National Library of Energy BETA

Sample records for washers lighting furnace

  1. Clothes Washers | Open Energy Information

    Open Energy Info (EERE)

    Washers Jump to: navigation, search TODO: Add description List of Clothes Washers Incentives Retrieved from "http:en.openei.orgwindex.php?titleClothesWashers&oldid380201" ...

  2. DOE Publishes GATEWAY Report on Successful LED Wall Washer Retrofit...

    Energy Savers [EERE]

    while retaining the quality of light when LED modules replaced 87 halogen lamps in existing wall washers at the University of Maryland's (UMD) Clarice Smith Performing Arts Center. ...

  3. Furnace

    SciTech Connect (OSTI)

    Cooke, J.C.; Tilley, F.H.

    1983-06-14

    Pieces of shredded tires are fed into the top of a vertical pyrolyzing furnace in a measured amount using a weighing hopper feed mechanism. Heated gas is introduced through inlet and pyrolyzing the tire pieces on a countercurrent flow principle to produce useful hydrocarbon volatiles and residues. The pyrolyzed residue including tire reinforcing wires are efficiently removed from the furnace by a plurality of downwardly inclined screw conveyors disposed in troughs. Each screw conveyor extends into an inclined conduit and discharges into a vertical branch conduit disposed at least partially within the cross-section of the furnace so that even discharge of the pyrolyzed residue is ensured by the combined action of gravity and the screw conveyors.

  4. CONSUMER CLOTHES WASHERS (APPENDIX J2) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CONSUMER CLOTHES WASHERS (APPENDIX J2) CONSUMER CLOTHES WASHERS (APPENDIX J2) Consumer Clothes Washers J2-v2.3 (135.02 KB) More Documents & Publications consumer Clothes Washers (Appendix J2) Consumer Clothes Washers (Appendix J1) Consumer Clothes Washers (Appendix J1)

  5. Energy Department Sets Tougher Standards for Clothes Washers...

    Office of Environmental Management (EM)

    Sets Tougher Standards for Clothes Washers to Qualify for the ENERGY STAR Label Energy Department Sets Tougher Standards for Clothes Washers to Qualify for the ENERGY STAR ...

  6. DOE Issues Enforcement Guidance on Large-Capacity Clothes Washer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enforcement Guidance on Large-Capacity Clothes Washer Waivers and the Waiver Process DOE Issues Enforcement Guidance on Large-Capacity Clothes Washer Waivers and the Waiver Process...

  7. Consumer Clothes Washers (Appendix J1) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consumer Clothes Washer J1-v2.1 (123.6

  8. LED Lighting in a Performing Arts Center

    SciTech Connect (OSTI)

    Wilkerson, A. M.; Abell, T. C.; T., E. Perrin

    2015-07-31

    GATEWAY demonstration report of LED wall washer retrofit lighting at the University of Maryland Clarice Smith Performing Arts Center.

  9. Self-locking washer and method of use

    DOE Patents [OSTI]

    Vodila, James M.; Huyett, John D.

    1991-01-01

    A self-locking washer made of a flat elongated piece of material having a slot in one end of it. The washer is designed so that it can be placed underneath bolts or nuts which are already installed without completely removing the bolt or nut. A method of use of the self-locking washer is also disclosed.

  10. consumer Clothes Washers (Appendix J2) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    consumer Clothes Washers (Appendix J2) consumer Clothes Washers (Appendix J2) The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. Consumer Clothes Washers Appendix J2 -- v2.0

  11. SSL Demonstration: Wall Washers at the University of Maryland

    SciTech Connect (OSTI)

    2015-07-31

    GATEWAY program report brief summarizing a demonstration of LED wall washers at the Clarice Smith Performing Arts Center at the University of Maryland.

  12. HIGH TEMPERATURE MICROSCOPE AND FURNACE

    DOE Patents [OSTI]

    Olson, D.M.

    1961-01-31

    A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas, Clothes Washers, Dishwasher, RefrigeratorsFreezers, Dehumidifiers, Ceiling Fan, Equipment Insulation, Water Heaters, Lighting, Lighting ControlsSensors, Furnaces,...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Clothes Washers, RefrigeratorsFreezers, Water Heaters, Lighting, Lighting ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Caulking...

  15. Electrolux Gibson Air Conditioner and Equator Clothes Washer...

    Broader source: Energy.gov (indexed) [DOE]

    ENERGY STAR program has revealed that an Electrolux Gibson air conditioner (model GAH105Q2T1) and an Equator clothes washer (model EZ 3720 CEE), both of which claimed ENERGY STAR...

  16. EA-1695: Energy Conservation Standards for Residential Clothes Washers

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proposal to amend energy conservation standards for residential clothes washers pursuant to 42 U.S.C. 6295(g)(9)(B)(i).

  17. DOE Seeks Comment on Application of Clothes Washer Test Procedure

    Broader source: Energy.gov [DOE]

    Today, the U.S. Department of Energy (DOE) issued a draft interpretative rule clarifying its views on the application of the current residential clothes washer test procedure to machines that offer...

  18. Tube furnace

    DOE Patents [OSTI]

    Foster, Kenneth G.; Frohwein, Eugene J.; Taylor, Robert W.; Bowen, David W.

    1991-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal Heat Pumps, Clothes Washers, Dishwasher, RefrigeratorsFreezers, Lighting, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Programmable...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    are offered... Eligibility: Construction, Multifamily Residential Savings Category: Clothes Washers, Ceiling Fan, Water Heaters, Lighting, Furnaces, Boilers, Heat Pumps, Air...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    property improvements. Its... Eligibility: Multifamily Residential Savings Category: Clothes Washers, Dishwasher, Dehumidifiers, Water Heaters, Lighting, Furnaces, Boilers, Heat...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy savings through... Eligibility: Multifamily Residential Savings Category: Clothes Washers, Dishwasher, RefrigeratorsFreezers, Dehumidifiers, Lighting, Furnaces,...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Category: Clothes Washers, Dishwasher, RefrigeratorsFreezers, Dehumidifiers, Ceiling Fan, Water Heaters, Lighting, Furnaces, Boilers, Heat Pumps, Air conditioners, Motors,...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Category: Clothes Washers, Dishwasher, RefrigeratorsFreezers, Dehumidifiers, Ceiling Fan, Water Heaters, Lighting, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners,...

  5. Furnace assembly

    DOE Patents [OSTI]

    Panayotou, N.F.; Green, D.R.; Price, L.S.

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  6. Furnace assembly

    DOE Patents [OSTI]

    Panayotou, Nicholas F. (Kennewick, WA); Green, Donald R. (Richland, WA); Price, Larry S. (Pittsburg, CA)

    1985-01-01

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  7. Seattle City Light- Residential Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Seattle City Light provides rebates to its customers for energy audits and purchasing and installing energy saving clothes washers, refrigerators, heat pump water heaters, ductless heat pumps,...

  8. Taunton Municipal Lighting Plant- Residential Energy Star Appliance Rebate Program

    Broader source: Energy.gov [DOE]

    Residential customers of Taunton Municipal Lighting Plant (TMLP) are eligible for rebates on energy efficient appliances. Clothes washers, dishwashers, refrigerators, and room A/C units are...

  9. GE to DOE General Counsel; Re:Request for Comment on Large Capacity Clothes Washers

    Broader source: Energy.gov [DOE]

    GE urges the department engage in rulmaking to amend the clothes washer test procedure to reflect efficiency standards of large-capacity residential clothes washer machines. GE also urges the DOE...

  10. Consumer Clothes Washers (Appendix J1) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. Consumer Clothes Washers Appendix J1 -- v2.0 (123.29

  11. Furnace Pressure Controllers

    Broader source: Energy.gov [DOE]

    This tip sheet highlights the benefits of precise furnace pressure control in process heating systems.

  12. An inlet air washer/chiller system for combined cycle planet repowering

    SciTech Connect (OSTI)

    Sengupta, U.; Soroka, G. )

    1989-01-01

    A conditioning method to achieve increased output at any relative humidity condition is an air washer and absorption chiller arrangement. At elevated temperatures and low humidity, the air washer operates as an evaporative cooler without the chiller in operation. In this mode, the air washer will give similar results as a media type evaporative cooler at a fraction of the pressure loss. In the air washer plus chiller operating mode the chiller maintains cooling effectiveness of the air washer during periods of high relative humidity. This makes such a system very appropriate anywhere relative humidity is high. Many combined cycle plants utilize supplemental firing of the heat recovery steam generators to offset the loss of gas turbine power at high ambient temperatures. This paper shows that in contrast to supplementary firing, the combination air washer/chiller system can generate power more efficiently and at lower cost.

  13. 2014-04-11 Issuance: Test Procedures for Residential Clothes Washers;

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Notice of Proposed Rulemaking | Department of Energy 1 Issuance: Test Procedures for Residential Clothes Washers; Notice of Proposed Rulemaking 2014-04-11 Issuance: Test Procedures for Residential Clothes Washers; Notice of Proposed Rulemaking This document is a pre-publication Federal Register notice of proposed rulemaking regarding test procedure amendments for residential clothes washers, as issued by the Deputy Assistant Secretary for Energy Efficiency on April 11, 2014. Though it is not

  14. NREL's Optical Cavity Furnace Brings Together a Myriad of Advances for Processing Solar Cells (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    Fact sheet on 2011 R&D 100 Award winner, the Optical Cavity Furnace. The innovative furnace uses light and unique light-induced effects to make higher-efficiency solar cells at lower cost.

  15. Final Technical Report Steam Cycle Washer for Unbleached Pulp

    SciTech Connect (OSTI)

    Starkey, Yvonne; Salminen, Reijo; Karlsnes, Andy

    2008-09-22

    Project Abstract for “Steam Cycle Washer for Unbleached Pulp” When completed, the patented SC Washer will provide an innovative, energy efficient demonstration project to wash unbleached pulp using a pressure vessel charged with steam. The Port Townsend Paper Corporation’s pulp mill in Port Townsend, WA was initially selected as the host site for conducting the demonstration of the SCW. Due to 2006 and 2007 delays in the project caused by issues with 21st Century Pulp & Paper, the developer of the SCW, and the 2007 bankruptcy proceedings and subsequent restructuring at Port Townsend Paper, the mill can no longer serve as a host site. An alternate host site is now being sought to complete the commercial demonstration of the Steam Cycle Washer for Unbleached Pulp. Additionally, estimated costs to complete the project have more than doubled since the initial estimates for the project were completed in 2002. Additional grant funding from DOE was sought and in July, 2008 the additional DOE funds were procured under a new DOE award, DE-PS36-08GO98014 issued to INL. Once the new host site is secured the completion of the project will begin under the management of INL. Future progress reports and milestone tracking will be completed under requirements of new DOE Award Number DE-PS36-08GO98014. The following are excerpts from the project Peer Review completed in 2006. They describe the project in some detail. Additional information can be found by reviewing DOE Award Number: DE-PS36-08GO98014. 5. Statement of Problem and Technical Barriers: The chemical pulping industry is one of the major users of fresh water in the United States. On average the industry uses over 80 tons of water to produce one ton of pulp, some states use up to 50% more (Washington 120 and Wisconsin 140). In order to process one ton of pulp using 80 tons of process water, a large amount of: • energy is used in process heat and • power is required for pumping the large volume of pulp slurries

  16. Furnaces Data | Department of Energy

    Energy Savers [EERE]

    Furnaces Data Furnaces Data Furnaces Data Email (79.43 KB) Questions on 2014 LCC spreadsheet 2014-10-28 (378.96 KB) DOE Furnace Rule111414 Email (43.29 KB) 111414 Letter to DOE-c ...

  17. Paired Straight Hearth Furnace

    Broader source: Energy.gov [DOE]

    A coal based dri and molten metal process for long range replacement of blast furnaces and coke ovens

  18. Heat treatment furnace

    DOE Patents [OSTI]

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Combined Heat & Power, Clothes Washers, RefrigeratorsFreezers, Water Heaters, Lighting, Lighting ControlsSensors, Furnaces, Boilers, Heat Pumps, Heat recovery,...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat Pumps, Clothes Washers, Dishwasher, RefrigeratorsFreezers, Equipment Insulation, Water Heaters, Lighting, Lighting ControlsSensors, Furnaces, Boilers, Heat Pumps, Air...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Clothes Washers, Dishwasher, Dehumidifiers, Water Heaters, Lighting, Lighting ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Steam-system upgrades,...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Savings Category: Clothes Washers, Equipment Insulation, Lighting, Lighting ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Steam-system upgrades,...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Clothes Washers, RefrigeratorsFreezers, Water Heaters, Lighting, Lighting ControlsSensors, Furnaces, Boilers, Heat Pumps, Heat recovery, Windows, Processing and Manufacturing...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Landfill Gas, Clothes Washers, Dishwasher, RefrigeratorsFreezers, Dehumidifiers, Ceiling Fan, Equipment Insulation, Water Heaters, Lighting, Lighting ControlsSensors, Furnaces,...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Daylighting, Clothes Washers, Dishwasher, RefrigeratorsFreezers, Dehumidifiers, Ceiling Fan, Water Heaters, Lighting, Lighting ControlsSensors, Chillers, Furnaces, Boilers, Heat...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pumps, Landfill Gas, Clothes Washers, RefrigeratorsFreezers, Dehumidifiers, Ceiling Fan, Water Heaters, Lighting, Lighting ControlsSensors, Furnaces, Boilers, Heat Pumps,...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Landfill Gas, Clothes Washers, Dishwasher, RefrigeratorsFreezers, Dehumidifiers, Ceiling Fan, Water Heaters, Lighting, Lighting ControlsSensors, Chillers, Furnaces, Boilers, Heat...

