Powered by Deep Web Technologies
Note: This page contains sample records for the topic "warm dense matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Ultrafast Spectroscopy of Warm Dense Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

of planet formation and structures as well as the evolution of an imploding inertial fusion capsule depends on our understanding of matter in the complex warm dense matter...

2

Ultrafast Spectroscopy of Warm Dense Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast Spectroscopy of Warm Dense Matter Print Ultrafast Spectroscopy of Warm Dense Matter Print Being neither solid, liquid, gas, nor plasma, warm dense matter (WDM) occupies a no man's land in the map of material phases. Its temperature can range between that of planetary cores (tens of thousands K) to that of stellar cores (hundreds of thousands K). Not only is it prevalent throughout the universe, it is relevant to inertial confinement fusion (ICF) and material performance under extreme conditions. However, because of its extreme temperatures and pressures, WDM tends to be drastically transient and thus difficult to study in the laboratory. Now, researchers have set up ultrafast x-ray absorption spectroscopy at the ALS to measure the electronic structure of WDMs, demonstrating that fast-changing electron temperatures of matter under extreme conditions can be determined with picosecond resolution.

3

Sonoluminescence test for equation of state in warm dense matter  

E-Print Network (OSTI)

IN WARM DENSE MATTER Siu-Fai Ng 1, 2 , J. J. Barnard 3 , P.IN WARM DENSE MATTER Siu-Fai Ng 1, 2 , J. J. Barnard 3 , P.

Ng, Siu-Fai

2008-01-01T23:59:59.000Z

4

Intense Ion Beam for Warm Dense Matter Physics  

E-Print Network (OSTI)

charged particle physics Introduction . . . . . . . . .Driven Warm Dense Matter Physics, Four Point Sher- atonIntroduction to Plasma Physics, Plenum Press, New York [18

Heimbucher, Lynn

2008-01-01T23:59:59.000Z

5

Sonoluminescence test for equation of state in warm dense matter  

SciTech Connect

In experiments of Single-bubble Sonoluminescence (SBSL), the bubble is heated to temperatures of a few eV in the collapse phase of the oscillation. Our hydrodynamic simulations show that the density inside the bubble can go up to the order of 1 g/cm3, and the electron density due to ionization is 1021 /cm3. So the plasma coupling constant is found to be around 1 and the gas inside the bubble is in the Warm Dense Matter (WDM) regime. We simulate the light emission of SL with an optical model for thermal radiation which takes the finite opacity of the bubble into consideration. The numerical results obtained are compared to the experimental data and found to be very sensitive to the equation of state used. As theories for the equation of state, as well as the opacity data, in the WDM regime are still very uncertain, we propose that SL may be a good low-cost experimental check for the EOS and the opacity data for matter in the WDM regime.

Ng, Siu-Fai; Barnard, J.J.; Leung, P.T.; Yu, S.S.

2008-08-01T23:59:59.000Z

6

Toward a physics design for NDCX-II, an ion accelerator for warm dense matter and HIF target physics studies  

E-Print Network (OSTI)

LLNL-JRNL-406007 Toward a physics design for NDCX-II, an ionmatter and HIF target physics studies A. Friedman, 1, ? J.Driven Warm Dense Matter Physics, Pleasanton, CA, Feb. 2006:

Friedman, A.

2008-01-01T23:59:59.000Z

7

Feasibility study of measuring the temperature and pressure of warm dense matter.  

Science Conference Proceedings (OSTI)

We have investigated the feasibility of making accurate measurements of the temperature and pressure of solid-density samples rapidly heated by the Z-Petawatt laser to warm dense matter (WDM) conditions, with temperatures approaching 100eV. The study focused specifically on the heating caused by laser generated proton beams. Based on an extensive literature search and numerical investigations, a WDM experiment is proposed which will accurately measure temperature and pressure based on optical emission from the surface and sample expansion velocity.

Rambo, Patrick K.; Schwarz, Jens

2008-09-01T23:59:59.000Z

8

PLANS FOR WARM DENSE MATTER EXPERIMENTS AND IFE TARGET EXPERIMENTS ON NDCX-II  

DOE Green Energy (OSTI)

The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) is currently developing design concepts for NDCX-II, the second phase of the Neutralized Drift Compression Experiment, which will use ion beams to explore Warm Dense Matter (WDM) and Inertial Fusion Energy (IFE) target hydrodynamics. The ion induction accelerator will consist of a new short pulse injector and induction cells from the decommissioned Advanced Test Accelerator (ATA) at Lawrence Livermore National Laboratory (LLNL). To fit within an existing building and to meet the energy and temporal requirements of various target experiments, an aggressive beam compression and acceleration schedule is planned. WDM physics and ion-driven direct drive hydrodynamics will initially be explored with 30 nC of lithium ions in experiments involving ion deposition, ablation, acceleration and stability of planar targets. Other ion sources which may deliver higher charge per bunch will be explored. A test stand has been built at Lawrence Berkeley National Laboratory (LBNL) to test refurbished ATA induction cells and pulsed power hardware for voltage holding and ability to produce various compression and acceleration waveforms. Another test stand is being used to develop and characterize lithium-doped aluminosilicate ion sources. The first experiments will include heating metallic targets to 10,000 K and hydrodynamics studies with cryogenic hydrogen targets.

Waldron, W.L.; Barnard, J.J.; Bieniosek, F.M.; Friedman, A.; Henestroza, E.; Leitner, M.; Logan, B.G.; Ni, P.A.; Roy, P.K.; Seidl, P.A.; Sharp, W.M.

2008-09-22T23:59:59.000Z

9

A database for equations of state and resistivities measurements in the warm dense matter regime  

SciTech Connect

The aim of this paper is to provide experimental data on various expanded elements in the warm dense matter regime. The experiments were done on the experimental facility 'enceinte a plasma isochore' and are evaluated through a thorough comparison with ab initio calculations, average-atom codes, and chemical models. This comparison allows for the evaluation of the experimental temperatures that are not accessible to the measurements and permits the building of useful data tables gathering energy, pressure, conductivity, and temperatures. We summarize experiments performed on aluminum (0.1 and 0.3 g/cm{sup 3}), nickel (0.2 g/cm{sup 3}), titanium (0.1 g/cm{sup 3}), copper (0.3 and 0.5 g/cm{sup 3}), silver (0.43 g/cm{sup 3}), gold (0.5 g/cm{sup 3}), boron (0.094 g/cm{sup 3}), and silicon (0.21 g/cm{sup 3}) for temperatures ranging from 0.5 eV to 3-4 eV.

