Powered by Deep Web Technologies
Note: This page contains sample records for the topic "warm springs power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

FINAL REPORT WIND POWER WARM SPRINGS RESERVATION TRIBAL LANDS DOE GRANT NUMBER DE-FG36-07GO17077 SUBMITTED BY WARM SPRINGS POWER & WATER ENTERPRISES A CORPORATE ENTITY OF THE CONFEDERATED TRIBES OF WARM SPRINGS WARM SPRINGS, OREGON  

SciTech Connect

Wind Generation Feasibility Warm Springs Power and Water Enterprises (WSPWE) is a corporate entity owned by the Confederated Tribes of the Warm Springs Reservation, located in central Oregon. The organization is responsible for managing electrical power generation facilities on tribal lands and, as part of its charter, has the responsibility to evaluate and develop renewable energy resources for the Confederated Tribes of Warm Springs. WSPWE recently completed a multi-year-year wind resource assessment of tribal lands, beginning with the installation of wind monitoring towers on the Mutton Mountains site in 2003, and collection of on-site wind data is ongoing. The study identified the Mutton Mountain site on the northeastern edge of the reservation as a site with sufficient wind resources to support a commercial power project estimated to generate over 226,000 MWh per year. Initial estimates indicate that the first phase of the project would be approximately 79.5 MW of installed capacity. This Phase 2 study expands and builds on the previously conducted Phase 1 Wind Resource Assessment, dated June 30, 2007. In order to fully assess the economic benefits that may accrue to the Tribes through wind energy development at Mutton Mountain, a planning-level opinion of probable cost was performed to define the costs associated with key design and construction aspects of the proposed project. This report defines the Mutton Mountain project costs and economics in sufficient detail to allow the Tribes to either build the project themselves or contract with a developer under the most favorable terms possible for the Tribes.

Jim Manion; Michael Lofting; Wil Sando; Emily Leslie; Randy Goff

2009-03-30T23:59:59.000Z

2

WARM SPRINGS, OREGON  

DOE Green Energy (OSTI)

and, as part of its charter, has the responsibility to evaluate and develop renewable energy resources for the Confederated Tribes of Warm Springs. WSPWE recently completed a multi-year-year wind resource assessment of tribal lands, beginning with the installation of wind monitoring towers on the Mutton Mountains site in 2003, and collection of on-site wind data is ongoing. The study identified the Mutton Mountain site on the northeastern edge of the reservation as a site with sufficient wind resources to support a commercial power project estimated to generate over 226,000 MWh per year. Initial estimates indicate that the first phase of the project would be approximately 79.5 MW of installed capacity. This Phase 2 study expands and builds on the previously conducted Phase 1 Wind Resource Assessment, dated June 30, 2007. In order to fully assess the economic benefits that may accrue to the Tribes through wind energy development at Mutton Mountain, a planning-level opinion of probable cost was performed to define the costs associated with key design and construction aspects of the proposed project. This report defines the Mutton Mountain project costs and economics in sufficient detail to allow the Tribes to either build the project themselves or contract with a developer under the most favorable terms possible for the Tribes.

Jim Manion; Michael Lofting; Wil Sando; Emily Leslie; Randy Goff

2009-03-30T23:59:59.000Z

3

Final Report, Wind Power Resource Assessment on the Warm Springs Reservation Tribal Lands, Report No. DOE/GO/12103  

DOE Green Energy (OSTI)

This report concludes a five-year assessment of wind energy potential on the Confederated Tribes of Warm Springs Reservation of Oregon lands.

Jim Manion, Warm Springs Power & Water Enterprises; David McClain, McClain & Associates; HDR Engineering; Dr. Stel Walker, Oregon State University

2007-09-10T23:59:59.000Z

4

Warm Springs State Hospital Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Warm Springs State Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs State Hospital Space Heating Low Temperature Geothermal...

5

Warm Springs Water District District Heating Low Temperature...  

Open Energy Info (EERE)

Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal...

6

Chemical And Isotopic Investigation Of Warm Springs Associated With Normal  

Open Energy Info (EERE)

Isotopic Investigation Of Warm Springs Associated With Normal Isotopic Investigation Of Warm Springs Associated With Normal Faults In Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Chemical And Isotopic Investigation Of Warm Springs Associated With Normal Faults In Utah Details Activities (3) Areas (1) Regions (0) Abstract: Thermal springs associated with normal faults in Utah have been analyzed for major cations and anions, and oxygen and hydrogen isotopes. Springs with measured temperatures averaging greater than 40°C are characterized by Na + K- and SO4 + Cl-rich waters containing 103 to 104 mg/l of dissolved solids. Lower temperature springs, averaging less than 40°C, are more enriched in Ca + Mg relative to Na + K. Chemical variations monitored through time in selected thermal springs are probably produced by

7

Brooks Warm Springs Aquaculture Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Warm Springs Aquaculture Low Temperature Geothermal Facility Warm Springs Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Brooks Warm Springs Aquaculture Low Temperature Geothermal Facility Facility Brooks Warm Springs Sector Geothermal energy Type Aquaculture Location Fergus County, Montana Coordinates 47.2126745°, -109.4141° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

8

Roosevelt Warm Springs Institute for Rehab. Space Heating Low Temperature  

Open Energy Info (EERE)

Space Heating Low Temperature Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Roosevelt Warm Springs Institute for Rehab. Space Heating Low Temperature Geothermal Facility Facility Roosevelt Warm Springs Institute for Rehab. Sector Geothermal energy Type Space Heating Location Warm Springs, Georgia Coordinates 32.8904081°, -84.6810381° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

9

Warm Springs State Hospital Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

State Hospital Space Heating Low Temperature Geothermal State Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs State Hospital Space Heating Low Temperature Geothermal Facility Facility Warm Springs State Hospital Sector Geothermal energy Type Space Heating Location Warm Springs, Montana Coordinates 46.1813145°, -112.78476° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

10

Warm Springs Greenhouses Greenhouse Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Greenhouses Greenhouse Low Temperature Geothermal Facility Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Warm Springs Greenhouses Sector Geothermal energy Type Greenhouse Location Banks, Idaho Coordinates 44.0804473°, -116.1240151° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

11

Warm Springs Water District District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Water District District Heating Low Temperature Geothermal Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal Facility Facility Warm Springs Water District Sector Geothermal energy Type District Heating Location Boise, Idaho Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

12

Ashton Warm Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Ashton Warm Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Ashton Warm Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.095,"lon":-111.4583,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

13

Habitat Quality and Anadromous Fish Production on the Warm Springs Reservation. Final Report.  

DOE Green Energy (OSTI)

The number of anadromous fish returning to the Columbia River and its tributaries has declined sharply in recent years. Changes in their freshwater, estuarine, and ocean environments and harvest have all contributed to declining runs of anadromous fish. Restoration of aquatic resources is of paramount importance to the Confederated Tribes of the Warm Springs (CTWS) Reservation of Oregon. Watersheds on the Warm Springs Reservation provide spawning and rearing habitat for several indigenous species of resident and anadromous fish. These streams are the only ones in the Deschutes River basin that still sustain runs of wild spring chinook salmon, Oncorhynchus, tshawytscha. Historically, reservation streams supplied over 169 km of anadromous fish habitat. Because of changes in flows, there are now only 128 km of habitat that can be used on the reservation. In 1981, the CTWS began a long-range, 3-phase study of existing and potential fish resources on the reservation. The project, consistent with the Northwest Power Planning Council`s Fish and Wildlife Program, was designed to increase the natural production of anadromous salmonids on the reservation.

Fritsch, Mark A.

1995-06-01T23:59:59.000Z

14

Final Report and Strategic Plan on the Feasibility Study to Assess Geothermal Potential on Warm Springs Reservation Lands. Report No. DOE/GO/15177  

DOE Green Energy (OSTI)

In 2005 the Confederated Tribes of Warm Springs Tribal Council authorized an evaluation of the geothermal development potential on the Confederated Tribes of Warm Springs Reservation of Oregon. Warm Springs Power & Water Enterprises obtained a grant from the U.S. Department of Energy to conduct a geological assessment and development estimate. Warm Springs Power & Water Enterprises utilized a team of expert consultants to conduct the study and develop a strategic plan. The resource assessment work was completed in 2006 by GeothermEx Inc., a consulting company specializing in geothermal resource assessments worldwide. The GeothermEx report indicates there is a 90% probability that a commercial geothermal resource exists on tribal lands in the Mt. Jefferson area. The geothermal resource assessment and other cost, risk and constraints information has been incorporated into the strategic plan.

James Manion, Warm Springs Power & Water Enterprises; David McClain, McClain & Associates

2007-05-17T23:59:59.000Z

15

Hydrogen and oxygen isotope geochemistry of cold and warm springs from the Tuscarora, Nevada thermal area  

DOE Green Energy (OSTI)

Eighteen cold and warm spring water samples from the Tuscarora, Nevada KGRA have been analyzed for hydrogen and oxygen isotope composition and fluid chemistry. Warm springs have deltaD values (-128 to -137 permil) significantly lower than those of cold springs to the north and east of the area, but similar to the deltaD values of cold springs to the west and south (-131 to -135 permil). The recharge area for the warm springs is unlikely to be to the immediate north, which is the local topographic highland in the area. The hydrogen isotope data would permit recharge from areas to the southwest or from high elevations to the southeast (Independence Mountains), a sector consistent with electrical resistivity evidence of fluid flow. Warm springs are HCO/sub 3//sup -/-rich waters, enriched by a factor of 3 to 10 in Na, HCO{sub 3}/{sup -} and SiO{sub 2} relative to local cold springs. Average quartz (no steam loss) and Na/K/Ca geothermometer estimates suggest subsurface temperatures of 145{sup 0} and 196{sup 0}C, respectively. The warm springs exhibit poor correlations between either hydrogen or oxygen isotope composition and water temperature or chemistry. The absence of such correlations suggests that there is no single coherent pattern of cold water mixing or evaporation in the thermal spring system.

Bowman, J.R.; Cole, D.

1982-06-01T23:59:59.000Z

16

Hydrogen and oxygen isotope geochemistry of cold and warm springs from the Tuscarora, Nevada Thermal Area  

DOE Green Energy (OSTI)

Eighteen cold and warm spring water samples from the Tuscarora, Nevada KGRA have been analyzed for hydrogen and oxygen isotope composition and fluid chemistry. Warm springs have deltaD values (128 to -137 permil) significantly lower than those of cold springs to the north and east of the area, but similar to the deltaD values of cold springs to the west and south (-131 to -135 permil). The recharge area for the warm springs is unlikely to be to the immediate north, which is the local topographic highland in the area. The hydrogen isotope data would permit recharge from areas to the southwest or from high elevations to the southeast (Independence Mountains), a sector consistent with electrical resistivity evidence of fluid flow. Warm springs are HCO/sub 3//sup -/-rich waters, enriched by a factor of 3 to 10 in Na, HCO/sub 3//sup -/ and SiO/sub 2/ relative to local cold springs. Average quartz (no steam loss) and Na/K/Ca geothermometer estimates suggest subsurface temperatures of 145/sup 0/ and 196/sup 0/C, respectively. The warm springs exhibit poor correlations between either hydrogen or oxygen isotope composition and water temperature or chemistry. The absence of such correlations suggests that there is no single coherent pattern of cold water mixing or evaporation in the thermal spring system.

Bowman, J.R.; Cole, D.

1982-10-01T23:59:59.000Z

17

How Are Spring Snow Conditions in Central Canada Related to Early Warm-Season Precipitation?  

Science Conference Proceedings (OSTI)

The response of the warm-season atmosphere to antecedent snow anomalies has long been an area of study. This paper explores how the spring snow depth relates to subsequent precipitation in central Canada using ground observations, reanalysis ...

Hua Su; Robert E. Dickinson; Kirsten L. Findell; Benjamin R. Lintner

2013-06-01T23:59:59.000Z

18

Chemical And Isotopic Investigation Of Warm Springs Associated...  

Open Energy Info (EERE)

Normal Faults In Utah edit Details Activities (3) Areas (1) Regions (0) Abstract: Thermal springs associated with normal faults in Utah have been analyzed for major cations...

19

Spring 2013 Composite Data Products - Backup Power  

DOE Green Energy (OSTI)

This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes 21 composite data products (CDPs) produced in Spring 2013 for fuel cell backup power systems.

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.; Post, M.; Peters, M.

2013-05-01T23:59:59.000Z

20

Warm Springs Resort Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Warm Springs Resort Pool & Spa Low Temperature Geothermal Facility Warm Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Warm Springs Resort Sector Geothermal energy Type Pool and Spa Location Idaho City, Idaho Coordinates 43.8285046°, -115.8345537° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "warm springs power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Roosevelt Warm Springs Institute for Rehab. Pool & Spa Low Temperature  

Open Energy Info (EERE)

Pool & Spa Low Temperature Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Roosevelt Warm Springs Institute for Rehab. Pool & Spa Low Temperature Geothermal Facility Facility Roosevelt Warm Springs Institute for Rehab. Sector Geothermal energy Type Pool and Spa Location Warm Springs, Georgia Coordinates 32.8904081°, -84.6810381° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

22

Direct utilization of geothermal resources at Warm Springs State Hospital, Warm Springs, Montana. Final report, January 31, 1979-June 30, 1983  

DOE Green Energy (OSTI)

Several decades ago the water from a natural hot spring was piped to the Warm Springs State Hospital barn and greenhouse and eventually into the domestic water supply for showers. The Montana Department of Natural Resources and Conservation (DNRC) funded a feasibility study on potential development of the geothermal resource from monies originating from coal severence taxes. The results of the feasibility study were subsequently utilized in obtaining a $721,122 award from the Department of Energy Program Opportunity Notice (PON) program to identify and develop the geothermal resource at Warm Springs. The study included environmental and legal considerations, geophysical surveys, and the subsequent development of the resource. The well produces 60 to 64 gpm of 154/sup 0/F geothermal water which is utilized in a heat exchanger to heat domestic water. The system became fully operational on January 13, 1983 and the calculated yearly energy savings represent approximately 17.6 million cubic feet of natural gas which is equivalent to $77,000, based on current prices.

Not Available

1984-01-01T23:59:59.000Z

23

Bull Trout Distribution and Abundance in the Waters on and Bordering the Warm Springs Reservation : 2002 Annual Report.  

DOE Green Energy (OSTI)

The range of bull trout (Salvelinus confluentus) in the Deschutes River basin has decreased from historic levels due to many factors including dam construction, habitat degradation, brook trout introduction and eradication efforts. While the bull trout population appears to be healthy in the Metolius River-Lake Billy Chinook system they have been largely extirpated from the upper Deschutes River (Buchanan et al. 1997). Little was known about bull trout in the lower Deschutes basin until BPA funded project No.9405400 began during 1998. In this progress report we describe the findings to date from this multi-year study aimed at determining the life history, habitat needs and limiting factors of bull trout in the lower Deschutes subbasin. Juvenile bull trout and brook trout (Salvelinus fontinalis) relative abundance has been assessed in the Warm Springs River and Shitike Creek since 1999. In the Warm Springs R. the relative densities of juvenile bull trout and brook trout were .003 fish/m{sup 2} and .001 fish/m{sup 2} respectively during 2002. These densities were the lowest recorded in the Warm Springs River during the period of study. In Shitike Cr. the relative densities of juvenile bull trout and brook trout were .025 fish/m{sup 2} and .01 fish/m{sup 2} respectively during 2002. The utility of using index reaches to monitor trends in juvenile bull trout and brook trout relative abundance in the Warm Springs R. has been assessed since 1999. During 2002 the mean relative densities of juvenile bull trout within the 2.4 km study area was higher than what was observed in four index reaches. However, the mean relative densities of brook trout was slightly higher in the index reaches than what was observed in the 2.4 km study area. Habitat use by both juvenile bull trout and brook trout was determined in the Warm Springs R. Juvenile bull trout and brook trout were most abundant in pools and glides. However pools and glides comprised less than 20% of the available habitat in the study area during 2002. Multiple-pass spawning ground surveys were conducted during late August through October in the Warm Springs R. and Shitike Cr. during 2002. One-hundred and thirteen (113) redds were enumerated in the Warm Springs R. and 204 redds were found in Shitike Cr. The number of redds enumerated in both the Warm Springs R. and Shitike Cr. were the most redds observed since surveys began in 1998. Spatial and temporal distribution in spawning within the Warm Springs R. and Shitike Cr. is discussed. Juvenile emigration has been monitored in Shitike Creek since 1996. A total of 312 juveniles were estimated to have emigrated from Shitike Cr. during the spring, 2002. Adult escapement was monitored in the Warm Springs R. and Shitike Cr. Thirty adults were recorded at the Warm Springs National Fish Hatchery weir during 2002. This was the highest number of spawning adults recorded to date. A weir equipped with an underwater video camera near the spawning grounds was operated in the Warm Springs R. Thirty-one adults were recorded at the weir in day counts. The adult trap in Shitike Cr. was unsuccessful in capturing adult bull trout during 2002 due to damage from a spring high water event. Thermographs were placed throughout Warm Springs R. and Shitike Cr. to monitor water temperatures during bull trout migration, holding and spawning/rearing periods. During 1999-2002 water temperatures ranged from 11.8-15.4 C near the mouths during adult migration; 11.4-14.6 C during pre-spawning holding; and 6.5-8.4 C during adult spawning and juvenile rearing.

Brun, Christopher V.; Dodson, Rebekah

2003-03-01T23:59:59.000Z

24

Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase  

Open Energy Info (EERE)

Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement Abstract N/A Author U.S. Geothermal Inc. Published Publisher Not Provided, 2010 Report Number N/A DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement Citation U.S. Geothermal Inc.. 2010. Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement. Boise Idaho: (!) . Report No.: N/A. Retrieved from "http://en.openei.org/w/index.php?title=Idaho_Public_Utilities_Commission_Approves_Neal_Hot_Springs_Power_Purchase_Agreement&oldid=682748"

25

Idaho Public Utilities Commission Approves Neal Hot Springs Power...  

Open Energy Info (EERE)

Number NA DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase...

26

Neal Hot Springs Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Neal Hot Springs Geothermal Power Plant Neal Hot Springs Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Neal Hot Springs Geothermal Power Plant General Information Name Neal Hot Springs Geothermal Power Plant Facility Neal Hot Springs Sector Geothermal energy Location Information Location Malheur County, Oregon Coordinates 44.02239°, -117.4631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.02239,"lon":-117.4631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

27

Power Systems Analysis ELEN4511 Spring 2013  

E-Print Network (OSTI)

infrastructure overlay: #12;Image from `Industrial Power Distribution:Introduction http://www.industrial-electricity of the communications systems overlay is to enable communication between grid nodes for Supervision, Control and Data for the Power Grid by Bukhosi Msimanga, EE `13 Abstract Before the advent of communication technology

Lavaei, Javad

28

6.334 Power Electronics, Spring 2003  

E-Print Network (OSTI)

The application of electronics to energy conversion and control; phase-controlled rectifier/inverter circuits, dc/dc converters, high-frequency inverters, and motion control systems. Characteristics of power semiconductor ...

Perreault, David John

29

Bull Trout Distribution and Abundance in the Waters on and Bordering the Warm Springs Indian Reservation, 2000 Annual Report.  

DOE Green Energy (OSTI)

The range of bull trout (Salvelinus confluentus) in the Deschutes River basin has decreased from historic levels due to many factors including dam construction, habitat degradation, brook trout introduction and eradication efforts. While the bull trout population appears to be stable in the Metolius River-Lake Billy Chinook system they have been largely extirpated from the upper Deschutes River (Buchanan et al. 1997). Little was known about bull trout in the lower Deschutes basin until BPA funded project No.9405400 began during 1998. In this progress report we describe the findings from the third year (2000) of the multi-year study aimed at determining the life history, genetics, habitat needs and limiting factors of bull trout in the lower Deschutes subbasin. Juvenile bull trout and brook trout (Salvelinus fontinalis) relative abundance was assessed in the Warm Springs River and Shitike Creek by night snorkeling. In the Warm Springs R. juvenile bull trout were slightly more numerous than brook trout, however, both were found in low densities. Relative densities of both species declined from 1999 observations. Juvenile bull trout vastly out numbered brook trout in Shitike Cr. Relative densities of juvenile bull trout increased while brook trout abundance was similar to 1999 observations in eight index reaches. The utility of using index reaches to monitor trends in juvenile bull trout and brook trout relative abundance was assessed in the Warm Springs R. for the second year. Mean relative densities of both species, within the index reaches was slightly higher than what was observed in a 2.4 km control reach. Mill Creek was surveyed for the presence of juvenile bull trout. The American Fisheries Society ''Interim protocol for determining bull trout presence'' methodology was field tested. No bull trout were found in the 2 km survey area.

Brun, Christopher

2000-01-01T23:59:59.000Z

30

Springs  

NLE Websites -- All DOE Office Websites (Extended Search)

Springs Springs Nature Bulletin No. 618 November 19, 1960 Forest Preserve District of Cook County Daniel Ryan, President Roberts Mann, Conservation Editor David H. Thompson, Senior Naturalist SPRINGS Springs -- cold, clear springs bubbling from hillsides or welling up from secret depths -- played an important part in the settlement of these United States from the Blue Ridge mountains of Virginia and the Great Smokies in Tennessee to the Ozarks of Illinois, Missouri and Arkansas. Always more plentiful in mountainous and hilly country, they were much more numerous and vigorous in those days before the great forests were cut over or destroyed. Then, most of the rainfall was retained and sank into the ground. Springs are fed by ground water. An early settler, penetrating a frontier wilderness with his family and their meager possessions, traveled and searched until he found a suitable home-site. That was determined not only by the quality of the land and what brew on it but also by the availability of water and timber. Although some preferred to dig a well, fearful that the dreaded milk sickness and "the shakes" or ague might lurk in spring water, a favorite location was near some good "strong" spring.

31

Global warming---The role for nuclear power  

SciTech Connect

Nuclear power is currently making an important contribution to our energy requirements. It provides 17% of the world's electricity today --- almost 20% in the US. Reducing the emissions of carbon dioxide over the next 30 to 50 years sufficiently to address the issue of global warming can only be accomplished by a combination of much improved energy efficiency, substantial growth in use of nuclear power, and substantial growth in use of renewable energy. This paper discusses new initiatives in the major nuclear technologies (LWR, HTGR, LMR) which are emerging from a fundamental reexamination of nuclear power in response to the challenges and opportunities in the 21st century. To fulfill its role, nuclear power must gain worldwide acceptance as a viable energy option. The use of modern technology and passive'' safety features in next-generation nuclear power plants offers the potential to simplify their design and operation, enhance their safety, and reduce the cost of electricity. With such improvements, we believe nuclear power can regain public confidence and make a significant contribution to our energy future. 24 refs., 2 figs., 1 tab.

Jones, J.E. Jr.; Fulkerson, W. (Oak Ridge National Lab., TN (USA))

1989-01-01T23:59:59.000Z

32

Lee Hot Springs power project. First topical report management plan  

Science Conference Proceedings (OSTI)

The Lee Hot Springs Project ({open_quotes}the Project{close_quotes}) will use binary cycle turbine-generators supplied by geothermal hot water to make electricity. Two clusters of three (3) 1,000 kilowatt ({open_quotes}kw{close_quotes}) projects, each cluster comprising a {open_quotes}plant,{close_quotes} will use the pumped output of one geothermal well. The plants will tie into Sierra Pacific Power Company`s ({open_quotes}Sierra`s{open_quotes}) transmission system. The Project objectives are designed to demonstrate that geothermal energy is a non-polluting, non-CO{sub 2} emitting form of generation, which if used in larger increments, will significantly reduce the emissions of greenhouse gasses. The Project will also demonstrate the use of modular, {open_quotes}non-grid{close_quotes} or {open_quotes}village{close_quotes} units which can be used throughout the world where geothermal energy is present in remote locations and power is not. The Project was conceived as a 20,000 kw Qualifying Facility, divided into two phases, a 5,000 kw phase one followed by a 15,000 kw phase two. The first phase of the Project now consists of two (2) 3,000 kw plants to generate 6,000 kws.

NONE

1996-03-18T23:59:59.000Z

33

The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : Annual Report, 2000.  

DOE Green Energy (OSTI)

The John Day is the second longest free-flowing river in the contiguous United States and the longest containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles--Oregon's third largest drainage basin--and incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the John Day River flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon and summer steelhead, red band, westslope cutthroat, and redband trout, the John Day system is truly a basin with national significance. Most all of the entire John Day basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the Basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Using funding from the Bonneville Power Administration, Bureau of Reclamation, and others, the John Day Basin Office (JDBO) subcontracts the majority of its construction implementation activities with the Grant Soil and Water Conservation District (GSWCD), also located in the town of John Day. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/review, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2000, the JDBO and GSWCD proposed continuation of a successful partnership between the two agencies and basin landowners to implement an additional six watershed conservation projects funded by the BPA. The types of projects include permanent diversions, pump stations, and return-flow cooling systems. Project costs in 2000 totaled $533,196.00 with a total amount of $354,932.00 (67%) provided by the Bonneville Power Administration and the remainder coming from other sources such as the BOR, Oregon Watershed Enhancement Board, and individual landowners.

Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

2001-03-01T23:59:59.000Z

34

The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : 2002 Annual Report.  

DOE Green Energy (OSTI)

The John Day is the nation's second longest free-flowing river in the contiguous United States and the longest containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, Oregon's fourth largest drainage basin, and incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the John Day River flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon and summer steelhead, westslope cutthroat, and redband and bull trout, the John Day system is truly a basin with national significance. The majority of the John Day basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) formed a partnership with the Grant Soil and Water Conservation District (GSWCD), also located in the town of John Day, who contracts the majority of the construction implementation activities for these projects from the JDBO. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2002, the JDBO and GSWCD proposed continuation of their successful partnership between the two agencies and basin landowners to implement an additional twelve (12) watershed conservation projects. The types of projects include off channel water developments, riparian fencing, juniper control, permanent diversions, pump stations, infiltration galleries and return-flow cooling systems. Project costs in 2002 totaled $423,198.00 with a total amount of $345,752.00 (81%) provided by the Bonneville Power Administration (BPA) and the remainder coming from other sources such as the Bureau of Reclamation (BOR), Oregon Watershed Enhancement Board, the U.S. Fish & Wildlife Service Partners in Wildlife Program and individual landowners.

Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

2003-06-30T23:59:59.000Z

35

The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : 2003 Annual Report.  

DOE Green Energy (OSTI)

The John Day is the nation's second longest free-flowing river in the contiguous United States and the longest containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, Oregon's fourth largest drainage basin, and incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the John Day River flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon and summer steelhead, westslope cutthroat, and redband and bull trout, the John Day system is truly a basin with national significance. The majority of the John Day basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) formed a partnership with the Grant Soil and Water Conservation District (GSWCD), which contracts the majority of the construction implementation activities for these projects from the JDBO. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2003, the JDBO and GSWCD proposed continuation of their successful partnership between the two agencies and basin landowners to implement an additional twelve (12) watershed conservation projects. The types of projects include off channel water developments, juniper control, permanent diversions, pump stations, and return-flow cooling systems. Due to funding issues and delays, permitting delays, fire closures and landowner contracting problems, 2 projects were canceled and 7 projects were rescheduled to the 2004 construction season. Project costs in 2003 totaled $115,554.00 with a total amount of $64,981.00 (56%) provided by the Bonneville Power Administration (BPA) and the remainder coming from other sources such as the Bureau of Reclamation (BOR), Oregon Watershed Enhancement Board, the U.S. Fish & Wildlife Service Partners in Wildlife Program and individual landowners.

Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

2004-02-27T23:59:59.000Z

36

The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : Annual Report, 2001.  

DOE Green Energy (OSTI)

The John Day River is the nation's second longest free-flowing river in the contiguous United States, which is entirely unsupplemented for it's runs of anadromous fish. Located in eastern Oregon, the John Day Basin drains over 8,000 square miles, is Oregon's fourth largest drainage basin, and the basin incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the mainstem John Day River flows 284 miles in a northwesterly direction entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon, summer steelhead, westslope cutthroat, and redband and bull trout, the John Day system is truly a basin with national significance. The Majority of the John Day Basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in John Day to coordinate basin restoration projects, monitoring, planning, and other watershed restoration activities on private and public lands. Once established, the John Day Basin Office (JDBO) formed a partnership with the Grant Soil and Water Conservation District (GSWCD), also located in John Day, who subcontracts the majority of the construction implementation activities for these restoration projects from the JDBO. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2001, the JDBO and GSWCD continued their successful partnership between the two agencies and basin landowners to implement an additional ten (10) watershed conservation projects. The project types include permanent lay flat diversions, pump stations, and return-flow cooling systems. Project costs in 2001 totaled $572,766.00 with $361,966.00 (67%) provided by the Bonneville Power Administration (BPA) and the remainder coming from other sources, such as the Bureau of Reclamation (BOR), Oregon Watershed Enhancement Board (OWEB), and individual landowners.

Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

2002-12-01T23:59:59.000Z

37

Two of Three Power Plant Modules at Neal Hot Springs Are Producing...  

Open Energy Info (EERE)

Number NA DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Two of Three Power Plant Modules at Neal Hot Springs Are Producing up to...

38

Variable gas spring for matching power output from FPSE to load of refrigerant compressor  

DOE Patents (OSTI)

The power output of a free piston Stirling engine is matched to a gas compressor which it drives and its stroke amplitude is made relatively constant as a function of power by connecting a gas spring to the drive linkage from the engine to the compressor. The gas spring is connected to the compressor through a passageway in which a valve is interposed. The valve is linked to the drive linkage so it is opened when the stroke amplitude exceeds a selected limit. This allows compressed gas to enter the spring, increase its spring constant, thus opposing stroke increase and reducing the phase lead of the displacer ahead of the piston to reduce power output and match it to a reduced load power demand. 6 figs.

Chen, G.; Beale, W.T.

1990-04-03T23:59:59.000Z

39

Variable gas spring for matching power output from FPSE to load of refrigerant compressor  

DOE Patents (OSTI)

The power output of a free piston Stirling engine is matched to a gas compressor which it drives and its stroke amplitude is made relatively constant as a function of power by connecting a gas spring to the drive linkage from the engine to the compressor. The gas spring is connected to the compressor through a passageway in which a valve is interposed. The valve is linked to the drive linkage so it is opened when the stroke amplitude exceeds a selected limit. This allows compressed gas to enter the spring, increase its spring constant, thus opposing stroke increase and reducing the phase lead of the displacer ahead of the piston to reduce power output and match it to a reduced load power demand.

Chen, Gong (Athens, OH); Beale, William T. (Athens, OH)

1990-01-01T23:59:59.000Z

40

Warm weather, low natural gas prices hold down wholesale power ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... Northeastern and Midwestern wholesale power prices typically are linked closely to ... raising the spot market prices for ...

Note: This page contains sample records for the topic "warm springs power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Two of Three Power Plant Modules at Neal Hot Springs Are Producing up to  

Open Energy Info (EERE)

of Three Power Plant Modules at Neal Hot Springs Are Producing up to of Three Power Plant Modules at Neal Hot Springs Are Producing up to 16.8 Megawatts Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Two of Three Power Plant Modules at Neal Hot Springs Are Producing up to 16.8 Megawatts Abstract N/A Author U.S. Geothermal Inc. Published Publisher Not Provided, 2012 Report Number N/A DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Two of Three Power Plant Modules at Neal Hot Springs Are Producing up to 16.8 Megawatts Citation U.S. Geothermal Inc.. 2012. Two of Three Power Plant Modules at Neal Hot Springs Are Producing up to 16.8 Megawatts. Boise Idaho: (!) . Report No.: N/A. Retrieved from "http://en.openei.org/w/index.php?title=Two_of_Three_Power_Plant_Modules_at_Neal_Hot_Springs_Are_Producing_up_to_16.8_Megawatts&oldid=682768"

42

EA-1002: Bonneville Power Administration's Hot Springs- Garrison...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

This EA evaluates the environmental impacts of the U.S. Department of Energy's Bonneville Power Administration's proposal to upgrade its operational telecommunications system...

43

Peter Cruz and Gaetan Georges Power Systems Analysis, E4511 Spring 2013  

E-Print Network (OSTI)

under the U.S. Department of Energy responsible for the collection, analysis and propagation of energy, and wind, to list a few) to extract mechanical energy and convert it to #12;2 electrical energy. Increasing1 Peter Cruz and Gaetan Georges Power Systems Analysis, E4511 Spring 2013 A survey of wind

Lavaei, Javad

44

Hood River Fish Habitat Project; Confederated Tribes of the Warm Springs Reservation of Oregon, Annual Report 2001-2002.  

DOE Green Energy (OSTI)

This report summarizes the project implementation and monitoring of all habitat activities that occurred over Fiscal Year 2002 (FY 02). Some of the objectives in the corresponding statement of work for this contract were not completed within FY 02. A description of the progress during FY 02 and reasoning for deviation from the original tasks and timeline are given. OBJECTIVE 1--Provide coordination of all activities, administrative oversight and assist in project implementation and monitoring activities. Administration oversight and coordination of the habitat statement of work, budget, subcontracts and personnel was provided. OBJECTIVE 2--Develop, coordinate, and implement the Hood River Fish Habitat Protection, Restoration, and Monitoring Plan. The Hood River Fish Habitat Protection, Restoration, and Monitoring Plan was completed in 2000 (Coccoli et al., 2000). This document is utilized for many purposes including: drafting the Watershed Action Plan, ranking projects for funding, and prioritizing projects to target in the future. This document was updated and revised to reflect changes to fish habitat and needs in the Hood River basin based upon other documents and actions taken in the basin. OBJECTIVE 3--Assist Middle Fork Irrigation District in developing an alternative irrigation water source on Evans Creek (Hutson pond and Evans Creek diversion), eliminating the need for irrigation diversion dams which happen to be partial fish barriers. Upon completion, this project will restore 2.5 miles of access for winter steelhead, coho salmon, and resident trout habitat. This objective was revised and included in the FY 03 Statement of Work for Project No. 1998-021-00. During FY 02 the final engineering was completed on this project. However, due to a lengthy permitting process and NMFS consultation, this project was inadvertently delayed. Project completion is expected in July 2003. OBJECTIVE 4--Assist the Farmers Irrigation District (FID) in construction and installation of a new fish screen and bypass system on the mainstem Hood River (Farmers Canal). Final engineering and design for the horizontal screen was completed during the winter of 2001. In December 2001 and January 2002, the concrete work was completed and the head gates were mounted. During the spring the secondary head level control gates were installed. In September 2002, the jersey barriers and vortex tubes were installed. These are located upstream of the old drum screen, and are the primary means of dealing with bedload and suspended load from the diversion. The screen surface was also installed in September 2002 and the system accommodated water soon after. Monitoring of these structures in regards to efficiency and possible effects to fish migration is scheduled to occur in spring 2003. The transition from the old canal to the new screen is smooth and currently does not present any problems. The old drum screen is going to remain in place until all the biological and hydrological monitoring is complete to ensure compliance and satisfaction of all agencies involved. OBJECTIVE 5--Assist the East Fork Irrigation District (EFID) in final engineering design and construction of the Central Lateral Canal upgrade and invert siphon. This objective was revised and included in the FY 03 Statement of Work for Project No. 1998-021-00. During FY 02, a significant portion of the engineering and design work was completed on the EFID Central Lateral Canal upgrade and invert siphon. There were some changes in canal alignment that required further design work and easement acquisition. Time was also spent looking for matching funds and securing a loan by the EFID. Construction initiation is now scheduled for summer 2003. OBJECTIVE 6--Modify and/or eliminate five culverts, three on Baldwin Creek, one on Graham Creek, and one on Evans Creek, which function as barriers to upstream and downstream fish migration. This objective was revised and included in the FY 03 Statement of Work for Project No. 1998-021-00. There are only two culverts on Baldwin Creek that will be eliminated

Vaivoda, Alexis

2003-11-01T23:59:59.000Z

45

Big Spring Wind Power Project First-Year Operating Experience: 1999-2000: U.S. Department of Energy-EPRI Wind Turbine Verification P rogram  

Science Conference Proceedings (OSTI)

The 34-MW Big Spring wind power plant is sited on elevated tabletop mesas near Big Spring, Texas. Under a power purchase agreement between the project owner and operator, York Research Corporation (York), and TXU Electric and Gas (TXU), York will supply wind energy to TXU for 15 years. This report describes Big Spring's first-year operating experience. The lessons learned in the project will be valuable to other utilities and wind power developers planning similar wind power projects, especially those lo...