  8. Electromelt furnace evaluation

    SciTech Connect (OSTI)

    Reimann, G.A.; Welch, J.M.

    1981-09-01

    An electromelt furnace was designed, built, and operated at the Idaho National Engineering Laboratory to demonstrate the suitability of this equipment for large-scale processing of radioactive wastes in iron-enriched basalt. Several typical waste compositions were melted and cast. The furnace was disassembled and the components evaluated. Calcines and fluorides attacked the furnace lining, unoxidized metals accumulated under the slag, and electrode attrition was high.

  9. Paired Straight Hearth Furnace

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Paired Straight Hearth Furnace A Coal Based DRI and Molten Metal Process for Long Range Replacement of Blast Furnaces and Coke Ovens The U. S. steel industry has reduced its energy intensity per ton of steel shipped by 33% since 1990. However, further signifcant gains in energy effciency will require the development of new, transformational iron and steelmaking processes. The Paired Straight Hearth Furnace (PSH) process is an emerging alterna- tive high productivity, direct reduced iron (DRI)

  10. Electrolux Gibson Air Conditioner and Equator Clothes Washer Fail DOE Energy Star Testing

    Broader source: Energy.gov [DOE]

    DOE testing in support of the ENERGY STAR program has revealed that an Electrolux Gibson air conditioner (model GAH105Q2T1) and an Equator clothes washer (model EZ 3720 CEE), both of which claimed...

  11. Energy Department Sets Tougher Standards for Clothes Washers to Qualify for the ENERGY STAR® Label

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced tougher standards for clothes washers to qualify for the ENERGY STAR® label, which lets American families identify which clothes...

  12. 2014-02-21 Issuance: Energy Conservation Standards for Commercial Clothes Washers; Notice of Proposed Rulemaking

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document is a pre-publication Federal Register notice of proposed rulemaking regarding energy conservation standards for commercial clothes washers, as issued by the Assistant Secretary on February 21, 2014.

  13. 2014-01-31 Issuance: Test Procedures for Commercial Clothes Washers; Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of proposed rulemaking regarding test procedures for commercial clothes washers, as issued by the Deputy Assistant Secretary for Energy Efficiency on January 31, 2014.

  14. DOE Issues Enforcement Guidance on Large-Capacity Clothes Washer Waivers and the Waiver Process

    Broader source: Energy.gov [DOE]

    Today, the Department of Energy issued enforcement guidance on the application of recently granted waivers for large-capacity clothes washers and announced steps to improve the waiver process – and...

  15. Electrolux to DOE General Counsel; Re:Request for Comment on Large Capacity Clothes Washers

    Broader source: Energy.gov [DOE]

    Letter from Electrolux to Department of Energy General Counsel; Re:Request for Comment on Large Capacity Clothes Washers Electrolux sumitted comments on re-testing, re-certification, and re-rating...

  16. DOE Solicits Views on the Implementation of Large-Capacity Clothes Washer Waivers

    Broader source: Energy.gov [DOE]

    The Department of Energy has recently granted several requests for waivers establishing an alternative test procedure for certain large-capacity residential clothes washer models.  We have now...

  17. Advanced steel reheat furnace

    SciTech Connect (OSTI)

    Moyeda, D.; Sheldon, M.; Koppang, R.; Lanyi, M.; Li, X.; Eleazer, B.

    1997-10-01

    Energy and Environmental Research Corp. (EER) under a contract from the Department of Energy is pursuing the development and demonstration of an Advanced Steel Reheating Furnace. This paper reports the results of Phase 1, Research, which has evaluated an advanced furnace concept incorporating two proven and commercialized technologies previously applied to other high temperature combustion applications: EER`s gas reburn technology (GR) for post combustion NOx control; and Air Product`s oxy-fuel enrichment air (OEA) for improved flame heat transfer in the heating zones of the furnace. The combined technologies feature greater production throughput with associated furnace efficiency improvements; lowered NOx emissions; and better control over the furnace atmosphere, whether oxidizing or reducing, leading to better control over surface finish.

  18. Method for Evaluating Energy Use of Dishwashers, Clothes Washers, and Clothes Dryers: Preprint

    SciTech Connect (OSTI)

    Eastment, M.; Hendron, R.

    2006-08-01

    Building America teams are researching opportunities to improve energy efficiency for some of the more challenging end-uses, such as lighting (both fixed and occupant-provided), appliances (clothes washer, dishwasher, clothes dryer, refrigerator, and range), and miscellaneous electric loads, which are all heavily dependent on occupant behavior and product choices. These end-uses have grown to be a much more significant fraction of total household energy use (as much as 50% for very efficient homes) as energy efficient homes have become more commonplace through programs such as ENERGY STAR and Building America. As modern appliances become more sophisticated the residential energy analyst is faced with a daunting task in trying to calculate the energy savings of high efficiency appliances. Unfortunately, most whole-building simulation tools do not allow the input of detailed appliance specifications. Using DOE test procedures the method outlined in this paper presents a reasonable way to generate inputs for whole-building energy-simulation tools. The information necessary to generate these inputs is available on Energy-Guide labels, the ENERGY-STAR website, California Energy Commission's Appliance website and manufacturer's literature. Building America has developed a standard method for analyzing the effect of high efficiency appliances on whole-building energy consumption when compared to the Building America's Research Benchmark building.

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    as follows: Eligibility: Low Income Residential Savings Category: Clothes Washers, Dishwasher, RefrigeratorsFreezers, Ceiling Fan, Water Heaters, Lighting, Furnaces, Boilers,...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    washers, refrigerators, CFLs, and lighting fixtures; energy efficient furnaces and heat pumps (air-source and geothermal); and the recycling of old (but still functioning)...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pumps, Clothes Washers, Dehumidifiers, Water Heaters, Lighting, Furnaces, Boilers, Heat Pumps, Air conditioners, CaulkingWeather-stripping, DuctAir sealing, Building...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to help make homes more energy efficient. Rebates are available for Energy Star clothes washers, refrigerators, CFLs, and lighting fixtures; energy efficient furnaces and...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    amounts are as follows: Eligibility: Low Income Residential Savings Category: Clothes Washers, Dishwasher, RefrigeratorsFreezers, Ceiling Fan, Water Heaters, Lighting, Furnaces,...

  4. Paired Straight Hearth Furnace

    SciTech Connect (OSTI)

    2009-04-01

    This factsheet describes a research project whose goals are to design, develop, and evaluate the scalability and commercial feasibility of the PSH Paired Straight Hearth Furnace alternative ironmaking process.

  5. High temperature furnace

    DOE Patents [OSTI]

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  6. Segmented ceramic liner for induction furnaces

    DOE Patents [OSTI]

    Gorin, A.H.; Holcombe, C.E.

    1994-07-26

    A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.

  7. Segmented ceramic liner for induction furnaces

    DOE Patents [OSTI]

    Gorin, Andrew H.; Holcombe, Cressie E.

    1994-01-01

    A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace.

  8. Effect of radial clearance between bolt and washer on the bearing strength of composite bolted joints

    SciTech Connect (OSTI)

    Herrington, P.D.; Sabbaghian, M. )

    1992-01-01

    When composite materials are bolted together, the relative diameters of the bolt hole, the constraining washer and the bolt itself have a profound effect on the ultimate bearing strength. Previous studies have investigated the effects of clearance between the bolt and the hole diameter. In this study, the effect of the difference between the bolt diameter and the inside diameter of the washer, which provides the lateral constraint at the edge of the hole, is examined. To explain the significant variation of bearing strength with bolt-to-washer clearance, a model is proposed to explain the mechanics of load transfer and the lateral deformation at the edge of the hole. The test results, using a quasi-isotropic graphite epoxy laminate, support the proposed model and provide data for designers. 16 refs.

  9. Furnace Pressure Controllers; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 * September 2005 Industrial Technologies Program Furnace Pressure Controllers Furnace draft, or negative pres- sure, is created in fuel-fired furnaces when high temperature gases ...

  10. Purchasing Energy-Efficient Residential Furnaces | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Furnaces Purchasing Energy-Efficient Residential Furnaces The Federal Energy Management Program (FEMP) provides acquisition guidance for residential furnaces, a product category ...

  11. Improved graphite furnace atomizer

    DOE Patents [OSTI]

    Siemer, D.D.

    1983-05-18

    A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

  12. Furnace Blower Performance Improvements - Building America Top...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Furnace Blower Performance Improvements - Building America Top Innovation Furnace Blower Performance Improvements - Building America Top Innovation This photo shows a ...

  13. Feasibility study results for dry sorbent furnace injection for SO sub 2 control Prairie Creek No. 4 Iowa Electric Light and Power Company

    SciTech Connect (OSTI)

    Smith, P.V. ); Rehrauer, H.W. )

    1991-01-01

    As a result of the recent passage of new amendments to the Clean Air Act, many U.S. power plants will be required to reduce sulfur dioxide (SO{sub 2}) emissions. Iowa Electric Light and Power (IELP) was interested in investigating a number of options that will allow Prairie Creek Unit 4 to operate in compliance with these new regulations. One of these options was Dry Sorbent Injection (DSI), a relatively simple and low cost retrofit technique, useful for controlling SO{sub 2} concentrations in coal combustion flue gas. The purpose of the program was to obtain operational data necessary to aid in the identification and assessment of DSI options that have a high potential for successful application. This paper contains a summary and analysis of the data obtained during the test effort. It also contains a discussion of the results of each of the major tasks undertaken to accomplish this feasibility study.

  14. Blast Furnace Granulated Coal Injection

    SciTech Connect (OSTI)

    1998-09-30

    Production levels on each furnace exceeded 7000 NTHM/day during July. The combined production of 14,326 was a result of lower coke rates and below average delay rates on both furnaces, The combined production was at its highest level since September 1997. In August, the combined productivity declined to less than 13,500 NTHM/day. Although D furnace maintained a production rate in excess of 7000 NTHM/day, C furnace was lower because of a castfloor breakout and subsequent five day repair from August 26-30. Despite the lower productivity in August, injected coal and furnace coke rates were very good during the month. During September, the operation was difficult as a result of higher delays on both furnaces. The combined average monthly delay rate was considerably above the twenty-month average of 113 minutes per day and the combined average monthly production was less than 14,000 NTHM/day. Higher furnace coke rates at lower coal injection levels also contributed to the decrease. Additionally, the coke rate on both furnaces was increased substantially and the injected coal rate was decreased in preparation for the high volatile Colorado coal trial that started on September 28. The furnace process results for this quarter are shown in Tables 1A and 1B. In addition, the last twelve months of injected coal and coke rates for each furnace are shown in Figures 1 and 2.

  15. U.S. Department of Energy Implements More Stringent Criteria for ENERGY STAR® Clothes Washers, Expands CFL Program

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced more stringent criteria for clothes washers and expanded the categories of compact fluorescent lightbulbs (CFL) under the ENERGY...

  16. Alliance Laundry Systems to DOE General Counsel; Re:Request for Comment on Large Capacity Clothes Washers

    Broader source: Energy.gov [DOE]

    Letter from Alliance Laundry Systems, LLC to DOE General Counsel, Re: Your (DOE's) request of 11-30-2010 Regarding Clothes Washer Test Procedure Waivers. ALS believes that grandfathering all units...

  17. New Energy Efficiency Standards for Residential Clothes Washers and Dishwashers to Save Consumers Billions on Energy Bills

    Broader source: Energy.gov [DOE]

    The Department of Energy today announced common-sense energy efficiency standards for residential clothes washers and dishwashers that will save consumers $20 billion in energy and water costs.

  18. Clothes washer standards in China -- The problem of water andenergy trade-offs in establishing efficiency standards

    SciTech Connect (OSTI)

    Biermayer, Peter J.; Lin, Jiang

    2004-05-19

    Currently the sales of clothes washers in China consist ofseveral general varieties. Some use more energy (with or withoutincluding hot water energy use) and some use more water. Both energy andwater are in short supply in China. This poses the question - how do youtrade off water versus energy in establishing efficiency standards? Thispaper discusses how China dealt with this situation and how itestablished minimum efficiency standards for clothes washers.

  19. Optical processing furnace with quartz muffle and diffuser plate

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    1996-01-01

    An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy.

  20. Non-carbon induction furnace

    DOE Patents [OSTI]

    Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.

    1984-01-06

    The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  1. Carbon-free induction furnace

    DOE Patents [OSTI]

    Holcombe, Cressie E.; Masters, David R.; Pfeiler, William A.

    1985-01-01

    An induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of carbon free materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloy. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an RF induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650.degree. C. for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  2. 2014-11-24 Issuance: Test Procedures for Commercial Clothes Washers; Final Rule

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register Final Rule regarding test procedures for commercial clothes washers, as issued by the Deputy Assistant Secretary for Energy Efficiency on November 24, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  3. Demonstration of Advanced Technologies for Multi-Load Washers in Hospitality and Healthcare -- Wastewater Recycling Technology

    SciTech Connect (OSTI)

    Boyd, Brian K.; Parker, Graham B.; Petersen, Joseph M.; Sullivan, Greg; Goetzler, W.; Foley, K. J.; Sutherland, T. A.