Clerouin, J.; Noiret, P.; Blottiau, P.; Recoules, V.; Siberchicot, B.; Renaudin, P.; Blancard, C.; Faussurier, G. [CEA, DAM, DIF, F-91297 Arpajon (France); Holst, B. [CEA, DAM, DIF, F-91297 Arpajon (France); LULI, Ecole Polytechnique, CNRS, CEA, UPMC, route de Saclay, 91128 Palaiseau (France); Starrett, C. E. [Los Alamos National laboratory, New Mexico 87545 (United States)

2012-08-15T23:59:59.000Z

10

PROGRESS IN BEAM FOCUSING AND COMPRESSION FOR WARM-DENSE MATTER EXPERIMENTS  

SciTech Connect

The Heavy-Ion Fusion Sciences Virtual National Laboratory is pursuing an approach to target heating experiments in the Warm Dense Matter regime, using spacecharge-dominated ion beams that are simultaneously longitudinally bunched and transversely focused. Longitudinal beam compression by large factors has beendemonstrated in the Neutralized Drift Compression Experiment (NDCX) with controlledramps and forced neutralization. Using an injected 30-mA K+ ion beam with initialkinetic energy 0.3 MeV, axial compression leading to ~;;50-fold current amplification andsimultaneous radial focusing to beam radii of a few mm have led to encouraging energy deposition approaching the intensities required for eV-range target heating experiments. We discuss the status of several improvements to our Neutralized Drift Compression Experiment and associated beam diagnostics that are under development to reach the necessary higher beam intensities, including: (1) greater axial compression via a longer velocity ramp using a new bunching module with approximately twice the available voltseconds; (2) improved centroid control via beam steering dipoles to mitigate aberrations in the bunching module; (3) time-dependent focusing elements to correct considerable chromatic aberrations; and (4) plasma injection improvements to establish a plasma density always greater than the beam density, expected to be>1013 cm-3.

Seidl, P.A.; Anders, A.; Bieniosek, F.M.; Barnard, J.J.; Calanog, J.; Chen, A.X.; Cohen, R.H.; Coleman, J.E.; Dorf, M.; Gilson, E.P.; Grote, D.P.; Jung, J.Y.; Leitner, M.; Lidia, S.M.; Logan, B.G.; Ni, P.; Roy, P.K.; Van den Bogert, K.; Waltron, W.L.; Welch, D.R.

2008-09-25T23:59:59.000Z

11

Progress in Beam Focusing and Compression for Target Heating and Warm Dense Matter Experiments  

SciTech Connect

The Heavy-Ion Fusion Sciences Virtual National Laboratory is pursuing an approach to target heating experiments in the warm dense matter regime, using space-charge-dominated ion beams that are simultaneously longitudinally bunched and transversely focused. Longitudinal beam compression by large factors has been demonstrated in the Neutralized Drift Compression Experiment (NDCX) with controlled ramps and forced neutralization. Using an injected 30 mA K{sup +} ion beam with initial kinetic energy 0.3 MeV, axial compression leading to {approx}50X current amplification and simultaneous radial focusing to a few mm have led to encouraging energy deposition approaching the intensities required for eV-range target heating experiments. We discuss the status of several improvements to NDCX to reach the necessary higher beam intensities, including: beam diagnostics, greater axial compression via a longer velocity ramp; and plasma injection improvements to establish a plasma density always greater than the beam density, expected to be > 10{sup 13} cm{sup -3}.

Seidl, Peter; Anders, A.; Bieniosek, F.M.; Barnard, J.J.; Cohen, R.H.; Coleman, J.E.; Dorf, M.; Gilson, E.P.; Grote, D.P.; Jung, J.Y.; Leitner, M.; Lidia, S.M.; Logan, B.G.; Ni, P.; Roy, P.A.; Waldron, W.L.; Welch, D.R.

2009-04-17T23:59:59.000Z

12

Probing warm dense lithium by inelastic X-ray scattering  

E-Print Network (OSTI)

-26000, NWFP, Pakistan 9 Institut f¨ur Kernphysik, Technische Universit¨at Darmstadt, Schlo?gartenstr. 9-temperature superconductors and nuclear matter1 . Warm dense matter, defined by temperatures of a few electron volts

Loss, Daniel

13

Modeling Warm Dense Matter Experiments using the 3D ALE-AMR Code and the Move Toward Exascale Computing  

SciTech Connect

The Neutralized Drift Compression Experiment II (NDCX II) is an induction accelerator planned for initial commissioning in 2012. The final design calls for a 3 MeV, Li+ ion beam, delivered in a bunch with characteristic pulse duration of 1 ns, and transverse dimension of order 1 mm. The NDCX II will be used in studies of material in the warm dense matter (WDM) regime, and ion beam/hydrodynamic coupling experiments relevant to heavy ion based inertial fusion energy. We discuss recent efforts to adapt the 3D ALE-AMR code to model WDM experiments on NDCX II. The code, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR), has physics models that include ion deposition, radiation hydrodynamics, thermal diffusion, anisotropic material strength with material time history, and advanced models for fragmentation. Experiments at NDCX-II will explore the process of bubble and droplet formation (two-phase expansion) of superheated metal solids using ion beams. Experiments at higher temperatures will explore equation of state and heavy ion fusion beam-to-target energy coupling efficiency. Ion beams allow precise control of local beam energy deposition providing uniform volumetric heating on a timescale shorter than that of hydrodynamic expansion. The ALE-AMR code does not have any export control restrictions and is currently running at the National Energy Research Scientific Computing Center (NERSC) at LBNL and has been shown to scale well to thousands of CPUs. New surface tension models that are being implemented and applied to WDM experiments. Some of the approaches use a diffuse interface surface tension model that is based on the advective Cahn-Hilliard equations, which allows for droplet breakup in divergent velocity fields without the need for imposed perturbations. Other methods require seeding or other methods for droplet breakup. We also briefly discuss the effects of the move to exascale computing and related computational changes on general modeling codes in fusion energy.