2000-12-18T23:59:59.000Z

46

Feasibility assessment: Lake Frances power generation facilities for the city of Siloam Springs, Arkansas  

DOE Green Energy (OSTI)

The feasibility of developing the power potential of the Illinois River at the Lake Frances Dam for utilization by the city of Siloam Springs, Arkansas, was studied. It was found that the average annual power production potential of this site is 3.8 MWh; the cost saving produced by the proposed hydropower project will not support any remedial rehabilitation costs of the entire dam structure; development and operation of this hydropower project would save nonrenewal types of energy; if the capital cost can be fixed at present day prices, the development will become economically feasible when electric costs increase by 43%; and there will be no significant adverse environmental impact resulting from either the construction or operation of the hydropower facilities. It was concluded that the hydropower facilities should be constructed, owned and operated by the city of Siloam Springs, provided the dam safety can be assured and sources of funding can be made available so that the annual costs will not exceed the annual savings. (LCL)

None

1979-04-01T23:59:59.000Z

47

The 1986 North Palm Springs Earthquake: Effects on power facilities: Final report  

SciTech Connect

The North Palm Springs Earthquake of July 8, 1986, was centered near a large electrical substation. Strong motion records were taken on the substation site and at several other locations in the epicentral area. The recorded peak ground accelerations of 0.97g (north-south), 0.48g (vertical), and 0.72g (east-west) are the highest ever measured at a major electric power facilty. Earthquake damage in the ceramic components of switchyard equipment ranged from moderate to extensive, depending on the design of the equipment. Anchorage of heavy switchyard equipment such as transformers and reactors deformed, and in one instance failed in bolt shearing. Control and instrumentation systems at the substation, and at nearby power generation facilities, were undamaged by the earthquake. 5 refs., 42 figs., 12 tabs.

Swan, S.; Hadjian, A.H.

1988-01-01T23:59:59.000Z

48

Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.  

DOE Green Energy (OSTI)

Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in volcanic settings.

Goranson, Colin

2005-03-01T23:59:59.000Z

49

Spring Frogs  

NLE Websites -- All DOE Office Websites (Extended Search)

Frogs Frogs Nature Bulletin No. 6 March 17, 1945 Forest Preserve District of Cook County Clayton F. Smith, President Dr. David H. Thompson, Zoologist SPRING FROGS The CRICKET FROG and the SPRING PEEPER are among the first of the winter sleepers to come out of hibernation and greet the new year, On March 10, a few were found at McGinnis Slough, near Orland Park, where the sun had melted the ice and warmed the water along the shore. A week later the ice was all gone and they were singing in full chorus. If it freezes again, they will crawl back under the logs, leaves and trash where they spent the winter. Both of these frogs are tiny -- about the size of a lima bean. The cricket frog has a rough skin and a dark triangle between the eyes. The spring peeper' s skin is smooth with a large dark-colored X on the back. The male frog does all the singing, blowing up the loose skin at his throat into a small balloon to serve as an amplifier. The cricket frog gets its name from the song of the male, which is a rapid series of staccato chirps -- as sharp as a note struck on a xylophone. The spring peeper's voice is a drawn-out "pe-e-e-ep", sounding like that of a cold hungry baby chick.

50

Nuclear power plant outages above seasonal norm in spring of 2011 ...  

U.S. Energy Information Administration (EIA)

Like most electric generators, nuclear reactor operators typically schedule maintenance in the spring and the fall to help ensure that the reactors are available to ...

51

Long-Term Variation of the Principal Mode of Boreal Spring Hadley Circulation Linked to SST over the Indo-Pacific Warm Pool  

Science Conference Proceedings (OSTI)

The variability of the boreal spring [MarchMay (MAM)] Hadley circulation (HC) is investigated, focusing on the long-term variation of the first principal mode for 19512008, which is an equatorially asymmetric mode (AM) with the rising branch ...

Juan Feng; Jianping Li; Fei Xie

2013-01-01T23:59:59.000Z

52

Big Spring Wind Power Project Third- Through Fifth-Year Operating Experience: 2001-2004: U.S. Department of Energy-EPRI Wind Turbine Verification Program  

Science Conference Proceedings (OSTI)

This report describes the third-, fourth-, and fifth-year operating experience at the 34-MW Big Spring Wind Power Plant near Big Spring, Texas. The project consists of 42 Vestas V47 wind turbines installed on 65-m (213-ft) towers and four Vestas V66 wind turbines installed on 80-m (262-ft) towers. Lessons learned in the project will be valuable to other utilities and wind power developers planning similar wind power projects.

2004-10-25T23:59:59.000Z

53

Big Spring Wind Power Project Second-Year Operating Experience: 2000-2001: U.S. Department of Energy - EPRI Wind Turbine Verificatio n Program  

Science Conference Proceedings (OSTI)

This report describes second-year operating experience at the 34 MW Big Spring Wind Power Plant near Big Spring, Texas. The project consists of 42 Vestas V47 wind turbines installed on 65-meter (213-foot) towers and 4 Vestas V66 wind turbines installed on 80-meter (262-foot) towers. The lessons learned in the project will be valuable to other utilities and wind power developers planning similar wind power projects.

2001-12-06T23:59:59.000Z

54

Modeling of electromagnetic power output in a vibration-induced micro-generator with a silicon-based helical micro-spring  

Science Conference Proceedings (OSTI)

This paper develops an electromagnetic power output model in a vibration-induced micro-generator with a silicon helical micro-spring to predict the electricity output. The generator consists of a movable ferro-platinum permanent magnet membrane on the ... Keywords: Analytical model, Electromagnetic, Helical micro-spring, Micro-generator, Vibration-induced

W. L. Lu; Y. M. Hwang

2011-02-01T23:59:59.000Z

55

Hot Springs | Open Energy Information  

Open Energy Info (EERE)

Springs Springs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hot Springs Dictionary.png Hot Springs: A naturally occurring spring of hot water, heated by geothermal processes in the subsurface, and typically having a temperature greater than 37°C. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Mammoth Hot Springs at Yellowstone National Park (reference: http://www.hsd3.org/HighSchool/Teachers/MATTIXS/Mattix%20homepage/studentwork/Laura%20Cornelisse%27s%20Web%20Page/Yellowstone%20National%20Park.htm) Hot springs occur where geothermally heated waters naturally flow out of the surface of the Earth. Hot springs may deposit minerals and spectacular

56

The Heat Balance of the Western Hemisphere Warm Pool  

Science Conference Proceedings (OSTI)

The thermodynamic development of the Western Hemisphere warm pool and its four geographic subregions are analyzed. The subregional warm pools of the eastern North Pacific and equatorial Atlantic are best developed in the boreal spring, while in ...

David B. Enfield; Sang-ki Lee

2005-07-01T23:59:59.000Z

57

NOAA Predicts Mixed Bag of Drought, Flooding and Warm Weather...  

NLE Websites -- All DOE Office Websites (Extended Search)

NOAA Predicts Mixed Bag of Drought, Flooding and Warm Weather for Spring Print E-mail NOAA 2013 Spring Outlook Map Thursday, March 21, 2013 Featured by NOAA, a member of the U.S....

58

6.061 / 6.690 Introduction to Electric Power Systems, Spring 2007  

E-Print Network (OSTI)

This course is an introductory subject in the field of electric power systems and electrical to mechanical energy conversion. Electric power has become increasingly important as a way of transmitting and transforming energy ...

Kirtley, James

59

Microsoft PowerPoint - IntroAgenda_Annex_22_Spring_2011_final.ppt [Compatibility Mode]  

NLE Websites -- All DOE Office Websites (Extended Search)

Annex 22 Annex 22 Collaborative Research on Polymer Electrolyte Fuel Cells Spring 2011 Workshop Graz University of Technology, Austria July 4-5, 2011 Welcome! U. S. Department of Energy / Argonne National Laboratory International Energy Agency (IEA) Implementing Agreement on Advanced Fuel Cells (AFC) * Established in 1990 as part of an international energy technology collaboration, duration of each implementing agreement is 3-5 years * Current implementing agreement: Duration Jan. 2009 - Jan. 2014 * Signatories: Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Italy, Japan, Korea, Mexico, Netherlands, Norway, Sweden, Switzerland, Turkey, United States - The program continues to actively encourage new participants * Aim of IEA-AFC - Advance the state of understanding in the field of advanced fuel cells

60

EA-1002: Bonneville Power Administration's Hot Springs- Garrison Fiber Optic Project, Montana  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts of the U.S. Department of Energy's Bonneville Power Administration's proposal to upgrade its operational telecommunications system between the Hot...

Note: This page contains sample records for the topic "warm springs power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Warm or Steaming Ground | Open Energy Information  

Open Energy Info (EERE)

Warm or Steaming Ground Warm or Steaming Ground Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Warm or Steaming Ground Dictionary.png Warm or Steaming Ground: An area where geothermal heat is conducted to the earth's surface, warming the ground and sometimes causing steam to form when water is present. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Steam rising from the ground at Eldvorp, a 10 km row of craters, in Southwestern Iceland. http://www.visiticeland.com/SearchResults/Attraction/eldvorp Warm or steaming ground is often an indicator of a geothermal system beneath the surface. In some cases a geothermal system may not show any

62

Spring and Summer Energy-Saving Tips | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring and Summer Energy-Saving Tips Spring and Summer Energy-Saving Tips Spring and Summer Energy-Saving Tips May 30, 2012 - 1:21pm Addthis Simple and inexpensive actions can help you save energy and money during the warm spring and summer months. | Photo courtesy of iStockphoto.com/eyedias. Simple and inexpensive actions can help you save energy and money during the warm spring and summer months. | Photo courtesy of iStockphoto.com/eyedias. Here you'll find strategies to help you save energy during the spring and summer when the weather is warm and you are trying to keep your home cool. Some of the tips below are free and can be used on a daily basis to increase your savings; others are simple and inexpensive actions you can take to ensure maximum savings through the spring and summer. If you haven't already, conduct an energy assessment to find out where you

63

Spring and Summer Energy-Saving Tips | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring and Summer Energy-Saving Tips Spring and Summer Energy-Saving Tips Spring and Summer Energy-Saving Tips May 30, 2012 - 1:21pm Addthis Simple and inexpensive actions can help you save energy and money during the warm spring and summer months. | Photo courtesy of iStockphoto.com/eyedias. Simple and inexpensive actions can help you save energy and money during the warm spring and summer months. | Photo courtesy of iStockphoto.com/eyedias. Here you'll find strategies to help you save energy during the spring and summer when the weather is warm and you are trying to keep your home cool. Some of the tips below are free and can be used on a daily basis to increase your savings; others are simple and inexpensive actions you can take to ensure maximum savings through the spring and summer. If you haven't already, conduct an energy assessment to find out where you

64

EPRI Journal, Spring 2013  

Science Conference Proceedings (OSTI)

The EPRI Journal is the flagship publication of the Electric Power Research Institute. The Spring 2013 issue (3002000916) includes a cover story on customer resilience, as well as features on CoSeq sequestration resin for accelerating cleanup of nuclear power plant coolant, TERESA and fine particles in the real world, mitigating the effects of cycling on environmental control equipment, and opportunities presented by a smarter grid and its growing data streams.

2013-05-13T23:59:59.000Z

65

Incorporating global warming risks in power sector planning: A case study of the New England region. Volume 2, Appendices  

DOE Green Energy (OSTI)

The following topics are described in reference to electric power production in New England: Fuel Prices; Emission Factors and Externality Surcharges; Cost and Potential of Demand-Site Efficiency Improvements; Fuel Switching; Conventional Utility Generation; Gas Supply Constraints; Cogeneration Potential; Biomass Resources; Potential Power Production from Municipal Solid Waste; and Wind Resource Potential.

Krause, F.; Busch, J.; Koomey, J.

1992-11-01T23:59:59.000Z

66

Beppu hot springs  

SciTech Connect

Beppu is one of the largest hot springs resorts in Japan. There are numerous fumaroles and hot springs scattered on a fan-shaped area, extending 5 km (3.1 miles) from east to west and 8 km (5.0 miles) from north to south. Some of the thermal manifestations are called {open_quotes}Jigoku (Hells){close_quotes}, and are of interest to visitors. The total amount of discharged hot springs water is estimated to be 50,000 ton/day (9,200 gpm) indicating a huge geothermal system. The biggest hotel in Beppu (Suginoi Hotel) installed a 3-MW geothermal power plant in 1981 to generate electricity for its own private use.

Taguchi, Schihiro [Fukuoka Univ. (Japan); Itoi, Ryuichi [Kyushu Univ., Kasuga (Japan); Yusa, Yuki [Kyoto Univ., Beppu (Japan)

1996-05-01T23:59:59.000Z

67

Site-specific analysis of hybrid geothermal/fossil power plants. Volume One. Roosevelt Hot Springs KGRA  

DOE Green Energy (OSTI)

The economics of a particular hybrid plant must be evaluated with respect to a specific site. This volume focuses on the Roosevelt Hot Springs KGRA. The temperature, pressure, and flow rate data given suggests the site deserves serious consideration for a hybrid plant. Key siting considerations which must be addressed before an economic judgment can be attempted are presented as follows: the availability, quality, and cost of coal; the availability of water; and the availability of transmission. Seismological and climate factors are presented. (MHR)

Not Available

1977-06-01T23:59:59.000Z

68

Microsoft PowerPoint - Pt_degradation_Annex_22_Spring_2011_XW_final.ppt [Compatibility Mode]  

NLE Websites -- All DOE Office Websites (Extended Search)

Limitations: Limitations: The Role of Electrocatalyst Degradation Xiaoping Wang, Debbie Myers, Nancy Kariuki, Ramachandran Subbaraman, Rajesh Ahluwalia, and Xiaohua Wang Argonne National Laboratory IEA Annex 22 Spring Workshop Graz University of Technology Graz, Austria July 4-5, 2011 The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the

69

22.314J / 1.56J / 2.084J Structural Mechanics in Nuclear Power Technology, Spring 2004  

E-Print Network (OSTI)

Structural components in nuclear power plant systems, their functional purposes, operating conditions, and mechanical-structural design requirements. Combines mechanics techniques with models of material behavior to determine ...

Kazimi, Mujid S.

70

Spring Walks  

NLE Websites -- All DOE Office Websites (Extended Search)

Walks Walks Nature Bulletin No. 111 April 12, 1947 Forest Preserve District of Cook County William N. Erickson, President Roberts Mann, Supt. of Conservation SPRING WALKS Spring is here. Get out into the forest preserves and enjoy it. Wild ducks are stopping on their northward night to rest and feed in the ponds and sloughs. You will hear the shrill singing of the spring peeper and cricket frogs. The robins, bluebirds, meadow larks, flickers and redwing blackbirds are here, and every day new birds appear. By the middle of April, some of the early wildflowers should be blooming on sunny slopes; by May the woodlands will be carpeted with blossoms. Wear stout walking shoes and heavy socks without holes or wrinkles. Wear old clothing but not too much, the outer garments preferably of hard smooth cloth, such as khaki or denim, that last year's burs and weed seeds can't cling to. Don't load yourself with equipment. Travel light. If you have a small knapsack, all right.

71

Incorporating global warming risks in power sector planning: A case study of the New England region. Volume 1  

SciTech Connect

Growing international concern over the threat of global climate change has led to proposals to buy insurance against this threat by reducing emissions of carbon (short for carbon dioxide) and other greenhouse gases below current levels. Concern over these and other, non-climatic environmental effects of electricity generation has led a number of states to adopt or explore new mechanisms for incorporating environmental externalities in utility resource planning. For example, the New York and Massachusetts utility commissions have adopted monetized surcharges (or adders) to induce emission reductions of federally regulated air pollutants (notably, SO{sub 2}, NO{sub x}, and particulates) beyond federally mandated levels. These regulations also include preliminary estimates of the cost of reducing carbon emissions, for which no federal regulations exist at this time. Within New England, regulators and utilities have also held several workshops and meetings to discuss alternative methods of incorporating externalities as well as the feasibility of regional approaches. This study examines the potential for reduced carbon emissions in the New England power sector as well as the cost and rate impacts of two policy approaches: environmental externality surcharges and a target- based approach. We analyze the following questions: Does New England have sufficient low-carbon resources to achieve significant reductions (10% to 20% below current levels) in fossil carbon emissions in its utility sector? What reductions could be achieved at a maximum? What is the expected cost of carbon reductions as a function of the reduction goal? How would carbon reduction strategies affect electricity rates? How effective are environmental externality cost surcharges as an instrument in bringing about carbon reductions? To what extent could the minimization of total electricity costs alone result in carbon reductions relative to conventional resource plans?

Krause, F.; Busch, J.; Koomey, J.

1992-11-01T23:59:59.000Z

72

Geochemistry And Geothermometry Of Spring Water From The Blackfoot  

Open Energy Info (EERE)

Geothermometry Of Spring Water From The Blackfoot Geothermometry Of Spring Water From The Blackfoot Reservoir Region, Southeastern Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geochemistry And Geothermometry Of Spring Water From The Blackfoot Reservoir Region, Southeastern Idaho Details Activities (3) Areas (1) Regions (0) Abstract: The Blackfoot Reservoir region in southeastern Idaho is recognized as a potential geothermal area because of the presence of several young rhyolite domes (50,000 years old), Quaternary basalt flows, and warm springs. North- to northwest-trending high-angle normal faults of Tertiary to Holocene age appear to be the dominant structural control of spring activity. Surface spring-water temperatures average 14°C except for a group of springs west of the Reservoir Mountains which average 33°C.

73

Hydrology and geochemistry of thermal springs of the appalachians  

DOE Green Energy (OSTI)

Thermal springs in nine areas in the Appalachians from Georgia to New York were studied in 1975 and 1976 using satellite imagery, local well and spring data, and results of current and early studies by other investigators. All the springs investigated discharge from folded and faulted sandstone or carbonate rocks in valley areas. Where geologic structure is relatively uncomplicated, ground water discharging from thermal springs probably has circulated to great depths roughly parallel to the strike of the bedding and has moved upward rapidly where a fault or faults cross the bedding. Hydrologic and chemical data suggest that most of the water discharging from warm springs in the Devonian Oriskany Sandstone is derived from recharge entering and circulating through that formation. The discharge at springs where temperature fluctuates very little is primarily water from deep circulation. The discharge at springs where temperature fluctuates widely is warm water mixed with variable proportions of shallow-circulating cool water. Observed temperatures of the warm springs range from 18/sup 0/ to 41/sup 0/C; the highest chemical thermometer temperature is 84/sup 0/C. Agreement among observed, chalcedony, and cation temperatures of the warmest springs suggests reservoir temperatures of 30/sup 0/ to 50/sup 0/C. Dissolved helium, arsenic, potassium, and delta/sup 18/O are considered as geothermal indicators. Tritium analyses are used to calculate fractions of old and modern components of mixed waters. Computer calculations of carbonate saturation indices show (1) considerable undersaturation in silica-rock warm spring waters and (2) carbonate equilibrium in the limestone and dolomite thermal waters. Better values of saturation indices are obtained when analyzed carbon dioxide rather than field pH is used in the computer input data. A method is described for adjusting delta/sup 13/C to correct for carbon dioxide outgassing from water samples.

Hobba, W.A. Jr.; Fisher, D.W.; Pearson, F.J. Jr.; Chemerys, J.C.

1979-01-01T23:59:59.000Z

74

Thermal springs of Wyoming  

SciTech Connect

This bulletin attempts, first, to provide a comprehensive inventory of the thermal springs of Wyoming; second, to explore the geologic and hydrologic factors producing these springs; and, third, to analyze the springs collectively as an indicator of the geothermal resources of the state. A general discussion of the state's geology and the mechanisms of thermal spring production, along with a brief comparison of Wyoming's springs with worldwide thermal features are included. A discussion of geothermal energy resources, a guide for visitors, and an analysis of the flora of Wyoming's springs follow the spring inventory. The listing and analysis of Wyoming's thermal springs are arranged alphabetically by county. Tabulated data are given on elevation, ownership, access, water temperature, and flow rate. Each spring system is described and its history, general characteristics and uses, geology, hydrology, and chemistry are discussed. (MHR)

Breckenridge, R.M.; Hinckley, B.S.

1978-01-01T23:59:59.000Z

75

Thermal springs of Wyoming  

DOE Green Energy (OSTI)

This bulletin attempts, first, to provide a comprehensive inventory of the thermal springs of Wyoming; second, to explore the geologic and hydrologic factors producing these springs; and, third, to analyze the springs collectively as an indicator of the geothermal resources of the state. A general discussion of the state's geology and the mechanisms of thermal spring production, along with a brief comparison of Wyoming's springs with worldwide thermal features are included. A discussion of geothermal energy resources, a guide for visitors, and an analysis of the flora of Wyoming's springs follow the spring inventory. The listing and analysis of Wyoming's thermal springs are arranged alphabetically by county. Tabulated data are given on elevation, ownership, access, water temperature, and flow rate. Each spring system is described and its history, general characteristics and uses, geology, hydrology, and chemistry are discussed. (MHR)

Breckenridge, R.M.; Hinckley, B.S.

1978-01-01T23:59:59.000Z

76

American Coal Council 2004 Spring Coal Forum  

NLE Websites -- All DOE Office Websites (Extended Search)

American Coal Council American Coal Council 2004 Spring Coal Forum Dallas, Texas May 17-19, 2004 Thomas J. Feeley, III Technology Manager National Energy Technology Laboratory ACC Spring Coal Forum, 2004 Presentation Outline * Background * Power plant-water issues * DOE/NETL R&D program * Conclusion/future plans ACC Spring Coal Forum, 2004 Global Water Availability Ocean 97% Fresh Water 2.5% 0 20 40 60 80 100 Ice Groundwater Lakes and Rivers ACC Spring Coal Forum, 2004 Three Things Power Plants Require 1) Access to transmission lines 2) Available fuel, e.g., coal or natural gas 3) Water ACC Spring Coal Forum, 2004 Freshwater Withdrawals and Consumption Mgal / Day Irrigation 81,300 Irrigation 81,300 Thermoelectric 3,310 Consumption Sources: "Estimated Use of Water in the United States in 1995," USGS Circular 1200, 1998

77

Geophysical investigation of the Warm Springs, Montana area  

DOE Green Energy (OSTI)

The location, geology, and previous work in the area are described briefly. The gravity and resistivity survey methods are presented and the results are discussed. (MHR)

Halvorson, J.W.; Wideman, C.J.

1979-12-01T23:59:59.000Z

78

Macho Springs Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Macho Springs Wind Farm Macho Springs Wind Farm Jump to: navigation, search Name Macho Springs Wind Farm Facility Macho Springs Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Owner Element Power Developer Element Power Energy Purchaser American Electric Power Location Luna County NM Coordinates 32.573639°, -107.456399° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.573639,"lon":-107.456399,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

79

Global Warming, Soot, Ice  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Warming, Soot, Ice Speaker(s): James Hansen Date: November 7, 2003 - 12:00pm Location: 90-3122 Irreversible "dangerous anthropogenic interference" with the climate system...

80

Coil spring venting arrangement  

DOE Patents (OSTI)

A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed.

McCugh, R.M.

1975-10-21T23:59:59.000Z

Note: This page contains sample records for the topic "warm springs power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Preliminary geothermal investigations at Manley Hot Springs, Alaska  

DOE Green Energy (OSTI)

Manley Hot Springs is one of several hot springs which form a belt extending from the Seward Peninsula to east-central Alaska. All of the hot springs are low-temperature, water-dominated geothermal systems, having formed as the result of circulation of meteoric water along deepseated fractures near or within granitic intrusives. Shallow, thermally disturbed ground at Manley Hot Springs constitutes an area of 1.2 km by 0.6 km along the lower slopes of Bean Ridge on the north side of the Tanana Valley. This area includes 32 springs and seeps and one warm (29.1/sup 0/C) well. The hottest springs range in temperature from 61/sup 0/ to 47/sup 0/C and are presently utilized for space heating and irrigation. This study was designed to characterize the geothermal system present at Manley Hot Springs and delineate likely sites for geothermal drilling. Several surveys were conducted over a grid system which included shallow ground temperature, helium soil gas, mercury soil and resistivity surveys. In addition, a reconnaissance ground temperature survey and water chemistry sampling program was undertaken. The preliminary results, including some preliminary water chemistry, show that shallow hydrothermal activity can be delineated by many of the surveys. Three localities are targeted as likely geothermal well sites, and a model is proposed for the geothermal system at Manley Hot Springs.

East, J.

1982-04-01T23:59:59.000Z

82

Warm Gas Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Warm Gas Cleanup Warm Gas Cleanup NETL Office of Research and Development Project Number: FWP-2012.03.03 Task 5 Project Description The Environmental Protection Agency (EPA) has established strict regulations for the trace contaminant emissions from integrated gasification combined cycle (IGCC) systems. The Department of Energy (DOE) performance goals for trace contaminant removal were selected to meet or exceed EPA's standard limits for contaminants, as well as to avoid poisoning of: the catalysts utilized in making liquids from fuel gas the electrodes in fuel cells selective catalytic reduction (SCR) catalysts The objective of the NETL's ORD Warm Gas Cleanup project is to assist in achieving both DOE and EPA targets for trace contaminant capture from coal gasification, while preserving the high thermal efficiency of the IGCC system. To achieve this, both lab and pilot-scale research is underway to develop sorbents capable of removing the following contaminants from high temperature syngas (up to 550°F):

83

Wessington Springs Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wessington Springs Wind Farm Wessington Springs Wind Farm Facility Wessington Springs Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown Developer Babcock & Brown Energy Purchaser Heartland Consumers Power District Location Southwest of Wessington Springs SD Coordinates 43.947387°, -98.657427° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.947387,"lon":-98.657427,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

84

Warm Water Mass Formation  

Science Conference Proceedings (OSTI)

Poleward heat transport by the own implies warm Water mass formation, i.e., the retention by the tropical and subtropical ocean of some of its net radiant heat gain. Under what condition net heat retention becomes comparable to latent heat ...

G. T. Csanady

1984-02-01T23:59:59.000Z

85

The Leo Archipelago: A System of Earth-Rings for Communications, Mass-Transport to Space, Solar Power, and Control of Global Warming  

E-Print Network (OSTI)

A multi-purpose low-earth-orbit system of rings circling the earth - the "LEO ARCHIPELAGO" - is proposed as a means of solving or bypassing many major problems hindering man's quest to get into space. A fiber-optic ring about the earth would be an initial testing and developmental stage for the ring systems, while providing cash-flow through a LEO-based, high-band-width, world-wide communication system. A Low-Earth-Orbit-based space-elevator system, "Sling-on-a-Ring," is proposed as the crucial developmental stage of the LEO Archipelago. Being a LEO-based heavy-mass lifter, rather than earth- or GEO-based, it is much less massive and therefore less costly than other proposed space-elevators. With the advent of lower-cost, higher-mass transport to orbit, the options for further space development (e.g., communications, space solar power, radiation dampers, sun shades, and permanent LEO habitation) are greatly expanded. This paper provides an update of the Sling-on-a-Ring concept in terms of new materials, potential applications, and trade-offs associated with an earlier model. The impact of Colossal Carbon Tubes, CCT, a material with high tensile strength, extremely-low density, and other favorable properties and new technologies (e.g., solar-powered lasers, power beaming to near-space and earth, and thermal-control systems) on the development of associated LEO-Ring systems (e.g., "Solar-Shade Rings" and "Power Rings") is also explored. The material's effect on the timeline for the system development indicates the feasibility of near-term implementation of the system (possibly within the decade). The Sling-on-a-Ring can provide a less-expensive, environment-friendly, mode of access to space. This would pave the way (via eventual operation at >1000 tonnes per day by 2050) for large scale development of space-based technologies.

Andrew Meulenberg; Karthik Balaji

2010-09-21T23:59:59.000Z

86

EIS-0451: Hooper Springs Project, Caribou County, Idaho | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Hooper Springs Project, Caribou County, Idaho 1: Hooper Springs Project, Caribou County, Idaho EIS-0451: Hooper Springs Project, Caribou County, Idaho Summary This EIS evaluates the environmental impacts of DOE's Bonneville Power Administration's proposal to construct, operate, and maintain a single-circuit, 115-kilovolt (kV) transmission line and a 138/115-kV substation (collectively referred to as the Hooper Springs Project). The new substation would be located adjacent to PacifiCorp's existing 345/138-kV Threemile Knoll Substation, located near the City of Soda Springs in Caribou County, Idaho. Public Comment Opportunities None available at this time. Documents Available for Download March 11, 2013 EIS-0451: Draft Environmental Impact Statement Hooper Springs Project, Caribou County, Idaho March 8, 2013

87

Beowawe Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area (Redirected from Beowawe Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Beowawe Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Geofluid Geochemistry 11 NEPA-Related Analyses (0) 12 Exploration Activities (8) 13 References Map: Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Beowawe, Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

88

Decarbonization and Sequestration for Mitigating Global Warming  

NLE Websites -- All DOE Office Websites (Extended Search)

DECARBONIZATION AND SEQUESTRATION FOR DECARBONIZATION AND SEQUESTRATION FOR MITIGATING GLOBAL WARMING M. Steinberg (msteinbe@bnl.gov); 631-344-3036 Brookhaven National Laboratory 12 South Upton Street Upton, NY 11973-5000, USA ABSTRACT Mitigating the global warming greenhouse effect while maintaining a fossil fuel economy, requires improving efficiency of utilization of fossil fuels, use of high hydrogen content fossil fuels, decarbonization of fossil fuels, and sequestering of carbon and CO 2 applied to all the sectors of the economy, electric power generation, transportation, and industrial, and domestic power and heat generation. Decarbonization means removal of carbon as C or CO 2 either before or after fossil fuel combustion and sequestration means disposal of the recovered C or CO 2 including its utilization. Removal and recovery of CO

89

Arrhenius and global warming  

SciTech Connect

Although concern about global atmospheric warming has intensified in recent decades, research into the greenhouse effect actually began in the 19th century. Fourier and other scientists appreciated that without heat-absorbing gases in the atmosphere, the temperature on the ground would be considerably lower, making life as we know it impossible. In 1896, the Swedish scientist Svante Arrhenius was the first to make a quantitative link between changes in carbon dioxide concentration and climate. Publication of his paper was celebrated at a recent Swedish workshop. 13 refs., 1 fig.

Uppenbrink, J.

1996-05-24T23:59:59.000Z

90

Tuana Springs Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Tuana Springs Wind Farm Tuana Springs Wind Farm Facility Tuana Springs Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer John Deere Wind Energy Purchaser Idaho Power Location Twin Falls County ID Coordinates 42.814261°, -114.996665° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.814261,"lon":-114.996665,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

91

Learning From Real Springs  

E-Print Network (OSTI)

Many springs do not obey Hooke's Law because they are constructed to have an intrinsic tension which must be overcome before normal elongation occurs. This property, well-known to engineers, is universally neglected in elementary physics courses. In fact it can be used to enhance learning and to deepen understanding of potential energy.

Bassichis, William

2013-01-29T23:59:59.000Z

92

Spring 2008 Euro Newsletter  

Science Conference Proceedings (OSTI)

EAOCS Newsletter Spring 2008 From the President This is the first newsletter from the section since the new Board was elected. I would therefore like to take this opportunity to thank our previous President Asgeir Sb for his services to th

93

Spring Cleaning. Calorie Burning.  

E-Print Network (OSTI)

Spring Cleaning. Calorie Burning. Laundry: 73 Dusting: 85 Mopping the Floor: 153 Washing the Car Painting: 161 (Estimate based on 150 lb person per 30 minutes, more calories burned if weigh more, fewer calories burned if weigh less) Allergy Sufferers' Survival Guide > Wash your hair before bed to avoid

Acton, Scott

94

Rocky Mountain carbonate spring deposit development.  

E-Print Network (OSTI)

??Relict Holocene carbonate spring deposits containing diverse biotic and abiotic depositional textures are present at Fall Creek cold sulphur springs, Alberta, Fairmont Hot Springs, British (more)

Rainey, Dustin

2009-01-01T23:59:59.000Z

95

The Final Warming Date of the Antarctic Polar Vortex and Influences on its Interannual Variability  

Science Conference Proceedings (OSTI)

More than 40 years of radiosonde data from two Antarctic stations are examined for changes in the date of the final stratospheric warming that occurs each year as the vortex breaks up in spring/summer. A new measure of this date is derived that ...

Joanna D. Haigh; Howard K. Roscoe

2009-11-01T23:59:59.000Z

96

Spring 2009 Technical Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring 2009 Technical Workshop Spring 2009 Technical Workshop in Support of U.S. Department of Energy 2009 Congestion Study Webcast, transcript, and presentations available at: http://www.congestion09.anl.gov/ Crowne Plaza Chicago O'Hare Hotel & Conference Center March 25-26, 2009 Agenda Day 1 - Wednesday, March 25, 2009 9:00 a.m. Registration Check-In & Continental Breakfast 10:00 a.m. DOE Welcome/Purpose of Workshop David Meyer, Senior Policy Advisor, Office of Electricity Delivery and Energy Reliability, U.S. Department of Energy (DOE-OE) 10:15 a.m. Session 1 - Historic Congestion in the Western Interconnection The Western Electric Coordinating Council Transmission Expansion Planning and Policy Committee has conducted an analysis of historic congestion in the Western

97

Geophysical Characterization of a Geothermal System Neal Hot Springs,  

Open Energy Info (EERE)

Characterization of a Geothermal System Neal Hot Springs, Characterization of a Geothermal System Neal Hot Springs, Oregon, USA Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geophysical Characterization of a Geothermal System Neal Hot Springs, Oregon, USA Abstract Neal Hot Springs is an active geothermal area that is also the proposed location of a binary power plant, which is being developed by US Geothermal Inc. To date, two production wells have been drilled and an injection well is in the process of being completed. The primary goal of this field camp was to provide a learning experience for students studying geophysics, but a secondary goal was to characterize the Neal Hot Springs area to provide valuable information on the flow of geothermal fluids through the subsurface. This characterization was completed using a variety of

98

Beowawe Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Beowawe Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Geofluid Geochemistry 11 NEPA-Related Analyses (0) 12 Exploration Activities (8) 13 References Map: Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Beowawe, Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

99

Roosevelt Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Roosevelt Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Heat Source 11 Geofluid Geochemistry 12 NEPA-Related Analyses (0) 13 Exploration Activities (9) 14 References Map: Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Milford, Utah Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

100

EA-1173: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Grande Ronde Basin Endemic Spring Chinook Salmon 3: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental Program (Preliminary), Oregon EA-1173: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental Program (Preliminary), Oregon SUMMARY This EA evaluates the environmental impacts for the U.S. Department of Energy Bonneville Power Administration's proposal to fund a program designed to prevent the extinction and begin the recovery of spring Chinook salmon stocks in the Grande Ronde River Basin in the Upper Grande Ronde River, Lostine River, and Catherine Creek in Northeastern Oregon. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 18, 2003 EA-1173-SA-01: Supplement Analysis Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program

Note: This page contains sample records for the topic "warm springs power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

ACCESS Magazine, Spring 1995  

E-Print Network (OSTI)

controlled natural gas electric-power plants or zero-emit-electric power plants fired with oil, natural gas, and coal.

