the 2005 seismic design criteria

  9. Senator Murray Visits Hanford

    Broader source: Energy.gov [DOE]

    U.S. Sen. Patty Murray (D-Wash.) visited the Hanford site in Washington state recently, where she received an update on activities at C Farm, which is one of the groups of underground waste tanks at Hanford.

  10. Radiological dose assessment for the decontaminated concrete removed from 183-H solar evaporation basins at the Hanford site, Richland, Washington

    SciTech Connect (OSTI)

    Kamboj, S.; Faillace, E.; Yu, C.

    1997-01-01

    Potential maximum radiation dose rates over a 1,000-year time horizon were calculated for exposure to the decontaminated concrete removed from the 183-H Solar Evaporation Basins at the Hanford Site, Richland, Washington. The RESRAD computer code, Version 5.62, which implements the methodology described in the US Department of Energy`s manual for developing residual radioactive material guidelines, was used in this evaluation. Currently, the concrete is not being used. Four potential exposure scenarios were developed for the land area where the decontaminated concrete will be stored. In Scenario A industrial use of the land is assumed; in Scenario B recreational use of the land is assumed; in Scenario C residential use of the land is assumed; and in Scenario D (a plausible but unlikely land-use scenario), the presence of a subsistence farmer in the immediate vicinity of the land is assumed. For Scenarios A and B, water used for drinking is assumed to be surface water from the Columbia River; for Scenarios C and D, groundwater drawn from a well located at the downgradient edge of the storage area is the only source of water for drinking, irrigation, and raising livestock. Conservative parameters values were used to estimate the radiation doses. The results of the evaluation indicate that the US Department of Energy`s dose limit of 100 mrem/yr would not be exceeded for any of the scenarios analyzed. The potential maximum dose rates for Scenarios A, B, C, and D are 0.75, 0.022, 29, 29 mrem/yr, respectively. An uncertainty analysis was performed to determine which parameters have the greatest impact on the estimated doses. The doses in Scenarios C and D were found to be very sensitive to the magnitude of the irrigation rate.

  11. Hanford Advisory Board

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and recommendations to DOE, EPA and Ecology that consider public values in cleanup ... and the Washington State Department of Ecology to complete the Hanford cleanup mission ...

  12. Hanford Tank Waste Retrieval,

    Office of Environmental Management (EM)

    Tank Waste Retrieval, Treatment, and Disposition Framework September 24, 2013 U.S. Department of Energy Washington, D.C. 20585 Hanford Tank Waste Retrieval, Treatment, and ...

  13. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2010 May 27, 2010 Recovery Act Progress at Hanford Read the full report on ARRA progress (through 3/31) at the Hanford Site. May 25, 2010 Cleaning Up After The Cold War: Hanford's Tank Waste In a recent article for the Daily Kos, former Hanford radiochemist Page van der Linden explains the complexity and importance of tank waste retrieval and processing. May 24, 2010 Department of Energy Strengthens Management of the Waste Treatment Plant in Washington State U.S. Energy Secretary Steven Chu

  14. Microsoft Word - DOE-EA-1707D_Revised_Predecisional_EA Closure_NRDWL-SWL08232011.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7D REVISED PREDECISIONAL DRAFT AUGUST 2011 Environmental Assessment Closure of Nonradioactive Dangerous Waste Landfill (NRDWL) and Solid Waste Landfill (SWL), Hanford Site, Richland, Washington U.S. Department of Energy Richland Operations Office Richland, Washington 99352 DOE/EA-1707D REVISED PREDECISIONAL DRAFT AUGUST 2011 DOE/EA-1707D REVISED PREDECISIONAL DRAFT iii AUGUST 2011 Contents 1 1 Introduction and Purpose and Need

  15. Contents of risk assessments to support the retrieval and closure of tanks for the Washington State Department of Ecology

    SciTech Connect (OSTI)

    MANN, F.M.

    2003-03-21

    Before the Integrated Mission Acceleration Plan can be performed, risk assessments of various options must be performed for ORP, DOE Headquarters, and the Washington State Dept. of Ecology. This document focuses on the risk assessments for Ecology.

  16. River Corridor Closure Contract Section J, Attachment J-4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Contract No. DE-AC06-05RL14655 A000 SECTION J, ATTACHMENT J-4 SMALL BUSINESS SUBCONTRACTING PLAN The Washington Closure LLC Small Business Subcontracting Plan is on file at the Richland Operations Office and will be available at www.hanford.gov/rl The Washington Smalll Business Subcontracting Goals are as follows (as a percent of total subcontracting effort): Small Business (SB): 65.0% Small Disadvantaged Business: 22.0% Women-Owned SB: 13.0% HUBZone SB: 4.5% Veteran-Owned SB: 3.0%

  17. Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The Army will conduct simulated combat assault infiltrationexfiltration training exercises and simulations at the FMEF utilizing CV-22 Osprey, MH-60 Blackhawk, MH-47 Chinook, or ...

  18. Hanford Video - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Traffic Safety Video Title: Hanford Traffic Safety Video Keywords: Hanford, Traffic, Safety, Video Date: 01 February 2011 Description: Hanford Traffic Safety Video <-- Related Videos: -->

  19. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2011 June 30, 2011 UPDATE: Hanford Tank Waste Recovery Report Washington River Protection Solutions Tank Waste Recovery Act Report (June 2011) June 30, 2011 PRESS RELEASE: Construction continues to advance at Pretreatment Facility Hanford Waste Treatment Plant crews lifted and placed a nearly nine-ton rebar curtain above the 77-foot elevation at the Pretreatment Facility. The curtain measures 36 feet long, 22 feet high and is the last curtain to compose the facility's fifth concrete

  20. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 2012 September 19, 2012 PHOTO GALLERY: F Reactor Media Event Pictures of the F Reactor Area and the Media Availability held on September 19, 2012. September 19, 2012 F Reactor Area Cleanup Complete First at Hanford to Finish Buildings, Waste Sites, and Cocooning September 17, 2012 VIDEO: C-104 Retrieval Completion September 17, 2012 Retrieval of the Tenth Single-Shell Tank Complete at Hanford Washington River Protection Solutions (WRPS) has advised the U.S. Department of Energy (DOE)

  1. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2015 May 21, 2015 Briefing to Homebuilders' Association of Tri-Cities Richland Operations Office Manager Stacy Charboneau provided an overview of the Hanford Site to the Homebuilders' Association of the Tri-Cities in May 2015. May 07, 2015 Washington State University to manage Hanford's Manhattan Project and Cold War-era artifacts and archives The U.S. Department of Energy's Richland Operations Office (RL), through site contractor Mission Support Alliance (MSA), has begun a new partnership