    2014-08-14

    The objective of this demonstration project was to evaluate market-ready retrofit technologies for reducing the energy and water use of multi-load washers in healthcare and hospitality facilities. Specifically, this project evaluated laundry wastewater recycling technology in the hospitality sector and ozone laundry technology in both the healthcare and hospitality sectors. This report documents the demonstration of a wastewater recycling system installed in the Grand Hyatt Seattle.

  4. WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries...

    Open Energy Info (EERE)

    WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI Jump to: navigation, search Name: WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries,...

  5. Cupola Furnace Computer Process Model

    SciTech Connect (OSTI)

    Seymour Katz

    2004-12-31

    The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

  6. Two chamber reaction furnace

    DOE Patents [OSTI]

    Blaugher, R.D.

    1998-05-05

    A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  7. Two chamber reaction furnace

    DOE Patents [OSTI]

    Blaugher, Richard D.

    1998-05-05

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  8. Optical processing furnace with quartz muffle and diffuser plate

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    1995-01-01

    An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the door or wall of the muffle is also provided for controlling the source of optical energy. The quartz for the diffuser plate is surface etched (to give the quartz diffusive qualities) in the furnace during a high intensity burn-in process.

  9. Paired Straight Hearth Furnace | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines Injection Optimizing Blast Furnace Operation to Increase Efficiency ...

  10. Reduce Air Infiltration in Furnaces; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    they rise, creating a differential pressure between the top and the bottom of the furnace. ... can be calculated by using the equations and graphs given in Industrial Furnaces ...

  11. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, D.E.

    1992-07-14

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  12. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, Donald E.

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  13. High pressure furnace

    DOE Patents [OSTI]

    Morris, D.E.

    1993-09-14

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

  14. High pressure furnace

    DOE Patents [OSTI]

    Morris, Donald E.

    1993-01-01

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  15. Comparison of Test Procedures and Energy Efficiency Criteria in Selected International Standards and Labeling Programs for Clothes Washers, Water Dispensers, Vending Machines and CFLs

    SciTech Connect (OSTI)

    Fridley, David; Zheng, Nina; Zhou, Nan

    2010-06-01

    Since the late 1970s, energy labeling programs and mandatory energy performance standards have been used in many different countries to improve the efficiency levels of major residential and commercial equipment. As more countries and regions launch programs covering a greater range of products that are traded worldwide, greater attention has been given to harmonizing the specific efficiency criteria in these programs and the test methods for measurements. For example, an international compact fluorescent light (CFL) harmonization initiative was launched in 2006 to focus on collaboration between Australia, China, Europe and North America. Given the long history of standards and labeling programs, most major energy-consuming residential appliances and commercial equipment are already covered under minimum energy performance standards (MEPS) and/or energy labels. For these products, such as clothes washers and CFLs, harmonization may still be possible when national MEPS or labeling thresholds are revised. Greater opportunity for harmonization exists in newer energy-consuming products that are not commonly regulated but are under consideration for new standards and labeling programs. This may include commercial products such as water dispensers and vending machines, which are only covered by MEPS or energy labels in a few countries or regions. As China continues to expand its appliance standards and labeling programs and revise existing standards and labels, it is important to learn from recent international experiences with efficiency criteria and test procedures for the same products. Specifically, various types of standards and labeling programs already exist in North America, Europe and throughout Asia for products in China's 2010 standards and labeling programs, namely clothes washers, water dispensers, vending machines and CFLs. This report thus examines similarities and critical differences in energy efficiency values, test procedure specifications and other

  16. Glass Furnace Model Version 2

    Energy Science and Technology Software Center (OSTI)

    2003-05-06

    GFM2.0 is a derivative of the GFM code with substantially altered and enhanced capabilities. Like its predecessor, it is a fully three-dimensional, furnace simulation model that provides a more accurate representation of the entire furnace, and specifically, the glass melting process, by coupling the combustion space directly to the glass batch and glass melt via rigorous radiation heat transport models for both the combustion space and the glass melt. No assumptions are made with regardmore » to interfacial parameters of heat, flux, temperature distribution, and batch coverage as must be done using other applicable codes available. These critical parameters are calculated. GFM2.0 contains a processor structured to facilitate use of the code, including the entry of teh furnace geometry and operating conditions, the execution of the program, and display of the computational results. Furnace simulations can therefore be created in a straightforward manner.« less

  17. Rebuilding of Rautaruukki blast furnaces

    SciTech Connect (OSTI)

    Kallo, S.; Pisilae, E.; Ojala, K.

    1997-12-31

    Rautaruukki Oy Raahe Steel rebuilt its blast furnaces in 1995 (BF1) and 1996 (BF2) after 10 year campaigns and production of 9,747 THM/m{sup 3} (303 NTHM/ft{sup 3}) and 9,535 THM/m{sup 3} (297 NTHM/ft{sup 3}), respectively. At the end of the campaigns, damaged cooling system and shell cracks were increasingly disturbing the availability of furnaces. The goal for rebuilding was to improve the cooling systems and refractory quality in order to attain a 15 year campaign. The furnaces were slightly enlarged to meet the future production demand. The blast furnace control rooms and operations were centralized and the automation and instrumentation level was considerably improved in order to improve the operation efficiency and to reduce manpower requirements. Investments in direct slag granulation and improved casthouse dedusting improved environmental protection. The paper describes the rebuilding.

  18. Fossil fuel furnace reactor

    DOE Patents [OSTI]

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  19. Lighting

    Broader source: Energy.gov [DOE]

    One of the simplest ways to save energy and money is to switch to energy-efficient lights. Learn about your lighting choices that can save you money.

  20. Variable frequency microwave furnace system

    DOE Patents [OSTI]

    Bible, D.W.; Lauf, R.J.

    1994-06-14

    A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

  1. Variable frequency microwave furnace system

    DOE Patents [OSTI]

    Bible, Don W.; Lauf, Robert J.

    1994-01-01

    A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  2. Optical processing furnace with quartz muffle and diffuser plate

    DOE Patents [OSTI]

    Sopori, B.L.

    1996-11-19

    An optical furnace for annealing a process wafer is disclosed comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy. 5 figs.

  3. Furnaces and Boilers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Heating Systems » Furnaces and Boilers Furnaces and Boilers Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Most U.S. homes are heated with either furnaces or boilers. Furnaces heat air and distribute the heated air through the house using ducts. Boilers heat water, and provide either hot water or steam for heating. Steam is distributed via

  4. Geneva Steel blast furnace improvements

    SciTech Connect (OSTI)

    Fowles, R.D.; Hills, L.S.

    1993-01-01

    Geneva Steel is located in Utah and is situated near the western edge of the Rocky Mountains adjacent to the Wasatch Front. Geneva's No. 1, 2 and 3 are the only remaining operating blast furnaces in the United States west of the Mississippi River. They were originally constructed in 1943 to support steelmaking during World War II. During the early 60's all three furnaces were enlarged to their current working volume. Very few major improvements were made until recently. This discussion includes a brief historical perspective of operating difficulties associated with practice, design and equipment deficiencies. Also included is an overview of blast furnace improvements at Geneva found necessary to meet the demands of modern steelmaking. Particular emphasis will be placed on casthouse improvements.

  5. Furnace and Boiler Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2:50pm Addthis Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either hot water or steam for heating. Furnaces...

  6. Furnace Litigation Settled | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Furnace Litigation Settled Furnace Litigation Settled May 2, 2014 - 11:07am Addthis On June 27, 2011, the U.S. Department of Energy (DOE) published in the Federal Register a direct ...

  7. Demonstration of Advanced Technologies for Multi-Load Washers in Hospitality and Healthcare -- Ozone Based Laundry Systems

    SciTech Connect (OSTI)

    Boyd, Brian K.; Parker, Graham B.; Petersen, Joseph M.; Sullivan, Greg; Goetzler, W.; Sutherland, T. A.; Foley, K. J.

    2014-08-14

    The objective of this demonstration project was to evaluate market-ready retrofit technologies for reducing the energy and water use of multi-load washers in healthcare and hospitality facilities. Specifically, this project evaluated laundry wastewater recycling technology in the hospitality sector and ozone laundry technology in both the healthcare and hospitality sectors. This report documents the demonstration of ozone laundry system installations at the Charleston Place Hotel in Charleston, South Carolina, and the Rogerson House assisted living facility in Boston, Massachusetts.

  8. Furnace Standard Analysis Discussion Document

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standard * Using field intelligence and thoughtful analysis - assess and quantify the effects a regional or national condensing standard for natural gas furnaces could have on energy efficiency and environmental objectives.  Provide insight on the potential impact limiting customer choices for heating systems could have on overall energy usage, cost, and carbon emissions outcomes.  Provide all data, models and sources of information to DOE and other stakeholders, to gain their confidence

  9. Ferrosilicon smelting in a direct current furnace

    DOE Patents [OSTI]

    Dosaj, V.D.; May, J.B.

    1992-12-29

    The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode. 1 figure.

  10. Ferrosilicon smelting in a direct current furnace

    DOE Patents [OSTI]

    Dosaj, Vishu D. (Midland, MI); May, James B. (Midland, MI)

    1992-12-29

    The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode.

  11. Optical Furnace offers improved semiconductor device processing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capabilities - Energy Innovation Portal Optical Furnace offers improved semiconductor device processing capabilities Award winning solar manufacturing process National Renewable Energy Laboratory Contact NREL About This Technology <p> <em>The highly versatile optical furnace provides semiconductor manufacturers with energy efficient methods to process devices in a high throughput capacity. &nbsp;</em></p> The highly versatile optical furnace provides semiconductor

  12. Crystal growth furnace with trap doors

    DOE Patents [OSTI]

    Sachs, Emanual M.; Mackintosh, Brian H.

    1982-06-15

    An improved furnace is provided for growing crystalline bodies from a melt. The improved furnace is characterized by a door assembly which is remotely controlled and is arranged so as to selectively shut off or permit communication between an access port in the furnace enclosure and a hot zone within that enclosure. The invention is especially adapted to facilitate use of crystal growing cartridges of the type disclosed in U.S. Pat. No. 4,118,197.

  13. Vertical two chamber reaction furnace

    DOE Patents [OSTI]

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  14. Vertical two chamber reaction furnace

    DOE Patents [OSTI]

    Blaugher, Richard D.

    1999-03-16

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  15. Ex Parte Contact on Furnaces | Department of Energy

    Energy Savers [EERE]

    Contact on Furnaces Ex Parte Contact on Furnaces PDF icon Ex Parte Email3-28-2015 More Documents & Publications Furnaces Data RE: EERE-2014-BT-STD-0031 AGAAPGA Questions re...

  16. Thermal Imaging Control of Furnaces and Combustors

    SciTech Connect (OSTI)

    David M. Rue; Serguei Zelepouga; Ishwar K. Puri

    2003-02-28

    The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

  17. Optical cavity furnace for semiconductor wafer processing

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  18. Nitrogen Control in Electric Arc Furnace Steelmaking by Direct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines Injection Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines ...

  19. Improving the Field Performance of Natural Gas Furnaces, Chicago...

    Energy Savers [EERE]

    the Field Performance of Natural Gas Furnaces Chicago, Illinois PROJECT INFORMATION Project Name: Improving Gas Furnace Performance-A Field and Lab Study at End of Life Location: ...

  20. Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility Facility Furnace Creek...

  1. Toughened Graphite Electrode for High Heat Electric Arc Furnaces...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL to melt steel, titanium, and other scrap metal in industrial electric arc furnaces. ... Applications and Industries Electric arc furnace steel manufacturing Steel refinement and ...

  2. Optimizing Blast Furnace Operation to Increase Efficiency and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blast Furnace Operation to Increase Efficiency and Lower Costs Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs cfdblastfurnace.pdf (552.85 KB) More ...

  3. DOE Increases Energy Efficiency Standards for Residential Furnaces...

    Energy Savers [EERE]

    Increases Energy Efficiency Standards for Residential Furnaces & Boilers DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers November 19, 2007 - 4:31pm ...

  4. High productivity in Australian blast furnaces

    SciTech Connect (OSTI)

    Nightingale, R.J.; Mellor, D.G.; Jelenich, L.; Ward, R.F.

    1995-12-01

    Since the emergence of the Australian domestic economy from recession in 1992, the productivity of BHP`s blast furnace has increased significantly to meet the demands of both domestic and export markets. BHP Steel operates six blast furnaces at its three Australian integrated plants. These furnaces vary widely in their size, feed, technology and current campaign status. This paper reviews the principal issues associated with productivity improvements over recent years. These gains have been achieved through activities associated with a wide range of process, equipment and human resource based issues.

  5. Multiple hearth furnace for reducing iron oxide

    DOE Patents [OSTI]

    Brandon, Mark M. (Charlotte, NC); True, Bradford G. (Charlotte, NC)

    2012-03-13

    A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

  6. Inhibition of coke formation in pyrolysis furnaces

    SciTech Connect (OSTI)

    Tong, Y.; Poindexter, M.K.; Rowe, C.T.

    1995-12-31

    Coke formation in pyrolysis furnaces, which thermally convert hydrocarbons to ethylene as well as other useful products, adversely affects product yields, causes furnace down time for coke removal, and shortens furnace coil life. A phosphorus-based chemical treatment program was developed to inhibit the coke formation. The anticoking performance of the phosphorus-based treatment program was studied using a bench scale coking rate measurement apparatus. The programs`s influence on coke morphology and reactor surface was addressed using SEM/EDX surface characterization techniques. For comparison, similar studies were carried out with sulfur-containing species which are conventionally used in industrial practice as furnace additives. The present work demonstrated that the phosphorus-based treatment program provided an efficient and durable surface passivation against coke formation.