Giuliano, Genevieve; Sperling, Daniel; Turrentine, Thomas; Dahlgren, Joy; Lave, Charles

1995-01-01T23:59:59.000Z

102

Spring 2013 National Transportation Stakeholders Forum Meeting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Transportation Stakeholders Forum Spring 2013 National Transportation Stakeholders Forum Meeting, New York Spring 2013 National Transportation Stakeholders Forum...

103

Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

(Poncha Spring) Space Heating Low Temperature Geothermal (Poncha Spring) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal Facility Facility Salida Hot Springs (Poncha Spring) Sector Geothermal energy Type Space Heating Location Salida, Colorado Coordinates 38.5347193°, -105.9989022° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

104

Gaseous Emissions From Steamboat Springs, Brady'S Hot Springs, And Desert  

Open Energy Info (EERE)

Gaseous Emissions From Steamboat Springs, Brady'S Hot Springs, And Desert Gaseous Emissions From Steamboat Springs, Brady'S Hot Springs, And Desert Peak Geothermal Systems, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Gaseous Emissions From Steamboat Springs, Brady'S Hot Springs, And Desert Peak Geothermal Systems, Nevada Details Activities (3) Areas (3) Regions (0) Abstract: Gaseous emissions from the landscape can be used to explore for geothermal systems, characterize their lateral extent, or map the trends of concealed geologic structures that may provide important reservoir permeability at depth. Gaseous geochemical signatures vary from system to system and utilization of a multi-gas analytical approach to exploration or characterization should enhance the survey's clarity. This paper describes

105

Power Purchase Agreements Update  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers an update on power purchase agreements and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

106

EIS-0451: Hooper Springs Project, Caribou County, Idaho  

Energy.gov (U.S. Department of Energy (DOE))

This EIS evaluates the environmental impacts of DOEs Bonneville Power Administration's proposal to construct, operate, and maintain a single-circuit, 115-kilovolt (kV) transmission line and a 138/115-kV substation (collectively referred to as the Hooper Springs Project). The new substation would be located adjacent to PacifiCorp's existing 345/138-kV Threemile Knoll Substation, located near the City of Soda Springs in Caribou County, Idaho.

107

Global Warming and Extreme Weather  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Warming and Extreme Weather Global Warming and Extreme Weather Speaker(s): Michael Wehner Date: November 28, 2006 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Surabi Menon Extreme weather events can have serious impacts on human and ecological systems. Changes in the magnitude and frequency of extreme weather associated with changes in the mean climate are likely the most serious consequence of human induced global warming. Understanding what the future portends is vital if society hopes to adapt to the very different world that awaits. In this talk, we will exploit simple extreme value theory to make predictions about the late 21st century climate. Current work on the relationship between global warming and the hurricane cycle will also be presented. The bottom line is that events that are considered rare today

108

Global warming continues in 1989  

SciTech Connect

Nineteen eight-nine ranks as one of the warmest years on record despite the chill of unusually cool water in the tropical Pacific. The continued robustness of the warming trend that began in the mid-1970s lends support to claims that an intensifying greenhouse effect is behind it all, although that case has not yet been made definitively. Even at the current rate of global warming it will take another 10 years or so to be confident that the greenhouse effect is with us. Although the global warming trend is consistent with an increasing contribution by the greenhouse effect, direct signs that the greenhouse effect is intensifying are still hard to come by in the temperature record. Greenhouse models agree that if that is happening, the temperature increase should be most pronounced around the Arctic. Alaska, northwestern Canada, and northern Siberia warmed sharply in the 1980s, but the region from eastern Canada through Greenland and into Scandinavia cooled markedly.

Kerr, R.A.

1990-02-02T23:59:59.000Z

109

Authropogenic Warming in North Alaska?  

Science Conference Proceedings (OSTI)

Using permafrost boreholes, Lachenbruch and Marshall recently reported evidence for a 24C warming in North Alaska occurring at some undetermined time during the last century. Popular accounts suggest their findings are evidence for ...

Patrick J. Michaels; David E. Sappington; David E. Stooksbury

1988-09-01T23:59:59.000Z

110

The Psychology of Global Warming  

Science Conference Proceedings (OSTI)

The evidence in support of global warming and the lack of significant published evidence to the contrary provides an extraordinarily strong foundation for the scientific community's call for action on greenhouse gas emissions. However, public ...

Ben R. Newell; Andrew J. Pitman

2010-08-01T23:59:59.000Z

111

100 LPW 800 Lm Warm White LED  

Science Conference Proceedings (OSTI)

An illumination grade warm white (WW) LED, having correlated color temperature (CCT) between 2800 K and 3500K and capable of producing 800 lm output at 100 lm/W, has been developed in this program. The high power WW LED is an ideal source for use as replacement for incandescent, and Halogen reflector and general purpose lamps of similar lumen value. Over the two year period, we have made following accomplishments: developed a high power warm white LED product and made over 50% improvements in light output and efficacy. The new high power WW LED product is a die on ceramic surface mountable LED package. It has four 1x1 mm{sup 2} InGaN pump dice flip chip attached to a ceramic submount in 2x2 array, covered by warm white phosphor ceramic platelets called Lumiramic? and an overmolded silicone lens encapsulating the LED array. The performance goal was achieved through breakthroughs in following key areas: (1) High efficiency pump LED development through pump LED active region design and epi growth quality improvement (funded by internal programs). (2) Increase in injection efficiency (IE) represented by reduction in forward voltage (V{sub f}) through the improvement of the silver-based p-contact and a reduction in spreading resistance. The injection efficiency was increased from 80% at the start of the program to 96% at the end of the program at 700 mA/mm{sup 2}. (3) Improvement in thermal design as represented by reduction in thermal resistance from junction to case, through improvement of the die to submount connection in the thin film flip chip (TFFC) LED and choosing the submount material of high thermal conductivity. A thermal resistance of 1.72 K/W was demonstrated for the high power LED package. (4) Improvement in extraction efficiency from the LED package through improvement of InGaN die level and package level optical extraction efficiency improvement. (5) Improvement in phosphor system efficiency by improving the lumen equivalent (LE) and phosphor package efficiency (PPE) through improvement in phosphor-package interactions. Another achievement in the development of the phosphor integration technology is the demonstration of tight color control. The high power WW LED product developed has been proven to have good reliability. The manufacturing of the product will be done in Philips Lumileds?? LUXEON Rebel production line which has produced billions of high power LEDs. The first high power WW LED product will be released to the market in 2011.

Decai Sun

2010-10-31T23:59:59.000Z

112

Snapshot (Spring 2012) | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

resources Small business resources State and local government resources Snapshot (Spring 2012) The ENERGY STAR Snapshot provides an at-a-glance summary of the key performance...

113

PNNL: Breakthroughs Magazine - Spring 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

Spring 2007 issue Scientific Discovery Breakthroughs Magazine Breakthroughs Archive In this issue... Cover Editor's Screen Contents At A Glance Science of Doing Business Science...

114

Thousand Springs Wind Park | Open Energy Information  

Open Energy Info (EERE)

Park Park Jump to: navigation, search Name Thousand Springs Wind Park Facility Thousand Springs Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Developer Exergy Energy Purchaser Idaho Power Location Twin Falls County ID Coordinates 42.7452°, -114.828° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.7452,"lon":-114.828,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

115

Hot Springs Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Hot Springs Wind Farm Facility Hot Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Idaho Windfarms / John Deere Developer Idaho Windfarms Energy Purchaser Idaho Power Location Elmore County ID Coordinates 42.95°, -115.63° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.95,"lon":-115.63,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

116

200 N. Spring Street  

Office of Legacy Management (LM)

Dipartment of Energy. ,' Dipartment of Energy. ,' Washington,DC20585 ., .\ FEB 1 7 ' 19g5' ,The Honorable Richa,rd. Riordon .', 200 N. Spring Street 'Los Angeles, California ,90012 '~ Dear Mayor Riordon: " Secretary of Energy Hazel O'Leary'has announced a neb approach to openness ins- the Department of Energy (DOE) and its communications with the public. fin support of this initiative, we are pleased~ to forward the enclosed information related to the. former Shannon Luminous Metals site in your jurisdiction that pe.rformed work for DOE's'predecessor agencies.' .This'information is provided foryour information, use! and,retention.~' "I , DOE's Formerly.Utilized Sites Remedial Action Program (FUSRAP) is responsible for identification of, sites used by DOE's predecessor agencies, determining

117

Schedule of Classes Spring 2011  

E-Print Network (OSTI)

Quarter, and $1,786 is charged in Winter and Spring quarters. An additional tem- porary increase of $700 is $4,913 (a permanent supplement of $600.66 per quarter [$1,802 annual] applies). An additional in Winter and Spring quarters. An additional temporary increase of $700 ($350 per quarter in Winter

Grether, Gregory

118

Cheap coal said top enemy in fighting global warming By Alister Doyle, Environment Correspondent  

E-Print Network (OSTI)

Cheap coal said top enemy in fighting global warming By Alister Doyle, Environment Correspondent OSLO, Sept 28 (Reuters) - Cheap coal will be the main enemy in a fight against global warming in the 21st century because high oil prices are likely to encourage a shift to coal before wind or solar power

Calov, Reinhard

119

EIS-0495: Walla Walla Basin Spring Chinook Hatchery Program;  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

495: Walla Walla Basin Spring Chinook Hatchery Program; 495: Walla Walla Basin Spring Chinook Hatchery Program; Milton-Freewater, Oregon, and Dayton, Washington EIS-0495: Walla Walla Basin Spring Chinook Hatchery Program; Milton-Freewater, Oregon, and Dayton, Washington SUMMARY Bonneville Power Administration (BPA) is preparing an EIS to analyze the potential environmental impacts of funding a proposal by the Confederated Tribes of the Umatilla Indian Reservation to construct and operate a hatchery for spring Chinook salmon in the Walla Walla River basin. Additional information is available at the project website: http://efw.bpa.gov/environmental_services/Document_Library/WallaWallaHatchery/. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILALE FOR DOWNLOAD March 28, 2013 EIS-0495: Notice of Intent to Prepare an Environmental Impact Statement

120

Proceedings of the 2009 Spring Simulation Multiconference  

Science Conference Proceedings (OSTI)

Welcome to the 2009 Spring Simulation Multiconference (SpringSim'09), in beautiful San Diego! SpringSim 2009 --- sponsored by The Society for Modeling and Simulation International (SCS), in collaboration with ACM/SIGSIM, brings together various Symposia, ...

Gabriel Wainer; Cliff Shaffer; Robert McGraw; Michael J. Chinni

2009-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm springs power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Static Temperature Survey At Vale Hot Springs Area (Combs, Et Al., 1999) |  

Open Energy Info (EERE)

Vale Hot Springs Area (Combs, Et Al., 1999) Vale Hot Springs Area (Combs, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Vale Hot Springs Area (Combs, Et Al., 1999) Exploration Activity Details Location Vale Hot Springs Area Exploration Technique Static Temperature Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Numerous temperature logs were taken with Sandia's platinum-resistance-thermometer (PRT) tool which along with a Sandia logging truck remained on-site for the entire project. Static temperature logs (no flow in hole) were done with this tool when coring operations were suspended for bit trips, rig maintenance, or other time intervals that would permit the hole to warm up near its static temperature gradient.

122

Pressure Temperature Log At Vale Hot Springs Area (Combs, Et Al., 1999) |  

Open Energy Info (EERE)

Vale Hot Springs Area (Combs, Et Al., 1999) Vale Hot Springs Area (Combs, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Vale Hot Springs Area (Combs, Et Al., 1999) Exploration Activity Details Location Vale Hot Springs Area Exploration Technique Pressure Temperature Log Activity Date Usefulness not indicated DOE-funding Unknown Notes Numerous temperature logs were taken with Sandia's platinum-resistance-thermometer (PRT) tool which along with a Sandia logging truck remained on-site for the entire project. Static temperature logs (no flow in hole) were done with this tool when coring operations were suspended for bit trips, rig maintenance, or other time intervals that would permit the hole to warm up near its static temperature K580gradient.

123

Global Warming: Physics and Facts  

Science Conference Proceedings (OSTI)

This report contains papers on: A tutorial on global atmospheric energetics and the greenhouse effect; global climate models: what and how; comparison of general circulation models; climate and the earth`s radiation budget; temperature and sea level change; short-term climate variability and predictions; the great ocean conveyor; trace gases in the atmosphere: temporal and spatial trends; the geochemical carbon cycle and the uptake of fossil fuel CO{sub 2}; forestry and global warming; the physical and policy linkages; policy implications of greenhouse warming; options for lowering US carbon dioxide emissions; options for reducing carbon dioxide emissions; and science and diplomacy: a new partnership to protect the environment.

Levi, B.G. [Physics Today, New York, NY (United States); Hafemeister, D. [Committee on Foreign Relations (U.S. Senate), Washington, DC (United States); Scribner, R. [Georgetown Univ., Washington, DC (United States)] [eds.

1992-05-01T23:59:59.000Z

124

Global Warming: Physics and Facts  

Science Conference Proceedings (OSTI)

This report contains papers on: A tutorial on global atmospheric energetics and the greenhouse effect; global climate models: what and how; comparison of general circulation models; climate and the earth's radiation budget; temperature and sea level change; short-term climate variability and predictions; the great ocean conveyor; trace gases in the atmosphere: temporal and spatial trends; the geochemical carbon cycle and the uptake of fossil fuel CO{sub 2}; forestry and global warming; the physical and policy linkages; policy implications of greenhouse warming; options for lowering US carbon dioxide emissions; options for reducing carbon dioxide emissions; and science and diplomacy: a new partnership to protect the environment.

Levi, B.G. (Physics Today, New York, NY (United States)); Hafemeister, D. (Committee on Foreign Relations (U.S. Senate), Washington, DC (United States)); Scribner, R. (Georgetown Univ., Washington, DC (United States)) (eds.)

1992-01-01T23:59:59.000Z

125

Orientation program at SLU, Ultuna, spring 2012  

E-Print Network (OSTI)

Orientation program at SLU, Ultuna, spring 2012 Monday, January 16th 16:00 Welcome-campus-ultuna) #12;Orientation program at SLU, Ultuna, spring 2012 #12;

126

E&PNews Spring09.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

Commentary ...................................1 Commentary ...................................1 Deepwater power .........................4 Alabama shales ..............................7 Near-miscible CO 2 flooding .......9 UDS overview ...............................11 Bakken shale projects .............. 14 GAO report ....................................19 Wired pipe technology ............ 21 E&P Snapshots ............................ 22 Upcoming Presentations ........ 24 ContaCts Roy Long Technology Manager- Ultra-Deepwater, Strategic Center for Natural Gas & Oil 281-494-2520 roy.long@netl.doe.gov albert Yost Technology Manager- Exploration & Production, Strategic Center for Natural Gas & Oil 304-285-4479 albert.yost@netl.doe.gov Oil & Natural Gas Program Newsletter Spring 2009 1 Dear e&P Focus Readers:

127

Policy implications of greenhouse warming  

SciTech Connect

Contents: background; the greenhouse gases and their effects; policy framework; adaptation; mitigation; international considerations; findings and conclusions; recommendations; questions and answers about greenhouse warming; background information on synthesis panel members and professional staff; and membership lists for effects, mitigation, and adaptation panels.

1991-01-01T23:59:59.000Z

128

Spring Already? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring Already? Spring Already? Spring Already? March 22, 2011 - 5:25pm Addthis Drew Bittner Web Manager, Office of Energy Efficiency and Renewable Energy Seems we were just hunkering down for cold weather and bundling into our big coats just last week. Well, come to think of it, it WAS last week-it got pretty darn cold here in the DC area a couple of nights back. This might make you wonder when spring is going to get here. Good question. Even though the average temperature shows an upward trend over the weeks to come, we all know that temperatures bounce up and down a lot. Add to that the atmospheric instability that generates, and we get plenty of rain (and even severe thunderstorms) as well. What does this have to do with energy? Everything. For one, home and business owners have to compensate for erratic, unpredictable changes in

129

cctoday_spring_05.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

A NEWSLETTER ABOUT INNOVATIVE TECHNOLOGIES FOR COAL UTILIZATION NEWS BYTES OFFICE OF FOSSIL ENERGY, U.S. DEPARTMENT OF ENERGY * DOEFE-0484* ISSUE NO. 62, SPRING 2005 See "News...

130

Clean Coal Today - Spring 1998  

NLE Websites -- All DOE Office Websites (Extended Search)

SPPC" on page 2... See "News Bytes" on page 8... OFFICE OF FOSSIL ENERGY, U.S. DEPARTMENT OF ENERGY DOEFE-0215P-28 ISSUE NO. 28, SPRING 1998 Successful firing on coal of the...

131

Spring Already? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring Already? Spring Already? Spring Already? March 22, 2011 - 5:25pm Addthis Drew Bittner Web Manager, Office of Energy Efficiency and Renewable Energy Seems we were just hunkering down for cold weather and bundling into our big coats just last week. Well, come to think of it, it WAS last week-it got pretty darn cold here in the DC area a couple of nights back. This might make you wonder when spring is going to get here. Good question. Even though the average temperature shows an upward trend over the weeks to come, we all know that temperatures bounce up and down a lot. Add to that the atmospheric instability that generates, and we get plenty of rain (and even severe thunderstorms) as well. What does this have to do with energy? Everything. For one, home and business owners have to compensate for erratic, unpredictable changes in

132

EA-1116: Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16: Kalina Geothermal Demonstration Project, Steamboat 16: Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada EA-1116: Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada SUMMARY This EA evaluates the environmental impacts of the proposal for the U.S. Department of Energy Golden Field Office to partially fund assistance for the construction and operation of a privately owned 6-megawatt geothermal power plant which includes one geothermal production well, one injection well, and ancillary facilities such as on-site access road(s) and interconnected to electric transmission lines to existing geothermal power plants. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD February 22, 1999 EA-1116: Finding of No Significant Impact Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada

133

Village of Yellow Springs, Ohio (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Springs, Ohio (Utility Company) Springs, Ohio (Utility Company) Jump to: navigation, search Name Village of Yellow Springs Place Ohio Utility Id 21101 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Lighting and Power Commercial-Industrial-Institutional Yard Lights- 250W Mercury Vapor Lighting Commercial-Industrial-Institutional Yard Lights- 400W Mercury Vapor Lighting Large Power Commercial Residential Residential Residential Yard Lights- 175W Mercury Vapor Lighting

134

Zim's Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Zim's Hot Springs Geothermal Area Zim's Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Zim's Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Idaho Batholith GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

135

Status of Nevada Geothermal Resource Development - Spring 2011 | Open  

Open Energy Info (EERE)

Resource Development - Spring 2011 Resource Development - Spring 2011 Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Status of Nevada Geothermal Resource Development - Spring 2011 Abstract Recent increases in geothermal exploration and power plant construction in Nevada are the first significant activities since the Steamboat II/III and Brady plants came on line in 1992.Exploration activity on existing projects grew between 2005 and 2010, culminating in the construction of several new power plants. The BLM's 2007 lease auction (first since the 2005 Energy Policy Act revisions) opened the door to exploration on green field properties. The number of wells permitted and drilled remained low from 1994 through 2003, but rose sharply to peak in 2009.However, over 760,000

136

Chemical and isotopic composition of water from thermal and mineral springs of Washington  

DOE Green Energy (OSTI)

Waters from the thermal springs of Washington range in chemical composition from dilute Na-HCO/sub 3/ to moderately saline CO/sub 2/-charged Na-HCO/sub 3/-Cl type waters. St. Martin's Hot Spring which discharges a slightly saline Na-Cl water, is the notable exception. The dilute Na-HCO/sub 3/ waters are generally associated with granitic intrusions; the warm to hot CO/sub 2/-charged waters issue on or near the large stratovolcanoes. The dilute waters have oxygen-isotopic compositions that indicate relatively little water-rock exchange. The CO/sub 2/-charged waters are usually more enriched in oxygen-18 due to more extensive water-rock reaction. The carbon-13 in the CO/sub 2/-charged thermal waters is more depleted (-10 to -12 %) than in the cold CO/sub 2/-charged soda springs (-2 to -8%) which are also scattered throughout the Cascades. The hot and cold CO/sub 2/-charged waters are supersaturated with respect to CaCO/sub 3/, but only the hot springs are actively depositing CaCO/sub 3/. Baker, Gamma, Sulphur, and Ohanapecosh hot springs seem to be associated with thermal aquifers of more than 100/sup 0/C. As these springs occur as individual springs or in small clusters, the respective aquifers are probably of restricted size.

Mariner, R.H.; Presser, T.S.; Evans, W.C.

1982-02-01T23:59:59.000Z

137

ENERGY CONVERSION Spring 2011  

E-Print Network (OSTI)

in this course: Week 1: Review Week 2: Entropy and exergy Week 3: Power cycles, Otto and Diesel Week 4 resources including: wind, wave energy conversion devices, and fuel cell technologies Week12: Introduction will work in groups as assigned. Experiment: Diesel Engine Assessment: Projects 20% Lab Reports

Bahrami, Majid

138

Why Are There Tropical Warm Pools?  

Science Conference Proceedings (OSTI)

Tropical warm pools appear as the primary mode in the distribution of tropical sea surface temperature (SST). Most previous studies have focused on the role of atmospheric processes in homogenizing temperatures in the warm pool and establishing ...

Amy C. Clement; Richard Seager; Raghu Murtugudde

2005-12-01T23:59:59.000Z

139

Yakima River Spring Chinook Enhancement Study, 1991 Final Report.  

DOE Green Energy (OSTI)

The population of Yakima River spring chinook salmon (Oncorhynchus tschawytscha) has been drastically reduced from historic levels reported to be as high as 250,000 adults (Smoker 1956). This reduction is the result of a series of problems including mainstem Columbia dams, dams within the Yakima itself, severely reduced flows due to irrigation diversions, outmigrant loss in irrigation canals, increased thermal and sediment loading, and overfishing. Despite these problems, the return of spring chinook to the Yakima River has continued at levels ranging from 854 to 9,442 adults since 1958. In October 1982, the Bonneville Power Administration contracted the Yakima Indian Nation to develop methods to increase production of spring chinook in the Yakima system. The Yakima Nation's current enhancement policy attempts to maintain the genetic integrity of the spring chinook stock native to the Yakima Basin. Relatively small numbers of hatchery fish have been released into the basin in past years. The goal of this study was to develop data that will be used to present management alternatives for Yakima River spring chinook. A major objective of this study is to determine the distribution, abundance and survival of wild Yakima River spring chinook. The second major objective of this study is to determine the relative effectiveness of different methods of hatchery supplementation. The last three major objectives of the study are to locate and define areas in the watershed that may be used for the rearing of spring chinook; to define strategies for enhancing natural production of spring chinook in the Yakima River; and to determine the physical and biological limitations on production within the system. 47 refs., 89 figs., 67 tabs.

Fast, David E.

1991-05-01T23:59:59.000Z

140

Yakima River Spring Chinook Enhancement Study Appendices, 1991 Final Report.  

DOE Green Energy (OSTI)

This document consists of the appendices for annual report DOE/BP/39461--9 which is summarized as follows. The population of Yakima River spring chinook salmon (Oncorhynchus tschawytscha) has been drastically reduced from historic levels reported to be as high as 250,000 adults (Smoker 1956). This reduction is the result of a series of problems including mainstem Columbia dams, dams within the Yakima itself, severely reduced flows due to irrigation diversions, outmigrant loss in irrigation canals, increased thermal and sediment loading, and overfishing. Despite these problems, the return of spring chinook to the Yakima River has continued at levels ranging from 854 to 9,442 adults since 1958. In October 1982, the Bonneville Power Administration contracted the Yakima Indian Nation to develop methods to increase production of spring chinook in the Yakima system. The Yakima Nation's current enhancement policy attempts to maintain the genetic integrity of the spring chinook stock native to the Yakima Basin. Relatively small numbers of hatchery fish have been released into the basin in past years. The goal of this study was to develop data that will be used to present management alternatives for Yakima River spring chinook. A major objective of this study is to determine the distribution, abundance and survival of wild Yakima River spring chinook. The second major objective of this study is to determine the relative effectiveness of different methods of hatchery supplementation. The last three major objectives of the study are to locate and define areas in the watershed that may be used for the rearing of spring chinook; to define strategies for enhancing natural production of spring chinook in the Yakima River; and to determine the physical and biological limitations on production within the system.

Fast, David E.

1991-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm springs power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Prediction of domestic warm-water consumption  

Science Conference Proceedings (OSTI)

The paper presents methodologies able to predict dynamic warm water consumption in district heating systems, using time-series analysis. A simulation model according to the day of a week has been chosen for modeling the domestic warm water consumption ... Keywords: autoregressive model, district heating systems, domestic warm water, prediction, simulation, time series models

Elena Serban; Daniela Popescu

2008-12-01T23:59:59.000Z

142

Bachelor of Science in Wind Energy Fall Spring  

E-Print Network (OSTI)

Bachelor of Science in Wind Energy FIRST YEAR Fall Spring WE 1300, Introduction to Wind Energy 3, Analytical Meth. in Wind Energy 3 WE 1311, Prin. of Wind Power Conversion 3 WE 2300, Social Impacts of Wind Energy 3 WE 2310, Meth. for Wind Res. Character. 3 ENGL 2000-Level Literature^ 3 HIST 2301, History of U

Gelfond, Michael

143

Microsoft Word - CX for Spring Basin Wilderness Land Exhange with BLM.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DATE: June 5, 2012 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Jason Karnezis Project Manager - KEWL-4 Proposed Action: Spring Basin Wilderness Land Exchange Fish and Wildlife Project No.: 1998-022-00 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Real Property transfers for cultural resources protection, habitat preservation and wildlife management Location: Fossil, Wheeler County, OR (see attached Exhibits A and B for legal land descriptions) Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: In June 2008 Oregon Senator Wyden introduced legislation to Congress to designate the "Oregon Spring Basin Wilderness (Spring Basin)." In 2008, Spring

144

Heard Island global warming test  

SciTech Connect

In late January and early February 1991, an international team will conduct an experiment to test the possibility of measuring global warming in the world's oceans. The goal is to provide early indications of warming caused by the so-called greenhouse effect, the atmospheric buildup of CO{sub 2} and other gases. The method is based on the principle that acoustic energy travels through water between a source and receiver at a speed determined primarily by the water temperature. Thus acoustic travel time can be used as a temperature gauge. The idea is an outgrowth of suggestions made by Professor Walter Munk of the Scripps Institution of Oceanography and Professor Carl Wunsch of MIT in the early 1980s to use long-range underwater acoustic transmissions to measure changes in the heat content of the oceans.

Spindel, R.C. (Univ. of Washington, Seattle (USA))

1991-02-01T23:59:59.000Z

145

Hydrological consequences of global warming  

Science Conference Proceedings (OSTI)

The 2007 Intergovernmental Panel for Climate Change indicates there is strong evidence that the atmospheric concentration of carbon dioxide far exceeds the natural range over the last 650,000 years, and this recent warming of the climate system is unequivocal, resulting in more frequent extreme precipitation events, earlier snowmelt runoff, increased winter flood likelihoods, increased and widespread melting of snow and ice, longer and more widespread droughts, and rising sea level. The effects of recent warming has been well documented and climate model projections indicate a range of hydrological impacts with likely to very likely probabilities (67 to 99 percent) of occurring with significant to severe consequences in response to a warmer lower atmosphere with an accelerating hydrologic cycle.

Miller, Norman L.

2009-06-01T23:59:59.000Z

146

Electric Springs A new Smart Grid Technology Department of Electrical & Electronic Engineering  

E-Print Network (OSTI)

electronics system. · · It can be embedded in an electric appliance such as electric water heater-scale wind and solar power generation · . 7 #12;Future power systems adopt "distributed" power generation (Wind and Solar Power). · ( ). · Electric Springs do not need communication and, collectively

Leung, Ka-Cheong

147

Motor Gasoline Market Spring 2007 and Implications for Spring 2008  

Gasoline and Diesel Fuel Update (EIA)

Motor Gasoline Market Spring 2007 Motor Gasoline Market Spring 2007 and Implications for Spring 2008 April 2008 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by the requestor. Preface and Contacts

148

Final Environmental Assessment BPA's Hot Springs - Garrison  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BPA's Hot Springs - Garrison Fiber Optic Project DOE-EA-1 002 POWER ADMINISTRATION Bonneville Power Administration DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

149

Chemical studies of selected trace elements in hot-spring drainages of Yellowstone National Park  

Science Conference Proceedings (OSTI)

Intensive chemical studies were made of S(-II), O/sub 2/, Al, Fe, Mn, P, As(III), As(V), and Li in waters from two high-Cl, low Ca-Mg hotspring drainages in the Lower Geyser Basin, a warm spring system rich in Ca and Mg in the Yellowstone Canyon area, and the Madison River system above Hebgen Lake. Analyses were also made of other representative thermal waters from the Park.

Stauffer, R.E.; Jenne, E.A.; Ball, J.W.

1980-01-01T23:59:59.000Z

150

Spring 2008 ASA Meeting Disclaimer  

U.S. Energy Information Administration (EIA) Indexed Site

8 Meeting of the 8 Meeting of the American Statistical Association Committee on Energy Statistics and the Energy Information Administration In two adjacent files you will find unedited transcripts of EIA's spring 2008 meeting with the American Statistical Association Committee on Energy Statistics. Beginning with the fall 2003 meeting, EIA no longer edits these transcripts. Summaries of previous meetings can be found to the right of the Thursday and Friday transcripts. The public meeting took place on April 9, 2008 in the Forrestal Building at 1000 Independence Ave., S.W., Washington, D.C. 20585. All sessions were plenary and were held in room 8E-089. The spring meeting agenda, papers, presentation slides and other materials may be found at: http://www.eia.gov/smg/asa_meeting_2008/spring/index.html

151

Motor gasoline assessment, Spring 1997  

SciTech Connect

The springs of 1996 and 1997 provide an excellent example of contrasting gasoline market dynamics. In spring 1996, tightening crude oil markets pushed up gasoline prices sharply, adding to the normal seasonal gasoline price increases; however, in spring 1997, crude oil markets loosened and crude oil prices fell, bringing gasoline prices down. This pattern was followed throughout the country except in California. As a result of its unique reformulated gasoline, California prices began to vary significantly from the rest of the country in 1996 and continued to exhibit distinct variations in 1997. In addition to the price contrasts between 1996 and 1997, changes occurred in the way in which gasoline markets were supplied. Low stocks, high refinery utilizations, and high imports persisted through 1996 into summer 1997, but these factors seem to have had little impact on gasoline price spreads relative to average spread.

NONE

1997-07-01T23:59:59.000Z

152

Under Steamboat Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Under Steamboat Springs Geothermal Area Under Steamboat Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Under Steamboat Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

153

Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and Raft River, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and Raft River, Idaho Details Activities (2) Areas (2) Regions (0) Abstract: Local seismic networks were established at the Roosevelt Hot Springs geothermal area, utah and at Raft River geothermal area, Idaho to monitor the background seismicity prior to initiation of geothermal power production. The Raft River study area is currently seismically quiet down

154

How Do You Adapt Your Energy Use During the Winter-to-Spring Transition? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Adapt Your Energy Use During the Winter-to-Spring Adapt Your Energy Use During the Winter-to-Spring Transition? How Do You Adapt Your Energy Use During the Winter-to-Spring Transition? March 3, 2011 - 8:47am Addthis This week, we wrapped up February and bid a hearty hello to March-and the coming spring! It's still early, though, and spring hasn't fully sprung yet. While you may be having a warm day here and there, cold and snowy days are still cropping up in many parts of the country. This up-and-down weather can be difficult to adapt to, especially when you're trying to maximize your energy savings. So we'd like to hear your tricks. How do you adapt your energy use during the winter-to-spring transition? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please e-mail

155

How Do You Adapt Your Energy Use During the Winter-to-Spring Transition? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Do You Adapt Your Energy Use During the Winter-to-Spring How Do You Adapt Your Energy Use During the Winter-to-Spring Transition? How Do You Adapt Your Energy Use During the Winter-to-Spring Transition? March 3, 2011 - 8:47am Addthis This week, we wrapped up February and bid a hearty hello to March-and the coming spring! It's still early, though, and spring hasn't fully sprung yet. While you may be having a warm day here and there, cold and snowy days are still cropping up in many parts of the country. This up-and-down weather can be difficult to adapt to, especially when you're trying to maximize your energy savings. So we'd like to hear your tricks. How do you adapt your energy use during the winter-to-spring transition? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please e-mail

156

Global warming and biological diversity  

SciTech Connect

This book is based on presentations given at the World Wildlife Fund's Conference on Consequences of the Greenhouse Effect for Biological Diverisity in 1988, and includes updated literature citations. The general topics covered in the book include the following: overview; summary of past responses of plants to climatic change; general ecological and physiological responses; ecosystems in 4 specific regions (arctic marine, Alaskan North Slope, NW US forests, and Mediterranean); global warming's implications for conservation. Ideas and data from many ecosystems and information about the relationships between biodiversity and climatic change are brought together with a balance of factual information and defensible scientific prognostication.

Peters, R.L.; Lovejoy, T.E. (eds.)

1992-01-01T23:59:59.000Z

157

Spring Cleaning | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring Cleaning Spring Cleaning Spring Cleaning April 23, 2012 - 3:58pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory One thing I forget to do in the spring is to change the furnace filter. I try to do it at least quarterly, but that doesn't always happen. I don't have air conditioning (which would also have a filter that needed to be changed periodically)-I don't particularly need it at 8,000 ft, especially when I'm working in town all day-so I just turn the furnace off altogether for the summer, usually some time in May. I can just open the house up on a summer evening, and the evening breezes cool everything off pretty well-the ultimate in energy efficiency! I'll remember again in September, when it's time to turn the furnace back on. Part of the problem is that I can't just change the filter. I have to

158

Large methane emission upon spring thaw from natural wetlands in the northern permafrost region  

SciTech Connect

The permafrost carbon climate feedback is one of the major mechanisms in controlling the climate ecosystem interactions in northern high latitudes. Of this feedback, methane (CH4) emission from natural wetlands is critically important due to its high warming potential. The freeze thaw transition has been confirmed to play an important role in annual CH4 budget, yet the magnitude of this effect is uncertain. An intensive field campaign was carried out in the Sanjiang Plain, Northeast China to estimate the CH4 emission in the spring freeze thaw transition period. The observation concluded that a large CH4 source was caused by spring thaw; the maximum hourly emission rate was 48.6 g C m 2 h 1, more than three orders of the regularly observed CH4 emission rate in the growing season. In some sporadically observed 'hot spots', the spring thawing effect contributed to a large CH4 source of 31.3 10.1 g C m 2, which is approximately 80% of the previously calculated annual CH4 emission in the same study area. If our results are typical for natural wetlands in the Northern Hemisphere permafrost region, we estimate a global CH4 source strength of 0.5 1.0 Tg C (1 Tg =1012 g) caused by spring thaw in the Northern Hemisphere permafrost region in the year 2011. Combining with available satellite and flask data, a regional extrapolation reaches a temporal pattern of CH4 emission during 2003 2009 which is consistent with recently observed changes in atmospheric CH4 concentration in the high latitudes. This suggests that the CH4 emission upon spring thaw in the high latitudes might be enhanced by the projected climate warming. These findings indicate that the spring thawing effect is an important mechanism in the permafrost carbon climate feedback and needs to be incorporated in Earth system models.