  2. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of 06934566 .l\ ~ ~ ~~9 u.s. Department of Energy Hanford Site OEC 2 8 2004 04-0RP-O78 Mr. Todd Martin, Chair Hanford Advisory Board 1933 Jadwin Avenue, Suite 135 Rich1and, Washington 99352 Dear Mr. Martin: HANFORD ADVISORY BOARD (HAB) CONSENSUS ADVICE #167 -STOP WORK AUTHORITY Reference: HAB letter from T. Martin to P. Golan and J. Shaw, DOE-HQ; K. Klein, RL; R. Schepens, ORP; L. Hoffman, Ecology; and R. Kreizeneeck, EPA, "Stop Work Authority," dated November 5, 2004. This letter

  3. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2013 July 19, 2013 ORP Update on Status of Double Shell Tank AY-102 July 16, 2013 VIDEO: 300 Area Proposed Plan Overview The 300 Area, just north of Richland, Washington, was where fuel for Hanford's nine plutonium production reactors was manufactured. July 15, 2013 NEWS RELEASE: Hanford Site Treating Record Amount of Groundwater Contractor CH2M HILL met annual goal for treating 1.4 billion gallons 3 months early and removed 36 tons of contaminants. July 09, 2013 Hanford Landfill Reaches 15

  4. A Short History of Waste Management at the Hanford Site

    SciTech Connect (OSTI)

    Gephart, Roy E.

    2010-03-31

    "The worlds first full-scale nuclear reactors and chemical reprocessing plants built at the Hanford Site in the desert of eastern Washington State produced two-thirds of the plutonium generated in the United States for nuclear weapons. Operating these facilities also created large volumes of radioactive and chemical waste, some of which was released into the environment exposing people who lived downwind and downstream. Hanford now contains the largest accumulation of nuclear waste in the Western Hemisphere. Hanfords last reactor shut down in 1987 followed by closure of the last reprocessing plant in 1990. Today, Hanfords only mission is cleanup. Most onsite radioactive waste and nuclear material lingers inside underground tanks or storage facilities. About half of the chemical waste remains in tanks while the rest persists in the soil, groundwater, and burial grounds. Six million dollars each day, or nearly two billion dollars each year, are spent on waste management and cleanup activities. There is significant uncertainty in how long cleanup will take, how much it will cost, and what risks will remain for future generations. This paper summarizes portions of the waste management history of the Hanford Site published in the book Hanford: A Conversation about Nuclear Waste and Cleanup.(1) "

  5. Applying Lean Concepts to Waste Site Closure - 13137

    SciTech Connect (OSTI)

    Proctor, M.L. [Washington Closure Hanford, 2620 Fermi, Richland, Washington 99354 (United States)] [Washington Closure Hanford, 2620 Fermi, Richland, Washington 99354 (United States)

    2013-07-01

    Washington Closure Hanford (WCH) was selected by the U.S. Department of Energy, Richland Operations Office to manage the River Corridor Closure Project, a 10-year contract in which WCH will clean up 220 mi{sup 2} of contaminated land at the Hanford Site in Richland, Washington. In the summer of 2011, with Tri-Party (DOE-RL, Environmental Protection Agency and Washington State Department of Ecology) Agreement Milestones due at the end of the calendar year, standard work practices were challenged in regards to closure documentation development. The Lean process, a concept that maximizes customer value while minimizing waste, was introduced to WCH's Sample Design and Cleanup Verification organization with the intention of eliminating waste and maximizing efficiencies. The outcome of implementing Lean processes and concepts was impressive. It was determined that the number of non-value added steps far outnumbered the value added steps. Internal processing time, document size, and review times were all reduced significantly; relationships with the customer and the regulators were also improved; and collaborative working relationships with the Tri Parties have been strengthened by working together on Lean initiatives. (authors)

  6. Event Calendar - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Advisory Board Calendars Hanford Events Calendar Hanford Advisory Board Hanford Events Calendar Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size << Previous Year << Previous Month 2016 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec List View | Calendar View| Daily View 2016 Sep 1 60-Day Comment Period: PUREX North Closure Plan July 18 - September 16, 2016 More Info... Proposed Closure Plan for the 324 Building July 5 - September 9 More Info...

  7. PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364

    SciTech Connect (OSTI)

    CORBETT JE; TEDESCH AR; WILSON RA; BECK TH; LARKIN J

    2011-02-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

  8. Hanford Speakers Bureau - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bureau Hanford Speakers Bureau Hanford Speakers Bureau Hanford Speakers Bureau Request Form Hanford Speakers Bureau Frequently Asked Questions Why Hanford? Video Hanford Speakers...

  9. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Site, Richland, Washington (Final TC & WM EIS) U.S. Department of Energy (DOE) Foreword DOE appreciates the efforts of the Washington State Department of Ecology (Ecology)...

  10. Secretary Moniz Meets with Employees, Tribal Leaders during Hanford Visit and Site Tour

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. Energy Secretary Ernest Moniz recently visited the Hanford site in southeastern Washington State.

  11. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2016 July 20, 2016 DOE Marks 20 Years of Cleanup Success at ERDF This month marks 20 successful years of environmental cleanup at one of the U.S. Department of Energy (DOE)'s largest disposal facilities--the Environmental Restoration Disposal Facility (ERDF) on the Hanford Site in southeastern Washington state

  12. Carolina, Tennessee, and Washington.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2016 The U.S. Department of Energy is responsible for one of the largest nuclear cleanup efforts in the world, managing the legacy of five decades of nuclear weapons production. At its peak, this national weapons complex consisted of 16 major facilities, including vast reservations of land in the States of Idaho, Nevada, South Carolina, Tennessee, and Washington. Nowhere in the DOE Complex is cleanup more challenging than at the Hanford Site in southeastern Washington. Hanford made more

  13. Carolina, Tennessee, and Washington.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2015 The U.S. Department of Energy is responsible for one of the largest nuclear cleanup efforts in the world, managing the legacy of five decades of nuclear weapons production. At its peak, this national weapons complex consisted of 16 major facilities, including vast reservations of land in the States of Idaho, Nevada, South Carolina, Tennessee, and Washington. Nowhere in the DOE Complex is cleanup more challenging than at the Hanford Site in southeastern Washington. Hanford made more than

  14. Carolina, Tennessee, and Washington.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2016 The U.S. Department of Energy is responsible for one of the largest nuclear cleanup efforts in the world, managing the legacy of five decades of nuclear weapons production. At its peak, this national weapons complex consisted of 16 major facilities, including vast reservations of land in the States of Idaho, Nevada, South Carolina, Tennessee, and Washington. Nowhere in the DOE Complex is cleanup more challenging than at the Hanford Site in southeastern Washington. Hanford made more

  15. DOE Selects Washington River Protection Solutions, LLC for Tank...

    Energy Savers [EERE]

    Washington River Protection Solutions, LLC for Tank Operations Contract at Hanford Site DOE Selects Washington River Protection Solutions, LLC for Tank Operations Contract at ...