  7. Blast furnace supervision and control system

    SciTech Connect (OSTI)

    Remorino, M.; Lingiardi, O.; Zecchi, M.

    1997-12-31

    On December 1992, a group of companies headed by Techint, took over Somisa, the state-owned integrated steel plant located at San Nicolas, Province of Buenos Aires, Argentina, culminating an ambitious government privatization scheme. The blast furnace 2 went into a full reconstruction and relining in January 1995. After a 140 MU$ investment the new blast furnace 2 was started in September 1995. After more than one year of operation of the blast furnace the system has proven itself useful and reliable. The main reasons for the success of the system are: same use interface for all blast furnace areas -- operation, process, maintenance and management, (full horizontal and vertical integration); and full accessibility to all information and process tools though some restrictions apply to field commands (people empowerment). The paper describes the central system.

  8. Breakthrough Furnace Can Cut Solar Industry Costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Furnace can Cut Solar Industry Costs A game-changing Optical Cavity Furnace (OCF)-developed by the National Renew- able Energy Laboratory (NREL) with funding from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy-uses optics to heat and purify solar cells at unmatched precision, while also boosting the cells' efficiency. As solar cells move through a manufacturer's production line, they must be oxidized, annealed, purified, diffused, etched, and layered. Heat is an

  9. Furnace Blower Performance Improvements - Building America Top Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Furnace Blower Performance Improvements - Building America Top Innovation Furnace Blower Performance Improvements - Building America Top Innovation This photo shows a circular-shaped blower fan for furnaces and air conditioners. As homeowners switch on their forced-air furnaces in preparation for cold weather, they may be unaware of how furnace blowers can impact HVAC efficiency. In fact, studies show that the most common blowers have efficiencies of only 10%-15%.

  10. Reduce Air Infiltration in Furnaces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Infiltration in Furnaces Reduce Air Infiltration in Furnaces This tip sheet describes how to save process heating energy and costs by reducing air infiltration in industrial furnaces; tips include repairing leaks and increasing insulation. PROCESS HEATING TIP SHEET #5 Reduce Air Infiltration in Furnaces (January 2006) (237.12 KB) More Documents & Publications Furnace Pressure Controllers Reduce Radiation Losses from Heating Equipment Load Preheating Using Flue Gases from a Fuel-Fired

  11. Simplified simulation of the transient behavior of temperatures in the upper shaft of the blast furnace

    SciTech Connect (OSTI)

    Saxen, H.

    1998-06-01

    The blast furnace is the principal process in the world for production of iron for primary steelmaking. The furnace acts as a huge countercurrent heat exchange and chemical reactor with complicated heat and mass transfer phenomena and chemical reactions. The flows of burden and gas in the blast furnace shaft strongly affect the fuel economy of the process. An optimal gas flow distribution, which is obtained by controlling the burden distribution, leads to a high utilization degree of the reducing gas, smooth burden descent, and little wear of the furnace lining. Here, a one-dimensional dynamic model of the upper part of the blast furnace shaft is applied to study the evolution of gas and burden temperatures, mainly in order to shed light on the transient phenomena after charging dumps of burden. The effects of irregularities in the burden descent and charging are also studied briefly. The simulations demonstrate that the temperatures of the burden layers in the lower part of the simulated region assume a quasi-steady state, indicating that the changes in the top gas temperature experienced immediately after a dump of burden arise primarily because of heat transfer between the gas and the dump. These results support the idea that such temporary changes can be interpreted in terms of distribution of the dumps on the burden surface.

  12. Coke oven gas injection to blast furnaces

    SciTech Connect (OSTI)

    Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L.

    1995-12-01

    U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

  13. Measure Guideline: High Efficiency Natural Gas Furnaces

    SciTech Connect (OSTI)

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  14. Measure Guideline. High Efficiency Natural Gas Furnaces

    SciTech Connect (OSTI)

    Brand, L.; Rose, W.

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  15. Waste combustion in boilers and industrial furnaces

    SciTech Connect (OSTI)

    1997-12-31

    This set of conference papers deals with the combustion of hazardous wastes in boilers and industrial furnaces. The majority of the papers pertain specifically to cement industry kiln incinerators and focus on environmental issues. In particular, stack emission requirements currently enforced or under consideration by the U.S. EPA are emphasized. The papers were drawn from seven areas: (1) proposed Maximum Achievable Control Technology rule, (2) trial burn planning and experience, (3) management and beneficial use of materials, (4) inorganic emissions and continuous emission monitoring, (5) organic emissions, (6) boiler and industrial furnace operations, and (7) risk assessment and communication.

  16. Blast furnace control after the year 2000

    SciTech Connect (OSTI)

    Gyllenram, R.; Wikstroem, J.O.; Hallin, M.

    1996-12-31

    Rapid technical development together with developments in work organization makes it important to investigate possible ways to achieve a cost efficient process control of different metallurgical processes. This paper describes a research project, and proposes a human oriented Information Technology Strategy, ITS, for control of the Blast Furnace process. The method used is that of deductive reasoning from a description of the prevailing technological level and experiences from various development activities. The paper is based on experiences from the No. 2 Blast Furnace at Luleaa Works but the conclusions do not at this stage necessarily reflect the opinion of the management and personnel or reflect their intentions for system development at SSAB.

  17. Simple Maintenance Saves Costly Furnace Repair/Replacement

    Broader source: Energy.gov [DOE]

    For the past few weeks, my forced-air gas furnace has been on the fritz. I blame this on the fact that I haven't been as diligent as I should have been with regular furnace maintenance.

  18. Oil-Fired Boilers and Furnaces | Department of Energy

    Office of Environmental Management (EM)

    Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the ...

  19. Oil-Fired Boilers and Furnaces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container...

  20. Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs State-of-the-Art Computational Fluid Dynamics Model Optimizes Fuel Rate in Blast Furnaces The blast furnace (BF) is the most widely used ironmaking process in the U.S. A major advance in BF ironmaking has been the use of pulverized coal which partially replaces metallurgi- cal coke. This results in substantial improvement in furnace effciency and thus the reductions of energy consumption and greenhouse gas emissions.

  1. Breakthrough Furnace Can Cut Solar Costs - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Breakthrough Furnace Can Cut Solar Costs October 21, 2011 In this photo, the cavity inside the furnace is glowing white-hot during a simulated firing, while a drawer-like door is open to show the mouth of the furnace. Enlarge image The cavity inside the Solar Optical Furnace glows white hot during a simulated firing of a solar cell. Credit: Dennis Schroeder Solar cells, the heart of the photovoltaic industry, must be tested for mechanical strength, oxidized, annealed, purified, diffused, etched,

  2. Failure of zinc-plated self-tapping screws and Belleville washers used to install spoiler bars in cast iron dryers

    SciTech Connect (OSTI)

    Bruscato, R.M.; Herro, H.M.

    1999-07-01

    During a routine internal inspection of 39 dryers containing spoiler bars, hundreds of broken self-tapping screws used to install those bars were found. Many other screws, as well as many Belleville washers, which spring load the bar assembly against the shell, were found to be severely cracked. The spoiler bar system had been in service for 27 months. Fortunately, none of the bars had broken loose inside the dryers. Failures were the result of hydrogen embrittlement which produced the cracking. Hydrogen was produced by a galvanic corrosion cell established between the zinc plating and the hardened washers and hardened self-tapping screws. Minor chemical/pH upset conditions typical in paper mill steam systems may have accelerated the activity of the galvanic cell. This, in turn, enhanced the evolution of hydrogen. Once the zinc was consumed, hydrogen evolution ceased, and the driving force for cracking was eliminated.

  3. Performance of a direct combustion biomass furnace

    SciTech Connect (OSTI)

    Kranzler, G.A.; Stone, M.L.

    1982-12-01

    A prototype concentric vortex biomass furnace and ram bale feeder were designed and tested. A clear stack was maintained over a turndown ratio of 2:1 and excess air range of 50 to 250%. Stack temperatures ranged up to 700/sup 0/C. Average conversion efficiency was 64%. Maximum heat release was 0.4 MJ/hr.

  4. Performance of a direct combustion biomass furnace

    SciTech Connect (OSTI)

    Kranzler, G.A.; Stone, M.L.

    1982-12-01

    A prototype concentric vortex biomass furnace and ram bale feeder were designed and tested. A clear stack was maintained over a turndown ratio of 2:1 and excess air range of 50 to 250%. Stack temperature ranged up to 700 degrees C. Average conversion efficiency was 64%. Maximum heat release was 0.4 MJ/hr.

  5. Purchasing Energy-Efficient Residential Furnaces

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for residential furnaces, a product category covered by ENERGY STAR. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any acquisition actions that are not specifically exempted by law.

  6. Covered Product Category: Residential Gas Furnaces

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including residential gas furnaces, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  7. Philadelhia Gas Works (PGW) Doe Furnace Rule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Philadelhia Gas Works (PGW) Doe Furnace Rule Philadelhia Gas Works (PGW) Doe Furnace Rule DOE Furnace Rule (111.99 KB) More Documents & Publications Focus Series: Philadelphia Energyworks: In the City of Brotherly Love, Sharing Know-How Leads to Sustainability The Better Buildings Neighborhood View -- December 2013 Collaborating With Utilities on Residential Energy Efficiency

  8. American Gas Association (AGA) for DOE Furnace Product Class | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy (AGA) for DOE Furnace Product Class American Gas Association (AGA) for DOE Furnace Product Class Thank you for the opportunity to brief your staff in recent weeks on an impact analysis of a national condensing furnace standard, which was conducted jointly by the American Gas Association (AGA), the American Public Gas Association (APGA), and the Gas Technology Institute (GTI). AGA e-mail for DOE Furnace Product Class (83.56 KB) AGA Cover Letter for Furnace Product Class White Paper

  9. Process control techniques for the Sidmar blast furnaces

    SciTech Connect (OSTI)

    Vandenberghe, D.; Bonte, L.; Nieuwerburgh, H. van

    1995-12-01

    The major challenge for modern blast furnace operation is the achievement of a very high productivity, excellent hot metal quality, low fuel consumption and longer blast furnace campaigns. The introduction of predictive models, decision supporting software and expert systems has reduced the standard deviation of the hot metal silicon content. The production loss due to the thermal state of the blast furnace has decreased three times since 1990. An appropriate control of the heat losses with high pulverized coal injection rates, is of the utmost importance for the life of the blast furnace. Different rules for the burden distribution of both blast furnaces are given. At blast furnace A, a peripheral gas flow is promoted, while at blast furnace B a more central gas flow is promoted.

  10. ITO-free white OLEDs on Flexible Substrates with Enhanced Light Outcoupling

    Broader source: Energy.gov (indexed) [DOE]

    Washers Final Rule | Department of Energy Clothes Washers Final Rule. commercial_clothes_washers_final_rule.pdf (956.13 KB) More Documents & Publications 2014-02-21 Issuance: Energy Conservation Standards for Commercial Clothes Washers; Notice of Proposed Rulemaking 2014-11-24 Issuance: Test Procedures for Commercial Clothes Washers; Final Rule ISSUANCE 2015-07-17: Energy Conservation Program: Test Procedures for Clothes Washers, Final Rule Standards for Residential Dishwashers, Notice

  11. Glass Furnace Combustion and Melting Research Facility.

    SciTech Connect (OSTI)

    Connors, John J.; McConnell, John F.; Henry, Vincent I.; MacDonald, Blake A.; Gallagher, Robert J.; Field, William B.; Walsh, Peter M.; Simmons, Michael C.; Adams, Michael E.; Leadbetter, James M.; Tomasewski, Jack W.; Operacz, Walter J.; Houf, William G.; Davis, James W.; Marvin, Bart G.; Gunner, Bruce E.; Farrell, Rick G.; Bivins, David P.; Curtis, Warren; Harris, James E.

    2004-08-01

    The need for a Combustion and Melting Research Facility focused on the solution of glass manufacturing problems common to all segments of the glass industry was given high priority in the earliest version of the Glass Industry Technology Roadmap (Eisenhauer et al., 1997). Visteon Glass Systems and, later, PPG Industries proposed to meet this requirement, in partnership with the DOE/OIT Glass Program and Sandia National Laboratories, by designing and building a research furnace equipped with state-of-the-art diagnostics in the DOE Combustion Research Facility located at the Sandia site in Livermore, CA. Input on the configuration and objectives of the facility was sought from the entire industry by a variety of routes: (1) through a survey distributed to industry leaders by GMIC, (2) by conducting an open workshop following the OIT Glass Industry Project Review in September 1999, (3) from discussions with numerous glass engineers, scientists, and executives, and (4) during visits to glass manufacturing plants and research centers. The recommendations from industry were that the melting tank be made large enough to reproduce the essential processes and features of industrial furnaces yet flexible enough to be operated in as many as possible of the configurations found in industry as well as in ways never before attempted in practice. Realization of these objectives, while still providing access to the glass bath and combustion space for optical diagnostics and measurements using conventional probes, was the principal challenge in the development of the tank furnace design. The present report describes a facility having the requirements identified as important by members of the glass industry and equipped to do the work that the industry recommended should be the focus of research. The intent is that the laboratory would be available to U.S. glass manufacturers for collaboration with Sandia scientists and engineers on both precompetitive basic research and the

  12. Temperatures in the blast furnace refractory lining

    SciTech Connect (OSTI)

    Hebel, R.; Streuber, C.; Steiger, R.; Jeschar, R.