Song, Changchun [Chinese Academy of Sciences; Xu, Xiaofeng [ORNL; Sun, Xiaoxin [Chinese Academy of Sciences; Tian, Hanqin [Auburn University, Auburn, Alabama; Sun, Li [Chinese Academy of Sciences; Miao, Yuqing [Chinese Academy of Sciences; Wang, Xianwei [Chinese Academy of Sciences; Guo, Yuedong [Chinese Academy of Sciences

2012-01-01T23:59:59.000Z

159

Motor vehicles and global warming  

SciTech Connect

Energy use in transportation is one of the contributors to the concern over global warming. The primary greenhouse gases released by the transportation sector are carbon dioxide and chlorofluorocarbons. When all greenhouse gases are considered, CO{sub 2} emissions from the operation of highway vehicles worldwide represent about 4.7% of global warming enhancement. CO{sub 2} emissions from U.S. highway vehicles along represent about 2 to 2.5% of worldwide greenhouse gases. The use of CFCs in automotive air conditioning, in blowing foams for seats and padding and in the manufacture of electronic circuit boards accounted for 15% of the global usage of CFC-12 in 1985 according to the U.S. EPA. The Motor Vehicle Manufacturers Association supports the phase-out of CFC use provided that safe substitutes are available and that adequate lead time is allowed for.They suggest that reduction of greenhouse gases would require planning on a global scope to be effective. One alternative they suggest for further study is a carbon fee for reducing emissions of carbon dioxide. This fee would be levied on each type of fossil fuel, proportional to its carbon content per unit of energy.

Halberstadt, M.L.

1990-03-01T23:59:59.000Z

160

Spring into Energy Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring into Energy Savings Spring into Energy Savings Spring into Energy Savings April 14, 2009 - 6:00am Addthis Amy Foster Parish No winter lasts forever; no spring skips its turn. - Hal Borland In my part of the country, winter seems to hang on an interminably long time. So I always look forward to the first signs of spring with unbridled glee. At the first glimpse of a cherry blossom, the winter boots are banished to the back of the closet and the sandals are put to work in earnest. But while spring may give the perfect excuse to hang up the winter coat, the advent of spring does not mean that we can pack away thoughts of energy efficiency with our wool sweaters. Last winter, Jennifer Carter gave us a number of great energy efficiency tips for winter. Now that spring's milder temperatures are upon us and it's time to consider what energy efficiency

Note: This page contains sample records for the topic "warm springs power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Mechanical energy storage in carbon nanotube springs  

E-Print Network (OSTI)

Energy storage in mechanical springs made of carbon nanotubes is a promising new technology. Springs made of dense, ordered arrays of carbon nanotubes have the potential to surpass both the energy density of electrochemical ...

Hill, Frances Ann

2011-01-01T23:59:59.000Z

162

Erera, Spring School 2004 Transportation Security  

E-Print Network (OSTI)

! Transportation security research: future #12;Erera, Spring School 2004 Outline ! Understanding transportationErera, Spring School 2004 Transportation Security Alan Erera and Chelsea C. White III Industrial transportation security ! Security regulations and programs ! Transportation security research: present

Erera, Alan

163

Spring Heavy Rain Events in Taiwan during Warm Episodes and the Associated Large-Scale Conditions  

Science Conference Proceedings (OSTI)

Daily rainfall data at 15 stations of the Taiwan Central Weather Bureau (CWB) and the gridded dataset of the National Centers for Environmental PredictionNational Center for Atmospheric Research (NCEPNCAR) reanalysis during the period of ...

George Tai-Jen Chen; Zhihong Jiang; Ming-Chin Wu

2003-07-01T23:59:59.000Z

164

Estimating impacts of warming temperatures on California's electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

impacts of warming temperatures on California's electricity impacts of warming temperatures on California's electricity system Title Estimating impacts of warming temperatures on California's electricity system Publication Type Journal Article Year of Publication 2013 Authors Sathaye, Jayant A., Larry L. Dale, Peter H. Larsen, Gary A. Fitts, Kevin Koy, Sarah M. Lewis, and André Frossard Pereira de Lucena Journal Global Environmental Change Volume 23 Start Page 499 Issue 2 Pagination 499-511 Date Published 04/2013 Keywords EES-EG, electricity markets and policy group Abstract Despite a clear need, little research has been carried out at the regional-level to quantify potential climate-related impacts to electricity production and delivery systems. This paper introduces a bottom-up study of climate change impacts on California's energy infrastructure, including high temperature effects on power plant capacity, transmission lines, substation capacity, and peak electricity demand. End-of-century impacts were projected using the A2 and B1 Intergovernmental Panel on Climate Change emission scenarios. The study quantifies the effect of high ambient temperatures on electricity generation, the capacity of substations and transmission lines, and the demand for peak power for a set of climate scenarios. Based on these scenarios, atmospheric warming and associated peak demand increases would necessitate up to 38% of additional peak generation capacity and up to 31% additional transmission capacity, assuming current infrastructure. These findings, although based on a limited number of scenarios, suggest that additional funding could be put to good use by supporting R&D into next generation cooling equipment technologies, diversifying the power generation mix without compromising the system's operational flexibility, and designing effective demand side management programs.

165

Hot Springs-Garrison Fiber Optic Project  

SciTech Connect

Bonneville Power Administration (BPA) is proposing to upgrade its operational telecommunications system between the Hot Springs Substation and the Garrison Substation using a fiber optic system. The project would primarily involve installing 190 kilometers (120 miles) of fiber optic cable on existing transmission structures and installing new fiber optic equipment in BPA`s substation yards and control houses. BPA prepared an environmental assessment (EA) evaluating the proposed action. This EA was published in October 1994. The EA identifies a number of minor impacts that might occur as a result of the proposed action, as well as some recommended mitigation measures. This Mitigation Action Plan (MAP) identifies specific measures to avoid, minimize, or compensate for impacts identified in the EA.

Not Available

1994-10-01T23:59:59.000Z

166

Ultrafast Spectroscopy of Warm Dense Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

of planet formation and structures as well as the evolution of an imploding inertial fusion capsule depends on our understanding of matter in the complex warm dense matter...

167

Hotel energy use contributes to global warming.  

E-Print Network (OSTI)

??Before learning about the consequences of global warming and the efforts hotels are making to reverse the effects, it is important to get a better (more)

Faja, Christine

2007-01-01T23:59:59.000Z

168

Sheet metal stamping die design for warm forming  

DOE Patents (OSTI)

In metal stamping dies, by taking advantage of improved material flow by selectively warming the die, flat sections of the die can contribute to the flow of material throughout the workpiece. Local surface heating can be accomplished by placing a heating block in the die. Distribution of heating at the flat lower train central regions outside of the bend region allows a softer flow at a lower stress to enable material flow into the thinner, higher strain areas at the bend/s. The heating block is inserted into the die and is powered by a power supply.

Ghosh, Amit K. (Ann Arbor, MI)

2003-04-22T23:59:59.000Z

169

Proceedings of the 2008 Spring simulation multiconference  

Science Conference Proceedings (OSTI)

On behalf of the Organizing Committee we welcome you to the 2008 Spring Simulation Multiconference (SpringSim'08), sponsored by The Society for Modeling and Simulation International (SCS) in collaboration with ACM/SIGSIM. SpringSim'08 brings together ...

Hassan Rajaei

2008-04-01T23:59:59.000Z

170

Spring 2009 ASA Meeting Disclaimer  

U.S. Energy Information Administration (EIA) Indexed Site

9 Meeting of the 9 Meeting of the American Statistical Association Committee on Energy Statistics and the Energy Information Administration In two adjacent files you will find unedited transcripts of EIA's spring 2009 meeting with the American Statistical Association Committee on Energy Statistics. Beginning with the fall 2003 meeting, EIA no longer edits these transcripts. Summaries of previous meetings can be found to the right of the Thursday and Friday transcripts. The public meeting took place on April 2 and 3, 2009 in the Forrestal Building at 1000 Independence Ave., S.W., Washington, D.C. 20585. All of the plenary and one of the break-out sessions were in room 8E-089. Another breakout session was held in room 5E-069. The spring meeting agenda, papers, presentation slides and other materials

171

AMF Deployment, Steamboat Springs, Colorado  

NLE Websites -- All DOE Office Websites (Extended Search)

Colorado Colorado Steamboat Deployment AMF Home Steamboat Springs Home Storm Peak Lab Data Plots and Baseline Instruments Data Sets Experiment Planning STORMVEX Proposal Abstract and Related Campaigns Science Plan NWS Forecasting Plots STORMVEX Website Outreach STORMVEX Backgrounder (PDF, 1.6MB) News AMF2 STORMVEX Blog Images Contacts Gerald Mace AMF Deployment, Steamboat Springs, Colorado This view shows the instrument locations for the STORMVEX campaign. At the westernmost site is the Valley Floor. Heading east up the mountain is Christy Peak, Thunderhead, and Storm Peak Laboratory at the far east. Valley Floor: 40° 39' 43.92" N, 106° 49' 0.84" W Thunderhead: 40° 39' 15.12" N, 106° 46' 23.16" W Storm Peak: 40° 27' 18.36" N, 106° 44' 40.20" W

172

Spring Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Name Spring Valley Facility Spring Valley Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Pattern Energy Developer Pattern Energy Energy Purchaser NV Energy Location Ely NV Coordinates 39.10555447°, -114.4940186° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.10555447,"lon":-114.4940186,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

173

ENERGY STAR Snapshot Spring 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Spring 2012 Spring 2012 Snapshot data runs through December 31, 2011. The ENERGY STAR Snapshot provides an at-a-glance summary of the latest national ENERGY STAR metrics to help you, our partners, see the impact of your efforts. The ENERGY STAR Snapshot is distributed twice a year and provides: * Trends in energy benchmarking of commercial and industrial buildings. * State-by-state activity along with activity for the top Designated Market Areas. * Industrial sector participation in ENERGY STAR. * Trends in ENERGY STAR certified commercial and industrial facilities. Summary By the end of calendar year 2011, commercial and industrial organizations exceeded figures for benchmarking and certification that were achieved in 2010. Since June, 2011:

174

Geochemistry and hydrothermal alteration at selected Utah hot springs. Final report: Volume 3 (revised)  

DOE Green Energy (OSTI)

Application of Na-K-Ca geothermometry to warm springs in Utah indicates several areas with sufficiently high apparent temperatures to be of interest as geothermal exploration targets. A zone of warm springs in the Bonneville Basin show Na-K-Ca temperatures from 150/sup 0/C to 233/sup 0/C. Examination of Great Salt Lake, Bonneville sediment pore water, and Jordan Valley well-water chemistry indicates that mixing a small percent of these fluids with warm spring water can cause substantial errors in Na-K-Ca temperature estimates. Other saline deposits which may influence Na-K-Ca temperature estimates are the Paradox formation in southeastern Utah, the Muddy Creek formation in southwestern Utah, the Arapien shale in central Utah, the Preuss formation in northeastern Utah, and Playa salts in much of western Utah. The Roosevelt KGRA is the most attractive target identified by Na-K-Ca geothermometry. Hydrothermal alteration, heavy metal distribution, and water chemistry provide additional characterization of the Roosevelt system. Chemistry of a cool water seep (25/sup 0/C) shows Na-K-Ca temperature of 241/sup 0/C and SiO/sub 2/ temperature of 125/sup 0/C. A Phillips well flowing from below 1500' (457m) shows Na-K-Ca temperature of 262/sup 0/C, SiO/sub 2/ temperature of 262/sup 0/C, and K of 1.5 times the surface spring value. The near surface alteration assemblage is best explained in terms of a decrease in pH of near surface fluids as sulfide oxidizes. Increasing potassium and pH with depth indicates that a K-feldspar stable zone may be intersected with deeper drilling. Geology and alteration were mapped in the Monroe KGRA. (JGB)

Parry, W.T.; Benson, N.L.; Miller, C.D.

1976-07-01T23:59:59.000Z

175

Direct-Current Resistivity Survey At Roosevelt Hot Springs Area (Combs  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Roosevelt Hot Springs Area (Combs Direct-Current Resistivity Survey At Roosevelt Hot Springs Area (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Roosevelt Hot Springs Area (Combs 2006) Exploration Activity Details Location Roosevelt Hot Springs Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes "SP, MT, dipole-dipole resistivity, CSAMT; sufficient electrical data may be available" References Jim Combs (1 January 2006) Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Roosevelt_Hot_Springs_Area_(Combs_2006)&oldid=510548"

176

Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) | Open  

Open Energy Info (EERE)

Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) Exploration Activity Details Location Hot Springs Ranch Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley

177

Time-Domain Electromagnetics At Dixie Hot Springs Area (Combs 2006) | Open  

Open Energy Info (EERE)

Hot Springs Area (Combs 2006) Hot Springs Area (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Dixie Hot Springs Area (Combs 2006) Exploration Activity Details Location Dixie Hot Springs Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness not indicated DOE-funding Unknown Notes "MT, EM sounding, SP?; SP data and reservoir model may be proprietary" References Jim Combs (1 January 2006) Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Time-Domain_Electromagnetics_At_Dixie_Hot_Springs_Area_(Combs_2006)&oldid=388997" Category: Exploration

178

Direct-Current Resistivity At Brady Hot Springs Area (Combs 2006) | Open  

Open Energy Info (EERE)

Direct-Current Resistivity At Brady Hot Springs Area (Combs 2006) Direct-Current Resistivity At Brady Hot Springs Area (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Brady Hot Springs Area (Combs 2006) Exploration Activity Details Location Brady Hot Springs Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes "sufficient geophysical data are not available" References Jim Combs (1 January 2006) Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_At_Brady_Hot_Springs_Area_(Combs_2006)&oldid=594379"

179

Greenhouse warming and the tropical water budget  

SciTech Connect

The present work takes issue with some of the theses of Lindzen's (1990) work on global warming, arguing in particular that Lindzen's work is hampered by the use of oversimplified models. Lindzen then presents a detailed reply to these arguments, emphasizing the fundamental importance of the upper tropospheric water-vapor budget to the question of global warming. 26 refs.

Betts, A.K.

1990-10-01T23:59:59.000Z

180

The Sinking of Warm-Core Rings  

Science Conference Proceedings (OSTI)

Intense cooling of a warm-core ring or warming of the fluids surrounding a ring can increase the density of that ring relative to the surrounding fluids. This increase in density can cause the ring to sink under the surrounding fluids. A simple ...

Rick Chapman; Doron Nof

1988-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm springs power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Alaska Open-File Report 127 Assessment of Thermal Springs Sites in Southern Southeastern Alaska - Preliminary Results and Evaluation  

DOE Green Energy (OSTI)

Information has been gathered on 13 reported thermal-spring sites, 12 in southern Southeastern Alaska and one in western British Columbia. Five of the reported sites could not be substantiated by DGGS. The eight known thermal spring sites are associated with grainitic terrain and, except for Baker Island Hot Springs, occur within or near intensively fractured Cretaceous-age pluons of the Coast Range Batholith. Thermal-spring surface temperatures range from 21 C (Twin Lakes) to 91.5 C (Bailey Bay). The greatest discharge occurs at Chief Shakes hot springs (450 1pm). Bell Island Hot Springs, which has about a 100-1 pm discharge and a 70 C temperature, has had the most development. Two previously unreported thermal-spring sites, Barnes Lake warm springs and Bradfield hot springs, have a low rate of discharge and respective surface temperatures of about 25 and 54 C. The known thermal springs probably originate from circulation of meteoric waters through deep-seated fracture and fault systems. The chemical constituents of the alkali-sulfate to alkali-chloride thermal waters are probably derived from interaction of the deeply circulating meteoric waters with the granitic wall rocks. Chemical geothermometry suggests subsurface temperatures of 55 to 151 C. If waters are being heated solely by conduction from wall rocks, circulation depths must be about 1.5 to 5 km, assuming geothermal gradients of 30 to 50 C/km. Variations in temperature, discharge, and chemistry were noted at several thermal springs for which previous records are available. A major decrease in silica and potassium concentrations at Chief Shakes hot springs is suggested by comparing recent analyses of water chemistry to Waring's (1917) original analysis. The rate of discharge at Bell Island Hot Springs may have increased by a factor of two since Waring's visit to the springs. Subsurface reservoirs associated with thermal springs in southern Southeastern Alaska are of low temperature and are probably limited in extent, compared to geothermal fields now being used elsewhere in the world. Only the Bell Island and Bailey Bay sites now offer any potential for generation of electricity; these sites could also be used for a variety of direct uses such as space heating, wood or lumber processing, and perhaps aquaculture. The other sites have less potential but could be used locally for space heating or agriculture enhancement.

Motyka, Roman J.; Moorman, Mary A.; Reeder, John W.

1980-06-01T23:59:59.000Z

182

Solar Warming Submitted to Avalanche.ca Journal Feb. 2008 Can solar warming contribute to dry slab avalanches?  

E-Print Network (OSTI)

Solar Warming Submitted to Avalanche.ca Journal Feb. 2008 Can solar warming contribute to dry slab, when signs of warming, such as relatively warm air temperatures, strong solar radiation, and moist by a skier on a steep south-west facing aspect. Solar warming may have contributed to this release. (photo

Jamieson, Bruce

183

A Decomposition of Feedback Contributions to Polar Warming Amplification  

Science Conference Proceedings (OSTI)

Polar surface temperatures are expected to warm 2-3 times faster than the global mean surface temperature; a phenomenon referred to as polar warming amplification. Therefore, understanding individual process contributions to the polar warming is ...

Patrick C. Taylor; Ming Cai; Aixue Hu; Jerry Meehl; Warren Washington; Guang J. Zhang

184

A Possible Effect of an Increase in the Warm-Pool SST on the Magnitude of El Nio Warming  

Science Conference Proceedings (OSTI)

El Nio warming corresponds to an eastward extension of the western Pacific warm pool; one thus naturally wonders whether an increase in the warm pool SST will result in stronger El Nios. This question, though elementary, has not drawn much ...

De-Zheng Sun

2003-01-01T23:59:59.000Z

185

Availability of 3-out-of Warm Standby System  

E-Print Network (OSTI)

Introduction Standby techC6A4P are used to improve system availability. Usually, a k-out-of-n:G standby system is assumedthu whm an operating component fails, a standby component becomes active and th system is working if at least k components are fault-free. In general,ther arethC6 types in component standby, i.e., cold,hd and warm standby. Cold standby impliesthe inactive components h ve a zero failure rate. Hot standby impliesthl an inactive componenthx th same failure rate aswh6 it is in operation. Warm standby impliesthi an inactive componenthx a failure rate between cold and hdC it is also called dormant failure in some papers. k-out-of-n:G warm standby systemsh ve been used in several research fields including medical diagnosis, redundant-system testing, power plant system and so on. Th.C h ve been many articles concerning study on availability of k-out-of-n:G syst

Tielingzhan Nonmember And; Specialsection On; Michio Horigome; M Er

2000-01-01T23:59:59.000Z

186

Spring Cleaning | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleaning Cleaning Spring Cleaning April 23, 2012 - 3:58pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory One thing I forget to do in the spring is to change the furnace filter. I try to do it at least quarterly, but that doesn't always happen. I don't have air conditioning (which would also have a filter that needed to be changed periodically)-I don't particularly need it at 8,000 ft, especially when I'm working in town all day-so I just turn the furnace off altogether for the summer, usually some time in May. I can just open the house up on a summer evening, and the evening breezes cool everything off pretty well-the ultimate in energy efficiency! I'll remember again in September, when it's time to turn the furnace back on. Part of the problem is that I can't just change the filter. I have to

187

Spring Fever Time is Here Again  

NLE Websites -- All DOE Office Websites (Extended Search)

Consequently, every spring, we children were obliged to swallow nauseous doses of cod liver oil, sulfur and molasses, or bitter tonics brewed from the leaves and stems, or...

188

Weldon Spring Site Federal Facility Agreement  

Office of Legacy Management (LM)

monitor radioactive contamination from within the confines of the SED because the "hot spots" are not defined spatially. Hikers have direct access to Springs located along...

189

Snapshot (Spring 2013) | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Snapshot (Spring 2013) Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial...

190

Colorado Springs Utilities- Energy Efficient Builder Program  

Energy.gov (U.S. Department of Energy (DOE))

The Colorado Springs Utilities (CSU) Energy Efficient Builder Program offers an incentive to builders who construct ENERGY STAR qualified homes within the CSU service area. The incentive range...

191

PNNL: Breakthroughs Magazine - Spring/Summer 2004  

NLE Websites -- All DOE Office Websites (Extended Search)

SpringSummer 2004 issue Advanced Nanoscale Materials: Putting Science at your fingertips Breakthroughs Magazine Breakthroughs Archive In this issue... Cover Editor's Screen...

192

Brushless Motor Controller Report Spring 2010  

E-Print Network (OSTI)

Brushless Motor Controller Report Spring 2010 May 15, 2010 Brian Clementi MAE of 2010 322 Bogert ...................................................................................................... 5 A. Motor Description...................................................................................................... 5 B. The Motor Controller Board

Ruina, Andy L.

193

NETL Publications: NETL-RUA Spring Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Conference Proceedings NETL-RUA Spring Meeting March 5, 2013 Webcast Strategic Plan - Mark Redfern, Pitt 2012 Success Stories - Cindy Powell, NETL URS Funding Competition - Janet...

194

New electric technologies to reduce global warming impacts  

SciTech Connect

Advanced electric technologies hold significant potential to reduce global warming impact through reduction of primary fuel needed to power end-use applications. These reductions can occur in two forms: (1) reduced kilowatt-hour usage and power plant emissions through efficiency improvements and technological enhancements of existing electrically-driven applications; (2) the development of new electric technologies to replace traditional fossil-fuel driven applications which can result in less overall primary energy consumption and lower overall emissions. Numerous new electric technologies are presently being developed by the Electric Power Research Institute. The technologies reviewed in this paper include: Microwave Fabric Dryer, Advanced Heat Pumps, Heat Pump Water Heater, Infrared Sand Reclaimer, Freeze Concentration, Membrane Water Recovery, Microwave Petrochemical Production, Infrared Drying, and Electric Vehicles. Full commercialization of these technologies can result in significant energy savings and CO[sub 2] reductions, in addition to improving the competitiveness of businesses using these technologies.

Courtright, H.A. (Electric Power Research Inst., Palo Alto, CA (United States))

1994-09-01T23:59:59.000Z

195

Warm molecular hydrogen in the Spitzer SINGS galaxy sample  

E-Print Network (OSTI)

(simplified) Results on the properties of warm H2 in 57 normal galaxies are derived from H2 rotational transitions, obtained as part of SINGS. This study extends previous extragalactic surveys of H2, the most abundant constituent of the molecular ISM, to more common systems (L_FIR = e7 to 6e10 L_sun) of all morphological and nuclear types. The S(1) transition is securely detected in the nuclear regions of 86% of SINGS galaxies with stellar masses above 10^9.5 M_sun. The derived column densities of warm H2 (T > ~100 K), even though averaged over kiloparsec-scale areas, are commensurate with those of resolved PDRs; the median of the sample is 3e20 cm-2. They amount to between 1% and >30% of the total H2. The power emitted in the sum of the S(0) to S(2) transitions is on average 30% of the [SiII] line power, and ~4e-4 of the total infrared power (TIR) within the same area for star-forming galaxies, which is consistent with excitation in PDRs. The fact that H2 emission scales tightly with PAH emission, even thoug...

Roussel, H; Hollenbach, D J; Draine, B T; Smith, J D; Armus, L; Schinnerer, E; Walter, F; Engelbracht, C W; Thornley, M D; Kennicutt, R C; Calzetti, D; Dale, D A; Murphy, E J; Bot, C

2007-01-01T23:59:59.000Z

196

Method of making cascaded die mountings with springs-loaded contact-bond options  

DOE Patents (OSTI)

A cascaded die mounting device and method using spring contacts for die attachment, with or without metallic bonds between the contacts and the dies, is disclosed. One embodiment is for the direct refrigerant cooling of an inverter/converter carrying higher power levels than most of the low power circuits previously taught, and does not require using a heat sink.

Hsu, John S. (Oak Ridge, TN); Adams, Donald J. (Knoxville, TN); Su, Gui-Jia (Knoxville, TN); Marlino, Laura D. (Oak Ridge, TN); Ayers, Curtis W. (Kingston, TN); Coomer, Chester (Knoxville, TN)

2007-06-19T23:59:59.000Z

197

The Dynamics of Warm and Cold Climates  

Science Conference Proceedings (OSTI)

The atmospheric dynamics of five different climate simulations with the GISS GCM are compared to investigate the changes that occur as climate warms or cools. There are two ice age simulations, the current and doubled CO2 climates, and a ...

D. Rind

1986-01-01T23:59:59.000Z

198

Response to Skeptics of Global Warming  

Science Conference Proceedings (OSTI)

The majority of the scientific community involved in climate research is convinced of the reality of a current and future global warming due to the greenhouse effect, a change that must be largely caused by human activities. However, a minority ...

William W. Kellogg

1991-04-01T23:59:59.000Z

199

Initial Precipitation Formation in Warm Florida Cumulus  

Science Conference Proceedings (OSTI)

The microphysical processes that lead to the development of precipitation in small, warm cumulus are examined using data from the Small Cumulus Microphysics Study near Cape Canaveral, Florida. Aircraft measurements are used to determine the ...

Neil F. Laird; Harry T. Ochs III; Robert M. Rauber; L. Jay Miller

2000-11-01T23:59:59.000Z

200

The Tropical Warm Pool International Cloud Experiment  

Science Conference Proceedings (OSTI)

A comprehensive dataset describing tropical cloud systems and their environmental setting and impacts has been collected during the Tropical Warm Pool International Cloud Experiment (TWP-ICE) and Aerosol and Chemical Transport in Tropical ...

Peter T. May; James H. Mather; Geraint Vaughan; Keith N. Bower; Christian Jakob; Greg M. McFarquhar; Gerald G. Mace

2008-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm springs power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Dynamic and Thermodynamic Regulation of Ocean Warming  

Science Conference Proceedings (OSTI)

The relative roles of clouds, surface evaporation, and ocean heat transport in limiting maximum sea surface temperatures (SSTs) in the western Pacific warm pool are investigated by means of simple and intermediate coupled oceanatmosphere models. ...

Tim Li; Timothy F. Hogan; C-P. Chang

2000-10-01T23:59:59.000Z

202

Numerical Simulation of Sudden Stratospheric Warmings  

Science Conference Proceedings (OSTI)

A mechanistic, quasi-geostrophic, semi-spectral model with a self-consistent calculation of the mean zonal flow fields is used to numerically simulate sudden stratospheric warmings generated by a single zonal harmonic (m) planetary wave. The ...

Mark R. Schoeberl; Darrell F. Strobel

1980-01-01T23:59:59.000Z

203

Scaling Potential Evapotranspiration with Greenhouse Warming  

Science Conference Proceedings (OSTI)

Potential evapotranspiration (PET) is a supply-independent measure of the evaporative demand of a terrestrial climate, of basic importance in climatology, hydrology, and agriculture. Future increases in PET from greenhouse warming are often cited ...

Jacob Scheff; Dargan M. W. Frierson

204

Separating signal and noise in climate warming  

NLE Websites -- All DOE Office Websites (Extended Search)

11162011 | NR-11-11-03 Separating signal and noise in climate warming Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov Printer-friendly A National Oceanic and Atmospheric...

205

Global warming: A Northwest perspective  

SciTech Connect

The Northwest Power Planning Council convened a symposium in Olympia, Washington, on the subject of global climate change ( the greenhouse effect'') and its potential for affecting the Pacific Northwest. The symposium was organized in response to a need by the Power Council to understand global climate change and its potential impacts on resource planning and fish and wildlife planning for the region, as well as a need to understand national policy developing toward climate change and the Pacific Northwest's role in it. 40 figs., 15 tabs.

Scott, M.J.; Counts, C.A. (eds.)

1990-02-01T23:59:59.000Z

206

Cold-blooded and warm-blooded  

NLE Websites -- All DOE Office Websites (Extended Search)

Cold-blooded and warm-blooded Cold-blooded and warm-blooded Name: Walter Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: What is the fundamental difference between cold-blooded and warm- blooded creatures? I know that reptile blood is a bit different than mammal blood, but is that the difference or is it a difference in the other cells of the body? Replies: Warm blooded refers to an animals ability to maintain its body temperature at a constant level. Cold blooded animal's bodies stay at the temperature of environment around them (more or less). The mechanism by which a warm blooded animal does this is by generating heat, mostly through muscle movement (but by other biochemical processes too). An example of this is shivering. Warm blooded animals also cool themselves off by sweating, panting (and other ways). In mammals the hypothalamic area of the brain has much to do with controlling these reflex processes

207

Television news coverage of global warming  

Science Conference Proceedings (OSTI)

Citizens are expressing increased concern over the number and variety of environmental problems. Global warming in particular is a focus of concern for scientists and environmental groups. Such concern should naturally motivate individuals to seek information about these topics. Many people turn to the media, most usually television, for information on the nature of these problems. Consequently, this paper studied media coverage of environmental issues, specifically global warming. Television coverage was examined for: (1) the general nature of coverage; (2) biases in coverage; (3) visual images used to cover global warming; and (4) the congruity between visual and verbal messages in newscasts. Nightly newscasts from the three major American television networks were analyzed from 1993--1995 to determine the overall nature of global warming coverage since the Earth Summit in 1992. Results indicated that television news suffers from some serious inadequacies in its portrayal of global warming issues. The paper concludes by first discussing how its results intertwine with other work in the global warming and mass media field. Finally, the implications of inadequacies in media coverage for policy-makers when it comes to sound management of critical resources in this area are also discussed.

Nitz, M. [Univ. of Idaho, Moscow, ID (United States). School of Communication; Jarvis, S. [Univ. of Texas, Austin, TX (United States). Dept. of Speech Communication; Kenski, H. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Communication

1996-06-01T23:59:59.000Z

208

cctoday_spring_2006_pat_Rev4.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

COAL TODAY SPRING/SUMMER 2006 COAL TODAY SPRING/SUMMER 2006 6 BY-PRODUCTS CONSORTIUM AWARDS NEW PROJECTS The Combustion By-products Recycling Consortium (CBRC), sponsored by DOE's Offi ce of Fossil Energy through its National Energy Technology Laboratory (NETL), and managed by the West Virginia University Water Research Institute, has been carrying out important R&D projects to identify and examine the potential for new and expanded markets for coal combus- tion by-products (CCBs). Once viewed negatively, CCBs are now largely regarded as an untapped, recyclable resource with tremendous industrial market potential. Expansion of markets for CCBs will be critical as demand for coal-fi red electrical power increases, with corresponding public objec- tions to landfi ll disposal. Additionally, implementation of new Federal and

209

Properties of warm absorbers in active galaxies: a systematic stability curve analysis  

E-Print Network (OSTI)

Signatures of warm absorbers are seen in soft X-ray spectra of about half of all Seyfert1 galaxies observed and in some quasars and blazars. We use the thermal equilibrium curve to study the influence of the shape of the ionizing continuum, density and the chemical composition of the absorbing gas on the existence and nature of the warm absorbers. We describe circumstances in which a stable warm absorber can exist as a multiphase medium or one with continuous variation in pressure. In particular we find the following results: i) the warm absorber exists only if the spectral index of the X-ray power-law ionizing continuum $\\alpha > 0.2$ and has a multiphase nature if $\\alpha \\sim 0.8$, which interestingly is the spectral index for most of the observed Seyfert 1 galaxies; ii) thermal and ionization states of highly dense warm absorbers are sensitive to their density if the ionizing continuum is sufficiently soft, i.e. dominated by the ultraviolet iii) absorbing gas with super-Solar metallicity is more likely to have a multiphase nature; iv) the nature of the warm absorber is significantly influenced by the absence of iron and associated elements which are produced in the later stages of star formation history in supernovae of type Ia.

Susmita Chakravorty; Ajit K. Kembhavi; Martin Elvis; Gary Ferland

2008-11-14T23:59:59.000Z

210

A method for filtering hot spring noise from shallow temperature gradient data  

Science Conference Proceedings (OSTI)

A technique for separating shallow heat source effects from temperature gradient data is presented. The technique makes use of the depth dependent information available in the wave number spectrum of the gradient data. The effectiveness of the technique is demonstrated on a two-dimensional numerical model of a geothermal system containing a deep geothermal reservoir which is masked by a warm, shallow aquifer and a thermal spring. This geothermal system is representative of those found throughout the Basin and Range province. The resulting filtered gradients produce an excellent prediction of the temperatures in the modeled geothermal reservoir.

Li, T.M.C.; Chandler, C.A.; Ferguson, J.F.

1982-10-01T23:59:59.000Z

211

Long-Term Testing of Geothermal Wells in the Coso Hot Springs KGRA | Open  

Open Energy Info (EERE)

Long-Term Testing of Geothermal Wells in the Coso Hot Springs KGRA Long-Term Testing of Geothermal Wells in the Coso Hot Springs KGRA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Long-Term Testing of Geothermal Wells in the Coso Hot Springs KGRA Details Activities (3) Areas (2) Regions (0) Abstract: Three wells have been drilled by the Los Angeles Department of Water and Power at the Coso Hot Springs KGRA. A long-term flow test was conducted involving one producing well (well 43-7), one injector (well 88-1), and two observation wells (well 66-6 and California Energy Co's well 71A-7). This paper presents the equipment and techniques involved and the results from the long-term test conducted between December 1985 and February 1986. Author(s): Sanyal, S.; Menzies, A.; Granados, E.; Sugine, S.;

212

Addressing Global Warming, Air Pollution Health Damage, and Long-Term Energy Needs Simultaneously  

E-Print Network (OSTI)

pollution simultaneously, namely wind- and solar energy for electric power, electric vehicles and diesel vehicles currently cause. 4) Studies to date suggest little reduction or an exacerbation of global estimates of the effects of cellulosic ethanol on global warming to date are premature and low. 6) Wind

Patzek, Tadeusz W.

213

Geochemical studies at four northern Nevada hot spring areas. [Kyle Hot Springs, Leach Hot Springs, Buffalo Hot Springs, and Beowave Hot Springs  

DOE Green Energy (OSTI)

Water samples from both hot and cold sources in the hydrologic areas surrounding the hot springs were collected and analyzed. Analyses of major, trace, and radio-element abundances of the water samples and of associated rock samples are presented. From this study it is possible that trace- and major-element abundances and/or ratios may be discerned which are diagnostic as chemical geothermometers, complementing those of silica and alkali elements that are presently used. Brief discussions of mixing calculations, possible new chemical geothermometers, and interelement relationships are also included.

Wollenberg, H.; Bowman, H.; Asaro, F.

1977-08-01T23:59:59.000Z

214

Spring/dimple instrument tube restraint  

DOE Patents (OSTI)

A nuclear fuel assembly for a pressurized water nuclear reactor has a spring and dimple structure formed in a non-radioactive insert tube placed in the top of a sensor receiving instrumentation tube thimble disposed in the fuel assembly and attached at a top nozzle, a bottom nozzle, and intermediate grids. The instrumentation tube thimble is open at the top, where the sensor or its connection extends through the cooling water for coupling to a sensor signal processor. The spring and dimple insert tube is mounted within the instrumentation tube thimble and extends downwardly adjacent the top. The springs and dimples restrain the sensor and its connections against lateral displacement causing impact with the instrumentation tube thimble due to the strong axial flow of cooling water. The instrumentation tube has a stainless steel outer sleeve and a zirconium alloy inner sleeve below the insert tube adjacent the top. The insert tube is relatively non-radioactivated inconel alloy. The opposed springs and dimples are formed on diametrically opposite inner walls of the insert tube, the springs being formed as spaced axial cuts in the insert tube, with a web of the insert tube between the cuts bowed radially inwardly for forming the spring, and the dimples being formed as radially inward protrusions opposed to the springs. 7 figures.

DeMario, E.E.; Lawson, C.N.