  16. Late Pleistocene and Holocene-Age Columbia River Sediments and Bedforms: Hanford Reach Area, Washington - Part 2

    SciTech Connect (OSTI)

    K.R. Fecht, T.E. Marceau

    2006-03-28

    This report presents the results of a geologic study conducted on the lower slopes of the Columbia River Valley in south-central Washington. The study was designed to investigate glaciofluvial and fluvial sediments and bedforms that are present in the river valley and formed subsequent to Pleistocene large-scale cataclysmic flooding of the region.

  17. Environmental assessment: Transfer of normal and low-enriched uranium billets to the United Kingdom, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    1995-11-01

    Under the auspices of an agreement between the U.S. and the United Kingdom, the U.S. Department of Energy (DOE) has an opportunity to transfer approximately 710,000 kilograms (1,562,000 pounds) of unneeded normal and low-enriched uranium (LEU) to the United Kingdom; thus, reducing long-term surveillance and maintenance burdens at the Hanford Site. The material, in the form of billets, is controlled by DOE`s Defense Programs, and is presently stored as surplus material in the 300 Area of the Hanford Site. The United Kingdom has expressed a need for the billets. The surplus uranium billets are currently stored in wooden shipping containers in secured facilities in the 300 Area at the Hanford Site (the 303-B and 303-G storage facilities). There are 482 billets at an enrichment level (based on uranium-235 content) of 0.71 weight-percent. This enrichment level is normal uranium; that is, uranium having 0.711 as the percentage by weight of uranium-235 as occurring in nature. There are 3,242 billets at an enrichment level of 0.95 weight-percent (i.e., low-enriched uranium). This inventory represents a total of approximately 532 curies. The facilities are routinely monitored. The dose rate on contact of a uranium billet is approximately 8 millirem per hour. The dose rate on contact of a wooden shipping container containing 4 billets is approximately 4 millirem per hour. The dose rate at the exterior of the storage facilities is indistinguishable from background levels.

  18. DOE Selects Washington River Protection Solutions, LLC for Tank Operations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contract at Hanford Site | Department of Energy Washington River Protection Solutions, LLC for Tank Operations Contract at Hanford Site DOE Selects Washington River Protection Solutions, LLC for Tank Operations Contract at Hanford Site May 29, 2008 - 12:51pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that Washington River Protection Solutions (WRPS), LLC has been selected as the tank operations contractor to store, retrieve and treat Hanford tank waste and

  19. How the Lean Management System is Working on a Closure Project - 13242

    SciTech Connect (OSTI)

    Mowery, Carol

    2013-07-01

    Washington Closure Hanford, LLC (WCH) manages the River Corridor Closure Project (RCCP), a 10-year contract, in which WCH will clean up 220 mi{sup 2} of contaminated land at the Hanford Site in Richland, Washington. Strategic planning sessions in 2009 identified key performance areas that were essential to closure and in which focused change could result in dramatic performance improvement. Lean Management Systems (Lean) was selected as the methodology to achieve the desired results. The Lean Process is built upon the fundamentals of the power of respect for people and the practice of continuous process improvement. Lean uses week-long, focused sessions that teach a selected team the techniques to recognize waste within their own work processes, propose potential solutions, and then conduct experiments during the week to test their solutions. In 2011, the Lean process was implemented in the Waste Operations organization. From there it was expanded to closure documents, field remediation, and decommissioning and demolition. WCH identified the following Lean focus areas: 1) closure document processes that required extensive internal preparation, and lengthy external review and approval cycles; 2) allocation of limited transportation and waste disposal resources to meet aggressive remediation schedules; 3) effective start-of-the-day routines in field operations; 4) improved excavation and load-out processes; and 5) approaches to strengthen safety culture and support disciplined operations. Since the introduction of Lean, RCCP has realized many successes and also gained some unexpected benefits. (authors)

  20. RCRA facility investigation/corrective measures study work plan for the 200-UP-2 Operable Unit, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The 200-UP-2 Operable Unit is one of two source operable units at the U Plant Aggregate Area at the Hanford Site. Source operable units include waste management units and unplanned release sites that are potential sources of radioactive and/or hazardous substance contamination. This work plan, while maintaining the title RFI/CMS, presents the background and direction for conducting a limited field investigation in the 200-UP-2 Operable Unit, which is the first part of the process leading to final remedy selection. This report discusses the background, prior recommendations, goals, organization, and quality assurance for the 200-UP-2 Operable Unit Work Plan. The discussion begins with a summary of the regulatory framework and the role of the work plan. The specific recommendations leading into the work plan are then addressed. Next, the goals and organization of the report are discussed. Finally, the quality assurance and supporting documentation are presented.

  1. Remedial investigation/feasibility study work plan for the 100-KR-4 operable unit, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency`s (EPA`s) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-KR-4 operable unit. The 100-K Area consists of the 100-KR-4 groundwater operable unit and three source operable units. The 100-KR-4 operable unit includes all contamination found in the aquifer soils and water beneath the 100-K Area. Source operable units include facilities and unplanned release sites that are potential sources of contamination.

  2. Decommissioning of eight surplus production reactors at the Hanford Site, Richland, Washington. Addendum (Final Environmental Impact Statement)

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    The first section of this volume summarizes the content of the draft environmental impact statement (DEIS) and this Addendum, which together constitute the final environmental impact statement (FEIS) prepared on the decommissioning of eight surplus plutonium production reactors at Hanford. The FEIS consists of two volumes. The first volume is the DEIS as written. The second volume (this Addendum) consists of a summary; Chapter 9, which contains comments on the DEIS and provides DOE`s responses to the comments; Appendix F, which provides additional health effects information; Appendix K, which contains costs of decommissioning in 1990 dollars; Appendix L, which contains additional graphite leaching data; Appendix M, which contains a discussion of accident scenarios; Appendix N, which contains errata; and Appendix 0, which contains reproductions of the letters, transcripts, and exhibits that constitute the record for the public comment period.

