Powered by Deep Web Technologies
Note: This page contains sample records for the topic "warm pool international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

The Tropical Warm Pool International Cloud Experiment  

Science Conference Proceedings (OSTI)

A comprehensive dataset describing tropical cloud systems and their environmental setting and impacts has been collected during the Tropical Warm Pool International Cloud Experiment (TWP-ICE) and Aerosol and Chemical Transport in Tropical ...

Peter T. May; James H. Mather; Geraint Vaughan; Keith N. Bower; Christian Jakob; Greg M. McFarquhar; Gerald G. Mace

2008-05-01T23:59:59.000Z

2

Atmospheric Radiation Measurement Tropical Warm Pool International Cloud Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

Tropical Warm Pool Tropical Warm Pool International Cloud Experiment General Description The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) was a collaborative effort led by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program and the Australian Bureau of Meteorology. Beginning January 21 and ending February 14, 2006, the experiment was conducted in the region near the ARM Climate Research Facility in Darwin, Northern Australia. This permanent facility is fully equipped with sophisticated instruments for measuring cloud and other atmospheric properties to provide a long-term record of continuous observational data. Measurements obtained from the other experiment components (explained below) will complement this dataset to provide a detailed description of the tropical atmosphere.

3

Time-Dependent Internal Energy Budgets of the Tropical Warm Water Pools  

Science Conference Proceedings (OSTI)

The exchange of internal energy between the warm water pools of the tropical oceans and the overlying atmosphere is thought to play a central role in the evolving climate system of the earth. Spatial displacements of the warm water pools are ...

John M. Toole; Huai-Min Zhang; Michael J. Caruso

2004-03-01T23:59:59.000Z

4

Anvil Characteristics as Seen by C-POL during the Tropical Warm Pool International Cloud Experiment (TWP-ICE)  

Science Conference Proceedings (OSTI)

The Tropical Pacific Warm Pool International Cloud Experiment (TWP-ICE) took place in Darwin, Australia, in early 2006. C-band radar data were used to characterize tropical anvil (i.e., thick, nonprecipitating cloud associated with deep ...

Kaycee Frederick; Courtney Schumacher

2008-01-01T23:59:59.000Z

5

Why Are There Tropical Warm Pools?  

Science Conference Proceedings (OSTI)

Tropical warm pools appear as the primary mode in the distribution of tropical sea surface temperature (SST). Most previous studies have focused on the role of atmospheric processes in homogenizing temperatures in the warm pool and establishing ...

Amy C. Clement; Richard Seager; Raghu Murtugudde

2005-12-01T23:59:59.000Z

6

Anvil characteristics as seen by C-POL during the Tropical Warm Pool International Cloud Experiment (TWP-ICE)  

E-Print Network (OSTI)

The Tropical Pacific Warm Pool International Cloud Experiment (TWP-ICE) took place in Darwin, Australia in early 2006. C-band radar data from this experiment were used to characterize tropical anvil areal coverage, height, and thickness during the month-long field campaign. The morphology, evolution, and longevity of the anvil were analyzed as well as the relationship of the anvil to the rest of the precipitating system. In addition, idealized in-cloud radiative heating profiles were created based on the anvil observations. The anvil was separated into mixed (i.e., echo base below 6 km) and ice only categories. The experiment areal average coverage for both types of anvil was between 4-5% of the radar grid. Ice anvil thickness averaged 2.8 km and mixed anvil thickness averaged 6.7 km. No consistent diurnal signal was seen in the anvil, implying that the life cycle of the parent convection was of first order importance in determining the anvil height, thickness, and area. Areal peaks show that mixed anvil typically formed out of the stratiform region. Peak production in ice anvil usually followed the mixed anvil peak by 1-3 hr. Anvil typically lasted 4-10 hr after the initial convective rain area peak. The TWP-ICE experienced three distinct regimes: the active monsoon, dry monsoon, and break periods. During the entire experiment (except the active monsoon period) there was a strong negative correlation between ice anvil thickness and ice anvil height, a strong positive correlation between ice anvil area and thickness, and a greater variance in ice anvil bottom than ice anvil top. Anvil produced during the active regime had the most dramatic in-cloud radiative response with a maximum cooling of 0.45├?┬░ K day-1 at 12 km, a maximum heating of 3├?┬░ K day-1 at 9 km, and a secondary maximum heating of 1.2├?┬░ K day-1 at 5 km.

Frederick, Kaycee Loretta

2006-12-01T23:59:59.000Z

7

Tropical Warm Pool International Cloud Experiment (TWP-ICE): Cloud and Rain Characteristics in the Australian Monsoon  

SciTech Connect

The impact of oceanic convection on its environment and the relationship between the characteristics of the convection and the resulting cirrus characteristics is still not understood. An intense airborne measurement campaign combined with an extensive network of ground-based observations is being planned for the region near Darwin, Northern Australia, during January-February, 2006, to address these questions. The Tropical Warm Pool ľ International Cloud Experiment (TWP-ICE) will be the first field program in the tropics that attempts to describe the evolution of tropical convection, including the large scale heat, moisture, and momentum budgets, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment. The emphasis will be on cirrus for the cloud properties component of the experiment. Cirrus clouds are ubiquitous in the tropics and have a large impact on their environment but the properties of these clouds are poorly understood. A crucial product from this experiment will be a dataset suitable to provide the forcing and testing required by cloud-resolving models and parameterizations in global climate models. This dataset will provide the necessary link between cloud properties and the models that are attempting to simulate them. The experiment is a collaboration between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program, the Bureau of Meteorology (BoM), the National Aeronautics and Space Administration (NASA), the European Commission DG RTD-1.2, and several United States, Australian, Canadian, and European Universities. This experiment will be undertaken over a 4-week period in early 2006. January and February corresponds to the wet phase of the Australia monsoon. This season has been selected because, despite Darwinĺs coastal location, the convection that occurs over and near Darwin at this time is largely of maritime origin with a large fetch over water. Based on previous experiments, the convection appears typical of maritime convection with widespread convection that has complex organization, but is not as deep or as intense as continental or coastal convection. Therefore, it is expected that the convection and cloud characteristics will be representative of conditions typical for wide areas of the tropics.

PT May; C Jakob; JH Mather

2004-05-30T23:59:59.000Z

8

ARM - Publications: Science Team Meeting Documents: Tropical Warm Pool  

NLE Websites -- All DOE Office Websites (Extended Search)

Tropical Warm Pool International Cloud Experiment Tropical Warm Pool International Cloud Experiment May, Peter Bureau or Meteorology Research Centre Mather, James Pacific Northwest National Laboratory Jakob, Christian BMRC One of the most complete data sets describing tropical convection ever collected will result from the upcoming Tropical Warm Pool International Cloud Experiment (TWPICE) in the area around Darwin in late 2005 and early 2006. The aims of the experiment will be to examine convective cloud systems from their initial stages through to the decay of the cirrus generated and to measure their impact on the environment. The experiment design includes an unprecedented network of ground-based observations (soundings, active and passive remote sensors) combined with a large range of low, mid and high altitude aircraft for in-situ and remote sensing

9

Warm Pool Physics in a Coupled GCM  

Science Conference Proceedings (OSTI)

The physics of the IndoľPacific warm pool are investigated using a coupled ocean atmosphere general circulation model. The model, developed at the Max-Planck-Institut fair Meteorologic, Hamburg, does not employ a flux correction and is used with ...

Niklas Schneider; Tim Barnett; Mojib Latif; Timothy Stockdale

1996-01-01T23:59:59.000Z

10

The Heat Balance of the Western Hemisphere Warm Pool  

Science Conference Proceedings (OSTI)

The thermodynamic development of the Western Hemisphere warm pool and its four geographic subregions are analyzed. The subregional warm pools of the eastern North Pacific and equatorial Atlantic are best developed in the boreal spring, while in ...

David B. Enfield; Sang-ki Lee

2005-07-01T23:59:59.000Z

11

Testing ice microphysics parameterizations in the NCAR Community Atmospheric Model Version 3 using Tropical Warm PoolľInternational Cloud Experiment data  

SciTech Connect

Cloud properties have been simulated with a new double-moment microphysics scheme under the framework of the single column version of NCAR CAM3. For comparisons, the same simulation was made with the standard single-moment microphysics scheme of CAM3. Results from both simulations were compared favorably with observations during the Tropical Warm Pool- International Cloud Experiment by US Department of Energy Atmospheric Radiation Program in terms of the temporal variation and vertical distribution of cloud fraction and cloud condensate. Major differences between the two simulations are in the magnitude and distribution of ice water content within the mixed-phase cloud during the monsoon period, though the total frozen water (snow plus ice) content is similar. The ice mass content in the mixed-phase cloud from the new scheme is larger than that from the standard scheme, and extends 2 km further downward, which are closer to observations. The dependence of the frozen water mass fraction in total condensate on temperature from the new scheme is also closer to available observations. Outgoing longwave radiation (OLR) at the top of the atmosphere (TOA) from the simulation with the new scheme is in general larger than that with the standard scheme, while the surface downward longwave radiation is similar. Sensitivity tests suggest that different treatments of the ice effective radius contribute significantly to the difference in the TOA OLR in addition to cloud water path. The deep convection process affects both TOA OLR and surface downward longwave radiation. The over-frequently-triggered deep convention process in the model is not the only mechanism for the excess middle and high level clouds. Further evaluation especially for ice cloud properties based on in-situ data is needed.

Wang, Weiguo; Liu, Xiaohong; Xie, Shaocheng; Boyle, James; McFarlane, Sally A.

2009-07-23T23:59:59.000Z

12

A Possible Effect of an Increase in the Warm-Pool SST on the Magnitude of El Ni˝o Warming  

Science Conference Proceedings (OSTI)

El Ni˝o warming corresponds to an eastward extension of the western Pacific warm pool; one thus naturally wonders whether an increase in the warm pool SST will result in stronger El Ni˝os. This question, though elementary, has not drawn much ...

De-Zheng Sun

2003-01-01T23:59:59.000Z

13

Cloud Clusters and Superclusters over the Oceanic Warm Pool  

Science Conference Proceedings (OSTI)

Infrared satellite images of the oceanic warm-pool region (8O░E-160░W) have been objectively processed to reveal tropical ôcloud clustersö with temperature colder than a given threshold. Cloud clusters span a somewhat lognormal distribution of ...

Brain E. Mapes; Robert A. Houze Jr.

1993-05-01T23:59:59.000Z

14

Warm Pool SST Variability in Relation to the Surface Energy Balance  

Science Conference Proceedings (OSTI)

The warm tropical oceans underlie the most convective regions on earth and are a critical component of the earthĺs climate, yet there are differing opinions on the processes that control warm pool SST. The IndoľPacific warm pool is characterized ...

John Fasullo; Peter J. Webster

1999-05-01T23:59:59.000Z

15

Pacific Warm Pool Temperature Regulation during TOGA COARE: Upper Ocean Feedback  

Science Conference Proceedings (OSTI)

The Hasselmann feedback model was applied to hindcast western Pacific warm pool sea surface temperatures (SST) with heat flux observations obtained near 2░S, 156░E from October 1992 to February 1993 during the Tropical Ocean Global Atmosphere ...

Gary S. E. Lagerloef; Roger Lukas; Robert A. Weller; Steven P. Anderson

1998-09-01T23:59:59.000Z

16

Atlantic Warm-Pool Variability in the IPCC AR4 CGCM Simulations  

Science Conference Proceedings (OSTI)

This study investigates Atlantic warm pool (AWP) variability in the twentieth century and preindustrial simulations of coupled GCMs submitted to the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). In the twentieth-...

Hailong Liu; Chunzai Wang; Sang-Ki Lee; David Enfield

2012-08-01T23:59:59.000Z

17

Mechanisms for the Interannual Variability of SST in the East Pacific Warm Pool  

Science Conference Proceedings (OSTI)

In comparison with the western and equatorial Pacific Ocean, relatively little is known about the east Pacific warm pool (EPWP). Observations indicate that the interannual variability of sea surface temperature (SST) in the EPWP is highly ...

Kristopher B. Karnauskas; Antonio J. Busalacchi

2009-03-01T23:59:59.000Z

18

Convection and Easterly Wave Structures Observed in the Eastern Pacific Warm Pool during EPIC-2001  

Science Conference Proceedings (OSTI)

During SeptemberľOctober 2001, the East Pacific Investigation of Climate Processes in the Coupled OceanľAtmosphere System (EPIC-2001) intertropical convergence zone (ITCZ) field campaign focused on studies of deep convection in the warm-pool ...

Walter A. Petersen; Robert Cifelli; Dennis J. Boccippio; Steven A. Rutledge; Chris Fairall

2003-08-01T23:59:59.000Z

19

A Coupled Theory of Tropical Climatology: Warm Pool, Cold Tongue, and Walker Circulation  

Science Conference Proceedings (OSTI)

Based on results from analytic and general circulation models, the authors propose a theory for the coupled warm pool, cold tongue, and Walker circulation system. The intensity of the coupled system is determined by the coupling strength, the ...

Zhengyu Liu; Boyin Huang

1997-07-01T23:59:59.000Z

20

What Drives the Seasonal Onset and Decay of the Western Hemisphere Warm Pool?  

Science Conference Proceedings (OSTI)

The annual heat budget of the Western Hemisphere warm pool (WHWP) is explored using the output of an ocean general circulation model (OGCM) simulation. According to the analysis, the WHWP cannot be considered as a monolithic whole with a single ...

S-K. Lee; D. B. Enfield; C. Wang

2007-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm pool international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Multiscale Variability of the Atmospheric Mixed Layer over the Western Pacific Warm Pool  

Science Conference Proceedings (OSTI)

Sounding data from Tropical Ocean Global Atmosphere Coupled OceanľAtmosphere Response Experiment (TOGA COARE) have provided a first opportunity to document the variability of the atmospheric mixed layer over the western Pacific warm pool on ...

Richard H. Johnson; Paul E. Ciesielski; Jennifer A. Cotturone

2001-09-01T23:59:59.000Z

22

Simulation of the Tropical Pacific Warm Pool with the NCAR Climate System Model  

Science Conference Proceedings (OSTI)

The simulation of the tropical western Pacific warm pool is explored with the NCAR Climate System Model (CSM). The simulated sea surface temperatures in the Pacific basin have biases that are similar to other coupled model simulations in this ...

J. T. Kiehl

1998-06-01T23:59:59.000Z

23

Heat Balance in the Pacific Warm Pool Atmosphere during TOGA COARE and CEPEX  

Science Conference Proceedings (OSTI)

The atmosphere above the western equatorial Pacific warm pool (WP) is an important source for the dynamic and thermodynamic forcing of the atmospheric general circulation. This study uses a high-resolution reanalysis and several observational ...

Baijun Tian; Guang Jun Zhang; V. Ramanathan

2001-04-01T23:59:59.000Z

24

Roosevelt Warm Springs Institute for Rehab. Pool & Spa Low Temperature  

Open Energy Info (EERE)

Pool & Spa Low Temperature Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Roosevelt Warm Springs Institute for Rehab. Pool & Spa Low Temperature Geothermal Facility Facility Roosevelt Warm Springs Institute for Rehab. Sector Geothermal energy Type Pool and Spa Location Warm Springs, Georgia Coordinates 32.8904081┬░, -84.6810381┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

25

Regulation of Moist Convection over the West Pacific Warm Pool  

Science Conference Proceedings (OSTI)

The mechanisms that regulate moist convection over the warm tropical oceans are not well understood. One school of thought holds that convection is caused by the convergence of moisture, which in turn is produced by an independent dynamical ...

David J. Raymond

1995-11-01T23:59:59.000Z

26

Warm Springs Resort Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Warm Springs Resort Pool & Spa Low Temperature Geothermal Facility Warm Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Warm Springs Resort Sector Geothermal energy Type Pool and Spa Location Idaho City, Idaho Coordinates 43.8285046┬░, -115.8345537┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

27

Convection over the Pacific Warm Pool in relation to the Atmospheric Kelvin-Rossby Wave  

Science Conference Proceedings (OSTI)

Deep convection over the western tropical Pacific warm pool is analyzed in terms of its relation to the atmospheric KelvinľRossby wave, which dominates the large-scale flow during the austral summer. The study uses Doppler radar data collected by ...

Robert A. Houze Jr.; Shuyi S. Chen; David E. Kingsmill; Yolande Serra; Sandra E. Yuter

2000-09-01T23:59:59.000Z

28

ARM - Field Campaign - Tropical Warm Pool - International Cloud...  

NLE Websites -- All DOE Office Websites (Extended Search)

the US DOE ARM project, the Bureau of Meteorology, NASA, the European Commission DG RTD-1.2 and several United States, Australian, Canadian and European Universities. TWP-ICE...

29

Sharp Frontal Interfaces in the Near-Surface Layer of the Ocean in the Western Equatorial Pacific Warm Pool  

Science Conference Proceedings (OSTI)

During the TOGA COARE rich horizontal temperature and salinity variability of the near-surface layer of the ocean in the western Pacific warm pool was observed. High-resolution measurements were made by probes mounted on the bow of the vessel in ...

Alexander Soloviev; Roger Lukas

1997-06-01T23:59:59.000Z

30

8th Global warming international conference and exposition  

Science Conference Proceedings (OSTI)

Abstracts are presented from The 8th Annual Global Warming international conference and expo. Topics centered around greenhouse gas emission and disposal methods, policy and economics, carbon budget, and resource management. Individual reports have been processed separately for the United States Department of Energy databases.

NONE

1997-12-31T23:59:59.000Z

31

The 7. global warming international conference and expo: Abstracts  

SciTech Connect

This conference was held April 1--3, 1996 in Vienna, Austria. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on global warming. Topics of interest include the following: global and regional natural resource management; energy, transportation, minerals and natural resource management; industrial technology and greenhouse gas emission; strategies for the mitigation of greenhouse gas emission; greenhouse gas production/utilization and carbon budgets; strategies for promoting the understanding of global change; international policy strategy and economics; and global warming and public health. Individual papers have been processed separately for inclusion in the appropriate data bases.

NONE

1996-12-31T23:59:59.000Z

32

Barrier Layers of the Atlantic Warm Pool: Formation Mechanism and Influence on Weather and Climate  

E-Print Network (OSTI)

The aim of this research is to study the formation mechanism of Barrier Layers (BL) in the western tropical Atlantic and their influence on the tropical Atlantic climate at both short and long timescales. Many Coupled General Circulation Models (CGCMs) tend to overestimate the salinity in the Atlantic warm pool or the Northwestern Tropical Atlantic (NWTA) and underestimate the surface salinity in the subtropical salinity maxima region. Most of these models also suffer from a seasurface temperature (SST) bias in the NWTA region, leading to suggestions that the upper ocean salinity stratification may need to be improved in order to improve the BL simulations and thus the SST through BL-SST-Intertropical Convergence Zone (ITCZ) feedbacks. We used a CGCM to perform a set of idealized numerical experiments to understand the sensitivity of the BL and consequently SST in the NWTA region to freshwater flux and hence the upper ocean salinity strati cation. We find that the BL of the western tropical Atlantic is quite sensitive to upper ocean salinity changes in the Amazon River discharge region and the subtropical salinity maxima region. The BL phenomenon is further manifested by the formation of winter temperature inversions in our model simulations. However, in the region of improved BL simulation, the SST response is not statistically significant. SST response to Tropical Cyclones (TCs) is studied for the Atlantic region using a high-resolution coupled regional climate model (CRCM) and observational data sets. The presence of a BL, defined as the layer below the mixed layer that separates the base of the isothermal layer from the base of the isohaline layer, is found to modulate the SST response. The amplitude of TC-induced surface cooling is reduced by more than 35 percent in the presence of a BL, as a consequence of the weak thermal stratification. Furthermore, in locations when the BL exhibits a temperature inversion, TC-induced mixing can result in weak surface warming. BLs considerably reduce the rightward bias for tropical storms, but the effect is less conspicuous for TCs. The enthalpy flux into the atmosphere at the air-sea interface is enhanced by 16 percent and the increase in upper ocean potential energy due to TC-induced mixing is reduced by 25 percent in the presence of BLs. The results from the coupled model are supported by an observational analysis performed using re-analysis data sets, as well as data from Argo floats and TRMM satellite. As previous modeling and observational studies have indicated that the surface cooling caused by TC-induced mixing acts as a negative feedback for its intensity, results from our study suggest that BLs may have potential implications for TC intensity prediction.

Balaguru, Karthik

2011-05-01T23:59:59.000Z

33

Decadal Variability of the Indo-Pacific Warm Pool and Its Association with Atmospheric and Oceanic Variability in the NCEPľNCAR and SODA Reanalyses  

Science Conference Proceedings (OSTI)

Decadal variability of the Indo-Pacific warm pool (IPWP) sea surface temperature (SST) and its association with atmospheric and oceanic circulations are investigated with observed 50-yr (1952ľ2001) SST, and the NCEPľNCAR atmospheric and Simple ...

Hui Wang; Vikram M. Mehta

2008-11-01T23:59:59.000Z

34

Surface Meteorology and Air-Sea Fluxes in the Western Equatorial Pacific Warm Pool during the TOGA Coupled Ocean-Atmosphere Response Experiment  

Science Conference Proceedings (OSTI)

A major goal of the Coupled Ocean-Atmosphere Response Experiment (COARE) was to achieve significantly more accurate and complete descriptions of the surface meteorology and air-sea fluxes in the western equatorial warm pool region. Time series of ...

R. A. Weller; S. P. Anderson

1996-08-01T23:59:59.000Z

35

Coupled Modes of the Warm Pool Climate System. Part I: The Role of AirľSea Interaction in Maintaining MaddenľJulian Oscillation  

Science Conference Proceedings (OSTI)

Over the warm pool of the equatorial Indian and western Pacific Oceans, both the climatological mean state and the processes of atmosphereľocean interaction differ fundamentally from their counterparts over the cold tongue of the equatorial ...

Bin Wang; Xiaosu Xie

1998-08-01T23:59:59.000Z

36

Beam and radiation tests of a fast, warm liquid {open_quotes}swimming pool{close_quotes} calorimeter  

Science Conference Proceedings (OSTI)

A fast, warm liquid calorimeter module with lead absorber immersed in tetramethyl pentane (TMP) as the liquid medium (i.e. a {open_quotes}swimming pool{close_quotes} configuration) has been built and tested in a high energy beam at FNAL, and exposed to intense radiation from a strong Co{sup 60} source. A two-tower prototype, incorporating the concept of the electrostatic transformer for fast readout, exhibited very good uniformity and small cross-talk in the beam test. This same calorimeter was exposed to over 10 Mrad of radiation from the Co{sup 60} source, and the electron drift lifetime was measured as a function of accumulated dose. The lifetime improved significantly with small doses of radiation, up to a few hundred krad, then decreased gradually at higher doses, and extrapolated to a minimum useful lifetime of 0.1 {mu}s at over 150 Mrad. This result was confirmed by measurements on a small single-electrode test cell which was irradiated to more than 25 Mrad. In this case, the lifetime decreased from 10{mu}s to 0.1 {mu}s when extrapolated to a dose of over 600 Mrad. This cell was also used to measure the effect of positive ion {open_quotes}space charge{close_quotes} buildup under intense radiation. The results suggest that such effects are small even at the highest intensity available, about 1.3 Mrad/day, for applied fields {ge}25 kV/cm.

Kadyk, J.; WALIC Collaboration

1993-09-01T23:59:59.000Z

37

The Influence of the 1998 El Ni˝o upon Cloud-Radiative Forcing over the Pacific Warm Pool  

Science Conference Proceedings (OSTI)

Clouds cool the climate system by reflecting shortwave radiation and warm it by increasing the atmospheric greenhouse. Previous studies have shown that in tropical regions of deep convection there is a near cancellation between cloud-induced ...

Robert D. Cess; Minghua Zhang; Bruce A. Wielicki; David F. Young; Xue-Long Zhou; Yuri Nikitenko

2001-05-01T23:59:59.000Z

38

Surface Buoyancy Forcing and the Mixed Layer of the Western Pacific Warm Pool: Observations and 1D Model Results  

Science Conference Proceedings (OSTI)

The broad, shallow body of warm (>29░C) water found in the western tropical Pacific Ocean plays an important role in the coupled ocean-atmosphere dynamics and thermodynamics associated with the El Ni˝o-Southern Oscillation phenomenon. Thus, it is ...

Steven P. Anderson; Robert A. Weller; Roger B. Lukas

1996-12-01T23:59:59.000Z

39

Global warming risk in Russia: National actions and some options for international cooperation  

SciTech Connect

In the management of global environmental risks the Russia case is a special one regarding certain specific features which determine the position of the country, particularly in a new international community emerged on the territory of the former Soviet Union, large scientific interest to the global physical processes and low interest and capabilities to deal with such risks on the part of social institutions inherited from the USSR. The largest country in the world with visible geopolitical role and probably biggest regional differences could not be ignored as a one of major players in the management of global environmental risks. The understanding of all deficiencies and positive sides of global risks management process in this country are absolutely important for extrapolating the appropriate trends in some other parts of the world. At the same time the ex-Soviet Union case shows clearly how the social learning process can radically ``change the course``, diverting to the opposite direction the social goals and preferences. Starting the studies on possibilities to change the climate for improving the human being, the former soviet society perceived the risks of human impact on climate and started to regulate it and to participate in the process of international management of global warming. The level of activity in this process on the part of Russia will however depend heavily on how much national interests will be reflected in the specific prevention measures realized by the international community.

Sokolov, V.I. [Russian Academy of Sciences, Moscow (Russian Federation)

1995-06-01T23:59:59.000Z

40

Propagation and Selective Transmission of Internal Gravity Waves in a Sudden Warming  

Science Conference Proceedings (OSTI)

Longitudinally asymmetric features of gravity wave propagation in a sudden warming are examined theoretically, using observed geostrophic wind fields in the stratosphere for three days of winter 1979. It is shown that the wind patterns ...

Timothy J. Dunkerton; Neal Butchart

1984-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm pool international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Dynamic and Thermodynamic Regulation of Ocean Warming  

Science Conference Proceedings (OSTI)

The relative roles of clouds, surface evaporation, and ocean heat transport in limiting maximum sea surface temperatures (SSTs) in the western Pacific warm pool are investigated by means of simple and intermediate coupled oceanľatmosphere models. ...

Tim Li; Timothy F. Hogan; C-P. Chang

2000-10-01T23:59:59.000Z

42

Warm or Steaming Ground | Open Energy Information  

Open Energy Info (EERE)

Warm or Steaming Ground Warm or Steaming Ground Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Warm or Steaming Ground Dictionary.png Warm or Steaming Ground: An area where geothermal heat is conducted to the earth's surface, warming the ground and sometimes causing steam to form when water is present. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Steam rising from the ground at Eldvorp, a 10 km row of craters, in Southwestern Iceland. http://www.visiticeland.com/SearchResults/Attraction/eldvorp Warm or steaming ground is often an indicator of a geothermal system beneath the surface. In some cases a geothermal system may not show any

43

Global Warming Shifts the Monsoon Circulation, Drying South Asia  

Science Conference Proceedings (OSTI)

Monsoon rainfall over South Asia has decreased during the last 5 to 6 decades according to several sets of observations. Although sea surface temperature (SST) has risen across the Indo-Pacific warm pool during this period, the expected ...

H. Annamalai; Jan Hafner; K. P. Sooraj; P. Pillai

2013-05-01T23:59:59.000Z

44

Mudpots, Mud Pools, or Mud Volcanoes | Open Energy Information  

Open Energy Info (EERE)

Mudpots, Mud Pools, or Mud Volcanoes Mudpots, Mud Pools, or Mud Volcanoes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Mudpots, Mud Pools, or Mud Volcanoes Dictionary.png Mudpots, Mud Pools, or Mud Volcanoes: A kind of hot spring or fumarole with limited water causing a bubbling pool with a consistency of mud or clay. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Mudpot in Yellowstone National Park(reference: nps.gov) Mudpots and mud pools are actually hot springs or fumaroles with limited amounts of water but a lot of clay from surrounding rock and soil causing a boiling slurry. Not to be confused with mud volcanoes, which are the

45

Heat Pump Swimming Pool Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Swimming Pool Heaters Swimming Pool Heaters Heat Pump Swimming Pool Heaters May 29, 2012 - 1:49pm Addthis How a heat pump works. How a heat pump works. How They Work Heat pumps use electricity to capture heat and move it from one place to another. They don't generate heat. As the pool pump circulates the swimming pool's water, the water drawn from the pool passes through a filter and the heat pump heater. The heat pump heater has a fan that draws in the outside air and directs it over the evaporator coil. Liquid refrigerant within the evaporator coil absorbs the heat from the outside air and becomes a gas. The warm gas in the coil then passes through the compressor. The compressor increases the heat, creating a very hot gas that then passes through the condenser. The condenser transfers the heat from the hot gas to the cooler pool water circulating

46

ANALYSIS OF MILP TECHNIQUES FOR THE POOLING PROBLEM ...  

E-Print Network (OSTI)

Some variants of pooling problem have cost of per unit flow in arcs, profit per ...... and Analytics in the Oil and Gas Industry, International Series in Operations Re-.

47

Patricia Poole-Shirriel  

Energy.gov (U.S. Department of Energy (DOE))

Patricia Poole-Shirriel is the human resources/administrative team leader for the Office of Legacy Management (LM) in the Office of Business Operations Division.Ms. Poole-Shirriel comes to LM from...

48

Policy implications of greenhouse warming  

SciTech Connect

Contents: background; the greenhouse gases and their effects; policy framework; adaptation; mitigation; international considerations; findings and conclusions; recommendations; questions and answers about greenhouse warming; background information on synthesis panel members and professional staff; and membership lists for effects, mitigation, and adaptation panels.

1991-01-01T23:59:59.000Z

49

MOTOR POOL RESERVATIONS Reservation Number:_______________  

E-Print Network (OSTI)

MOTOR POOL RESERVATIONS Reservation Number:_______________ Evanston campus: Chicago campus: 2020: 312/503-9243 E-mail: motor-pool@northwestern.edu E-mail: motor-pool@northwestern.edu Hours: 8:00 a reservations require the "Organization Authorization for University Vehicles" form to be faxed to Motor Pool

Shull, Kenneth R.

50

Upper-Level Structure of Oklahoma Tornadic Storms on 2 May 1979. II: Proposed Explanation of ôVö Pattern and Internal Warm Region in Infrared Observations  

Science Conference Proceedings (OSTI)

An analysis of the GOES measurements of a severe thunderstorm anvil on 2 May 1979 presented in Part I (Heymsfield et al.) showed a ôVö shaped region of low infrared temperatures (TBB) and an internal region of high TBB. Several hypotheses have ...

Gerald M. Heymsfield; Gerard Szejwach; Steven Schotz; Roy H. Blackmer Jr.

1983-07-01T23:59:59.000Z

51

Heard Island global warming test  

SciTech Connect

In late January and early February 1991, an international team will conduct an experiment to test the possibility of measuring global warming in the world's oceans. The goal is to provide early indications of warming caused by the so-called greenhouse effect, the atmospheric buildup of CO{sub 2} and other gases. The method is based on the principle that acoustic energy travels through water between a source and receiver at a speed determined primarily by the water temperature. Thus acoustic travel time can be used as a temperature gauge. The idea is an outgrowth of suggestions made by Professor Walter Munk of the Scripps Institution of Oceanography and Professor Carl Wunsch of MIT in the early 1980s to use long-range underwater acoustic transmissions to measure changes in the heat content of the oceans.

Spindel, R.C. (Univ. of Washington, Seattle (USA))

1991-02-01T23:59:59.000Z

52

Phase Speed Spectra and the Latitude of Surface Westerlies: Interannual Variability and Global Warming Trend  

Science Conference Proceedings (OSTI)

The extratropical annular-mode-like atmospheric responses to ENSO and global warming and the internal variability of annular modes are associated with similar, yet distinct, dynamical characteristics. In particular, La Ni˝a, global warming, and ...

Gang Chen; Jian Lu; Dargan M. W. Frierson

2008-11-01T23:59:59.000Z

53

Swimming Pool Covers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

from an outdoor pool varies depending on the pool's temperature, air temperature and humidity, and the wind speed at the pool surface. The higher the pool temperature and wind...

54

Swimming Pool Covers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Swimming Pool Covers Swimming Pool Covers Swimming Pool Covers May 29, 2012 - 6:40pm Addthis Swimming Pool Covers What does this mean for me? Pool covers minimize evaporation from both outdoor and indoor pools. Covering a pool when it is not in use is the single most effective means of reducing pool heating costs. Savings of 50%-70% are possible. You can significantly reduce swimming pool heating costs by using a pool cover. On the following pages, see the tables showing the costs of heating pools with and without pool covers in different U.S. cities: Estimating Heat Pump Swimming Pool Heater Costs and Savings Estimating Swimming Pool Gas Heating Costs and Savings Use of a pool cover also can help reduce the size of a solar pool heating system, which can save money. How They Work

55

Installing and Operating an Efficient Swimming Pool Pump | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Water with an Efficient Swimming Pool Installing and Operating an Efficient Swimming Pool Pump Swimming Pool Covers An example of a solar pool heater. Solar Swimming Pool Heaters...

56

Solar pool heater  

SciTech Connect

A solar pool heater is defined by a submersible tubular ring attached to the perimeter of a transparent or translucent sheet. Floatation of the heater is obtained through an air bubble captured by the sheet and maintained by the ring. The ring is perforated to permit the entry of water within the ring to induce partial submersion and thereby establish a peripheral seal about the captured air bubble. The submersed ring also prevents overlapping of adjacent heaters and reduces the likelihood of the heaters being blown off the pool by wind. By developing the sheet from material transparent to at least a spectrum of the solar rays, the air space intermediate the sheet and the underlying water surface will provide a ''greenhouse'' effect to heat the water through direct impingement by the received radiant energy; additionally, radiation of heat from the water will be reduced by the sheet, whereby, the heater not only collects but retains the impinged radiant energy.

Acker, L.C.