    1995-12-01

    The campaign life duration of a blast furnace is mainly determined by the condition of the refractory lining in heavy-duty zones such as the hearth, bosh, belly and lower stack. To achieve a desired lifetime, the temperature of the lining in these areas thereby proved to be the decisive controllable parameter. Low operating temperatures result in prolonged service life and are attained through high cooling efficiency. Besides the refractory grade chosen, the wear profile is mainly determined by the type of cooling system applied and the cooling intensity. Therefore, an appropriate compromise between long service life and energy losses has to be found in each case. In order to predict the service life of a lining it is important to know the wear condition at all times during the campaign. The paper describes the approaches the authors have made so far on European blast furnaces, on a theoretical and practical basis, on how to analyze the lining wear.

  13. Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from the furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature

  14. Sealed rotary hearth furnace with central bearing support

    DOE Patents [OSTI]

    Docherty, James P. (Carnegie, PA); Johnson, Beverly E. (Pittsburgh, PA); Beri, Joseph (Morgan, PA)

    1989-01-01

    The furnace has a hearth which rotates inside a stationary closed chamber and is supported therein on vertical cylindrical conduit which extends through the furnace floor and is supported by a single center bearing. The charge is deposited through the furnace roof on the rim of the hearth as it rotates and is moved toward the center of the hearth by rabbles. Externally generated hot gases are introduced into the furnace chamber below the hearth and rise through perforations in the hearth and up through the charge. Exhaust gases are withdrawn through the furnace roof. Treated charge drops from a center outlet on the hearth into the vertical cylindrical conduit which extends downwardly through the furnace floor to which it is also sealed.

  15. Babcock and Wilcox cyclone furnace vitrification. Technology demonstration summary

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    A Superfund Innovative Technology Evaluation (SITE) Demonstration of the Babcock and Wilcox Cyclone Furnace Vitrification Technology was conducted in November 1991. This Demonstration occurred at the Babcock and Wilcox (B and W) Alliance Research Center (ARC) in Alliance, OH. The B and W cyclone furnace may be used for thermal treatment of soils contaminated with organics, metals, and radionuclides. The cyclone furnace is designed to destroy organic contaminants and to immobilize metals and radionuclides in a vitrified soil matrix (slag).

  16. Assessment of selected furnace technologies for RWMC waste

    SciTech Connect (OSTI)

    Batdorf, J.; Gillins, R. ); Anderson, G.L. )

    1992-03-01

    This report provides a description and initial evaluation of five selected thermal treatment (furnace) technologies, in support of earlier thermal technologies scoping work for application to the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried wastes. The cyclone furnace, molten salt processor, microwave melter, ausmelt (fuel fired lance) furnace, and molten metal processor technologies are evaluated. A system description and brief development history are provided. The state of development of each technology is assessed, relative to treatment of RWMC buried waste.

  17. DOE Publishes Final Rule for Residential Furnace Fan Test Procedure |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Publishes Final Rule for Residential Furnace Fan Test Procedure DOE Publishes Final Rule for Residential Furnace Fan Test Procedure January 3, 2014 - 12:00am Addthis The Department of Energy (DOE) has published a final rule regarding test procedures for residential furnace fans. 79 FR 500 (January 3, 2014). Find more information on the rulemaking, including milestones, statutory authority, rulemaking documents, and any other related rulemakings. All notices, public

  18. Cavity based furnace for wafer screening - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Cavity based furnace for wafer screening National Renewable Energy Laboratory Contact NREL About This Technology NREL Principal Engineer Bhushan Sopori has fired up an optical furnace he developed to efficiently fabricate solar cells. NREL Principal Engineer Bhushan Sopori has fired up an optical furnace he developed to efficiently fabricate solar cells. Technology Marketing Summary The U.S. Department of Energy (DOE)

  19. Breakthrough Furnace Can Cut Solar Industry Costs (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01

    A game-changing Optical Cavity Furnace (OCF), developed by NREL, uses optics to heat and purify solar cells at unmatched precision, while also boosting the cells' efficiency.

  20. Biomass Boiler and Furnace Emissions and Safety Regulations in...

    Open Energy Info (EERE)

    in the Northeast States Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Agency...

  1. Gas-Fired Boilers and Furnaces | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    natural gas meter. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels....

  2. Waste Heat Reduction and Recovery for Improving Furnace Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    When the energy transfer reaches its practical limit, the spent combustion gases are ... reduction in furnace heat losses will be multiplied by the overall available heat factor. ...

  3. Effect of furnace operating conditions on alkali vaporization...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; ALKALI METALS; EVAPORATION; FURNACES; ...

  4. Next Generation Metallic Iron Nodule Technology in Electric Furnace...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Steel Success Story - Ironmaking: Quality and Supply Critical to Steel Industry Paired Straight Hearth Furnace Ironmaking Process Alternatives ...

  5. DOE Furnace Rule Ex Parte Communication | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Furnace Rule Ex Parte Communication Philadelphia Gas Works (POW), the largest ... have on POW, its customers, the City of Philadelphia and the air quality of this region. ...

  6. Control of carbon balance in a silicon smelting furnace

    DOE Patents [OSTI]

    Dosaj, V.D.; Haines, C.M.; May, J.B.; Oleson, J.D.

    1992-12-29

    The present invention is a process for the carbothermic reduction of silicon dioxide to form elemental silicon. Carbon balance of the process is assessed by measuring the amount of carbon monoxide evolved in offgas exiting the furnace. A ratio of the amount of carbon monoxide evolved and the amount of silicon dioxide added to the furnace is determined. Based on this ratio, the carbon balance of the furnace can be determined and carbon feed can be adjusted to maintain the furnace in carbon balance.

  7. Waste Heat Reduction and Recovery for Improving Furnace Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Waste Heat Reduction and ...

  8. Post combustion trials at Dofasco's KOBM furnace

    SciTech Connect (OSTI)

    Farrand, B.L.; Wood, J.E.; Goetz, F.J.

    1992-01-01

    Post combustion trials were conducted at Dofasco's 300 tonne KOBM furnace as part of the AISI Direct Steelmaking Program. The purpose of the project work was to measure the post combustion ratio (PCR) and heat transfer efficiency (HTE) of the post combustion reaction in a full size steelmaking vessel. A method of calculating PCR and HTE using off gas analysis and gas temperature was developed. The PCR and HTE were determined under normal operating conditions. Trials assessed the effect of lance height, vessel volume, foaming slag and pellet additions on PCR and HTE.

  9. Molten metal holder furnace and casting system incorporating the molten metal holder furnace

    DOE Patents [OSTI]

    Kinosz, Michael J.; Meyer, Thomas N.

    2003-02-11

    A bottom heated holder furnace (12) for containing a supply of molten metal includes a storage vessel (30) having sidewalls (32) and a bottom wall (34) defining a molten metal receiving chamber (36). A furnace insulating layer (42) lines the molten metal receiving chamber (36). A thermally conductive heat exchanger block (54) is located at the bottom of the molten metal receiving chamber (36) for heating the supply of molten metal. The heat exchanger block (54) includes a bottom face (65), side faces (66), and a top face (67). The heat exchanger block (54) includes a plurality of electrical heaters (70) extending therein and projecting outward from at least one of the faces of the heat exchanger block (54), and further extending through the furnace insulating layer (42) and one of the sidewalls (32) of the storage vessel (30) for connection to a source of electrical power. A sealing layer (50) covers the bottom face (65) and side faces (66) of the heat exchanger block (54) such that the heat exchanger block (54) is substantially separated from contact with the furnace insulating layer (42).

  10. Development of a low-energy and high-current pulsed neutral beam injector with a washer-gun plasma source for high-beta plasma experiments

    SciTech Connect (OSTI)

    Ii, Toru; Gi, Keii; Umezawa, Toshiyuki; Inomoto, Michiaki; Ono, Yasushi; Asai, Tomohiko

    2012-08-15

    We have developed a novel and economical neutral-beam injection system by employing a washer-gun plasma source. It provides a low-cost and maintenance-free ion beam, thus eliminating the need for the filaments and water-cooling systems employed conventionally. In our primary experiments, the washer gun produced a source plasma with an electron temperature of approximately 5 eV and an electron density of 5 Multiplication-Sign 10{sup 17} m{sup -3}, i.e., conditions suitable for ion-beam extraction. The dependence of the extracted beam current on the acceleration voltage is consistent with space-charge current limitation, because the observed current density is almost proportional to the 3/2 power of the acceleration voltage below approximately 8 kV. By optimizing plasma formation, we successfully achieved beam extraction of up to 40 A at 15 kV and a pulse length in excess of 0.25 ms. Its low-voltage and high-current pulsed-beam properties enable us to apply this high-power neutral beam injection into a high-beta compact torus plasma characterized by a low magnetic field.

  11. Modernizing furnaces with recuperative burners in the metal industry

    SciTech Connect (OSTI)

    Berdoulay, F.; Drewery, P.

    1982-01-01

    Industrial burners equipped with means of preheating the combustion air with the hot combustion products offer significant savings in heat-processing energy consumption. As evidence in some forging furnaces recently outfitted with recuperative burners, reductions in energy consumption range from 30 to 60%. Such burners are particularly well-suited for high-temperature, direct-heating furnaces.

  12. C AND M BOTTOM LOADING FURNACE TEST DATA

    SciTech Connect (OSTI)

    Lemonds, D

    2005-08-01

    The test was performed to determine the response of the HBL Phase III Glovebox during C&M Bottom Loading Furnace operations. In addition the data maybe used to benchmark a heat transfer model of the HBL Phase III Glovebox and Furnace.

  13. Advanced steel reheat furnaces: Research and development. Final report

    SciTech Connect (OSTI)

    Nguyen, Q.; Koppang, R.; Maly, P.; Moyeda, D.; Li, X.

    1999-01-14

    The purpose of this report is to present the results of two phases of a three-phase project to develop and evaluate an Advanced Steel Reheat Furnace (SSRF) concept which incorporates two proven and commercialized technologies, oxy-fuel enriched air (OEA) combustion and gas reburning (GR). The combined technologies aim to improve furnace productivity with higher flame radiant heat transfer in the heating zones of a steel reheat furnace while controlling potentially higher NOx emissions from these zones. The project was conducted under a contract sponsored by the Department of Energy (DOE). Specifically, this report summarizes the results of a modeling study and an experimental study to define and evaluate the issues which affect the integration and performance of the combined technologies. Section 2.0 of the report describes the technical approach uses in the development and evaluation of the advanced steel reheat furnace. Section 3.0 presents results of the modeling study applied to a model steel furnace. Experimental validation of the modeling results obtained from EER`s Fuel Evaluation Facility (FEF) pilot-scale furnace discussed in Section 4.0. Section 5.0 provides an economic evaluation on the cost effectiveness of the advanced reheat furnace concept. Section 6.0 concludes the report with recommendations on the applicability of the combined technologies of steel reheat furnaces.

  14. Heat pipes and use of heat pipes in furnace exhaust

    DOE Patents [OSTI]

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  15. Method of operating a centrifugal plasma arc furnace

    DOE Patents [OSTI]

    Kujawa, Stephan T.; Battleson, Daniel M.; Rademacher, Jr., Edward L.; Cashell, Patrick V.; Filius, Krag D.; Flannery, Philip A.; Whitworth, Clarence G.

    1998-01-01

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe.sub.3 O.sub.4. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe.sub.2 O.sub.3. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater.

  16. Method of operating a centrifugal plasma arc furnace

    DOE Patents [OSTI]

    Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

    1998-03-24

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe{sub 3}O{sub 4}. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe{sub 2}O{sub 3}. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs.

  17. Pulverized coal injection operation on CSC No. 3 blast furnace

    SciTech Connect (OSTI)

    Chan, C.M.; Hsu, C.H.

    1996-12-31

    The pulverized coal injection system was introduced for the first time in No. 1 and No. 2 blast furnace at China Steel Corporation (CSC) in 1988. Currently the coal injection rate for both blast furnaces has steadily risen to 70--89 kg/thm (designed value). No 3 blast furnace (with an inner volume of 3400 m3) was also equipped with a PCI system of Armco type and started coal injection on November 17, 1993. During the early period, some problems such as injection lance blocking, lance-tip melting down, flexible hose wear, grind mill tripping occasionally interrupted the stable operation of blast furnace. After a series of efforts offered on equipment improvement and operation adjustment, the PC rate currently reaches to 90--110 kg/thm and furnace stable operation is still being maintained with productivity more than 2.20.

  18. Operating a blast furnace using dried top gas

    SciTech Connect (OSTI)

    Kundrat, D.M.

    1993-08-10

    A method is described of operating a blast furnace, comprising: introducing into the top of the furnace a charge containing metal oxide, coke and flux, collecting a top gas CO, H[sub 2], carbon dioxide and water from the furnace, increasing the reducing potential of said collected top gas by removing water but without removing carbon dioxide from at least a portion of said collected top gas thereby forming a dried top gas, heating said dried top gas to form a heated dried top gas, introducing said heated dried top gas into the lower half of the stack of the furnace at a position above which said coke is not reactive and introducing an oxygen-containing gas and a hydrogenaceous fuel into the bosh of the furnace whereby said metal oxide is reduced to a molten metal using said heated dried top gas.

  19. Recent improvements in casthouse practices at the Kwangyang blast furnaces

    SciTech Connect (OSTI)

    Jang, Y.S.; Han, K.W.; Kim, K.Y.; Cho, B.R.; Hur, N.S.