  3. Remedial investigation/feasibility study work plan for the 100-BC-2 operable unit, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    This work plan and attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial investigation/feasibility study (RI/FS) for the 100-BC-2 operable unit in the 100 Area of the Hanford Site. The 100 Area is one of four areas at the Hanford Site that are on the US Environmental Protection Agency`s (EPA) National Priorities List under CERCLA. The 100-BC-2 operable unit is one of two source operable units in the 100-B/C Area (Figure ES-1). Source operable units are those that contain facilities and unplanned release sites that are potential sources of hazardous substance contamination. The 100-BC-2 source operable unit contains waste sites that were formerly in the 100-BC-2, 100-BC-3, and 100-BC-4 operable units. Because of their size and geographic location, the waste sites from these two operable units were added to 100-BC-2. This allows for a more efficient and effective investigation of the remaining 100-B/C Reactor area waste sites. The investigative approach to waste sites associated with the 100-BC-2 operable unit are listed in Table ES-1. The waste sites fall into three general categories: high priority liquid waste disposal sites, low priority liquid waste disposal sites, and solid waste burial grounds. Several sites have been identified as candidates for conducting an IRM. Two sites have been identified as warranting additional limited field sampling. The two sites are the 116-C-2A pluto crib, and the 116-C-2C sand filter.

  4. Hanford Cultural Resources - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Hanford Site Wide Programs Hanford's Tribal Program Hanford Cultural Resources About Us Hanford's Tribal Program Home Hanford Cultural Resources DOE American Indian Tribal...

  5. HANFORD ADVISORY BOARD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 MEETING SCHEDULE Updated October 20, 2015 MEETING DATE LOCATION PHONE NUMBER # GUEST ROOMS RESERVED SHUTTLE SERVICE November 4-5, 2015 Red Lion Hanford House 802 George Washington Way Richland, Washington Phone: 509-946-7611 1-800-733-5466 15 Rooms @ $92 For Oct 3 & 4 Reserve by Oct 15 YES February 3-4, 2016 Red Lion Hanford House 802 George Washington Way Richland, Washington Phone: 509-946-7611 1-800-733-5466 15 Rooms @ $92 For Feb 2 & 3 Reserve by Jan 10 YES April 13-14, 2016 Red

  6. HANFORD SITE WELDING PROGRAM SUCCESSFULLY PROVIDING A SINGLE SITE FUNCTION FOR USE BY MULTIPLE CONTRACTORS

    SciTech Connect (OSTI)

    CANNELL GR

    2009-11-19

    The Department of Energy, Richland Operations (DOE-RL) recently restructured its Hanford work scope, awarding two new contracts over the past several months for a total of three contracts to manage the sites cleanup efforts. DOE-RL met with key contractor personnel prior to and during contract transition to ensure site welding activities had appropriate oversight and maintained code compliance. The transition also provided an opportunity to establish a single site-wide function that would provide welding and materials engineering services to the Hanford site contractors: CH2M HILL Plateau Remediation Company (CHPRC); Mission Support Alliance (MSA); Washington River Protection Solutions (WRPS); and Washington Closure Hanford (WCH). Over the years, multiple and separate welding programs (amongst the several contractors) existed at the Hanford site leading to inefficiencies resulting from duplication of administrative efforts, maintenance of welding procedures, welder performance certifications, etc. The new, single program eliminates these inefficiencies. The new program, co-managed by two of the sites' new contractors, the CHPRC ('owner' of the program and responsible for construction welding services) and the MSA (provides maintenance welding services), provides more than just the traditional construction and maintenance welding services. Also provided, are welding engineering, specialty welding development/qualification for the closure of radioactive materials containers and materials evaluation/failure analysis. The following describes the new Hanford site welding program.

  7. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 2014 September 29, 2014 Settlement on AY-102 ORP and WRPS are pleased that negotiations with Washington State have resulted in a safe and mutually agreed-upon path forward for the removal of waste from Hanford double-shell tank AY-102. September 29, 2014 Message from the Acting Manager on the B Reactor anniversary Tomorrow marks the 70th anniversary of perhaps the most important event in the history of the Hanford Site. September 11, 2014 Study on the Waste Treatment and Immobilization

  8. River Corridor Closure Contract Section J Contract No. DE-AC06-05RL14655 698

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5RL14655 698 J-7-1 ATTACHMENT J-7 SPECIAL FINANCIAL INSTITUTION ACCOUNT AGREEMENT Special Financial Institution Account Agreement for use with the Payments Cleared Financing Arrangement Agreement, effective the 1 st day of July 2011, between the UNITED STATES OF AMERICA, represented by the Department of Energy (DOE), and Washington Closure Hanford, LLC (WCH) as a company existing under the laws of the State of Delaware, and U.S. Bank, a financial institution corporation existing under the laws

  9. Hanford Site Environmental Report for Calendar Year 2001

    SciTech Connect (OSTI)

    Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.; Morasch, Launa F.

    2002-09-02

    This report summarizes environmental information for the Hanford Site in Washington State for the calendar year 2001.

  10. Environmental assessment for the resiting, construction, and operation of the Environmental and Molecular Sciences Laboratory at the Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This environmental assessment (EA) presents estimated environmental impacts from the resiting, construction, and operation of the US Department of Energy`s (DOE`s) Environmental and Molecular Sciences Laboratory (EMSL), which is proposed to be constructed and operated on land near the south boundary of the Hanford Site near Richland, Washington. The EMSL, if constructed, would be a modern research facility in which experimental, theoretical, and computational techniques can be focused on environmental restoration problems, such as the chemical and transport behavior of complex mixtures of contaminants in the environment. The EMSL design includes approximately 18,500 square meters (200,000 square feet) of floor space on a 12-hectare (30-acre) site. The proposed new site is located within the city limits of Richland in north Richland, at the south end of DOE`s 300 Area, on land to be deeded to the US by the Battelle Memorial Institute. Approximately 200 persons are expected to be employed in the EMSL and approximately 60 visiting scientists may be working in the EMSL at any given time. State-of-the-art equipment is expected to be installed and used in the EMSL. Small amounts of hazardous substances (chemicals and radionuclides) are expected to be used in experimental work in the EMSL.

  11. Accident investigation board report on the May 14, 1997, chemical explosion at the Plutonium Reclamation Facility, Hanford Site,Richland, Washington - final report

    SciTech Connect (OSTI)

    Gerton, R.E.