1980-09-16T23:59:59.000Z

57

Global Warming, Soot, Ice  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Warming, Soot, Ice Speaker(s): James Hansen Date: November 7, 2003 - 12:00pm Location: 90-3122 Irreversible "dangerous anthropogenic interference" with the climate system...

58

Solar Swimming Pool Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Swimming Pool Heaters Swimming Pool Heaters Solar Swimming Pool Heaters May 29, 2012 - 6:03pm Addthis An example of a solar pool heater. An example of a solar pool heater. You can significantly reduce swimming pool heating costs by installing a solar pool heater. They're cost competitive with both gas and heat pump pool heaters, and they have very low annual operating costs. Actually, solar pool heating is the most cost-effective use of solar energy in many climates. How They Work Most solar pool heating systems include the following: A solar collector -- the device through which pool water is circulated to be heated by the sun A filter -- removes debris before water is pumped through the collector A pump -- circulates water through the filter and collector and back to the pool A flow control valve -- automatic or manual device that diverts pool

59

Reactor closure design for a pool-type fast reactor  

SciTech Connect

The reactor closure is the topmost structural part of a reactor module. For a pool-type fast reactor it is an especially important structure because it provides the interface between the primary coolant system and the main access area above the closure. The reactor closure comprises a stationary deck, a rotatable plug, the boundary elements of primary system and containment penetrations for equipment and auxiliary systems. This paper evaluates two different reactor closure design concepts, referred to as ''warm'' deck and ''hot'' deck, for a pool-type fast reactor with respect to their design features, technical merits, and economic benefits. The evaluation also includes functional, structural, and thermal analyses of the two deck design concepts. Issues related to their fabrication and shipping to the plant site are also addressed. The warm deck is a thick solid steel plate with under-the-deck insulation consisting of many layers of steel plates. The hot deck is a box-type structure consisting of a bottom plate reinforced with vertical ribs and cylinders. For insulation and radiation shielding, the region of the hot deck above the bottom plate is filled with steel balls. Conventional insulation is added on the top to further reduce heat loss into area above the deck. The design choice of the closure deck is strongly dependent on design features of the reactor; especially on the reactor module support. While the warm deck is preferable with the top support, the hot deck is better suited for the bottom support design of the module.

Chung, H.; Seidensticker, R.W.; Kann, W.J.; Bump, T.R.; Schatmeier, C.

1986-01-01T23:59:59.000Z

60

Warm Gas Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Warm Gas Cleanup Warm Gas Cleanup NETL Office of Research and Development Project Number: FWP-2012.03.03 Task 5 Project Description The Environmental Protection Agency (EPA) has established strict regulations for the trace contaminant emissions from integrated gasification combined cycle (IGCC) systems. The Department of Energy (DOE) performance goals for trace contaminant removal were selected to meet or exceed EPA's standard limits for contaminants, as well as to avoid poisoning of: the catalysts utilized in making liquids from fuel gas the electrodes in fuel cells selective catalytic reduction (SCR) catalysts The objective of the NETL's ORD Warm Gas Cleanup project is to assist in achieving both DOE and EPA targets for trace contaminant capture from coal gasification, while preserving the high thermal efficiency of the IGCC system. To achieve this, both lab and pilot-scale research is underway to develop sorbents capable of removing the following contaminants from high temperature syngas (up to 550┬░F):

Note: This page contains sample records for the topic "warm pool international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Solar Swimming Pool Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Swimming Pool Heaters Solar Swimming Pool Heaters Solar Swimming Pool Heaters May 29, 2012 - 6:03pm Addthis An example of a solar pool heater. An example of a solar pool heater. You can significantly reduce swimming pool heating costs by installing a solar pool heater. They're cost competitive with both gas and heat pump pool heaters, and they have very low annual operating costs. Actually, solar pool heating is the most cost-effective use of solar energy in many climates. How They Work Most solar pool heating systems include the following: A solar collector -- the device through which pool water is circulated to be heated by the sun A filter -- removes debris before water is pumped through the collector A pump -- circulates water through the filter and collector and back to the pool

62

Cold Pools in the Columbia Basin  

Science Conference Proceedings (OSTI)

Persistent midwinter cold air pools produce multiday periods of cold, dreary weather in basins and valleys. Persistent stable stratification leads to the buildup of pollutants and moisture in the pool. Because the pool sometimes has temperatures ...

C. D. Whiteman; S. Zhong; W. J. Shaw; J. M. Hubbe; X. Bian; J. Mittelstadt

2001-08-01T23:59:59.000Z

63

Swimming Pool Covers | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Heating Costs and Savings Use of a pool cover also can help reduce the size of a solar pool heating system, which can save money. How They Work Swimming pools lose energy in...

64

Gas Swimming Pool Heaters | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

can be a good choice for pools that aren't used on a regular basis. Unlike heat pump and solar pool heaters, gas pool heaters can maintain any desired temperature regardless of...

65

Solar Pool Heating | Open Energy Information  

Open Energy Info (EERE)

icon Solar Pool Heating Jump to: navigation, search TODO: Add description List of Solar Pool Heating Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolar...

66

Assessment of boreal forest historical C dynamics in Yukon River Basin: relative roles of warming and fire regime change  

Science Conference Proceedings (OSTI)

Carbon (C) dynamics of boreal forest ecosystems have substantial implications for efforts to mitigate the rise of atmospheric CO2 and may be substantially influenced by warming and changing wildfire regimes. In this study we applied a large-scale ecosystem model that included dynamics of organic soil horizons and soil organic matter characteristics of multiple pools to assess forest C stock changes of the Yukon River Basin (YRB) in Alaska, USA, and Canada from 1960 through 2006, a period characterized by substantial climate warming and increases in wildfire. The model was calibrated for major forests with data from long-term research sites and evaluated using a forest inventory database. The regional assessment indicates that forest vegetation C storage increased by 46 Tg C, but that total soil C storage did not change appreciably during this period. However, further analysis suggests that C has been continuously lost from the mineral soil horizon since warming began in the 1970s, but has increased in the amorphous organic soil horizon. Based on a factorial experiment, soil C stocks would have increased by 158 Tg C if the YRB had not undergone warming and changes in fire regime. The analysis also identified that warming and changes in fire regime were approximately equivalent in their effects on soil C storage, and interactions between these two suggests that the loss of organic horizon thickness associated with increases in wildfire made deeper soil C stocks more vulnerable to loss via decomposition. Subbasin analyses indicate that C stock changes were primarily sensitive to the fraction of burned forest area within each subbasin and that boreal forest ecosystems in the YRB are currently transitioning from being sinks to sources at ;0.7% annual area burned. We conclude that it is important for international mitigation efforts focused on controlling atmospheric CO2 to consider how climate warming and changes in fire regime may concurrently affect the CO2 sink strength of boreal forests. It is also important for large-scale biogeochemical and earth system models to include organic soil dynamics in applications to assess regional C dynamics of boreal forests responding to warming and changes in fire regime.

Yuan, Fengming [ORNL; Yi, Shuhua [Cold and Arid Regions Environmental and Engineering Research Institute, CAS; McGuire, A. David [University of Alaska; Johnson, Kristopher D [University of Alaska, Fairbanks; Liang, Jingjing [University of Alaska, Fairbanks; Harden, Jennifer [USGS, Menlo Park, CA; Kasischke, Eric S. [University of Maryland, College Park; Kurz, Werner [Canadian Forest Service

2012-01-01T23:59:59.000Z

67

Warm Water Mass Formation  

Science Conference Proceedings (OSTI)

Poleward heat transport by the own implies warm Water mass formation, i.e., the retention by the tropical and subtropical ocean of some of its net radiant heat gain. Under what condition net heat retention becomes comparable to latent heat ...

G. T. Csanady

1984-02-01T23:59:59.000Z

68

Solar pool heating | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon ┬╗ Solar pool heating Jump to: navigation, search Pool Heating is a great use for solar energy. Solar pool heating systems can be very effective and inexpensive. The pool itself is the thermal storage unit and the existing pump that the pool uses will circulate the water through the solar collectors. Pool Covers Having a good pool cover is one of the best ways to conserve energy and use solar energy to heat the pool. If you don't have a pool cover the solar energy being used will be wasted and you will be using three times as much energy that is necessary. Solar Sun Rings- instead of using a full pool cover sun rings are

69

Kah-nee-ta Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Kah-nee-ta Pool & Spa Low Temperature Geothermal Facility Kah-nee-ta Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Kah-nee-ta Pool & Spa Low Temperature Geothermal Facility Facility Kah-nee-ta Sector Geothermal energy Type Pool and Spa Location Warm Springs, Oregon Coordinates 44.7634519┬░, -121.2661625┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

70

Arrhenius and global warming  

SciTech Connect

Although concern about global atmospheric warming has intensified in recent decades, research into the greenhouse effect actually began in the 19th century. Fourier and other scientists appreciated that without heat-absorbing gases in the atmosphere, the temperature on the ground would be considerably lower, making life as we know it impossible. In 1896, the Swedish scientist Svante Arrhenius was the first to make a quantitative link between changes in carbon dioxide concentration and climate. Publication of his paper was celebrated at a recent Swedish workshop. 13 refs., 1 fig.

Uppenbrink, J.

1996-05-24T23:59:59.000Z

71

Swimming Pool Heating | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

reduce the cost of heating your swimming pool by installing a high-efficiency or solar heater, using a pool cover, managing the water temperature, and using a smaller pump less...

72

Report on Solar Pool Heating Quantitative Survey  

DOE Green Energy (OSTI)

This report details the results of a quantitative research study undertaken to better understand the marketplace for solar pool-heating systems from the perspective of residential pool owners.

Synapse Infusion Group, Inc. (Westlake Village, California)

1999-05-06T23:59:59.000Z

73

Spent Fuel Pool Accident Characteristics  

Science Conference Proceedings (OSTI)

Spent fuel pools (SFPs) at nuclear reactor sites contain used fuel assemblies, control rods, used radioactive sources, and used instrumentation. Cooling of the used fuel is required to remove the decay heat generated by radioactive decay.BackgroundThe SFPs include heat removal systems to provide methods to cool the used fuel and inventory makeup systems as backup methods to preserve water inventory if the SFP cooling system is ineffective. These two methods ...

2013-05-27T23:59:59.000Z

74

Payette Idaho Pool Energy Conservation Study  

DOE Green Energy (OSTI)

Staff at PNNL studied and performed evaluations on the pool facility for energy conservation measures and actions to lower the annual energy costs of the pool complex. PNNL staff analyzed the utility billing data and a number of energy conservation opportunities. Conservation opportunities analyzed include adding pool covers and a solar water heating system, sealing and insulating the building envelope, optimizing the pool schedule, and incorporating several no- or low-cost energy saving recommendations.

Larson, Loren L.; Hillman, Timothy C.; McCullough, Jeffrey J.; Roy, Nicole D.

2001-11-01T23:59:59.000Z

75

Cool pool development. Quarterly technical report No. 1, April-June 1979  

DOE Green Energy (OSTI)

The Cool Pool is a passive cooling system consisting of a shaded, evaporating roof pond which thermosiphons cool water into water-filled, metal columns (culvert pipes) located within the building living space. The water in the roof pond is cooled by evaporation, convection and radiation. Because the water in the pool and downcomer is colder and denser than the water in the column a pressure difference is created and the cold water flows from the pool, through the downcomer and into the bottom of the column. The warm column water rises and flows through a connecting pipe into the pool. It is then cooled and the cycle repeats itself. The system requires no pumps. The water column absorbs heat from the building interior primarily by convection and radiation. Since the column is radiating at a significantly lower temperature than the interior walls it plays a double role in human comfort. Not only does it cool the air by convection but it provides a heat sink to which people can radiate. Since thermal radiation is important to the cooling of people, the cold water column contributes substantially to their feelings of comfort. Research on the Cool Pool system includes the following major tasks: control of biological organisms and debris in the roof pond and water cylinders; development of a heat exchanger; experimental investigation of the system's thermal performance; and development of a predictive computer simulation of the Cool Pool. Progress in these tasks is reported.

Crowther, K.

1979-10-15T23:59:59.000Z

76

WARM SPRINGS, OREGON  

DOE Green Energy (OSTI)

and, as part of its charter, has the responsibility to evaluate and develop renewable energy resources for the Confederated Tribes of Warm Springs. WSPWE recently completed a multi-year-year wind resource assessment of tribal lands, beginning with the installation of wind monitoring towers on the Mutton Mountains site in 2003, and collection of on-site wind data is ongoing. The study identified the Mutton Mountain site on the northeastern edge of the reservation as a site with sufficient wind resources to support a commercial power project estimated to generate over 226,000 MWh per year. Initial estimates indicate that the first phase of the project would be approximately 79.5 MW of installed capacity. This Phase 2 study expands and builds on the previously conducted Phase 1 Wind Resource Assessment, dated June 30, 2007. In order to fully assess the economic benefits that may accrue to the Tribes through wind energy development at Mutton Mountain, a planning-level opinion of probable cost was performed to define the costs associated with key design and construction aspects of the proposed project. This report defines the Mutton Mountain project costs and economics in sufficient detail to allow the Tribes to either build the project themselves or contract with a developer under the most favorable terms possible for the Tribes.

Jim Manion; Michael Lofting; Wil Sando; Emily Leslie; Randy Goff

2009-03-30T23:59:59.000Z

77

Changes in Interannual Variability and Decadal Potential Predictability under Global Warming  

Science Conference Proceedings (OSTI)

Global warming will result in changes in mean temperature and precipitation distributions and is also expected to affect interannual and longer time-scale internally generated variability as a consequence of changes in climate processes and ...

G. J. Boer

2009-06-01T23:59:59.000Z

78

Global Warming and Extreme Weather  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Warming and Extreme Weather Global Warming and Extreme Weather Speaker(s): Michael Wehner Date: November 28, 2006 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Surabi Menon Extreme weather events can have serious impacts on human and ecological systems. Changes in the magnitude and frequency of extreme weather associated with changes in the mean climate are likely the most serious consequence of human induced global warming. Understanding what the future portends is vital if society hopes to adapt to the very different world that awaits. In this talk, we will exploit simple extreme value theory to make predictions about the late 21st century climate. Current work on the relationship between global warming and the hurricane cycle will also be presented. The bottom line is that events that are considered rare today

79

Global warming continues in 1989  

SciTech Connect

Nineteen eight-nine ranks as one of the warmest years on record despite the chill of unusually cool water in the tropical Pacific. The continued robustness of the warming trend that began in the mid-1970s lends support to claims that an intensifying greenhouse effect is behind it all, although that case has not yet been made definitively. Even at the current rate of global warming it will take another 10 years or so to be confident that the greenhouse effect is with us. Although the global warming trend is consistent with an increasing contribution by the greenhouse effect, direct signs that the greenhouse effect is intensifying are still hard to come by in the temperature record. Greenhouse models agree that if that is happening, the temperature increase should be most pronounced around the Arctic. Alaska, northwestern Canada, and northern Siberia warmed sharply in the 1980s, but the region from eastern Canada through Greenland and into Scandinavia cooled markedly.

Kerr, R.A.

1990-02-02T23:59:59.000Z

80

Authropogenic Warming in North Alaska?  

Science Conference Proceedings (OSTI)

Using permafrost boreholes, Lachenbruch and Marshall recently reported evidence for a 2░ľ4░C warming in North Alaska occurring at some undetermined time during the last century. Popular accounts suggest their findings are evidence for ...

Patrick J. Michaels; David E. Sappington; David E. Stooksbury

1988-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm pool international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The Psychology of Global Warming  

Science Conference Proceedings (OSTI)

The evidence in support of global warming and the lack of significant published evidence to the contrary provides an extraordinarily strong foundation for the scientific community's call for action on greenhouse gas emissions. However, public ...

Ben R. Newell; Andrew J. Pitman

2010-08-01T23:59:59.000Z

82

Solar Heated Pools for Your Commercial Property  

SciTech Connect

A brochure describing the energy-saving and cost-saving benefits of using solar water heating in commercial swimming pools.

American Solar Energy Society

2001-06-19T23:59:59.000Z

83

Five-Year Climatology of Midtroposphere Dry Air Layers in Warm Tropical Ocean Regions as Viewed by AIRS/Aqua  

Science Conference Proceedings (OSTI)

Many studies have commented on the presence of midtroposphere dry air layers in normally moist areas of the warm-pool region in the tropical western Pacific Ocean. In this study, 5 yr of relative humidity (RH) observations from the Atmospheric ...

Sean P. F. Casey; Andrew E. Dessler; Courtney Schumacher

2009-09-01T23:59:59.000Z

84

Public Swimming Pool Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Public Swimming Pool Pool & Spa Low Temperature Geothermal Facility Public Swimming Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Public Swimming Pool Pool & Spa Low Temperature Geothermal Facility Facility Public Swimming Pool Sector Geothermal energy Type Pool and Spa Location Lakeview, Oregon Coordinates 42.1887721┬░, -120.345792┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

85

Baker Swimming Pool Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Swimming Pool Pool & Spa Low Temperature Geothermal Facility Swimming Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Baker Swimming Pool Pool & Spa Low Temperature Geothermal Facility Facility Baker Swimming Pool Sector Geothermal energy Type Pool and Spa Location Baker, Oregon Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

86

Cove Swimming Pool Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Swimming Pool Pool & Spa Low Temperature Geothermal Facility Swimming Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Cove Swimming Pool Pool & Spa Low Temperature Geothermal Facility Facility Cove Swimming Pool Sector Geothermal energy Type Pool and Spa Location Cove, Oregon Coordinates 45.2965256┬░, -117.8079872┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

87

Homestead Crater Scuba Dive Pool Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Crater Scuba Dive Pool Pool & Spa Low Temperature Geothermal Crater Scuba Dive Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Homestead Crater Scuba Dive Pool Pool & Spa Low Temperature Geothermal Facility Facility Homestead Crater Scuba Dive Pool Sector Geothermal energy Type Pool and Spa Location Midway, Utah Coordinates 40.5121772┬░, -111.4743545┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

88

Hot Springs Soaking Pools Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Soaking Pools Pool & Spa Low Temperature Geothermal Facility Soaking Pools Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs Soaking Pools Pool & Spa Low Temperature Geothermal Facility Facility Hot Springs Soaking Pools Sector Geothermal energy Type Pool and Spa Location Hay-Yo-Kay, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

89

Klamath Swimming Pools (5) Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Pools (5) Pool & Spa Low Temperature Geothermal Facility Pools (5) Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Swimming Pools (5) Pool & Spa Low Temperature Geothermal Facility Facility Klamath Swimming Pools (5) Sector Geothermal energy Type Pool and Spa Location Klamath Falls, Oregon Coordinates 42.224867┬░, -121.7816704┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

90

Bonneville Seabase Scuba Dive Pool Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Seabase Scuba Dive Pool Pool & Spa Low Temperature Geothermal Seabase Scuba Dive Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bonneville Seabase Scuba Dive Pool Pool & Spa Low Temperature Geothermal Facility Facility Bonneville Seabase Scuba Dive Pool Sector Geothermal energy Type Pool and Spa Location Grantsville, Utah Coordinates 40.5999425┬░, -112.4643988┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

91

Moana Swimming Pool Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Swimming Pool Pool & Spa Low Temperature Geothermal Facility Swimming Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Moana Swimming Pool Pool & Spa Low Temperature Geothermal Facility Facility Moana Swimming Pool Sector Geothermal energy Type Pool and Spa Location Reno, Nevada Coordinates 39.5296329┬░, -119.8138027┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

92

Stacy Park Pool Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Stacy Park Pool Pool & Spa Low Temperature Geothermal Facility Stacy Park Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Stacy Park Pool Pool & Spa Low Temperature Geothermal Facility Facility Stacy Park Pool Sector Geothermal energy Type Pool and Spa Location Austin, Texas Coordinates 30.267153┬░, -97.7430608┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

93

Hobo Pool Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Pool Pool & Spa Low Temperature Geothermal Facility Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hobo Pool Pool & Spa Low Temperature Geothermal Facility Facility Hobo Pool Sector Geothermal energy Type Pool and Spa Location Saratoga, Wyoming Coordinates 41.4549621┬░, -106.8064263┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

94

Cold tongue and warm pool ENSO events in CMIP5: mean state and future projections  

Science Conference Proceedings (OSTI)

The representation of the El Ni˝o-Southern Oscillation (ENSO) under historical forcing and future projections is analyzed in 34 Coupled Model Intercomparison Project Phase 5 (CMIP5) models. Most models realistically simulate the observed intensity ...

AndrÚa S. Taschetto; Alexander Sen Gupta; Nicolas C. Jourdain; Agus Santoso; Caroline C. Ummenhofer; Matthew H. England

95

Hurricane Katrina (2005). Part II: Evolution and Hemispheric Impacts of a Diabatically Generated Warm Pool  

Science Conference Proceedings (OSTI)

The landfall of Hurricane Katrina (2005) near New Orleans, Louisiana, on 29 August 2005 will be remembered as one of the worst natural disasters in the history of the United States. By comparison, the extratropical transition (ET) of the system ...

Ron McTaggart-Cowan; Lance F. Bosart; John R. Gyakum; Eyad H. Atallah

2007-12-01T23:59:59.000Z

96

Convective Transport Theory for Surface Fluxes Tested over the Western Pacific Warm Pool  

Science Conference Proceedings (OSTI)

Turbulent flux measurements from five flights of the National Center for Atmospheric Research Electra aircraft during the Tropical Oceans and Global Atmosphere Coupled OceanľAtmosphere Response Experiment (TOGA COARE) are used to test convective ...

Lawrence Greischar; Roland Stull

1999-07-01T23:59:59.000Z

97

Transition between Suppressed and Active Phases of Intraseasonal Oscillations in the Indo-Pacific Warm Pool  

Science Conference Proceedings (OSTI)

Intraseasonal oscillations (ISOs) are important large-amplitude and large-scale elements of the tropical Indo-Pacific climate with time scales in the 20ľ60-day period range, during which time they modulate higher-frequency tropical weather. ...

P. A. Agudelo; J. A. Curry; C. D. Hoyos; P. J. Webster

2006-11-01T23:59:59.000Z

98

The centennial and millennial variability of the IndoPacific warm pool and the Indonesian Throughflow  

E-Print Network (OSTI)

As the only low-latitude connection between ocean basins, the Indonesian Throughflow allows the direct transmission of heat and salinity between the Pacific and Indian Oceans. Despite its potential importance, the role of ...

Gibbons, Fern Tolley

2012-01-01T23:59:59.000Z

99

Low-Frequency Variability and Remote Forcing of Gap Winds over the East Pacific Warm Pool  

Science Conference Proceedings (OSTI)

The low-frequency variability of gap winds at the Isthmuses of Tehuantepec and Papagayo is investigated using a 17-yr wind stress dataset merging the remotely sensed observations of Special Sensor Microwave Imager (SSM/I) and Quick Scatterometer (...

Kristopher B. Karnauskas; Antonio J. Busalacchi; Raghu Murtugudde

2008-10-01T23:59:59.000Z

100

Surface Heat Budgets and Sea Surface Temperature in the Pacific Warm Pool during TOGA COARE  

Science Conference Proceedings (OSTI)

The daily mean heat and momentum fluxes at the surface derived from the Special Sensor Microwave/Imager and Japanĺs Geostationary Meteorological Satellite radiance measurements are used to study the temporal and spatial variability of the surface ...

Shu-Hsien Chou; Wenzhong Zhao; Ming-Dah Chou

2000-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm pool international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Apparatus for draining lower drywell pool water into suppresion pool in boiling water reactor  

DOE Patents (OSTI)

An apparatus which mitigates temperature stratification in the suppression pool water caused by hot water drained into the suppression pool from the lower drywell pool. The outlet of a spillover hole formed in the inner bounding wall of the suppression pool is connected to and in flow communication with one end of piping. The inlet end of the piping is above the water level in the suppression pool. The piping is routed down the vertical downcomer duct and through a hole formed in the thin wall separating the downcomer duct from the suppression pool water. The piping discharge end preferably has an elevation at or near the bottom of the suppression pool and has a location in the horizontal plane which is removed from the point where the piping first emerges on the suppression pool side of the inner bounding wall of the suppression pool. This enables water at the surface of the lower drywell pool to flow into and be discharged at the bottom of the suppression pool.

Gluntz, Douglas M. (San Jose, CA)

1996-01-01T23:59:59.000Z

102

Global Warming: Physics and Facts  

Science Conference Proceedings (OSTI)

This report contains papers on: A tutorial on global atmospheric energetics and the greenhouse effect; global climate models: what and how; comparison of general circulation models; climate and the earth`s radiation budget; temperature and sea level change; short-term climate variability and predictions; the great ocean conveyor; trace gases in the atmosphere: temporal and spatial trends; the geochemical carbon cycle and the uptake of fossil fuel CO{sub 2}; forestry and global warming; the physical and policy linkages; policy implications of greenhouse warming; options for lowering US carbon dioxide emissions; options for reducing carbon dioxide emissions; and science and diplomacy: a new partnership to protect the environment.

Levi, B.G. [Physics Today, New York, NY (United States); Hafemeister, D. [Committee on Foreign Relations (U.S. Senate), Washington, DC (United States); Scribner, R. [Georgetown Univ., Washington, DC (United States)] [eds.

1992-05-01T23:59:59.000Z

103

Global Warming: Physics and Facts  

Science Conference Proceedings (OSTI)

This report contains papers on: A tutorial on global atmospheric energetics and the greenhouse effect; global climate models: what and how; comparison of general circulation models; climate and the earth's radiation budget; temperature and sea level change; short-term climate variability and predictions; the great ocean conveyor; trace gases in the atmosphere: temporal and spatial trends; the geochemical carbon cycle and the uptake of fossil fuel CO{sub 2}; forestry and global warming; the physical and policy linkages; policy implications of greenhouse warming; options for lowering US carbon dioxide emissions; options for reducing carbon dioxide emissions; and science and diplomacy: a new partnership to protect the environment.

Levi, B.G. (Physics Today, New York, NY (United States)); Hafemeister, D. (Committee on Foreign Relations (U.S. Senate), Washington, DC (United States)); Scribner, R. (Georgetown Univ., Washington, DC (United States)) (eds.)

1992-01-01T23:59:59.000Z

104

Motor Pool Guidelines for Geosciences A completed Motor Pool Request form must be submitted to Denise for  

E-Print Network (OSTI)

Motor Pool Guidelines for Geosciences ┬Ě A completed Motor Pool Request form must be submitted on the Geosciences website under the forms link. http://www.geo.arizona.edu/pdf/motor_pool_request.pdf ┬Ě If the trip be submitted with the Motor Pool Request. ┬Ě A list of passengers and drivers is for all motor pool travel (this

Holliday, Vance T.

105

Tunable molten oxide pool assisted plasma-melter vitrification systems  

DOE Patents (OSTI)

The present invention provides tunable waste conversion systems and apparatus which have the advantage of highly robust operation and which provide complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The systems provide the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced use or without further use of the gases generated by the conversion process. The apparatus may be employed as a net energy or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production. Methods and apparatus for converting metals, non-glass forming waste streams and low-ash producing inorganics into a useful gas are also provided. The methods and apparatus for such conversion include the use of a molten oxide pool having predetermined electrical, thermal and physical characteristics capable of maintaining optimal joule heating and glass forming properties during the conversion process.

Titus, Charles H. (Newtown Square, PA); Cohn, Daniel R. (Chestnut Hill, MA); Surma, Jeffrey E. (Kennewick, WA)

1998-01-01T23:59:59.000Z

106

Southwest Power Pool | OpenEI  

Open Energy Info (EERE)

Southwest Power Pool Southwest Power Pool Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 90, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power projections South Southwest Power Pool Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Southwest Power Pool / South- Reference Case (xls, 259 KiB)

107

Gas Swimming Pool Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You'll probably need to tune up your pool heater annually. Also, scaling in the burner or heat exchanger may decrease efficiency over a period of time. With proper installation and...

108

Hydrocarbon pool and vapor fire data analysis  

SciTech Connect

The flame geometry and thermal radiation data from a series of large scale experiments involving liquefied petroleum gas (LPG) and gasoline spills on water were analyzed. The experiments were conducted at the Naval Weapons Center, China Lake, California. Two types of fires have been studied; namely, pool fires and vapor fires. The spill quantity varied from 4 m/sup 3/ to approximately 6 m/sup 3/. The LPG pool fire flame height to diameter ratio were between 3.5 and 4.5. The gasoline flame height was about 2. The flame emissive powers for LPG pool fires ranged from 78 kW/m/sup 2/ to 115 kW/m/sup 2/. The average surface emissive power for gasoline pool fire was 40 kW/m/sup 2/. The LPG vapor fire emissive power ranged from 159 to 269 kW/m/sup 2/. 63 figures, 13 tables.

Mudan, K.S.

1984-10-01T23:59:59.000Z

109

Northwest Power Pool Area | OpenEI  

Open Energy Info (EERE)

Northwest Power Pool Area Northwest Power Pool Area Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 93, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power Northwest Power Pool Area projections Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Western Electricity Coordinating Council / Northwest Power Pool Area (xls, 259.1 KiB)

110

Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal...  

Open Energy Info (EERE)

Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal...

111

Algae Computer Simulation: Growth Forecasting Within A Swimming Pool Environment.  

E-Print Network (OSTI)

??An issue with the utilization of swimming pools is that pumps are operated an excessive number of hours to keep the pool free of debrisů (more)

Ballard, Roderick Chevelle

2012-01-01T23:59:59.000Z

112

EA-1111: K Pool Fish Rearing, Hanford Site, Richland, Washington...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: K Pool Fish Rearing, Hanford Site, Richland, Washington EA-1111: K Pool Fish Rearing, Hanford Site, Richland, Washington SUMMARY This EA evaluates the environmental impacts of...

113

Symes Hotel and Medicinal Springs Pool & Spa Low Temperature...  

Open Energy Info (EERE)

Hotel and Medicinal Springs Pool & Spa Low Temperature Geothermal Facility Facility Symes Hotel and Medicinal Springs Sector Geothermal energy Type Pool and Spa Location Hot...

114

Glenwood Hot Springs Hotel Pool & Spa Low Temperature Geothermal...  

Open Energy Info (EERE)

Hotel Pool & Spa Low Temperature Geothermal Facility Facility Glenwood Hot Springs Hotel Sector Geothermal energy Type Pool and Spa Location Glenwood Springs, Colorado...

115

Performance Study of Swimming Pool Heaters  

Science Conference Proceedings (OSTI)

The objective of this report is to perform a controlled laboratory study on the efficiency and emissions of swimming pool heaters based on a limited field investigation into the range of expected variations in operational parameters. Swimming pool heater sales trends have indicated a significant decline in the number of conventional natural gas-fired swimming pool heaters (NGPH). On Long Island the decline has been quite sharp, on the order of 50%, in new installations since 2001. The major portion of the decline has been offset by a significant increase in the sales of electric powered heat pump pool heaters (HPPH) that have been gaining market favor. National Grid contracted with Brookhaven National Laboratory (BNL) to measure performance factors in order to compare the relative energy, environmental and economic consequences of using one technology versus the other. A field study was deemed inappropriate because of the wide range of differences in actual load variations (pool size), geographic orientations, ground plantings and shading variations, number of hours of use, seasonal use variations, occupancy patterns, hour of the day use patterns, temperature selection, etc. A decision was made to perform a controlled laboratory study based on a limited field investigation into the range of expected operational variations in parameters. Critical to this are the frequency of use, temperature selection, and sizing of the heater to the associated pool heating loads. This would be accomplished by installing a limited amount of relatively simple compact field data acquisition units on selected pool installations. This data included gas usage when available and alternately heater power or gas consumption rates were inferred from the manufacturer's specifications when direct metering was not available in the field. Figure 1 illustrates a typical pool heater installation layout.

McDonald, R.J.

2009-01-01T23:59:59.000Z

116

Caliente City Pool Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Caliente City Pool Pool & Spa Low Temperature Geothermal Facility Facility Caliente City Pool Sector Geothermal energy Type Pool and Spa Location Caliente, Nevada Coordinates 37.6149648┬░, -114.5119378┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

117

Prediction of domestic warm-water consumption  

Science Conference Proceedings (OSTI)

The paper presents methodologies able to predict dynamic warm water consumption in district heating systems, using time-series analysis. A simulation model according to the day of a week has been chosen for modeling the domestic warm water consumption ... Keywords: autoregressive model, district heating systems, domestic warm water, prediction, simulation, time series models

Elena Serban; Daniela Popescu

2008-12-01T23:59:59.000Z

118

Managing Swimming Pool Temperature for Energy Efficiency | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Managing Swimming Pool Temperature for Energy Efficiency Managing Swimming Pool Temperature for Energy Efficiency Managing Swimming Pool Temperature for Energy Efficiency May 29, 2012 - 7:42pm Addthis Managing Swimming Pool Temperature for Energy Efficiency What does this mean for me? The temperature you keep your pool affects the pool heater size as well as your operating costs. Turn the temperature down or turn off the heater when your pool won't be used for several days. The water temperature you desire for your swimming pool not only affects the size of the pool's heater, but also your heating costs if use a gas or heat pump pool heater. Pool water temperatures typically range from 78┬║F to 82┬║F. The American Red Cross recommends a temperature of 78┬║F for competitive swimming. This coincides with good fuel savings. However, this may be too cool for young

119

Hydrological consequences of global warming  

Science Conference Proceedings (OSTI)

The 2007 Intergovernmental Panel for Climate Change indicates there is strong evidence that the atmospheric concentration of carbon dioxide far exceeds the natural range over the last 650,000 years, and this recent warming of the climate system is unequivocal, resulting in more frequent extreme precipitation events, earlier snowmelt runoff, increased winter flood likelihoods, increased and widespread melting of snow and ice, longer and more widespread droughts, and rising sea level. The effects of recent warming has been well documented and climate model projections indicate a range of hydrological impacts with likely to very likely probabilities (67 to 99 percent) of occurring with significant to severe consequences in response to a warmer lower atmosphere with an accelerating hydrologic cycle.

Miller, Norman L.

2009-06-01T23:59:59.000Z

120

Annual report, FY 1979 Spent fuel and fuel pool component integrity.  