1993-11-23T23:59:59.000Z

215

Spring/dimple instrument tube restraint  

DOE Patents (OSTI)

A nuclear fuel assembly for a pressurized water nuclear reactor has a spring and dimple structure formed in a non-radioactive insert tube placed in the top of a sensor receiving instrumentation tube thimble disposed in the fuel assembly and attached at a top nozzle, a bottom nozzle, and intermediate grids. The instrumentation tube thimble is open at the top, where the sensor or its connection extends through the cooling water for coupling to a sensor signal processor. The spring and dimple insert tube is mounted within the instrumentation tube thimble and extends downwardly adjacent the top. The springs and dimples restrain the sensor and its connections against lateral displacement causing impact with the instrumentation tube thimble due to the strong axial flow of cooling water. The instrumentation tube has a stainless steel outer sleeve and a zirconium alloy inner sleeve below the insert tube adjacent the top. The insert tube is relatively non-radioactivated inconel alloy. The opposed springs and dimples are formed on diametrically opposite inner walls of the insert tube, the springs being formed as spaced axial cuts in the insert tube, with a web of the insert tube between the cuts bowed radially inwardly for forming the spring, and the dimples being formed as radially inward protrusions opposed to the springs.

DeMario, Edmund E. (Columbia, SC); Lawson, Charles N. (Columbia, SC)

1993-01-01T23:59:59.000Z

216

Cross-shaped torsional spring  

DOE Patents (OSTI)

The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section.

Williamson, Matthew M. (Boston, MA); Pratt, Gill A. (Lexington, MA)

1999-06-08T23:59:59.000Z

217

Cross-shaped torsional spring  

DOE Patents (OSTI)

The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section. 30 figs.

Williamson, M.M.; Pratt, G.A.

1999-06-08T23:59:59.000Z

218

Can we delay a greenhouse warming  

SciTech Connect

This article reviews a book published by the Environmental Protection Agency. The book discussed the Greenhouse Effect which is a warming of the earth's atmosphere caused by the doubling of the atmospheric carbon dioxide concentration. The excess carbon dioxide is pollution derived from the burning of fossil fuels. The report suggested that the warming of the atmosphere would cause thawing of the polar regions which in turn would cause a rise in sea levels and flooding of the coastal lowlands. In addition to the flooding, the report predicted climate changes that would effect the productivity of croplands in the west. The authors of the report stressed that there was no way to avoid this warming of the earth. They suggested that people should start preparing for the inevitable.

Seidel, S.; Keyes, D.

1983-01-01T23:59:59.000Z

219

Ultrafast Spectroscopy of Warm Dense Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast Spectroscopy of Warm Dense Matter Print Ultrafast Spectroscopy of Warm Dense Matter Print Being neither solid, liquid, gas, nor plasma, warm dense matter (WDM) occupies a no man's land in the map of material phases. Its temperature can range between that of planetary cores (tens of thousands K) to that of stellar cores (hundreds of thousands K). Not only is it prevalent throughout the universe, it is relevant to inertial confinement fusion (ICF) and material performance under extreme conditions. However, because of its extreme temperatures and pressures, WDM tends to be drastically transient and thus difficult to study in the laboratory. Now, researchers have set up ultrafast x-ray absorption spectroscopy at the ALS to measure the electronic structure of WDMs, demonstrating that fast-changing electron temperatures of matter under extreme conditions can be determined with picosecond resolution.

220

Vulcan Hot Springs known geothermal resource area: an environmental analysis  

DOE Green Energy (OSTI)

The Vulcan Hot Springs known geothermal resource area (KGRA) is one of the more remote KGRAs in Idaho. The chemistry of Vulcan Hot Springs indicates a subsurface resource temperature of 147/sup 0/C, which may be high enough for power generation. An analysis of the limited data available on climate, meteorology, and air quality indicates few geothermal development concerns in these areas. The KGRA is located on the edge of the Idaho Batholith on a north-trending lineament which may be a factor in the presence of the hot springs. An occasional earthquake of magnitude 7 or greater may be expected in the region. Subsidence or elevation as a result of geothermal development in the KGRA do not appear to be of concern. Fragile granitic soils on steep slopes in the KGRA are unstable and may restrict development. The South fork of the Salmon River, the primary stream in the region, is an important salmon spawning grounds. Stolle Meadows, on the edge of the KGRA, is used as a wintering and calving area for elk, and access to the area is limited during this period. Socioeconomic and demographic surveys indicate that facilities and services will probably not be significantly impacted by development. Known heritage resources in the KGRA include two sites and the potential for additional cultural sites is significant.

Spencer, S.G.; Russell, B.F. (eds.)

1979-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm springs power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Geology of Roosevelt Hot Springs KGRA, Beaver County, Utah  

DOE Green Energy (OSTI)

The Roosevelt Hot Springs KGRA is located on the western margin on the Mineral Mountains in Beaver County, Utah. The bedrock geology of the area is presented. It is dominated by metamorphic and plutonic rocks of Precambrian age as well as felsic plutonic phases of the Tertiary Mineral Mountains Pluton. Rhyolite flows, domes, and pyroclastics reflect igneous activity between 0.8 and 0.5 million years ago. All lithologies present in the map area are described in detail with an emphasis on characteristics which will allow them to be distinguished in drill cuttings. The geothermal system at Roosevelt Hot Springs KGRA is structurally controlled with reservoir rocks demonstrating little primary permeability. North to north-northeast trending faults are the youngest structures in the area, and they control present fumarolic activity and recent hot spring activity which has deposited opaline and chalcedonic sinters. It is proposed here that the geothermal reservoirs are controlled primarily by intersections of the principal zones of faulting. Logs from Thermal Power Utah State 72-16, Getty Oil Utah State 52-21, and six shallow thermal gradient holes drilled by the University of Utah are presented in this report and have been utilized in the construction of geologic cross sections of the geothermal field.

Nielson, D.L.; Sibbett, B.S.; McKinney, D.B.; Hulen, J.B.; Moore, J.N.; Samberg, S.M.

1978-12-01T23:59:59.000Z

222

Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal...  

Open Energy Info (EERE)

Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal...

223

Trace Element Geochemical Zoning in the Roosevelt Hot Springs...  

Open Energy Info (EERE)

Element Geochemical Zoning in the Roosevelt Hot Springs Thermal Area, Utah Abstract Chemical interaction of thermal brines with reservoir rock in the Roosevelt Hot Springs...

224

Hydrogeologic investigation of Coso Hot Springs, Inyo County...  

Open Energy Info (EERE)

and springs and other features of hydrologic significance and sampling of waters for chemical analysis; determination of the local Coso Hot Springs and regional groundwater...

225

City of Glenwood Springs, Colorado (Utility Company) | Open Energy...  

Open Energy Info (EERE)

Glenwood Springs, Colorado (Utility Company) Jump to: navigation, search Name Glenwood Springs City of Place Colorado Utility Id 7300 Utility Location Yes Ownership M NERC Location...

226

Building America Spring 2012 Stakeholder Meeting Report: Austin...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America Spring 2012 Stakeholder Meeting Report: Austin, Texas; February 29 - March 2, 2012 Building America Spring 2012 Stakeholder Meeting Report: Austin, Texas; February...

227

City of Sharon Springs, Kansas (Utility Company) | Open Energy...  

Open Energy Info (EERE)

Sharon Springs, Kansas (Utility Company) Jump to: navigation, search Name City of Sharon Springs Place Kansas Utility Id 16988 Utility Location Yes Ownership M NERC Location SPP...

228

Symes Hotel and Medicinal Springs Pool & Spa Low Temperature...  

Open Energy Info (EERE)

Hotel and Medicinal Springs Pool & Spa Low Temperature Geothermal Facility Facility Symes Hotel and Medicinal Springs Sector Geothermal energy Type Pool and Spa Location Hot...

229

Glenwood Hot Springs Hotel Pool & Spa Low Temperature Geothermal...  

Open Energy Info (EERE)

Hotel Pool & Spa Low Temperature Geothermal Facility Facility Glenwood Hot Springs Hotel Sector Geothermal energy Type Pool and Spa Location Glenwood Springs, Colorado...

230

Reflection Survey At Hot Sulphur Springs Area (Goranson, 2005...  

Open Energy Info (EERE)

Springs Area (Goranson, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Hot Sulphur Springs Area (Goranson, 2005)...

231

Core Holes At Hot Sulphur Springs Area (Goranson, 2005) | Open...  

Open Energy Info (EERE)

Springs Area (Goranson, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Holes At Hot Sulphur Springs Area (Goranson, 2005)...

232

Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports from Canada (Million Cubic Feet) Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports from Canada (Million...

233

ARM - News from the Steamboat Springs Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

ColoradoNews from the Steamboat Springs Deployment Steamboat Deployment AMF Home Steamboat Springs Home Storm Peak Lab Data Plots and Baseline Instruments Data Sets Experiment Planning STORMVEX Proposal Abstract and Related Campaigns Science Plan NWS Forecasting Plots STORMVEX Website Outreach STORMVEX Backgrounder (PDF, 1.6MB) News AMF2 STORMVEX Blog Images Contacts Gerald Mace News from the Steamboat Springs Deployment Releases WPSD (Paducah, KY) "STORMVEX Cloud Study" January 19, 2011 The Daily Sentinel, Grand Junction "Steamboat project gives scientists unique, grounded look at clouds" December 12, 2010 Steamboat Pilot & Today "Steamboat cloud study to help create better global climate models" Image Gallery December 12, 2010 Also picked up by:

234

City of Siloam Springs, Arkansas (Utility Company) | Open Energy  

Open Energy Info (EERE)

Arkansas (Utility Company) Arkansas (Utility Company) Jump to: navigation, search Name City of Siloam Springs Place Arkansas Utility Id 17184 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Commercial - All Electric Rate Commercial Large Power Industrial Large Power Transformer Discount Industrial Residential Residential Residential - All Electric Residential Security Lighting 1000 W MH Lighting Security Lighting 150-175 W MH Lighting Security Lighting 400 W MH Lighting Small Power Industrial

235

StratosphereTroposphere Coupling during Spring Onset  

Science Conference Proceedings (OSTI)

The authors perform an observational study of the relation between stratospheric final warmings (SFWs) and the boreal extratropical circulation. SFW events are found to provide a strong organizing influence upon the large-scale circulation of the ...

Robert X. Black; Brent A. McDaniel; Walter A. Robinson

2006-10-01T23:59:59.000Z

236

Driving Green: Spring has Sprung, but don't 'Spring Ahead' | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green: Spring has Sprung, but don't 'Spring Ahead' Green: Spring has Sprung, but don't 'Spring Ahead' Driving Green: Spring has Sprung, but don't 'Spring Ahead' March 14, 2012 - 2:32pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory With gas prices skyrocketing, it may be time to evaluate your driving habits. No, I'm not talking about "hypermilling" (going to extreme lengths to get the best fuel economy possible), which can involve some dangerous techniques. (There actually is a Hypermiling Safety Foundation, which advocates legal techniques to get the best mileage possible.) You can still "drive green" safely to help save fuel and operating costs. First, of course, you should keep your car well maintained, whatever its age - regular oil changes, tires properly inflated and aligned, engine tuned up

237

SpringWorks | Open Energy Information  

Open Energy Info (EERE)

SpringWorks SpringWorks Jump to: navigation, search Name SpringWorks Place Minnetonka, Minnesota Zip 55343-8684 Product SpringWorks was created to discover and nurture incubation companies and emerging technologies for Petters Group Worldwide. Coordinates 44.939448°, -93.467869° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.939448,"lon":-93.467869,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

238

Think Spring, Think Local... | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Think Spring, Think Local... Think Spring, Think Local... Think Spring, Think Local... April 25, 2013 - 11:15am Addthis Eating locally grown produce is healthy and reduces greenhouse gas emissions. | Photo courtesy of ©iStockphoto.com/CDH_Design Eating locally grown produce is healthy and reduces greenhouse gas emissions. | Photo courtesy of ©iStockphoto.com/CDH_Design Kristin Swineford Communication Specialist, Weatherization and Intergovernmental Programs How can I participate? Visit your local farmers' market or join a CSA to get your fruits and vegetables this summer. Are you getting excited thinking about how you plan to support your local economy, your larger environment and also your health this spring? I know I am! The nicer weather the eastern regions have been experiencing lately has got

239

Summary of Weldon Spring Site Focus Area  

Office of Legacy Management (LM)

of Weldon Spring Site Focus Area of Weldon Spring Site Focus Area Work Session February 5, 2003 Weldon Spring Interpretive Center Focus Area: Monitoring and Maintenance This was the third of three work sessions that focus on specific issues addressed in the draft Long-Term Stewardship Plan for the Weldon Spring, Missouri, Site, dated August 9, 2002. At 6:00 p.m., before the start of the work session, Dan Collette, Technical Support Manager for S.M. Stoller, the U.S. Department of Energy (DOE) Grand Junction Office (GJO) contractor, gave a demonstration of the on-line document retrieval and geographic information systems. Introduction Dave Geiser, DOE Headquarters Director of the Office of Long-Term Stewardship, discussed a DOE Headquarters proposal to establish the Office of Legacy Management in fiscal year 2004.

240

Spring Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Spring Canyon Wind Farm Spring Canyon Wind Farm Jump to: navigation, search Name Spring Canyon Wind Farm Facility Spring Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser Xcel Energy Location Near Peetz CO Coordinates 40.95366°, -103.166993° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.95366,"lon":-103.166993,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "warm springs power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Spring 2012 Cosmopolitanism-Prof. Vlasak  

E-Print Network (OSTI)

Spring 2012 Cosmopolitanism- Prof. Vlasak 36419 CAS 100 M120 12:45-2:05 37586 CAS 100 M121 2 to no special community whatsoever. In this course we will examine the significance of cosmopolitanism in its

Kovalev, Leonid

242

cctoday_spring_2006_FINAL.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

top- ics as risk assessment; monitoring, mitigation, and verifi cation (MM&V); NEWS BYTES OFFICE OF FOSSIL ENERGY, U.S. DEPARTMENT OF ENERGY * DOEFE-0498 * ISSUE NO. 66, SPRING...

243

Coyote Springs Cogeneration Project - Final Environmental Impact Statement and Record of Decision (DOE/EIS-0201)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coyote Springs Cogeneration Project - Final Environmental Impact Statement Coyote Springs Cogeneration Project - Final Environmental Impact Statement Summary-1 Summary Bonneville Power Administration (BPA) is a Federal power marketing agency in the U.S. Department of Energy. BPA is considering whether to transmit (wheel) electrical power from a proposed privately-owned, gas-fired combustion turbine power generation plant in Morrow County, Oregon. The proposed power plant would have two combustion turbines that would generate 440 average megawatts (aMW) of energy when completed. The proposed plant would be built in phases. The first combustion turbine would be built as quickly as possible. Timing for the second combustion turbine is uncertain. As a Federal agency subject to the Nation Environ- mental Policy Act, BPA must complete a review of environmental impacts before it makes a

244

Micro-Earthquake At Roosevelt Hot Springs Geothermal Area (1982) | Open  

Open Energy Info (EERE)

Geothermal Area (1982) Geothermal Area (1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Roosevelt Hot Springs Geothermal Area (1982) Exploration Activity Details Location Roosevelt Hot Springs Geothermal Area Exploration Technique Micro-Earthquake Activity Date 1982 Usefulness not indicated DOE-funding Unknown Exploration Basis Develop a background seismicity before power production begins Notes Local seismic networks were established to monitor the background seismicity prior to initiation of geothermal power production. The Raft River study area is currently seismically quiet down to the level of approximately magnitude one. References Zandt, G.; Mcpherson, L.; Schaff, S.; Olsen, S. (1 May 1982) Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and

245

Supermassive Black Holes and the Warm Ionized  

E-Print Network (OSTI)

Supermassive Black Holes and the Warm Ionized Gas in Early-type Galaxies Renbin Yan University stars actively. (late-type galaxies) #12;Prevalence of Supermassive Black Holes in Massive Galaxies MBH merging Right after coalescing Post-merger Star Formation Rate Black Hole Accretion Rate #12;Maintenance

Wang, Ming-Jye

246

Can we delay a greenhouse warming  

SciTech Connect

The author comments on the EPA report dated September 1983 Can We Delay A Greenhouse Warming. He takes exception to the widely-held interpretation that the answer is not much. The contribution of other greenhouse gases such as methane and nitrous oxide to the EPA scenarios is pointed out, and the lack of understanding of their role is emphasised. (ACR)

Perry, A.M.

1983-01-01T23:59:59.000Z

247

Warm Pool Physics in a Coupled GCM  

Science Conference Proceedings (OSTI)

The physics of the IndoPacific warm pool are investigated using a coupled ocean atmosphere general circulation model. The model, developed at the Max-Planck-Institut fair Meteorologic, Hamburg, does not employ a flux correction and is used with ...

Niklas Schneider; Tim Barnett; Mojib Latif; Timothy Stockdale

1996-01-01T23:59:59.000Z

248

Tubular spring slip joint and jar  

SciTech Connect

The present invention comprises a pressure balanced tubular spring slip-joint and jar including a generally tubular outer housing having longitudinal slot means in the wall thereof, and a hammer area of increased wall thickness at one end thereof, within which housing slidably extends a jar mandrel means having first and second longitudinally spaced enlarged diameter anvil areas, at least one fastener tapped into one of those anvil areas, the heads of said fastener protruding into said slot means. Both said housing and said mandrel means possesses axial bores therethrough, which are placed in communication via the bore of a tubular spring within the housing, whereby during extension and contraction of the slip-joint and jar means of the present invention the area within said axial bores and said spring bore is of a constant volume. The invention may be employed to provide force impulses in either longitudinal direction, said tubular spring aiding the application of those impulses when said housing and said mandrel means move relatively toward each other. By proper selection of spring length and use of a coiled spring having spaced coils, the present invention may also be employed as a bi-directional shock absorber.

Heemstra, T. R.

1985-04-23T23:59:59.000Z

249

Geothermal investigations at Crystal Hot Springs, Salt Lake County, Utah. Report of Investigation No. 139  

DOE Green Energy (OSTI)

The Crystal Hot Springs geothermal system is located in southern Salt Lake County, Utah 22.5 km (14 miles) south of Salt Lake City near the town of Draper. The system is immediately west of the Wasatch Mountains at the easternmost edge of the Basin and Range physiographic province within an active seismic zone referred to as the Intermountain Seismic Belt. The springs are located north of an east-west trending horst known as the Traverse Range. The range is intermediate in elevation between the Wasatch Range to the east and the valley grabens to the north and south. A series of northeast striking normal faults with a combined displacement of at least 90/sup 0/m (3000 ft) separate the horst from the Jordan Valley graben to the north. The spring system is located between two closely spaced range-front faults where the faults are intersected by a north-northeast striking fault. The fractured Paleozoic quartzite bedrock 25 m (80 ft) beneath the surface leaks thermal water into the overlying unconsolidated material and the springs issue along zones of weaknesses in the relatively impermeable confining zone that parallel the bedrock faults. Meteoric water from the Wasatch Range is warmed in the normal geothermal gradient of the province (approximately 32/sup 0/C/km) as the water circulates to a minimum depth of approximately 2.5 km (1.55 miles) via an undetermined path through aquifers and faults. Data collected at the Crystal Hot Springs system under the DOE state coupled program are presented for use by individuals interested in the system.

Murphy, P.J.; Gwynn, J.W.

1979-10-01T23:59:59.000Z

250

Spring 2009 Engineering Our Future  

E-Print Network (OSTI)

of whirring wind turbines JeffSammons The Energy Issue: Going Green Donovan Maddox Chair Created Cash Chair and Computer Engineering. Grid-connected wind turbines, solar power plants, and other renewable sources have, to install, maintain, and repair wind turbines and related equipment. The program offers Wind Technician

Zhang, Yuanlin

251

Observational Constraints on Past Attributable Warming and Predictions of Future Global Warming  

Science Conference Proceedings (OSTI)

This paper investigates the impact of aerosol forcing uncertainty on the robustness of estimates of the twentieth-century warming attributable to anthropogenic greenhouse gas emissions. Attribution analyses on three coupled climate models with ...

Peter A. Stott; John F. B. Mitchell; Myles R. Allen; Thomas L. Delworth; Jonathan M. Gregory; Gerald A. Meehl; Benjamin D. Santer

2006-07-01T23:59:59.000Z

252

The Role of Human Activity in the Recent Warming of Extremely Warm Daytime Temperatures  

Science Conference Proceedings (OSTI)

Formal detection and attribution analyses of changes in daily extremes give evidence of a significant human influence on the increasing severity of extremely warm nights and decreasing severity of extremely cold days and nights. This paper ...

Nikolaos Christidis; Peter A. Stott; Simon J. Brown

2011-04-01T23:59:59.000Z

253

Spring 2011 1 Ph.D. Handbook SOCIAL WELFARE  

E-Print Network (OSTI)

Spring 2011 1 Ph.D. Handbook SCHOOL OF SOCIAL WELFARE DOCTOR OF PHILOSOPHY IN SOCIAL WORK Degree Requirements and Policy Handbook Spring, 2011 The University of Kansas School of Social Welfare 1545 Lilac Lane Lawrence, Kansas 66045-3129 (785) 864-8976 www.ku.edu #12;Spring 2011 2 Ph.D. Handbook #12;Spring 2011 3 Ph

Peterson, Blake R.

254

Multi-objective Optimization Design for Gradient Stiffness Leaf Spring  

Science Conference Proceedings (OSTI)

Gradient stiffness leaf spring is of a positive meaning for increasing the ride smooth of vehicle, which has a more stable natural frequency of leaf spring stiffness. A multi-objective optimization model of Gradient stiffness leaf spring of vehicles ... Keywords: leaf spring, multi-objective, optimization design

Qin-man Fan

2011-04-01T23:59:59.000Z

255

Energy Tax Credits: Stay Warm and Save MORE Money! | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Credits: Stay Warm and Save MORE Money Energy Tax Credits: Stay Warm and Save MORE Money October 29, 2008 - 6:00am Addthis Allison Casey Senior Communicator, NREL With all of...

256

An Interpretation of Sudden Warmings In Terms of Potential vorticity  

Science Conference Proceedings (OSTI)

A simple and concise interpretation of stratospheric sudden warmings is offered in terms Of the transient changes in the potential vorticity pattern. The warming is viewed as a manifestation of the reversal of the mean (zonally averaged) relative ...

H. C. Davies

1981-02-01T23:59:59.000Z

257

Forecast cloudy; The limits of global warming models  

SciTech Connect

This paper reports on climate models used to study global warming. It discusses factors which must be included in climate models, shortcomings of existing climate models, and scenarios for global warming.

Stone, P.H.

1992-02-01T23:59:59.000Z

258

An Analysis of Tropical Ocean Diurnal Warm Layers  

Science Conference Proceedings (OSTI)

During periods of light surface wind, a warm stable layer forms at the ocean surface with a maximum sea surface temperature (SST) in the early afternoon. The diurnal SST amplitude (DSA) associated with these diurnal warm layers (DWLs) can reach ...

Hugo Bellenger; Jean-Philippe Duvel

2009-07-01T23:59:59.000Z

259

Sonoluminescence test for equation of state in warm dense matter  

E-Print Network (OSTI)

IN WARM DENSE MATTER Siu-Fai Ng 1, 2 , J. J. Barnard 3 , P.IN WARM DENSE MATTER Siu-Fai Ng 1, 2 , J. J. Barnard 3 , P.

Ng, Siu-Fai

2008-01-01T23:59:59.000Z

260

Building Technologies Office: Low-Global Warming Potential Refrigerants  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Global Warming Low-Global Warming Potential Refrigerants Research Project to someone by E-mail Share Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Facebook Tweet about Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Twitter Bookmark Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Google Bookmark Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Delicious Rank Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Digg Find More places to share Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on AddThis.com... About Take Action to Save Energy

Note: This page contains sample records for the topic "warm springs power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Anthropogenic Warming of the Oceans: Observations and Model Results  

Science Conference Proceedings (OSTI)

Observations show the oceans have warmed over the past 40 yr, with appreciable regional variation and more warming at the surface than at depth. Comparing the observations with results from two coupled oceanatmosphere climate models [the ...

David W. Pierce; Tim P. Barnett; Krishna M. AchutaRao; Peter J. Gleckler; Jonathan M. Gregory; Warren M. Washington

2006-05-01T23:59:59.000Z

262

Mechanisms of Global Warming Impacts on Regional Tropical Precipitation  

Science Conference Proceedings (OSTI)

Mechanisms that determine the tropical precipitation anomalies under global warming are examined in an intermediate atmospheric model coupled with a simple land surface and a mixed layer ocean. To compensate for the warm tropospheric temperature, ...

Chia Chou; J. David Neelin

2004-07-01T23:59:59.000Z

263

Mechanisms for Global Warming Impacts on Precipitation Frequency and Intensity  

Science Conference Proceedings (OSTI)

Global warming mechanisms that cause changes in frequency and intensity of precipitation in the tropics are examined in climate model simulations. Under global warming, tropical precipitation tends to be more frequent and intense for heavy ...

Chia Chou; Chao-An Chen; Pei-Hua Tan; Kuan Ting Chen

2012-05-01T23:59:59.000Z

264

Comparing the effects of greenhouse gas emissions on global warming  

E-Print Network (OSTI)

Policies dealing with global warming require a measure of the effects of the emissions of greenhouse gases that create different magnitudes of instantaneous radiative forcing and have different lifetimes. The Global Warming ...

Eckaus, Richard S.

1990-01-01T23:59:59.000Z

265

EIS-0495: Walla Walla Basin Spring Chinook Hatchery Program; Milton-Freewater, Oregon, and Dayton, Washington  

Energy.gov (U.S. Department of Energy (DOE))

Bonneville Power Administration (BPA) is preparing an EIS to analyze the potential environmental impacts of funding a proposal by the Confederated Tribes of the Umatilla Indian Reservation to construct and operate a hatchery for spring Chinook salmon in the Walla Walla River basin.

266

Renewable Forest Energy P.O. Box 4490, Pagosa Springs, CO 81157  

E-Print Network (OSTI)

· Equipment · Biomass Needs / Average DBH 12" ·A local 4 MWe Power Plant · Turkey Springs Biofuels Demonstration Contract · Local Jobs! Approximately 14 new local jobs #12;Past, Present & the Future We CAT Feller Buncher Forwarder with removable chip box #12;Biomass Fuel Needs Average12" DBH · Estimated

267

Recent reservoir engineering developments at Brady Hot Springs, Nevada  

DOE Green Energy (OSTI)

Brady's Hot Springs is a hydrothermal area located approximately 28Km northeast of Fernley, Nevada. Surface manifestations of geothermal activity occur along a north-northeast trend fault zone (herein referred to as the Brady Thermal Fault) at the eastern margin of Hot Springs Flat, a small basin. Since September, 1959, Magma Power Company, its subsidiaries, and Union Oil Company (as Earth Energy Company) have drilled numerous wells in the area. In 1977 Magma's 160 acre lease in Section 12 was assigned to Geothermal Food Processors (GFP) for the purpose of providing heat from the wells on this acreage for the dehydration of food. GFP made application to the Geothermal Loan Guarantee Program (GLGP) for assistance in financing the effort, and consequently the GLGP office turned to the USGS for a resource evaluation. The USGS in turn recommended that a pumped flow test was necessary to truly determine the ability of the acreage's wells to provide the requisite water flow rate, temperature, and composition for the plant's operating lifetime of at least 15 years. Consequently, Thermal Power Company was contacted and procured to design, arrange, conduct, and evaluate a pumped flow program to satisfy these questions.

Rudisill, J.M.

1978-01-01T23:59:59.000Z

268

Federal Utility Partnership Working Group Spring 2007 Meeting Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MEETING MEETING MAY 1-2, 2007 CAPE CANAVERAL, FLORIDA HOSTED BY: FLORIDA POWER AND LIGHT INTRODUCTION The Federal Utility Partnership Working Group (FUPWG) held its Spring 2007 meeting in Cape Canaveral, Florida on May 1-2. The meeting was hosted by Florida Power and Light (FPL) and was held at the Doubletree Oceanfront Cocoa Beach Hotel. A total of 86 individuals attended the meeting, including at least 11 new members. Organizations represented included 36 utility officials, 3 Federal Energy Management Program (FEMP) representatives, 19 Federal agency representatives, 5 National Laboratory representatives, and 24 representatives from energy-related organizations (see attached list of participants and corresponding organizations). The working group is a joint effort between FEMP and the

269

Geothermal Exploration in Hot Springs, Montana  

SciTech Connect

The project involves drilling deeper in the Camp Aqua well dri lled in June 1982 as part of an effort to develop an ethanol plant. The purpose of the current drill ing effort is to determine if water at or above 165???????????????????????????????°F exists for the use in low temperature resource power generation. Previous geothermal resource study efforts in and around Hot Springs , MT and the Camp Aqua area (NE of Hot Springs) have been conducted through the years. A confined gravel aquifer exists in deep alluvium overlain by approximately 250???????????????¢???????????????????????????????? of si lt and c lay deposits from Glacial Lake Missoula. This gravel aquifer overlies a deeper bedrock aquifer. In the Camp Aqua area several wel l s exist in the gravel aquifer which receives hot water f rom bedrock fractures beneath the area. Prior to this exploration, one known well in the Camp Aqua area penetrated into the bedrock without success in intersecting fractures transporting hot geothermal water. The exploration associated with this project adds to the physical knowledge database of the Camp Aqua area. The dri l l ing effort provides additional subsurface information that can be used to gain a better understanding of the bedrock formation that i s leaking hot geothermal water into an otherwise cold water aquifer. The exi s t ing well used for the explorat ion is located within the ???????????????¢????????????????????????????????center???????????????¢??????????????????????????????? of the hottest water within the gravel aquifer. This lent i t sel f as a logical and economical location to continue the exploration within the existing well. Faced with budget constraints due to unanticipated costs, changing dril l ing techniques stretched the limited project resources to maximize the overa l l well depth which f e l l short of original project goals. The project goal of finding 165???????????????????????????????°F or hotter water was not achieved; however the project provides additional information and understanding of the Camp Aqua area that could prove valuable in future exploration efforts

Toby McIntosh, Jackola Engineering

2012-09-26T23:59:59.000Z

270

California Policy Should Distinguish Biofuels by Differential Global Warming Effects  

E-Print Network (OSTI)

California Policy Should Distinguish Biofuels by Differential Global Warming Effects by Richard J: _______________________________________ Date #12;California Policy Should Distinguish Biofuels by Differential Global Warming Effects Richard J, 2006 #12;#12;ABSTRACT California Policy Should Distinguish Biofuels by Differential Global Warming

Kammen, Daniel M.

271

School Trips & Projects in Spring  

NLE Websites -- All DOE Office Websites (Extended Search)

& Projects in Spring & Projects in Spring Nature Bulletin No. 484 March 9, 1957 Forest Preserve District of Cook County Daniel Ryan, President Roberts Mann, Conservation Editor David H. Thompson, Senior Naturalist SCHOOL TRIPS & PROJECTS IN SPRINg Spring is the morning of the year when nature reawakens. The days become noticeably longer and warmer. We feel an urge to get out-of- doors and see green growing plants, early wildflowers, and swelling buds on trees and shrubs; see and hear birds returning from their winter homes; hear the mating songs of frogs and toads. The nearest forest preserve, park, meadow or hedgerow -- even a city street or weedy vacant lot -- will have a wealth of plant and animal life. March is a chancy month for field trips but spring can be perking in a classroom before many signs of it appear outdoors. One twig of a forsythia bush, placed in a bottle of water, will soon display its yellow flowers; willow and aspen twigs will develop fat fuzzy catkins; the end of branches from cottonwood, soft maple and elm trees will reveal how some of their winter buds produce flowers and others burst into leaves. The long reddish catkins on a male cottonwood are showy but the small flowers of a maple or an elm are no less beautiful, although seldom noticed on the trees.

272

Latitudinal distribution of the recent Arctic warming  

Science Conference Proceedings (OSTI)

Increasing Arctic temperature, disappearance of Arctic sea ice, melting of the Greenland ice sheet, sea level rise, increasing strength of Atlantic hurricanes are these impending climate catastrophes supported by observations? Are the recent data really unprecedented during the observational records? Our analysis of Arctic temperature records shows that the Arctic and temperatures in the 1930s and 1940s were almost as high as they are today. We argue that the current warming of the Arctic region is affected more by the multi-decadal climate variability than by an increasing concentration of carbon dioxide. Unfortunately, none of the existing coupled Atmosphere-Ocean General Circulation Models used in the IPCC 2007 cIimate change assessment is able to reproduce neither the observed 20th century Arctic cIimate variability nor the latitudinal distribution of the warming.

Chylek, Petr [Los Alamos National Laboratory; Lesins, Glen K [DALLHOUSIE UNIV.; Wang, Muyin [UNIV OF WASHINGTON

2010-12-08T23:59:59.000Z

273

Global Warming Mitigation Investments Optimized under Uncertainty  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Warming Mitigation Investments Optimized under Uncertainty Global Warming Mitigation Investments Optimized under Uncertainty Speaker(s): Hermann Held Date: July 9, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Thomas McKone The Copenhagen Accord (2009) recognizes that 'the increase in global temperature should be below 2 degrees Celsius' (compared to pre-industrial levels, '2° target'). In recent years, energy economics have derived welfare-optimal investment streams into low-emission energy mixes and associated costs. According to our analyses, auxiliary targets that are in line with the 2° target could be achieved at relatively low costs if energy investments were triggered rather swiftly. While such analyses assume 'perfect foresight' of a benevolent 'social planner', an accompanying suite of experiments explicitly

274

Rethinking the economics of global warming  

SciTech Connect

Most of the debates over the impact of the greenhouse effect have centered around the reliability of computer models and have neglected considerations of the economic effects of attempts to reduce global warming. Economic models have certain limitations but the input of cost benefit analysis is needed for arriving at suitable policies for lowering anthropogenic input into warming of the earth. Care must be used in extrapolating from data of time periods which are inappropriate. Estimates of costs of reducing greenhouse-gas emissions also must include possible benefits; at present this is not being done. Economic models must address differences in the distribution of global warming's consequences over time and geographical space. The costs of delaying or accelerating reduction in greenhouse-gas emissions need to be included in policy considerations. A global agreement must not adversely affect developing countries. Faulty assumptions of the effect of market forces on costs impair economic models. We have to recognize that economic and environmental goals need not be incompatible. If economic models are viewed as possible scenarios and not as predictions, then these scenarios can be useful in determining policies for reducing the greenhouse effect without harming populations and their economies.