Koniges, A; Eder, E; Liu, W; Barnard, J; Friedman, A; Logan, G; Fisher, A; Masers, N; Bertozzi, A

2011-11-04T23:59:59.000Z

14

Theoretical treatments of the bound-free contribution and experimental best practice in X-ray Thomson scattering from warm dense matter  

SciTech Connect

By comparison with high-resolution synchrotron x-ray experimental results, we assess several theoretical treatments for the bound-free (core-electron) contribution to x-ray Thomson scattering (i.e., also known as nonresonant inelastic x-ray scattering). We identify an often overlooked source of systematic error in the plane-wave form factor approximation (PWFFA) used in the inference of temperature, ionization state, and free electron density in some laser-driven compression studies of warm dense matter. This error is due to a direct violation of energy conservation in the PWFFA. We propose an improved practice for the bound-free term that will be particularly relevant for XRTS experiments performed with somewhat improved energy resolution at the National Ignition Facility or the Linac Coherent Light Source. Our results raise important questions about the accuracy of state variable determination in XRTS studies, given that the limited information content in low-resolution XRTS spectra does not strongly constrain the models of electronic structure being used to fit the spectra.

Mattern, Brian A.; Seidler, Gerald T. [Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States)

2013-02-15T23:59:59.000Z

15

Modeling Warm Dense Matter Experiments  

NLE Websites -- All DOE Office Websites (Extended Search)

strongly and weakly coupled plasmas, degeneracy and non-degeneracy, and solid, liquid and vapor states. The basic physical properties, e.g., opacities, conductivities, dielectric...

16

Hot and Dense QCD Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

QCD Matter QCD Matter A Community White Paper on the Future of Relativistic Heavy-Ion Physics in the US Unraveling the Mysteries of the Strongly Interacting Quark-Gluon-Plasma Executive Summary This document presents the response of the US relativistic heavy-ion community to the request for comments by the NSAC Subcommittee, chaired by Robert Tribble, that is tasked to recommend optimizations to the US Nuclear Science Program over the next five years. The study of the properties of hot and dense QCD matter is one of the four main areas of nuclear physics research described in the 2007 NSAC Long Range Plan. The US nuclear physics community plays a leading role in this research area and has been instrumental in its most important discovery made over the past decade, namely that hot and dense QCD matter acts as a strongly interacting system with unique and previously unexpected

17

PROBING DENSE NUCLEAR MATTER VIA NUCLEAR COLLISIONS  

E-Print Network (OSTI)

University of California. LBL-12095 Probing Dense NuclearMatter Nuclear Collisions* v~a H. Stocker, M.Gyulassy and J. Boguta Nuclear Science Division Lawrence

Stocker, H.

2012-01-01T23:59:59.000Z

18

Chiral thermodynamics of dense hadronic matter  

Science Conference Proceedings (OSTI)

We discuss phases of hot and dense hadronic matter using chiral Lagrangians. A two-flavored parity doublet model constrained by the nuclear matter ground state predicts chiral symmetry restoration. The model thermodynamics is shown within the mean-field approximation. A field-theoretical constraint on possible phases from the anomaly matching is also discussed.

Sasaki, C., E-mail: sasaki@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies (Germany)

2012-05-15T23:59:59.000Z

19

Magnetic Phases in Dense Quark Matter  

E-Print Network (OSTI)

In this paper I discuss the magnetic phases of the three-flavor color superconductor. These phases can take place at different field strengths in a highly dense quark system. Given that the best natural candidates for the realization of color superconductivity are the extremely dense cores of neutron stars, which typically have very large magnetic fields, the magnetic phases here discussed could have implications for the physics of these compact objects.

Vivian de la Incera

2007-08-12T23:59:59.000Z

20

Magnetic Phases in Dense Quark Matter  

SciTech Connect

In this paper I discuss the magnetic phases of the three-flavor color superconductor. These phases can take place at different field strengths in a highly dense quark system. Given that the best natural candidates for the realization of color superconductivity are the extremely dense cores of neutron stars, which typically have very large magnetic fields, the magnetic phases here discussed could have implications for the physics of these compact objects.

Incera, Vivian de la [Department of Physics, Western Illinois University, Macomb, IL 61455 (United States)

2007-10-26T23:59:59.000Z

Note: This page contains sample records for the topic "warm dense matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Color superconductivity in ultra-dense quark matter  

E-Print Network (OSTI)

At ultra-high density, matter is expected to form a degenerate Fermi gas of quarks in which there is a condensate of Cooper pairs of quarks near the Fermi surface. This phenomenon is called color superconductivity. In these proceedings I review the underlying physics of color superconductivity and our current understanding of the possible phases of real-world quark matter. Then I consider how lattice gauge theorists would proceed to investigate the phase structure of dense quark matter if it were possible to perform the path integral numerically, i.e. if the sign problem had been solved.

Mark G. Alford

2006-10-06T23:59:59.000Z

22

Soft X-Ray Thomson Scattering in Warm Dense Hydrogen at FLASH  

DOE Green Energy (OSTI)

We present collective Thomson scattering with soft x-ray free electron laser radiation as a method to track the evolution of warm dense matter plasmas with {approx}200 fs time resolution. In a pump-probe scheme an 800 nm laser heats a 20 {micro}m hydrogen droplet to the plasma state. After a variable time delay in the order of ps the plasma is probed by an x-ray ultra violet (XUV) pulse which scatters from the target and is recorded spectrally. Alternatively, in a self-Thomson scattering experiment, a single XUV pulse heats the target while a portion of its photons are being scattered probing the target. From such inelastic x-ray scattering spectra free electron temperature and density can be inferred giving insight on relaxation time scales in plasmas as well as the equation of state. We prove the feasibility of this method in the XUV range utilizing the free electron laser facility in Hamburg, FLASH. We recorded Thomson scattering spectra for hydrogen plasma, both in the self-scattering and in the pump-probe mode using optical laser heating.