Science Conference Proceedings (OSTI)

International meetings under the BEFAST program and under INFCE Working Group No. 6 during 1978 and 1979 continue to indicate that no cases of fuel cladding degradation have developed on pool-stored fuel from water reactors. A section from a spent fuel rack stand, exposed for 1.5 y in the Yankee Rowe (PWR) pool had 0.001- to 0.003-in.-deep (25- to 75-..mu..m) intergranular corrosion in weld heat-affected zones but no evidence of stress corrosion cracking. A section of a 304 stainless steel spent fuel storage rack exposed 6.67 y in the Point Beach reactor (PWR) spent fuel pool showed no significant corrosion. A section of 304 stainless steel 8-in.-dia pipe from the Three Mile Island No. 1 (PWR) spent fuel pool heat exchanger plumbing developed a through-wall crack. The crack was intergranular, initiating from the inside surface in a weld heat-affected zone. The zone where the crack occurred was severely sensitized during field welding. The Kraftwerk Union (Erlangen, GFR) disassembled a stainless-steel fuel-handling machine that operated for 12 y in a PWR (boric acid) spent fuel pool. There was no evidence of deterioration, and the fuel-handling machine was reassembled for further use. A spent fuel pool at a Swedish PWR was decontaminated. The procedure is outlined in this report.

Johnson, A.B. Jr.; Bailey, W.J.; Schreiber, R.E.; Kustas, F.M.

1980-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm pool international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

100 LPW 800 Lm Warm White LED  

Science Conference Proceedings (OSTI)

An illumination grade warm white (WW) LED, having correlated color temperature (CCT) between 2800 K and 3500K and capable of producing 800 lm output at 100 lm/W, has been developed in this program. The high power WW LED is an ideal source for use as replacement for incandescent, and Halogen reflector and general purpose lamps of similar lumen value. Over the two year period, we have made following accomplishments: developed a high power warm white LED product and made over 50% improvements in light output and efficacy. The new high power WW LED product is a die on ceramic surface mountable LED package. It has four 1x1 mm{sup 2} InGaN pump dice flip chip attached to a ceramic submount in 2x2 array, covered by warm white phosphor ceramic platelets called LumiramicÔ?ó and an overmolded silicone lens encapsulating the LED array. The performance goal was achieved through breakthroughs in following key areas: (1) High efficiency pump LED development through pump LED active region design and epi growth quality improvement (funded by internal programs). (2) Increase in injection efficiency (IE) represented by reduction in forward voltage (V{sub f}) through the improvement of the silver-based p-contact and a reduction in spreading resistance. The injection efficiency was increased from 80% at the start of the program to 96% at the end of the program at 700 mA/mm{sup 2}. (3) Improvement in thermal design as represented by reduction in thermal resistance from junction to case, through improvement of the die to submount connection in the thin film flip chip (TFFC) LED and choosing the submount material of high thermal conductivity. A thermal resistance of 1.72 K/W was demonstrated for the high power LED package. (4) Improvement in extraction efficiency from the LED package through improvement of InGaN die level and package level optical extraction efficiency improvement. (5) Improvement in phosphor system efficiency by improving the lumen equivalent (LE) and phosphor package efficiency (PPE) through improvement in phosphor-package interactions. Another achievement in the development of the phosphor integration technology is the demonstration of tight color control. The high power WW LED product developed has been proven to have good reliability. The manufacturing of the product will be done in Philips LumiledsÔ?? LUXEON Rebel production line which has produced billions of high power LEDs. The first high power WW LED product will be released to the market in 2011.

Decai Sun

2010-10-31T23:59:59.000Z

122

STATE OF CALIFORNIA POOL AND SPA HEATING SYSTEMS  

E-Print Network (OSTI)

Address: Enforcement Agency: Permit Number: 2008 Residential Compliance Forms August 2009 Pool and Spa solar heating. 2. A cover for outdoor pools or spas that have a heat pump or gas heater. 3. Pool system shall be calculated based on pool sizing table below. 3. The pump is capable of operating at 2 or more

123

2015 Resource Pool - Sierra Nevada Region - Western Area Power  

NLE Websites -- All DOE Office Websites (Extended Search)

2015 Resource Pool 2015 Resource Pool 2015 Resource Pool Updates 2015 Base Resource Percentages Including Resource Pool Allocations Federal Register Notices Final 2015 Resource Pool Allocations (PDF 147KB) Proposed Allocations FRN (PDF - 59KB) Notice of Extension (PDF - 49KB) Applicant Profile Data Form (WORD - 89KB) Call for 2015 Resource Pool Applications (PDF - 70KB) Final 2015 Resource Pool Size and Revised Eligibility Criteria (PDF - 57.4KB) Proposed 2015 Resource Pool Size and Revised Eligibility Criteria (PDF - 60.7KB) Public Meetings Comment Forum on the Proposed 2015 Resource Pool Size and Eligibility Criteria Date: Wednesday, May 21, 2008, at 1:00 p.m., PST Location: Lake Natoma Inn located at 702 Gold Lake Drive, Folsom, California Comments on 2015 Resource Pool Size and General Eligibility Criteria

124

Motor Pool Department The Motor Pool Department is responsible for the maintenance of over 550 Georgia Tech state  

E-Print Network (OSTI)

Motor Pool Department The Motor Pool Department is responsible for the maintenance of over 550 and equipment costing $3,000 or more for the Institute's vehicle fleet program. The mission of the Motor Pool form when bringing their vehicles, LSVs, golf carts or equipment to the Motor Pool for service (see

Li, Mo

125

Mitigation of Nuclear Fuel Pool Leaks  

Science Conference Proceedings (OSTI)

The used or spent fuel from nuclear reactors is stored in spent fuel pools, which require canals for fuel transfer activities. These pools--35ľ40 feet or more in depth--are lined with stainless steel ranging in thickness from ~.19 inľ~.38 in (~4.8 mmľ~9.5 mm). The liners are anchored to the walls and slab via welds that can leak or crack. ╔lectricitÚ de France (EDF) has developed tools to check suspect areas of the liner seam welds for cracking or leakage. This report ...

2013-08-29T23:59:59.000Z

126

Global warming and biological diversity  

SciTech Connect

This book is based on presentations given at the World Wildlife Fund's Conference on Consequences of the Greenhouse Effect for Biological Diverisity in 1988, and includes updated literature citations. The general topics covered in the book include the following: overview; summary of past responses of plants to climatic change; general ecological and physiological responses; ecosystems in 4 specific regions (arctic marine, Alaskan North Slope, NW US forests, and Mediterranean); global warming's implications for conservation. Ideas and data from many ecosystems and information about the relationships between biodiversity and climatic change are brought together with a balance of factual information and defensible scientific prognostication.

Peters, R.L.; Lovejoy, T.E. (eds.)

1992-01-01T23:59:59.000Z

127

Motor vehicles and global warming  

SciTech Connect

Energy use in transportation is one of the contributors to the concern over global warming. The primary greenhouse gases released by the transportation sector are carbon dioxide and chlorofluorocarbons. When all greenhouse gases are considered, CO{sub 2} emissions from the operation of highway vehicles worldwide represent about 4.7% of global warming enhancement. CO{sub 2} emissions from U.S. highway vehicles along represent about 2 to 2.5% of worldwide greenhouse gases. The use of CFCs in automotive air conditioning, in blowing foams for seats and padding and in the manufacture of electronic circuit boards accounted for 15% of the global usage of CFC-12 in 1985 according to the U.S. EPA. The Motor Vehicle Manufacturers Association supports the phase-out of CFC use provided that safe substitutes are available and that adequate lead time is allowed for.They suggest that reduction of greenhouse gases would require planning on a global scope to be effective. One alternative they suggest for further study is a carbon fee for reducing emissions of carbon dioxide. This fee would be levied on each type of fossil fuel, proportional to its carbon content per unit of energy.

Halberstadt, M.L.

1990-03-01T23:59:59.000Z

128

NGO collaborations: sharing and pooling projects  

Science Conference Proceedings (OSTI)

Humanitarian non-governmental organizations (NGOs) are increasingly facing challenges due to the growing number of actors in the humanitarian relief sector as well as the high incidence of natural disasters. A prominent means of mitigating these challenges ... Keywords: NGO, collaboration bodies, infrastructure, resource pooling, resource sharing

Kartikeya Bajpai; Edgar Maldonado; Louis-Marie Ngamassi; Andrea H. Tapia; Carleen Maitland

2011-02-01T23:59:59.000Z

129

Modeling of LNG Pool Spreading and Vaporization  

E-Print Network (OSTI)

In this work, a source term model for estimating the rate of spreading and vaporization of LNG on land and sea is introduced. The model takes into account the composition changes of the boiling mixture, the varying thermodynamic properties due to preferential boiling within the mixture and the effect of boiling on conductive heat transfer. The heat, mass and momentum balance equations are derived for continuous and instantaneous spills and mixture thermodynamic effects are incorporated. A parameter sensitivity analysis was conducted to determine the effect of boiling heat transfer regimes, friction, thermal contact/roughness correction parameter and VLE/mixture thermodynamics on the pool spreading behavior. The aim was to provide a better understanding of these governing phenomena and their relative importance throughout the pool lifetime. The spread model was validated against available experimental data for pool spreading on concrete and sea. The model is solved using Matlab for two continuous and instantaneous spill scenarios and is validated against experimental data on cryogenic pool spreading found in literature.

Basha, Omar 1988-

2012-12-01T23:59:59.000Z

130

Spent fuel pool analysis using TRACE code  

SciTech Connect

The storage requirements of Spent Fuel Pools have been analyzed with the purpose to increase their rack capacities. In the past, the thermal limits have been mainly evaluated with conservative codes developed for this purpose, although some works can be found in which a best estimate code is used. The use of best estimate codes is interesting as they provide more realistic calculations and they have the capability of analyzing a wide range of transients that could affect the Spent Fuel Pool. Two of the most representative thermal-hydraulic codes are RELAP-5 and TRAC. Nowadays, TRACE code is being developed to make use of the more favorable characteristics of RELAP-5 and TRAC codes. Among the components coded in TRACE that can be used to construct the model, it is interesting to use the VESSEL component, which has the capacity of reproducing three dimensional phenomena. In this work, a thermal-hydraulic model of the Maine Yankee spent fuel pool using the TRACE code is developed. Such model has been used to perform a licensing calculation and the results obtained have been compared with experimental measurements made at the pool, showing a good agreement between the calculations predicted by TRACE and the experimental data. (authors)

Sanchez-Saez, F.; Carlos, S.; Villanueva, J. F.; Martorell, S. [Dept. of Chemical and Nuclear Engineering, Universitat Politenica de Valencia, Cami de Vera s/n, 46021, Valencia (Spain)

2012-07-01T23:59:59.000Z

131

Hydroelectric reservoir optimization in a pool market  

Science Conference Proceedings (OSTI)

For a price-taking generator operating a hydro-electric reservoir in a pool electricity market, the optimal stack to offer in each trading period over a planning horizon can be computed using dynamic programming. However, the market trading period (usually ...

G. Pritchard; A. B. Philpott; P. J. Neame

2005-07-01T23:59:59.000Z

132

The Persistent Cold-Air Pool Study  

Science Conference Proceedings (OSTI)

The Persistent Cold-Air Pool Study (PCAPS) was conducted in Utah's Salt Lake valley from 1 December 2010 to 7 February 2011. The field campaign's primary goal was to improve understanding of the physical processes governing the evolution of multiday cold-...

Neil P. Lareau; Erik Crosman; C. David Whiteman; John D. Horel; Sebastian W. Hoch; William O. J. Brown; Thomas W. Horst

2013-01-01T23:59:59.000Z

133

Forming test collections with no system pooling  

Science Conference Proceedings (OSTI)

Forming test collection relevance judgments from the pooled output of multiple retrieval systems has become the standard process for creating resources such as the TREC, CLEF, and NTCIR test collections. This paper presents a series of experiments examining ... Keywords: evaluation of qrel sets, test collection formation

Mark Sanderson; Hideo Joho

2004-07-01T23:59:59.000Z

134

Installing and Operating an Efficient Swimming Pool Pump | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Installing and Operating an Efficient Swimming Pool Pump Installing and Operating an Efficient Swimming Pool Pump Installing and Operating an Efficient Swimming Pool Pump May 29, 2012 - 7:54pm Addthis Photo courtesy iStockphoto.com Photo courtesy iStockphoto.com What does this mean for me? Use the smallest size pump possible for your swimming pool. Reduce the time your pool pump operates to save money while still keeping your pool clean. You can save energy and maintain a comfortable swimming pool temperature by using a smaller, higher efficiency pump and by operating it less. In a study of 120 pools by the Center for Energy Conservation at Florida Atlantic University, some pool owners saved as much as 75% of their original pumping bill when they used these energy conservation measures (see table below). Table 1. Savings from Pump Conservation Measures

135

Ultrafast Spectroscopy of Warm Dense Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

of planet formation and structures as well as the evolution of an imploding inertial fusion capsule depends on our understanding of matter in the complex warm dense matter...

136

Hotel energy use contributes to global warming.  

E-Print Network (OSTI)

??Before learning about the consequences of global warming and the efforts hotels are making to reverse the effects, it is important to get a betterů (more)

Faja, Christine

2007-01-01T23:59:59.000Z

137

Pool boiling on nano-finned surfaces  

E-Print Network (OSTI)

The effect of nano-structured surfaces on pool boiling heat transfer is explored in this study. Experiments are conducted in a cubical test chamber containing fluoroinert coolant (PF5060, Manufacturer: 3M Co.) as the working fluid. Pool boiling experiments are conducted for saturation and subcooled conditions. Three different types of ordered nano-structured surfaces are fabricated using Step and flash imprint lithography on silicon substrates followed by Reactive Ion Etching (RIE) or Deep Reactive Ion Etching (DRIE). These nano-structures consist of a square array of cylindrical nanofins with a longitudinal pitch of 1 mm, transverse pitch of 0.9 mm and fixed (uniform) heights ranging from 15 nm - 650 nm for each substrate. The contact angle of de-ionized water on the substrates is measured before and after the boiling experiments. The contact-angle is observed to increase with the height of the nano-fins. Contact angle variation is also observed before and after the pool boiling experiments. The pool boiling curves for the nano-structured silicon surfaces are compared with that of atomically smooth single-crystal silicon (bare) surfaces. Data processing is performed to estimate the heat flux through the projected area (plan area) for the nano-patterned zone as well as the heat flux through the total nano-patterned area, which includes the surface area of the fins. Maximum heat flux (MHF) is enhanced by ~120 % for the nanofin surfaces compared to bare (smooth) surfaces, under saturation condition. The pool boiling heat flux data for the three nano-structured surfaces progressively overlap with each other in the vicinity of the MHF condition. Based on the experimental data several micro/nano-scale transport mechanisms responsible for heat flux enhancements are identified, which include: "microlayer" disruption or enhancement, enhancement of active nucleation site density, enlargement of cold spots and enhancement of contact angle which affects the vapor bubble departure frequency.

Sriraman, Sharan Ram

2007-12-01T23:59:59.000Z

138

Pool boiling on nano-finned surfaces  

E-Print Network (OSTI)

The effect of nano-structured surfaces on pool boiling heat transfer is explored in this study. Experiments are conducted in a cubical test chamber containing fluoroinert coolant (PF5060, Manufacturer: 3M Co.) as the working fluid. Pool boiling experiments are conducted for saturation and subcooled conditions. Three different types of ordered nano-structured surfaces are fabricated using Step and flash imprint lithography on silicon substrates followed by Reactive Ion Etching (RIE) or Deep Reactive Ion Etching (DRIE). These nano-structures consist of a square array of cylindrical nanofins with a longitudinal pitch of 1 mm, transverse pitch of 0.9 mm and fixed (uniform) heights ranging from 15 nm ľ 650 nm for each substrate. The contact angle of de-ionized water on the substrates is measured before and after the boiling experiments. The contact-angle is observed to increase with the height of the nano-fins. Contact angle variation is also observed before and after the pool boiling experiments. The pool boiling curves for the nano-structured silicon surfaces are compared with that of atomically smooth single-crystal silicon (bare) surfaces. Data processing is performed to estimate the heat flux through the projected area (plan area) for the nano-patterned zone as well as the heat flux through the total nano-patterned area, which includes the surface area of the fins. Maximum heat flux (MHF) is enhanced by ~120 % for the nanofin surfaces compared to bare (smooth) surfaces, under saturation condition. The pool boiling heat flux data for the three nano-structured surfaces progressively overlap with each other in the vicinity of the MHF condition. Based on the experimental data several micro/nano-scale transport mechanisms responsible for heat flux enhancements are identified, which include: ômicrolayerö disruption or enhancement, enhancement of active nucleation site density, enlargement of cold spots and enhancement of contact angle which affects the vapor bubble departure frequency.

Sriraman, Sharan Ram

2007-12-01T23:59:59.000Z

139

Suncatcher and cool pool. Project report  

DOE Green Energy (OSTI)

The Suncatcher is a simple, conical solar concentrating device that captures light entering clerestory windows and directs it onto thermal storage elements at the back of a south facing living space. The cone shape and inclination are designed to capture low angle winter sunlight and to reflect away higher angle summer sunlight. It is found that winter radiation through a Suncatcher window is 40 to 50% higher than through an ordinary window, and that the average solar fraction is 59%. Water-filled steal culvert pipes used for thermal storage are found to undergo less stratification, and thus to be more effective, when located where sunlight strikes the bottom rather than the top. Five Suncatcher buildings are described. Designs are considered for 32/sup 0/, 40/sup 0/ and 48/sup 0/ north latitude, and as the latitude increases, the inclination angle of the cone should be lowered. The Cool Pool is an evaporating, shaded roof pond which thermosiphons cool water into water-filled columns within a building. Preliminary experiments indicate that the best shade design has unimpeded north sky view, good ventilation, complete summer shading, a low architectural profile, and low cost attic vent lowers work. Another series of experiments established the satisfactory performance of the Cool Pool on a test building using four water-filled cylinders, two cylinders, and two cylinders connected to the Cool Pool through a heat exchanger. Although an unshaded pool cools better at night than a shaded one, daytime heat gain far offsets this advantage. A vinyl waterbag heat exchanger was developed for use with the Cool Pool. (LEW)

Hammond, J.

1981-03-01T23:59:59.000Z

140

Greenhouse warming and the tropical water budget  

SciTech Connect

The present work takes issue with some of the theses of Lindzen's (1990) work on global warming, arguing in particular that Lindzen's work is hampered by the use of oversimplified models. Lindzen then presents a detailed reply to these arguments, emphasizing the fundamental importance of the upper tropospheric water-vapor budget to the question of global warming. 26 refs.

Betts, A.K.

1990-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm pool international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Sinking of Warm-Core Rings  

Science Conference Proceedings (OSTI)

Intense cooling of a warm-core ring or warming of the fluids surrounding a ring can increase the density of that ring relative to the surrounding fluids. This increase in density can cause the ring to sink under the surrounding fluids. A simple ...

Rick Chapman; Doron Nof

1988-04-01T23:59:59.000Z

142

Managing Swimming Pool Temperature for Energy Efficiency | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

reduce the cost of heating your swimming pool by installing a high-efficiency or solar heater, using a pool cover, managing the water temperature, and using a smaller pump less...

143

Heat Pump Swimming Pool Heaters | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

from the hot gas to the cooler pool water circulating through the heater. The heated water then returns to the pool. The hot gas, as it flows through the condenser coil, returns...

144

Object-Centric spatial pooling for image classification  

Science Conference Proceedings (OSTI)

Spatial pyramid matching (SPM) based pooling has been the dominant choice for state-of-art image classification systems. In contrast, we propose a novel object-centric spatial pooling (OCP) approach, following the intuition that knowing the location ...

Olga Russakovsky; Yuanqing Lin; Kai Yu; Li Fei-Fei

2012-10-01T23:59:59.000Z

145

Solar Warming Submitted to Avalanche.ca Journal Feb. 2008 Can solar warming contribute to dry slab avalanches?  

E-Print Network (OSTI)

Solar Warming Submitted to Avalanche.ca Journal Feb. 2008 Can solar warming contribute to dry slab, when signs of warming, such as relatively warm air temperatures, strong solar radiation, and moist by a skier on a steep south-west facing aspect. Solar warming may have contributed to this release. (photo

Jamieson, Bruce

146

The Energy Balance in a Warm-Core Ring's Near-Inertial Critical Layer  

Science Conference Proceedings (OSTI)

The energy sink for near-inertial internal gravity waves encountering a vertical critical layer is examined with fine- and microstructure profiles collected in a warm-core ring. The hypothesis that the bulk of the trapped wave energy is lost to ...

Eric Kunze; Raymond W. Schmitt; John M. Toole

1995-05-01T23:59:59.000Z

147

A Decomposition of Feedback Contributions to Polar Warming Amplification  

Science Conference Proceedings (OSTI)

Polar surface temperatures are expected to warm 2-3 times faster than the global mean surface temperature; a phenomenon referred to as polar warming amplification. Therefore, understanding individual process contributions to the polar warming is ...

Patrick C. Taylor; Ming Cai; Aixue Hu; Jerry Meehl; Warren Washington; Guang J. Zhang

148

Warm Springs State Hospital Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Warm Springs State Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs State Hospital Space Heating Low Temperature Geothermal...

149

Investigation of the condition of spent-fuel pool components  

Science Conference Proceedings (OSTI)

It is currently projected that spent nuclear fuel, which is discharged from the reactor and then stored in water pools, may remain in those pools for several decades. Other studies have addressed the expected integrity of the spent fuel during extended water storage; this study assesses the integrity of metallic spent fuel pool components. Results from metallurgical examinations of specimens taken from stainless steel and aluminum components exposed in spent fuel pools are presented. Licensee Event Reports (LERs) relating to problems with spent fuel components were assessed and are summarized to define the types of operational problems that have occurred. The major conclusions of this study are: aluminum and stainless steel spent fuel pool components have a good history of performance in both deionized and borated water pools. Although some operational problems involving pool components have occurred, these problems have had minimal impacts.

Kustas, F.M.; Bates, S.O.; Opitz, B.E.; Johnson, A.B. Jr.; Perez, J.M. Jr.; Farnsworth, R.K.

1981-09-01T23:59:59.000Z

150

Capacity withholding in the Electricity Pool.  

E-Print Network (OSTI)

Electricity generators can raise the price of power by withholding their plant from the market. We discuss two ways in which this could have affected prices in the England and Wales Pool. Withholding low-cost capacity which should be generating will raise energy prices but make the pattern of generation less efficient. This pattern improved significantly after privatisation. Withholding capacity that was not expected to generate would raise the Capacity Payments based on spare capacity. On a multi-year basis, these did not usually exceed ôcompetitive ö levels, the cost of keeping stations open. The evidence for large-scale capacity withholding is weak. Keywords: JEL:

Richard Green; Richard Green

2004-01-01T23:59:59.000Z

151

The Dynamics of Warm and Cold Climates  

Science Conference Proceedings (OSTI)

The atmospheric dynamics of five different climate simulations with the GISS GCM are compared to investigate the changes that occur as climate warms or cools. There are two ice age simulations, the current and doubled CO2 climates, and a ...

D. Rind

1986-01-01T23:59:59.000Z

152

Scaling Potential Evapotranspiration with Greenhouse Warming  

Science Conference Proceedings (OSTI)

Potential evapotranspiration (PET) is a supply-independent measure of the evaporative demand of a terrestrial climate, of basic importance in climatology, hydrology, and agriculture. Future increases in PET from greenhouse warming are often cited ...

Jacob Scheff; Dargan M. W. Frierson

153

Numerical Simulation of Sudden Stratospheric Warmings  

Science Conference Proceedings (OSTI)

A mechanistic, quasi-geostrophic, semi-spectral model with a self-consistent calculation of the mean zonal flow fields is used to numerically simulate sudden stratospheric warmings generated by a single zonal harmonic (m) planetary wave. The ...

Mark R. Schoeberl; Darrell F. Strobel

1980-01-01T23:59:59.000Z

154

Initial Precipitation Formation in Warm Florida Cumulus  

Science Conference Proceedings (OSTI)

The microphysical processes that lead to the development of precipitation in small, warm cumulus are examined using data from the Small Cumulus Microphysics Study near Cape Canaveral, Florida. Aircraft measurements are used to determine the ...

Neil F. Laird; Harry T. Ochs III; Robert M. Rauber; L. Jay Miller

2000-11-01T23:59:59.000Z

155

Response to Skeptics of Global Warming  

Science Conference Proceedings (OSTI)

The majority of the scientific community involved in climate research is convinced of the reality of a current and future global warming due to the greenhouse effect, a change that must be largely caused by human activities. However, a minority ...

William W. Kellogg

1991-04-01T23:59:59.000Z

156

Separating signal and noise in climate warming  

NLE Websites -- All DOE Office Websites (Extended Search)

11162011 | NR-11-11-03 Separating signal and noise in climate warming Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov Printer-friendly A National Oceanic and Atmospheric...

157

Severe accidents in spent fuel pools in support of generic safety, Issue 82  

SciTech Connect

This investigation provides an assessment of the likelihood and consequences of a severe accident in a spent fuel storage pool - the complete draining of the pool. Potential mechanisms and conditions for failure of the spent fuel, and the subsequent release of the fission products, are identified. Two older PWR and BWR spent fuel storage pool designs are considered based on a preliminary screening study which tried to identify vulnerabilities. Internal and external events and accidents are assessed. Conditions which could lead to failure of the spent fuel Zircaloy cladding as a result of cladding rupture or as a result of a self-sustaining oxidation reaction are presented. Propagation of a cladding fire to older stored fuel assemblies is evaluated. Spent fuel pool fission product inventory is estimated and the releases and consequences for the various cladding scenarios are provided. Possible preventive or mitigative measures are qualitatively evaluated. The uncertainties in the risk estimate are large, and areas where additional evaluations are needed to reduce uncertainty are identified.

Sailor, V.L.; Perkins, K.R.; Weeks, J.R.; Connell, H.R.

1987-07-01T23:59:59.000Z

158

Cold-blooded and warm-blooded  

NLE Websites -- All DOE Office Websites (Extended Search)

Cold-blooded and warm-blooded Cold-blooded and warm-blooded Name: Walter Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: What is the fundamental difference between cold-blooded and warm- blooded creatures? I know that reptile blood is a bit different than mammal blood, but is that the difference or is it a difference in the other cells of the body? Replies: Warm blooded refers to an animals ability to maintain its body temperature at a constant level. Cold blooded animal's bodies stay at the temperature of environment around them (more or less). The mechanism by which a warm blooded animal does this is by generating heat, mostly through muscle movement (but by other biochemical processes too). An example of this is shivering. Warm blooded animals also cool themselves off by sweating, panting (and other ways). In mammals the hypothalamic area of the brain has much to do with controlling these reflex processes

159

Television news coverage of global warming  

Science Conference Proceedings (OSTI)

Citizens are expressing increased concern over the number and variety of environmental problems. Global warming in particular is a focus of concern for scientists and environmental groups. Such concern should naturally motivate individuals to seek information about these topics. Many people turn to the media, most usually television, for information on the nature of these problems. Consequently, this paper studied media coverage of environmental issues, specifically global warming. Television coverage was examined for: (1) the general nature of coverage; (2) biases in coverage; (3) visual images used to cover global warming; and (4) the congruity between visual and verbal messages in newscasts. Nightly newscasts from the three major American television networks were analyzed from 1993--1995 to determine the overall nature of global warming coverage since the Earth Summit in 1992. Results indicated that television news suffers from some serious inadequacies in its portrayal of global warming issues. The paper concludes by first discussing how its results intertwine with other work in the global warming and mass media field. Finally, the implications of inadequacies in media coverage for policy-makers when it comes to sound management of critical resources in this area are also discussed.

Nitz, M. [Univ. of Idaho, Moscow, ID (United States). School of Communication; Jarvis, S. [Univ. of Texas, Austin, TX (United States). Dept. of Speech Communication; Kenski, H. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Communication

1996-06-01T23:59:59.000Z

160

Policy implications of greenhouse warming: Mitigation, adaptation, and the science base  

SciTech Connect

This book discusses the policy implications of greenhouse warming by examining three major areas: general summary of information about the greenhouse effect leading to a framework for policy; the science basis for the greenhouse effect; mitigation of greenhouse warming. Each section contains 9-13 chapters on specific subjects including the following: overview of greenhouse gases; policy implications; internations considerations; climate records and models; sea levels; temperature rise estimation; energy management at several levels; nonenergy emission reduction; human populations; deforestation. Conclusions are summarized at the end of each section.

Not Available

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm pool international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Definition: Mudpots, Mud Pools, or Mud Volcanoes | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon ┬╗ Definition: Mudpots, Mud Pools, or Mud Volcanoes Jump to: navigation, search Dictionary.png Mudpots, Mud Pools, or Mud Volcanoes A kind of hot spring or fumarole with limited water causing a bubbling pool with a consistency of mud or clay. View on Wikipedia Wikipedia Definition A mudpot - or mud pool - is a sort of acidic hot spring, or fumarole, with limited water. It usually takes the form of a pool of bubbling mud. The acid and microorganisms decompose surrounding rock into clay and mud. Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Mudpots,_Mud_Pools,_or_Mud_Volcanoes&oldid=684824" Category:

162

Retail Demand Response in Southwest Power Pool  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LBNL-1470E LBNL-1470E Retail Demand Response in Southwest Power Pool Ranjit Bharvirkar, Grayson Heffner and Charles Goldman Lawrence Berkeley National Laboratory Environmental Energy Technologies Division January 2009 The work described in this report was funded by the Office of Electricity Delivery and Energy Reliability, Permitting, Siting and Analysis of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of

163

Modelling spreading, vaporisation and dissolution of multi-component pools.  

E-Print Network (OSTI)

??The present work describes the fundamental extension of an integral pool spreading, vaporisation and dissolution model, part of the Process Hazard Assessment Tool (Phast) software.ů (more)

Fernandez, MI

2013-01-01T23:59:59.000Z

164

Transient Melt Pool Response in Wire Feed Electron Beam Direct ...  

Science Conference Proceedings (OSTI)

Presentation Title, Transient Melt Pool Response in Wire Feed Electron Beam Direct ... Abstract Scope, Wire feed electron beam direct digital manufacturingá...

165

Low Temperature Direct Use Pool & Spa Geothermal Facilities ...  

Open Energy Info (EERE)

Low Temperature Direct Use Pool & Spa Geothermal Facilities Jump to: navigation, search No facilities found CSV Retrieved from "http:en.openei.orgwindex.php?titleLowTemperatu...

166

Fairmont Hot Springs Resort Pool & Spa Low Temperature Geothermal...  

Open Energy Info (EERE)

Fairmont Hot Springs Resort Sector Geothermal energy Type Pool and Spa Location Anaconda, Montana Coordinates 46.1285369, -112.9422641 Loading map......

167

Preliminary results of the US pool-boiling coils from the IFSMTF full-array tests  

SciTech Connect

The Large Coil Task to develop superconducting magnets for fusion reactors, is now in the midst of full-array tests in the International Fusion Superconducting Magnet Test Facility at Oak Ridge National Laboratory. Included in the test array are two pool-boiling coils designed and fabricated by US manufacturers, General Dynamics/Convair Division and General Electric/Union Carbide Corporation. So far, both coils have been energized to full design currents in the single-coil tests, and the General Dynamics coil has reached the design point in the first Standard-I full-array test. Both coils performed well in the charging experiments. Extensive heating tests and the heavy instrumentation of these coils have, however, revealed some generic limitations of large pool-boiling superconducting coils. Details of these results and their analyses are reported.

Lue, J.W.; Dresner, L.; Lubell, M.S.; Luton, J.N.; McManamy, T.J.; Shen, S.S.

1986-01-01T23:59:59.000Z

168

Bull Trout Distribution and Abundance in the Waters on and Bordering the Warm Springs Reservation : 2002 Annual Report.  

DOE Green Energy (OSTI)

The range of bull trout (Salvelinus confluentus) in the Deschutes River basin has decreased from historic levels due to many factors including dam construction, habitat degradation, brook trout introduction and eradication efforts. While the bull trout population appears to be healthy in the Metolius River-Lake Billy Chinook system they have been largely extirpated from the upper Deschutes River (Buchanan et al. 1997). Little was known about bull trout in the lower Deschutes basin until BPA funded project No.9405400 began during 1998. In this progress report we describe the findings to date from this multi-year study aimed at determining the life history, habitat needs and limiting factors of bull trout in the lower Deschutes subbasin. Juvenile bull trout and brook trout (Salvelinus fontinalis) relative abundance has been assessed in the Warm Springs River and Shitike Creek since 1999. In the Warm Springs R. the relative densities of juvenile bull trout and brook trout were .003 fish/m{sup 2} and .001 fish/m{sup 2} respectively during 2002. These densities were the lowest recorded in the Warm Springs River during the period of study. In Shitike Cr. the relative densities of juvenile bull trout and brook trout were .025 fish/m{sup 2} and .01 fish/m{sup 2} respectively during 2002. The utility of using index reaches to monitor trends in juvenile bull trout and brook trout relative abundance in the Warm Springs R. has been assessed since 1999. During 2002 the mean relative densities of juvenile bull trout within the 2.4 km study area was higher than what was observed in four index reaches. However, the mean relative densities of brook trout was slightly higher in the index reaches than what was observed in the 2.4 km study area. Habitat use by both juvenile bull trout and brook trout was determined in the Warm Springs R. Juvenile bull trout and brook trout were most abundant in pools and glides. However pools and glides comprised less than 20% of the available habitat in the study area during 2002. Multiple-pass spawning ground surveys were conducted during late August through October in the Warm Springs R. and Shitike Cr. during 2002. One-hundred and thirteen (113) redds were enumerated in the Warm Springs R. and 204 redds were found in Shitike Cr. The number of redds enumerated in both the Warm Springs R. and Shitike Cr. were the most redds observed since surveys began in 1998. Spatial and temporal distribution in spawning within the Warm Springs R. and Shitike Cr. is discussed. Juvenile emigration has been monitored in Shitike Creek since 1996. A total of 312 juveniles were estimated to have emigrated from Shitike Cr. during the spring, 2002. Adult escapement was monitored in the Warm Springs R. and Shitike Cr. Thirty adults were recorded at the Warm Springs National Fish Hatchery weir during 2002. This was the highest number of spawning adults recorded to date. A weir equipped with an underwater video camera near the spawning grounds was operated in the Warm Springs R. Thirty-one adults were recorded at the weir in day counts. The adult trap in Shitike Cr. was unsuccessful in capturing adult bull trout during 2002 due to damage from a spring high water event. Thermographs were placed throughout Warm Springs R. and Shitike Cr. to monitor water temperatures during bull trout migration, holding and spawning/rearing periods. During 1999-2002 water temperatures ranged from 11.8-15.4 C near the mouths during adult migration; 11.4-14.6 C during pre-spawning holding; and 6.5-8.4 C during adult spawning and juvenile rearing.