Miller, A.; Mintzer, I.; Brown, P.G. (Univ. of Maryland, College Park (USA))

1990-01-01T23:59:59.000Z

275

Northeast Oregon Hatchery Program Grande Ronde … Imnaha Spring Chinook Hatchery Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Oregon Hatchery Program Northeast Oregon Hatchery Program Grande Ronde - Imnaha Spring Chinook Hatchery Project Final Environmental Impact Statement Bonneville Power Administration July 2004 Northeast Oregon Hatchery Program -- Grande Ronde-Imnaha Spring Chinook Project i Table of Contents Page Chapter 1: Updated Summary and Project Description 1.1 Introduction..............................................................................................................1-1 1.2 Purpose and Need for the Proposed Action .............................................................1-2 1.3 Decisions to be Made and Responsible Officials ....................................................1-3 1.4 Summary of Public Involvement, Consultation, and Coordination.........................1-3

276

Residential Energy Efficiency Stakeholder Meeting - Spring 2012 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Stakeholder Meeting - Spring 2012 Residential Energy Efficiency Stakeholder Meeting - Spring 2012 Residential Energy Efficiency Stakeholder Meeting - Spring 2012 The U.S. Department of Energy (DOE) Building America program held the second annual Residential Energy Efficiency Stakeholder Meeting on February 29-March 2, 2012, in Austin, Texas. At this meeting, hundreds of building industry professionals came together to share their perspective on the most current innovation projects in the residential buildings sector. This meeting provided an opportunity for researchers and industry stakeholders to showcase and discuss the latest in cutting-edge, energy-efficient residential building technologies and practices. The meeting also included working sessions from each Standing Technical Committee (STC), which outlined work that will best assist in overcoming

277

Boiling Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Boiling Springs Geothermal Area Boiling Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Boiling Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3641,"lon":-115.856,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

278

Granite Springs Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Springs Geothermal Project Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Granite Springs Geothermal Project Project Location Information Coordinates 40.1475°, -118.64861111111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.1475,"lon":-118.64861111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

279

Okpilak Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Okpilak Springs Geothermal Area Okpilak Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Okpilak Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":69.3,"lon":-144.0333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

Serpentine Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Serpentine Springs Geothermal Area Serpentine Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Serpentine Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.85703165,"lon":-164.7097211,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "warm springs power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ARM - Field Campaign - Spring Cloud IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsSpring Cloud IOP govCampaignsSpring Cloud IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Spring Cloud IOP 2000.03.01 - 2000.03.26 Lead Scientist : Gerald Mace For data sets, see below. Summary The Atmospheric Radiation Measurement (ARM) Program conducted a Cloud Intensive Operational Period (IOP) in March 2000 that was the first-ever effort to document the 3-dimensional cloud field from observational data. Prior numerical studies of solar radiation propagation through the atmosphere in the presence of clouds have been limited by the necessity to use theoretical representations of clouds. Three-dimensional representations of actual clouds and their microphysical properties, such as the distribution of ice and water, had previously not been possible

282

Baltazor Springs Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Springs Geothermal Project Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Baltazor Springs Geothermal Project Project Location Information Coordinates 41.923888888889°, -118.71° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.923888888889,"lon":-118.71,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

283

Spring Grove Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Grove Biomass Facility Grove Biomass Facility Jump to: navigation, search Name Spring Grove Biomass Facility Facility Spring Grove Sector Biomass Owner P.H. Glatfelder Location Spring Grove, Pennsylvania Coordinates 39.8745436°, -76.8658078° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.8745436,"lon":-76.8658078,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

284

Pebble Springs Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Pebble Springs Wind Farm Pebble Springs Wind Farm Facility Pebble Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser LADWP/Burbank/Glendale Location Gilliam County near Arlington OR Coordinates 45.712306°, -120.184242° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.712306,"lon":-120.184242,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

285

Camp Springs Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Camp Springs Wind Farm Camp Springs Wind Farm Facility Camp Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Location TX Coordinates 32.739516°, -100.741382° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.739516,"lon":-100.741382,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

Butte Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Springs Geothermal Area Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Butte Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.771138,"lon":-119.114138,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Shakes Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Shakes Springs Geothermal Area Shakes Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Shakes Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.71765648,"lon":-132.0025034,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

Sulphur Springs Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Geothermal Facility Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Sulphur Springs Geothermal Facility General Information Name Sulphur Springs Geothermal Facility Facility Sulphur Springs Sector Geothermal energy Location Information Location The Geysers, California Coordinates 38.786346628248°, -122.78226971626° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.786346628248,"lon":-122.78226971626,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

289

Warm Standby in Hierarchically Structured Process-Control Programs  

E-Print Network (OSTI)

We classify standby redundancy design space in process-control programs into the following three categories: cold standby, warm standby, and hot standby. Design parameters of warm standby are identified and the reliability of a system using warm standby is evaluated and compared with that of hot standby. Our analysis indicates that the warm standby scheme is particularly suitable for longlived unmaintainable systems, especially those operating in harsh environments where burst hardware failures are possible. The feasibility of warm standby is demonstrated with a simulated chemical batch reactor system.

Ing-Ray Chen And; Ing-ray Chen; Farokh B. Bastani

1994-01-01T23:59:59.000Z

290

cctoday_spring_2007web.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

7 * ISSUE NO. 71, SPRING 2007 7 * ISSUE NO. 71, SPRING 2007 A NEWSLETTER ABOUT INNOVATIVE TECHNOLOGIES FOR COAL UTILIZATION INSIDE THIS ISSUE NETL Mercury Control ....................1 New Turbine Consortium ................4 NETL Monitors CO 2 Storage............6 Upcoming Events ...........................7 2007 Budget Emphasizes Coal ........7 International Initiatives ...................8 Active CCT, PPII, CCPI Status ........10 See "NETL Mercury" on page 2... See "News Bytes" on page 5... On March 5, 2007, Jeffrey D. Jarrett resigned his post as Assistant Sec- retary for Fossil Energy to join the private sector. In December 2006, Thomas D. Shope was appointed as FE's Principal Deputy Assistant Secretary. Shope, an attorney, previ- ously served as FE's Chief of Staff,

291

Rapid River Hatchery - Spring Chinook, Final Report  

SciTech Connect

This report presents the findings of the independent audit of the Rapid River Hatchery (Spring Chinook). The hatchery is located in the lower Snake River basin near Riggins Idaho. The hatchery is used for adult collection, egg incubation, and rearing of spring chinook. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the US Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife.

Watson, M.

1996-05-01T23:59:59.000Z

292

Studies say - tentatively - that greenhouse warming is here  

SciTech Connect

Published studies on greenhouse warming have been ambivalent as to whether warming has arrived. Now two independent studies of the climate record have incriminated the green-house effect in global warming, although they fall short of convicting it. Researchers at the Max Planck Institute for Meteorology in Hamburg are confident they have exonerated natural climatic variability, saying the observed global warming seems to large to account for the warming effect. A group from Lawrence Livermore National Laboratory directly implicates greenhouse warming by finding its geographic `fingerprinting` in the climate record of the past century. This article discusses both studies and how the results will affect future concerns in the area of greenhouse warming.

Kerr, R.A.

1995-06-16T23:59:59.000Z

293

Geological-geophysical evaluation of the Hot Springs area, Bath County, Virginia. Progress report, June 1, 1975--February 29, 1976  

DOE Green Energy (OSTI)

In the northwestern part of Virginia and adjacent parts of West Virginia there are approximately 100 springs that have temperatures ranging from slightly above the mean air temperature (9 to 12/sup 0/C) to about 41/sup 0/C. A study was made to evaluate the geothermal resource potential of the area in the vicinity of the Warm Springs anticline in Bath and Allegheny Counties, Virginia. Phase I of the study is the compilation of a geologic map based on published maps and supported by reconnaissance and detailed geologic mapping in areas where published maps are not available. Phase II consists of a regional bipole-dipole electrical resistivity survey made in order to detect the presence of resistivity lows that might be associated with a geothermal system at depth. Phase III will include drilling a single hole to a depth of approximately 300 m with the hope of obtaining a heat flow value that is representative of the region. (LBS)

Costain, J.K.

1975-12-01T23:59:59.000Z

294

Steamboat Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Steamboat Springs Geothermal Area Steamboat Springs Geothermal Area (Redirected from Steamboat Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Steamboat Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (1) 10 Exploration Activities (14) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.388,"lon":-119.743,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

295

Jemez Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Springs Geothermal Area Jemez Springs Geothermal Area (Redirected from Jemez Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.77166667,"lon":-106.69,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

296

CHEMICAL ENGINEERING Fall Term Spring Term  

E-Print Network (OSTI)

CHEMICAL ENGINEERING CURRICULUM Fall Term Spring Term EGGG 101 Introduction to Engineering (FYE) 2 CHEG 112 Introduction to Chemical Engineering 3 CHEM 111 General Chemistry 3 CHEM 112 General Chemistry and Writing 3 Breadth Requirement Elective 1 3 15 17 CHEG 231 Chemical Engineering Thermodynamics 3 CHEG 325

Lee, Kelvin H.

297

CHEMICAL ENGINEERING Fall Term Spring Term  

E-Print Network (OSTI)

CHEMICAL ENGINEERING CURRICULUM FALL 2010 Fall Term Spring Term EGGG 101 Introduction to Chemical Engineering 3 MATH 242 Analytic Geometry & Calculus B 4 MATH 243 Analytic Geometry & Calculus C 4 Critical Reading and Writing 3 Breadth Requirement Elective 1 3 15 17 CHEG 231 Chemical Engineering

Lee, Kelvin H.

298

Davison Health Center Price List* Spring 2013  

E-Print Network (OSTI)

Davison Health Center Price List* Spring 2013 Visits to Health Services are free and part of your services can be filed through insurance. Please see a Health Center representative for claim information - $21.00 Tetanus vaccine - $25.00 Tdap vaccine - $45.00 Typhim vaccine - $65.00 Laboratory Services

Devoto, Stephen H.

299

Energy, the Environment, and Society Spring 2013  

E-Print Network (OSTI)

1 Energy, the Environment, and Society Spring 2013 MW 3-4:30pm, L1118 ES&T Prof. Kim Cobb Email for a sustainable energy future involves balancing a series of oftentimes competing goals. On the one hand, continued population growth, combined with increased energy consumption by citizens in ever

Weber, Rodney

300

SPRING 2012 The History Of Brazil  

E-Print Network (OSTI)

1 of 4 SPRING 2012 The History Of Brazil MONDAY, WEDNESDAY, FRIDAY, 11:50 TO 12:40 HPR, RM. W117 of Brazil. It begins with Portuguese colonization in the sixteenth century, traces the development, dictatorship, and democratization. It ends with Brazil's twenty-first century transformation into one

Utah, University of

Note: This page contains sample records for the topic "warm springs power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Physics 5794 Computational Physics Syllabus Spring 2003  

E-Print Network (OSTI)

Physics 5794 ­ Computational Physics Syllabus ­ Spring 2003 Instructor: Massimiliano Di Ventra, by H. Gould and J. Tobochnik (Addison Wesley). Computational Physics, by S.E. Koonin, D.C. Meredith 3:30 ­ 4:45 p.m., Torgensen 2050. Course Content: The majority of problems encountered in Physics

Di Ventra, Massimiliano

302

Tropical Cyclogenesis Factors in a Warming Climate  

E-Print Network (OSTI)

Understanding the underlying causes of tropical cyclone formation is crucial to predicting tropical cyclone behavior in a warming environment, given the Earth's current warming trend. This study examines two sets of simulations from the National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 3.1 (CAM3): one with aerosol forcings and one without. We looked at how four factors known to be important to tropical cyclone formation vary as carbon dioxde and the ensuing temperature changes increase to very high levels. These factors include Maximum Potential Intensity (MPI), mid-tropospheric moisture content, 200-850 mb vertical wind shear, and 850 mb absolute vorticity. We considered different representations of mid-tropospheric moisture by examining both relative humidity and chi, a non-dimensional measure of the saturation entropy deficit at 600 mb. We also looked at different combinations of these factors, including several variations of a Genesis Potential Index (GPI) and an incubation parameter, gamma, that is related to the length of time required to saturate the middle troposphere and aid tropical cyclogenesis. Higher MPI, lower saturation deficits and higher relative humidity, lower wind shear, and higher absolute vorticity all act to enhance the GPI and lower the incubation time, meaning larger environmental support for tropical cyclone development and intensification. In areas where tropical cyclone development is prevalent today, we found that shear generally decreased, but MPI decreased, absolute vorticity decreased, and the saturation deficit increases. Thus, in today's prevalent tropical cyclone regions, conditions become less favorable for development and intensification as the climate warms. On the other hand, genesis regions tend to push northward into the subtropics, as conditions become much more favorable for development up to ~40 degrees North due to both decreased wind shear and much higher MPI values.

Cathey, Stephen Christopher

2011-12-01T23:59:59.000Z

303

DOE/EA-1326: Tucannon River Spring Chinook Captive Broodstock Program Final Environmental Assessment (05/24/00)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TUCANNON RIVER SPRING CHINOOK TUCANNON RIVER SPRING CHINOOK CAPTIVE BROODSTOCK PROGRAM Final Environmental Assessment and Finding of No Significant Impact DOE/EA-1326 B o n n e v i l l e P o w e r A d m i n i s t r a t i o n BONNEVILLE POWER ADMINISTRATION Tucannon River Spring Chinook Captive Broodstock Program Final Environmental Assessment DOE/EA-1326 May 23, 2000 Tucannon River Spring Chinook Captive Broodstock Program PreliminaryFinal Environmental Assessment B o n n e v i l l e P o w e r A d m i n i s t r a t i o n i Table of Contents Page 1. PURPOSE AND NEED FOR ACTION ........................................................................................ 1 1.1 INTRODUCTION ................................................................................................................................ 1 1.2 NEED FOR ACTION ...........................................................................................................................

304

Spring Forward and Start Saving Money | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring Forward and Start Saving Money Spring Forward and Start Saving Money March 8, 2013 - 10:15am Addthis Installing blinds or draperies can help you save on cooling costs during...

305

Nonlinear springs with applications to flow regulation valves and mechanisms  

E-Print Network (OSTI)

This thesis focuses on the application of nonlinear springs for fluid flow control valves where geometric constraints, or fabrication technologies, limit the use of available solutions. Types of existing nonlinear springs ...

Freeman, David Calvin

2008-01-01T23:59:59.000Z

306

Armored spring-core superconducting cable and method of construction  

DOE Patents (OSTI)

An armored spring-core superconducting cable (12) is provided. The armored spring-core superconducting cable (12) may include a spring-core (20), at least one superconducting strand (24) wound onto the spring-core (20), and an armored shell (22) that encases the superconducting strands (24). The spring-core (20) is generally a perforated tube that allows purge gases and cryogenic liquids to be circulated through the armored superconducting cable (12), as well as managing the internal stresses within the armored spring-core superconducting cable (12). The armored shell (22) manages the external stresses of the armored spring-core superconducting cable (12) to protect the fragile superconducting strands (24). The armored spring-core superconducting cable (12) may also include a conductive jacket (34) formed outwardly of the armored shell (22).

McIntyre, Peter M. (611 Montclair, College Station, TX 77840); Soika, Rainer H. (1 Hensel, #X4C, College Station, TX 77840)

2002-01-01T23:59:59.000Z

307

EPRI Annual Geothermal Program. Project review and workshop, Kah-nee-ta, Warm Springs, Oregon, July 25--28, 1977  

DOE Green Energy (OSTI)

Thirty-seven papers were abstracted and indexed individually for ERA/EDB, and two papers were listed by title. Ten of these papers were also included in EAPA. (JGB)

La Mori, P.N.; Roberts, V.W. (eds.)

1978-01-01T23:59:59.000Z

308

Hood River Fish Habitat Project; Confederated Tribes of the Warm Springs Reservation of Oregon, Annual Report 2002-2003.  

DOE Green Energy (OSTI)

This report summarizes the project implementation and monitoring of all habitat activities in the Hood River basin that occurred over the October 1, 2002 to September 30, 2003 period (FY 03). Some of the objectives in the corresponding statement of work for this contract were not completed within FY 03. A description of the progress during FY 03 and reasoning for deviation from the original tasks and timeline are provided. OBJECTIVE 1 - Provide coordination of all activities, administrative oversight and assist in project implementation and monitoring activities. Administrative oversight and coordination of the habitat statement of work, budget, subcontracts, personnel, implementation, and monitoring was provided. OBJECTIVE 2 - Continue to coordinate, implement, and revise, as needed, the Hood River Fish Habitat Protection, Restoration, and Monitoring Plan. The Hood River Fish Habitat Protection, Restoration, and Monitoring Plan was completed in 2000 (Coccoli et al., 2000). This document was utilized for many purposes including: drafting the Watershed Action Plan (Coccoli, 2002), ranking projects for funding, and prioritizing projects to target in the future. This document has been reviewed by many, including stakeholders, agencies, and interested parties. The Hood River Watershed Group Coordinator and author of the Hood River Fish Habitat Protection, Restoration, and Monitoring Plan, Holly Coccoli, has updated and revised the plan. Changes will be reflected in the Hood River Subbasin Plan, and after submission of the Subbasin Plan, a formally revised version of the Monitoring Plan will be put out for review. This will more specifically address changes in the Hood River subbasin since 2000, and reflect changes to fish habitat and needs in the Hood River subbasin regarding monitoring. OBJECTIVE 3 - Evaluate and monitor the habitat, accessibility, and presence of winter steelhead, coho salmon, and resident trout upstream of the Middle Fork Irrigation District water sources on Evans Creek. Through this project, BPA funded the Middle Fork Irrigation District (MFID) a total of $194,000 in FY 03 for the Glacier Ditch- Evans Creek project. BPA funds accounted for approximately 30% of the project while the remaining 70% was cost-shared by the MFID, the US Forest Service, and the Oregon Watershed Enhancement Board. The MFID operated irrigation diversions on Evans Creek (Hutson pond RM 4.0 and the Evans Creek diversion RM 5.5), a tributary to the East Fork Hood River. Both diversions had inadequate upstream fish passage, and utilized Evans Creek to transport Eliot Branch water to distribute irrigation water lower in the basin. This project consisted of: piping a portion of the Glacier ditch to create a pressurized irrigation pipeline system, piping the Hutson extension, removing the culvert on Evans Creek near the Glacier ditch, removing the culvert above the Hutson pond, revegetating the disturbed areas, and providing adequate and approved fish passage on Evans Creek. Prior to any work, Brian Connors with MFID completed a NEPA checklist. Some of the key regulatory points of this project included wetland delineations, a cultural resources survey, and consultations with NOAA Fisheries, U.S. Fish and Wildlife, Oregon Department of Fish and Wildlife (ODFW), and the U.S. Army Corps of Engineers. This project will eliminate the overflow of silty water into Evans Creek and West Fork Evans Creek. Upon completion of this project, access to 2.5 miles of winter steelhead, coho salmon, and resident trout habitat will be restored. Elimination of the interbasin transfer of water will discontinue the conveyance of silty Eliot Branch water into clear East Fork tributaries. Additionally, less water taken from Coe Branch, Eliot Branch, and Laurance Lake which will benefit listed steelhead and bull trout. The Glacier Ditch provided irrigation water from the Eliot Branch to upper valley orchards and agriculture for more than 100 years. The Glacier Ditch served approximately 1,438 acres with 18 cfs of water. The Glacier Ditch portion of this project

Vaivoda, Alexis

2004-02-01T23:59:59.000Z

309

Manchester Spring Chinook Broodstock Project, 1998-1999 Annual Report.  

DOE Green Energy (OSTI)

This yearly report concerned facilities upgrade and endangered Snake River spring/summer chinook salmon captive broodstock rearing.

McAuley, W.Carlin; Wastel, Michael R.; Flagg, Thomas A. (Northwest and Alaska Fisheries Science Center, Coastal Zone and Estuarine Studies Division, Seattle, WA)

2000-02-01T23:59:59.000Z

310

Federal Utility Partnership Working Group (FUPWG) Spring 2011 Meeting Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PAGE 1 OF 18 PAGE 1 OF 18 FEDERAL UTILITY PARTNERSHIP WORKING GROUP (FUPWG) SPRING 2011 MEETING REPORT PORTLAND, OR WELCOME - MIKE WEEDALL, BPA (MJWEEDALL@BPA.GOV) * Bonneville Power serves 130+ distribution companies, or 85% of the transmission in the region in the Pacific Northwest * BPA encourages energy efficiency improvements with their customers * Agencies assisted: Army, Navy, GSA, Forest Service, National Parks o Projects completed: lighting, HVAC, controls, specific processes, building shell * Working to build sustainability plans to achieve carbon reduction goals * Efficiency has proven to be less expensive than other resources available - energy efficiency is BPA's third largest resource (viewed seriously by BPA) DAVID MCANDREW, DOE FEMP (DAVID.MCANDREW@EE.DOE.GOV)

311

Insights into Spring 2008 Gasoline Prices  

Gasoline and Diesel Fuel Update (EIA)

Insights into Spring 2008 Gasoline Prices Insights into Spring 2008 Gasoline Prices Insights into Spring 2008 Gasoline Prices EIA released a new analytical report entitled Motor Gasoline Market Spring 2007 and Implications for Spring 2008. It includes a discussion of scheduled refinery outages in 2008 prepared in accordance with Section 804 of the Energy Independence and Security Act (EISA) of 2007, which requires EIA to review and analyze information on such outages from commercial reporting services and assess to their expected effects on the price and supply of gasoline. Changes in wholesale gasoline prices relative to crude oil are determined by the tightness between gasoline supply (production and net imports) and demand. Expectations for U.S. gasoline supply relative to demand are for a more favorable situation in January through May 2008 than was the case in the comparable 2007 period. Demand growth, which varies seasonally and depends on economic factors, is expected to slow. New gasoline supply is affected by refinery outages, refinery run decisions, and import variations. Planned refinery outages for January through May 2008 are lower than for the same period in 2007. Given lower planned outages and assuming the return of unplanned outages to more typical levels, including the return of BP's Texas City refinery to full operation, gasoline production could increase between 100 and 200 thousand barrels per day over last year's level, depending on the market incentives. In addition, ethanol use, which adds to gasoline supply, is expected to continue to increase. Considering the uncertainty in all the gasoline supply components, there is little likelihood of events combining in 2008 to lead to the kind of tight supply downstream from crude oil markets seen in spring 2007. In summary, refinery outage and import impacts should contribute less to gasoline price increases in 2008 than in 2007. If all of the low-range estimates for supply occurred, total gasoline supply would increase about 200 thousand barrels per day (Figure S1). However, record crude oil prices are nonetheless pushing current and expected gasoline prices to record levels.

312

Hydrogeochemistry of the Jowshan thermal springs, Kerman, Iran  

Science Conference Proceedings (OSTI)

Jowshan geothermal system comprises of 6 thermal springs with outlet temperatures ranging from 39.3 to 46.6 C. The thermal water of these springs is presently used for swimming and as a treatment for rheumatism, sinusitis and skin diseases. The ... Keywords: Iran, geothermometry, hydrogeochemistry, thermal spring

Zargham Mohammadi; Hassan Sahraie Parizi

2010-07-01T23:59:59.000Z

313

Testing Technology of Torsional Vibration Spring Static Stiffness  

Science Conference Proceedings (OSTI)

The principle and method of testing static stiffness of torsional vibration spring are put forward based on the structure of dual-mass flywheel with torsional vibration spring, and the test bench is designed for these. The testing data is collected by ... Keywords: LabVIEW, dual-mass flywheel, static stiffness, torsional vibration spring

Zhengfeng Jiang; Shaobo Xu; Lei Chen

2008-10-01T23:59:59.000Z

314

Swapping Global Warming Gases for Methane in Gas Hydrate ...  

Science Conference Proceedings (OSTI)

Swapping Global Warming Gases for Methane in Gas Hydrate Layer ... would serve as energy sources as well as carbon dioxide storage sites in the ...

2006-07-20T23:59:59.000Z

315

Intense Ion Beam for Warm Dense Matter Physics  

E-Print Network (OSTI)

charged particle physics Introduction . . . . . . . . .Driven Warm Dense Matter Physics, Four Point Sher- atonIntroduction to Plasma Physics, Plenum Press, New York [18

Heimbucher, Lynn

2008-01-01T23:59:59.000Z

316

She, With a Warm Palm, the Skin Over My Spine.  

E-Print Network (OSTI)

??She, with a Warm Palm, the Skin over My Spine is a collection of sixnonfiction essays and three vignettes divided into two parts. The first (more)

Cambardella, Cara Maria Michele

2010-01-01T23:59:59.000Z

317

Microsoft Word - WeldonSpringFAQ.docx  

Office of Legacy Management (LM)

Spring, Missouri, Site Spring, Missouri, Site Page 1 of 2 Last Updated: 8/11/2009 Frequently Asked Questions Q: Is my drinking water safe? A: On the basis of groundwater studies conducted by the U.S. Department of Energy (DOE), U.S. Geological Survey, and Missouri Department of Natural Resources, the extent of groundwater contamination is well understood. DOE can state with confidence that groundwater contaminants of concern generated by WSSRAP are not detectable above background levels in samples from any private drinking water wells or any of the pumping wells in the St. Charles County well field. The Missouri Department of Health has conducted private well surveys during the 1990s to test for project-related contaminants; data have shown no cause for concern. The St. Charles County well field is sampled quarterly.

318

Wilbur Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wilbur Springs Geothermal Area Wilbur Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wilbur Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.038874,"lon":-122.419653,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

319

N Springs expedited response action proposal  

SciTech Connect

Since signing the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) in 1989, the parties to the agreement have recognized the need to modify the approach to conducting investigations, studies, and cleanup actions at Hanford. To implement this approach, the parties have jointly developed the Hanford Past-Practice Strategy. The strategy defines a non-time-critical expedited response action (ERA) as a response action ``needed to abate a threat to human health or welfare or the environment where sufficient time exists for formal planning prior to initiation of response. In accordance with the past-practice strategy, DOE proposes to conduct an ERA at the N Springs, located in the Hanford 100 N Area, to substantially reduce the strontium-90 transport into the river through the groundwater pathway. The purpose of this ERA proposal is to provide sufficient information to select a preferred alternative at N Springs. The nature of an ERA requires that alternatives developed for the ERA be field ready; therefore, all the technologies proposed for the ERA should be capable of addressing the circumstances at N Springs. A comparison of these alternatives is made based on protectiveness, cost, technical feasibility, and institutional considerations to arrive at a preferred alternative. Following the selection of an alternative, a design phase will be conducted; the design phase will include a detailed look at design parameters, performance specifications, and costs of the selected alternative. Testing will be conducted as required to generate design data.

Not Available

1994-01-01T23:59:59.000Z

320

Jemez Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Springs Geothermal Area Jemez Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.77166667,"lon":-106.69,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "warm springs power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Spring 2013 National Transportation Stakeholders Forum Meeting, New York |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Transportation Stakeholders Forum » Spring 2013 National National Transportation Stakeholders Forum » Spring 2013 National Transportation Stakeholders Forum Meeting, New York Spring 2013 National Transportation Stakeholders Forum Meeting, New York Spring 2013 National Transportation Stakeholders Forum Meeting, New York Save the Date NTSF Registration Announcement NTSF 2013 Agenda EM's Huizenga Gives Keynote Address at National Transportation Stakeholders Forum Spring 2013 NTSF Presentations May 14, 2013 Presentations Communication Is Key to Packaging and Transportation Safety and Compliance North American Standard Level VI Inspection Program Update: Ensuring Safe Transportation of Radioactive Material Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing U.S. Nuclear Waste Technical Review Board: Roles and Priorities

322

SWIR at Steamboat Springs Geothermal Area (Kruse 2012) | Open Energy  

Open Energy Info (EERE)

SWIR at Steamboat Springs Geothermal Area (Kruse 2012) SWIR at Steamboat Springs Geothermal Area (Kruse 2012) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: SWIR At Steamboat Springs Geothermal Area (Kruse 2012) Exploration Activity Details Location Steamboat Springs Geothermal Area Exploration Technique SWIR Activity Date Spectral Imaging Sensor MASTER, ASTER, AVIRIS Usefulness useful DOE-funding none Notes Analysis of the SWIR MASTER/ASTER data allow mapping of characteristic minerals associated with hot springs/mineral deposits, including carbonate, kaolinite, alunite, buddingtonite, muscovite, and hydrothermal silica. Mineral identification and the general distribution of specific minerals were verified utilizing ground spectral measurements and mineral maps produced from AVIRIS hyperspectral data.

323

Hydrogeologic investigation of Coso Hot Springs, Inyo County, California.  

Open Energy Info (EERE)

Hydrogeologic investigation of Coso Hot Springs, Inyo County, California. Hydrogeologic investigation of Coso Hot Springs, Inyo County, California. Final report October 1977--January 1978 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Hydrogeologic investigation of Coso Hot Springs, Inyo County, California. Final report October 1977--January 1978 Details Activities (2) Areas (1) Regions (0) Abstract: This investigation included: review of existing geologic, geophysical, and hydrologic information; field examination of geologic rock units and springs and other features of hydrologic significance and sampling of waters for chemical analysis; determination of the local Coso Hot Springs and regional groundwater hydrology, including consideration of recharge, discharge, movement, and water quality; and determination of the

324

Total environmental warming impact (TEWI) calculations for alternative automative air-conditioning systems  

SciTech Connect

The Montreal Protocol phase-out of chlorofluorocarbons (CFCs) has required manufacturers to develop refrigeration and air-conditioning systems that use refrigerants that can not damage stratospheric ozone. Most refrigeration industries have adapted their designs to use hydrochlorofluorocarbon (HCFC) or hydrofluorocarbon (HFC) refrigerants; new automobile air- conditioning systems use HFC-134a. These industries are now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants on global warming. Automobile air-conditioning has three separate impacts on global warming; (1) the effects of refrigerant inadvertently released to the atmosphere from accidents, servicing, and leakage; (2) the efficiency of the cooling equipment (due to the emission of C0{sub 2} from burning fuel to power the system); and (3) the emission of C0{sub 2} from burning fuel to transport the system. The Total Equivalent Warming Impact (TEWI) is an index that should be used to compare the global warming effects of alternative air-conditioning systems because it includes these contributions from the refrigerant, cooling efficiency, and weight. This paper compares the TEWI of current air-conditioning systems using HFC-134a with that of transcritical vapor compression system using carbon dioxide and systems using flammable refrigerants with secondary heat transfer loops. Results are found to depend on both climate and projected efficiency of C0{sub 2}systems. Performance data on manufacturing prototype systems are needed to verify the potential reductions in TEWI. Extensive field testing is also required to determine the performance, reliability, and ``serviceability`` of each alternative to HFC-134a to establish whether the potential reduction of TEWI can be achieved in a viable consumer product.

Sand, J.R.; Fischer, S.K.

1997-01-01T23:59:59.000Z

325

LLNL scientists find precipitation, global warming link  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 For immediate release: 11/11/2013 | NR-13-11-04 Lawrence Livermore scientists have found that observed changes in global precipitation are directly affected by human activities. LLNL scientists find precipitation, global warming link Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov LIVERMORE, Calif. -- The rain in Spain may lie mainly on the plain, but the location and intensity of that rain is changing not only in Spain but around the globe. A new study by Lawrence Livermore National Laboratory scientists shows that observed changes in global (ocean and land) precipitation are directly affected by human activities and cannot be explained by natural variability alone. The research appears in the Nov. 11 online edition of the Proceedings of the National Academy of Sciences.

326

Sorption Mechanisms for Mercury Capture in Warm Post-Gasification Gas Clean-Up Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorption MechaniSMS for Mercury Sorption MechaniSMS for Mercury capture in WarM poSt-GaSification GaS clean-up SySteMS Background Power generation systems employing gasification technology must remove a variety of potential air pollutants, including mercury, from the synthetic gas steam prior to combustion. In general, efforts to remove mercury have focused on removal at lower temperatures (under 300 °F). The ability to remove mercury at warm-gas cleanup conditions (300 °F to 700 °F) or in the hot-gas cleanup range (above 1200 °F) would provide plant operators with greater flexibility to choose the treatment method best suited to conditions at their plant. The University of Arizona is investigating the use of paper waste-derived sorbents (PWDS) for the removal of mercury and other trace metals at temperatures in and

327

Modification of Precipitation from Warm CloudsA Review  

Science Conference Proceedings (OSTI)

This review is begun with a brief summary of the current status of our understanding of the physics of precipitation in warm clouds. The impact of warm-cloud precipitation processes on the evolution of the ice phase in supercooled clouds also is ...

William R. Cotton

1982-02-01T23:59:59.000Z

328

Applied engineering on biosystems: the reduction in global warming  

Science Conference Proceedings (OSTI)

This work concerns the problem of decision making in the context of investment allocation in clean technology and in reforestation, aimed at reducing the global warming. In order to model the government actions, fuzzy rules are employed to represent ... Keywords: biosystems modeling, fuzzy control, global warming, optimization, simulation

J. A. M. Felippe de Souza; Marco A. L. Caetano; Douglas F. M. Gherardi; Takashi Yoneyama

2009-11-01T23:59:59.000Z

329

The Abyss of the Nordic Seas Is Warming  

Science Conference Proceedings (OSTI)

Over the past decade, the multiyear oceanographic time series from ocean weather station Mike at 66N, 2E indicate a warming by about 0.01C yr?1 in the deep water of the Norwegian Sea. The time of onset of this warming is depth dependent, ...

Svein sterhus; Tor Gammelsrd

1999-11-01T23:59:59.000Z

330

A Nonlinear Response of Sahel Rainfall to Atlantic Warming  

Science Conference Proceedings (OSTI)

The response over West Africa to uniform warming of the Atlantic Ocean is analyzed using idealized simulations with a regional climate model. With warming of 1 and 1.5 K, rainfall rates increase by 30%50% over most of West Africa. With Atlantic ...

Naresh Neupane; Kerry H. Cook

2013-09-01T23:59:59.000Z

331

A nonlinear response of Sahel rainfall to Atlantic warming  

Science Conference Proceedings (OSTI)

The response over West Africa to uniform warming of the Atlantic Ocean is analyzed using idealized simulations with a regional climate model. With warming of 1 K and 1.5 K, rainfall rates increase by 30-50% over most of West Africa. With Atlantic ...

Naresh Neupane; Kerry H. Cook

332

WOOD FLOORING 1. INTRODUCTION TO WARM AND WOOD FLOORING  

E-Print Network (OSTI)

This chapter describes the methodology used in EPAs Waste Reduction Model (WARM) to estimate streamlined life-cycle greenhouse gas (GHG) emission factors for wood flooring beginning at the waste generation reference point. 1 The WARM GHG emission factors are used to compare the net emissions associated with wood flooring in the following three waste management alternatives: source reduction, combustion, and landfilling.

unknown authors

2012-01-01T23:59:59.000Z

333

WOOD PRODUCTS 1. INTRODUCTION TO WARM AND WOOD PRODUCTS  

E-Print Network (OSTI)

This chapter describes the methodology used in EPAs Waste Reduction Model (WARM) to estimate streamlined life-cycle greenhouse gas (GHG) emission factors for wood products beginning at the point of waste generation. The WARM GHG emission factors are used to compare the net emissions associated with wood products in the following four materials management alternatives: source

unknown authors

2012-01-01T23:59:59.000Z

334

FIBERGLASS INSULATION 1. INTRODUCTION TO WARM AND FIBERGLASS INSULATION  

E-Print Network (OSTI)

This chapter describes the methodology used in EPAs Waste Reduction Model (WARM) to estimate streamlined life-cycle greenhouse gas (GHG) emission factors for fiberglass insulation beginning at the waste generation reference point. 1 The WARM GHG emission factors are used to compare the net emissions associated with fiberglass insulation in the following two waste management alternatives: source reduction and landfilling.

unknown authors

2012-01-01T23:59:59.000Z

335

Natural gas and efficient technologies: A response to global warming  

DOE Green Energy (OSTI)

It has become recognized by the international scientific community that global warming due to fossil fuel energy buildup of greenhouse CO{sub 2} in the atmosphere is a real environmental problem. Worldwide agreement has also been reached to reduce CO{sub 2} emissions. A leading approach to reducing CO{sub 2} emissions is to utilize hydrogen-rich fuels and improve the efficiency of conversion in the power generation, transportation and heating sectors of the economy. In this report, natural gas, having the highest hydrogen content of all the fossil fuels, can have an important impact in reducing CO{sub 2} emissions. This paper explores natural gas and improved conversion systems for supplying energy to all three sectors of the economy. The improved technologies include combined cycle for power generation, the Carnol system for methanol production for the transportation sector and fuel cells for both power generation and transportation use. The reduction in CO{sub 2} from current emissions range from 13% when natural gas is substituted for gasoline in the transportation sector to 45% when substituting methanol produced by the Carnol systems (hydrogen from thermal decomposition of methane reacting with CO{sub 2} from coal-fired power plants) used in the transportation sector. CO{sub 2} reductions exceeding 60% can be achieved by using natural gas in combined cycle for power generation and Carnol methanol in the transportation sector and would, thus, stabilize CO{sub 2} concentration in the atmosphere predicted to avoid undue climate change effects. It is estimated that the total fossil fuel energy bill in the US can be reduced by over 40% from the current fuel bill. This also allows a doubling in the unit cost for natural gas if the current energy bill is maintained. Estimates of the total net incremental replacement capital cost for completing the new improved equipment is not more than that which will have to be spent to replace the existing equipment conducting business as usual.