Faustlin, R R; Toleikis, S; Bornath, T; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gode, S; Gregori, G; Irsig, R; Laarmann, T; Lee, H J; Li, B; Meiwes-Broer, K; Mithen, J; Przystawik, A; Redlin, H; Redmer, R; Reinholz, H; Ropke, G; Tavella, F; Thiele, R; Tiggesbaumker, J; Uschmann, I; Zastrau, U; Tschentscher, T

2009-07-15T23:59:59.000Z

23

Sonoluminescence test for equation of state in warm dense matter  

E-Print Network (OSTI)

emission by Planck blackbody radiation: Pl I ? = 2 hc 2 ?transport model and blackbody radiation, we calculate the

Ng, Siu-Fai

2008-01-01T23:59:59.000Z

24

Droplet evolution in expanding flow of warm dense matter  

E-Print Network (OSTI)

We propose a simple, self-consistent kinetic model for the evolution of a mixture of droplets and vapor expanding adiabatically in vacuum after rapid, almost isochoric heating. We study the evolution of the two-phase fluid at intermediate times between the molecular and the hydrodynamic scales, focusing on out-of-equilibrium and surface effects. We use the van der Waals equation of state as a test bed to implement our model and study the phenomenology of the upcoming second neutralized drift compression experiment (NDCX-II) at Lawrence Berkeley National Laboratory (LBNL) that uses ion beams for target heating.We find an approximate expression for the temperature difference between the droplets and the expanding gas and we check it with numerical calculations. The formula provides a useful criterion to distinguish the thermalized and nonthermalized regimes of expansion. In the thermalized case, the liquid fraction grows in a proportion that we estimate analytically, whereas, in case of too rapid expansion, a s...

Armijo, Julien; 10.1103/PhysRevE.83.051507

2011-01-01T23:59:59.000Z

25

Intense Ion Beam for Warm Dense Matter Physics  

E-Print Network (OSTI)

break-even point in a fusion reactor, or ignition, where theoriginal report on fusion reactors (initially classi?ed). [Inertial Fusion Energy (IFE) reactor and power plant

Heimbucher, Lynn

2008-01-01T23:59:59.000Z

26

Thermal conductivity of dense quark matter and cooling of stars  

E-Print Network (OSTI)

The thermal conductivity of the color-flavor locked phase of dense quark matter is calculated. The dominant contribution to the conductivity comes from photons and Nambu-Goldstone bosons associated with breaking of baryon number which are trapped in the quark core. Because of their very large mean free path the conductivity is also very large. The cooling of the quark core arises mostly from the heat flux across the surface of direct contact with the nuclear matter. As the thermal conductivity of the neighboring layer is also high, the whole interior of the star should be nearly isothermal. Our results imply that the cooling time of compact stars with color-flavor locked quark cores is similar to that of ordinary neutron stars.

Igor A. Shovkovy; Paul J. Ellis

2002-04-11T23:59:59.000Z

27

Nuclear fusion in dense matter: Reaction rate and carbon burning  

E-Print Network (OSTI)

In this paper we analyze the nuclear fusion rate between equal nuclei for all five different nuclear burning regimes in dense matter (two thermonuclear regimes, two pycnonuclear ones, and the intermediate regime). The rate is determined by Coulomb barrier penetration in dense environments and by the astrophysical S-factor at low energies. We evaluate previous studies of the Coulomb barrier problem and propose a simple phenomenological formula for the reaction rate which covers all cases. The parameters of this formula can be varied, taking into account current theoretical uncertainties in the reaction rate. The results are illustrated for the example of the ^{12}C+^{12}C fusion reaction. This reaction is very important for the understanding of nuclear burning in evolved stars, in exploding white dwarfs producing type Ia supernovae, and in accreting neutron stars. The S-factor at stellar energies depends on a reliable fit and extrapolation of the experimental data. We calculate the energy dependence of the S-factor using a recently developed parameter-free model for the nuclear interaction, taking into account the effects of the Pauli nonlocality. For illustration, we analyze the efficiency of carbon burning in a wide range of densities and temperatures of stellar matter with the emphasis on carbon ignition at densities rho > 10^9 g/cc.

L. R. Gasques; A. V. Afanasjev; E. F. Aguilera; M. Beard; L. C. Chamon; P. Ring; M. Wiescher; D. G. Yakovlev

2005-06-16T23:59:59.000Z

28

Observations of non-collective x-ray scattering in warm dense carbon plasma  

Science Conference Proceedings (OSTI)

An experiment for observing the spectrally resolved non-collective x-ray scattering in warm dense carbon plasma is presented in this paper. The experiment used Ta M-band x-rays to heat a foamed carbon cylinder sample isochorically and measured the scattering spectrum with a HOPG crystal spectrometer. The spectrum was compared with the calculation results using a Born-Mermin-approximation model. The best fitting was found at an electron temperature of T{sub e}=34 eV and an electron density of n{sub e}=1.6 Multiplication-Sign 10{sup 23}cm{sup -3}.

Bao Lihua [Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-981, Mianyang 621900 (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Zhang Jiyan; Zhao Yang; Ding Yongkun [Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-981, Mianyang 621900 (China); Zhang Xiaoding [Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-981, Mianyang 621900 (China); University of Science and Technology of China, Hefei 230026 (China)

2012-12-15T23:59:59.000Z

29

Dynamics of hot and dense nuclear and partonic matter  

Science Conference Proceedings (OSTI)

The dynamics of hot and dense nuclear matter is discussed from the microscopic transport point of view. The basic concepts of the Hadron-String-Dynamical transport model (HSD)-derived from Kadanoff-Baym equations in phase phase-are presented as well as 'highlights' of HSD results for different observables in heavy-ion collisions from 100 A MeV (SIS) to 21 A TeV(RHIC) energies. Furthermore, a novel extension of the HSD model for the description of the partonic phase-the Parton-Hadron-String-Dynamics (PHSD) approach-is introduced. PHSD includes a nontrivial partonic equation of state-in line with lattice QCD-as well as covariant transition rates from partonic to hadronic degrees of freedom. The sensitivity of hadronic observables to the partonic phase is demonstrated for relativistic heavy-ion collisions from the FAIR/NICA up to the RHIC energy regime.