Brun, Christopher V.; Dodson, Rebekah

2003-03-01T23:59:59.000Z

169

Western Pacific Warm Pool Region Sensitivity to Convective Triggering byBoundary Layer Thermals in the NOGAPS Atmospheric GCM  

Science Conference Proceedings (OSTI)

The sensitivity of the atmospheric general circulation model of the Navy Operational Global Atmospheric Prediction System to a parameterization of convective triggering by atmospheric boundary layer thermals is investigated. The study focuses on ...

James A. Ridout; Carolyn A. Reynolds

1998-07-01T23:59:59.000Z

170

Observation of Spatial Variability of Diurnal Thermocline and Rain-Formed Halocline in the Western Pacific Warm Pool  

Science Conference Proceedings (OSTI)

High-resolution measurements of temperature and salinity were made in the near-surface layer of the ocean during the Tropical Oceans-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment, using probes mounted on the bow of the R/V Moana ...

Alexander Soloviev; Roger Lukas

1996-11-01T23:59:59.000Z

171

Understanding ENSO Regime Behavior upon an Increase in the Warm-Pool Temperature Using a Simple ENSO Model  

Science Conference Proceedings (OSTI)

The regime behavior of the low-order El Ni˝oľSouthern Oscillation (ENSO) model, according to an increase in the radiativeľconvective equilibrium sea surface temperature (SST; Tr), is studied to provide a possible explanation for the observed ...

Baek-Min Kim; Soon-Il An

2011-03-01T23:59:59.000Z

172

Measurements of Raindrop Size Distributions over the Pacific Warm Pool and Implications for ZľR Relations  

Science Conference Proceedings (OSTI)

Raindrop images obtained on research flights of the NCAR Electra aircraft in the Tropical Oceans Global Atmosphere Coupled OceanľAtmosphere Response Experiment (TOGA COARE) are analyzed. The drop size distributions, based on the images obtained ...

Sandra E. Yuter; Robert A. Houze Jr.

1997-07-01T23:59:59.000Z

173

Global warming and end-use efficiency implications of replacing CFCs  

SciTech Connect

The direct contribution of CFCs to calculated global warming has been recognized for some time. As a result of the international agreement to phase out CFCs due to stratospheric ozone and the ensuing search for suitable alternatives, there has recently been increased attention on the DIRECT global warming potential (GWP) of the fluorocarbon alternatives as greenhouse gases. However, to date there has been little focus on the INDIRECT global warming effect arising from end-use efficiency changes and associated CO{sub 2} emissions. A study being conducted at Oak Ridge National Laboratory (ORNL) addresses this combined or total global warming impact of viable options to replace CFCs in their major energy-related applications. This paper reviews selected results for air-conditioning, refrigeration, and heat pump applications. The analysis indicates that the CFC user industries have made substantial progress in approaching near-equal energy efficiency with the HCFC/HFC alternative refrigerants. The findings also bring into question the relative importance of the DIRECT (chemical-related) effect in many applications. Replacing CFCs is an important step in reducing the total global warming impact, and at present the HCFC and HFCS appear to offer the best efficiency and lowest total impact of options available in the relatively short time period required for the transition away from CFCs.

Fairchild, P.D.; Fischer, S.K.

1991-12-31T23:59:59.000Z

174

Ultrafast Spectroscopy of Warm Dense Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast Spectroscopy of Warm Dense Matter Print Ultrafast Spectroscopy of Warm Dense Matter Print Being neither solid, liquid, gas, nor plasma, warm dense matter (WDM) occupies a no man's land in the map of material phases. Its temperature can range between that of planetary cores (tens of thousands K) to that of stellar cores (hundreds of thousands K). Not only is it prevalent throughout the universe, it is relevant to inertial confinement fusion (ICF) and material performance under extreme conditions. However, because of its extreme temperatures and pressures, WDM tends to be drastically transient and thus difficult to study in the laboratory. Now, researchers have set up ultrafast x-ray absorption spectroscopy at the ALS to measure the electronic structure of WDMs, demonstrating that fast-changing electron temperatures of matter under extreme conditions can be determined with picosecond resolution.

175

Can we delay a greenhouse warming  

SciTech Connect

This article reviews a book published by the Environmental Protection Agency. The book discussed the Greenhouse Effect which is a warming of the earth's atmosphere caused by the doubling of the atmospheric carbon dioxide concentration. The excess carbon dioxide is pollution derived from the burning of fossil fuels. The report suggested that the warming of the atmosphere would cause thawing of the polar regions which in turn would cause a rise in sea levels and flooding of the coastal lowlands. In addition to the flooding, the report predicted climate changes that would effect the productivity of croplands in the west. The authors of the report stressed that there was no way to avoid this warming of the earth. They suggested that people should start preparing for the inevitable.

Seidel, S.; Keyes, D.

1983-01-01T23:59:59.000Z

176

Control of Gas Tungsten Arc welding pool shape by trace element addition to the weld pool  

DOE Patents (OSTI)

An improved process for Gas Tungsten Arc welding maximizes the depth/width ratio of the weld pool by adding a sufficient amount of a surface active element to insure inward fluid flow, resulting in deep, narrow welds. The process is especially useful to eliminate variable weld penetration and shape in GTA welding of steels and stainless steels, particularly by using a sulfur-doped weld wire in a cold wire feed technique.

Heiple, C.R.; Burgardt, P.

1984-03-13T23:59:59.000Z

177

Maintenance of a Mountain Valley Cold Pool: A Numerical Study  

Science Conference Proceedings (OSTI)

A persistent cold-air pool in the Yampa Valley of northwestern Colorado was simulated with the fifth-generation Pennsylvania State UniversityľNational Center for Atmospheric Research Mesoscale Model (MM5). The observed cold-air pool, which was ...

Brian J. Billings; Vanda GrubiÜi?; Randolph D. Borys

2006-08-01T23:59:59.000Z

178

An Underwater Robotic Network for Monitoring Nuclear Waste Storage Pools  

E-Print Network (OSTI)

An Underwater Robotic Network for Monitoring Nuclear Waste Storage Pools Sarfraz Nawaz1 , Muzammil must be stored for around 60 years in underwater storage pools before permanent disposal. These underwater storage environments must be carefully monitored and controlled to avoid an environmental

Jeavons, Peter

179

On-sun test results from second-generation and advanced-concepts alkali-metal pool-boiler receivers  

DOE Green Energy (OSTI)

Two 75-kW{sub t} alkali-metal pool-boiler solar receivers have been successfully tested at Sandia National Laboratories` National Solar Thermal Test Facility. The first one, Sandia`s `` second-generation pool-boiler receiver,`` was designed to address commercialization issues identified during post-test assessment of Sandia`s first-generation pool-boiler receiver. It was constructed from Haynes alloy 230 and contained the alkali-metal alloy NaK-78. The absorber`s wetted side had a brazed-on powder-metal coating to stabilize boiling. This receiver was evaluated for boiling stability, hot- and warm-restart behavior, and thermal efficiency. Boiling was stable under all conditions. All of the hot restarts were successful. Mild transient hot spots observed during some hot restarts were eliminated by the addition of 1/3 torr of xenon to the vapor space. All of the warm restarts were also successful. The heat-transfer crisis that damaged the first receiver did not recur. Thermal efficiency was 92.3% at 750{degrees}C with 69.6 kW{sub t} solar input. The second receiver tested, Sandia`s ``advanced-concepts receiver,`` was a replica of the first-generation receiver except that the cavities, which were electric-discharge-machined in the absorber for boiling stability, were eliminated. This step was motivated by bench-scale test results that showed that boiling stability improved with increased heated-surface area, tilt of the heated surface from vertical, and added xenon. The bench-scale results suggested that stable boiling might be possible without heated-surface modification in a 75-kW{sub t} receiver. Boiling in the advanced-concepts receiver with 1/3 torr of xenon added has been stable under all conditions, confirming the bench-scale tests.

Moreno, J.B.; Andraka, C.E.; Moss, T.A.; Cordeiro, P.G.; Dudley, V.E.; Rawlinson, K.S.

1994-05-01T23:59:59.000Z

180

The ecology of southern California vernal pools: A community profile  

SciTech Connect

Vernal pools are shallow temporary bodies of water that form in winter and spring in the Mediterranean climate region of the Pacific coast. They occur in a diversity of natural settings, often in association with mounded topography. The origin of this mounded topography is still controversial. The short duration of pools and the extreme variation from standing water to severe drought favor a unique fauna and flora. The organisms of vernal pools have special life history features that fit them to this environment. Some of the plants and many of the animals have cosmopolitan distribution, and are found in temporary wetlands at widely scattered locations. Others are extremely restricted in distribution and many are endemic to clusters of pools within the California biotic province. Vernal pools have disappeared at an increasing rate over the past 100 years; because of this, several plant taxa associated with them are listed as rare and endangered by the Federal Government and the State of California.

Zedler, P.H.

1987-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm pool international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Pennsylvania Pool Chemical Business Soaks Up Rays | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pennsylvania Pool Chemical Business Soaks Up Rays Pennsylvania Pool Chemical Business Soaks Up Rays Pennsylvania Pool Chemical Business Soaks Up Rays September 7, 2010 - 3:00pm Addthis MetroTek installed a 620kW solar panel system at Buckman's Inc. in Pottstown, PA. The Recovery Act-funded project is expected to save the pool chemical business $5 million over the next 25 years. | Photo Courtesy of MetroTek Electrical Services MetroTek installed a 620kW solar panel system at Buckman's Inc. in Pottstown, PA. The Recovery Act-funded project is expected to save the pool chemical business $5 million over the next 25 years. | Photo Courtesy of MetroTek Electrical Services Stephen Graff Former Writer & editor for Energy Empowers, EERE Most people catching rays poolside don't realize this, but it takes a lot

182

Swimming Pool Granuloma, Fish Tank Granuloma,  

E-Print Network (OSTI)

Mycobacteriosis is a chronic or acute, systemic, granulomatous disease that occurs in aquarium and culture food fish, particularly those reared under intensive conditions. Mycobacteriosis results from infection by several species of Mycobacterium, aerobic, Gram-positive, pleomorphic rods which are members of the order Actinomycetales and family Mycobacteriaceae. Mycobacteria are widespread in the environment, particularly in aquatic reservoirs. The two most important species causing mycobacteriosis in fish and humans are Mycobacterium marinum and Mycobacterium fortuitum. Other species known to cause mycobacterial disease in fish include M. chelonei, M neoaurum, M simiae, and M scrofulaceum. Mycobacterium marinum was first recognized in 1926 from the liver, spleen and kidney of tropical coral fish kept in the Philadelphia Aquarium. M. marinum can grow prolifically within fibroblast, epithelial cells and macrophages. In the past, human outbreaks of M. marinum were sporadic and most commonly assoicated with contaminated swimming pools. Chlorination practices used today have greatly minimized to frequency of outbreaks from these sources. In the last decade, a small but

Fish Tuberculosis; Fish Handlerĺs Disease; Fish Handlerĺs Nodules

2007-01-01T23:59:59.000Z

183

Supermassive Black Holes and the Warm Ionized  

E-Print Network (OSTI)

Supermassive Black Holes and the Warm Ionized Gas in Early-type Galaxies Renbin Yan University stars actively. (late-type galaxies) #12;Prevalence of Supermassive Black Holes in Massive Galaxies MBH merging Right after coalescing Post-merger Star Formation Rate Black Hole Accretion Rate #12;Maintenance

Wang, Ming-Jye

184

Can we delay a greenhouse warming  

SciTech Connect

The author comments on the EPA report dated September 1983 Can We Delay A Greenhouse Warming. He takes exception to the widely-held interpretation that the answer is not much. The contribution of other greenhouse gases such as methane and nitrous oxide to the EPA scenarios is pointed out, and the lack of understanding of their role is emphasised. (ACR)

Perry, A.M.

1983-01-01T23:59:59.000Z

185

The Role of Human Activity in the Recent Warming of Extremely Warm Daytime Temperatures  

Science Conference Proceedings (OSTI)

Formal detection and attribution analyses of changes in daily extremes give evidence of a significant human influence on the increasing severity of extremely warm nights and decreasing severity of extremely cold days and nights. This paper ...

Nikolaos Christidis; Peter A. Stott; Simon J. Brown

2011-04-01T23:59:59.000Z

186

Observational Constraints on Past Attributable Warming and Predictions of Future Global Warming  

Science Conference Proceedings (OSTI)

This paper investigates the impact of aerosol forcing uncertainty on the robustness of estimates of the twentieth-century warming attributable to anthropogenic greenhouse gas emissions. Attribution analyses on three coupled climate models with ...

Peter A. Stott; John F. B. Mitchell; Myles R. Allen; Thomas L. Delworth; Jonathan M. Gregory; Gerald A. Meehl; Benjamin D. Santer

2006-07-01T23:59:59.000Z

187

Loss of spent fuel pool cooling PRA: Model and results  

Science Conference Proceedings (OSTI)

This letter report documents models for quantifying the likelihood of loss of spent fuel pool cooling; models for identifying post-boiling scenarios that lead to core damage; qualitative and quantitative results generated for a selected plant that account for plant design and operational practices; a comparison of these results and those generated from earlier studies; and a review of available data on spent fuel pool accidents. The results of this study show that for a representative two-unit boiling water reactor, the annual probability of spent fuel pool boiling is 5 {times} 10{sup {minus}5} and the annual probability of flooding associated with loss of spent fuel pool cooling scenarios is 1 {times} 10{sup {minus}3}. Qualitative arguments are provided to show that the likelihood of core damage due to spent fuel pool boiling accidents is low for most US commercial nuclear power plants. It is also shown that, depending on the design characteristics of a given plant, the likelihood of either: (a) core damage due to spent fuel pool-associated flooding, or (b) spent fuel damage due to pool dryout, may not be negligible.

Siu, N.; Khericha, S.; Conroy, S.; Beck, S.; Blackman, H.

1996-09-01T23:59:59.000Z

188

Building Technologies Office: Low-Global Warming Potential Refrigerants  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Global Warming Low-Global Warming Potential Refrigerants Research Project to someone by E-mail Share Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Facebook Tweet about Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Twitter Bookmark Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Google Bookmark Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Delicious Rank Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Digg Find More places to share Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on AddThis.com... About Take Action to Save Energy

189

Energy Tax Credits: Stay Warm and Save MORE Money! | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Credits: Stay Warm and Save MORE Money Energy Tax Credits: Stay Warm and Save MORE Money October 29, 2008 - 6:00am Addthis Allison Casey Senior Communicator, NREL With all of...

190

An Interpretation of Sudden Warmings In Terms of Potential vorticity  

Science Conference Proceedings (OSTI)

A simple and concise interpretation of stratospheric sudden warmings is offered in terms Of the transient changes in the potential vorticity pattern. The warming is viewed as a manifestation of the reversal of the mean (zonally averaged) relative ...

H. C. Davies

1981-02-01T23:59:59.000Z

191

Forecast cloudy; The limits of global warming models  

SciTech Connect

This paper reports on climate models used to study global warming. It discusses factors which must be included in climate models, shortcomings of existing climate models, and scenarios for global warming.

Stone, P.H.

1992-02-01T23:59:59.000Z

192

An Analysis of Tropical Ocean Diurnal Warm Layers  

Science Conference Proceedings (OSTI)

During periods of light surface wind, a warm stable layer forms at the ocean surface with a maximum sea surface temperature (SST) in the early afternoon. The diurnal SST amplitude (DSA) associated with these diurnal warm layers (DWLs) can reach ...

Hugo Bellenger; Jean-Philippe Duvel

2009-07-01T23:59:59.000Z

193

Sonoluminescence test for equation of state in warm dense matter  

E-Print Network (OSTI)

IN WARM DENSE MATTER Siu-Fai Ng 1, 2 , J. J. Barnard 3 , P.IN WARM DENSE MATTER Siu-Fai Ng 1, 2 , J. J. Barnard 3 , P.

Ng, Siu-Fai

2008-01-01T23:59:59.000Z

194

Anthropogenic Warming of the Oceans: Observations and Model Results  

Science Conference Proceedings (OSTI)

Observations show the oceans have warmed over the past 40 yr, with appreciable regional variation and more warming at the surface than at depth. Comparing the observations with results from two coupled oceanľatmosphere climate models [the ...

David W. Pierce; Tim P. Barnett; Krishna M. AchutaRao; Peter J. Gleckler; Jonathan M. Gregory; Warren M. Washington

2006-05-01T23:59:59.000Z

195

Mechanisms for Global Warming Impacts on Precipitation Frequency and Intensity  

Science Conference Proceedings (OSTI)

Global warming mechanisms that cause changes in frequency and intensity of precipitation in the tropics are examined in climate model simulations. Under global warming, tropical precipitation tends to be more frequent and intense for heavy ...

Chia Chou; Chao-An Chen; Pei-Hua Tan; Kuan Ting Chen

2012-05-01T23:59:59.000Z

196

Comparing the effects of greenhouse gas emissions on global warming  

E-Print Network (OSTI)

Policies dealing with global warming require a measure of the effects of the emissions of greenhouse gases that create different magnitudes of instantaneous radiative forcing and have different lifetimes. The Global Warming ...

Eckaus, Richard S.

1990-01-01T23:59:59.000Z

197

Mechanisms of Global Warming Impacts on Regional Tropical Precipitation  

Science Conference Proceedings (OSTI)

Mechanisms that determine the tropical precipitation anomalies under global warming are examined in an intermediate atmospheric model coupled with a simple land surface and a mixed layer ocean. To compensate for the warm tropospheric temperature, ...

Chia Chou; J. David Neelin

2004-07-01T23:59:59.000Z

198

International Energy-Efficiency Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 International Energy-Efficiency Standards Two cost-effective approaches to reducing energy use in buildings are minimum energy standards for appliances and incorporating energy-efficiency principles in building codes. More than two dozen nations already have adopted, will soon adopt, or are considering the adoption of energy-efficiency standards and codes. The Environmental Energy Technologies Division has pooled its resources in the field of energy-efficiency standards with its international activities to create the International Building and Appliance Standards team. The IBAS team convenes regularly to discuss progress in existing international standards activities as well as to identify possible new Berkeley Lab opportunities to support efficiency standards the world over.

199

Structural analysis of a reflux pool-boiler solar receiver  

DOE Green Energy (OSTI)

Coupled thermal-structural finite element calculations of a reflux pool-boiler solar receiver were performed to characterize the operating stresses and to address issues affecting the service life of the receiver. Analyses performed using shell elements provided information for receiver material selection and design optimization. Calculations based on linear elastic fracture mechanics principles were performed using continuum elements to assess the vulnerability of a seam-weld to fatigue crack growth. All calculations were performed using ABAQUS, a general purpose finite element code, and elements specifically formulated for coupled thermal-structural analysis. Two materials were evaluated: 316L SS and Haynes 230 alloys. The receiver response was simulated for a combination of structural and thermal loads that represent the startup and operating conditions of the receiver. For both materials, maximum stresses in the receiver developed shortly after startup due to uneven temperature distribution across the receiver surface. The largest effective stress was near yield in the 316L SS receiver and below 39 percent of yield in the Haynes 230 receiver. The calculations demonstrated that stress reductions of over 25 percent could be obtained by reducing the aft dome thickness to one closer to the absorber. The fatigue calculations demonstrated that the stress distribution near the seam-weld notch depends primarily on the structural load created by internal pressurization of the receiver rather than the thermal, indicating that the thermal loads can be neglected when assessing the stress intensity near the seam-weld notch. The stress intensity factor, computed using the J-integral method and crack opening-displacement field equations, was significantly below the fatigue threshold for most steels. The calculations indicated that the weld notch was always loaded in compression, a condition which is not conducive to fatigue crack growth. 15 refs., 30 figs., 3 tabs.

Hoffman, E.L.; Stone, C.M.

1991-06-01T23:59:59.000Z

200

NaK pool-boiler solar receiver durability bench test. Volume 2, Metallurgical analysis  

DOE Green Energy (OSTI)

The principal materials used in the construction of a NaKbased pool-boiler were analyzed. The device, operated for 7500 hours, accumulated 1000 thermal cycles to a peak temperature of 750{degrees}C. Haynes 230, used to fabricate the pool-boiler vessel, was found to perform satisfactorily. Air-side corrosion of the pool-boiler vessel was insignificant. Internal surface of the alloy exhibited some NaK-induced elemental dissolution; this dissolution was somewhat more extensive where the alloy was exposed to the liquid metal compared to regions exposed only to NaK vapor; however, the corresponding metal loss in all regions was inconsequential, never exceeding more than a few microns. Autogenous seam welds of the alloy responded in a similar fashion, exhibiting only minimal metal loss over the course of the experiment. While there was 50% loss in ductility of the alloy there remained adequate ductility for the anticipated operating environment. An enhanced boiling nucleation surface comprised of stainless steel powder brazed to the vessel ID showed no change in its structure. It remained intact, showing no cracking after repeated thermal cycling. Other materials used in the experiment showed more extensive degradation after exposure to the NaK. IN 600, used to fabricate thermowells, exhibited extensive surface and intergranular dissolution. Grain boundary dissolution was sufficiently severe in one of the thermowells to cause an air leak, resulting in experiment termination. BNi-3, a brazing alloy used to join the pool-boiler vessel, endcaps and thermowells, showed some dissolution where it was exposed to the NaK as well as thermal aging effects. However, all brazes remained structurally sound. A nickel metal ribbon showed catastrophic dissolution, resulting in the formation of deep (> 30 {mu}m) pits and cavities. A zirconium metal foil used to getter oxygen from the NaK became extremely brittle.

Goods, S.H.; Bradshaw, R.W. [Sandia National Labs., Livermore, CA (United States)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm pool international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

California Policy Should Distinguish Biofuels by Differential Global Warming Effects  

E-Print Network (OSTI)

California Policy Should Distinguish Biofuels by Differential Global Warming Effects by Richard J: _______________________________________ Date #12;California Policy Should Distinguish Biofuels by Differential Global Warming Effects Richard J, 2006 #12;#12;ABSTRACT California Policy Should Distinguish Biofuels by Differential Global Warming

Kammen, Daniel M.

202

Global Warming Mitigation Investments Optimized under Uncertainty  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Warming Mitigation Investments Optimized under Uncertainty Global Warming Mitigation Investments Optimized under Uncertainty Speaker(s): Hermann Held Date: July 9, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Thomas McKone The Copenhagen Accord (2009) recognizes that 'the increase in global temperature should be below 2 degrees Celsius' (compared to pre-industrial levels, '2┬░ target'). In recent years, energy economics have derived welfare-optimal investment streams into low-emission energy mixes and associated costs. According to our analyses, auxiliary targets that are in line with the 2┬░ target could be achieved at relatively low costs if energy investments were triggered rather swiftly. While such analyses assume 'perfect foresight' of a benevolent 'social planner', an accompanying suite of experiments explicitly

203

Decarbonization and Sequestration for Mitigating Global Warming  

NLE Websites -- All DOE Office Websites (Extended Search)

DECARBONIZATION AND SEQUESTRATION FOR DECARBONIZATION AND SEQUESTRATION FOR MITIGATING GLOBAL WARMING M. Steinberg (msteinbe@bnl.gov); 631-344-3036 Brookhaven National Laboratory 12 South Upton Street Upton, NY 11973-5000, USA ABSTRACT Mitigating the global warming greenhouse effect while maintaining a fossil fuel economy, requires improving efficiency of utilization of fossil fuels, use of high hydrogen content fossil fuels, decarbonization of fossil fuels, and sequestering of carbon and CO 2 applied to all the sectors of the economy, electric power generation, transportation, and industrial, and domestic power and heat generation. Decarbonization means removal of carbon as C or CO 2 either before or after fossil fuel combustion and sequestration means disposal of the recovered C or CO 2 including its utilization. Removal and recovery of CO

204

Latitudinal distribution of the recent Arctic warming  

Science Conference Proceedings (OSTI)

Increasing Arctic temperature, disappearance of Arctic sea ice, melting of the Greenland ice sheet, sea level rise, increasing strength of Atlantic hurricanes are these impending climate catastrophes supported by observations? Are the recent data really unprecedented during the observational records? Our analysis of Arctic temperature records shows that the Arctic and temperatures in the 1930s and 1940s were almost as high as they are today. We argue that the current warming of the Arctic region is affected more by the multi-decadal climate variability than by an increasing concentration of carbon dioxide. Unfortunately, none of the existing coupled Atmosphere-Ocean General Circulation Models used in the IPCC 2007 cIimate change assessment is able to reproduce neither the observed 20th century Arctic cIimate variability nor the latitudinal distribution of the warming.

Chylek, Petr [Los Alamos National Laboratory; Lesins, Glen K [DALLHOUSIE UNIV.; Wang, Muyin [UNIV OF WASHINGTON

2010-12-08T23:59:59.000Z

205

Melozi Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Melozi Pool & Spa Low Temperature Geothermal Facility Facility Melozi Sector Geothermal energy Type Pool and Spa Location Yukon, Alaska Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

206

Saratoga Springs Resort Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Saratoga Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Saratoga Springs Resort Sector Geothermal energy Type Pool and Spa Location Lehi, Utah Coordinates 40.3916172┬░, -111.8507662┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

207

Jones Splashland Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Jones Splashland Pool & Spa Low Temperature Geothermal Facility Jones Splashland Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jones Splashland Pool & Spa Low Temperature Geothermal Facility Facility Jones Splashland Sector Geothermal energy Type Pool and Spa Location Alamosa, Colorado Coordinates 37.4694491┬░, -105.8700214┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

208

Calvary Chapel Conference Center Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Calvary Chapel Conference Center Pool & Spa Low Temperature Geothermal Calvary Chapel Conference Center Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Calvary Chapel Conference Center Pool & Spa Low Temperature Geothermal Facility Facility Calvary Chapel Conference Center Sector Geothermal energy Type Pool and Spa Location Murrieta, California Coordinates 33.5539143┬░, -117.2139232┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

209

Brockway Springs Resort Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Brockway Springs Resort Pool & Spa Low Temperature Geothermal Facility Brockway Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Brockway Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Brockway Springs Resort Sector Geothermal energy Type Pool and Spa Location King's Beach, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

210

Indian Springs Natatorium Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Natatorium Pool & Spa Low Temperature Geothermal Facility Natatorium Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Indian Springs Natatorium Pool & Spa Low Temperature Geothermal Facility Facility Indian Springs Natatorium Sector Geothermal energy Type Pool and Spa Location American Falls, Idaho Coordinates 42.7860226┬░, -112.8544377┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

211

Esalen Institute Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Esalen Institute Pool & Spa Low Temperature Geothermal Facility Esalen Institute Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Esalen Institute Pool & Spa Low Temperature Geothermal Facility Facility Esalen Institute Sector Geothermal energy Type Pool and Spa Location Big Sur, California Coordinates 36.270241┬░, -121.8074545┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

212

Tassajara Buddhist Meditation Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Tassajara Buddhist Meditation Pool & Spa Low Temperature Geothermal Tassajara Buddhist Meditation Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Tassajara Buddhist Meditation Pool & Spa Low Temperature Geothermal Facility Facility Tassajara Buddhist Meditation Sector Geothermal energy Type Pool and Spa Location Carmel Valley, California Coordinates 36.4860728┬░, -121.723836┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

213

Greenbrier Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Greenbrier Pool & Spa Low Temperature Geothermal Facility Facility Greenbrier Sector Geothermal energy Type Pool and Spa Location White Sulphur Springs, West Virginia Coordinates 37.7965107┬░, -80.2975704┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

214

Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal Facility Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Baumgartner Hot Springs Sector Geothermal energy Type Pool and Spa Location Featherville, Idaho Coordinates 43.6098966┬░, -115.2581378┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

215

Goddard Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Goddard Pool & Spa Low Temperature Geothermal Facility Goddard Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Goddard Pool & Spa Low Temperature Geothermal Facility Facility Goddard Sector Geothermal energy Type Pool and Spa Location Sitka, Alaska Coordinates 57.0530556┬░, -135.33┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

216

Comment to NOI re Retrospective Risk Pooling Program For Suppliers |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to NOI re Retrospective Risk Pooling Program For Suppliers to NOI re Retrospective Risk Pooling Program For Suppliers Comment to NOI re Retrospective Risk Pooling Program For Suppliers Comment by Cameco Resources On Retrospective Risk Pooling Program For Suppliers, 75 Fed. Reg. 43945 (July 27, 2010), Section 934 Rule Making. As discussed below, Cameco believes that producers and providers of uranium concentrates and UF6 conversion services, whether directly or as an intermediary, should be excluded from the definition of nuclear supplier. In this regard, Cameco generally agrees with the comments submitted by the Nuclear Energy Institute ("NEI") on behalf of its members; however, Cameco disagrees with the implication of NEl's comments that producers of uranium concentrates and providers of conversion services should be included in the

217

Stewart Mineral Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Mineral Springs Pool & Spa Low Temperature Geothermal Facility Mineral Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Stewart Mineral Springs Pool & Spa Low Temperature Geothermal Facility Facility Stewart Mineral Springs Sector Geothermal energy Type Pool and Spa Location Weed, California Coordinates 41.4226498┬░, -122.3861269┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

218

Jemez Springs Bathhouse Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Bathhouse Pool & Spa Low Temperature Geothermal Facility Bathhouse Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jemez Springs Bathhouse Pool & Spa Low Temperature Geothermal Facility Facility Jemez Springs Bathhouse Sector Geothermal energy Type Pool and Spa Location Jemez Springs, New Mexico Coordinates 35.7686356┬░, -106.692258┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

219

Tenakee Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Tenakee Pool & Spa Low Temperature Geothermal Facility Tenakee Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Tenakee Pool & Spa Low Temperature Geothermal Facility Facility Tenakee Sector Geothermal energy Type Pool and Spa Location Chichigaf Island, Alaska Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

220

Camperworld Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Camperworld Hot Springs Pool & Spa Low Temperature Geothermal Facility Camperworld Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Camperworld Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Camperworld Hot Springs Sector Geothermal energy Type Pool and Spa Location Garland, Utah Coordinates 41.7410387┬░, -112.1616194┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "warm pool international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility Facility Ouray Municipal Pool Sector Geothermal energy Type Space Heating Location Ouray, Colorado Coordinates 38.0227716┬░, -107.6714487┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

222

Camp Preventorium Hot Springs Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Preventorium Hot Springs Pool & Spa Low Temperature Geothermal Preventorium Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Camp Preventorium Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Camp Preventorium Hot Springs Sector Geothermal energy Type Pool and Spa Location Big Bend, California Coordinates 39.6982182┬░, -121.4608015┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

223

Huckelberry Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Huckelberry Hot Springs Pool & Spa Low Temperature Geothermal Facility Huckelberry Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Huckelberry Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Huckelberry Hot Springs Sector Geothermal energy Type Pool and Spa Location Grand Teton Nat'l Park, Wyoming Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

224

Environmental Assessment K Pool 'Fish Rearing, Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOERA-1 11 1 DOERA-1 11 1 Environmental Assessment K Pool 'Fish Rearing, Hanford Site, Richland, Washington U.S. Department of Emrgy Richland, Washington December 1996 DOEEA-1111 ENVIRONMJ3'NTAL ASSESSMENT K POOL 'F'ISH REARING HANFORD SITE, RICHLAND, WASHINGTON U.S. DEPARTMENT OF ENERGY RICHLAND, WASHINGTON December 1996 This page intentionally left blank. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. 1 ' U.S. Department of Energy summary The U.S. Department of Energy (DOE) has a need to respond to a request to lease facilities at the Hanford Site 100-KE and 100-KW filter plant pools (K Pools) for fish rearing activities. These fish rearing activities would be: (1) business ventures with public h

225

Safford Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Safford Pool & Spa Low Temperature Geothermal Facility Facility Safford Sector Geothermal energy Type Pool and Spa Location Safford, Arizona Coordinates 32.8339546┬░, -109.70758┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

226

Retail Demand Response in Southwest Power Pool | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Response in Southwest Power Pool Demand Response in Southwest Power Pool Retail Demand Response in Southwest Power Pool In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) to identify barriers to deploying demand response (DR) resources in wholesale markets and develop policies to overcome these barriers. One of the initiatives of this Task Force was to develop more detailed information on existing retail DR programs and dynamic pricing tariffs, program rules, and utility operating practices. This report describes the results of a comprehensive survey conducted by LBNL in support of the Customer Response Task Force and discusses policy implications for integrating legacy retail DR programs and dynamic pricing tariffs into wholesale markets in the SPP region.