Steinberg, M.

1998-02-01T23:59:59.000Z

336

Geoengineering: Plan B Remedy for Global Warming Andrew A. Lacis  

NLE Websites -- All DOE Office Websites (Extended Search)

Geoengineering: Plan B Remedy for Global Warming Geoengineering: Plan B Remedy for Global Warming Andrew A. Lacis NASA Goddard Institute for Space Studies Accelerated melting of Greenland ice is a clear indication that consequences of global warming are real and impending. The underlying causes of global warming are well enough understood, but the necessary reduction of greenhouse gases to prevent irreversible climate change is unlikely to happen before the point of no return is reached. To reverse the impending sea level rise, geoengineering counter- measures may be required to counter the current global energy imbalance due to global warming. Of the many proposed remedies, deploying aerosols within the stratosphere offers realistic prospects. Sulfur injections in the lower stratosphere would have the cooling effect of naturally occurring volcanic aerosols. Soot at

337

Greenhouse warming potential of candidate gaseous diffusion plant coolants  

SciTech Connect

A preliminary estimate has been made of the greenhouse warming potential (GWP) of coolants under consideration as substitutes for CFC-114 in the gaseous diffusion plants. Coolants are not at present regulated on the basis of GWP, but may well be in the future. Use of c-C{sub 4}F{sub 8} or n-C{sub 4}F{sub 10} is estimated to have three to four times the greenhouse impact of an equivalent use of CFC-114. Neither of the substitutes, of course, would cause any ozone depletion. HCFC-124 (a probable commercial substitute for CFC-114, but not presently under serious consideration due to its relatively high UF{sub 6} reactivity) would have much less greenhouse and ozone depletion impact than CFC-114. The GWP estimates derive from a simple model that approximately reproduces literature values for similar compounds. The major uncertainty in these estimates lies in the atmospheric lifetime, especially of the perfluorocarbon compounds, for which little reliable information exists. In addition to GWP estimates for coolants, the overall greenhouse impact of the gaseous diffusion plants is calculated, including indirect power-related CO{sub 2} emissions. This result is used to compare greenhouse impacts of nuclear- and coal-produced electricity. 11 refs., 2 figs., 5 tabs.

Trowbridge, L.D.

1991-03-01T23:59:59.000Z

338

Compliance Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at The Dalles Dam, Spring 2011  

Science Conference Proceedings (OSTI)

The study estimated dam passage survival at The Dalles Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and provided additional performance measures as stipulated in the Columbia Basin Fish Accords. This summary report focuses on spring run stocks, yearling Chinook salmon and steelhead.

Skalski, John R.; Townsend, Richard L.; Seaburg, Adam; Johnson, Gary E.; Ploskey, Gene R.; Carlson, Thomas J.

2012-06-12T23:59:59.000Z

339

Compliance Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at The Dales Dam, Spring 2011  

SciTech Connect

The study estimated dam passage survival at The Dalles Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and provided additional performance measures as stipulated in the Columbia Basin Fish Accords. This summary report focuses on spring run stocks, yearling Chinook salmon and steelhead.

Skalski, John R.; Townsend, Richard L.; Seaburg, Adam; Johnson, Gary E.; Ploskey, Gene R.; Carlson, Thomas J.

2012-02-01T23:59:59.000Z

340

The Interaction of Radiative and Dynamical Processes during a Simulated Sudden Stratospheric Warming  

Science Conference Proceedings (OSTI)

An analysis of a spontaneous sudden stratospheric warming that occurred during a 2-year integration of the Langley Research Center Atmospheric Simulation Model is presented. The simulated warming resembles observed wave 1&rdquo warmings in the ...

R. B. Pierce; W. T. Blackshear; W. L. Grose; R. E. Turner; T. D. Fairlie

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm springs power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The Predictability of Stratospheric Warming Events: More from the Troposphere or the Stratosphere?  

Science Conference Proceedings (OSTI)

The roles of the stratosphere and the troposphere in determining the predictability of stratospheric final warming and sudden warming events are evaluated in an idealized atmospheric model. For each stratospheric warming event simulated in the ...

Lantao Sun; Walter A. Robinson; Gang Chen

2012-02-01T23:59:59.000Z

342

Hydrogeology of the Blautopf spring - Tracer tests in Blauhohle cave |  

Open Energy Info (EERE)

Hydrogeology of the Blautopf spring - Tracer tests in Blauhohle cave Hydrogeology of the Blautopf spring - Tracer tests in Blauhohle cave Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hydrogeology of the Blautopf spring - Tracer tests in Blauhohle cave Author Andreas Kucha Published Publisher Not Provided, 2012 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Hydrogeology of the Blautopf spring - Tracer tests in Blauhohle cave Citation Andreas Kucha. Hydrogeology of the Blautopf spring - Tracer tests in Blauhohle cave [Internet]. 2012. [cited 2013/10/17]. Available from: http://www.agw.kit.edu/english/blauhoele_cave.php Retrieved from "http://en.openei.org/w/index.php?title=Hydrogeology_of_the_Blautopf_spring_-_Tracer_tests_in_Blauhohle_cave&oldid=688895"

343

Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Details Activities (5) Areas (2) Regions (0) Abstract: Studies of the geology, geochemistry of thermal waters, and of one exploratory geothermal well show that two related hot spring systems discharge in Canon de San Diego at Soda Dam (48°C) and Jemez Springs (72°C). The hot springs discharge from separate strands of the Jemez fault zone which trends northeastward towards the center of Valles Caldera. Exploration drilling to Precambrian basement beneath Jemez Springs

344

Roosevelt Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area (Redirected from Roosevelt Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Roosevelt Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Heat Source 11 Geofluid Geochemistry 12 NEPA-Related Analyses (0) 13 Exploration Activities (9) 14 References Map: Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Milford, Utah Exploration Region: Northern Basin and Range Geothermal Region

345

NETL: Gasification Systems - Integrated Warm Gas Multicontaminant Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Project Number: DE-FC26-05NT42459 Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Project ID: DE-FC26-05NT42459 Objective: The objective is to develop a warm multi-contaminant syngas cleaning system for operation between 300 and 700° F. This project will continue development of the RTI warm syngas cleanup technology suite. Based on the field testing results with real syngas from Eastman Chemical Company's gasifier under DOE Contract DE-AC26-99FT40675, additional technical issues need to be addressed to move the technologies used in warm syngas cleaning further towards commercial deployment especially for chemical/fuels production. These issues range from evaluation of startup and standby options for the more developed desulfurization processes to integration and actual pilot plant testing with real coal-derived syngas for the technologies that were tested at bench scale during Phase I. Development shall continue of the warm gas syngas cleaning technology platform through a combination of lab-scale R&D and larger integrated pilot plant testing with real coal-derived syngas as well as process/systems analysis and simulation for optimization of integration and intensification.

346

Steamboat Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Steamboat Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Steamboat Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (1) 10 Exploration Activities (14) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.388,"lon":-119.743,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

347

Buildings characterization sampling plan, Weldon Spring Site  

SciTech Connect

The purpose of the Buildings Sampling Plan is to provide a systematic approach to characterizing radiological, asbestos and chemical contamination in and around the buildings and structures at the Weldon Spring Chemical Plant Site (WSCPS). This sampling plan reviews historical information; identifies data needs; and outlines sampling procedures, quality assurance, data documentation and reporting requirements for the buildings and equipment characterization at the Weldon Spring Site (WSS). The scope of this plan is limited to the buildings, structures, and equipment from the previous operation of the WSCPS. The Buildings Sampling Plan is divided into nine sections: introduction, background, data needs and sampling plan objectives, sampling rationale and procedure, sample analysis, quality assurance, data documentation, reporting requirements, and references. The data needs, sampling rationale and procedures and sample analysis sections of this work plan are subdivided into radiological, asbestos and chemical sections. Because different sampling techniques and analyses will be required for radiological, asbestos and chemical contamination, separate subsections are used. The investigations for each contaminant will be conducted independently. Similar historical and descriptive information is repeated in the subsections, but the perspective and information vary slightly. 24 refs., 5 figs., 14 tabs.

Not Available

1988-08-01T23:59:59.000Z

348

Global warming and the future of coal carbon capture and storage  

SciTech Connect

The paper considers how best to change the economic calculus of power plant developers so they internalize CCS costs when selecting new generation technologies. Five policy tools are analyzed: establishing a greenhouse gas cap-and-trade program; imposing carbon taxes; defining CCS systems as a so-called Best Available Control Technology for new power plants under the USA Clean Air Act's New Source Review program; developing a 'low carbon portfolio' standard that requires utilities to provide an increasing proportion of power from low-carbon generation sources over time; and requiring all new coal power plants to meet an 'emission performance' standard that limits CO{sub 2} emissions to levels achievable with CCS systems. Each of these tools has advantages and drawbacks but an emission performance standard for new power plants is likely to be most effective in spurring broad-scale adoption of CCS systems. Chapter headings are: global warming and the future of coal; new coal-fired power plants threaten all other efforts to combat global warming; a potential path to zero emissions through carbon capture and storage; CO{sub 2} capture at coal plants: the promise of IGCC and other technologies; barriers to commercialization of IGCC technology; crossing the chasm: a new policy framework to push ccs implementation forward; encouraging CCS systems with carbon caps and trading programs; using the existing Clean Air Act to require CCS systems for new coal plants; retail low carbon portfolio standard; carbon tax; emission performance standards for new coal power plants; and conclusions. 16 figs.

Ken Berlin; Robert M. Sussman [Skadden Arps, Slate, Meagher and Flom (United States)

2007-05-15T23:59:59.000Z

349

Understanding The Chena Hot Springs, Alaska, Geothermal System Using  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Understanding The Chena Hot Springs, Alaska, Geothermal System Using Temperature And Pressure Data From Exploration Boreholes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Understanding The Chena Hot Springs, Alaska, Geothermal System Using Temperature And Pressure Data From Exploration Boreholes Details Activities (7) Areas (1) Regions (0) Abstract: Chena Hot Springs is a small, moderate temperature, deep circulating geothermal system, apparently typical of those associated to hot springs of interior Alaska. Multi-stage drilling was used in some

350

Under Steamboat Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Under Steamboat Springs Geothermal Area Under Steamboat Springs Geothermal Area (Redirected from Under Steamboat Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Under Steamboat Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure

351

Multispectral Imaging At Pilgrim Hot Springs Area (Prakash, Et...  

Open Energy Info (EERE)

Up Search Page Edit History Facebook icon Twitter icon Multispectral Imaging At Pilgrim Hot Springs Area (Prakash, Et Al., 2010) Jump to: navigation, search GEOTHERMAL...

352

Aerial Photography At Pilgrim Hot Springs Area (Prakash, Et Al...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Pilgrim Hot Springs Area (Prakash, Et Al., 2010) Exploration Activity Details Location...

353

Data Acquisition-Manipulation At Lake City Hot Springs Area ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Lake City Hot Springs Area (Warpinski, Et Al., 2004)...

354

Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck,...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck, 1983) Jump to: navigation,...

355

Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck, 1983) Exploration Activity...

356

Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983) Jump to: navigation, search...

357

Pagosa Springs Private Wells Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Pagosa Springs Private Wells Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa...

358

Motor Gasoline Assessment Spring 1997 - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

DOE/EIA-0613 July 1997 Motor Gasoline Assessment Spring 1997 Energy Information Administration Washington, DC 20585 This report was prepared by the Energy Information ...

359

Pagosa Springs District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low Temperature Geothermal...

360

Office of Indian Energy Newsletter: Spring 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring 2013 Spring 2013 Office of Indian Energy Newsletter: Spring 2013 Indian Energy Beat: News on Actions to Accelerate Energy Development in Indian Country Spring 2013 Issue: Federal Technical Assistance Aims to Accelerate Tribal energy Project Deployment Message from the Director Indian Country Energy Roundup: Conferences and Webinars Sharing Knowledge: Renewable Energy Technical Potential on Tribal Lands Winning the Future: Strategic Planning Opens Doors for Isolated Alaskan Village Building Bridges: NANA Regional Corporation Collaborates to Help Alaska Natives Tackle Energy Challenges Opening Doors Webinar Series Addresses Top Tribal Energy Development Considerations Education Program Helps Tribes Prepare for Energy Projects Leading the Charge: Bright Skies Ahead for Moapa

Note: This page contains sample records for the topic "warm springs power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Sulphur Springs Valley EC- Residential Energy Efficiency Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

Sulphur Springs Valley Electric Cooperative (SSVEC) is a Touchstone Energy Cooperative. SSVEC offers the Member Loan Program to residential customers to improve the energy efficiency of eligible...

362

Colorado Springs Utilities- Commercial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The Colorado Springs Utilities (CSU) Business Energy and Water Efficiency Rebate Program offers a variety of incentives to business customers who upgrade evaporative cooling, HVAC, irrigation,...

363

Former Worker Medical Screening Program - Weldon Spring Plant...  

NLE Websites -- All DOE Office Websites (Extended Search)

Weldon Spring Plant Former Construction Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medical Screening Program Covered DOE Site:...

364

Fuel Cell Vehicle Learning Demonstration: Spring 2007 Results (Presentation)  

DOE Green Energy (OSTI)

This presentation provides the results, as of Spring 2007, for the fuel cell vehicle learning demonstration conducted by the National Renewable Energy Laboratory.

Wipke, K.; Sprik, S.; Thomas, H.; Welch, C.; Gronich, S.; Garbak, J.

2007-03-20T23:59:59.000Z

365

Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen, Et Al., 1993)...

366

Thermal Gradient Holes At Pilgrim Hot Springs Area (DOE GTP)...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Pilgrim Hot Springs Area (DOE GTP) Exploration Activity Details...

367

Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration...

368

Thermal Gradient Holes At Spencer Hot Springs Area (Shevenell...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Spencer Hot Springs Area (Shevenell, Et Al., 2008) Exploration...

369

Chemistry Of Thermal And Nonthermal Springs In The Vicinity Of...  

Open Energy Info (EERE)

Chemistry Of Thermal And Nonthermal Springs In The Vicinity Of Lassen Volcanic National Park Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Chemistry...

370

Pilgrim Hot Springs Project - PHASE 1 | Open Energy Information  

Open Energy Info (EERE)

2012 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Pilgrim Hot Springs Project - PHASE 1 Citation Alaska Energy Wiki. Pilgrim...

371

Hydrogeology of the Blautopf spring - Tracer tests in Blauhohle...  

Open Energy Info (EERE)

2012 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Hydrogeology of the Blautopf spring - Tracer tests in Blauhohle cave...

372

Ground Gravity Survey At Under Steamboat Springs Area (Warpinski...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Under Steamboat Springs Area (Warpinski, Et Al., 2002) Exploration Activity...

373

Ground Gravity Survey At Lake City Hot Springs Area (Warpinski...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration Activity...

374

Ground Gravity Survey At Under Steamboat Springs Area (Warpinski...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Under Steamboat Springs Area (Warpinski, Et Al., 2004) Exploration Activity...

375

Ground Gravity Survey At Baltazor Hot Springs Area (Isherwood...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Baltazor Hot Springs Area (Isherwood & Mabey, 1978) Exploration Activity...

376

Goddard Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Area: Goddard Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field...

377

GeoSprings Hybrid Water Heater - Energy Innovation Portal  

The GeoSpring Hybrid Water Heater creates the same amount of hot water as a traditional electric ... Hydrogen and Fuel Cell; Hydropower, Wave and ...

378

Weldon Spring Federal Facility Agreement, January 28, 1992 Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weldon Spring Site Agreement Name First Amended Federal Facility Agreement Cercla-VII-85- F-0057 State Missouri Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA...

379

Big Spring, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Congressional Districts by Places. Retrieved from "http:en.openei.orgwindex.php?titleBigSpring,Texas&oldid227777" Categories: Places Stubs Cities What links here Related...

380

Big Springs, Nebraska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Congressional Districts by Places. Retrieved from "http:en.openei.orgwindex.php?titleBigSprings,Nebraska&oldid227778" Categories: Places Stubs Cities What links here...

Note: This page contains sample records for the topic "warm springs power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Self Potential At Dixie Hot Springs Area (Combs 2006) | Open...  

Open Energy Info (EERE)

Springs Area Exploration Technique Self Potential Activity Date Usefulness not indicated DOE-funding Unknown Notes "MT, EM sounding, SP?; SP data and reservoir model may be...

382

Fuel Cell Vehicle Learning Demonstration: Spring 2008 Results (Presentation)  

DOE Green Energy (OSTI)

Presentation prepared for the 2008 National Hydrogen Association Conference that describes the spring 2008 results for DOE's Fuel Cell Vehicle Learning Demonstration.

Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

2008-04-02T23:59:59.000Z

383

Seismic baseline and induction studies- Roosevelt Hot Springs...  

Open Energy Info (EERE)

Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and Raft River, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Seismic baseline and...

384

Sulphur Springs Valley EC - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate Sulphur Springs Valley EC - Residential Energy Efficiency Rebate Eligibility Residential Savings For Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances &...

385

Spring Green, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Spring Green, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia...

386

Green Cove Springs, Florida: Energy Resources | Open Energy Informatio...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Green Cove Springs, Florida: Energy Resources Jump to: navigation, search Equivalent URI...

387

Green Spring, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Green Spring, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia...

388

Green Springs, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Green Springs, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia...

389

Fairmont Hot Springs Resort Pool & Spa Low Temperature Geothermal...  

Open Energy Info (EERE)

Fairmont Hot Springs Resort Sector Geothermal energy Type Pool and Spa Location Anaconda, Montana Coordinates 46.1285369, -112.9422641 Loading map......

390

Modeling-Computer Simulations At Valles Caldera - Sulphur Springs...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Valles Caldera - Sulphur Springs Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

391

Modeling-Computer Simulations At Valles Caldera - Sulphur Springs...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Valles Caldera - Sulphur Springs Area (Roberts, Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

392

Water Sampling At Valles Caldera - Sulphur Springs Area (Rao...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Sulphur Springs Area (Rao, Et Al., 1996) Exploration...

393

Fuel Cell Vehicle Learning Demonstration: Spring 2008 Results; Preprint  

DOE Green Energy (OSTI)

Conference paper presented at the 2008 National Hydrogen Association Meeting that describes the spring, 2008 results of the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project.

Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

2008-04-01T23:59:59.000Z

394

,"Highgate Springs, VT Natural Gas Pipeline Imports From Canada...  

U.S. Energy Information Administration (EIA) Indexed Site

Highgate Springs, VT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","L...

395

Geochemistry And Geothermometry Of Spring Water From The Blackfoot...  

Open Energy Info (EERE)

And Geothermometry Of Spring Water From The Blackfoot Reservoir Region, Southeastern Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article:...

396

Direct-Current Resistivity Survey At Beowawe Hot Springs Area...  

Open Energy Info (EERE)

Activity Details Location Beowawe Hot Springs Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown References Sabodh...

397

Geothermal Literature Review At Breitenbush Hot Springs Area...  

Open Energy Info (EERE)

Exploration Activity Details Location Breitenbush Hot Springs Area Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown...

398

Grande Ronde Endemic Spring Chinook Project - ODFW, 2008 Annual Report.  

DOE Green Energy (OSTI)

Core activities of the Grande Ronde Endemic Spring Chinook Supplementation Program (GRESCSP) are funded through the authority of the Lower Snake River Fish and Wildlife Compensation Plan (LSRCP). The LSRCP program was approved by the Water Resources Development Act of 1976, PL 94-587, Section 102, 94th Congress substantially in accordance with the Special Report, LSRCP, June 1975 on file with the Chief of Engineers. The LSRCP was prepared and submitted in compliance with the Fish and Wildlife Coordination Act of 1958, PL 85-624, 85th Congress, August 12, 1958 to mitigate for the losses of fish and wildlife caused by the construction of dams on lower Snake River. The GRESCSP is an artificial propagation program that was initiated by Bonneville Power Administrations Fish and Wildlife program in the mid 1990's. The intent of this program was to change the mitigation aspect of the LSRCP program (harvest mitigation) to an integrated supplementation program; inasmuch as, hatchery produced fish could be experimentally used as a recovery tool and fish surplus to mitigation would be available for in-place and in-kind harvest. Fish production is still authorized by the LSRCP with the original mitigation return goal of 5,860 adult spring Chinook to the project area. The GRESCSP was developed with two primary components: (1) conventional broodstock (projects 199800702; 199800703; 199800704) and (2) captive brood (projects 199801001; 199801006). The GRESCSP relies on cooperative M&E efforts from the LSRCP including setting aside the Wenaha and Minam tributaries as natural production reserves components used for reference streams. The GRESCSP, coordinated with federal and tribal partners, identifies production levels for both propagation components and weir management strategies for each of the three supplemented tributary areas within the Grande Ronde Sub-basin. The three supplemented areas are Catherine Creek, Lostine River, and upper Grande Ronde River. Lookingglass Creek, an extirpated area, will be stocked (smolts and adults) with Catherine Creek origin salmon to initiate natural production in unseeded habitat, and to initiate future harvest opportunities. The current production levels have been incorporated into the U.S. v. Oregon Interim Management Agreement. The purpose of this contract is to integrate Bonneville Power Administration (BPA) efforts with the Lower Snake River Compensation Plan (LSRCP) program utilizing Lookingglass Hatchery as the primary rearing facility. BPA constructed an adult holding and spawning structure on the hatchery grounds; however, maintenance of this infrastructure was discontinued due to funding limitation and transferred to the LSRCP program in 2007. These integrated efforts focus on holding and spawning adults, rearing juveniles, fish health, and monitoring natural production (Redd counts) for Catherine Creek, Lostine River, and Upper Grande Ronde stocks.

Patterson, Scott

2009-04-10T23:59:59.000Z

399

More power from hydro  

Science Conference Proceedings (OSTI)

Utilities are striving to upgrade the already impressive performance of hydroelectric plants at a reasonable cost. The Electric Power Research Institute (EPRI) solicited utility industry feedback on what kinds of improvements to pursue, with forced outages, scheduled outages, plant efficiency, and new equipment reliability ranking as top candidates. Innovative approaches to operation and maintenance are springing up, but more effective channels for sharing technical information are neeeded. 7 references, 2 figures, 1 table.

Lihach, N.; Birk, J.; Sullivan, C.

1984-03-01T23:59:59.000Z

400

Warm Weather and the Daily Commute | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Warm Weather and the Daily Commute Warm Weather and the Daily Commute Warm Weather and the Daily Commute May 7, 2013 - 12:02pm Addthis Biking to work helps you get some exercise while reducing your carbon footprint. | Photo courtesy of iStockphoto.com/olaser Biking to work helps you get some exercise while reducing your carbon footprint. | Photo courtesy of iStockphoto.com/olaser Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? Check out options for busing or carpooling in your area or, if you live close, try walking or biking to work. You know the weather is starting to warm up when you start hearing about those "bike, bus, or walk to work" challenges. And while my local news just started drumming up publicity for theirs, I've seen these events pop up in

Note: This page contains sample records for the topic "warm springs power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The Sensitivity of Mountain Snowpack Accumulation to Climate Warming  

Science Conference Proceedings (OSTI)

Controls on the sensitivity of mountain snowpack accumulation to climate warming (?S) are investigated. This is accomplished using two idealized, physically based models of mountain snowfall to simulate snowpack accumulation for the Cascade ...

Justin R. Minder

2010-05-01T23:59:59.000Z

402

Successive Modulation of ENSO to the Future Greenhouse Warming  

Science Conference Proceedings (OSTI)

The multidecadal modulation of the El NioSouthern Oscillation (ENSO) due to greenhouse warming has been analyzed herein by means of diagnostics of Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) coupled general ...

Soon-Il An; Jong-Seong Kug; Yoo-Geun Ham; In-Sik Kang

2008-01-01T23:59:59.000Z

403

Mechanisms of Remote Tropical Surface Warming during El Nio  

Science Conference Proceedings (OSTI)

The authors demonstrate through atmospheric general circulation model (the Community Climate Model version 3.10) simulations of the 1997/98 El Nio that the observed remote (i.e., outside the Pacific) tropical land and ocean surface warming ...

John C. H. Chiang; Benjamin R. Lintner

2005-10-01T23:59:59.000Z

404

Are You Keeping Warm This Winter? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Are You Keeping Warm This Winter? Are You Keeping Warm This Winter? Are You Keeping Warm This Winter? January 23, 2013 - 4:33pm Addthis An efficient heater can save money and energy while keeping you warmer. | Photo by Dennis Schroeder, NREL 20288. An efficient heater can save money and energy while keeping you warmer. | Photo by Dennis Schroeder, NREL 20288. Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? Get an energy audit and learn about your heating options to warm your home while saving money. Last week, I turned on the weather forecast to find that the entire central United States was hovering somewhere between 5 and 20 degrees. Talk about frigid! I've lived all over the country, and I know how incredibly miserable it is to do anything when the high barely ekes above 0 degrees

405

Building Energy Software Tools Directory: AkWarm  

NLE Websites -- All DOE Office Websites (Extended Search)

AkWarm AkWarm AkWarm logo. Innovative, user-friendly, Windows-based software for home energy modeling. AkWarm is designed for weatherization assessment and the EPA Energy Star Home energy rating program. Features include: Graphical display of energy use by building component, improvement options analysis, design heat load, calculates CO2 emissions, and shows code compliance. Utility, weather data, and other libraries are maintained in a database library for easy updating. A separate database is available to archive all input and output data for detailed analysis of housing types, trends, amd energy use. Keywords home energy rating systems, home energy, residential modeling, weatherization Validation/Testing N/A Expertise Required Basic understanding of building construction, with a minimal level of

406

Are You Keeping Warm This Winter? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Are You Keeping Warm This Winter? Are You Keeping Warm This Winter? Are You Keeping Warm This Winter? January 23, 2013 - 4:33pm Addthis An efficient heater can save money and energy while keeping you warmer. | Photo by Dennis Schroeder, NREL 20288. An efficient heater can save money and energy while keeping you warmer. | Photo by Dennis Schroeder, NREL 20288. Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? Get an energy audit and learn about your heating options to warm your home while saving money. Last week, I turned on the weather forecast to find that the entire central United States was hovering somewhere between 5 and 20 degrees. Talk about frigid! I've lived all over the country, and I know how incredibly miserable it is to do anything when the high barely ekes above 0 degrees

407

Warm coats, big thanks | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Community / Warm coats, big thanks Community / Warm coats, big thanks Warm coats, big thanks Posted: January 9, 2014 - 2:23pm Over the last 12 years, Y-12ers have donated almost 7000 coats, sweaters and other winter wear to the Volunteer Ministry Center. As East Tennessee faces the coldest temperatures seen in a long while, Y-12ers have shown their volunteer spirit for the twelfth straight year by helping countless people stay warm thanks to another successful United Way Coat Drive to benefit the Volunteer Ministry Center. In total, the site donated 589 coats and winter wear items, 64 pairs of gloves, 47 scarves, and 66 hats and toboggans, which VMC makes available to the public through its Knoxville office. In addition, this year's efforts were expanded to include collection of toiletries for VMC. Y-12 collected more than 20 copy paper boxes full of

408

Wildfires may contribute more to global warming than previously predicted  

NLE Websites -- All DOE Office Websites (Extended Search)

Wildfires may contribute more to global warming Wildfires may contribute more to global warming Wildfires may contribute more to global warming than previously predicted They suggest that fire emissions could contribute a lot more to the observed climate warming than current estimates show. July 9, 2013 Haze of smoke emanating from the 2011 Las Conchas, NM fire. Haze of smoke emanating from the 2011 Las Conchas, NM fire. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "The fact that we are experiencing more fires and that climate change may increase fire frequency underscores the need to include these specialized particles in the computer models, and our results show how this can be done," Dubey said. Particle analysis shows "tar ball" effect is significant LOS ALAMOS, N.M., July 9, 2013-Wildfires produce a witch's brew of

409

Wildfires may contribute more to global warming than previously predicted  

NLE Websites -- All DOE Office Websites (Extended Search)

Wildfires may contribute more to global warming Wildfires may contribute more to global warming Wildfires may contribute more to global warming than previously predicted They suggest that fire emissions could contribute a lot more to the observed climate warming than current estimates show. July 9, 2013 Haze of smoke emanating from the 2011 Las Conchas, NM fire. Haze of smoke emanating from the 2011 Las Conchas, NM fire. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "The fact that we are experiencing more fires and that climate change may increase fire frequency underscores the need to include these specialized particles in the computer models, and our results show how this can be done," Dubey said. Particle analysis shows "tar ball" effect is significant LOS ALAMOS, N.M., July 9, 2013-Wildfires produce a witch's brew of

410

Warm Conveyor Belts in Idealized Moist Baroclinic Wave Simulations  

Science Conference Proceedings (OSTI)

This idealized modeling study of moist baroclinic waves addresses the formation of moist ascending airstreams, so-called warm conveyor belts (WCBs), their characteristics, and their significance for the downstream flow evolution. Baroclinic wave ...

Sebastian Schemm; Heini Wernli; Lukas Papritz

2013-02-01T23:59:59.000Z

411

A global warming forum: Scientific, economic, and legal overview  

SciTech Connect

A Global Warming Forum covers in detail five general subject areas aimed at providing first, the scientific background and technical information available on global warming and second, a study and evaluation of the role of economic, legal, and political considerations in global warming. The five general topic areas discussed are the following: (1) The role of geophysical and geoengineering methods to solve problems related to global climatic change; (2) the role of oceanographic and geochemical methods to provide evidence for global climatic change; (3) the global assessment of greenhouse gas production including the need for additional information; (4) natural resource management needed to provide long-term global energy and agricultural uses; (5) legal, policy, and educational considerations required to properly evaluate global warming proposals.

Geyer, R.A. (ed.)

1993-01-01T23:59:59.000Z

412

Influence of Stratospheric Sudden Warming on AIRS Midtropospheric CO2  

Science Conference Proceedings (OSTI)

Midtropospheric CO2 retrievals from the Atmospheric Infrared Sounder (AIRS) were used to explore the influence of stratospheric sudden warming (SSW) on CO2 in the middle to upper troposphere. To choose the SSW events that had strong coupling ...

Xun Jiang; Jingqian Wang; Edward T. Olsen; Thomas Pagano; Luke L. Chen; Yuk L. Yung

2013-08-01T23:59:59.000Z

413

Modeling the Impact of Warming in Climate Change Economics  

E-Print Network (OSTI)

Any economic analysis of climate change policy requires some model that describes the impact of warming on future GDP and consumption. Most integrated assessment models (IAMs) relate temperature to the level of real GDP ...

Pindyck, Robert S.

414

Rapid Development of the Tropical Cyclone Warm Core  

Science Conference Proceedings (OSTI)

This paper presents a simple theoretical argument to isolate the conditions under which a tropical cyclone can rapidly develop a warm-core thermal structure and subsequently approach a steady state. The theoretical argument is based on the ...

Jonathan L. Vigh; Wayne H. Schubert

2009-11-01T23:59:59.000Z

415

On the Height of the Warm Core in Tropical Cyclones  

Science Conference Proceedings (OSTI)

The warm-core structure of tropical cyclones is examined in idealized simulations using the Weather Research and Forecasting (WRF) Model. The maximum perturbation temperature in a control simulation occurs in the midtroposphere (56 km), in ...

Daniel P. Stern; David S. Nolan

2012-05-01T23:59:59.000Z

416

Greenhouse Warming: Is the Mid-Holocene a Good Analogue?  

Science Conference Proceedings (OSTI)

The mid-Holocene period (from approximately 9000 to 6000 years before present) is often suggested as an analogue for enhanced greenhouse warming. The changes in net radiative forcing at the top of the atmosphere are very different; increases in ...

John F. B. Mitchell

1990-11-01T23:59:59.000Z

417

Sudden Stratospheric Warming and Anomalous U.S. Weather  

Science Conference Proceedings (OSTI)

Severe distortion of tropospheric circulation is associated with major sudden stratospheric warming (SSW) events. This distortion consisting primarily of weakening of smaller-scale synoptic mats and development of strong blocking activity, is ...

James P. McGuirk; Donald A. Douglas

1988-01-01T23:59:59.000Z

418

Warm Rain Study in HawaiiRain Initiation  

Science Conference Proceedings (OSTI)

More than 300 hours of aircraft flights were conducted in Hawaii from 1977 to 1979 to study precipitation mechanisms in warm rain. Airborne instruments were used to measure drop size distributions over the size range from cloud droplets to ...

Tsutomu Takahashi

1981-02-01T23:59:59.000Z

419

Supervised Learning Approaches to Classify Sudden Stratospheric Warming Events  

Science Conference Proceedings (OSTI)

Sudden stratospheric warmings are prominent examples of dynamical wavemean flow interactions in the Arctic stratosphere during Northern Hemisphere winter. They are characterized by a strong temperature increase on time scales of a few days and a ...

Christian Blume; Katja Matthes; Illia Horenko

2012-06-01T23:59:59.000Z

420

Small-Scale Variability in Warm Continental Cumulus Clouds  

Science Conference Proceedings (OSTI)

We have analyzed small-scale fluctuations in microphysical, dynamical and thermodynamical parameters measured in two warm cumulus clouds during the Cooperative Convective Precipitation Experiment (CCOPE) project (1981) in light of predictions of ...

P. H. Austin; M. B. Baker; A. M. Blyth; J. B. Jensen

1985-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm springs power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A 15-Year Climatology of Warm Conveyor Belts  

Science Conference Proceedings (OSTI)

This study presents the first climatology of so-called warm conveyor belts (WCBs), strongly ascending moist airstreams in extratropical cyclones that, on the time scale of 2 days, rise from the boundary layer to the upper troposphere. The ...

Sabine Eckhardt; Andreas Stohl; Heini Wernli; Paul James; Caroline Forster; Nicole Spichtinger

2004-01-01T23:59:59.000Z

422

Global Warming Shifts the Monsoon Circulation, Drying South Asia  

Science Conference Proceedings (OSTI)

Monsoon rainfall over South Asia has decreased during the last 5 to 6 decades according to several sets of observations. Although sea surface temperature (SST) has risen across the Indo-Pacific warm pool during this period, the expected ...

H. Annamalai; Jan Hafner; K. P. Sooraj; P. Pillai

2013-05-01T23:59:59.000Z

423

Regulation of Moist Convection over the West Pacific Warm Pool  

Science Conference Proceedings (OSTI)

The mechanisms that regulate moist convection over the warm tropical oceans are not well understood. One school of thought holds that convection is caused by the convergence of moisture, which in turn is produced by an independent dynamical ...

David J. Raymond

1995-11-01T23:59:59.000Z

424

Definition: Warm or Steaming Ground | Open Energy Information  

Open Energy Info (EERE)

heat is conducted to the earth's surface, warming the ground and sometimes causing steam to form when water is present. Ret LikeLike UnlikeLike You like this.Sign Up to see...

425

Warming and Freshening in the Abyssal Southeastern Indian Ocean  

Science Conference Proceedings (OSTI)

Warming and freshening of abyssal waters in the eastern Indian Ocean between 1994/95 and 2007 are quantified using data from two closely sampled high-quality occupations of a hydrographic section extending from Antarctica northward to the ...