    1997-07-25

    On May 14, 1997, at 7:53 p.m. (PDT), a chemical explosion occur-red in Tank A- 109 in Room 40 of the Plutonium Reclamation Facility (Facility) located in the 200 West Area of the Hanford Site, approximately 30 miles north of Richland, Washington. The inactive processing Facility is part of the Plutonium Finishing Plant (PFP). On May 16, 1997, Lloyd L. Piper, Deputy Manager, acting for John D. Wagoner, Manager, U.S. Department of Energy (DOE), Richland Operations Office (RL), formally established an Accident Investigation Board (Board) to investigate the explosion in accordance with DOE Order 225. 1, Accident Investigations. The Board commenced its investigation on May 15, 1997, completed the investigation on July 2, 1997, and submitted its findings to the RL Manager on July 26, 1997. The scope of the Board`s investigation was to review and analyze the circumstances of the events that led to the explosion; to analyze facts and to determine the causes of the accident; and to develop conclusions and judgments of need that may help prevent a recurrence of the accident. The scope also included the application of lessons learned from similar accidents within DOE. In addition to this detailed report, a companion document has also been prepared that provides a concise summary of the facts and conclusions of this report, with an emphasis on management issues (DOE/RL-97-63).

  12. The Hanford Story: Overview

    Broader source: Energy.gov [DOE]

    This is the Emmy Award-winning first chapter of The Hanford Story, a multimedia presentation that provides an overview of the Hanford Site—its history, today's cleanup activities, and a glimpse into the possibilities of future uses of the 586-square-mile government site in southeast Washington State.

  13. Remedial Investigation/Feasibility Study Work Plan for the 200-UP-1 Groundwater Operable Unit, Hanford Site, Richland, Washington. Revision

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This work plan identifies the objectives, tasks, and schedule for conducting a Remedial Investigation/Feasibility Study for the 200-UP-1 Groundwater Operable Unit in the southern portion of the 200 West Groundwater Aggregate Area of the Hanford Site. The 200-UP-1 Groundwater Operable Unit addresses contamination identified in the aquifer soils and groundwater within its boundary, as determined in the 200 West Groundwater Aggregate Area Management Study Report (AAMSR) (DOE/RL 1992b). The objectives of this work plan are to develop a program to investigate groundwater contaminants in the southern portion of the 200 West Groundwater Aggregate Area that were designated for Limited Field Investigations (LFIs) and to implement Interim Remedial Measures (IRMs) recommended in the 200 West Groundwater AAMSR. The purpose of an LFI is to evaluate high priority groundwater contaminants where existing data are insufficient to determine whether an IRM is warranted and collect sufficient data to justify and implement an IRM, if needed. A Qualitative Risk Assessment (QRA) will be performed as part of the LFI. The purpose of an IRM is to develop and implement activities, such as contaminant source removal and groundwater treatment, that will ameliorate some of the more severe potential risks of groundwater contaminants prior to the RI and baseline Risk Assessment (RA) to be conducted under the Final Remedy Selection (FRS) at a later date. This work plan addresses needs of a Treatability Study to support the design and implementation of an interim remedial action for the Uranium-{sup 99}{Tc}-Nitrate multi-contaminant IRM plume identified beneath U Plant.

  14. Hanford Lifecycle Reports - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Lifecycle Reports Hanford Lifecycle Reports Hanford Lifecycle Reports Hanford Lifecycle Reports Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size 2016 Hanford Lifecycle Report 2015 Hanford Lifecycle Report 2014 Hanford Lifecycle Report 2013 Hanford Lifecycle Report 2012 Hanford Lifecycle Report 2011 Hanford Lifecycle Report Share on Last Updated 02/22/2016 2:54

  15. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2009 July 23, 2009 DOE, Ecology, EPA Announce New Groundwater Treatment System Dr. Inés Triay, DOE Assistant Secretary for Environmental Management, along with representatives of Washington State, U.S. EPA and the AFL-CIO Metal Trades announced today that construction of the largest treatment system for contaminated groundwater July 16, 2009 Great story on Hanford's vit plant progress in Wednesday's Tri-City Herald Crews recently installed a major component needed for operations at the

  16. EXECUTIVE SUMMARY FOR HANFORD FEDERAL FACILITY AGREEMENT AND...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... the Washington Hazardous Waste Management Act for TSD units including requirements covering permitting, interim status, land disposal restrictions, closure, and post-closure ...

  17. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1

    SciTech Connect (OSTI)

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.

  18. RESULTS FROM RECENT SCIENCE AND TECHNOLOGY INVESTIGATIONS TARGETING CHROMIUM IN THE 100D AREA HANFORD SITE WASHINGTON USA

    SciTech Connect (OSTI)

    PETERSEN SW; THOMPSON KM; TONKIN MJ

    2009-12-03

    Sodium dichromate was used in Hanford's 100D Area during the reactor operations period of 1950 to 1964 to retard corrosion in the reactor cooling systems. Some of the sodium dichromate was released to the environment by spills and/or leaks from pipelines used to deliver the chemical to water treatment plants in the area. As a result, hexavalent chromium [Cr(VI)] has migrated through the vadose zone to the groundwater and contaminated nearly 1 km{sup 2} of groundwater to above the drinking water standard of 48 {micro}g/L. Three technology tests have recently been completed in this area to characterize the source area of the plumes and evaluate alternative methods to remove Cr(VI) from groundwater. These are (1) refine the source area of the southern plume; (2) test electrocoagulation as an alternative groundwater treatment technology; and (3) test the ability to repair a permeable reactive barrier by injecting micron or nanometer-size zero-valent iron (ZVI). The projects were funded by the US Department of Energy as part of a program to interject new technologies and accelerate active cleanup. Groundwater monitoring over the past 10 years has shown that Cr(VI) concentrations in the southern plume have not significantly diminished, strongly indicating a continuing source. Eleven groundwater wells were installed in 2007 and 2008 near a suspected source area and monitored for Cr(VI) and groundwater levels. Interpretation of these data has led to refinement of the source area location to an area of less than 1 hectare (ha, 2.5 acres). Vadose zone soil samples collected during drilling did not discover significant concentrations of Cr(VI), indicating the source is localized, with a narrow wetted path from the surface to the water table. Electrocoagulation was evaluated through a pilot-scale treatability test. Over 8 million liters of groundwater were treated to Cr(VI) concentrations of {le}20 {micro}g/L. The test determined that this technology has the potential to treat

  19. Tank Waste Committee Summaries - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Attachment 3: HAB Advice 277: 2015 Presidential Budget and Request Attachment 4: ... 7: Washington State's Dangerous Waste Permit for Hanford's Single-Shell Tanks ...