    1997-12-31

    POSCO`s Kwangyang blast furnaces have continuously carried out high production and low fuel operation under a high pulverized coal injection rate without complications since the Kwangyang No. 1 blast furnace was blown-in in 1987. The Kwangyang blast furnaces have focused on improving the work environment for the increase of competitive power in terms of increased production, cost savings, and management of optimum manpower through use of low cost fuel and raw material. At this time, the casthouse work lags behind most work in the blast furnace. Therefore, the Kwangyang blast furnaces have adopted a remote control system for the casthouse equipment to solve complications in the casthouse work due to high temperature and fumes. As the result, the casthouse workers can work in clean air and the number of workers has been reduced to 9.5 personnel per shift by reduction of the workload.

  20. Use of sinter in Taranto blast furnaces

    SciTech Connect (OSTI)

    Palchetti, M.; Palomba, R.; Tolino, E.; Salvatore, E.; Calcagni, M.

    1995-12-01

    Lowering the production cost of the crude steel is the ultimate aim when planning operations in an integrated steelworks. Designing the Blast Furnace burden is a crucial point in this context, for which account must be taken not only of the raw materials cost but also of other important aims such as maximum plants productivity, minimum possible energy consumption, a proper product quality at the various production stages. This paper describes the criteria used in Ilva Laminati Piani (ILP) Taranto Works to design the BF burden, based on sinter, using the results of extensive research activity carried out by Centro Sviluppo Materiali (CSM), the Research Center with major involvement with the R and D of the Italian Steel Industry. Great attention is paid at ILP to the sinter quality in order to obtain the optimum performance of the BFs, which are operating at high productivity, high pulverized coal rate and low fuel consumption.

  1. An update on blast furnace granular coal injection

    SciTech Connect (OSTI)

    Hill, D.G.; Strayer, T.J.; Bouman, R.W.

    1997-12-31

    A blast furnace coal injection system has been constructed and is being used on the furnace at the Burns Harbor Division of Bethlehem Steel. The injection system was designed to deliver both granular (coarse) and pulverized (fine) coal. Construction was completed on schedule in early 1995. Coal injection rates on the two Burns Harbor furnaces were increased throughout 1995 and was over 200 lbs/ton on C furnace in September. The injection rate on C furnace reached 270 lbs/ton by mid-1996. A comparison of high volatile and low volatile coals as injectants shows that low volatile coal replaces more coke and results in a better blast furnace operation. The replacement ratio with low volatile coal is 0.96 lbs coke per pound of coal. A major conclusion of the work to date is that granular coal injection performs very well in large blast furnaces. Future testing will include a processed sub-bituminous coal, a high ash coal and a direct comparison of granular versus pulverized coal injection.

  2. No. 5 blast furnace 1995 reline and upgrade

    SciTech Connect (OSTI)

    Kakascik, T.F. Jr.

    1996-12-31

    The 1995 reline of No. 5 Blast Furnace is an undertaking which has never been approached in previous relines of any blast furnace in the history of Wheeling Pittsburgh Steel Corporation. The scope of the project is such that it represents a radical departure from W.P.S.C.`s traditional methods of ironmaking. The reline of No. 5 Blast Furnace is one of the largest capital improvements performed at W.P.S.C. Blast Furnaces. The improvements made at one single time are taking a furnace from 1960`s technology into the 21st century. With this in mind, employee training was one of the largest parts of the project. Training for the automated stockhouse, castfloor, new skip drive, new instrumentation, new castfloor equipment, hydraulics and overall furnace operation were an absolute necessity. The reline has laid the ground work to give the Corporation an efficient, higher productive, modern Blast Furnace which will place W.P.S.C. in the world class category in ironmaking well into the 21st century.

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Multifamily Residential, Low Income Residential Savings Category: Clothes Washers, Dishwasher, RefrigeratorsFreezers, Water Heaters, Furnaces, Air conditioners, Caulking...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    measures must submit... Eligibility: Commercial, Industrial Savings Category: Clothes Washers, Dishwasher, Water Heaters, Furnaces, Boilers, Steam-system upgrades,...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Daylighting, Clothes Washers, Dishwasher, RefrigeratorsFreezers, Dehumidifiers, Ceiling Fan, Water Heaters, Furnaces, Boilers, Heat Pumps, Air conditioners, Caulking...

  6. Energy Conservation Program for Consumer Products: Test Procedures for Furnaces and Boilers, Comment Period Extension

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products: Test Procedures for Furnaces and Boilers, Comment Period Extension

  7. 2015-12-29 Consumer Furnaces and Boilers Test Procedures Final Rule

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products: Test Procedures for Consumer Furnaces and Boilers

  8. Advanced Diagnostics and Control for Furnaces, Fired Heaters and Boilers

    SciTech Connect (OSTI)

    2007-06-01

    This factsheet describes a research project whose objective is to develop and implement technologies that address advanced combustion diagnostics and rapid Btu measurements of fuels. These are the fundamental weaknesses associated with the combustion processes of a furnace.

  9. Plasma furnace treatment of metallurgical by-product streams

    SciTech Connect (OSTI)

    Whellock, J.G.; Heanley, C.P.; Chapman, C.S.

    1997-12-31

    It is a common misconception that plasma furnace technology only has application for exotic and very high temperature processes. With the increasing importance placed on waste minimization and the environmental constraints imposed on heavy metals present in byproducts from mainstream operations, plasma technology is finding widespread application. Tetronics is a premier supplier of plasma tundish heating systems for the steel industry. More recently the company has found growing interest in electric arc furnace dust treatment, lead blast furnace slag treatment and metal recovery, copper, nickel and cobalt scavenging from primary smelter slags, dross treatment, platinum group metals (PGM) recovery from catalysts and vitrification and detoxification of heavy metal contaminated waste byproducts. The principal advantages of the plasma arc technology are the close metallurgical control of the furnace environment, minimal off-gas handling requirements and overall high energy efficiency of the processes. A number of applications in the ferrous and non-ferrous metals industry are described.

  10. Operating experience with 100% pellet burden on Amanda blast furnace

    SciTech Connect (OSTI)

    Keaton, D.E.; Minakawa, T. . Ironmaking Dept.)

    1993-01-01

    A number of significant changes in operations at the Ashland Works of the Armco Steel Company occurred in 1992 which directly impacted the Amanda Blast Furnace operation. These changes included the shutdown of the hot strip mill which resulted in coke oven gas enrichment of the Amanda stoves and an increase of 75 C in hot blast temperature, transition to 100% continuous cast operation which resulted in increased variation of the hot metal demand, and the July idling of the sinter plant. Historically, the Amanda Blast Furnace burden was 30% fluxed sinter and 70% acid pellet. It was anticipated that the change to 100% pellet burden would require changes in charging practice and alter furnace performance. The paper gives a general furnace description and then describes the burden characteristics, operating practice with 30% sinter/70% acid pellet burden, preparations for the 100% acid pellet burden operation, the 100% acid pellet operation, and the 100% fluxed pellet burden operation.

  11. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces;...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical ...

  12. Gas-Fired Boilers and Furnaces | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the...

  13. New Energy Efficiency Standards for Furnace Fans to Reduce Carbon...

    Energy Savers [EERE]

    more than a year's carbon pollution from the entire U.S. electricity system. Furnace fans are used to circulate air through ductwork in residential heating and cooling equipment. ...

  14. AGA/APGA Questions re Pre-publication Furnace NOPR | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pre-publication Furnace NOPR AGA/APGA Questions re Pre-publication Furnace NOPR AGA/APGA Questions re Pre-publication Furnace NOPR_Email (50.37 KB) Questions for DOE Furnace NOPR - 030615-c (2) (94.63 KB) DOE Reponse to AGA/APGA Questions re Pre-publication Furnace NOPR_Email.pdf (52.31 KB) Follow-Up Email from APGA (57.65 KB) More Documents & Publications AGA/APGA Questions re Furnace NOPR, EERE-2014-BT-STD-0031 Furnaces Data RE: EERE-2014-BT-STD-0031

  15. Waste Heat Reduction and Recovery for Improving Furnace Efficiency,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief | Department of Energy Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief This technical brief is a guide to help plant operators reduce waste heat

  16. Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs cfd_blastfurnace.pdf (552.85 KB) More Documents & Publications Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry EA-1745: Finding of No Significant Impact

  17. Alloys for Ethylene Production Furnaces - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Alloys for Ethylene Production Furnaces Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryEthylene production is one of the most energy intensive processes in the chemical industry, due to the decoking necessary to maintain ethylene furnace tubes. DescriptionOak Ridge National Laboratory and its industrial partners are developing

  18. Automatic thermocouple positioner for use in vacuum furnaces

    DOE Patents [OSTI]

    Mee, D.K.; Stephens, A.E.

    1980-06-06

    The invention is a simple and reliable mechanical arrangement for automatically positioning a thermocouple-carrying rod in a vacuum-furnace assembly of the kind including a casing, a furnace mounted in the casing, and a charge-containing crucible mounted in the furnace for vertical movement between a lower (loading) position and a raised (charge-melting) position. In a preferred embodiment, a welded-diaphragm metal bellows is mounted above the furnace, the upper end of the bellows being fixed against movement and the lower end of the bellows being affixed to support means for a thermocouple-carrying rod which is vertically oriented and extends freely through the furnace lid toward the mouth of the crucible. The support means and rod are mounted for relative vertical movement. Before pumpdown of the furnace, the differential pressure acting on the bellows causes it to contract and lift the thermocouple rod to a position where it will not be contacted by the crucible charge when the crucible is elevated to its raised position. During pumpdown, the bellows expands downward, lowering the thermocouple rod and its support. The bellows expands downward beyond a point where downward movement of the thermocouple rod is arrested by contact with the crucible charge and to a point where the upper end of the thermocouple extends well above the thermocouple support. During subsequent melting of the charge, the thermocouple sinks into the melt to provide an accurate measurement of melt temperatures.

  19. Automatic thermocouple positioner for use in vacuum furnaces

    DOE Patents [OSTI]

    Mee, David K.; Stephens, Albert E.

    1981-01-01

    The invention is a simple and reliable mechanical arrangement for automatically positioning a thermocouple-carrying rod in a vacuum-furnace assembly of the kind including a casing, a furnace mounted in the casing, and a charge-containing crucible mounted in the furnace for vertical movement between a lower (loading) position and a raised (charge-melting) position. In a preferred embodiment, a welded-diaphragm metal bellows is mounted above the furnace, the upper end of the bellows being fixed against movement and the lower end of the bellows being affixed to support means for a thermocouple-carrying rod which is vertically oriented and extends freely through the furnace lid toward the mouth of the crucible. The support means and rod are mounted for relative vertical movement. Before pumpdown of the furnace, the differential pressure acting on the bellows causes it to contract and lift the thermocouple rod to a position where it will not be contacted by the crucible charge when the crucible is elevated to its raised position. During pumpdown, the bellows expands downward, lowering the thermocouple rod and its support. The bellows expands downward beyond a point where downward movement of the thermocouple rod is arrested by contact with the crucible charge and to a point where the upper end of the thermocouple extends well above the thermocouple support. During subsequent melting of the charge, the thermocouple sinks into the melt to provide an accurate measurement of melt temperatures.

  20. Modelling of multiphase flow in ironmaking blast furnace

    SciTech Connect (OSTI)

    Dong, X.F.; Yu, A.B.; Burgess, J.M.; Pinson, D.; Chew, S.; Zulli, P.

    2009-01-15

    A mathematical model for the four-phase (gas, powder, liquid, and solids) flow in a two-dimensional ironmaking blast furnace is presented by extending the existing two-fluid flow models. The model describes the motion of gas, solid, and powder phases, based on the continuum approach, and implements the so-called force balance model for the flow of liquids, such as metal and slag in a blast furnace. The model results demonstrate a solid stagnant zone and dense powder hold-up region, as well as a dense liquid flow region that exists in the lower part of a blast furnace, which are consistent with the experimental observations reported in the literature. The simulation is extended to investigate the effects of packing properties and operational conditions on the flow and the volume fraction distribution of each phase in a blast furnace. It is found that solid movement has a significant effect on powder holdup distribution. Small solid particles and low porosity distribution are predicted to affect the fluid flow considerably, and this can cause deterioration in bed permeability. The dynamic powder holdup in a furnace increases significantly with the increase of powder diameter. The findings should be useful to better understand and control blast furnace operations.

  1. North Branch Municipal Water & Light - Commercial & Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    with recycling of working unit Dishwasher: 25 - 40 Clothes Washer: 50 - 100 Clothes Dryer: 25 - 50 Replacement Motors: 15 - 2,700, varies by HP and efficiency Variable...

  2. The 1994 intermediate reline of H-3 furnace

    SciTech Connect (OSTI)

    James, J.D.; Nanavati, K.S.; Spirko, E.J.; Wakelin, D.H.

    1995-12-01

    LTV Steel`s Indiana Harbor Works H-3 Blast Furnace was rebuilt in 1988 to provide reliable operations at high production rates without damage to the shell for an overall campaign. This Rebuild included: (1) complete bosh and partial stack shell replacement; (2) a spray cooled carbon bosh; (3) a row of staves at the mantle and six rows of stack staves, all stack staves had noses (ledges at the top of the stave) with the exception of row 5; (4) silicon carbide filled semi graphite brick for the bosh, silicon carbide brick from the mantle area and to the top of stave row No. 1, super duty brick in front of the remaining staves and phosphate bonded high alumina brick in the upper stack; (5) movable throat armor; (6) upgraded instrumentation to follow furnace operation and lining wear occurring in the furnace. No work was done to the hearth walls and bottom, since these had been replaced in 1982 with a first generation graphite cooled design and has experienced 7.7 million NTHM. The furnace was blown in November 18, 1988 and operated through September 3, 1994, at which time it was blown down for its first intermediate repair after 7.85 million NTHM. This paper summarizes the operation of the furnace and then discusses the major aspects of the 1994 intermediate repair.