Gregory C. Johnson; Sarah G. Purkey; John L. Bullister

2008-10-01T23:59:59.000Z

426

Monitoring Global Climate Change: The Case of Greenhouse Warming  

Science Conference Proceedings (OSTI)

Recent record high temperatures and drought conditions in many regions of the United States have prompted heightened concern about whether these are early manifestations of the global green house warming projected by the major climate models. An ...

Fred B. Wood

1990-01-01T23:59:59.000Z

427

Mechanisms Affecting the Overturning Response in Global Warming Simulations  

Science Conference Proceedings (OSTI)

Climate models used to produce global warming scenarios exhibit widely diverging responses of the thermohaline circulation (THC). To investigate the mechanisms responsible for this variability, a regional Atlantic Ocean model driven with forcing ...

U. Schweckendiek; J. Willebrand

2005-12-01T23:59:59.000Z

428

Cloud Clusters and Superclusters over the Oceanic Warm Pool  

Science Conference Proceedings (OSTI)

Infrared satellite images of the oceanic warm-pool region (8OE-160W) have been objectively processed to reveal tropical cloud clusters with temperature colder than a given threshold. Cloud clusters span a somewhat lognormal distribution of ...

Brain E. Mapes; Robert A. Houze Jr.

1993-05-01T23:59:59.000Z

429

Long-Term Evolution of Elongated Warm Eddies  

Science Conference Proceedings (OSTI)

The purpose of this research is to investigate the evolution of elongated warm eddies. A shallow-water, reduced-gravity, primitive equation model is used to perform a multicase numerical experiment, which includes vortices of very different ...

Edgar G. Pava; Manuel Lpez

1994-10-01T23:59:59.000Z

430

Warm-Air Intrusions in Arizonas Meteor Crater  

Science Conference Proceedings (OSTI)

Episodic nighttime intrusions of warm air, accompanied by strong winds, enter the enclosed near-circular Meteor Crater basin on clear, synoptically undisturbed nights. Data analysis is used to document these events and to determine their spatial ...

Bianca Adler; C. David Whiteman; Sebastian W. Hoch; Manuela Lehner; Norbert Kalthoff

2012-06-01T23:59:59.000Z

431

Does Global Warming Cause Intensified Interannual Hydroclimate Variability?  

Science Conference Proceedings (OSTI)

The idea that global warming leads to more droughts and floods has become commonplace without clear indication of what is meant by this statement. Here, the authors examine one aspect of this problem and assess whether interannual variability of ...

Richard Seager; Naomi Naik; Laura Vogel

2012-05-01T23:59:59.000Z

432

The Dynamics of Northern Hemisphere Stratospheric Final Warming Events  

Science Conference Proceedings (OSTI)

A lag composite analysis is performed of the zonal-mean structure and dynamics of Northern Hemisphere stratospheric final warming (SFW) events. SFW events are linked to distinct zonal wind deceleration signatures in the stratosphere and ...

Robert X. Black; Brent A. McDaniel

2007-08-01T23:59:59.000Z

433

Mesoscale Predictability of an Extreme Warm-Season Precipitation Event  

Science Conference Proceedings (OSTI)

A mesoscale model is used to investigate the mesoscale predictability of an extreme precipitation event over central Texas on 29 June 2002 that lasted through 7 July 2002. Both the intrinsic and practical aspects of warm-season predictability, ...

Fuqing Zhang; Andrew M. Odins; John W. Nielsen-Gammon

2006-04-01T23:59:59.000Z

434

Interpretation of Simulated Global Warming Using a Simple Model  

Science Conference Proceedings (OSTI)

A simple energy balance model with two parameters, an effective heat capacity and an effective climate sensitivity, is used to interpret six GCM simulations of greenhouse gasinduced global warming. By allowing the parameters to vary in time, the ...

I. G. Watterson

2000-01-01T23:59:59.000Z

435

Inferences of Predictability Associated with Warm Season Precipitation Episodes  

Science Conference Proceedings (OSTI)

Herein preliminary findings are reported from a radar-based climatology of warm season precipitation episodes. Episodes are defined as timespace clusters of heavy precipitation that often result from sequences of organized convection such as ...

R. E. Carbone; J. D. Tuttle; D. A. Ahijevych; S. B. Trier

2002-07-01T23:59:59.000Z

436

Diurnal Variations of Warm-Season Precipitation over Northern China  

Science Conference Proceedings (OSTI)

This study examines the diurnal variations of the warm-season precipitation over northern China using the high-resolution precipitation products obtained from the Climate Prediction Centers morphing technique (CMORPH) during MayAugust of 2003...

Huizhong He; Fuqing Zhang

2010-04-01T23:59:59.000Z

437

Physics of Greenhouse Effect and Convection in Warm Oceans  

Science Conference Proceedings (OSTI)

Sea surface temperature (SST) in roughly 50% of the tropical Pacific Ocean is warm enough (SST > 300 K) to permit deep convection. This paper examines the effects of deep convection on the climatological mean vertical distributions of water vapor ...

A. K. Inamdar; V. Ramanathan

1994-05-01T23:59:59.000Z

438

Probing warm dense lithium by inelastic X-ray scattering  

E-Print Network (OSTI)

-26000, NWFP, Pakistan 9 Institut f¨ur Kernphysik, Technische Universit¨at Darmstadt, Schlo?gartenstr. 9-temperature superconductors and nuclear matter1 . Warm dense matter, defined by temperatures of a few electron volts

Loss, Daniel

439

Microsoft Word - Spring-Chinook_CX_6.28.11.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 21, 2011 July 21, 2011 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Patricia Smith Project Manager - KEWL-4 Proposed Action: Small-scale spring Chinook and coho reintroduction Fish and Wildlife Project No.: 1995-063-25 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.20 Small-scale activities undertaken to protect, restore, or improve fish and wildlife habitat, fish passage facilities (such as fish ladders or minor diversion channels), or fisheries. Location: Cle Elum, Yakima County, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to allow the use of excess Cle Elum Hatchery supplementation line (S-line) spring Chinook adults and coho adults in a reintroduction

440

Microsoft Word - CX-SpringCreek-WineCountry-TowerRelocationFY13_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 29, 2012 November 29, 2012 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Justin Estes Project Manager - TELM-TPP-3 Proposed Action: Spring Creek - Wine County No. 1 Transmission Tower Relocation Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6 Additions and modifications to transmission facilities Location: Multnomah County, OR Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA is proposing to relocate one transmission tower, located on private agricultural land, which has been damaged by farm equipment. Currently, tower 29/3 on BPA's Spring Creek - Wine Country No. 1 transmission line, resides on an agricultural access road that is bordered on both sides by active agricultural fields. This

Note: This page contains sample records for the topic "warm springs power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Microsoft Word - Spring Creek Final Draft CX 7-15-2013.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2013 6, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Cecilia Brown Project Manager - KEWM-4 Proposed Action: Spring Creek Property funding Fish and Wildlife Project No. and Contract No.: 2002-003-00, BPA-007168 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Real property transfers for cultural resources protection, habitat preservation, and wildlife management Location: Township 17 North, Range 20 West, Section 26, Lake County, MT Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to fund the Salish and Kootenai Tribes for the purchase of 10 acres of property, referred to as the Spring Creek Land Acqusition in Lake

442

Microsoft Word - CX-HotSpringsGravityDrainsFY12_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REPLY TO ATTN OF: KEPR-Bell-1 SUBJECT: Environmental Clearance Memorandum Todd Nicholson Project Manager - TELF-TPP-3 Proposed Action: Install gravity drain system and oil stop valves, reshape west side perimeter ditch and flush out yard drains at the Hot Springs Substation. PP&A Project No.: 2383 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6, Additions and modifications to transmission facilities Location: T21N, R24W, S14, PM, Sanders County, Montana Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: Using directional drilling equipment, approximately 3,644 linear feet of gravity drain line will be installed under the existing electrical manhole system located in the Hot Springs Substation 230 and 500 Kilovolt (kV) yards. Each manhole

443

DOE/EIS-0340; Grand Ronde … Imnaha Spring Chinook Hatchery Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 NORTHEAST OREGON HATCHERY PROGRAM GRANDE RONDE - IMNAHA SPRING CHINOOK HATCHERY PROJECT DOE/EIS-0340 Draft Environmental Impact Statement Northeast Oregon Hatchery Program Grande Ronde - Imnaha Spring Chinook Hatchery Project Draft Environmental Impact Statement (DOE/EIS-0340) Responsible Agency: U.S. Department of Energy, Bonneville Power Administration (BPA) Cooperating Federal Agencies: U.S. Department of Interior, Fish and Wildlife Service (USFWS); U.S. Department of Commerce, National Oceanic and Atmospheric Administration National Marine Fisheries Service (NOAA Fisheries); U.S. Department of Agriculture, Forest Service Cooperating Tribes: Nez Perce Tribe (NPT), Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Cooperating State Agencies: Oregon Department of Fish and Wildlife (ODFW)

444

Microsoft Word - CX-Marion and Sand Springs Substation Towers Revised.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

KEC-4 KEC-4 SUBJECT: Environmental Clearance Memorandum Dave Tripp Project Manager - TEP-CSB-1 Proposed Action: Marion and Sand Springs Substations Radio Tower Projects Budget Information: Work Orders 00243411 and 00243190; Task 3 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.19 Siting, construction, and operation of microwave and radio communication towers and associated facilities... Location: Marion and Deschutes counties, Oregon Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to install new radio towers at the Marion Substation and Sand Springs Substation communication sites in Oregon. BPA must vacate radio frequencies in the 1710-1755MHz band to comply with a Federal law mandating reallocation of

445

Tucannon River Spring Chinook Captive Broodstock Program Final Environmental Assessment and Finding of No Significant Impact  

SciTech Connect

Bonneville Power Administration (BPA) is proposing to fund the Tucannon River Spring Chinook Captive Broodstock Program, a small-scale production initiative designed to increase numbers of a weak but potentially recoverable population of spring chinook salmon in the Tucannon River in the State of Washington. BPA has prepared an Environmental Assessment (EA) (DOE/EA-l326) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and BPA is issuing this Finding of No Significant Impact (FONSI).

N /A

2000-05-24T23:59:59.000Z

446

Microsoft Word - FEIS-0285-SA-450-Flathead-HotSpringsNo1_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2011 6, 2011 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS- 0285/SA-450- Flathead-Hot Springs Transmission Line Corridor) Project No. PP&A 2084 Joe Johnson Natural Resource Specialist - TFS/Kalispell Proposed Action: Vegetation Management along the Flathead-Hot Springs #1 230-kV transmission line corridor right-of-way (ROW) Location: The project is located in Flathead, Lake and Sanders counties, Montana. Proposed by: Bonneville Power Administration (BPA) Description of the Proposal: BPA proposes to remove tall growing and noxious vegetation from the ROW, structure sites and access roads that can potentially interfere with the operation, maintenance, and reliability of the transmission line. All vegetation management activities will

447

Silver Spring Networks | Open Energy Information  

Open Energy Info (EERE)

Networks Networks Jump to: navigation, search Name Silver Spring Networks Address 575 Broadway Street Place Redwood City, California Zip 94063 Sector Efficiency Product Energy efficiency Website http://www.silverspringnetwork Coordinates 37.4858629°, -122.2067269° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.4858629,"lon":-122.2067269,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

448

Summary of the Spring 2004 ASA Meeting  

U.S. Energy Information Administration (EIA) Indexed Site

of the Spring Meeting of the American Statistical Association (ASA) Committee on Energy Statistics April 22 and 23, 2004 with the Energy Information Administration 1000 Independence Ave., SW. Washington, D.C. 20585 Thursday, April 22, 2004 Natural Gas Prices and Industrial Sector Responses: An Experimental Module for the Short-Term Integrated Forecasting System (STIFS), Dave Costello, Office of Energy Markets and End Use (EMEU) and Frederick L. Joutz, Associate Professor, Department of Economics, The George Washington University. The Short-Term Integrated Forecasting System (STIFS) generates monthly forecasts of energy demand, supply and prices using some forecast information that is incorporated into STIFS that is generated by other models that do not run in an integrated framework with STIFS. This

449

Wessington Springs Wind Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Facility Wessington Springs Sector Wind energy Facility Type Community Wind Location SD Coordinates 44.081932°, -98.559685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.081932,"lon":-98.559685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

450

Summary of the Spring 2006 ASA Meetings  

U.S. Energy Information Administration (EIA) Indexed Site

Summaries of the Summaries of the American Statistical Association (ASA) Committee on Energy Statistics Advice and Energy Information Administration (EIA) Responses at the spring 2006 Meeting 1. How Can Modeling Suggest Data Needs? Open discussion between the Committee and EIA. This session was prompted by Committee remarks in the fall 2005 meeting. Nancy Kirkendall, Chair, and Margot Anderson, Director, EMEU. See transcript for discussion on EIA's Home Page: http://www.eia.gov/calendar/asa_overview.htm 2. Measuring Perceptions of Applying Alternative Disclosure Limitation Methods, Jake Bournazian, SMG Suppression is the most common method that federal agencies use to protect the confidentiality of reported data when releasing an information product. During the past 15 years,

451

Supplement Analysis for the Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program EA (DOE/EA-1173/SA-01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 18, 2003 December 18, 2003 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program EA (DOE/EA-1173/SA-01) Ken Kirkman - KEWU-4 TO: Fish and Wildlife Project Manager Proposed Action: Monitoring and Evaluation of Supplemented Spring Chinook Salmon and Life Histories of Wild Summer Steelhead in the Grande Ronde Basin Project No: 1998-007-03 Location: Union County, Oregon Proposed by: Bonneville Power Administration (BPA), Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Oregon Department of Fish and Wildlife (ODFW). Description of the Proposed Action: The CTUIR and ODFW propose to expand their monitoring and evaluation for the Grande Ronde spring chinook supplementation program to

452

Okanogan Basin Spring Spawner Report for 2007.  

DOE Green Energy (OSTI)

The Okanogan Basin Monitoring and Evaluation Program collected data related to spring spawning anadromous salmonid stocks across the entire Okanogan River basin. Data were collected using redd surveys, traps, underwater video, and PIT-tag technology then summarized and analyzed using simple estimate models. From these efforts we estimated that 1,266 summer steelhead spawned in the Okanogan River basin and constructed 552 redds;152 of these fish where of natural origin. Of these, 121 summer steelhead, including 29 of natural origin, created an estimated 70 redds in the Canadian portion of the Okanagan basin. We estimated summer steelhead spawner escapement into each sub-watershed along with the number from natural origin and the number and density of redds. We documented redd desiccation in Loup Loup Creek, habitat utilization in Salmon Creek as a result of a new water lease program, and 10 spring Chinook returning to Omak Creek. High water through most of the redd survey period resulted in development of new modeling techniques and allowed us to survey additional tributaries including the observation of summer steelhead spawning in Wanacut Creek. These 2007 data provide additional support that redd surveys conducted within the United States are well founded and provide essential information for tracking the recovery of listed summer steelhead. Conversely, redd surveys do not appear to be the best approach for enumerating steelhead spawners or there distribution within Canada. We also identified that spawning distributions within the Okanogan River basin vary widely and stocking location may play an over riding roll in this variability.

Colville Tribes, Department of Fish & Wildlife

2007-09-01T23:59:59.000Z

453

Fundamental Drivers of Pacific Northwest Power Markets  

E-Print Network (OSTI)

­ Temperatures were warm across the entire West, which in turn shifted the load profile higher with the super, analysis, and data to power and gas traders in the western US and Canada. · Consulting: Advise developers, utilities, power marketers, investors, and others on wholesale electricity and natural gas markets. Experts

454

Solar-thermal hybridization of Advanced Zero Emissions Power Plants  

E-Print Network (OSTI)

Carbon Dioxide emissions from power production are believed to have significant contributions to the greenhouse effect and global warming. Alternative energy resources, such as solar radiation, may help abate emissions but ...

El Khaja, Ragheb Mohamad Fawaz

2012-01-01T23:59:59.000Z

455

CO? compression for capture-enabled power systems  

E-Print Network (OSTI)

The objective of this thesis is to evaluate a new carbon dioxide compression technology - shock compression - applied specifically to capture-enabled power plants. Global warming has increased public interest in carbon ...

Suri, Rajat

2009-01-01T23:59:59.000Z

456

Coal stockpiles at electric power plants were above average ...  

U.S. Energy Information Administration (EIA)

Increased competition between fuels as well as a warm winter 2011-12 led to lower consumption of coal and, thus, higher coal stockpiles at electric power plants in ...

457

Exchange-Spring Magnets: Nanocomposite Exchange-Spring Magnets for Motor and Generator Applications  

SciTech Connect

REACT Project: ANL will develop a cost-effective exchange-spring magnet to use in the electric motors of wind generators and EVs that uses no rare earth materials. This ANL exchange-spring magnet combines a hard magnetic outer shell with a soft magnetic inner corecoupling these together increases the performance (energy density and operating temperature). The hard and soft magnet composite particles would be created at the molecular level, followed by consolidation in a magnetic field. This process allows the particles to be oriented to maximize the magnetic properties of low-cost and abundant metals, eliminating the need for expensive imported rare earths. The ultimate goal of this project is to demonstrate this new type of magnet in a prototype electric motor.

None

2012-01-01T23:59:59.000Z

458

Hydrogen--electric power drives  

SciTech Connect

Hydrogen--electric power drives would consist of most or all of these: chilled hydrogen gas tank, liquid oxygen tank, a bank of fuel cells, dc/ac inverter, ac drive motors, solid state ac speed control, dc sputter-ion vacuum pumps, steam turbine generator set and steam condenser. Each component is described. Optional uses of low pressure extraction steam and warm condensate are listed. Power drive applications are listed. Impact on public utilities, fuel suppliers, and users is discussed.

Hall, F.F.

1978-10-01T23:59:59.000Z

459

Geothermal resource assessment of Waunita Hot Springs, Colorado  

DOE Green Energy (OSTI)

This assessment includes the project report; the geothermal prospect reconnaissance evaluation and recommendations; interpretation of water sample analyses; a hydrogeochemical comparison of the Waunita Hot Springs, Hortense, Castle Rock, and Anderson Hot Springs; geothermal resistivity resource evaluation survey, the geophysical environment; temperature, heat flow maps, and temperature gradient holes; and soil mercury investigations.

Zacharakis, T.G. (ed.)

1981-01-01T23:59:59.000Z

460

Chemical characteristics of the major thermal springs of Montana  

DOE Green Energy (OSTI)

Twenty-one thermal springs in western Montana were sampled for chemical, isotope, and gas compositions. Most of the springs issue dilute to slightly saline sodium-bicarbonate waters of neutral to slightly alkaline pH. A few of the springs issue sodium-mixed anion waters of near neutral pH. Fluoride concentrations are high in most of the thermal waters, up to 18 miligrams per litre, while F/Cl ratios range from 3/1 in the dilute waters to 1/10 in the slightly saline waters. Most of the springs are theoretically in thermodynamic equilibrium with respect to calcite and fluorite. Nitrogen is the major gas escaping from most of the hot springs; however, Hunters Hot Springs issue principally methane. The deuterium content of the hot spring waters is typical of meteoric water in western Montana. Geothermal calculations based on silica concentrations and Na-K-Ca ratios indicate that most of the springs are associated with low temperature aquifers (less than 100/sup 0/C). Chalcedony may be controlling the silica concentrations in these low temperature aquifers even in ''granitic'' terranes.

Mariner, R.H.; Presser, T.S.; Evans, W.C.

1976-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm springs power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Spring Valley Public Utilities - Commercial & Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

150 - 400 Dishwashers: 300 - 1,000 Ventilation Hood Controllers: 165HP Low-Flow Spray Valve: 50% of installed cost Southern Minnesota Municipal Power Agency (http:...

462

NIST Technology at a Glance, Spring 1997  

Science Conference Proceedings (OSTI)

... Significant power efficiencies also assure longer battery life. ... at the NIST research reactor that gives materials scientists an atomic-level view of ...

463

Desert Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Springs Space Heating Low Temperature Geothermal Facility Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Desert Hot Springs Space Heating Low Temperature Geothermal Facility Facility Desert Hot Springs Sector Geothermal energy Type Space Heating Location Desert Hot Springs, California Coordinates 33.961124°, -116.5016784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

464

A Preliminary Resistivity Investigation (Ves) Of The Langada Hot Springs  

Open Energy Info (EERE)

Preliminary Resistivity Investigation (Ves) Of The Langada Hot Springs Preliminary Resistivity Investigation (Ves) Of The Langada Hot Springs Area In Northern Greece Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Preliminary Resistivity Investigation (Ves) Of The Langada Hot Springs Area In Northern Greece Details Activities (0) Areas (0) Regions (0) Abstract: In total 24 direct current resistivity soundings were carried out during the preliminary stages of a geothermal exploration survey of the Langada hot springs area (northern Greece). The analysis of the data revealed a horst-type morphology striking NW-SE. Correlation between the location of hot springs, successful drill holes and the basement (horst) indicates that the sector of geothermal interest is concentrated along the major axis of the horst mapped. The horst type geothermal structure fits in

465

Seismic refraction and gravity surveys of Pilgrim Springs KGRA, Alaska  

Science Conference Proceedings (OSTI)

Pilgrim Springs KGRA is located in a major northeast-trending tectonic depression on the Seward Peninsula, Alaska. Refraction has identified a layer which coincides with a hot artesian aquifer in hydrothermally cemented sediments. The presence of a hydrothermal cap rock is possible but not proven. Crystalline bedrock lies at least 200 m beneath the springs, dropping to possibly 500 m in depth immediately to the southwest in what appears to be a trough bounded by normal faults on the north, south and east. Pilgrim Springs are situated over the intersection of the two faults at the northeastern corner of this trough, suggesting that one or both faults are acting as conduits to the springs. Pilgrim Springs are associated with extensional tectonics and recent alkalic volcanism suggestive of active rifting in the region.

Lockhart, A.; Kienle J.

1980-09-01T23:59:59.000Z

466

Geothermometry At Hot Springs Ranch Area (Szybinski, 2006) | Open Energy  

Open Energy Info (EERE)

Hot Springs Ranch Area (Szybinski, 2006) Hot Springs Ranch Area (Szybinski, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Hot Springs Ranch Area (Szybinski, 2006) Exploration Activity Details Location Hot Springs Ranch Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes The brine from the drill holes, hot springs, seepages, and irrigation wells was sampled, as well as water from two nearby creeks, (total of 13 samples) and sent for analysis to Thermochem Inc. For sample locations refer to Figure 35; the geochemical data are presented in Appendix C. Geochemical results indicate the presence of two distinct waters in this group of samples (Tom Powell of Thermochem Inc., personal communication, 2005).

467

White Sulphur Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Sulphur Springs Space Heating Low Temperature Geothermal Facility Sulphur Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name White Sulphur Springs Space Heating Low Temperature Geothermal Facility Facility White Sulphur Springs Sector Geothermal energy Type Space Heating Location White Sulphur Springs, Montana Coordinates 46.548277°, -110.9021561° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

468

Manley Hot Springs Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Manley Hot Springs Greenhouse Low Temperature Geothermal Facility Manley Hot Springs Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Manley Hot Springs Greenhouse Low Temperature Geothermal Facility Facility Manley Hot Springs Sector Geothermal energy Type Greenhouse Location Manley Hot Springs, Alaska Coordinates 65.0011111°, -150.6338889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

469

Spring Home Maintenance: Windows, Windows, Windows! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring Home Maintenance: Windows, Windows, Windows! Spring Home Maintenance: Windows, Windows, Windows! Spring Home Maintenance: Windows, Windows, Windows! April 26, 2013 - 11:42am Addthis Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Erin Connealy Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Use these tips for window maintence and treatments to save energy this spring. The beginning of spring marks the point in the year when I'm cleaning, purging the house of things I no longer need, and updating my home on needed repairs. This year, I'm focusing on how to lower my energy bills

470

Masson Radium Springs Farm Greenhouse Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Masson Radium Springs Farm Greenhouse Low Temperature Geothermal Facility Masson Radium Springs Farm Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Masson Radium Springs Farm Greenhouse Low Temperature Geothermal Facility Facility Masson Radium Springs Farm Sector Geothermal energy Type Greenhouse Location Radium Springs, New Mexico Coordinates 32.501453°, -106.926575° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

471

Chena Hot Springs Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Chena Hot Springs Geothermal Facility Chena Hot Springs Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Chena Hot Springs Geothermal Facility General Information Name Chena Hot Springs Geothermal Facility Facility Chena Hot Springs Sector Geothermal energy Location Information Location Fairbanks, Alaska Coordinates 65.0518255°, -146.0474319° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.0518255,"lon":-146.0474319,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

472

Noble Gas Geochemistry In Thermal Springs | Open Energy Information  

Open Energy Info (EERE)

Geochemistry In Thermal Springs Geochemistry In Thermal Springs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Noble Gas Geochemistry In Thermal Springs Details Activities (1) Areas (1) Regions (0) Abstract: The composition of noble gases in both gas and water samples collected from Horseshoe Spring, Yellowstone National Park, was found to be depth dependent. The deeper the sample collection within the spring, the greater the enrichment in Kr, Xe, radiogenic 4He, and 40Ar and the greater the depletion in Ne relative to 36Ar. The compositional variations are consistent with multi-component mixing. The dominant component consists of dissolved atmospheric gases acquired by the pool at the surface in contact with air. This component is mixed in varying degree with two other

473

Brady Hot Springs I Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Hot Springs I Geothermal Facility Hot Springs I Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Brady Hot Springs I Geothermal Facility General Information Name Brady Hot Springs I Geothermal Facility Facility Brady Hot Springs I Sector Geothermal energy Location Information Location Churchill, Nevada Coordinates 39.796370120458°, -119.00998950005° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.796370120458,"lon":-119.00998950005,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

474

Isotopic Analysis At Valles Caldera - Sulphur Springs Area (Woldegabriel &  

Open Energy Info (EERE)

Valles Caldera - Sulphur Springs Area (Woldegabriel & Valles Caldera - Sulphur Springs Area (Woldegabriel & Goff, 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Valles Caldera - Sulphur Springs Area (Woldegabriel & Goff, 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Useful for age determinations - not indicated is useful for exploration. References Giday WoldeGabriel, Fraser Goff (1992) K-Ar Dates Of Hydrothermal Clays From Core Hole Vc-2B, Valles Caldera, New Mexico And Their Relation To Alteration In A Large Hydrothermal System Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_Valles_Caldera_-_Sulphur_Springs_Area_(Woldegabriel_%26_Goff,_1992)&oldid=510971"

475

Geothermal resource assessment of Idaho Springs, Colorado. Resource series 16  

DOE Green Energy (OSTI)

Located in the Front Range of the Rocky Mountains approximately 30 miles west of Denver, in the community of Idaho Springs, are a series of thermal springs and wells. The temperature of these waters ranges from a low of 68/sup 0/F (20/sup 0/C) to a high of 127/sup 0/F (53/sup 0/C). To define the hydrothermal conditions of the Idaho Springs region in 1980, an investigation consisting of electrical geophysical surveys, soil mercury geochemical surveys, and reconnaissance geological and hydrogeological investigations was made. Due to topographic and cultural restrictions, the investigation was limited to the immediate area surrounding the thermal springs at the Indian Springs Resort. The bedrock of the region is faulted and fractured metamorphosed Precambrian gneisses and schists, locally intruded by Tertiary age plutons and dikes. The investigation showed that the thermal waters most likely are fault controlled and the thermal area does not have a large areal extent.

Repplier, F.N.; Zacharakis, T.G.; Ringrose, C.D.

1982-01-01T23:59:59.000Z

476

Geothermometry At Buffalo Valley Hot Springs Area (Laney, 2005) | Open  

Open Energy Info (EERE)

Buffalo Valley Hot Springs Area (Laney, 2005) Buffalo Valley Hot Springs Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being

477

Gila Hot Springs District Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Gila Hot Springs District Heating Low Temperature Geothermal Facility Gila Hot Springs District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Gila Hot Springs District Heating Low Temperature Geothermal Facility Facility Gila Hot Springs Sector Geothermal energy Type District Heating Location Gila Hot Springs, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

478

The life cycle CO2 emission performance of the DOE/NASA solar power satellite system: a comparison of alternative power generation systems in Japan  

Science Conference Proceedings (OSTI)

Solar power generation and, in particular, space solar power generation seem to be one of the most promising electric power generation technologies for reducing emissions of global warming gases (denoted collectively as CO2 emissions below). ... Keywords: Alternative technology, CO, Department of Energy (DOE)/NASA reference system, life cycle assessment (LCA), power generation, solar power satellite (SPS)

H. Hayami; M. Nakamura; K. Yoshioka

2005-08-01T23:59:59.000Z

479

Site-specific analysis of hybrid geothermal/fossil power plants  

DOE Green Energy (OSTI)

A preliminary economic analysis of a hybrid geothermal/coal power plant has been completed for four geothermal Resource areas: Roosevelt Hot Springs, Coso Hot Springs, East Mesa and Long Valley. A hybrid plant would be economically viable at Roosevelt Hot Springs and somewhat less so at Coso Hot Springs. East Mesa and Long Valley show no economic promise. A well-designed hybrid plant could use geothermal energy for boiler feedwater heating, auxiliary power, auxiliary heating, and cooling water. Construction and operation of a hybrid plant at either Roosevelt Hot Springs or Coso Hot Springs is recommended. Brown University provided the theoretical basis for the hybrid study. A modified version of the Lawrence Berkeley Livermore GEOTHM Program is the major analytical tool used in the analysis. The Intermountain Power Project is the reference all coal-fired plant. Costing methods followed recommendations issued by the Energy research and Development Administration.

Not Available

1977-06-01T23:59:59.000Z

480

Site-specific analysis of hybrid geothermal/fossil power plants  

DOE Green Energy (OSTI)

A preliminary economic analysis of a hybrid geothermal/coal power plant was completed for four geothermal resource areas: Roosevelt Hot Springs, Coso Hot Springs, East Mesa, and Long Valley. A hybrid plant would be economically viable at Roosevelt Hot Springs and somewhat less so at Coso Hot Springs. East Mesa and Long Valley show no economic promise. A well-designed hybrid plant could use geothermal energy for boiler feedwater heating, auxiliary power, auxiliary heating, and cooling water. Construction and operation of a hybrid plant at either Roosevelt Hot Springs or Coso Hot Springs is recommended. A modified version of the Lawrence Berkeley Livermore GEOTHM Program is the major analytical tool used in the analysis. The Intermountain Power Project is the reference all coal-fired plant.

Not Available

1977-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm springs power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Santa Clara 2MW Fuel Cell Demonstration Power Plant: Interim Acceptance Test Report  

Science Conference Proceedings (OSTI)

Power generation testing of the world's largest carbonate fuel cell power system began in Spring 1996. Lessons learned will enable developers to advance the commercialization of megawatt- scale, carbonate fuel cell systems for distributed generation applications.

1997-02-01T23:59:59.000Z

482

DOE/EIS-0340-SA-01: Supplement Analysis for NEOH Grande Ronde-Imnaha Spring Chinook Hatchery Project (03/23/06)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2006 3, 2006 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for NEOH Grande Ronde - Imnaha Spring Chinook Hatchery Project (DOE/EIS-0340-SA-01) Ken Kirkman - KEWU-4 Project Manager Proposed Action: Grande Ronde - Imnaha Spring Chinook Hatchery Project Modifications Resulting from Final Design Project No.: 1988-053-01 Location: Wallowa County, Oregon Proposed By: Bonneville Power Administration (BPA) and Nez Perce Tribe Introduction: BPA, in its March 11, 2005 Record of Decision (ROD) on the Grande Ronde - Imnaha Spring Chinook Hatchery Project, decided to fund value engineering, land acquisition and final design of fish production facilities to support an ongoing program of Snake River spring chinook propagation for conservation and recovery of the species. BPA analyzed the

483

Combined Heat & Power Technology Overview and Federal Sector Deployment  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the Combined Heat & Power Technology Overview and Federal Sector Deployment from Oakridge National Laboratory. The presentation is from the FUPWG Spring Meeting, held on May 22, 2013 in San Francisco, California.

484

Structuring energy supply and demand networks in a general equilibrium model to simulate global warming control strategies  

Science Conference Proceedings (OSTI)

Global warming control strategies which mandate stringent caps on emissions of greenhouse forcing gases can substantially alter a country's demand, production, and imports of energy products. Although there is a large degree of uncertainty when attempting to estimate the potential impact of these strategies, insights into the problem can be acquired through computer model simulations. This paper presents one method of structuring a general equilibrium model, the ENergy and Power Evaluation Program/Global Climate Change (ENPEP/GCC), to simulate changes in a country's energy supply and demand balance in response to global warming control strategies. The equilibrium model presented in this study is based on the principle of decomposition, whereby a large complex problem is divided into a number of smaller submodules. Submodules simulate energy activities and conversion processes such as electricity production. These submodules are linked together to form an energy supply and demand network. Linkages identify energy and fuel flows among various activities. Since global warming control strategies can have wide reaching effects, a complex network was constructed. The network represents all energy production, conversion, transportation, distribution, and utilization activities. The structure of the network depicts interdependencies within and across economic sectors and was constructed such that energy prices and demand responses can be simulated. Global warming control alternatives represented in the network include: (1) conservation measures through increased efficiency; and (2) substitution of fuels that have high greenhouse gas emission rates with fuels that have lower emission rates. 6 refs., 4 figs., 4 tabs.

Hamilton, S.; Veselka, T.D.; Cirillo, R.R.

1991-01-01T23:59:59.000Z

485

Recent Drilling Activities At The Earth Power Resources Tuscarora  

Open Energy Info (EERE)

Recent Drilling Activities At The Earth Power Resources Tuscarora Recent Drilling Activities At The Earth Power Resources Tuscarora Geothermal Power Project'S Hot Sulphur Springs Lease Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Recent Drilling Activities At The Earth Power Resources Tuscarora Geothermal Power Project'S Hot Sulphur Springs Lease Area Details Activities (3) Areas (1) Regions (0) Abstract: Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by

486

Global crop yield losses from recent warming  

Science Conference Proceedings (OSTI)

Global yields of the world-s six most widely grown crops--wheat, rice, maize, soybeans, barley, sorghum--have increased since 1961. Year-to-year variations in growing season minimum temperature, maximum temperature, and precipitation explain 30% or more of the variations in yield. Since 1991, climate trends have significantly decreased yield trends in all crops but rice, leading to foregone production since 1981 of about 12 million tons per year of wheat or maize, representing an annual economic loss of $1.2 to $1.7 billion. At the global scale, negative impacts of climate trends on crop yields are already apparent. Annual global temperatures have increased by {approx}0.4 C since 1980, with even larger changes observed in several regions (1). While many studies have considered the impacts of future climate changes on food production (2-5), the effects of these past changes on agriculture remain unclear. It is likely that warming has improved yields in some areas, reduced them in others, and had negligible impacts in still others; the relative balance of these effects at the global scale is unknown. An understanding of this balance would help to anticipate impacts of future climate changes, as well as to more accurately assess recent (and thereby project future) technologically driven yield progress. Separating the contribution of climate from concurrent changes in other factors--such as crop cultivars, management practices, soil quality, and atmospheric carbon dioxide (CO{sub 2}) levels--requires models that describe the response of yields to climate. Studies of future global impacts of climate change have typically relied on a bottom-up approach, whereby field scale, process-based models are applied to hundreds of representative sites and then averaged (e.g., ref 2). Such approaches require input data on soil and management conditions, which are often difficult to obtain. Limitations on data quality or quantity can thus limit the utility of this approach, especially at the local scale (6-8). At the global scale, however, many of the processes and impacts captured by field scale models will tend to cancel out, and therefore simpler empirical/statistical models with fewer input requirements may be as accurate (8, 9). Empirical/statistical models also allow the effects of poorly modeled processes (e.g., pest dynamics) to be captured and uncertainties to be readily quantified (10). Here we develop new, empirical/statistical models of global yield respon