Bratkovskaya, E. L., E-mail: Elena.Bratkovskaya@th.physik.uni-frankfurt.de [Frankfurt University, Institute for Theoretical Physics (Germany); Cassing, W. [Giessen University, Institute for Theoretical Physics (Germany); Linnyk, O. [Frankfurt University, Institute for Theoretical Physics (Germany); Konchakovski, V. P. [Giessen University, Institute for Theoretical Physics (Germany); Voronyuk, V. [Frankfurt University, FIAS (Germany); Ozvenchuk, V. [Frankfurt University, Institute for Theoretical Physics (Germany)

2012-06-15T23:59:59.000Z

30

Role of dense matter in collective supernova neutrino transformations  

E-Print Network (OSTI)

For neutrinos streaming from a supernova (SN) core, dense matter suppresses self-induced flavor transformations if the electron density n_e significantly exceeds the neutrino density n_nu in the conversion region. If n_e is comparable to n_nu one finds multi-angle decoherence, whereas the standard self-induced transformation behavior requires that in the transformation region n_nu is safely above n_e. This condition need not be satisfied in the early phase after supernova core bounce. Our new multi-angle effect is a subtle consequence of neutrinos traveling on different trajectories when streaming from a source that is not point-like.

A. Esteban-Pretel; A. Mirizzi; S. Pastor; R. Tomas; G. G. Raffelt; P. D. Serpico; G. Sigl

2008-07-07T23:59:59.000Z

31

Dynamical instabilities of warm npe matter: {delta} meson effects  

Science Conference Proceedings (OSTI)

The effects of {delta} mesons on the dynamical instabilities of cold and warm nuclear and stellar matter at subsaturation densities are studied in the framework of relativistic mean-field hadron models (NL3, NL{rho}, and NL{rho}{delta}) with the inclusion of the electromagnetic field. The distillation effect and the spinodals for all the models considered are discussed. The crust-core transition density and pressure are obtained as a function of temperature for {beta}-equilibrium matter with and without neutrino trapping. An estimation of the size of the clusters formed in the nonhomogeneous phase and the corresponding growth rates are made. It is shown that cluster sizes increase with temperature. The effects of the {delta} meson on the instability region are larger for low temperatures, very asymmetric matter, and densities close to the spinodal surface. It increases the distillation effect above {approx}0.4{rho}{sub 0} and has the opposite effect below that density.

Pais, Helena; Santos, Alexandre; Providencia, Constanca [Centro de Fisica Computacional, Department of Physics, University of Coimbra, 3004-516 Coimbra (Portugal)

2009-10-15T23:59:59.000Z

32

Domain growth and ordering kinetics in dense quark matter  

Science Conference Proceedings (OSTI)

The kinetics of chiral transitions in quark matter is studied in a two-flavor Nambu-Jona-Lasinio model. We focus on the phase-ordering dynamics subsequent to a temperature quench from the massless quark phase to the massive quark phase. We study the dynamics by considering a phenomenological model (Ginzburg-Landau free-energy functional). The morphology of the ordering system is characterized by the scaling of the order-parameter correlation function.

Singh, A.; Puri, S. [Jawaharlal Nehru University, School of Physical Sciences (India); Mishra, H., E-mail: hm@prl.res.in [Physical Research Laboratory, Theory Division (India)

2012-06-15T23:59:59.000Z

33

Indistinguishability of Warm Dark Matter, Modified Gravity, and Coupled Cold Dark Matter  

E-Print Network (OSTI)

The current accelerated expansion of our universe could be due to an unknown energy component with negative pressure (dark energy) or a modification to general relativity (modified gravity). On the other hand, recently warm dark matter (WDM) remarkably rose as an alternative of cold dark energy (CDM). Obviously, it is of interest to distinguish these different types of models. In fact, many attempts have been made in the literature. However, in this work we show that WDM, modified gravity and coupled CDM form a trinity, namely, they are indistinguishable by using the cosmological observations of both cosmic expansion history and growth history. Therefore, to break the degeneracy, the other complementary probes beyond the ones of cosmic expansion history and growth history are required.

Wei, Hao; Chen, Zu-Cheng; Yan, Xiao-Peng

2013-01-01T23:59:59.000Z

34

Variational-average-atom-in-quantum-plasmas (VAAQP) code and virial theorem: Equation-of-state and shock-Hugoniot calculations for warm dense Al, Fe, Cu, and Pb  

Science Conference Proceedings (OSTI)

The numerical code VAAQP (variational average atom in quantum plasmas), which is based on a fully variational model of equilibrium dense plasmas, is applied to equation-of-state calculations for aluminum, iron, copper, and lead in the warm-dense-matter regime. VAAQP does not impose the neutrality of the Wigner-Seitz ion sphere; it provides the average-atom structure and the mean ionization self-consistently from the solution of the variational equations. The formula used for the electronic pressure is simple and does not require any numerical differentiation. In this paper, the virial theorem is derived in both nonrelativistic and relativistic versions of the model. This theorem allows one to express the electron pressure as a combination of the electron kinetic and interaction energies. It is shown that the model fulfills automatically the virial theorem in the case of local-density approximations to the exchange-correlation free-energy. Applications of the model to the equation-of-state and Hugoniot shock adiabat of aluminum, iron, copper, and lead in the warm-dense-matter regime are presented. Comparisons with other approaches, including the inferno model, and with available experimental data are given. This work allows one to understand the thermodynamic consistency issues in the existing average-atom models. Starting from the case of aluminum, a comparative study of the thermodynamic consistency of the models is proposed. A preliminary study of the validity domain of the inferno model is also included.

Piron, R. [CEA, DAM, DIF, F-91297 Arpajon (France); Blenski, T. [CEA, IRAMIS, Service des Photons Atomes et Molecules, F-91191 Gif-sur-Yvette (France)

2011-02-15T23:59:59.000Z

35

Phase diagram of dense quark matter in QCD-like theories  

Science Conference Proceedings (OSTI)

I report the results of a series of works on the phase diagram of theories with a different number of colors and/or quarks in a different representation than in QCD. Similarities as well as differences as compared to the real world are pointed out, focusing in particular on the interplay of confinement and chiral symmetry breaking. It will be argued that recent lattice data may provide us with a clue to understand deconfinement in cold dense quark matter.

Brauner, Tomas [Faculty of Physics, University of Bielefeld, D-33501 Bielefeld (Germany); Department of Theoretical Physics, Nuclear Physics Institute ASCR, CZ-25068 Rez (Czech Republic)

2011-05-23T23:59:59.000Z

36

Low scale left-right symmetry and warm dark matter  

SciTech Connect

We study the scenario which incorporates dark matter in the minimal left-right symmetric theory at the TeV scale. The only viable candidate is found to be the lightest right-handed neutrino with a mass of keV. In order to satisfy the dark matter relic abundance, the relic yield is diluted by late decays of the two heavier neutrinos. We point out that the QCD phase transition temperature coincidences with the typical freeze-out temperature governed by super-weak right-handed interactions. This helps to alleviate the problem of overproduction and a careful numerical study reveals a narrow window for the mass of the right-handed gauge boson, which is within the reach of the LHC.