  3. Recent developments in blast furnace process control within British Steel

    SciTech Connect (OSTI)

    Warren, P.W.

    1995-12-01

    British Steel generally operates seven blast furnaces on four integrated works. All furnaces have been equipped with comprehensive instrumentation and data logging computers over the past eight years. The four Scunthorpe furnaces practice coal injection up to 170 kg/tHM (340 lb/THM), the remainder injecting oil at up to 100 kg/tHM (200 lb/THM). Distribution control is effected by Paul Wurth Bell-Less Tops on six of the seven furnaces, and Movable Throat Armour with bells on the remaining one. All have at least one sub burden probe. The blast furnace operator has a vast quantity of data and signals to consider and evaluate when attempting to achieve the objective of providing a consistent supply of hot metal. Techniques have been, and are being, developed to assist the operator to interpret large numbers of signals. A simple operator guidance system has been developed to provide advice, based on current operating procedures and interpreted data. Further development will involve the use of a sophisticated Expert System software shell.

  4. Hot metal Si control at Kwangyang blast furnaces

    SciTech Connect (OSTI)

    Hur, N.S.; Cho, B.R.; Kim, G.Y.; Choi, J.S.; Kim, B.H.

    1995-12-01

    Studies of Si transfer in blast furnaces have shown that the Si level in pig iron is influenced more by the reaction of silicon oxide gas generation in the raceway than the chemical reaction between hot metal and slag at the drop zone. Specifications require a Si content of pig iron below 0.15% at the Kwangyang Works, but the use of soft coking coal in the blend for coke ovens, high pulverized coal injection rate into the blast furnace, and the application of lower grade iron ore has resulted in the need to develop methods to control Si in hot metal. In this paper, the results of in furnace Si control and the desiliconization skills at the casthouse floor are described.

  5. Application of Argonne's Glass Furnace Model to longhorn glass corporation oxy-fuel furnace for the production of amber glass.

    SciTech Connect (OSTI)

    Golchert, B.; Shell, J.; Jones, S.; Energy Systems; Shell Glass Consulting; Anheuser-Busch Packaging Group

    2006-09-06

    The objective of this project is to apply the Argonne National Laboratory's Glass Furnace Model (GFM) to the Longhorn oxy-fuel furnace to improve energy efficiency and to investigate the transport of gases released from the batch/melt into the exhaust. The model will make preliminary estimates of the local concentrations of water, carbon dioxide, elemental oxygen, and other subspecies in the entire combustion space as well as the concentration of these species in the furnace exhaust gas. This information, along with the computed temperature distribution in the combustion space may give indications on possible locations of crown corrosion. An investigation into the optimization of the furnace will be performed by varying several key parameters such as the burner firing pattern, exhaust number/size, and the boost usage (amount and distribution). Results from these parametric studies will be analyzed to determine more efficient methods of operating the furnace that reduce crown corrosion. Finally, computed results from the GFM will be qualitatively correlated to measured values, thus augmenting the validation of the GFM.

  6. Furnace Blower Electricity: National and Regional Savings Potential

    SciTech Connect (OSTI)

    Florida Solar Energy Center; Franco, Victor; Franco, Victor; Lutz, Jim; Lekov, Alex; Gu, Lixing

    2008-05-16

    Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80percent of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressure used in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, while warm climate locations will see less

  7. Improvement of tap holes at Wakayama No. 5 blast furnace

    SciTech Connect (OSTI)

    Yamashita, M.; Kashiwada, M.; Shibuta, H.

    1995-12-01

    The service life of blast furnaces, as the result of various improvement measures, has been extended from the conventional 5 to 7 years to 15 to 20 years. Wakayama No. 5 blast furnace adopted SiC bricks. Though SiC brick excelled in strength and durability, it has raised problems such as tap hole inside temperature lowering attributable to its high thermal conductivity, insufficient mud burning and gas blow-out. Nevertheless, various countermeasures described within have been taken against such problems, and as the result it has now become possible to maintain tap holes in stable conditions.

  8. Large-scale Evaluation of Nickel Aluminide Rolls in a Heat-Treat Furnace at Bethelehem Steel's (Now ISG) Burns Harbor Plate Mill

    SciTech Connect (OSTI)

    Mengel, J.

    2003-12-16

    At Bethlehem Steel Burns Harbor Plate Division (now ISG Burns Harbor Plate Inc.)'s annealing furnace, new nickel aluminide intermetallic alloy rolls provide greater high-temperature strength and wear resistance compared to the conventional H series cast austenitic alloys currently used in the industry. Oak Ridge National Laboratory and Bethlehem (ISG) partnered under a U.S. Department of Energy, Office of Industrial Technology's Emerging Technology Deployment Program to demonstrate and evaluate the nickel aluminide intermetallic alloy rolls as part of an updated energy efficient large commercial annealing furnace system. Many challenges were involved in this project, including developing welding procedures for joining nickel aluminide intermetallic alloys with H-series austenitic alloys, developing commercial cast roll manufacturing specifications, working with several commercial suppliers to produce a quantity of high quality, reproducible nickel aluminide rolls for a large steel industrial annealing furnace, installing and demonstrating the capability of the rolls in this furnace, performing processing trials to evaluate the benefits of new equipment and processes, and documenting the findings. Updated furnace equipment including twenty-five new automated furnace control dampers have been installed replacing older design, less effective units. These dampers, along with upgraded flame-safety control equipment and new AC motors and roll-speed control equipment, are providing improved furnace control and additional energy efficiency. Energy data shows up to a 34% energy reduction from baseline after the installation of upgraded furnace damper controls along with up to a 34% reduction in greenhouse gases, potential for an additional 3 to 6% energy reduction per campaign of light-up and shutdown, and a 46% energy reduction from baseline for limited trials of a combination of improved damper control and straight-through plate processing. The straight-through processing

  9. Improving the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs, and Side Vents

    Broader source: Energy.gov [DOE]

    This factsheet describes the benefits of a high-performance aluminum bronze alloy to basic oxygen furnace and electric arc furnace components such as hoods, roofs, and side vents.

  10. Development and Validation of a Coupled Combustion Space/Glass Bath Furnace Simulation

    SciTech Connect (OSTI)

    2000-12-01

    Glass Furnace Simulation Model will Improve Energy Use and Efficiency While Reducing Emissions. Competitive and regulatory pressures are motivating glass manufacturers to seek new ways to improve productivity while reducing furnace enery use and emission.

  11. DOE Publishes Notice of Proposed Rulemaking for Residential Furnace Fans Energy Conservation Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy has published a notice of proposed rulemaking regarding energy conservation standards for residential furnace fans.

  12. Evaluation of heat flux through blast furnace shell with attached sensors

    SciTech Connect (OSTI)

    Han, J.W.; Lee, J.H.; Suh, Y.K.

    1996-12-31

    Plant trials to evaluate heat fluxes through a lining/cooling system of a blast furnace were conducted in order to realize the cooling efficiency of the blast furnace under operation. For this purpose, several experiments to measure the in-furnace gas temperatures were cautiously made, and numerical simulations for the temperature distributions over the blast furnace shell and cooling/lining systems were also carried out.

  13. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Waste Heat Recovery Systems for Fuel-Fired Furnaces Install Waste Heat Recovery Systems for Fuel-Fired Furnaces This tip sheet recommends installing waste heat recovery systems for fuel-fired furnaces to increase the energy efficiency of process heating systems. PROCESS HEATING TIP SHEET #8 Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (September 2005) (280.81 KB) More Documents & Publications Load Preheating Using Flue Gases from a Fuel-Fired Heating System Using

  14. Computational fluid dynamics simulations of a glass melting furnace

    SciTech Connect (OSTI)

    Egelja, A.; Lottes, S. A.

    2000-05-09

    The glass production industry is one of the major users of natural gas in the US, and approximately 75% of the energy produced from natural gas is used in the melting process. Industrial scale glass melting furnaces are large devices, typically 5 or more meters wide, and twice as long. To achieve efficient heat transfer to the glass melt below, the natural gas flame must extend over a large portion of the glass melt. Therefore modern high efficiency burners are not used in these furnaces. The natural gas is injected as a jet, and a jet flame forms in the flow of air entering the furnace. In most current glass furnaces the energy required to melt the batch feed stock is about twice the theoretical requirement. An improved understanding of the heat transfer and two phase flow processes in the glass melt and solid batch mix offers a substantial opportunity for energy savings and consequent emission reductions. The batch coverage form and the heat flux distribution have a strong influence on the glass flow pattern. This flow pattern determines to a significant extent the melting rate and the quality of glass.

  15. Combustion in a multiburner furnace with selective flow of oxygen

    DOE Patents [OSTI]

    Bool, III, Lawrence E.; Kobayashi, Hisashi

    2004-03-02

    Improved operational characteristics such as improved fuel efficiency, reduction of NOx formation, reduction of the amount of unburned carbon in the ash, and lessened tendency to corrosion at the tube wall, in a multi-burner furnace are obtained by reducing the flow rate of combustion air to the burners and selectively individually feeding oxidant to only some of the burners.

  16. Electrode immersion depth determination and control in electroslag remelting furnace

    DOE Patents [OSTI]

    Melgaard, David K.; Beaman, Joseph J.; Shelmidine, Gregory J.

    2007-02-20

    An apparatus and method for controlling an electroslag remelting furnace comprising adjusting electrode drive speed by an amount proportional to a difference between a metric of electrode immersion and a set point, monitoring impedance or voltage, and calculating the metric of electrode immersion depth based upon a predetermined characterization of electrode immersion depth as a function of impedance or voltage.

  17. Single taphole blast furnace casthouse performance optimizing cost and availability

    SciTech Connect (OSTI)

    Fowles, R.D.; Searls, J.B.; Peay, W.R.; Brenneman, R.G.

    1995-12-01

    The No. 2 blast furnace is a single taphole furnace with a convection air-cooled iron trough. The iron runner system is designed to fill four 90 ton open-top ladles per cast, which are transported by locomotive to the steel shop. The slag runner system is capable of filling three 800 ft{sup 3} slag pots per cast. The No. 2 blast furnace was blown in from mini-reline with this new casthouse configuration in early December 1991. It was operated for nearly three years until it was banked for planned stove repairs and a trough rebuild in late September 1994. During this period, the furnace produced just over 2.5 million tons of hot metal across the original trough refractory lining system, with 13 intermediate hot patch castable repairs. The entire casthouse refractory usage (main trough, runner systems, and covers) during this campaign was 1.06 pounds per net ton of hot metal. Investigation of the lining during demolition indicated that the trough lining campaign could have been extended to at least 3.0 million tons. This paper will discuss how operating practices, mechanical design, refractory design, maintenance philosophy, and attention to detail synergistically contributed to the long campaign life and low refractory consumption rate.

  18. Electrode Arrangement As Substitute Bottom For An Electrothermic Slag Smelting Furnace.

    DOE Patents [OSTI]

    Aune, Jan Arthur; Brinch, Jon Christian; Johansen, Kai

    2005-12-27

    The electrode arrangement uses vertically oriented electrodes with side wall contacts for an electrothermic smelting furnace for aluminum production. The side wall contacts are radially moveable into the furnace to compensate for wear on the contacts. The side wall contacts can be hollow to allow a slag forming charge to be fed to the furnace.

  19. Radiation from Large Gas Volumes and Heat Exchange in Steam Boiler Furnaces

    SciTech Connect (OSTI)

    Makarov, A. N.

    2015-09-15

    Radiation from large cylindrical gas volumes is studied as a means of simulating the flare in steam boiler furnaces. Calculations of heat exchange in a furnace by the zonal method and by simulation of the flare with cylindrical gas volumes are described. The latter method is more accurate and yields more reliable information on heat transfer processes taking place in furnaces.

  20. Coal combustion under conditions of blast furnace injection

    SciTech Connect (OSTI)

    Crelling, J.C.

    1995-12-01

    Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal with particular reference to the coals from the Illinois Basin. Although this research is not yet completed the results to date support the following conclusions: (1) based on the results of computer modeling, lower rank bituminous coals, including coal from the Illinois Basin, compare well in their injection properties with a variety of other bituminous coals, although the replacement ratio improves with increasing rank; (2) based on the results of petrographic analysis of material collected from an active blast furnace, it is clear the coal derived char is entering into the raceway of the blast furnace; (3) the results of reactivity experiments on a variety of coal chars at a variety of reaction temperatures show that lower rank bituminous coals, including coal from the Illinois basin, yield chars with significantly higher reactivities in both air and CO{sub 2} than chars from higher rank Appalachian coals and blast furnace coke. These results indicate that the chars from the lower rank coals should have a superior burnout rate in the tuyere and should survive in the raceway environment for a shorter time. These coals, therefore, will have important advantages at high rates of injection that may overcome their slightly lower replacement rates.

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment filter Lighting ControlsSensors (10) Apply Lighting ControlsSensors filter Windows (10) Apply Windows filter Clothes Washers (8) Apply Clothes Washers filter...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building filter Lighting ControlsSensors (10) Apply Lighting ControlsSensors filter Windows (10) Apply Windows filter Clothes Washers (9) Apply Clothes Washers filter...