  20. Hanford Event Calendar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Event Calendar 09/04/2016 Proposed Closure Plan for the 324 Building <p>The U.S. Department of Energy (DOE) invites you to provide input on the proposed modification to the Hanford Facility Dangerous Waste Permit by adding the 324 Building Closure Plan dangerous waste management units (DWMUs).</p> <p>The 324 Building Closure Plan is specific to closure of DWMUs, which consist of four hot cells and two underground vaults. The 324 Building will be demolished under the

  1. STATE OF THE HANFORD SITE Public Meetings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STATE OF THE HANFORD SITE Public Meetings April 2014 What is a State of the Hanford Site public meeting? Hanford cleanup schedules and activities are set by the Tri-Party Agreement (TPA). The U.S. Department of Energy (DOE), Washington State Department of Ecology (Ecology) and the U.S. Environmental Protection Agency (EPA) - the TPA agencies - will host four State of the Hanford Site meetings in Northwest communities. These meetings provide an opportunity for the public to discuss Hanford

  2. PERFORMANCE OBJECTIVES FOR TANK FARM CLOSURE PERFORMANCE ASSESSMENTS

    SciTech Connect (OSTI)

    MANN, F.M.; CRUMPLER, J.D.

    2005-09-30

    This report documents the performance objectives (metrics, times of analyses, and times of compliance) to be used in performance assessments of Hanford Site tank farm closure.

  3. Washington - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington Washington

  4. Washington - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington Washington

  5. Washington - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington Washington

  6. HANFORD SITE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Advisory Board Larry Goldstein November 1, 2012 1 2 Who We Are State of Oregon State of Washington U.S. Department of Energy U.S. Department of Commerce (NOAA) U.S. Department of Interior (Fish and Wildlife Service) Nez Perce Tribe Confederated Tribes and Bands of the Yakama Nation Confederated Tribes of the Umatilla Indian Reservation 3 Trustees are governments, defined by CERCLA, who act to: Protect the public interest and to "make the public whole" for injuries to natural

  7. Environmental Assessment for the Accelerated Tank Closure Demonstration Project

    SciTech Connect (OSTI)

    N /A

    2003-06-16

    The U.S. Department of Energy's (DOE) Office of River Protection (ORP) needs to collect engineering and technical information on (1) the physical response and behavior of a Phase I grout fill in an actual tank, (2) field deployment of grout production equipment and (3) the conduct of component closure activities for single-shell tank (SST) 241-C-106 (C-106). Activities associated with this Accelerated Tank Closure Demonstration (ATCD) project include placement of grout in C-106 following retrieval, and associated component closure activities. The activities will provide information that will be used in determining future closure actions for the remaining SSTs and tank farms at the Hanford Site. This information may also support preparation of the Environmental Impact Statement (EIS) for Retrieval, Treatment, and Disposal of Tank Waste and Closure of Single-Shell Tanks at the Hanford Site, Richland, Washington (Tank Closure EIS). Information will be obtained from the various activities associated with the component closure activities for C-106 located in the 241-C tank farm (C tank farm) under the ''Resource Conservation and Recovery Act of 1976'' (RCRA) and the Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1989). The impacts of retrieving waste from C-106 are bounded by the analysis in the Tank Waste Remediation System (TWRS) EIS (DOE/EIS-0189), hereinafter referred to as the TWRS EIS. DOE has conducted and continues to conduct retrieval activities at C-106 in preparation for the ATCD Project. For major federal actions significantly affecting the quality of the human environment, the ''National Environmental Policy Act of 1969'' (NEPA) requires that federal agencies evaluate the environmental effects of their proposed and alternative actions before making decisions to take action. The President's Council on Environmental Quality (CEQ) has developed regulations for implementing NEPA. These regulations are found in Title 40 of the Code

  8. Richland Operations Office - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (RL), the main field office for the Hanford Site in southeastern Washington State. I hope these pages will be informative for you about our mission, goals, and progress toward...

  9. HANFORD SITE VEHICLE TRAFFIC SAFETY ASSESSMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HANFORD SITE VEHICLE TRAFFIC SAFETY ASSESSMENT April 2010 Prepared for: Mission Support Alliance and U.S. Department of Energy - Richland Office Richland, Washington Prepared by: Transportation Solutions, Inc. 8350 165 th Ave Northeast, Suite 100 Redmond, Washington 98052 425-883-4134 tsinw.com Hanford Vehicle Safety Assessment FEBRUARY 2010 ii Table of Contents Executive Summary

  10. The Hanford Story: River Corridor

    Broader source: Energy.gov [DOE]

    This is the seventh chapter of The Hanford Story, a multimedia presentation that provides an overview of the Hanford Site—its history, today's cleanup activities, and a glimpse into the possibilities of future uses of the 586-square-mile government site in southeast Washington State.

  11. HANFORD ENGINEER WORKS

    Office of Legacy Management (LM)

    HANFORD ENGINEER WORKS IJd *P-t - - ~~~ssiticatiC+n cwcetted rat G.E. NUCLEONICS PROJECT xi I ~@L.%&~--G-ENERAI,@ ELECTRIC z ,m ._.__.-. _ I--..-. By Authority of. COMPANY ._ Atmic Energy Commission Office of Hanford Dire&xl Operations Riohland, Washington Attention; Mr. Carleton Shugg, Manager ./ ALPKA-ROLLED EL'GIL%I jw -879 ' . *_ a. f' Richland, Washington February 6, 1948 , Thla Dclc.Jv-<en! :-; . ' - -*...-- f_ ~~~.s No .__. ._. .s / ~. - J-LccIp%. Fr:*? fi This will con&rm

  12. Hanford, WA Selected as Plutonium Production Facility | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Hanford, WA Selected as Plutonium Production Facility Hanford, WA Selected as Plutonium Production Facility Hanford, WA Groves selects Hanford, Washington, as site for full-scale plutonium production and separation facilities. Three reactors--B, D, and F--are built

  13. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Hanford. March 20, 2013 Firefighters at the Hanford Site Participate in Annual Leukemia & Lymphoma Society Event Firefighters from the Hanford Site recently raised...

  14. Photo Gallery - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility

  15. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Children 03080006-052df Baseball Team, Hanford, 1913 03080006-052df Baseball Team, Hanford, 1913 092263-4 Hanford Grade School Students and Teacher, 1934 092263-4 Hanford Grade...