Nemevsek, Miha [ICTP, Strada Costiera 11, 34151 Trieste (Italy)

2013-05-23T23:59:59.000Z

37

Strong Upper Limits on Sterile Neutrino Warm Dark Matter  

Science Conference Proceedings (OSTI)

Sterile neutrinos are attractive dark matter candidates. Their parameter space of mass and mixing angle has not yet been fully tested despite intensive efforts that exploit their gravitational clustering properties and radiative decays. We use the limits on gamma-ray line emission from the Galactic center region obtained with the SPI spectrometer on the INTEGRAL satellite to set new constraints, which improve on the earlier bounds on mixing by more than 2 orders of magnitude, and thus strongly restrict a wide and interesting range of models.

Yueksel, Hasan [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States); Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, Ohio 43210 (United States); Beacom, John F. [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States); Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, Ohio 43210 (United States); Department of Astronomy, Ohio State University, Columbus, Ohio 43210 (United States); Watson, Casey R. [Department of Physics and Astronomy, Millikin University, Decatur, Illinois 62522 (United States)

2008-09-19T23:59:59.000Z

38

The Cold Dark Matter Search test stand warm electronics card  

SciTech Connect

A card which does the signal processing for four SQUID amplifiers and two charge sensitive channels is described. The card performs the same functions as is presently done with two custom 9U x 280mm Eurocard modules, a commercial multi-channel VME digitizer, a PCI to GPIB interface, a PCI to VME interface and a custom built linear power supply. By integrating these functions onto a single card and using the power over Ethernet standard, the infrastructure requirements for instrumenting a Cold Dark Matter Search (CDMS) detector test stand are significantly reduced.

Hines, Bruce; /Colorado U., Denver; Hansen, Sten; /Fermilab; Huber, Martin; /Colorado U., Denver; Kiper, Terry; /Fermilab; Rau, Wolfgang; /Queen's U., Kingston; Saab, Tarek; /Florida U.; Seitz, Dennis; Sundqvist, Kyle; /UC, Berkeley; Mandic, Vuk; /Minnesota U.

2010-11-01T23:59:59.000Z

39

Two- and three-color two-quark states in warm, dense quark matter  

SciTech Connect

We study the Gaussian fluctuations of the two-flavor, meson-diquark bosonized NJL model for two and three colors at the color superconducting phase transition. The analysis is based on analytical properties of the polarization matrix. Pionic fluctuations are shown to be stabilised in the 2SC phase compared to the two-color result where they are right on threshold.

Zablocki, D. S., E-mail: zablocki@ift.uni.wroc.pl; Blaschke, D. [University of Wroclaw, Institute for Theoretical Physics (Poland); Buballa, M. [Technische Universitaet Darmstadt, Institut fuer Kernphysik (Germany)

2012-07-15T23:59:59.000Z

40

Equation of state and transport property measurements of warm dense matter.  

SciTech Connect

Location of the liquid-vapor critical point (c.p.) is one of the key features of equation of state models used in simulating high energy density physics and pulsed power experiments. For example, material behavior in the location of the vapor dome is critical in determining how and when coronal plasmas form in expanding wires. Transport properties, such as conductivity and opacity, can vary an order of magnitude depending on whether the state of the material is inside or outside of the vapor dome. Due to the difficulty in experimentally producing states near the vapor dome, for all but a few materials, such as Cesium and Mercury, the uncertainty in the location of the c.p. is of order 100%. These states of interest can be produced on Z through high-velocity shock and release experiments. For example, it is estimated that release adiabats from {approx}1000 GPa in aluminum would skirt the vapor dome allowing estimates of the c.p. to be made. This is within the reach of Z experiments (flyer plate velocity of {approx}30 km/s). Recent high-fidelity EOS models and hydrocode simulations suggest that the dynamic two-phase flow behavior observed in initial scoping experiments can be reproduced, providing a link between theory and experiment. Experimental identification of the c.p. in aluminum would represent the first measurement of its kind in a dynamic experiment. Furthermore, once the c.p. has been experimentally determined it should be possible to probe the electrical conductivity, opacity, reflectivity, etc. of the material near the vapor dome, using a variety of diagnostics. We propose a combined experimental and theoretical investigation with the initial emphasis on aluminum.

Knudson, Marcus D.; Desjarlais, Michael Paul

2009-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm dense matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Dynamical instabilities of warm n pe matter: the delta meson effects  

Science Conference Proceedings (OSTI)

The effects of the delta meson on the dynamical instabilities of cold and warm nuclear and stellar matter at subsaturation densities are studied in the framework of relativistic mean-field hadron models (NL3, NL{sub r}ho and NL{sub r}ho{sub d}elta) with the inclusion of the electromagnetic field. The crust-core transition density and pressure are obtained as a function of temperature of beta-equilibrium matter with and without neutrino trapping. The distillation effect is discussed. For beta-equilibrium matter with trapped neutrinos the pasta phase disappears for T>13.2 MeV (NL{sub r}ho and NL{sub r}ho{sub d}elta) or T>11.6 MeV (NL3). For neutrino free matter the non-homogeneous phase does not exist for T>3 MeV. The delta meson has a larger effect in neutron rich matter, larger densities and smaller temperatures. It reduces the extension of the spinodal. The distillation effect is stronger for larger densities and smaller temperatures. The delta meson increases the distillation effect, for larger densities. NL3 predicts larger clusters compared with the other two parametrizations, and a smaller extension of the non-homogeneous phase for all temperatures. At the transition densities, the NL{sub r}ho and NL{sub r}ho{sub d}elta predict clusters with the double of the size as compared with an intermediate density. Constraints at finite temperature on the EOS are required.