  3. Technical support document: Energy conservation standards for consumer products: Dishwashers, clothes washers, and clothes dryers including: Environmental impacts; regulatory impact analysis

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    The Energy Policy and Conservation Act as amended (P.L. 94-163), establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. This Technical Support Document presents the methodology, data and results from the analysis of the energy and economic impacts of standards on dishwashers, clothes washers, and clothes dryers. The economic impact analysis is performed in five major areas: An Engineering Analysis, which establishes technical feasibility and product attributes including costs of design options to improve appliance efficiency. A Consumer Analysis at two levels: national aggregate impacts, and impacts on individuals. The national aggregate impacts include forecasts of appliance sales, efficiencies, energy use, and consumer expenditures. The individual impacts are analyzed by Life-Cycle Cost (LCC), Payback Periods, and Cost of Conserved Energy (CCE), which evaluate the savings in operating expenses relative to increases in purchase price; A Manufacturer Analysis, which provides an estimate of manufacturers' response to the proposed standards. Their response is quantified by changes in several measures of financial performance for a firm. An Industry Impact Analysis shows financial and competitive impacts on the appliance industry. A Utility Analysis that measures the impacts of the altered energy-consumption patterns on electric utilities. A Environmental Effects analysis, which estimates changes in emissions of carbon dioxide, sulfur oxides, and nitrogen oxides, due to reduced energy consumption in the home and at the power plant. A Regulatory Impact Analysis collects the results of all the analyses into the net benefits and costs from a national perspective. 47 figs., 171 tabs. (JF)

  4. Furnace control apparatus using polarizing interferometer

    DOE Patents [OSTI]

    Schultz, Thomas J.; Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.

    1995-01-01

    A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.

  5. Furnace control apparatus using polarizing interferometer

    DOE Patents [OSTI]

    Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.

    1995-03-28

    A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.

  6. ISSUANCE 2015-05-12: Energy Conservation Program for Consumer Products: Energy Conservation Standards for Residential Furnaces

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products: Energy Conservation Standards for Residential Furnaces, Extension of Comment Period

  7. ISSUANCE 2015-05-01: Commercial Package Air Conditioners and Commercial Warm Air Furnaces Working Group; Notice of Open Meetings

    Broader source: Energy.gov [DOE]

    Commercial Package Air Conditioners and Commercial Warm Air Furnaces Working Group; Notice of Open Meetings

  8. ISSUANCE 2016-09-02: Energy Conservation Program: Energy Conservation Standards for Residential Furnaces, Supplemental Notice of Proposed Rulemaking

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program: Energy Conservation Standards for Residential Furnaces, Supplemental Notice of Proposed Rulemaking

  9. Low NOx nozzle tip for a pulverized solid fuel furnace

    DOE Patents [OSTI]

    Donais, Richard E; Hellewell, Todd D; Lewis, Robert D; Richards, Galen H; Towle, David P

    2014-04-22

    A nozzle tip [100] for a pulverized solid fuel pipe nozzle [200] of a pulverized solid fuel-fired furnace includes: a primary air shroud [120] having an inlet [102] and an outlet [104], wherein the inlet [102] receives a fuel flow [230]; and a flow splitter [180] disposed within the primary air shroud [120], wherein the flow splitter disperses particles in the fuel flow [230] to the outlet [104] to provide a fuel flow jet which reduces NOx in the pulverized solid fuel-fired furnace. In alternative embodiments, the flow splitter [180] may be wedge shaped and extend partially or entirely across the outlet [104]. In another alternative embodiment, flow splitter [180] may be moved forward toward the inlet [102] to create a recessed design.

  10. Evaluation of steel furnace slags as cement additives

    SciTech Connect (OSTI)

    Tuefekci, M.; Demirbas, A.; Genc, H.

    1997-11-01

    Chemical and physical properties and strength development have been studied for six granulated steel furnace slags from the normal steelmaking process. This paper reports results of research performed to develop cement mixture proportions using these slags. The influence of slag proportions, specific surface, and water demand on compressive strength and bulk density of cement blends are presented in this paper. The different test results, which were compared with the Turkish Standards, in general, were found to be within the limits.

  11. Measure Guideline: High-Efficiency Natural Gas Furnaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Efficiency Natural Gas Furnaces L. Brand and W. Rose Partnership for Advanced Residential Retrofit October 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors or affiliates makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,

  12. Detailed model for practical pulverized coal furnaces and gasifiers

    SciTech Connect (OSTI)

    Smith, P.J.; Smoot, L.D.

    1989-08-01

    This study has been supported by a consortium of nine industrial and governmental sponsors. Work was initiated on May 1, 1985 and completed August 31, 1989. The central objective of this work was to develop, evaluate and apply a practical combustion model for utility boilers, industrial furnaces and gasifiers. Key accomplishments have included: Development of an advanced first-generation, computer model for combustion in three dimensional furnaces; development of a new first generation fouling and slagging submodel; detailed evaluation of an existing NO{sub x} submodel; development and evaluation of an improved radiation submodel; preparation and distribution of a three-volume final report: (a) Volume 1: General Technical Report; (b) Volume 2: PCGC-3 User's Manual; (c) Volume 3: Data Book for Evaluation of Three-Dimensional Combustion Models; and organization of a user's workshop on the three-dimensional code. The furnace computer model developed under this study requires further development before it can be applied generally to all applications; however, it can be used now by specialists for many specific applications, including non-combusting systems and combusting geseous systems. A new combustion center was organized and work was initiated to continue the important research effort initiated by this study. 212 refs., 72 figs., 38 tabs.

  13. Plasma-supported coal combustion in boiler furnace

    SciTech Connect (OSTI)

    Askarova, A.S.; Karpenko, E.I.; Lavrishcheva, Y.I.; Messerle, V.E.; Ustimenko, A.B.

    2007-12-15

    Plasma activation promotes more effective and environmentally friendly low-rank coal combustion. This paper presents Plasma Fuel Systems that increase the burning efficiency of coal. The systems were tested for fuel oil-free start-up of coal-fired boilers and stabilization of a pulverized-coal flame in power-generating boilers equipped with different types of burners, and burning all types of power-generating coal. Also, numerical modeling results of a plasma thermochemical preparation of pulverized coal for ignition and combustion in the furnace of a utility boiler are discussed in this paper. Two kinetic mathematical models were used in the investigation of the processes of air/fuel mixture plasma activation: ignition and combustion. A I-D kinetic code PLASMA-COAL calculates the concentrations of species, temperatures, and velocities of the treated coal/air mixture in a burner incorporating a plasma source. The I-D simulation results are initial data for the 3-D-modeling of power boiler furnaces by the code FLOREAN. A comprehensive image of plasma-activated coal combustion processes in a furnace of a pulverized-coal-fired boiler was obtained. The advantages of the plasma technology are clearly demonstrated.

  14. Raceway behaviors in blast furnace with pulverized coal injection

    SciTech Connect (OSTI)

    Chung, J.K.; Han, J.W.; Cho, B.R.

    1995-12-01

    The blast furnace raceway shows different characteristics with PCR (pulverized coal injection rate). It was found in this study that with the increase of PCR the raceway depth decreases, and the size of birds nest and sometimes with liquid holdup, increases. Oxygen enrichment with co-axial lances was known to be very effective on the extension of raceway depth and size reduction of birds nest. It was also found that there are various factors which affect the coke properties at tuyere level of the blast furnace. Coke traveling time was calculated to be extended with PCR and it had a close relationship with the coke size in bosh. Coke mean size decreased with the increase of coke traveling time, that is, with the increase of PCR. Both DI (the strength of coke in cold) and CSR (the strength of coke after reaction) were also decreased with PCR. RAFT (Raceway Adiabatic Flame Temperature) had a tendency to be decreased with the increase of PCR, which is obtained by the estimation of coke temperature via XRD analysis. From the analysis of alkali contents in coke sampled along the radius of the blast furnace, it was understood that no difference in alkali contents between fine and lump coke represents that coke fines generated from upper burden might appear at tuyere level.

  15. Catalyst added to Claus furnace reduces sulfur losses

    SciTech Connect (OSTI)

    Luinstra, E.A.; d'Haene, P.E. (Shell Canada Ltd., Toronto, ON (Canada). Oakville Research Centre)

    1989-07-01

    Several substances effectively catalyze the reduction of carbon disulfide in Claus gas streams at Claus reaction furnace conditions (about 1,000{sup 0}C). Some conversion of carbonyl sulfide also occurs. Carbon disulfide and carbonyl sulfide as well-known problem compounds that reduce sulfur recovery efficiency in many sulfur recovery plants. Installation of a suitable catalytic material in the reaction furnace promises significant improvement of Claus plant efficiency, and prolonged life of the catalytic converters. Almost every Claus sulfur recovery plant makes some carbon disulfide (CS/sub 2/) and carbonyl sulfide (COS) in the reaction furnace, and in many of these plants, these compounds constitute a significant problem. CS/sub 2/ and COS often comprise more than 50% of sulfur losses in the tail gas. This article reexamines the issue of CS/sub 2/ and COS in the Claus plant. The relative importance of these two troublesome components is explored with data accumulated from Shell Canada Claus plants. The authors discuss which factors tend to produce these components. Then a method for reducing CS/sub 2/ and COS virtually at the source will be introduced.

  16. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2001-11-06

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x

  17. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2002-04-29

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2001 through March 31, 2002. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub X} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the fifth reporting period for the subject Cooperative Agreement. During the previous (fourth) period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant) and a byproduct magnesium hydroxide slurry (at both Gavin and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub X} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the

  18. Alliant Energy Interstate Power and Light (Gas) - Business Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Dollar Savings Clothes Washer: 50 - 100 Dishwasher: 15 Freezer: 25 Refrigerator: 50 Room Air Conditioner: 25 Desktop and integrated computers: 5 Computer Equipment: 4 -...

  19. Lansing Board of Water & Light - Hometown Energy Savers Residential...

    Broader source: Energy.gov (indexed) [DOE]

    Refrigerator or Freezer Recycling: 30 Electric Clothes Dryer: 25 Clothes washer: 25 Chest Freezer: 25 TV 21" - 50: 25 TV 50"+: 50 Dishwasher: 25 Multifamily Buildings:...

  20. City Water Light and Power - Residential Energy Efficiency Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    Clothes Washers Water Heaters Heat Pumps Building Insulation Maximum Rebate Building Insulation: 500 Program Info Sector Name Utility Administrator Energy Services Office Website...

  1. Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow

    DOE Patents [OSTI]

    Pollock, G.G.

    1997-01-28

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

  2. Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow

    DOE Patents [OSTI]

    Pollock, George G.

    1997-01-01

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

  3. 2014-06-25 Issuance: Energy Conservation Standards for Residential Furnace

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fans; Final Rule | Department of Energy 25 Issuance: Energy Conservation Standards for Residential Furnace Fans; Final Rule 2014-06-25 Issuance: Energy Conservation Standards for Residential Furnace Fans; Final Rule This document is a pre-publication Federal Register final rule regarding energy conservation standards for furnace fans, as issued by the Assistant Secretary for Energy Efficiency and Renewable Energy on June 25, 2014. Though it is not intended or expected, should any discrepancy

  4. 2015-02-10 Issuance Energy Conservation Standard for Residential Furnaces;

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Notice of Proposed Rulemaking and Public Meeting | Department of Energy 0 Issuance Energy Conservation Standard for Residential Furnaces; Notice of Proposed Rulemaking and Public Meeting 2015-02-10 Issuance Energy Conservation Standard for Residential Furnaces; Notice of Proposed Rulemaking and Public Meeting This document is a pre-publication Federal Register notice of proposed rulemaking and public meeting regarding energy conservation standards for residential furnaces, as issued by the

  5. 2015-02-13 Issuance: Test Procedure for Furnaces and Boilers; Notice of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proposed Rulemaking | Department of Energy 3 Issuance: Test Procedure for Furnaces and Boilers; Notice of Proposed Rulemaking 2015-02-13 Issuance: Test Procedure for Furnaces and Boilers; Notice of Proposed Rulemaking This document is a pre-publication Federal Register notice of proposed rulemaking regarding test procedures for furnaces and boilers, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 13, 2015. Though it is not intended or expected, should any

  6. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2004-01-01

    The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two

  7. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-10-01

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the semi

  8. AGA/APGA Questions re Furnace NOPR, EERE-2014-BT-STD-0031 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Furnace NOPR, EERE-2014-BT-STD-0031 AGA/APGA Questions re Furnace NOPR, EERE-2014-BT-STD-0031 AGA-APGA Questions_Ex Parte_Email (68.75 KB) AGA_APGA_Shipments_Questions_2015-04-23 (26.5 KB) More Documents & Publications AGA/APGA Questions re Pre-publication Furnace NOPR August 20, 2014 meeting with DOE representatives regarding the remand of the DOE Direct Final Rule as it relates to efficiency standards for non-weatherized gas furnaces 2015-12-30 Energy Conservation Program:

  9. 2015-02-13 Issuance: Test Procedure for Furnaces and Boilers...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications 2015-12-29 Consumer Furnaces and Boilers Test Procedures Final Rule ISSUANCE 2014-12-23: Energy Conservation Program for Consumer Products: Test ...

  10. Minimization of Blast Furnace Fuel Rate by Optimizing Burden and Gas Distributions

    SciTech Connect (OSTI)

    2007-08-01

    This factsheet describes a research project whose proposed CFD model will focus on the complex physics and chemistry found within the upper part of the blast furnace.