227

California Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Hot Springs Pool & Spa Low Temperature Geothermal Facility Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name California Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility California Hot Springs Sector Geothermal energy Type Pool and Spa Location Bakersfield, California Coordinates 35.3732921┬░, -119.0187125┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

228

Riverdale Resort Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Resort Pool & Spa Low Temperature Geothermal Facility Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Riverdale Resort Pool & Spa Low Temperature Geothermal Facility Facility Riverdale Resort Sector Geothermal energy Type Pool and Spa Location Preston, Idaho Coordinates 42.0963133┬░, -111.8766173┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

229

Sligar's Thousand Springs Resort Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Sligar's Thousand Springs Resort Pool & Spa Low Temperature Geothermal Sligar's Thousand Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Sligar's Thousand Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Sligar's Thousand Springs Resort Sector Geothermal energy Type Pool and Spa Location Hagerman, Idaho Coordinates 42.8121244┬░, -114.898669┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

230

Jackalope Plunge Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Jackalope Plunge Pool & Spa Low Temperature Geothermal Facility Jackalope Plunge Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jackalope Plunge Pool & Spa Low Temperature Geothermal Facility Facility Jackalope Plunge Sector Geothermal energy Type Pool and Spa Location Douglas, Wyoming Coordinates 42.7596897┬░, -105.3822069┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

231

Pooled Bond Program (South Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pooled Bond Program (South Dakota) Pooled Bond Program (South Dakota) Pooled Bond Program (South Dakota) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Bond Program Provider South Dakota Governor's Office of Economic Development The Pooled Bond Program offered by the Economic Development Finance Authority is designed for capital intensive projects, providing small businesses access to larger capital markets for tax-exempt or taxable bond issuances. Bond proceeds can be used to finance 80 percent of new construction, and 75 percent of new equipment costs, with no greater than 25 percent of the bond proceeds being used for ancillary activities such as

232

Fuel assembly transfer basket for pool type nuclear reactor vessels  

DOE Patents (OSTI)

A fuel assembly transfer basket for a pool type, liquid metal cooled nuclear reactor having a side access loading and unloading port for receiving and relinquishing fuel assemblies during transfer.

Fanning, Alan W. (San Jose, CA); Ramsour, Nicholas L. (San Jose, CA)

1991-01-01T23:59:59.000Z

233

Conserving Energy and Heating Your Swimming Pools with Solar...  

NLE Websites -- All DOE Office Websites (Extended Search)

measures (see table on page 2). Conserving Energy and Heating Your Swimming Pool with Solar Energy CLEARINGHOUSE ENERGY EFFICIENCY AND RENEWABLE ENERGY T O F E N E R G Y D E P...

234

Environmental assessment, K Pool fish rearing, Hanford Site, Richland, Washington  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) has a need to respond to a request to lease facilities at the Hanford Site 100-KE and 100-KW filter plant pools (K Pools) for fish rearing activities. These fish rearing activities would be: (1) business ventures with public and private funds and (2) long-term enhancement and supplementation programs for game fish populations in the Columbia River Basin. The proposed action is to enter into a use permit or lease agreement with the YIN or other parties who would rear fish in the 100-K Area Pools. The proposed action would include necessary piping, pump, and electrical upgrades of the facility; cleaning and preparation of the pools; water withdrawal from the Columbia River, and any necessary water or wastewater treatment; and introduction, rearing and release of fish. Future commercial operations may be included.

NONE

1996-12-01T23:59:59.000Z

235

Hydrocarbon pool and vapor fire data analysis. Final report  

SciTech Connect

The flame geometry and thermal radiation data from a series of large scale experiments involving liquefied petroleum gas (LPG) and gasoline spills on water were analyzed. The experiments were conducted at the Naval Weapons Center, China Lake, California. Two types of fires have been studied; namely, pool fires and vapor fires. The spill quantity varied from 4 m/sup 3/ to approximately 6 m/sup 3/. The LPG pool fire flame height to diameter ratio were between 3.5 and 4.5. The gasoline flame height was about 2. The flame emissive powers for LPG pool fires ranged from 78 kW/m/sup 2/ to 115 kW/m/sup 2/. The average surface emissive power for gasoline pool fire was 40 kW/m/sup 2/. The LPG vapor fire emissive power ranged from 159 to 269 kW/m/sup 2/. 63 figures, 13 tables.

Mudan, K.S.

1984-10-01T23:59:59.000Z

236

Baranof Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Baranof Pool & Spa Low Temperature Geothermal Facility Baranof Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Baranof Pool & Spa Low Temperature Geothermal Facility Facility Baranof Sector Geothermal energy Type Pool and Spa Location Sitka, Alaska Coordinates 57.0530556┬░, -135.33┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

237

Rethinking the economics of global warming  

SciTech Connect

Most of the debates over the impact of the greenhouse effect have centered around the reliability of computer models and have neglected considerations of the economic effects of attempts to reduce global warming. Economic models have certain limitations but the input of cost benefit analysis is needed for arriving at suitable policies for lowering anthropogenic input into warming of the earth. Care must be used in extrapolating from data of time periods which are inappropriate. Estimates of costs of reducing greenhouse-gas emissions also must include possible benefits; at present this is not being done. Economic models must address differences in the distribution of global warming's consequences over time and geographical space. The costs of delaying or accelerating reduction in greenhouse-gas emissions need to be included in policy considerations. A global agreement must not adversely affect developing countries. Faulty assumptions of the effect of market forces on costs impair economic models. We have to recognize that economic and environmental goals need not be incompatible. If economic models are viewed as possible scenarios and not as predictions, then these scenarios can be useful in determining policies for reducing the greenhouse effect without harming populations and their economies.

Miller, A.; Mintzer, I.; Brown, P.G. (Univ. of Maryland, College Park (USA))

1990-01-01T23:59:59.000Z

238

Warm Standby in Hierarchically Structured Process-Control Programs  

E-Print Network (OSTI)

We classify standby redundancy design space in process-control programs into the following three categories: cold standby, warm standby, and hot standby. Design parameters of warm standby are identified and the reliability of a system using warm standby is evaluated and compared with that of hot standby. Our analysis indicates that the warm standby scheme is particularly suitable for longlived unmaintainable systems, especially those operating in harsh environments where burst hardware failures are possible. The feasibility of warm standby is demonstrated with a simulated chemical batch reactor system.

Ing-Ray Chen And; Ing-ray Chen; Farokh B. Bastani

1994-01-01T23:59:59.000Z

239

Test results of lithium pool-air reaction suppression systems  

Science Conference Proceedings (OSTI)

Engineered reaction suppression systems were demonstrated to be effective in suppressing lithium pool-air reactions for lithium quantities up to 100 kg. Lithium pool-air reaction suppression system tests were conducted to evaluate suppression system effectiveness for potential use in fusion facilities in mitigating consequences of postulated lithium spills. Small-scale perforated and sacrificial cover plate suppression systems with delayed inert gas purging proved effective in controlling the lithium-air interaction for lithium quantities near 15 kg at initial temperatures up to 450/sup 0/C. A large-scale suppression system with a sacrificial cover, a diverter plate, an inert gas atmosphere, and remotely retrievable catch pans proved effective in controlling lithium pool-air interaction for a 100-kg lithium discharge at an initial temperature of 550/sup 0/C. This suppression system limited the maximum pool temperature to about 600/sup 0/C less than that expected for a similar lithium pool-air reaction without a suppression system. Lithium aerosol release from this large-scale suppression system was a factor of about 10,000 less than that expected for a lithium pool-air reaction with no suppression system. Remote retrieval techniques for lithium cleanup, such as (1) in-place lithium siphoning and overhead crane dismantling, and (2) lithium catch pan removal by use of an overhead crane, were demonstrated as part of this large-scale test.

Jeppson, D.W.

1987-02-01T23:59:59.000Z

240

Pool heating system on island brings year-round enjoyment  

SciTech Connect

The Bahamas is not generally thought of as a place in need of pool heating. However, the remote Bahamian island of Treasure Cay is actually situated north of Ft. Lauderdale, Florida. Pool temperatures drop during the winter, thus shortening the swimming season. The Beach Villas Homeowners Association of Treasure Cay investigated pool-heating options some time ago. Energy on Treasure Cay is expensive - about 25 cents/kWh - making cost a major concern for the association as they evaluated their choices. An electric heat pump was rule out as it would place too great a burden on the electricity load of the remote island. Heating the pool with propane gas was deemed far too costly. After evaluating each of these heating methods on the basis of economics, energy efficiency, and comfort, the association concluded that solar would be the best method. They selected a solar pool heating system manufactured by FAFCO, Inc. and installed by SUNWORKS in Ft. Lauderdale. The system requires virtually no daily maintenance, and there have been no problems with the system since its installation. In addition to being trouble-free, the FAFCO solar pool heater has saved Treasure Cay a great deal of money. The equipment cost about $9,500; lumber, PVC, and labor brought the total cost to $13,000. By comparison, a propane-gas system would have cost $4,000 but would have generated a yearly gas bill of $12,000. Therefore, payback on the system began immediately upon installation.

Not Available

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm pool international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Studies say - tentatively - that greenhouse warming is here  

SciTech Connect

Published studies on greenhouse warming have been ambivalent as to whether warming has arrived. Now two independent studies of the climate record have incriminated the green-house effect in global warming, although they fall short of convicting it. Researchers at the Max Planck Institute for Meteorology in Hamburg are confident they have exonerated natural climatic variability, saying the observed global warming seems to large to account for the warming effect. A group from Lawrence Livermore National Laboratory directly implicates greenhouse warming by finding its geographic `fingerprinting` in the climate record of the past century. This article discusses both studies and how the results will affect future concerns in the area of greenhouse warming.

Kerr, R.A.

1995-06-16T23:59:59.000Z

242

Retail Demand Response in Southwest Power Pool  

SciTech Connect

In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) to identify barriers to deploying demand response (DR) resources in wholesale markets and develop policies to overcome these barriers. One of the initiatives of this Task Force was to develop more detailed information on existing retail DR programs and dynamic pricing tariffs, program rules, and utility operating practices. This report describes the results of a comprehensive survey conducted by LBNL in support of the Customer Response Task Force and discusses policy implications for integrating legacy retail DR programs and dynamic pricing tariffs into wholesale markets in the SPP region. LBNL conducted a detailed survey of existing DR programs and dynamic pricing tariffs administered by SPP's member utilities. Survey respondents were asked to provide information on advance notice requirements to customers, operational triggers used to call events (e.g. system emergencies, market conditions, local emergencies), use of these DR resources to meet planning reserves requirements, DR resource availability (e.g. seasonal, annual), participant incentive structures, and monitoring and verification (M&V) protocols. Nearly all of the 30 load-serving entities in SPP responded to the survey. Of this group, fourteen SPP member utilities administer 36 DR programs, five dynamic pricing tariffs, and six voluntary customer response initiatives. These existing DR programs and dynamic pricing tariffs have a peak demand reduction potential of 1,552 MW. Other major findings of this study are: o About 81percent of available DR is from interruptible rate tariffs offered to large commercial and industrial customers, while direct load control (DLC) programs account for ~;;14percent. o Arkansas accounts for ~;;50percent of the DR resources in the SPP footprint; these DR resources are primarily managed by cooperatives. o Publicly-owned cooperatives accounted for 54percent of the existing DR resources among SPP members. For these entities, investment in DR is often driven by the need to reduce summer peak demand that is used to set demand charges for each distribution cooperative. o About 65-70percent of the interruptible/curtailable tariffs and DLC programs are routinely triggered based on market conditions, not just for system emergencies. Approximately, 53percent of the DR resources are available with less than two hours advance notice and 447 MW can be dispatched with less than thirty minutes notice. o Most legacy DR programs offered a reservation payment ($/kW) for participation; incentive payment levels ranged from $0.40 to $8.30/kW-month for interruptible rate tariffs and $0.30 to $4.60/kW-month for DLC programs. A few interruptible programs offered incentive payments which were explicitly linkedto actual load reductions during events; payments ranged from 2 to 40 cents/kWh for load curtailed.

Bharvirkar, Ranjit; Heffner, Grayson; Goldman, Charles

2009-01-30T23:59:59.000Z

243

Tropical Cyclogenesis Factors in a Warming Climate  

E-Print Network (OSTI)

Understanding the underlying causes of tropical cyclone formation is crucial to predicting tropical cyclone behavior in a warming environment, given the Earth's current warming trend. This study examines two sets of simulations from the National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 3.1 (CAM3): one with aerosol forcings and one without. We looked at how four factors known to be important to tropical cyclone formation vary as carbon dioxde and the ensuing temperature changes increase to very high levels. These factors include Maximum Potential Intensity (MPI), mid-tropospheric moisture content, 200-850 mb vertical wind shear, and 850 mb absolute vorticity. We considered different representations of mid-tropospheric moisture by examining both relative humidity and chi, a non-dimensional measure of the saturation entropy deficit at 600 mb. We also looked at different combinations of these factors, including several variations of a Genesis Potential Index (GPI) and an incubation parameter, gamma, that is related to the length of time required to saturate the middle troposphere and aid tropical cyclogenesis. Higher MPI, lower saturation deficits and higher relative humidity, lower wind shear, and higher absolute vorticity all act to enhance the GPI and lower the incubation time, meaning larger environmental support for tropical cyclone development and intensification. In areas where tropical cyclone development is prevalent today, we found that shear generally decreased, but MPI decreased, absolute vorticity decreased, and the saturation deficit increases. Thus, in today's prevalent tropical cyclone regions, conditions become less favorable for development and intensification as the climate warms. On the other hand, genesis regions tend to push northward into the subtropics, as conditions become much more favorable for development up to ~40 degrees North due to both decreased wind shear and much higher MPI values.

Cathey, Stephen Christopher

2011-12-01T23:59:59.000Z

244

ARM - Education Article  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2006 Education ARM Scientists Visit Darwin Schools During the Tropical Warm Pool - International Cloud Experiment Bookmark and Share ARM scientists and graduate students...

245

Measure Guideline: Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings  

Science Conference Proceedings (OSTI)

The report evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provide a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.

Hunt, A.; Easley, S.

2012-05-01T23:59:59.000Z

246

Water inventory management in condenser pool of boiling water reactor  

DOE Patents (OSTI)

An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

Gluntz, Douglas M. (San Jose, CA)

1996-01-01T23:59:59.000Z

247

Water inventory management in condenser pool of boiling water reactor  

DOE Patents (OSTI)

An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

Gluntz, D.M.

1996-03-12T23:59:59.000Z

248

EM International Strategic Plan 2010-2015  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

InternatIonal Program StrategIc Plan 2010-2015 InternatIonal Program StrategIc Plan 2010-2015 Message from the Director Our International Program links the DOE Office of Environmental Management (EM) to the world's evolving environmental remediation and radioactive waste management practices. The EM International Program develops formal relationships with multilateral international organizations as well as organizations within individual nations that enable exchange of scientific and technical information and collabora- tive activities. Further, the International Program fosters communica- tion and discovery globally of emergent technologies. Participation in these activities benefits EM through the acquisition and pooling of information, particularly related to complex issues, which have the potential of leading to transformational solutions to

249

Four Dam Pool Power Agency FDPPA | Open Energy Information  

Open Energy Info (EERE)

Dam Pool Power Agency FDPPA Dam Pool Power Agency FDPPA Jump to: navigation, search Name Four Dam Pool Power Agency (FDPPA) Place Anchorage, Alaska Zip 99515 Sector Hydro Product Joint action agency consisting of four hydroelectric projects that was organized by five electric cooperatives that purchase power from the facilities. Coordinates 38.264985┬░, -85.539014┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.264985,"lon":-85.539014,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

250

New England Power Pool (Multiple States) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

England Power Pool (Multiple States) England Power Pool (Multiple States) New England Power Pool (Multiple States) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Interconnection Independent System Operator (ISO) New England helps protect the health of New England's economy and the well-being of its people by ensuring the constant availability of electricity, today and for future generations. ISO New England meets this obligation in three ways: by ensuring the day-to-day reliable operation of New England's bulk power generation and transmission system, by overseeing and ensuring the fair administration of the region's wholesale electricity markets, and by managing comprehensive, regional

251

Buckhorn Mineral Wells Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Buckhorn Mineral Wells Pool & Spa Low Temperature Geothermal Facility Buckhorn Mineral Wells Pool & Spa Low Temperature Geothermal Facility Facility Buckhorn Mineral Wells Sector Geothermal energy Type Pool and Spa Location Mesa, Arizona Coordinates 33.4222685┬░, -111.8226402┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

252

Breitenbush Community Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Breitenbush Community Pool & Spa Low Temperature Geothermal Facility Breitenbush Community Pool & Spa Low Temperature Geothermal Facility Facility Breitenbush Community Sector Geothermal energy Type Pool and Spa Location Detroit, Oregon Coordinates 44.7340108┬░, -122.1497982┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

253

Swapping Global Warming Gases for Methane in Gas Hydrate ...  

Science Conference Proceedings (OSTI)

Swapping Global Warming Gases for Methane in Gas Hydrate Layer ... would serve as energy sources as well as carbon dioxide storage sites in the ...

2006-07-20T23:59:59.000Z

254

Intense Ion Beam for Warm Dense Matter Physics  

E-Print Network (OSTI)

charged particle physics Introduction . . . . . . . . .Driven Warm Dense Matter Physics, Four Point Sher- atonIntroduction to Plasma Physics, Plenum Press, New York [18

Heimbucher, Lynn

2008-01-01T23:59:59.000Z

255

Warm Springs Water District District Heating Low Temperature...  

Open Energy Info (EERE)

Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal...

256

She, With a Warm Palm, the Skin Over My Spine.  

E-Print Network (OSTI)

??She, with a Warm Palm, the Skin over My Spine is a collection of sixnonfiction essays and three vignettes divided into two parts. The firstů (more)

Cambardella, Cara Maria Michele

2010-01-01T23:59:59.000Z

257

List of Solar Pool Heating Incentives | Open Energy Information  

Open Energy Info (EERE)

Heating Incentives Heating Incentives Jump to: navigation, search The following contains the list of 118 Solar Pool Heating Incentives. CSV (rows 1 - 118) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative Energy Personal Property Tax Exemption (Michigan) Property Tax Incentive Michigan Commercial Industrial Biomass CHP/Cogeneration Fuel Cells Microturbines Photovoltaics

258

LLNL scientists find precipitation, global warming link  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 For immediate release: 11/11/2013 | NR-13-11-04 Lawrence Livermore scientists have found that observed changes in global precipitation are directly affected by human activities. LLNL scientists find precipitation, global warming link Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov LIVERMORE, Calif. -- The rain in Spain may lie mainly on the plain, but the location and intensity of that rain is changing not only in Spain but around the globe. A new study by Lawrence Livermore National Laboratory scientists shows that observed changes in global (ocean and land) precipitation are directly affected by human activities and cannot be explained by natural variability alone. The research appears in the Nov. 11 online edition of the Proceedings of the National Academy of Sciences.

259

Operating Room Pooling and Parallel Surgery Processing Under Uncertainty  

Science Conference Proceedings (OSTI)

Operating room (OR) scheduling is an important operational problem for most hospitals. In this study, we present a novel two-stage stochastic mixed-integer programming model to minimize total expected operating cost given that scheduling decisions are ... Keywords: multiple operating rooms, operating room pooling, operating room scheduling, parallel surgery processing, two-stage stochastic mixed-integer programs

Sakine Batun; Brian T. Denton; Todd R. Huschka; Andrew J. Schaefer

2011-04-01T23:59:59.000Z

260

Identifying incompatible service implementations using pooled decision trees  

Science Conference Proceedings (OSTI)

We study fault localization techniques for identification of incompatible configurations and implementations in service-based applications (SBAs). Practice has shown that standardized interfaces alone do not guarantee compatibility of services originating ... Keywords: dependability, fault localization, pooled decision trees, service-oriented architecture

Christian Inzinger; Waldemar Hummer; Benjamin Satzger; Philipp Leitner; Schahram Dustdar

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm pool international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A NOVEL APPROACH TO SPENT FUEL POOL DECOMMISSIONING  

Science Conference Proceedings (OSTI)

The Idaho National Laboratory (INL) has been at the forefront of developing methods to reduce the cost and schedule of deactivating spent fuel pools (SFP). Several pools have been deactivated at the INL using an underwater approach with divers. These projects provided a basis for the INL cooperation with the Dresden Nuclear Power Station Unit 1 SFP (Exelon Generation Company) deactivation. It represents the first time that a commercial nuclear power plant (NPP) SFP was decommissioned using this underwater coating process. This approach has advantages in many aspects, particularly in reducing airborne contamination and allowing safer, more cost effective deactivation. The INL pioneered underwater coating process was used to decommission three SFPs with a total combined pool volume of over 900,000 gallons. INL provided engineering support and shared project plans to successfully initiate the Dresden project. This report outlines the steps taken by INL and Exelon to decommission SFPs using the underwater coating process. The rationale used to select the underwater coating process and the advantages and disadvantages are described. Special circumstances are also discussed, such as the use of a remotely-operated underwater vehicle to visually and radiologically map the pool areas that were not readily accessible. A larger project, the INTEC-603 SFP in-situ (grouting) deactivation, is reviewed. Several specific areas where special equipment was employed are discussed and a Lessons Learned evaluation is included.

R. L. Demmer

2011-04-01T23:59:59.000Z

262

Update on use of mine pool water for power generation.  

Science Conference Proceedings (OSTI)

In 2004, nearly 90 percent of the country's electricity was generated at power plants using steam-based systems (EIA 2005). Electricity generation at steam electric plants requires a cooling system to condense the steam. With the exception of a few plants using air-cooled condensers, most U.S. steam electric power plants use water for cooling. Water usage occurs through once-through cooling or as make-up water in a closed-cycle system (generally involving one or more cooling towers). According to a U.S. Geological Survey report, the steam electric power industry withdrew about 136 billion gallons per day of fresh water in 2000 (USGS 2005). This is almost the identical volume withdrawn for irrigation purposes. In addition to fresh water withdrawals, the steam electric power industry withdrew about 60 billion gallons per day of saline water. Many parts of the United States are facing fresh water shortages. Even areas that traditionally have had adequate water supplies are reaching capacity limits. New or expanded steam electric power plants frequently need to turn to non-traditional alternate sources of water for cooling. This report examines one type of alternate water source-groundwater collected in underground pools associated with coal mines (referred to as mine pool water in this report). In 2003, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) funded Argonne National Laboratory (Argonne) to evaluate the feasibility of using mine pool water in Pennsylvania and West Virginia. That report (Veil et al. 2003) identified six small power plants in northeastern Pennsylvania (the Anthracite region) that had been using mine pool water for over a decade. It also reported on a pilot study underway at Exelon's Limerick Generating Station in southeastern Pennsylvania that involved release of water from a mine located about 70 miles upstream from the plant. The water flowed down the Schuylkill River and augmented the natural flow so that the Limerick plant could withdraw a larger volume of river water. The report also included a description of several other proposed facilities that were planning to use mine pool water. In early 2006, NETL directed Argonne to revisit the sites that had previously been using mine pool water and update the information offered in the previous report. This report describes the status of mine pool water use as of summer 2006. Information was collected by telephone interviews, electronic mail, literature review, and site visits.

Veil, J. A.; Puder, M. G.; Environmental Science Division

2006-09-30T23:59:59.000Z

263

Modification of Precipitation from Warm CloudsŚA Review  

Science Conference Proceedings (OSTI)

This review is begun with a brief summary of the current status of our understanding of the physics of precipitation in warm clouds. The impact of warm-cloud precipitation processes on the evolution of the ice phase in supercooled clouds also is ...

William R. Cotton

1982-02-01T23:59:59.000Z

264

Applied engineering on biosystems: the reduction in global warming  

Science Conference Proceedings (OSTI)

This work concerns the problem of decision making in the context of investment allocation in clean technology and in reforestation, aimed at reducing the global warming. In order to model the government actions, fuzzy rules are employed to represent ... Keywords: biosystems modeling, fuzzy control, global warming, optimization, simulation

J. A. M. Felippe de Souza; Marco A. L. Caetano; Douglas F. M. Gherardi; Takashi Yoneyama

2009-11-01T23:59:59.000Z

265

The Abyss of the Nordic Seas Is Warming  

Science Conference Proceedings (OSTI)

Over the past decade, the multiyear oceanographic time series from ocean weather station Mike at 66░N, 2░E indicate a warming by about 0.01░C yr?1 in the deep water of the Norwegian Sea. The time of onset of this warming is depth dependent, ...

Svein ěsterhus; Tor Gammelsr°d

1999-11-01T23:59:59.000Z

266

A Nonlinear Response of Sahel Rainfall to Atlantic Warming  

Science Conference Proceedings (OSTI)

The response over West Africa to uniform warming of the Atlantic Ocean is analyzed using idealized simulations with a regional climate model. With warming of 1 and 1.5 K, rainfall rates increase by 30%ľ50% over most of West Africa. With Atlantic ...

Naresh Neupane; Kerry H. Cook

2013-09-01T23:59:59.000Z

267

A nonlinear response of Sahel rainfall to Atlantic warming  

Science Conference Proceedings (OSTI)

The response over West Africa to uniform warming of the Atlantic Ocean is analyzed using idealized simulations with a regional climate model. With warming of 1 K and 1.5 K, rainfall rates increase by 30-50% over most of West Africa. With Atlantic ...

Naresh Neupane; Kerry H. Cook

268

WOOD FLOORING 1. INTRODUCTION TO WARM AND WOOD FLOORING  

E-Print Network (OSTI)

This chapter describes the methodology used in EPAĺs Waste Reduction Model (WARM) to estimate streamlined life-cycle greenhouse gas (GHG) emission factors for wood flooring beginning at the waste generation reference point. 1 The WARM GHG emission factors are used to compare the net emissions associated with wood flooring in the following three waste management alternatives: source reduction, combustion, and landfilling.

unknown authors

2012-01-01T23:59:59.000Z

269

WOOD PRODUCTS 1. INTRODUCTION TO WARM AND WOOD PRODUCTS  

E-Print Network (OSTI)

This chapter describes the methodology used in EPAĺs Waste Reduction Model (WARM) to estimate streamlined life-cycle greenhouse gas (GHG) emission factors for wood products beginning at the point of waste generation. The WARM GHG emission factors are used to compare the net emissions associated with wood products in the following four materials management alternatives: source

unknown authors

2012-01-01T23:59:59.000Z

270

FIBERGLASS INSULATION 1. INTRODUCTION TO WARM AND FIBERGLASS INSULATION  

E-Print Network (OSTI)

This chapter describes the methodology used in EPAĺs Waste Reduction Model (WARM) to estimate streamlined life-cycle greenhouse gas (GHG) emission factors for fiberglass insulation beginning at the waste generation reference point. 1 The WARM GHG emission factors are used to compare the net emissions associated with fiberglass insulation in the following two waste management alternatives: source reduction and landfilling.

unknown authors

2012-01-01T23:59:59.000Z

271

Questions and Answers - If you jumped into a pool of liquid oxygen, would  

NLE Websites -- All DOE Office Websites (Extended Search)

Is there anything colderthan liquid nitrogen? Is there anything colder<br>than liquid nitrogen? Previous Question (Is there anything colder than liquid nitrogen?) Questions and Answers Main Index Next Question (What's the melting point of steel?) What's the melting point of steel? If you jumped into a pool of liquid oxygen, would your body instantly crystallize? Nothing happens instantly. The first thing would be frostbite to the skin followed by the onset of hypothermia to the internal organs. No doubt everything would "freeze up" with time. What this really brings up though is safety issues with cryogenic fluids, that is, those substances that are normally gases (like oxygen, nitrogen, carbon dioxide, hydrogen, or helium) at room temperature but can be changed to liquid form through the use of

272

Geoengineering: Plan B Remedy for Global Warming Andrew A. Lacis  

NLE Websites -- All DOE Office Websites (Extended Search)

Geoengineering: Plan B Remedy for Global Warming Geoengineering: Plan B Remedy for Global Warming Andrew A. Lacis NASA Goddard Institute for Space Studies Accelerated melting of Greenland ice is a clear indication that consequences of global warming are real and impending. The underlying causes of global warming are well enough understood, but the necessary reduction of greenhouse gases to prevent irreversible climate change is unlikely to happen before the point of no return is reached. To reverse the impending sea level rise, geoengineering counter- measures may be required to counter the current global energy imbalance due to global warming. Of the many proposed remedies, deploying aerosols within the stratosphere offers realistic prospects. Sulfur injections in the lower stratosphere would have the cooling effect of naturally occurring volcanic aerosols. Soot at

273

Internal Communication  

NLE Websites -- All DOE Office Websites (Extended Search)

9 Internal Communication Process 11_0303 Page 1 of 6 9 Internal Communication Process 11_0303 Page 1 of 6 EOTA - Business Process Document Title: Internal Communication Process Document Number: P-009 Rev 11_0303 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: Q-001 Quality Manual Notify of Changes: EOTA Employees Referenced Document(s): N/A P-009 Internal Communication Process 11_0303 Page 2 of 6 Revision History: Rev. Description of Change A Initial Release 09_0902 Modified process to better fit current practice. 10_0831 Added verbiage to clarify process. Added initiation phrase to process steps. 11_0303 Added QAM to the last step and made minor editorial updates. P-009 Internal Communication Process 11_0303 Page 3 of 6 I. Purpose

274

The Interaction of Radiative and Dynamical Processes during a Simulated Sudden Stratospheric Warming  

Science Conference Proceedings (OSTI)

An analysis of a spontaneous sudden stratospheric warming that occurred during a 2-year integration of the Langley Research Center Atmospheric Simulation Model is presented. The simulated warming resembles observed ôwave 1&rdquo warmings in the ...

R. B. Pierce; W. T. Blackshear; W. L. Grose; R. E. Turner; T. D. Fairlie

1993-12-01T23:59:59.000Z

275

The Predictability of Stratospheric Warming Events: More from the Troposphere or the Stratosphere?  

Science Conference Proceedings (OSTI)

The roles of the stratosphere and the troposphere in determining the predictability of stratospheric final warming and sudden warming events are evaluated in an idealized atmospheric model. For each stratospheric warming event simulated in the ...

Lantao Sun; Walter A. Robinson; Gang Chen

2012-02-01T23:59:59.000Z

276

NETL: Gasification Systems - Integrated Warm Gas Multicontaminant Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Project Number: DE-FC26-05NT42459 Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Project ID: DE-FC26-05NT42459 Objective: The objective is to develop a warm multi-contaminant syngas cleaning system for operation between 300 and 700┬░ F. This project will continue development of the RTI warm syngas cleanup technology suite. Based on the field testing results with real syngas from Eastman Chemical Company's gasifier under DOE Contract DE-AC26-99FT40675, additional technical issues need to be addressed to move the technologies used in warm syngas cleaning further towards commercial deployment especially for chemical/fuels production. These issues range from evaluation of startup and standby options for the more developed desulfurization processes to integration and actual pilot plant testing with real coal-derived syngas for the technologies that were tested at bench scale during Phase I. Development shall continue of the warm gas syngas cleaning technology platform through a combination of lab-scale R&D and larger integrated pilot plant testing with real coal-derived syngas as well as process/systems analysis and simulation for optimization of integration and intensification.

277

Assessing Fossil and Recent Carbon Pools in Reclaimed Mined Soils  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4638 Heino.Beckert@netl.doe.gov Rattan Lal Principal Investigator The Ohio State University Research Foundation 210 Kottman Hall School of Natural Resources Columbus, OH 43210 614-292-9069 lal.1@osu.edu Assessing Fossil And Recent cARbon Pools in ReclAimed mined soils Background There is ample indication that reclaimed mine lands have great capacity to be used to sequester carbon dioxide (CO 2 ) generated by coal-fired utility and industrial power plants. This carbon could offset CO 2 emissions associated with extraction and burning of coal and provide public utilities and other industries with carbon credits. However, the present estimates of carbon pools in reclaimed mined lands are uncertain. This uncertainty is linked primarily

278

LCG Persistency Framework (CORAL, COOL, POOL): Status and Outlook  

SciTech Connect

The Persistency Framework consists of three software packages (CORAL, COOL and POOL) addressing the data access requirements of the LHC experiments in different areas. It is the result of the collaboration between the CERN IT Department and the three experiments (ATLAS, CMS and LHCb) that use this software to access their data. POOL is a hybrid technology store for C++ objects, metadata catalogs and collections. CORAL is a relational database abstraction layer with an SQL-free API. COOL provides specific software tools and components for the handling of conditions data. This paper reports on the status and outlook of the project and reviews in detail the usage of each package in the three experiments.

Valassi, A.; /CERN; Clemencic, M.; /CERN; Dykstra, D.; /Fermilab; Frank, M.; /CERN; Front, D.; /Weizmann Inst.; Govi, G.; /Northeastern U.; Kalkhof, A.; /CERN; Loth, A.; /CERN; Nowak, M.; /Brookhaven; Pokorski, W.; /CERN; Salnikov, A.; /SLAC; Schmidt, S.A.; /Mainz U., Inst. Kernphys.; Trentadue, R.; /CERN; Wache, M.; /Mainz U., Inst. Kernphys.; Xie, Z.; /Princeton U.

2012-04-19T23:59:59.000Z

279

Nondestructive Evaluation: NDE for Fuel Pool and Transfer Canal Liners  

Science Conference Proceedings (OSTI)

This project addresses results of studies conducted with the long-range ultrasonic guided wave technique using magnetostrictive (MsS) sensors, rotational scanner with eddy current (EC) probes, alternating current field measurement (ACFM), and infrared thermography (IRT). Additionally, through collaborative work with EPRIĺs Critical Power division, remotely operated vehicles (ROVs) were identified for delivering nondestructive evaluation (NDE) tools into spent fuel pools where extreme high ...

2013-11-26T23:59:59.000Z

280

Condition Controlling and Monitoring of Indoor Swimming Pools  

E-Print Network (OSTI)

VTT has executed a lot of research work concerning the usage, functionality and refurbishment of indoor swimming pools and spas lately. This work includes for instance detailed condition surveys, energy audits, cost analysis and maintenance planning tools. The prevailing conditions make special demands for planning, constructing, repairing and maintaining the indoor swimming pools. Main topics are usually connected with shortening of the service lives of the building parts and technical installations and the indoor air quality. Also the yearly running costs can be remarkable high. VTT has created the technical risk map for indoor swimming pool repairs. This risk map presents the most significant factors that must be taken into account in order to repair facilities successfully. Due to optimizing the operation and maintenance VTT has developed operation and maintenance manual software that is specially targeted for indoor swimming facilities. This paper presents the technical risk map, the condition survey procedure, the energy saving methods and the maintenance record book for indoor swimming facilities to secure the success of a refurbishment project.

Nissinen, K.; Kauppinen, T.; Hekkanen, M.