Pais, Helena; Santos, Alexandre; Providencia, Constanca [Centro de Fisica Computacional-Department of Physics, University of Coimbra-P-3004-516-Coimbra-Portugal (Portugal)

2010-04-26T23:59:59.000Z

42

Formation of Dense Partonic Matter in High Energy Heavy-Ion Collisions: Highlights of RHIC Results  

E-Print Network (OSTI)

I review some important results from RHIC experiments. They were obtained in a unique environment for studying QCD bulk matter at temperatures and densities that surpass the limits where hadrons can exist as individual entities, raising the quark-gluon degrees of freedom to prominence. These findings support the major experimental observations from measuring the bulk properties of particle production, particle ratios and chemical freeze-out conditions, elliptic flow followed by hard probes measurements: di-jet fragment azimuthal correlations, high-pt hadron suppression, and heavy-flavors probes. I present the measurements as a function of collision centrality, energy, system size and for different particle species. These results reveal that a dense strongly interacting medium was created in central Au+Au collisions at 200 GeV: the RHIC discovery. Further, they suggest that this medium is partonic. However, the discoveries so far observed at RHIC are far from being understood fully. Accordingly, the focus of the experiments has shifted from the discovery phase to the detailed exploration phase of the properties of this medium.

Rachid Nouicer

2009-01-07T23:59:59.000Z

43

Theory of ultra dense matter and the dynamics of high energy interactions involving nuclei. Progress report, December 15, 1992--December 14, 1993  

SciTech Connect

Progress in the areas of pQCD radiative processes in dense matter, QCD transport theories to describe the evolution of nonequilibrium phenomena in dense matter, and the development and testing of phenomenological models of high-energy nuclear collisions is summarized. The evolution of the total energy density of quarks and gluons with minijet initial conditions at RHIC energy is shown for Au+Au.

Gyulassy, M.

1993-09-15T23:59:59.000Z

44

Sterile Neutrinos for Warm Dark Matter and the Reactor Anomaly in Flavor Symmetry Models  

E-Print Network (OSTI)

We construct a flavor symmetry model based on the tetrahedral group A_4 in which the right-handed neutrinos from the seesaw mechanism can be both keV warm dark matter particles and eV-scale sterile neutrinos. This is achieved by giving the right-handed neutrinos appropriate charges under the same Froggatt-Nielsen symmetry responsible for the hierarchy of the charged lepton masses. We discuss the effect of next-to-leading order corrections to deviate the zeroth order tri-bimaximal mixing. These corrections have two sources: (i) higher order seesaw terms, which are important when the seesaw particles are eV-scale, and (ii) higher-dimensional effective operators suppressed by additional powers of the cut-off scale of the theory. Whereas the mixing angles of the active neutrinos typically receive corrections of the same order, the mixing of the sterile neutrinos with the active ones is rather stable as it is connected with a hierarchy of mass scales. We also modify an effective A_4 model to incorporate keV-scale ...

Barry, James; Zhang, He

2011-01-01T23:59:59.000Z

45

Ginzburg-Landau phase diagram for dense matter with axial anomaly, strange quark mass, and meson condensation  

SciTech Connect

We discuss the phase structure of dense matter, in particular, the nature of the transition between hadronic and quark matter. Calculations within a Ginzburg-Landau approach show that the axial anomaly can induce a critical point in this transition region. This is possible because in three-flavor quark matter with instanton effects a chiral condensate can be added to the color-flavor locked phase without changing the symmetries of the ground state. In (massless) two-flavor quark matter such a critical point is not possible since the corresponding color superconductor (2SC) does not break chiral symmetry. We study the effects of a nonzero but finite strange quark mass which interpolates between these two cases. Since at ultrahigh density the first reaction of the color-flavor locked phase to a nonzero strange quark mass is to develop a kaon condensate, we extend previous Ginzburg-Landau studies by including such a condensate. We discuss the fate of the critical point systematically and show that the continuity between hadronic and quark matter can be disrupted by the onset of a kaon condensate. Moreover, we identify the mass terms in the Ginzburg-Landau potential which are needed for the 2SC phase to occur in the phase diagram.

Schmitt, Andreas; Stetina, Stephan [Institut fuer Theoretische Physik, Technische Universitaet Wien, 1040 Vienna (Austria); Tachibana, Motoi [Department of Physics, Saga University, Saga 840-8502 (Japan)

2011-02-15T23:59:59.000Z

46

Constraining the Bulk Properties of Dense Matter by Measuring Millisecond Pulsar Masses - A White Paper for the Astronomy and Astrophysics Decadal Survey, CFP Panel  

E-Print Network (OSTI)

More than four decades after the discovery of pulsars, the composition of matter at their cores is still a mystery. This white paper summarizes how recent high-precision measurements of millisecond pulsar masses have introduced new experimental constraints on the properties of super-dense matter, and how continued timing of intriguing new objects, coupled with radio telescope surveys to discover more pulsars, might introduce significantly more stringent constraints.

Freire, Paulo C; Lattimer, James; Stairs, Ingrid; Arzoumanian, Zaven; Cordes, James; Deneva, Julia

2009-01-01T23:59:59.000Z

47

Fast six-channel pyrometer for warm-dense-matter experiments with intense heavy-ion beams  

E-Print Network (OSTI)

collection optics system (condenser) which is compact enough500 nm to 1500 nm. Any condenser built from glass lenses andThe parabolic mirror condenser has a higher collec- tion e?

Ni, P.A.

2008-01-01T23:59:59.000Z

48

Thermalized Non-Equilibrated Matter against Random Matrix Theory, Quantum Chaos and Direct Interaction: Warming up  

E-Print Network (OSTI)

The idea of a thermalized non-equilibrated state of matter offers a conceptually new understanding of the strong angular asymmetry. In this compact review we present some clarifications, corrections and further developments of the approach, and provide a brief account of results previously discussed but not reported in the literature. The cross symmetry compound nucleus $S$-matrix correlations are obtained (i) starting from the unitary $S$-matrix representation, (ii) by explicitly taking into account a process of energy equilibration, and (iii) without taking the thermodynamic limit of an infinite number of particles in the thermalized system. It is conjectured that the long phase memory is due to the exponentially small total spin off-diagonal resonance intensity correlations. This manifestly implies that the strong angular asymmetry intimately relates to extremely small deviations of the eigenfunction distribution from Gaussian law. The spin diagonal resonance intensity correlations determine a new time/energy scale for a validity of random matrix theory. Its definition does not involve overlaps of the many-body interacting configurations with shell model non-interacting states and thus is conceptually different from the physical meaning (inverse energy relaxation time) of the spreading widths introduced by Wigner. Exact Gaussian distribution of the resonance wave functions corresponds to the instantaneous phase relaxation. We invite the nuclear reaction community for the competition to describe, as the first challenge, the strong forward peaking in the typically evaporation part of the proton spectra. This is necessary to initiate revealing long-term misconduct in the heavily cross-disciplinary field, also important for nuclear industry applications.