  16. Hanford Staff Directory - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Illness Compensation Hanford Workers Compensation Projects & Facilities HERO PHOENIX Hanford Meteorological Station Definitions Abbreviations and Acronyms Visitor Control...

  17. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 2007 August 16, 2007 2006 Marked By Substantial Hanford Cleanup Progress 2006 Marked By Substantial Hanford Cleanup Progress

  18. Hanford CBDPP Committee - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford CBDPP Committee Beryllium FAQs Beryllium Related Links Hanford Beryllium Awareness Group (BAG) Program Performance Assessments Beryllium Program Feedback Beryllium...

  19. 324 Building radiochemical engineering cells, high-level vault, low-level vault, and associated areas closure plan

    SciTech Connect (OSTI)

    Barnett, J.M.

    1998-03-25

    The Hanford Site, located adjacent to and north of Richland, Washington, is operated by the US Department of Energy, Richland Operations Office (RL). The 324 Building is located in the 300 Area of the Hanford Site. The 324 Building was constructed in the 1960s to support materials and chemical process research and development activities ranging from laboratory/bench-scale studies to full engineering-scale pilot plant demonstrations. In the mid-1990s, it was determined that dangerous waste and waste residues were being stored for greater than 90 days in the 324 Building Radiochemical Engineering Cells (REC) and in the High-Level Vault/Low-Level Vault (HLV/LLV) tanks. [These areas are not Resource Conservation and Recovery Act of 1976 (RCRA) permitted portions of the 324 Building.] Through the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-89, agreement was reached to close the nonpermitted RCRA unit in the 324 Building. This closure plan, managed under TPA Milestone M-20-55, addresses the identified building areas targeted by the Tri-Party Agreement and provides commitments to achieve the highest degree of compliance practicable, given the special technical difficulties of managing mixed waste that contains high-activity radioactive materials, and the physical limitations of working remotely in the areas within the subject closure unit. This closure plan is divided into nine chapters. Chapter 1.0 provides the introduction, historical perspective, 324 Building history and current mission, and the regulatory basis and strategy for managing the closure unit. Chapters 2.0, 3.0, 4.0, and 5.0 discuss the detailed facility description, process information, waste characteristics, and groundwater monitoring respectively. Chapter 6.0 deals with the closure strategy and performance standard, including the closure activities for the B-Cell, D-Cell, HLV, LLV; piping and miscellaneous associated building areas. Chapter 7.0 addresses the

  20. EIS-0325: Schultz-Hanford Area Transmission Line Project, WA

    Broader source: Energy.gov [DOE]

    BPA proposes to construct a new 500-kilovolt (kV) transmission line in central Washington. This project would increase transmission system capacity north of Hanford.

  1. Report on the emergency response to the event on May 14, 1997, at the plutonuim reclamation facility, Hanford Site, Richland,Washington

    SciTech Connect (OSTI)

    Shoop, D.S.

    1997-08-20

    On the evening of May 14,1997, a chemical explosion Occurred at the Plutonium Reclamation Facility (PRF) in the 200 West Area(200-W) of the Hanford Site. The event warranted the declaration of an Alert emergency, activation of the Hanford Emergency Response Organization (BRO), and notification of offsite agencies. As a result of the emergency declaration, a subsequent evaluation was conducted to assess: 9 the performance of the emergency response organization o the occupational health response related to emergency activities o event notifications to offsite and environmental agencies. Additionally, the evaluation was designed to: 9 document the chronology of emergency and occupational health responses and environmental notifications connected with the explosion at the facility 0 assess the adequacy of the Hanford Site emergency preparedness activities; response readiness; and emergency management actions, occupational health, and environmental actions 0 provide an analysis of the causes of the deficiencies and weaknesses in the preparedness and response system that have been identified in the evaluation of the response a assign organizational responsibility to correct deficiencies and weaknesses a improve future performance 0 adjust elements of emergency implementing procedures and emergency preparedness activities.

  2. DETECTION OF HISTORICAL PIPELINE LEAK PLUMES USING NON-INTRUSIVE SURFACE-BASED GEOPHYSICAL TECHNIQUES AT THE HANFORD NUCLEAR SITE WASHINGTON USA

    SciTech Connect (OSTI)

    SKORSKA MB; FINK JB; RUCKER DF; LEVITT MT

    2010-12-02

    Historical records from the Department of Energy Hanford Nuclear Reservation (in eastern WA) indicate that ruptures in buried waste transfer pipelines were common between the 1940s and 1980s, which resulted in unplanned releases (UPRs) of tank: waste at numerous locations. A number of methods are commercially available for the detection of active or recent leaks, however, there are no methods available for the detection of leaks that occurred many years ago. Over the decades, leaks from the Hanford pipelines were detected by visual observation of fluid on the surface, mass balance calculations (where flow volumes were monitored), and incidental encounters with waste during excavation or drilling. Since these detection methods for historic leaks are so limited in resolution and effectiveness, it is likely that a significant number of pipeline leaks have not been detected. Therefore, a technology was needed to detect the specific location of unknown pipeline leaks so that characterization technologies can be used to identify any risks to groundwater caused by waste released into the vadose zone. A proof-of-concept electromagnetic geophysical survey was conducted at an UPR in order to image a historical leak from a waste transfer pipeline. The survey was designed to test an innovative electromagnetic geophysical technique that could be used to rapidly map the extent of historical leaks from pipelines within the Hanford Site complex. This proof-of-concept test included comprehensive testing and analysis of the transient electromagnetic method (TEM) and made use of supporting and confirmatory geophysical methods including ground penetrating radar, magnetics, and electrical resistivity characterization (ERC). The results for this initial proof-of-concept test were successful and greatly exceeded the expectations of the project team by providing excellent discrimination of soils contaminated with leaked waste despite the interference from an electrically conductive pipe.

  3. Use of Electrical Imaging and Distributed Temperature Sensing Methods to Characterize Surface Water-Groundwater Exchange Regulating Uranium Transport at the Hanford 300 Area, Washington

    SciTech Connect (OSTI)

    Slater, Lee; Ntarlagiannis, Dimitrios; Day-Lewis, Frederick D.; Mwakanyamale, Kisa; Versteeg, Roelof J.; Ward, Anderson L.; Strickland, Christopher E.; Johnson, Carole D.; Lane, John W.