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm pool international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

A Novel Approach to Spent Fuel Pool Decommissioning  

SciTech Connect

The Dresden Nuclear Power Station Unit 1 Spent Fuel Pool (SFP) (Exelon Generation Co.) was decommissioned using a new underwater coating strategy developed in cooperation with the Idaho National Laboratory (INL). This was the first time that a commercial nuclear power plant (NPP) SFP was decommissioned using this underwater coating approach. This approach has advantages in many aspects, particularly in reducing airborne contamination and in safer, more cost effective deactivation. The process was pioneered at the INL and used to decommission three SFPs with a total combined pool volume of over 900,000 gallons. The INL provided engineering support and shared project plans to successfully initiate the Dresden project. This report outlines the steps taken by the INL and Exelon on the pathway for this activity. The rationale used to select the underwater coating option and the advantages and disadvantages are shown. Special circumstances, such as the use of a remotely operated underwater vehicle to visually and radiologically map the pool areas that were not readily accessible, are discussed. Several specific areas where special equipment was employed are given and a lessons learned evaluation is included.

R.L. Demmer; J.B. Panozzo; R.J. Christensen

2008-09-01T23:59:59.000Z

282

Decommissioning the Dresden Unit 1 Spent Fuel Pool  

Science Conference Proceedings (OSTI)

The Dresden Nuclear Power Station, Unit 1 Spent Fuel Pool (SFP) (Exelon Generation Co.) was decommissioned using a new underwater coating strategy developed in cooperation with the Idaho National Laboratory (INL). This was the first time that a commercial nuclear power plant (NPP) SFP was decommissioned using this underwater coating approach. This approach has advantages in many aspects, particularly in reducing airborne contamination and in safer, more cost effective deactivation. The process was pioneered at the INL and used to decommission three SFPs with a total combined pool volume of over 900,000 gallons. The INL provided engineering support and shared project plans to successfully initiate the Dresden project. This report outlines the steps taken by the INL and Exelon on the pathway for this activity. The rationale used to select the underwater coating option and the advantages and disadvantages are shown. Special circumstances, such as the use of a remotely operated underwater vehicle to map (visually and radiologically) the pool areas that were not readily accessible, are discussed. Several specific areas where special equipment was employed are given and a lessons learned evaluation is included. (authors)

Demmer, R.L.; Bargelt, R.J. [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID 83415-7113 (United States); Panozzo, J.B.; Christensen, R.J. [Exelon Generation Company, LLC, Dresden Nuclear Power Station, Warrenville, IL 60555 (United States)

2006-07-01T23:59:59.000Z

283

Annual grassland resource pools and fluxes: sensitivity to precipitation  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual grassland resource pools and fluxes: sensitivity to precipitation Annual grassland resource pools and fluxes: sensitivity to precipitation and dry periods on two contrasting soils Title Annual grassland resource pools and fluxes: sensitivity to precipitation and dry periods on two contrasting soils Publication Type Journal Article Year of Publication 2012 Authors Sudderth, Erika A., Samuel B. St. Clair, Sarah A. Placella, St├ęphanie M. Swarbreck, Cristina Castanha, Donald J. Herman, Marc L. Fischer, Markus Kleber, Erik B. Sudderth, Margaret S. Torn, Mary K. Firestone, Gary L. Andersen, and David D. Ackerly Journal Ecosphere Volume 3 Issue 8 Keywords Avena barbata, Bayesian ANOVA, carbon, climate change, dry periods, Grassland, nitrogen, phenology, precipitation, soil type, water Abstract In ecosystems throughout the world climate models project increased variability in precipitation patterns that may strongly affect the above- and below-ground processes that control carbon, water, and nutrient cycles. Uncertainty about how plant and soil processes respond to wet and dry periods at different times in the growing season is a barrier to understanding how changing rainfall patterns will affect ecosystem function in annual grasslands. We used mesocosm systems to test the sensitivity to mid- and late-season dry periods of twenty response variables related to nitrogen, carbon, and water cycling in Avena barbata monocultures. We compared the responses of individual variables and of grassland systems under low and high cumulative rain treatments and between two contrasting soil types.

284

A new implementation of high-throughput five-dimensional clone pooling strategy for BAC library screening  

E-Print Network (OSTI)

PP), column super-pools (CSP), and row super-pools (RSP) isa positive plate RSP, plate CSP, clone RP and clone CP forof plate RSP and plate CSP in the super pool 2-D design

You, Frank M; Luo, Ming-Cheng; Xu, Kenong; Deal, Karin R; Anderson, Olin D; Dvorak, Jan

2010-01-01T23:59:59.000Z

285

Greenpeace International  

E-Print Network (OSTI)

report 2 nd edition 2011 japan energy scenarioôwill we look into the eyes of our children and confess that we had the opportunity, but lacked the courage? that we had the technology, but lacked the vision?ö Greenpeace International,

Energy Council; Erec Arthouros Zervos; Sven Teske; Junichi Sato; Hisayo Takada; Image Rice Fields In Kamikatsu; Wolfram Krewitt Dr. Thomas; Sydney Jay Rutovitz; Nicky Ison; Iida Hironao Matsubara

2011-01-01T23:59:59.000Z

286

Climate Lessons from the First International Polar Year*  

Science Conference Proceedings (OSTI)

A unique glimpse of the Arctic from a period before the present era of climate warming is found in the records of the first International Polar Year (IPY) of 1882ľ83. Inspired by the Austrian scientist and explorer Carl Weyprecht, the purpose of ...

Kevin R. Wood; James E. Overland

2006-12-01T23:59:59.000Z

287

UNEP/GRID and global warming mitigation  

Science Conference Proceedings (OSTI)

The Global Resource Information Database (GRID) is a system of cooperating Centres within the United Nations Environment Programme that is dedicated to making environmental information more readily accessible to environmental analysts as well as international and national decision makers. Its mission is to provide timely and reliable geo-referenced environmental information and access to a unique international data service to help address environmental issues at global, regional, and national levels in order to bridge the gap between scientific understanding of earth processes and sound management of the environment. The paper, briefly, describes the role of various GRID centers, some of the data set development activities in which GRID is involved, as well as projects and studies carried out within the GRID system as related to climate change impact assessments.

Singh, A. (UNEP/GRID, Sioux Falls, SD (United States). EROS Data Center)

1994-09-01T23:59:59.000Z

288

Are You Keeping Warm This Winter? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Are You Keeping Warm This Winter? Are You Keeping Warm This Winter? Are You Keeping Warm This Winter? January 23, 2013 - 4:33pm Addthis An efficient heater can save money and energy while keeping you warmer. | Photo by Dennis Schroeder, NREL 20288. An efficient heater can save money and energy while keeping you warmer. | Photo by Dennis Schroeder, NREL 20288. Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? Get an energy audit and learn about your heating options to warm your home while saving money. Last week, I turned on the weather forecast to find that the entire central United States was hovering somewhere between 5 and 20 degrees. Talk about frigid! I've lived all over the country, and I know how incredibly miserable it is to do anything when the high barely ekes above 0 degrees

289

Building Energy Software Tools Directory: AkWarm  

NLE Websites -- All DOE Office Websites (Extended Search)

AkWarm AkWarm AkWarm logo. Innovative, user-friendly, Windows-based software for home energy modeling. AkWarm is designed for weatherization assessment and the EPA Energy Star Home energy rating program. Features include: Graphical display of energy use by building component, improvement options analysis, design heat load, calculates CO2 emissions, and shows code compliance. Utility, weather data, and other libraries are maintained in a database library for easy updating. A separate database is available to archive all input and output data for detailed analysis of housing types, trends, amd energy use. Keywords home energy rating systems, home energy, residential modeling, weatherization Validation/Testing N/A Expertise Required Basic understanding of building construction, with a minimal level of

290

Are You Keeping Warm This Winter? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Are You Keeping Warm This Winter? Are You Keeping Warm This Winter? Are You Keeping Warm This Winter? January 23, 2013 - 4:33pm Addthis An efficient heater can save money and energy while keeping you warmer. | Photo by Dennis Schroeder, NREL 20288. An efficient heater can save money and energy while keeping you warmer. | Photo by Dennis Schroeder, NREL 20288. Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? Get an energy audit and learn about your heating options to warm your home while saving money. Last week, I turned on the weather forecast to find that the entire central United States was hovering somewhere between 5 and 20 degrees. Talk about frigid! I've lived all over the country, and I know how incredibly miserable it is to do anything when the high barely ekes above 0 degrees

291

Wildfires may contribute more to global warming than previously predicted  

NLE Websites -- All DOE Office Websites (Extended Search)

Wildfires may contribute more to global warming Wildfires may contribute more to global warming Wildfires may contribute more to global warming than previously predicted They suggest that fire emissions could contribute a lot more to the observed climate warming than current estimates show. July 9, 2013 Haze of smoke emanating from the 2011 Las Conchas, NM fire. Haze of smoke emanating from the 2011 Las Conchas, NM fire. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "The fact that we are experiencing more fires and that climate change may increase fire frequency underscores the need to include these specialized particles in the computer models, and our results show how this can be done," Dubey said. Particle analysis shows "tar ball" effect is significant LOS ALAMOS, N.M., July 9, 2013-Wildfires produce a witch's brew of

292

Wildfires may contribute more to global warming than previously predicted  

NLE Websites -- All DOE Office Websites (Extended Search)

Wildfires may contribute more to global warming Wildfires may contribute more to global warming Wildfires may contribute more to global warming than previously predicted They suggest that fire emissions could contribute a lot more to the observed climate warming than current estimates show. July 9, 2013 Haze of smoke emanating from the 2011 Las Conchas, NM fire. Haze of smoke emanating from the 2011 Las Conchas, NM fire. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "The fact that we are experiencing more fires and that climate change may increase fire frequency underscores the need to include these specialized particles in the computer models, and our results show how this can be done," Dubey said. Particle analysis shows "tar ball" effect is significant LOS ALAMOS, N.M., July 9, 2013-Wildfires produce a witch's brew of

293

Warm Weather and the Daily Commute | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Warm Weather and the Daily Commute Warm Weather and the Daily Commute Warm Weather and the Daily Commute May 7, 2013 - 12:02pm Addthis Biking to work helps you get some exercise while reducing your carbon footprint. | Photo courtesy of iStockphoto.com/olaser Biking to work helps you get some exercise while reducing your carbon footprint. | Photo courtesy of iStockphoto.com/olaser Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? Check out options for busing or carpooling in your area or, if you live close, try walking or biking to work. You know the weather is starting to warm up when you start hearing about those "bike, bus, or walk to work" challenges. And while my local news just started drumming up publicity for theirs, I've seen these events pop up in

294

Brooks Warm Springs Aquaculture Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Warm Springs Aquaculture Low Temperature Geothermal Facility Warm Springs Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Brooks Warm Springs Aquaculture Low Temperature Geothermal Facility Facility Brooks Warm Springs Sector Geothermal energy Type Aquaculture Location Fergus County, Montana Coordinates 47.2126745┬░, -109.4141┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

295

The Sensitivity of Mountain Snowpack Accumulation to Climate Warming  

Science Conference Proceedings (OSTI)

Controls on the sensitivity of mountain snowpack accumulation to climate warming (?S) are investigated. This is accomplished using two idealized, physically based models of mountain snowfall to simulate snowpack accumulation for the Cascade ...

Justin R. Minder

2010-05-01T23:59:59.000Z

296

Successive Modulation of ENSO to the Future Greenhouse Warming  

Science Conference Proceedings (OSTI)

The multidecadal modulation of the El Ni˝oľSouthern Oscillation (ENSO) due to greenhouse warming has been analyzed herein by means of diagnostics of Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) coupled general ...

Soon-Il An; Jong-Seong Kug; Yoo-Geun Ham; In-Sik Kang

2008-01-01T23:59:59.000Z

297

Mechanisms of Remote Tropical Surface Warming during El Ni˝o  

Science Conference Proceedings (OSTI)

The authors demonstrate through atmospheric general circulation model (the Community Climate Model version 3.10) simulations of the 1997/98 El Ni˝o that the observed ôremoteö (i.e., outside the Pacific) tropical land and ocean surface warming ...

John C. H. Chiang; Benjamin R. Lintner

2005-10-01T23:59:59.000Z

298

Physics of Greenhouse Effect and Convection in Warm Oceans  

Science Conference Proceedings (OSTI)

Sea surface temperature (SST) in roughly 50% of the tropical Pacific Ocean is warm enough (SST > 300 K) to permit deep convection. This paper examines the effects of deep convection on the climatological mean vertical distributions of water vapor ...

A. K. Inamdar; V. Ramanathan

1994-05-01T23:59:59.000Z

299

Probing warm dense lithium by inelastic X-ray scattering  

E-Print Network (OSTI)

-26000, NWFP, Pakistan 9 Institut f┬Ęur Kernphysik, Technische Universit┬Ęat Darmstadt, Schlo├?gartenstr. 9-temperature superconductors and nuclear matter1 . Warm dense matter, defined by temperatures of a few electron volts

Loss, Daniel

300

Monitoring Global Climate Change: The Case of Greenhouse Warming  

Science Conference Proceedings (OSTI)

Recent record high temperatures and drought conditions in many regions of the United States have prompted heightened concern about whether these are early manifestations of the global green house warming projected by the major climate models. An ...

Fred B. Wood

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm pool international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Supervised Learning Approaches to Classify Sudden Stratospheric Warming Events  

Science Conference Proceedings (OSTI)

Sudden stratospheric warmings are prominent examples of dynamical waveľmean flow interactions in the Arctic stratosphere during Northern Hemisphere winter. They are characterized by a strong temperature increase on time scales of a few days and a ...

Christian Blume; Katja Matthes; Illia Horenko

2012-06-01T23:59:59.000Z

302

Small-Scale Variability in Warm Continental Cumulus Clouds  

Science Conference Proceedings (OSTI)

We have analyzed small-scale fluctuations in microphysical, dynamical and thermodynamical parameters measured in two warm cumulus clouds during the Cooperative Convective Precipitation Experiment (CCOPE) project (1981) in light of predictions of ...

P. H. Austin; M. B. Baker; A. M. Blyth; J. B. Jensen

1985-06-01T23:59:59.000Z

303

Warm Rain Study in HawaiiŚRain Initiation  

Science Conference Proceedings (OSTI)

More than 300 hours of aircraft flights were conducted in Hawaii from 1977 to 1979 to study precipitation mechanisms in warm rain. Airborne instruments were used to measure drop size distributions over the size range from cloud droplets to ...

Tsutomu Takahashi

1981-02-01T23:59:59.000Z

304

Does Global Warming Cause Intensified Interannual Hydroclimate Variability?  

Science Conference Proceedings (OSTI)

The idea that global warming leads to more droughts and floods has become commonplace without clear indication of what is meant by this statement. Here, the authors examine one aspect of this problem and assess whether interannual variability of ...

Richard Seager; Naomi Naik; Laura Vogel

2012-05-01T23:59:59.000Z

305

NOAA Predicts Mixed Bag of Drought, Flooding and Warm Weather...  

NLE Websites -- All DOE Office Websites (Extended Search)

NOAA Predicts Mixed Bag of Drought, Flooding and Warm Weather for Spring Print E-mail NOAA 2013 Spring Outlook Map Thursday, March 21, 2013 Featured by NOAA, a member of the U.S....

306

Warm Conveyor Belts in Idealized Moist Baroclinic Wave Simulations  

Science Conference Proceedings (OSTI)

This idealized modeling study of moist baroclinic waves addresses the formation of moist ascending airstreams, so-called warm conveyor belts (WCBs), their characteristics, and their significance for the downstream flow evolution. Baroclinic wave ...

Sebastian Schemm; Heini Wernli; Lukas Papritz

2013-02-01T23:59:59.000Z

307

A global warming forum: Scientific, economic, and legal overview  

SciTech Connect

A Global Warming Forum covers in detail five general subject areas aimed at providing first, the scientific background and technical information available on global warming and second, a study and evaluation of the role of economic, legal, and political considerations in global warming. The five general topic areas discussed are the following: (1) The role of geophysical and geoengineering methods to solve problems related to global climatic change; (2) the role of oceanographic and geochemical methods to provide evidence for global climatic change; (3) the global assessment of greenhouse gas production including the need for additional information; (4) natural resource management needed to provide long-term global energy and agricultural uses; (5) legal, policy, and educational considerations required to properly evaluate global warming proposals.

Geyer, R.A. (ed.)

1993-01-01T23:59:59.000Z

308

Influence of Stratospheric Sudden Warming on AIRS Midtropospheric CO2  

Science Conference Proceedings (OSTI)

Midtropospheric CO2 retrievals from the Atmospheric Infrared Sounder (AIRS) were used to explore the influence of stratospheric sudden warming (SSW) on CO2 in the middle to upper troposphere. To choose the SSW events that had strong coupling ...

Xun Jiang; Jingqian Wang; Edward T. Olsen; Thomas Pagano; Luke L. Chen; Yuk L. Yung

2013-08-01T23:59:59.000Z

309

Modeling the Impact of Warming in Climate Change Economics  

E-Print Network (OSTI)

Any economic analysis of climate change policy requires some model that describes the impact of warming on future GDP and consumption. Most integrated assessment models (IAMs) relate temperature to the level of real GDP ...

Pindyck, Robert S.

310

Rapid Development of the Tropical Cyclone Warm Core  

Science Conference Proceedings (OSTI)

This paper presents a simple theoretical argument to isolate the conditions under which a tropical cyclone can rapidly develop a warm-core thermal structure and subsequently approach a steady state. The theoretical argument is based on the ...

Jonathan L. Vigh; Wayne H. Schubert

2009-11-01T23:59:59.000Z

311

On the Height of the Warm Core in Tropical Cyclones  

Science Conference Proceedings (OSTI)

The warm-core structure of tropical cyclones is examined in idealized simulations using the Weather Research and Forecasting (WRF) Model. The maximum perturbation temperature in a control simulation occurs in the midtroposphere (5ľ6 km), in ...

Daniel P. Stern; David S. Nolan

2012-05-01T23:59:59.000Z

312

Greenhouse Warming: Is the Mid-Holocene a Good Analogue?  

Science Conference Proceedings (OSTI)

The mid-Holocene period (from approximately 9000 to 6000 years before present) is often suggested as an analogue for enhanced greenhouse warming. The changes in net radiative forcing at the top of the atmosphere are very different; increases in ...

John F. B. Mitchell

1990-11-01T23:59:59.000Z

313

Sudden Stratospheric Warming and Anomalous U.S. Weather  

Science Conference Proceedings (OSTI)

Severe distortion of tropospheric circulation is associated with major sudden stratospheric warming (SSW) events. This distortion consisting primarily of weakening of smaller-scale synoptic mats and development of strong blocking activity, is ...

James P. McGuirk; Donald A. Douglas

1988-01-01T23:59:59.000Z

314

The Dynamics of Northern Hemisphere Stratospheric Final Warming Events  

Science Conference Proceedings (OSTI)

A lag composite analysis is performed of the zonal-mean structure and dynamics of Northern Hemisphere stratospheric final warming (SFW) events. SFW events are linked to distinct zonal wind deceleration signatures in the stratosphere and ...

Robert X. Black; Brent A. McDaniel

2007-08-01T23:59:59.000Z

315

Mesoscale Predictability of an Extreme Warm-Season Precipitation Event  

Science Conference Proceedings (OSTI)

A mesoscale model is used to investigate the mesoscale predictability of an extreme precipitation event over central Texas on 29 June 2002 that lasted through 7 July 2002. Both the intrinsic and practical aspects of warm-season predictability, ...

Fuqing Zhang; Andrew M. Odins; John W. Nielsen-Gammon

2006-04-01T23:59:59.000Z

316

Interpretation of Simulated Global Warming Using a Simple Model  

Science Conference Proceedings (OSTI)

A simple energy balance model with two parameters, an effective heat capacity and an effective climate sensitivity, is used to interpret six GCM simulations of greenhouse gasľinduced global warming. By allowing the parameters to vary in time, the ...

I. G. Watterson

2000-01-01T23:59:59.000Z

317

Inferences of Predictability Associated with Warm Season Precipitation Episodes  

Science Conference Proceedings (OSTI)

Herein preliminary findings are reported from a radar-based climatology of warm season precipitation ôepisodes.ö Episodes are defined as timeľspace clusters of heavy precipitation that often result from sequences of organized convection such as ...

R. E. Carbone; J. D. Tuttle; D. A. Ahijevych; S. B. Trier

2002-07-01T23:59:59.000Z

318

Mechanisms Affecting the Overturning Response in Global Warming Simulations  

Science Conference Proceedings (OSTI)

Climate models used to produce global warming scenarios exhibit widely diverging responses of the thermohaline circulation (THC). To investigate the mechanisms responsible for this variability, a regional Atlantic Ocean model driven with forcing ...

U. Schweckendiek; J. Willebrand

2005-12-01T23:59:59.000Z

319

Long-Term Evolution of Elongated Warm Eddies  

Science Conference Proceedings (OSTI)

The purpose of this research is to investigate the evolution of elongated warm eddies. A shallow-water, reduced-gravity, primitive equation model is used to perform a multicase numerical experiment, which includes vortices of very different ...

Edgar G. PavÝa; Manuel Lˇpez

1994-10-01T23:59:59.000Z

320

Warm-Air Intrusions in Arizonaĺs Meteor Crater  

Science Conference Proceedings (OSTI)

Episodic nighttime intrusions of warm air, accompanied by strong winds, enter the enclosed near-circular Meteor Crater basin on clear, synoptically undisturbed nights. Data analysis is used to document these events and to determine their spatial ...

Bianca Adler; C. David Whiteman; Sebastian W. Hoch; Manuela Lehner; Norbert Kalthoff

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm pool international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Diurnal Variations of Warm-Season Precipitation over Northern China  

Science Conference Proceedings (OSTI)

This study examines the diurnal variations of the warm-season precipitation over northern China using the high-resolution precipitation products obtained from the Climate Prediction Centerĺs morphing technique (CMORPH) during MayľAugust of 2003ľ...

Huizhong He; Fuqing Zhang

2010-04-01T23:59:59.000Z

322

A 15-Year Climatology of Warm Conveyor Belts  

Science Conference Proceedings (OSTI)

This study presents the first climatology of so-called warm conveyor belts (WCBs), strongly ascending moist airstreams in extratropical cyclones that, on the time scale of 2 days, rise from the boundary layer to the upper troposphere. The ...

Sabine Eckhardt; Andreas Stohl; Heini Wernli; Paul James; Caroline Forster; Nicole Spichtinger

2004-01-01T23:59:59.000Z

323

Definition: Warm or Steaming Ground | Open Energy Information  

Open Energy Info (EERE)

heat is conducted to the earth's surface, warming the ground and sometimes causing steam to form when water is present. Ret LikeLike UnlikeLike You like this.Sign Up to see...

324

Warming and Freshening in the Abyssal Southeastern Indian Ocean  

Science Conference Proceedings (OSTI)

Warming and freshening of abyssal waters in the eastern Indian Ocean between 1994/95 and 2007 are quantified using data from two closely sampled high-quality occupations of a hydrographic section extending from Antarctica northward to the ...

Gregory C. Johnson; Sarah G. Purkey; John L. Bullister

2008-10-01T23:59:59.000Z

325

Warm coats, big thanks | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Community / Warm coats, big thanks Community / Warm coats, big thanks Warm coats, big thanks Posted: January 9, 2014 - 2:23pm Over the last 12 years, Y-12ers have donated almost 7000 coats, sweaters and other winter wear to the Volunteer Ministry Center. As East Tennessee faces the coldest temperatures seen in a long while, Y-12ers have shown their volunteer spirit for the twelfth straight year by helping countless people stay warm thanks to another successful United Way Coat Drive to benefit the Volunteer Ministry Center. In total, the site donated 589 coats and winter wear items, 64 pairs of gloves, 47 scarves, and 66 hats and toboggans, which VMC makes available to the public through its Knoxville office. In addition, this year's efforts were expanded to include collection of toiletries for VMC. Y-12 collected more than 20 copy paper boxes full of

326

Jandy Pool Products: Proposed Penalty (2010-CE-1111) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jandy Pool Products: Proposed Penalty (2010-CE-1111) Jandy Pool Products: Proposed Penalty (2010-CE-1111) Jandy Pool Products: Proposed Penalty (2010-CE-1111) September 8, 2010 DOE alleged in a Notice of Proposed Civil Penalty that Jandy Pool Products, Inc. failed to certify a variety of pool heaters as compliant with the applicable energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Jandy Pool Products: Proposed Penalty (2010-CE-1111) More Documents & Publications Jandy Pool Products: Order (2010-CE-1111)

327

Internal Dosimetry  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MEASUREMENT MEASUREMENT SENSITIVE DOE-STD-1121-2008 Change Notice No.1 October 2013 DOE STANDARD INTERNAL DOSIMETRY U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document is available on the Department of Energy Technical Standards Program Web Site at http://energy.gov/hss/information-center/department-energy- technical-standards-program ii Change Notice 1. Internal Dosimetry DOE-STD-1121-2008 Page/Section Change Throughout Change: airborne contamination To: airborne radioactivity Section 1.5, p. 4 Change: HPS N 13.1-1999 To: HPS N 13.1-2011 Section 1.5, p. 4 Change: HPS N 13.6-1999 To: HPS N 13,.6-2010 Section 1.5, p. 4 Delete: HPS N 13.14-1994, Internal Dosimetry Programs for

328

Global crop yield losses from recent warming  

Science Conference Proceedings (OSTI)

Global yields of the world-s six most widely grown crops--wheat, rice, maize, soybeans, barley, sorghum--have increased since 1961. Year-to-year variations in growing season minimum temperature, maximum temperature, and precipitation explain 30% or more of the variations in yield. Since 1991, climate trends have significantly decreased yield trends in all crops but rice, leading to foregone production since 1981 of about 12 million tons per year of wheat or maize, representing an annual economic loss of $1.2 to $1.7 billion. At the global scale, negative impacts of climate trends on crop yields are already apparent. Annual global temperatures have increased by {approx}0.4 C since 1980, with even larger changes observed in several regions (1). While many studies have considered the impacts of future climate changes on food production (2-5), the effects of these past changes on agriculture remain unclear. It is likely that warming has improved yields in some areas, reduced them in others, and had negligible impacts in still others; the relative balance of these effects at the global scale is unknown. An understanding of this balance would help to anticipate impacts of future climate changes, as well as to more accurately assess recent (and thereby project future) technologically driven yield progress. Separating the contribution of climate from concurrent changes in other factors--such as crop cultivars, management practices, soil quality, and atmospheric carbon dioxide (CO{sub 2}) levels--requires models that describe the response of yields to climate. Studies of future global impacts of climate change have typically relied on a bottom-up approach, whereby field scale, process-based models are applied to hundreds of representative sites and then averaged (e.g., ref 2). Such approaches require input data on soil and management conditions, which are often difficult to obtain. Limitations on data quality or quantity can thus limit the utility of this approach, especially at the local scale (6-8). At the global scale, however, many of the processes and impacts captured by field scale models will tend to cancel out, and therefore simpler empirical/statistical models with fewer input requirements may be as accurate (8, 9). Empirical/statistical models also allow the effects of poorly modeled processes (e.g., pest dynamics) to be captured and uncertainties to be readily quantified (10). Here we develop new, empirical/statistical models of global yield responses to climate using datasets on broad-scale yields, crop locations, and climate variability. We focus on global average yields for the six most widely grown crops in the world: wheat, rice, maize, soybeans, barley, and sorghum. Production of these crops accounts for over 40% of global cropland area (11). 55% of non-meat calories, and over 70% of animal feed (12).

Lobell, D; Field, C

2006-06-02T23:59:59.000Z

329

Global warming impacts of ozone-safe refrigerants and refrigeration, heating, and air-conditioning technologies  

SciTech Connect

International agreements mandate the phase-out of many chlorine containing compounds that are used as the working fluid in refrigeration, air-conditioning, and heating equipment. Many of the chemical compounds that have been proposed, and are being used in place of the class of refrigerants eliminated by the Montreal Protocol are now being questioned because of their possible contributions to global warming. Natural refrigerants are put forth as inherently superior to manufactured refrigerants because they have very low or zero global warming potentials (GWPs). Questions are being raised about whether or not these manufactured refrigerants, primarily hydrofluorocarbons (HFCs), should be regulated and perhaps phased out in much the same manner as CFCs and HCFCs. Several of the major applications of refrigerants are examined in this paper and the results of an analysis of their contributions to greenhouse warming are presented. Supermarket refrigeration is shown to be an application where alternative technologies have the potential to reduce emissions of greenhouse gases (GHG) significantly with no clear advantage to either natural or HFC refrigerants. Mixed results are presented for automobile air conditioners with opportunities to reduce GHG emissions dependent on climate and comfort criteria. GHG emissions for hermetic and factory built systems (i.e. household refrigerators/freezers, unitary equipment, chillers) are shown to be dominated by energy use with much greater potential for reduction through efficiency improvements than by selection of refrigerant. The results for refrigerators also illustrate that hydrocarbon and carbon dioxide blown foam insulation have lower overall effects on GHG emissions than HFC blown foams at the cost of increased energy use.

Fischer, S.; Sand, J.; Baxter, V.

1997-12-01T23:59:59.000Z

330

Natural gas and efficient technologies: A response to global warming  

DOE Green Energy (OSTI)

It has become recognized by the international scientific community that global warming due to fossil fuel energy buildup of greenhouse CO{sub 2} in the atmosphere is a real environmental problem. Worldwide agreement has also been reached to reduce CO{sub 2} emissions. A leading approach to reducing CO{sub 2} emissions is to utilize hydrogen-rich fuels and improve the efficiency of conversion in the power generation, transportation and heating sectors of the economy. In this report, natural gas, having the highest hydrogen content of all the fossil fuels, can have an important impact in reducing CO{sub 2} emissions. This paper explores natural gas and improved conversion systems for supplying energy to all three sectors of the economy. The improved technologies include combined cycle for power generation, the Carnol system for methanol production for the transportation sector and fuel cells for both power generation and transportation use. The reduction in CO{sub 2} from current emissions range from 13% when natural gas is substituted for gasoline in the transportation sector to 45% when substituting methanol produced by the Carnol systems (hydrogen from thermal decomposition of methane reacting with CO{sub 2} from coal-fired power plants) used in the transportation sector. CO{sub 2} reductions exceeding 60% can be achieved by using natural gas in combined cycle for power generation and Carnol methanol in the transportation sector and would, thus, stabilize CO{sub 2} concentration in the atmosphere predicted to avoid undue climate change effects. It is estimated that the total fossil fuel energy bill in the US can be reduced by over 40% from the current fuel bill. This also allows a doubling in the unit cost for natural gas if the current energy bill is maintained. Estimates of the total net incremental replacement capital cost for completing the new improved equipment is not more than that which will have to be spent to replace the existing equipment conducting business as usual.

Steinberg, M.

1998-02-01T23:59:59.000Z

331

More data needed to support or disprove global warming theory  

SciTech Connect

Reports of global warming are prevalent in the popular press. With the exception of Scandinavia, no major energy tax laws have been passed to date. But environmental pressures may change this, and the change could have a profound effect on refiners. These are the views of Gerald T. Westbrook, of TSBV Consultants, Houston. Westbrook summarized recent global-warming research, and his position on the subject, at the National Petroleum Refiners Association annual meeting, held March 16--18, in San Antonio. The greenhouse effect is real, says Westbrook. It is important, however, to distinguish between the two major mechanisms of the greenhouse effect: natural warming and anthropogenic warming (changes in the concentration of greenhouse gases caused by man). Without greenhouse gases the earth`s equilibrium temperature would be {minus}18 C. The effect of the gases is to raise the equilibrium temperature to 15 C. In the early 1980s, computer models estimated global warming over the past 100 years to be as much as 2.3 C. By 1986, those estimates had been reduced to 1.0 C, and in 1988, a range of 0.63 {+-} 0.2 C was reported. In 1995, a report by the Intergovernmental Panel on Climate change (IPCC) cited a range of 0.3--0.6 C. Westbrook asserts that the earth`s motion anomalies--orbit eccentricity, axial tilt, and wobbles--lead to dramatic changes in insolation, and are the dominant force over the last 160,000 years.

1997-05-26T23:59:59.000Z

332

International Energy Statistics  

U.S. Energy Information Administration (EIA)

> Countries > International Energy Statistics: International Energy Statistics; Petroleum. Production| Annual Monthly/Quarterly

333

INTERNATIONAL AGREEMENTS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INTERNATIONAL INTERNATIONAL AGREEMENTS Signed by Secretary Spencer Abraham January 2001-December 2004 TABLE OF CONTENTS Joint Statement of ntent between the Department of Energy of the United States ofAmerica and The Ministry of Energy and Mines of the Republic ofPeru on Cooperation in the Field of Energy -Tab 1 Fifth Hemispheric Energy Ministers Meeting Mexico City, Mexico - March 9, 2001. Mexico Declaration - Energy: A Crucial Factor for Integration and Sustainable Development in the Hemisphere - Tab 2 Extension of the Agreement for Energy Cooperation between the Department of Energy of the United States ofAmerica and the Secretariat ofEnergy of the United Mexican States, and its Four Annexes - Tab3 Implementing Agreement between the Department ofEnergy of the United States ofAmerica and the

334

Chemical And Isotopic Investigation Of Warm Springs Associated With Normal  

Open Energy Info (EERE)

Isotopic Investigation Of Warm Springs Associated With Normal Isotopic Investigation Of Warm Springs Associated With Normal Faults In Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Chemical And Isotopic Investigation Of Warm Springs Associated With Normal Faults In Utah Details Activities (3) Areas (1) Regions (0) Abstract: Thermal springs associated with normal faults in Utah have been analyzed for major cations and anions, and oxygen and hydrogen isotopes. Springs with measured temperatures averaging greater than 40┬░C are characterized by Na + K- and SO4 + Cl-rich waters containing 103 to 104 mg/l of dissolved solids. Lower temperature springs, averaging less than 40┬░C, are more enriched in Ca + Mg relative to Na + K. Chemical variations monitored through time in selected thermal springs are probably produced by

335

Warm Springs State Hospital Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

State Hospital Space Heating Low Temperature Geothermal State Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs State Hospital Space Heating Low Temperature Geothermal Facility Facility Warm Springs State Hospital Sector Geothermal energy Type Space Heating Location Warm Springs, Montana Coordinates 46.1813145┬░, -112.78476┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

336

Legendary West Virginia Senior Citizen Stays Warm With New Furnace |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Legendary West Virginia Senior Citizen Stays Warm With New Furnace Legendary West Virginia Senior Citizen Stays Warm With New Furnace Legendary West Virginia Senior Citizen Stays Warm With New Furnace April 1, 2010 - 7:16pm Addthis Joshua DeLung For the last 56 years, Beulah Sisk has lived in the same house in Princeton, W.Va. Beulah, who worked for 25 years at Lloyd's Pastry Shop, is well known in Princeton. People still see her on the streets today and recognize her as an icon in the community. After a wind storm damaged Beulah's home last year, it came as no surprise when a senior center employee, concerned for Beulah's safety, told her about the weatherization assistance program. "A tree fell on my house and damaged a lot of things, including my furnace," Beulah says. "I tried to have it repaired, but it still

337

NETL: Gasification Systems - Warm Gas Multi-Contaminant Removal System  

NLE Websites -- All DOE Office Websites (Extended Search)

Warm Gas Multi-Contaminant Removal System Warm Gas Multi-Contaminant Removal System Project Number: DE-SC00008243 TDA Research, Inc. is developing a high-capacity, low-cost sorbent that removes anhydrous ammonia (NH3), mercury (Hg), and trace contaminants from coal- and coal/biomass-derived syngas. The clean-up system will be used after the bulk warm gas sulfur removal step, and remove NH3 and Hg in a regenerable manner while irreversibly capturing all other trace metals (e.g., Arsenic, Selenium) reducing their concentrations to sub parts per million (ppm) levels. Current project plans include identifying optimum chemical composition and structure that provide the best sorbent performance for removing trace contaminants, determining the effect of operating parameters, conducting multiple-cycle experiments to test the life of the sorbent for NH3 and Hg removal, and conducting a preliminary design of the sorbent reactor.