    2010-10-31

    A critical challenge in advancing prediction of solute transport between contaminated aquifers and rivers is improving understanding of how fluctuations in river stage, combined with subsurface heterogeneity, impart spatiotemporal complexity to solute exchange along river corridors. Here, we explored the use of waterborne geoelectrical imaging, in conjunction with fiber-optic distributed temperature sensor (DTS) monitoring, to improve the conceptual model for uranium transport within the hyporheic corridor at the Hanford 300 Area. We first inverted waterborne geoelectrical (resistivity and induced polarization) datasets for distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units was reconstructed. Variations in the depth to the interface between the overlying coarse-grained, high permeability Hanford formation and the underlying finer-grained, less permeable Ringold formation, an important contact that limits vertical migration of contaminants, were resolved along ~3 km of the river corridor centered on the 300 Area. Polarizability images were translated into lithologic images using established relationships between polarizability and surface area normalized to pore volume (Spor). The spatial variability captured in the geoelectrical datasets indicates that previous studies based on borehole projections and point probing overestimate the contributing area for uranium exchange within the Columbia River at the Hanford 300 Area. The DTS data recorded on 1. 5 km of cable with a 1 m spatial resolution and 5 minute sampling interval revealed sub-reaches showing (1) high temperature anomalies and, (2) a strong negative correlation between temperature and river stage, both indicative of groundwater influxes during winter months. The DTS datasets confirm the hydrologic significance of the variability identified in the geoelectrical imaging and reveal a pattern of highly focused hyporheic exchange, with

  4. The 'People Plan' Concept for Contract Closure - 12432

    SciTech Connect (OSTI)

    Diaz, Peter

    2012-07-01

    The U.S. Department of Energy's (DOE) first-of-a-kind closure project at the Hanford Site in Richland, Washington, still has more than 3 years to run, but its contractor, Washington Closure Hanford (WCH), has already started its plans for going out of business. It will be the first contract that closes in increments and, paramount to its success, will be its ability to provide a disciplined and positive approach to release personnel while at the same time retaining personnel critical to timely and safe completion of the work scope. In May 2011, WCH produced the people plan, a program that maximizes communication and support for employees being released, provides an incentivization strategy to retain personnel to the end of their assignments, and reflects a sensitivity to the long-term goals of the contract and WCH's parent companies. The combination of all of these efforts equal one thing: treating employees with respect by providing specific information in a timely manner; respecting employees by sharing as much information as possible, as soon as possible, with as much detail as possible; and respecting each individual's ability to be in control of their next step in their life or career. The project is only in the second ORW and has 13 more before the end of the contract. That time remaining will continue to bring new challenges and unknowns, but the confidence and trust of the employees is proving to be solid. This is largely as a result of the stability provided by the people plan program. A success that can only truly be measured by the continued positive response it has already received from WCH's employees. (authors)

  5. INITIAL SINGLE SHELL TANK (SST) SYSTEM PERFORMANCE ASSESSMENT OF THE HANFORD SITE

    SciTech Connect (OSTI)

    JARAYSI, M.N.

    2007-01-08

    The ''Initial Single-Shell Tank System Performance Assessment for the Hanford Site [1] (SST PA) presents the analysis of the long-term impacts of residual wastes assumed to remain after retrieval of tank waste and closure of the SST farms at the US Department of Energy (DOE) Hanford Site. The SST PA supports key elements of the closure process agreed upon in 2004 by DOE, the Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA). The SST PA element is defined in Appendix I of the ''Hanford Federal Facility Agreement and Consent Order'' (HFFACO) (Ecology et al. 1989) [2], the document that establishes the overall closure process for the SST and double-shell tank (DST) systems. The approach incorporated in the SST PA integrates substantive features of both hazardous and radioactive waste management regulations into a single analysis. The defense-in-depth approach used in this analysis defined two major engineering barriers (a surface barrier and the grouted tank structure) and one natural barrier (the vadose zone) that will be relied on to control waste release into the accessible environment and attain expected performance metrics. The analysis evaluates specific barrier characteristics and other site features that influence contaminant migration by the various pathways. A ''reference'' case and a suite of sensitivity/uncertainty cases are considered. The ''reference case'' evaluates environmental impacts assuming central tendency estimates of site conditions. ''Reference'' case analysis results show residual tank waste impacts on nearby groundwater, air resources; or inadvertent intruders to be well below most important performance objectives. Conversely, past releases to the soil, from previous tank farm operations, are shown to have groundwater impacts that re significantly above most performance objectives. Sensitivity/uncertainty cases examine single and multiple parameter variability along with plausible alternatives

  6. Contact Hanford Fire Department - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department Contact Hanford Fire Department Hanford Fire Department Hanford Fire Department Home About Hanford Fire Department Fire and Life Safety Information Hot Links to Cool...

  7. Hanford Site Wide Programs - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page | Print Print Page |Text Increase Font Size Decrease Font Size Hanford Site-Wide Programs Hanford Safety and Health Hanford Site Wide Programs Hanford Fire Department...

  8. SYSTEM PLANNING WITH THE HANFORD WASTE OPERATIONS SIMULATOR

    SciTech Connect (OSTI)

    CRAWFORD TW; CERTA PJ; WELLS MN

    2010-01-14

    At the U. S. Department of Energy's Hanford Site in southeastern Washington State, 216 million liters (57 million gallons) of nuclear waste is currently stored in aging underground tanks, threatening the Columbia River. The River Protection Project (RPP), a fully integrated system of waste storage, retrieval, treatment, and disposal facilities, is in varying stages of design, construction, operation, and future planning. These facilities face many overlapping technical, regulatory, and financial hurdles to achieve site cleanup and closure. Program execution is ongoing, but completion is currently expected to take approximately 40 more years. Strategic planning for the treatment of Hanford tank waste is by nature a multi-faceted, complex and iterative process. To help manage the planning, a report referred to as the RPP System Plan is prepared to provide a basis for aligning the program scope with the cost and schedule, from upper-tier contracts to individual facility operating plans. The Hanford Tank Waste Operations Simulator (HTWOS), a dynamic flowsheet simulation and mass balance computer model, is used to simulate the current planned RPP mission, evaluate the impacts of changes to the mission, and assist in planning near-term facility operations. Development of additional modeling tools, including an operations research model and a cost model, will further improve long-term planning confidence. The most recent RPP System Plan, Revision 4, was published in September 2009.

  9. Hanford Meteorological Station - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meteorological Station Hanford Meteorological Station Real Time Met Data from Around the ... The HMS provides a range of Hanford Site weather forecast products, real-time ...

  10. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2011 June 07, 2011 PRESS RELEASE: Hanford Projects Receive Sustainability Awards Hanford's Department of Energy offices and their contractors received special recognition for...