338

Stay Warm in Your Apartment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stay Warm in Your Apartment Stay Warm in Your Apartment Stay Warm in Your Apartment October 19, 2009 - 11:43am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy Yes, the Ghost of Winters Future has officially knocked on our front doors again. The leaves here in Washington, D.C., have started to turn toward their colorful crescendo, that spectacular finish before their end on the chilly ground. It makes me cold just thinking about it. Like me, you're probably not opening your windows much at night anymore. I'm holding out still, surrendering a little more of my beloved fresh air each night and dreading that first night when I have to pop the heater on. Last night, I only open my window about an inch. I guess that means it's time to think about locking out the cold air once and for all this year.

339

Roosevelt Warm Springs Institute for Rehab. Space Heating Low Temperature  

Open Energy Info (EERE)

Space Heating Low Temperature Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Roosevelt Warm Springs Institute for Rehab. Space Heating Low Temperature Geothermal Facility Facility Roosevelt Warm Springs Institute for Rehab. Sector Geothermal energy Type Space Heating Location Warm Springs, Georgia Coordinates 32.8904081┬░, -84.6810381┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

340

Rising Sea Levels Due to Global Warming Are Unstoppable  

NLE Websites -- All DOE Office Websites (Extended Search)

Rising Sea Levels Rising Sea Levels Due to Global Warming Are Unstoppable Rising Sea Levels Due to Global Warming Are Unstoppable Mitigation can slow down but not prevent sea level rise for centuries to come August 5, 2013 Contact: Linda Vu, Lvu@lbl.gov, +1 510 495 2402 washington.jpg Because seawater absorbs heat more slowly than the atmosphere above it, our oceans won't feel the full impact of the greenhouse gases already in the air for hundreds of years. Warm water expands, raising sea levels. (Courtesy W. Washington) Select to enlarge. A reduction in greenhouse gas emissions could greatly lessen the impacts of climate change. However, the gases already added to the atmosphere ensure a certain amount of sea level rise to come, even if future emissions are reduced. A study by National Center for Atmospheric Research (NCAR)

Note: This page contains sample records for the topic "warm pool international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Stay Warm in Your Apartment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stay Warm in Your Apartment Stay Warm in Your Apartment Stay Warm in Your Apartment October 19, 2009 - 11:43am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy Yes, the Ghost of Winters Future has officially knocked on our front doors again. The leaves here in Washington, D.C., have started to turn toward their colorful crescendo, that spectacular finish before their end on the chilly ground. It makes me cold just thinking about it. Like me, you're probably not opening your windows much at night anymore. I'm holding out still, surrendering a little more of my beloved fresh air each night and dreading that first night when I have to pop the heater on. Last night, I only open my window about an inch. I guess that means it's time to think about locking out the cold air once and for all this year.

342

A Lagrangian Description of the Western Equatorial Pacific Response to the Wind Burst of December 1992: Heat Advection in the Warm Pool  

Science Conference Proceedings (OSTI)

During the Tropical Oceans Global Atmosphere (TOGA) Coupled OceanľAtmosphere Response Experiment (COARE) intensive observing period (IOP), sustained westerly winds were observed between 20 December 1992 and 10 January 1993 in the area between 155░...

Elise A. Ralph; Kenong Bi; Pearn P. Niiler; Yves du Penhoat

1997-07-01T23:59:59.000Z

343

A Relationship between Interannual Variations in the South Pacific Wind Stress Curl, the Indonesian Throughflow, and the West Pacific Warm Water Pool  

Science Conference Proceedings (OSTI)

Simple theory gives that the depth-integrated flow between the Pacific and Indian Oceans, on interannual timescales and longer, is driven by the integral of the wind stress along a line from the northern tip of PapuaľNew Guinea across the ...

Roxana C. Wajsowicz

1994-10-01T23:59:59.000Z

344

Tropical Warm Pool Surface Heat Budgets and Temperature: Contrasts between1997/98 El Ni˝o and 1998/99 La Ni˝a  

Science Conference Proceedings (OSTI)

Seasonal to interannual variations of the net surface heating (FNET) and its relationship to sea surface temperature tendency (dTs/dt) in the tropical eastern Indian and western Pacific Oceans are studied for the period October 1997ľSeptember ...

Shu-Hsien Chou; Ming-Dah Chou; Pui-King Chan; Po-Hsiung Lin; Kung-Hwa Wang

2004-05-01T23:59:59.000Z

345

Long-Term Variation of the Principal Mode of Boreal Spring Hadley Circulation Linked to SST over the Indo-Pacific Warm Pool  

Science Conference Proceedings (OSTI)

The variability of the boreal spring [MarchľMay (MAM)] Hadley circulation (HC) is investigated, focusing on the long-term variation of the first principal mode for 1951ľ2008, which is an equatorially asymmetric mode (AM) with the rising branch ...

Juan Feng; Jianping Li; Fei Xie

2013-01-01T23:59:59.000Z

346

Oil and Gas Wells: Rules Relating to Spacing, Pooling, and Unitization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wells: Rules Relating to Spacing, Pooling, and Wells: Rules Relating to Spacing, Pooling, and Unitization (Minnesota) Oil and Gas Wells: Rules Relating to Spacing, Pooling, and Unitization (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting The Department of Natural Resources is given the authority to create and promulgate regulations related to spacing, pooling, and utilization of oil

347

An Innovative Hybrid Loop-Pool Design for Sodium Cooled Fast Reactor  

SciTech Connect

The existing sodium cooled fast reactors (SFR) have two types of designs ľ loop type and pool type. In the loop type design, such as JOYO (Japan) [1] and MONJU (Japan), the primary coolant is circulated through intermediate heat exchangers (IHX) external to the reactor tank. The major advantages of loop design include compactness and easy maintenance. The disadvantage is higher possibility of sodium leakage. In the pool type design such as EBR-II (USA), BN-600M(Russia), SuperphÚnix (France) and European Fast Reactor [2], the reactor core, primary pumps, IHXs and direct reactor auxiliary cooling system (DRACS) heat exchangers (DHX) all are immersed in a pool of sodium coolant within the reactor vessel, making a loss of primary coolant extremely unlikely. However, the pool type design makes primary system large. In the latest ANLĺs Advanced Burner Test Reactor (ABTR) design [3], the primary system is configured in a pool-type arrangement. The hot sodium at core outlet temperature in hot pool is separated from the cold sodium at core inlet temperature in cold pool by a single integrated structure called Redan. Redan provides the exchange of the hot sodium from hot pool to cold pool through IHXs. The IHXs were chosen as the traditional tube-shell design. This type of IHXs is large in size and hence large reactor vessel is needed.

Haihua Zhao; Hongbin Zhang

2007-11-01T23:59:59.000Z

348

Evaluation of the Storms Pool Improved Waterflood Project  

Science Conference Proceedings (OSTI)

A review of the performance of the Storms Pool Improved Waterflood Project has been completed. This project was designed to evaluate the efficiency of polymer flooding in a reservoir which had been extensively waterflooded. The project was conducted in a 100-acre pattern in the Waltersburg sandstone of the Storms Pool Field, located in White County, Illinois. This field is typical of many old oil fields in the Illinois Basin. A total of 703,000 barrels of biopolymer-thickened water was injected, which represents about 23% of the pore volume. The project was terminated early, as expenses were greatly exceeding revenues. The project resulted in little or no incremental oil production. The lack of response is attributed mainly to the conditions in which the polymer was injected. The project indicates that the injection of a polymer which acts dominantly to increase viscosity has little potential for increasing oil recovery under the conditions where a waterflood has been successful, the mobility ratio is favorable, and when initiated in the latter stages of the flood. The movable oil saturation is thought to have been lower than anticipated by the operators. Biodegradation of the polymer probably occurred, as evidenced by the lack of polymer in offset wells and in back-produced injection water. The lack of data collected and/or reported prevented a thorough analysis of the project. Field equipment and procedures appeared adequate for the mixing, filtration, and injection of polymer made up in river water. Some problems occurred during those periods of the year when the river water contained a large amount of dispersed fines. The use of a river water is questioned due to the problems of removing dispersed fines and to the increased protection required to prevent biodegradation of the biopolymer. 26 refs., 13 figs., 3 tabs.

Norton, D.K.; Dauben, D.L.

1986-03-01T23:59:59.000Z

349

The Phoenix series large scale LNG pool fire experiments.  

SciTech Connect

The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

2010-12-01T23:59:59.000Z

350

Detecting the Nonstationary Response of ENSO to Greenhouse Warming  

Science Conference Proceedings (OSTI)

On the basis of the latest greenhouse warming experiment performed with the Max-Planck Institut coupled atmosphere/isopycnal ocean model (ECHAM4/OPYC) it is shown that not only the climate mean but also the statistics of higher-order statistical ...

A. Timmermann

1999-07-01T23:59:59.000Z

351

Arctic Ocean Warming Contributes to Reduced Polar Ice Cap  

Science Conference Proceedings (OSTI)

Analysis of modern and historical observations demonstrates that the temperature of the intermediate-depth (150ľ900 m) Atlantic water (AW) of the Arctic Ocean has increased in recent decades. The AW warming has been uneven in time; a local 1░C ...

Igor V. Polyakov; Leonid A. Timokhov; Vladimir A. Alexeev; Sheldon Bacon; Igor A. Dmitrenko; Louis Fortier; Ivan E. Frolov; Jean-Claude Gascard; Edmond Hansen; Vladimir V. Ivanov; Seymour Laxon; Cecilie Mauritzen; Don Perovich; Koji Shimada; Harper L. Simmons; Vladimir T. Sokolov; Michael Steele; John Toole

2010-12-01T23:59:59.000Z

352

From the warm magnetized atomic medium to molecular clouds  

E-Print Network (OSTI)

{It has recently been proposed that giant molecular complexes form at the sites where streams of diffuse warm atomic gas collide at transonic velocities.} {We study the global statistics of molecular clouds formed by large scale colliding flows of warm neutral atomic interstellar gas under ideal MHD conditions. The flows deliver material as well as kinetic energy and trigger thermal instability leading eventually to gravitational collapse.} {We perform adaptive mesh refinement MHD simulations which, for the first time in this context, treat self-consistently cooling and self-gravity.} {The clouds formed in the simulations develop a highly inhomogeneous density and temperature structure, with cold dense filaments and clumps condensing from converging flows of warm atomic gas. In the clouds, the column density probability density distribution (PDF) peaks at $\\sim 2 \\times 10^{21} \\psc$ and decays rapidly at higher values; the magnetic intensity correlates weakly with density from $n \\sim 0.1$ to $10^4 \\pcc$, and then varies roughly as $n^{1/2}$ for higher densities.} {The global statistical properties of such molecular clouds are reasonably consistent with observational determinations. Our numerical simulations suggest that molecular clouds formed by the moderately supersonic collision of warm atomic gas streams.}

P. Hennebelle; R. Banerjee; E. Vazquez-Semadeni; R. Klessen; E. Audit

2008-05-09T23:59:59.000Z

353

Effects of a Warm Oceanic Feature on Hurricane Opal  

Science Conference Proceedings (OSTI)

On 4 October 1995, Hurricane Opal deepened from 965 to 916 hPa in the Gulf of Mexico over a 14-h period upon encountering a warm core ring (WCR) in the ocean shed by the Loop Current during an upper-level atmospheric trough interaction. Based on ...

Lynn K. Shay; Gustavo J. Goni; Peter G. Black

2000-05-01T23:59:59.000Z

354

Global Warming Effects on U.S. Hurricane Damage  

Science Conference Proceedings (OSTI)

While many studies of the effects of global warming on hurricanes predict an increase in various metrics of Atlantic basin-wide activity, it is less clear that this signal will emerge from background noise in measures of hurricane damage, which ...

Kerry Emanuel

2011-10-01T23:59:59.000Z

355

Warming Trends in the Arctic from Clear Sky Satellite Observations  

Science Conference Proceedings (OSTI)

Satellite thermal infrared data on surface temperatures provide pan-Arctic coverage from 1981 to 2001 during cloud-free conditions and reveal large warming anomalies in the 1990s compared to the 1980s and regional variability in the trend. The ...

Josefino C. Comiso

2003-11-01T23:59:59.000Z

356

Regional Simulations of Greenhouse Warming Including Natural Variability  

Science Conference Proceedings (OSTI)

The perception of the hypothesized greenhouse effect will differ dramatically depending upon the location on the earth at which the effect is analyzed. This is due mainly to two causes: 1) the warming signal depends upon the position on the earth,...

Kwang-Y. Kim; Gerald R. North

1995-11-01T23:59:59.000Z

357

POLYLACTIDE (PLA) BIOPOLYMER 1. INTRODUCTION TO WARM AND PLA  

E-Print Network (OSTI)

This chapter describes the methodology used in EPAĺs Waste Reduction Model (WARM) to estimate streamlined life-cycle greenhouse gas (GHG) emission factors for Natureworks ĺ Ingeo polylactide (PLA) biopolymer resin, beginning at the waste generation reference point. Due to the large number of end applications for PLA (e.g., food containers, bottles and other consumer products) and the

unknown authors

2012-01-01T23:59:59.000Z

358

Global hydrological cycle response to rapid and slow global warming  

Science Conference Proceedings (OSTI)

We analyze the response of global water vapor to global warming in a series of fully coupled climate model simulations. We find that a roughly 7% per Kelvin rate of increase of water vapor with global surface temperature is robust only for rapid ...

Larissa Back; Karen Russ; Zhengyu Liu; Kuniaki Inoue; Jiaxu Zhang; Bette Otto-Bliesner

359

Myth or reality; Some data dispute global warming theory  

SciTech Connect

Science in March 1990 published a National Aeronautics and Space Administration (NASA) analysis of data collected from 1979 through 1988 by the TIROS-N series of weather satellites. The data include the most precise global temperature measurements ever taken. The study found no evidence of global warming from the greenhouse effect during that period. If anything, the short-term trend was toward cooling, since the average of the first five years, 1979 to 1983, was warmer than the most recent five. The NASA findings can be added to a burgeoning body of scientific data seriously questioning the contention that Earth is threatened by global warming resulting from a greenhouse effect primarily instigated by man. Ironically, James Hansen, director of NASA's Goddard Institute for Space Studies, has been the nation's most outspoken advocate of the thesis that, because concentrations of carbon dioxide (CO{sub 2}) and other greenhouse gases, such as methane, have risen by 30 percent in the last 100 years and are expected to rise another 40 percent by 2050, the planet eventually will warm by about 4 degrees Celsius. According to this hypothesis, the warming will cause major coastal flooding, inland droughts and sundry other catastrophes. But Reid Bryson, founder of the Institute for Environmental Studies at the University of Wisconsin, contends Hansen's thesis cannot be accepted, and Michael Schlesinger, professor of meteorology at the University of Illinois, asserts the chance that global warming has already been detected is pretty close to zero.

Lee, R.W.

1991-04-01T23:59:59.000Z

360

Internal Dosimetry  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21-2008 21-2008 October 2008 DOE STANDARD INTERNAL DOSIMETRY U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1121-2008 iii FOREWORD 1. This Department of Energy (DOE) standard is approved for use by all DOE Components and their contractors. 2. Constructive comments (recommendations, additions, deletions) and any pertinent data that may improve this document should be sent to Office of Worker Safety and Health Policy (HS-11) U.S. Department of Energy Washington, DC 20585

Note: This page contains sample records for the topic "warm pool international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Treasurer's Annual Report, University of California, 2007-2008 Short Term Investment Pool (STIP)  

E-Print Network (OSTI)

Treasurer's Annual Report, University of California, 2007-2008 Short Term Investment Pool (STIP) Treasurer's Annual Report, University of California, 2007-2008 The Short Term Investment Pool (STIP of the University are the major funds invested in STIP until expended. Pension, endowment, and defined contribution

Russell, Lynn

362

Spent Fuel Pool Cooling and Cleanup During Decommissioning: Experience at Trojan Nuclear Power Plant  

Science Conference Proceedings (OSTI)

Operation of original in-plant spent fuel pool facilities at shutdown power plants is expensive compared to available alternatives and can interfere with the decommissioning process. This report describes the approach taken in the Trojan Decommissioning Project to establish independent cooling and cleanup services for the fuel pool until the spent fuel is placed in dry storage.

1999-03-15T23:59:59.000Z

363

Examination of Spent CANDU (TM) Fuel Following 27 Years of Pool Storage  

Science Conference Proceedings (OSTI)

After 27 years in pool storage, the Zircaloy cladding of CANDU fuel showed no deterioration. Further, in deliberately defected fuel elements, uranium oxide surface oxidation appeared to have no impact on fuel-cladding integrity. These results increase utilities' confidence that the fuel can be stored in pools for periods of at least 50 years.

1992-05-01T23:59:59.000Z

364

The impact of Microsoft Windows pool allocation strategies on memory forensics  

Science Conference Proceedings (OSTI)

An image of a computer's physical memory can provide a forensic examiner with a wealth of information. A small area of system memory, the nonpaged pool, contains lots of information about currently and formerly active processes. As this paper shows, ... Keywords: Microsoft Windows, Pool memory, Process Persistence, Volatile data

Andreas Schuster

2008-09-01T23:59:59.000Z

365

The Relationship Between the Metabolic Pools of Photosynthetic andRespiratory Intermediates  

DOE Green Energy (OSTI)

Using radioactive carbon dioxide, an attempt has been made to distinguish the various pools of intermediary metabolism which may be physically or chemically separate within the cell. Some correlation between the structural elements of the cells and these pools appears possible.

Moses, V.; Calvin, M.; Holm-Hansen, O.; Bassham, J.A.

1958-07-01T23:59:59.000Z

366

Dynamical Aspects of Wintertime Cold-Air Pools in an Alpine Valley System  

Science Conference Proceedings (OSTI)

This study presents high-resolution numerical simulations in order to examine the dynamical mechanisms controlling the persistence of wintertime cold-air pools in an Alpine valley system. First, a case study of a cold-pool episode is conducted, ...

GŘnther Zńngl

2005-09-01T23:59:59.000Z

367

Get Ready for Fall: Leaf Peeping, Staying Warm, and Saving Money...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Get Ready for Fall: Leaf Peeping, Staying Warm, and Saving Money Get Ready for Fall: Leaf Peeping, Staying Warm, and Saving Money September 21, 2009 - 3:04pm Addthis Allison Casey...

368

A New Look at Stratospheric Sudden Warmings. Part I: Climatology and Modeling Benchmarks  

Science Conference Proceedings (OSTI)

Stratospheric sudden warmings are the clearest and strongest manifestation of dynamical coupling in the stratosphereľtroposphere system. While many sudden warmings have been individually documented in the literature, this study aims at ...

Andrew J. Charlton; Lorenzo M. Polvani

2007-02-01T23:59:59.000Z

369

Can CGCMs Simulate the Twentieth-Century ôWarming Holeö in the Central United States?  

Science Conference Proceedings (OSTI)

The observed lack of twentieth-century warming in the central United States (CUS), denoted here as the ôwarming hole,ö was examined in 55 simulations driven by external historical forcings and in 19 preindustrial control (unforced) simulations ...

Kenneth E. Kunkel; Xin-Zhong Liang; Jinhong Zhu; Yiruo Lin

2006-09-01T23:59:59.000Z

370

A Simple Dynamical Model of the Warm-Water Branch of the Middepth Meridional Overturning Cell  

Science Conference Proceedings (OSTI)

A reduced-gravity model is presented of the warm-water branch of the middepth meridional overturning circulation in a rectangular basin with a circumpolar connection. The model describes the balance between production of warm water by Ekman ...

R. M. Samelson

2009-05-01T23:59:59.000Z

371

Diagnostic Study of a Wavenumber-2 Stratospheric Sudden Warming in a Transformed Eulerian-Mean Formalism  

Science Conference Proceedings (OSTI)

The intense wavenumber-2 stratospheric warming of February 1979 is analyzed in a transformed Eulerian-mean formalism, and compared with diagnostics generated by the model warming of Dunkerton et al. (1981). Significant differences in the ...

T. N. Palmer

1981-04-01T23:59:59.000Z

372

Sensitivities and Mechanisms of the Zonal Mean Atmospheric Circulation Response to Tropical Warming  

Science Conference Proceedings (OSTI)

Although El Ni˝o and global warming are both characterized by warming in the tropical upper troposphere, the latitudinal changes of the Hadley cell edge and midlatitude eddy-driven jet are opposite in sign. Using an idealized dry atmospheric model,...

Lantao Sun; Gang Chen; Jian Lu

2013-08-01T23:59:59.000Z

373

A Perfect Prognosis Scheme for Forecasting Warm-Season Lightning over Florida  

Science Conference Proceedings (OSTI)

This study develops and evaluates a statistical scheme for forecasting warm-season lightning over Florida. Four warm seasons of analysis data from the Rapid Update Cycle (RUC) and lightning data from the National Lightning Detection Network are ...

Phillip E. Shafer; Henry E. Fuelberg

2008-06-01T23:59:59.000Z

374

How Dry is the Tropical Free Troposphere? Implications for Global Warming Theory  

Science Conference Proceedings (OSTI)

The humidity of the free troposphere is being increasingly scrutinized in climate research due to its central role in global warming theory through positive water vapor feedback. This feedback is the primary source of global warming in general ...

Roy W. Spencer; William D. Braswell

1997-06-01T23:59:59.000Z

375

Tropical Stabilization of the Thermohaline Circulation in a Greenhouse Warming Simulation  

Science Conference Proceedings (OSTI)

Most global climate models simulate a weakening of the North Atlantic thermohaline circulation (THC) in response to enhanced greenhouse warming. Both surface warming and freshening in high latitudes, the so-called sinking region, contribute to ...

M. Latif; E. Roeckner; U. Mikolajewicz; R. Voss

2000-06-01T23:59:59.000Z

376

Are There Any Satisfactory Geologic Analogs for a Future Greenhouse Warming?  

Science Conference Proceedings (OSTI)

There have been numerous attempts to propose past warm time periods as ôanalogsö for a future greenhouse warming. In this paper it is argued that, although paleoclimate studies may provide important insights into process operating in the climate ...

Thomas J. Crowley

1990-11-01T23:59:59.000Z

377

The Supercooled Warm Rain Process and the Specification of Freezing Precipitation  

Science Conference Proceedings (OSTI)

About 30% of freezing precipitation cases are observed to occur in a subfreezing atmosphere (contrary to the classical melting ice model). We explain these cases with the concept of the ôsupercolled warm rain processö (SWRP): the warm rain ...

George J. Huffman; Gene Alfred Norman Jr.

1988-11-01T23:59:59.000Z

378

How Do You Stay Warm While Saving Money and Energy in Extreme...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stay Warm While Saving Money and Energy in Extreme Weather? How Do You Stay Warm While Saving Money and Energy in Extreme Weather? February 3, 2011 - 6:30am Addthis Many states are...

379

The Unusual Midwinter Warming in the Southern Hemisphere Stratosphere 2002: A Comparison to Northern Hemisphere Phenomena  

Science Conference Proceedings (OSTI)

A strong midwinter warming occurred in the Southern Hemisphere (SH) stratosphere in September 2002. Based on experiences from the Northern Hemisphere (NH), this event can be defined as a major warming with a breakdown of the polar vortex in ...

Kirstin KrŘger; Barbara Naujokat; Karin Labitzke

2005-03-01T23:59:59.000Z

380

Reegle mentions OpenEI in video on new Content Pool API | OpenEI Community  

Open Energy Info (EERE)

Reegle mentions OpenEI in video on new Content Pool API Reegle mentions OpenEI in video on new Content Pool API Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(2002) Super contributor 15 February, 2013 - 15:25 data energy OpenEI REEEP REEGLE structured tagging API Reegle and OpenEI share the vision that easy access to energy information will help drive future developments in clean energy development. As part of this path forward, REEEP has developed a 'Content Pool' surrounding their original term extraction API. The idea behind the content pool is that, when contributing agencies submit content to the pool via the API, they'll receive extracted energy keywords, relevant thesaurus definitions, and a link of other content with similar result sets. Florian Bauer, featured in the video, describes how the reegle tagging api

Note: This page contains sample records for the topic "warm pool international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

EA-1050: Test Area North Pool Stabilization Project, Idaho Falls, Idaho |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

50: Test Area North Pool Stabilization Project, Idaho Falls, 50: Test Area North Pool Stabilization Project, Idaho Falls, Idaho EA-1050: Test Area North Pool Stabilization Project, Idaho Falls, Idaho SUMMARY This EA evaluates the environmental impacts of the U.S. Department of Energy's Idaho National Engineering Laboratory's proposal to remove 344 canisters of Three Mile Island core debris and commercial fuels from the Test Area North Pool and transfer them to the Idaho Chemical Processing Plant for interim dry storage until an alternate storage location other than INEL, or a permanent federal spent nuclear fuel repository is available. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 6, 1996 EA-1050: Finding of No Significant Impact Test Area North Pool Stabilization Project

382

Stay Above Water with an Efficient Swimming Pool | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Above Water with an Efficient Swimming Pool Above Water with an Efficient Swimming Pool Stay Above Water with an Efficient Swimming Pool August 10, 2009 - 10:38am Addthis Allison Casey Senior Communicator, NREL All eyes were on the pool recently for swimming's 2009 World Championships in Rome. As a former competitive swimmer (though I was a dog-paddler compared to the likes of Michael Phelps and Ariana Kukors), these events hold a special place in my heart, and I managed to catch a few exciting moments in the competition. I'm no longer involved in the world of swimming, but I can only imagine that interest in the sport has skyrocketed since last year's thrilling Olympics in Beijing. Maybe you or your children were inspired to get serious about swimming; maybe you've even decided to install a pool at your

383

Sodium/water pool-deposit bed model of the CONACS code. [LMFBR  

SciTech Connect

A new Pool-Bed model of the CONACS (Containment Analysis Code System) code represents a major advance over the pool models of other containment analysis code (NABE code of France, CEDAN code of Japan and CACECO and CONTAIN codes of the United States). This new model advances pool-bed modeling because of the number of significant materials and processes which are included with appropriate rigor. This CONACS pool-bed model maintains material balances for eight chemical species (C, H/sub 2/O, Na, NaH, Na/sub 2/O, Na/sub 2/O/sub 2/, Na/sub 2/CO/sub 3/ and NaOH) that collect in the stationary liquid pool on the floor and in the desposit bed on the elevated shelf of the standard CONACS analysis cell.

Peak, R.D.

1983-12-17T23:59:59.000Z

384

IWA (International Workshop Agreement)  

Science Conference Proceedings (OSTI)

IWA content IWA (International Workshop Agreement) iso1rss IWA (International Workshop Agreement) Past Meeting Presentations 2nd Internati

385

International Energy Statistics  

U.S. Energy Information Administration (EIA)

> Countries > International Energy Statistics: International Energy Statistics; Petroleum. Production| ... Jordan 91.087 90.500 85 76.075 ...

386

International Energy Statistics  

U.S. Energy Information Administration (EIA)

> Countries > International Energy Statistics: International Energy Statistics; Petroleum. Production| ... 2013 Africa 117.064 119.114 123.609 ...

387

NCSL International Technical Exchange  

Science Conference Proceedings (OSTI)

NCSL International Technical Exchange. Purpose: The NCSL International ... Charleston, SC 29418. Technical Contact: Val Miller (301) 975-3602.

2013-02-19T23:59:59.000Z

388

The effect of experimental warming and precipitation change on proteolytic enzyme activity: positive feedbacks  

E-Print Network (OSTI)

.8 1.4 739 Harvard Forest-Prospect Hill HF1 Petersham, MA Temperate Forest Warming 42.5 ├?72.2 7.8 1172 Harvard Forest-Barre Woods HF2 Petersham, MA Temperate Forest Warming 42.5 ├?72.2 7.8 1172 Harvard Forest-N 9 Warming HFN Petersham, MA Temperate Forest Warming 42.5 ├?72.2 7.8 1172 Boston Area Climate

Minnesota, University of

389

Bases for extrapolating materials durability in fuel storage pools  

SciTech Connect

A major body of evidence indicates that zirconium alloys have the most consistent and reliable durability in wet storage, justifying projections of safe wet storage greater than 50 y. Aluminum alloys have the widest range of durabilities in wet storage; systematic control and monitoring of water chemistry have resulted in low corrosion rates for more than two decades on some fuels and components. However, cladding failures have occurred in a few months when important parameters were not controlled. Stainless steel is extremely durable when stress, metallurgical and water chemistry factors are controlled. LWR SS cladding has survived for 25 y in wet storage. However, sensitized, stressed SS fuels and components have seriously degraded in fuel storage pools (FSPs) at {approximately} 30 C. Satisfactory durability of fuel assembly and FSP component materials in extended wet storage requires investments in water quality management and surveillance, including chemical and biological factors. The key aspect of the study is to provide storage facility operators and other decision makers a basis to judge the durability of a given fuel type in wet storage as a prelude to basing other fuel management plans (e.g. dry storage) if wet storage will not be satisfactory through the expected period of interim storage.

Johnson, A.B. Jr.

1994-12-01T23:59:59.000Z

390

Post-test examination of a pool boiler receiver  

DOE Green Energy (OSTI)

A subscale pool boiler test apparatus to evaluate boiling stability developed a leak after being operated with boiling NaK for 791.4 hr at temperatures from 700 to 750 {degrees}C. The boiler was constructed using Inconel 625 with a type 304L stainless steel wick for the boiler and type 316 stainless steel for the condenser. The boiler assembly was metallurgically evaluated to determine the cause of the leak and to assess the effects of the NaK on the materials. It was found that the leak was caused by insufficient (about 30 percent) joint penetration in a butt joint. There was no general corrosion of the construction materials, but the room temperature ductility of the Inconel 625 was only about 6.5 percent. A crack in the heat affected zone of the Inconel 625 near the Inconel 625 to type 316 stainless steel butt joint was probably caused by excessive heat input. The crack was observed to have a zone depleted of iron at the crack surface and porosity below that zone. The mechanism of the iron depletion was not conclusively determined. 3 refs.

Dreshfield, R.L.; Moore, T.J.; Bartolotta, P.A.

1992-04-01T23:59:59.000Z

391

Behavior of Spent Nuclear Fuel in Water Pool Storage  

Office of Scientific and Technical Information (OSTI)

Behavior of Spent Nuclear Behavior of Spent Nuclear Fuel in Water Pool Storage A. 0; Johnson, jr. , I ..: . Prepared Cor the Energy Research and Development Administration under Contract EY-76-C-06-1830 ---- Pat t i ~ < N ~ ~ r ~ t b w t ~ - ! I , ~ I ~ ~ ~ I . I I ~ ) ~ I I ~ ~ N O T I C E TÔéČ& - was prepad pnpn4. m w n t of w k spon-d by the Unitd S t . & ) C a u n m ~ (*WU ij*. M t e d $tam w the Wqy R e s e w & a d Ohrsropmcnt ~dmhirmlion, nor m y d thair ewhew,,nq Pny @fw a n t r ~ ~ t 0 ~ 1 , s ~ k m r i t r i l t t q r , ~ , m r tWf ernpfQw, r(tLltm any wartany, s x p r e s or kWld,= w w aAql -9 . o r r w p a m l ~ ~ t y for e~ o r uodruincvr of any infomutim, 9 F p d + d - , or repratants that -would nat 1 d - e privately owned rfghas. ,i PAQFIC NORTHWEST UBORATORY operated b ;"' SArnLLE ' fw the E M R m RESEARCH AND DEVELOPMENT ADMINISTRAT1QN Wk.Cwfraa rv-76c-ts-is38

392

Global Cooling: Policies to Cool the World and Offset Global Warming from CO2 Using Reflective Roofs and Pavements  

Science Conference Proceedings (OSTI)

Increasing the solar reflectance of the urban surface reduce its solar heat gain, lowers its temperatures, and decreases its outflow of thermal infrared radiation into the atmosphere. This process of 'negative radiative forcing' can help counter the effects of global warming. In addition, cool roofs reduce cooling-energy use in air conditioned buildings and increase comfort in unconditioned buildings; and cool roofs and cool pavements mitigate summer urban heat islands, improving outdoor air quality and comfort. Installing cool roofs and cool pavements in cities worldwide is a compelling win-win-win activity that can be undertaken immediately, outside of international negotiations to cap CO{sub 2} emissions. We propose an international campaign to use solar reflective materials when roofs and pavements are built or resurfaced in temperate and tropical regions.

Akbari, Hashem; Levinson, Ronnen; Rosenfeld, Arthur; Elliot, Matthew

2009-08-28T23:59:59.000Z

393

NERSC Calculations Provide Independent Confirmation of Global Land Warming  

NLE Websites -- All DOE Office Websites (Extended Search)

Calculations Calculations Provide Independent Confirmation of Global Land Warming Since 1901 NERSC Calculations Provide Independent Confirmation of Global Land Warming Since 1901 September 9, 2013 | Tags: Climate Research, Hopper Contact: Jon Bashor, jbashor@lbl.gov, 510-486-5849 campo.jpg These maps show the changes in air temperatures over land as measured using thermometers (left side) and as calculated by the 20th Century Reanalysis project (left side). While more than 80 percent of the observed variation is captured by the computer model, the results show interesting differences in some regions such as the midwestern United States, Argentina and eastern Brazil. The differences may be due previously unrecognized issues with the pressure observations, variations in land use and land cover over time,

394

Warm Springs Greenhouses Greenhouse Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Greenhouses Greenhouse Low Temperature Geothermal Facility Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Warm Springs Greenhouses Sector Geothermal energy Type Greenhouse Location Banks, Idaho Coordinates 44.0804473┬░, -116.1240151┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

395

Warm Springs Water District District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Water District District Heating Low Temperature Geothermal Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal Facility Facility Warm Springs Water District Sector Geothermal energy Type District Heating Location Boise, Idaho Coordinates 43.6135002┬░, -116.2034505┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

396

The Influence of Topography and Ambient Stability on the Characteristics of Cold-Air Pools: A Numerical Investigation  

Science Conference Proceedings (OSTI)

A high-resolution numerical investigation of a cold-air pooling process (under quiescent conditions) is carried out that systematically highlights the relations between the characteristics of the cold-air pools (e.g., slope winds, vertical ...

Marwan Katurji; Shiyuan Zhong

2012-10-01T23:59:59.000Z

397

Estimating impacts of warming temperatures on California's electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

impacts of warming temperatures on California's electricity impacts of warming temperatures on California's electricity system Title Estimating impacts of warming temperatures on California's electricity system Publication Type Journal Article Year of Publication 2013 Authors Sathaye, Jayant A., Larry L. Dale, Peter H. Larsen, Gary A. Fitts, Kevin Koy, Sarah M. Lewis, and Andr├ę Frossard Pereira de Lucena Journal Global Environmental Change Volume 23 Start Page 499 Issue 2 Pagination 499-511 Date Published 04/2013 Keywords EES-EG, electricity markets and policy group Abstract Despite a clear need, little research has been carried out at the regional-level to quantify potential climate-related impacts to electricity production and delivery systems. This paper introduces a bottom-up study of climate change impacts on California's energy infrastructure, including high temperature effects on power plant capacity, transmission lines, substation capacity, and peak electricity demand. End-of-century impacts were projected using the A2 and B1 Intergovernmental Panel on Climate Change emission scenarios. The study quantifies the effect of high ambient temperatures on electricity generation, the capacity of substations and transmission lines, and the demand for peak power for a set of climate scenarios. Based on these scenarios, atmospheric warming and associated peak demand increases would necessitate up to 38% of additional peak generation capacity and up to 31% additional transmission capacity, assuming current infrastructure. These findings, although based on a limited number of scenarios, suggest that additional funding could be put to good use by supporting R&D into next generation cooling equipment technologies, diversifying the power generation mix without compromising the system's operational flexibility, and designing effective demand side management programs.

398

Global Warming Solutions Inc previously Southern Investments Inc | Open  

Open Energy Info (EERE)

Warming Solutions Inc previously Southern Investments Inc Warming Solutions Inc previously Southern Investments Inc Jump to: navigation, search Name Global Warming Solutions Inc (previously Southern Investments Inc) Place Houston, Texas Zip 77002 Sector Solar Product Developer of a combined PV and thermal energy solar system called light electric and thermal generator (LETG). Coordinates 29.76045┬░, -95.369784┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

399

North Florida Global Warming Study Group | Open Energy Information  

Open Energy Info (EERE)

Florida Global Warming Study Group Florida Global Warming Study Group Jump to: navigation, search Name North Florida Global Warming Study Group Address 8342 Compass Rose Dr S Place Jacksonville, Florida Zip 32216 Year founded 2003 Phone number 9047379211 Website [atilley@unf.edu atilley@unf.edu ] Notes This is an email newslist. Coordinates 30.259044┬░, -81.571333┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.259044,"lon":-81.571333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

400

Potential bias of model projected greenhouse warming in irrigated regions  

SciTech Connect

Atmospheric general circulation models (GCMs) used to project climate responses to increased CO{sub 2} generally omit irrigation of agricultural land. Using the NCAR CAM3 GCM coupled to a slab-ocean model, we find that inclusion of an extreme irrigation scenario has a small effect on the simulated temperature and precipitation response to doubled CO{sub 2} in most regions, but reduced warming by as much as 1 C in some agricultural regions, such as Europe and India. This interaction between CO{sub 2} and irrigation occurs in cases where agriculture is a major fraction of the land surface and where, in the absence of irrigation, soil moisture declines are projected to provide a positive feedback to temperature change. The reduction of warming is less than 25% of the temperature increase modeled for doubled CO{sub 2} in most regions; thus greenhouse warming will still be dominant. However, the results indicate that land use interactions may be an important component of climate change uncertainty in some agricultural regions. While irrigated lands comprise only {approx}2% of the land surface, they contribute over 40% of global food production. Climate changes in these regions are therefore particularly important to society despite their relatively small contribution to average global climate.

Lobell, D; Bala, G; Bonfils, C; Duffy, P

2006-04-27T23:59:59.000Z

Note: This page contains sample records for the topic "warm pool international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

[Global warming and the running average sunspot number  

SciTech Connect

It has been reported in your pages that the Bush administration`s views and actions regarding how or whether to react to possible global warming due to greenhouse gases have been influenced by the so-called Marshall report. This unrefereed report, released by the George C. Marshall Institute, had as its principal conclusion the finding that the 0.5{degree} C global warming of the last century was mostly due to solar variability and, thus, the greenhouse warming of the 21st century can be expected to be a relatively small l{degree} C or so. The authors support this finding by comparing the 33-year running average sunspot number with the trend in annual average global temperature and noting the parallel between the two, especially during the 1940s--1960s when the temperature trend was downward. Subsequent letters to Science debated the merits of this and other conclusions contained in the report. I now present additional technical evidence which shows that, quite aside from the question of whether the data presented in the report support its conclusions, the actual figure on which the above conclusion is based is in error.

Fernau, M.E.

1994-05-01T23:59:59.000Z

402

Global warming and global dioxide emission: An empirical study  

Science Conference Proceedings (OSTI)

In this paper, the dynamic relationship between global surface temperature (global warming) and global carbon dioxide emission (CO{sub 2}) is modelled and analyzed by causality and spectral analysis in the time domain and frequency domain, respectively. Historical data of global CO{sub 2} emission and global surface temperature anomalies over 129 years from 1860-1988 are used in this study. The causal relationship between the two phenomena is first examined using the Sim and Granger causality test in the time domain after the data series are filtered by ARIMA models. The Granger causal relationship is further scrutinized and confirmed by cross-spectral and multichannel spectral analysis in the frequency domain. The evidence found from both analyses proves that there is a positive causal relationship between the two variables. The time domain analysis suggests that Granger causality exists between global surface temperature and global CO{sub 2} emission. Further, CO{sub 2} emission causes the change in temperature. The conclusions are further confirmed by the frequency domain analysis, which indicates that the increase in CO{sub 2} emission causes climate warming because a high coherence exists between the two variables. Furthermore, it is proved that climate changes happen after an increase in CO{sub 2} emission, which confirms that the increase in CO{sub 2} emission does cause global warming. 27 refs., 10 figs., 5 tabs.

Linyan Sun [Xian Jiaotong Univ., Shaanxi (China); Wang, M. [Saint Mary`s Univ., Halifax, Nova Scotia (Canada)

1996-04-01T23:59:59.000Z

403

Global Warming: some back-of-the-envelope calculations  

E-Print Network (OSTI)

We do several simple calculations and measurements in an effort to gain understanding of global warming and the carbon cycle. Some conclusions are interesting: (i) There has been global warming since the end of the "little ice age" around 1700. There is no statistically significant evidence of acceleration of global warming since 1940. (ii) The increase of CO_2 in the atmosphere, beginning around 1940, accurately tracks the burning of fossil fuels. Burning all of the remaining economically viable reserves of oil, gas and coal over the next 150 years or so will approximately double the pre-industrial atmospheric concentration of CO_2. The corresponding increase in the average temperature, due to the greenhouse effect, is quite uncertain: between 1.3 and 4.8K. This increase of temperature is (partially?) offset by the increase of aerosols and deforestation. (iii) Ice core samples indicate that the pre-historic CO_2 concentration and temperature are well correlated. We conclude that changes in the temperatures o...

Fabara, C

2005-01-01T23:59:59.000Z

404

Availability of 3-out-of Warm Standby System  

E-Print Network (OSTI)

Introduction Standby techC6A4P are used to improve system availability. Usually, a k-out-of-n:G standby system is assumedthu whm an operating component fails, a standby component becomes active and th system is working if at least k components are fault-free. In general,ther arethC6 types in component standby, i.e., cold,hd and warm standby. Cold standby impliesthe inactive components h ve a zero failure rate. Hot standby impliesthl an inactive componenthx th same failure rate aswh6 it is in operation. Warm standby impliesthi an inactive componenthx a failure rate between cold and hdC it is also called dormant failure in some papers. k-out-of-n:G warm standby systemsh ve been used in several research fields including medical diagnosis, redundant-system testing, power plant system and so on. Th.C h ve been many articles concerning study on availability of k-out-of-n:G syst

Tielingzhan Nonmember And; Specialsection On; Michio Horigome; M Er

2000-01-01T23:59:59.000Z

405

Winners and losers in a world with global warming: Noncooperation, altruism, and social welfare  

SciTech Connect

In this paper, global warming is an asymmetric transboundary externality which benefits some countries or regions and harms others. Few environmental problems have captured the public`s imagination as much and attracted as much scrutiny as global warming. The general perception is that global warming is a net social bad, and that across-the-board abatement of greenhouse gas emissions is therefore desirable. Despite many interesting academic contributions, not all of the basic economics of this phenomenon have been fully worked out. The authors use a simple two-country model to analyze the effects of global warming on resource allocations, the global-warming stock, and national and global welfare.

Caplan, A.J. [Weber State Univ., Ogden, UT (United States). Dept. of Economics; Ellis, C.J.; Silva, E.C.D. [Univ. of Oregon, Eugene, OR (United States). Dept. of Economics

1999-05-01T23:59:59.000Z

406

Global warming and the future of coal carbon capture and storage  

SciTech Connect

The paper considers how best to change the economic calculus of power plant developers so they internalize CCS costs when selecting new generation technologies. Five policy tools are analyzed: establishing a greenhouse gas cap-and-trade program; imposing carbon taxes; defining CCS systems as a so-called Best Available Control Technology for new power plants under the USA Clean Air Act's New Source Review program; developing a 'low carbon portfolio' standard that requires utilities to provide an increasing proportion of power from low-carbon generation sources over time; and requiring all new coal power plants to meet an 'emission performance' standard that limits CO{sub 2} emissions to levels achievable with CCS systems. Each of these tools has advantages and drawbacks but an emission performance standard for new power plants is likely to be most effective in spurring broad-scale adoption of CCS systems. Chapter headings are: global warming and the future of coal; new coal-fired power plants threaten all other efforts to combat global warming; a potential path to zero emissions through carbon capture and storage; CO{sub 2} capture at coal plants: the promise of IGCC and other technologies; barriers to commercialization of IGCC technology; crossing the chasm: a new policy framework to push ccs implementation forward; encouraging CCS systems with carbon caps and trading programs; using the existing Clean Air Act to require CCS systems for new coal plants; retail low carbon portfolio standard; carbon tax; emission performance standards for new coal power plants; and conclusions. 16 figs.

Ken Berlin; Robert M. Sussman [Skadden Arps, Slate, Meagher and Flom (United States)

2007-05-15T23:59:59.000Z

407

Burgdorf Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Facility Burgdorf Hot Springs Sector Geothermal energy Type Pool and Spa Location Burgdorf, Idaho Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

408

Design report on SCDAP/RELAP5 model improvements - debris bed and molten pool behavior  

SciTech Connect

the SCDAP/RELAP5/MOD3 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and in combination with VICTORIA, fission product release and transport during severe accidents. Improvements for existing debris bed and molten pool models in the SCDAP/RELAP5/MOD3.1 code are described in this report. Model improvements to address (a) debris bed formation, heating, and melting; (b) molten pool formation and growth; and (c) molten pool crust failure are discussed. Relevant data, existing models, proposed modeling changes, and the anticipated impact of the changes are discussed. Recommendations for the assessment of improved models are provided.

Allison, C.M.; Rempe, J.L.; Chavez, S.A.

1994-11-01T23:59:59.000Z

409

Accounting for forest carbon pool dynamics in product carbon footprints: Challenges and opportunities  

SciTech Connect

Modification and loss of forests due to natural and anthropogenic disturbance contribute an estimated 20% of annual greenhouse gas (GHG) emissions worldwide. Although forest carbon pool modeling rarely suggests a 'carbon neutral' flux profile, the life cycle assessment community and associated product carbon footprint protocols have struggled to account for the GHG emissions associated with forestry, specifically, and land use generally. Principally, this is due to underdeveloped linkages between life cycle inventory (LCI) modeling for wood and forest carbon modeling for a full range of forest types and harvest practices, as well as a lack of transparency in globalized forest supply chains. In this paper, through a comparative study of U.S. and Chinese coated freesheet paper, we develop the initial foundations for a methodology that rescales IPCC methods from the national to the product level, with reference to the approaches in three international product carbon footprint protocols. Due to differences in geographic origin of the wood fiber, the results for two scenarios are highly divergent. This suggests that both wood LCI models and the protocols need further development to capture the range of spatial and temporal dimensions for supply chains (and the associated land use change and modification) for specific product systems. The paper concludes by outlining opportunities to measure and reduce uncertainty in accounting for net emissions of biogenic carbon from forestland, where timber is harvested for consumer products. - Highlights: Black-Right-Pointing-Pointer Typical life cycle assessment practice for consumer products often excludes significant land use change emissions when estimating carbon footprints. Black-Right-Pointing-Pointer The article provides a methodology to rescale IPCC guidelines for product-level carbon footprints. Black-Right-Pointing-Pointer Life cycle inventories and product carbon footprint protocols need more comprehensive land use-related accounting. Black-Right-Pointing-Pointer Interdisciplinary collaboration linking the LCA and forest carbon modeling communities is necessary.

Newell, Joshua P., E-mail: jpnewell@umich.edu [School of Natural Resources and Environment, University of Michigan, Ann Arbor (United States); Vos, Robert O., E-mail: vos@usc.edu [Spatial Sciences Institute, University of Southern California (United States)

2012-11-15T23:59:59.000Z

410

Prandtl Number Dependent Natural Convection with Internal Heat Sources  

SciTech Connect

Natural convection plays an important role in determining the thermal load from debris accumulated in the reactor vessel lower head during a severe accident. Recently, attention is being paid to the feasibility of external vessel flooding as a severe accident management strategy and to the phenomena affecting the success path for retaining the molten core material inside the vessel. The heat transfer inside the molten core material can be characterized by the strong buoyancy-induced flows resulting from internal heating due to decay of fission products. The thermo-fluid dynamic characteristics of such flow depend strongly on the thermal boundary conditions. The spatial and temporal variation of heat flux on the pool wall boundaries and the pool superheat are mainly characterized by the natural convection flow inside the molten pool. In general, the natural convection heat transfer phenomena involving the internal heat generation are represented by the modified Rayleigh number (Raĺ), which quantifies the internal heat source and hence the strength of the buoyancy force. In this study, tests were conducted in a rectangular section 250 mm high, 500 mm long and 160 mm wide. Twenty-four T-type thermocouples were installed in the test section to measure temperatures. Four T-type thermocouples were used to measure the boundary temperatures. The thermocouples were placed in designated locations after calibration. A direct heating method was adopted in this test to simulate the uniform heat generation. The experiments covered a range of Ra' between 1.5x106 and 7.42x1015 and the Prandtl number (Pr) between 0.7 and 6.5. Tests were conducted with water and air as simulant. The upper and lower boundary conditions were maintained uniform. The results demonstrated feasibility of the direct heating method to simulate uniform volumetric heat generation. Particular attentions were paid to the effect of Pr on natural convection heat transfer within the rectangular pool.

Kang Hee Lee; Seung Dong Lee; Kune Y. Suh; Joy L. Rempe; Fan-Bill Cheung; Sang B. Kim

2004-06-01T23:59:59.000Z

411

Lolo Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Lolo Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Lolo Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Lolo Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Lolo Hot Springs Resort Sector Geothermal energy Type Pool and Spa Location Lolo, Montana Coordinates 46.75898┬░, -114.091003┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

412

Matilija Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Matilija Hot Springs Pool & Spa Low Temperature Geothermal Facility Matilija Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Matilija Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Matilija Hot Springs Sector Geothermal energy Type Pool and Spa Location Ventura County, California Coordinates 34.3704884┬░, -119.1390642┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

413

Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Alive Polarity's Murrietta Hot Spring Sector Geothermal energy Type Pool and Spa Location Murrieta, California Coordinates 33.5539143┬░, -117.2139232┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

414

Salmon Hot Spring Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Spring Pool & Spa Low Temperature Geothermal Facility Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Salmon Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Salmon Hot Spring Sector Geothermal energy Type Pool and Spa Location Salmon, Idaho Coordinates 45.1757547┬░, -113.8959008┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

415

Glen Ivy Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Ivy Hot Springs Pool & Spa Low Temperature Geothermal Facility Ivy Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Glen Ivy Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Glen Ivy Hot Springs Sector Geothermal energy Type Pool and Spa Location Riverside County, California Coordinates 33.6825587┬░, -115.4733554┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

416

Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

State Park Pool & Spa Low Temperature Geothermal Facility State Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility Facility Hot Springs State Park Sector Geothermal energy Type Pool and Spa Location Thermopolis, Wyoming Coordinates 43.6460672┬░, -108.2120432┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

417

Lost Trail Hot Springs Resort Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Hot Springs Resort Pool & Spa Low Temperature Geothermal Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Lost Trail Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Lost Trail Hot Springs Resort Sector Geothermal energy Type Pool and Spa Location Sula, Montana Coordinates 45.8365869┬░, -113.9817463┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

418

Campbells Gila Hot Springs Rv Park Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Campbells Gila Hot Springs Rv Park Pool & Spa Low Temperature Geothermal Campbells Gila Hot Springs Rv Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Campbells Gila Hot Springs Rv Park Pool & Spa Low Temperature Geothermal Facility Facility Campbells Gila Hot Springs Rv Park Sector Geothermal energy Type Pool and Spa Location Gila Hot Springs, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

419

Quinn's Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Quinn's Hot Springs Pool & Spa Low Temperature Geothermal Facility Quinn's Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Quinn's Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Quinn's Hot Springs Sector Geothermal energy Type Pool and Spa Location Paradise, Montana Coordinates 47.3893776┬░, -114.8020757┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

420

Salida Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Salida Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Salida Hot Springs Sector Geothermal energy Type Pool and Spa Location Salida, Colorado Coordinates 38.5347193┬░, -105.9989022┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "warm pool international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Lope Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Lope Hot Springs Pool & Spa Low Temperature Geothermal Facility Lope Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Lope Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Lope Hot Springs Sector Geothermal energy Type Pool and Spa Location Ridgway, Colorado Coordinates 38.1527685┬░, -107.7617263┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

422

Sierra Grande Lodge Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Grande Lodge Pool & Spa Low Temperature Geothermal Facility Grande Lodge Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Sierra Grande Lodge Pool & Spa Low Temperature Geothermal Facility Facility Sierra Grande Lodge Sector Geothermal energy Type Pool and Spa Location Truth or Consequences, New Mexico Coordinates 33.1284047┬░, -107.2528069┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

423

Hunt's Ash Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hunt's Ash Springs Pool & Spa Low Temperature Geothermal Facility Hunt's Ash Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hunt's Ash Springs Pool & Spa Low Temperature Geothermal Facility Facility Hunt's Ash Springs Sector Geothermal energy Type Pool and Spa Location Hiko, Nevada Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

424

Banbury Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Banbury Hot Springs Pool & Spa Low Temperature Geothermal Facility Banbury Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Banbury Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Banbury Hot Springs Sector Geothermal energy Type Pool and Spa Location Buhl, Idaho Coordinates 42.5990714┬░, -114.7594946┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

425

Broadwater Hot Spring Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Broadwater Hot Spring Pool & Spa Low Temperature Geothermal Facility Broadwater Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Broadwater Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Broadwater Hot Spring Sector Geothermal energy Type Pool and Spa Location Helena, Montana Coordinates 46.6002123┬░, -112.0147188┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

426

Whitmore Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Springs Pool & Spa Low Temperature Geothermal Facility Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Whitmore Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Whitmore Hot Springs Sector Geothermal energy Type Pool and Spa Location Bishop, California Coordinates 37.3635404┬░, -118.3951101┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

427

Spa Motel Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Spa Motel Pool & Spa Low Temperature Geothermal Facility Spa Motel Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Spa Motel Pool & Spa Low Temperature Geothermal Facility Facility Spa Motel Sector Geothermal energy Type Pool and Spa Location White Sulphur Springs, Montana Coordinates 46.548277┬░, -110.9021561┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

428

Steele Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Steele Hot Springs Pool & Spa Low Temperature Geothermal Facility Steele Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Steele Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Steele Hot Springs Sector Geothermal energy Type Pool and Spa Location Sublette County, Wyoming Coordinates 42.8138723┬░, -109.7591675┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

429

Hunter's Lodge Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Hunter's Lodge Pool & Spa Low Temperature Geothermal Facility Hunter's Lodge Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hunter's Lodge Pool & Spa Low Temperature Geothermal Facility Facility Hunter's Lodge Sector Geothermal energy Type Pool and Spa Location Lakeview, Oregon Coordinates 42.1887721┬░, -120.345792┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

430

Bagby Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Bagby Hot Springs Pool & Spa Low Temperature Geothermal Facility Bagby Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bagby Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Bagby Hot Springs Sector Geothermal energy Type Pool and Spa Location Clackamas County, Oregon Coordinates 45.2023855┬░, -122.1188945┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

431

Bear Trap Hot Spring Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Trap Hot Spring Pool & Spa Low Temperature Geothermal Facility Trap Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bear Trap Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Bear Trap Hot Spring Sector Geothermal energy Type Pool and Spa Location Norris, Montana Coordinates 45.5679836┬░, -111.690808┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

432

Baileys Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Baileys Hot Springs Pool & Spa Low Temperature Geothermal Facility Baileys Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Baileys Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Baileys Hot Springs Sector Geothermal energy Type Pool and Spa Location Death Valley Nat'l Monument, Nevada Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

433

Givens Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Givens Hot Springs Pool & Spa Low Temperature Geothermal Facility Givens Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Givens Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Givens Hot Springs Sector Geothermal energy Type Pool and Spa Location Owyhee County, Idaho Coordinates 42.6827359┬░, -116.0622892┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

434

Waunita Hot Springs Ranch Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Waunita Hot Springs Ranch Pool & Spa Low Temperature Geothermal Facility Waunita Hot Springs Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Waunita Hot Springs Ranch Pool & Spa Low Temperature Geothermal Facility Facility Waunita Hot Springs Ranch Sector Geothermal energy Type Pool and Spa Location Gunnison, Colorado Coordinates 38.5458246┬░, -106.9253207┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

435

Paynes Fountain of Youth RV Park Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Fountain of Youth RV Park Pool & Spa Low Temperature Geothermal Fountain of Youth RV Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Paynes Fountain of Youth RV Park Pool & Spa Low Temperature Geothermal Facility Facility Paynes Fountain of Youth RV Park Sector Geothermal energy Type Pool and Spa Location Thermopolis, Wyoming Coordinates 43.6460672┬░, -108.2120432┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

436

Cody Athletic Club Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Cody Athletic Club Pool & Spa Low Temperature Geothermal Facility Cody Athletic Club Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Cody Athletic Club Pool & Spa Low Temperature Geothermal Facility Facility Cody Athletic Club Sector Geothermal energy Type Pool and Spa Location Cody, Wyoming Coordinates 44.5263422┬░, -109.0565308┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

437

Tolovana Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Tolovana Hot Springs Pool & Spa Low Temperature Geothermal Facility Tolovana Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Tolovana Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Tolovana Hot Springs Sector Geothermal energy Type Pool and Spa Location Fairbanks, Alaska Coordinates 64.8377778┬░, -147.7163889┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

438

Barkell's Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Barkell's Hot Springs Pool & Spa Low Temperature Geothermal Facility Barkell's Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Barkell's Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Barkell's Hot Springs Sector Geothermal energy Type Pool and Spa Location Silver Star, Montana Coordinates 45.690204┬░, -112.2830556┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

439

Murphy Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Murphy Hot Springs Pool & Spa Low Temperature Geothermal Facility Murphy Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Murphy Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Murphy Hot Springs Sector Geothermal energy Type Pool and Spa Location Rogerson, Idaho Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

440

Dr. Wilkinson's Hot Springs Pool & Spa Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Dr. Wilkinson's Hot Springs Pool & Spa Low Temperature Geothermal Facility Dr. Wilkinson's Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Dr. Wilkinson's Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Dr. Wilkinson's Hot Springs Sector Geothermal energy Type Pool and Spa Location Calistoga, California Coordinates 38.5787965┬░, -122.5797054┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "warm pool international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Belknap Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Belknap Hot Springs Pool & Spa Low Temperature Geothermal Facility Belknap Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Belknap Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Belknap Hot Springs Sector Geothermal energy Type Pool and Spa Location Lane County, Oregon Coordinates 43.9610092┬░, -122.6618227┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

442

Symes Hotel and Medicinal Springs Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Symes Hotel and Medicinal Springs Pool & Spa Low Temperature Geothermal Symes Hotel and Medicinal Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Symes Hotel and Medicinal Springs Pool & Spa Low Temperature Geothermal Facility Facility Symes Hotel and Medicinal Springs Sector Geothermal energy Type Pool and Spa Location Hot Springs, Montana Coordinates 47.6091041┬░, -114.6687414┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

443

Fire Water Lodge Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Fire Water Lodge Pool & Spa Low Temperature Geothermal Facility Facility Fire Water Lodge Sector Geothermal energy Type Pool and Spa Location Truth or Consequences, New Mexico Coordinates 33.1284047┬░, -107.2528069┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

444

Democrat Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Democrat Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Democrat Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Democrat Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Democrat Hot Springs Resort Sector Geothermal energy Type Pool and Spa Location Kern County, California Coordinates 35.4937274┬░, -118.8596804┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

445

Frank Nixon Residence Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Frank Nixon Residence Pool & Spa Low Temperature Geothermal Facility Frank Nixon Residence Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Frank Nixon Residence Pool & Spa Low Temperature Geothermal Facility Facility Frank Nixon Residence Sector Geothermal energy Type Pool and Spa Location Saratoga, Wyoming Coordinates 41.4549621┬░, -106.8064263┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

446

Lake Elsinore Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Elsinore Pool & Spa Low Temperature Geothermal Facility Elsinore Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Lake Elsinore Pool & Spa Low Temperature Geothermal Facility Facility Lake Elsinore Sector Geothermal energy Type Pool and Spa Location Lake Elsinore, California Coordinates 33.6680772┬░, -117.3272615┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

447

Harbin Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Springs Pool & Spa Low Temperature Geothermal Facility Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Harbin Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Harbin Hot Springs Sector Geothermal energy Type Pool and Spa Location Middletown, California Coordinates 38.7524045┬░, -122.6149853┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

448

Warner Springs Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Warner Springs Pool & Spa Low Temperature Geothermal Facility Warner Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Warner Springs Pool & Spa Low Temperature Geothermal Facility Facility Warner Springs Sector Geothermal energy Type Pool and Spa Location Warner Springs, California Coordinates 33.2822596┬░, -116.6336303┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

449

Goldmeyer Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Goldmeyer Hot Springs Pool & Spa Low Temperature Geothermal Facility Goldmeyer Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Goldmeyer Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Goldmeyer Hot Springs Sector Geothermal energy Type Pool and Spa Location North Bend, Washington Coordinates 47.4956579┬░, -121.7867775┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

450

Bronze Boot Spa Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Bronze Boot Spa Pool & Spa Low Temperature Geothermal Facility Bronze Boot Spa Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bronze Boot Spa Pool & Spa Low Temperature Geothermal Facility Facility Bronze Boot Spa Sector Geothermal energy Type Pool and Spa Location Cody, Wyoming Coordinates 44.5263422┬░, -109.0565308┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

451

Caliente Hot Springs Motel Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Motel Pool & Spa Low Temperature Geothermal Facility Motel Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Caliente Hot Springs Motel Pool & Spa Low Temperature Geothermal Facility Facility Caliente Hot Springs Motel Sector Geothermal energy Type Pool and Spa Location Caliente, Nevada Coordinates 37.6149648┬░, -114.5119378┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

452

Ritter Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Ritter Hot Springs Pool & Spa Low Temperature Geothermal Facility Ritter Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Ritter Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Ritter Hot Springs Sector Geothermal energy Type Pool and Spa Location Ritter, Oregon Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

453

Manley Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Manley Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Manley Hot Springs Sector Geothermal energy Type Pool and Spa Location Manley Hot Springs, Alaska Coordinates 65.0011111┬░, -150.6338889┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

454

Ringboldt Rapids Hot Springs Pool & Spa Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Ringboldt Rapids Hot Springs Pool & Spa Low Temperature Geothermal Facility Ringboldt Rapids Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Ringboldt Rapids Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Ringboldt Rapids Hot Springs Sector Geothermal energy Type Pool and Spa Location Mojave County, Arizona Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

455

Sycamore Hot Spring Resort Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Sycamore Hot Spring Resort Pool & Spa Low Temperature Geothermal Facility Sycamore Hot Spring Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Sycamore Hot Spring Resort Pool & Spa Low Temperature Geothermal Facility Facility Sycamore Hot Spring Resort Sector Geothermal energy Type Pool and Spa Location San Luis Obispo County, California Coordinates 35.3102296┬░, -120.4357631┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

456

Roman Spa Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Spa Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Spa Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Roman Spa Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Roman Spa Hot Springs Resort Sector Geothermal energy Type Pool and Spa Location Calistoga, California Coordinates 38.5787965┬░, -122.5797054┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

457

Lava Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Lava Hot Springs Pool & Spa Low Temperature Geothermal Facility Lava Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Lava Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Lava Hot Springs Sector Geothermal energy Type Pool and Spa Location Lava Hot Springs, Idaho Coordinates 42.6193625┬░, -112.0110712┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

458

Lehman Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Lehman Hot Springs Pool & Spa Low Temperature Geothermal Facility Lehman Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Lehman Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Lehman Hot Springs Sector Geothermal energy Type Pool and Spa Location Ukiah, Oregon Coordinates 45.13403┬░, -118.9324815┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

459

Bubbles Hot Spring Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Bubbles Hot Spring Pool & Spa Low Temperature Geothermal Facility Bubbles Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bubbles Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Bubbles Hot Spring Sector Geothermal energy Type Pool and Spa Location Catron County, New Mexico Coordinates 34.1515173┬░, -108.4276047┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

460

Nance's Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Nance's Hot Springs Pool & Spa Low Temperature Geothermal Facility Nance's Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Nance's Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Nance's Hot Springs Sector Geothermal energy Type Pool and Spa Location Calistoga, California Coordinates 38.5787965┬░, -122.5797054┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "warm pool international" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Evan's Plunge Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Evan's Plunge Pool & Spa Low Temperature Geothermal Facility Evan's Plunge Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Evan's Plunge Pool & Spa Low Temperature Geothermal Facility Facility Evan's Plunge Sector Geothermal energy Type Pool and Spa Location Hot Springs, South Dakota Coordinates 43.431646┬░, -103.4743625┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

462

Baker's Bar M Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Baker's Bar M Pool & Spa Low Temperature Geothermal Facility Baker's Bar M Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Baker's Bar M Pool & Spa Low Temperature Geothermal Facility Facility Baker's Bar M Sector Geothermal energy Type Pool and Spa Location Adams, Oregon Coordinates 45.767354┬░, -118.5624734┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

463

Pan Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Springs Pool & Spa Low Temperature Geothermal Facility Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Pan Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Pan Hot Springs Sector Geothermal energy Type Pool and Spa Location Big Bear City, California Coordinates 34.2611183┬░, -116.84503┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

464

Paraiso Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Paraiso Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Paraiso Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Paraiso Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Paraiso Hot Springs Resort Sector Geothermal energy Type Pool and Spa Location Monterey County, California Coordinates 36.3136201┬░, -121.3541631┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

465

Faywood Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Faywood Hot Springs Pool & Spa Low Temperature Geothermal Facility Faywood Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Faywood Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Faywood Hot Springs Sector Geothermal energy Type Pool and Spa Location Faywood, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

466

Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal Facility Facility Jacumba Hot Springs Health Spa Sector Geothermal energy Type Pool and Spa Location San Diego, California Coordinates 32.7153292┬░, -117.1572551┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

467

Jim's Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Jim's Hot Springs Pool & Spa Low Temperature Geothermal Facility Jim's Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jim's Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Jim's Hot Springs Sector Geothermal energy Type Pool and Spa Location New Meadows, Idaho Coordinates 44.9712808┬░, -116.2840176┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

468

Home Hotel and Motel Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Home Hotel and Motel Pool & Spa Low Temperature Geothermal Facility Home Hotel and Motel Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Home Hotel and Motel Pool & Spa Low Temperature Geothermal Facility Facility Home Hotel and Motel Sector Geothermal energy Type Pool and Spa Location Lava Hot Springs, Idaho Coordinates 42.6193625┬░, -112.0110712┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

469

Carson Hot Mineral Springs Resort Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Resort Pool & Spa Low Temperature Geothermal Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Carson Hot Mineral Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Carson Hot Mineral Springs Resort Sector Geothermal energy Type Pool and Spa Location Carson, Washington Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}