S. Kun; Y. Li; M. H. Zhao; M. R. Huang

2013-07-17T23:59:59.000Z

49

BEC-BCS Crossover and the Liquid-Gas Phase Transition in Hot and Dense Nuclear Matter  

E-Print Network (OSTI)

The effect of nucleon-nucleon correlations in symmetric nuclear matter at finite temperature is studied beyond BCS theory. Starting from a Hartree-Fock description of nuclear matter with the Gogny effective interaction, we add correlations corresponding to the formation of preformed pairs and scattering states above the superfluid critical temperature within the in-medium T-matrix approach, which is analogous to the Nozieres-Schmitt-Rink theory. We calculate the critical temperature for a BEC superfluid of deuterons, of a BCS superfluid of nucleons, and in the crossover between these limits. The effect of the correlations on thermodynamic properties (equation of state, energy, entropy) and the liquid-gas phase transition is discussed. Our results show that nucleon-nucleon correlations beyond BCS play an important role for the properties of nuclear matter, especially in the low-density region.

Meng Jin; Michael Urban; Peter Schuck

2010-05-11T23:59:59.000Z

50

Prospects of warm dense matter research at HiRadMat facility at CERN using 440 MeV SPS proton beam  

E-Print Network (OSTI)

In this paper we present numerical simulations of heating of a solid copper cylinder by the 440 GeV proton beam delivered by the Super Proton Synchrotron (SPS) at CERN. The beam is made of 288 proton bunches while each bunch comprises of 1.15$1011 so that the total number of protons in the beam is about 1.3$1013. The bunch length is 0.5 ns while two neighboring bunches are separated by 25 ns so that the beam duration is 7.2 ms. Particle intensity distribution in the transverse direction is a Gaussian and the beam can be focused to a spot size with s 1?4 0.1 mme1.0 mm. In this paper we present results using two values of s, namely 0.2 mm and 0.5 mm, respectively. The target length is 1.5 m with a radius 1?4 5 cm and is facially irradiated by the beam. The energy deposition code FLUKA and the two-dimensional hydrodynamic code BIG2 are employed using a suitable iteration time to simulate the hydrodynamic and the thermodynamic response of the target. The primary purpose of this work was to design fixed target...

Tahir, N A; Schmidt, R; Shutov, A; Piriz, A R

2013-01-01T23:59:59.000Z

51

Generation of warm dense matter and strongly coupled plasmas using the High Radiation on Materials facility at the CERN Super Proton Synchrotron  

E-Print Network (OSTI)

A dedicated facility named High Radiation on Materials (HiRadMat) is being constructed at CERN to study the interaction of the 450 GeV protons generated by the Super Proton Synchrotron (SPS) with fixed solid targets of different materials. The main purpose of these future experiments is to study the generation and propagation of thermal shock waves in the target in order to assess the damage caused to the equipment, including collimators and absorbers, in case of an accident involving an uncontrolled release of the entire beam at a given point. Detailed numerical simulations of the beam-target interaction of several cases of interest have been carried out. In this paper we present simulations of the thermodynamic and the hydrodynamic response of a solid tungsten cylindrical target that is facially irradiated with the SPS beam with nominal parameters. These calculations have been carried out in two steps. First, the energy loss of the protons is calculated in the solid target using the FLUKA code (Fasso et al....

Tahir, N A; Brugger, M; Assmann, R; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Udrea, S; Hoffmann, D H H; Fortov, V E; Deutsch, C

2009-01-01T23:59:59.000Z

52

Variability of warm deep water inflow in a submarine trough on the Amundsen Sea Shelf  

Science Conference Proceedings (OSTI)

The ice shelves in the Amundsen Sea are thinning rapidly, and the main reason for their decline appears to be warm ocean currents circulating below the ice shelves and melting these from below. Ocean currents transport warm dense water onto the ...

A. K. Whlin; O. Kaln; L. Arneborg; G. Bjrk; G. K. Carvajal; H. K. Ha; T. W. Kim; S. H. Lee; J. H. Lee; C. Stranne

53

Dense gas-compatible enzymes  

DOE Patents (OSTI)

An enzymatic reaction system including a modified enzyme, and a dense gas system; modified enzymes; and methods of reacting modified enzymes in a dense gas system or liquid carbon dioxide.

Kao, Fu-jung (Dracut, MA); Laintz, Kenneth E. (Los Alamos, NM); Sawan, Samuel P. (Tyngsborough, MA); Sivils, L. Dale (Jupiter, FL); Spall, W. Dale (Los Alamos, NM)

1998-07-21T23:59:59.000Z

54

Compton scattering measurements from dense plasmas  

DOE Green Energy (OSTI)

Compton scattering has been developed for accurate measurements of densities and temperatures in dense plasmas. One future challenge is the application of this technique to characterize compressed matter on the National Ignition Facility where hydrogen and beryllium will approach extremely dense states of matter of up to 1000 g/cc. In this regime, the density, compressibility, and capsule fuel adiabat may be directly measured from the Compton scattered spectrum of a high-energy x-ray line source. Specifically, the scattered spectra directly reflect the electron velocity distribution. In non-degenerate plasmas, the width provides an accurate measure of the electron temperatures, while in partially Fermi degenerate systems that occur in laser-compressed matter it provides the Fermi energy and hence the electron density. Both of these regimes have been accessed in experiments at the Omega laser by employing isochorically heated solid-density beryllium and moderately compressed beryllium foil targets. In the latter experiment, compressions by a factor of 3 at pressures of 40 Mbar have been measured in excellent agreement with radiation hydrodynamic modeling.

Glenzer, S H; Neumayer, P; Doeppner, T; Landen, L; Lee, R W; Wallace, R; Weber, S; Lee, H J; Kritcher, A L; Falcone, R; Regan, S P; Sawada, H; Meyerhofer, D D; Gregori, G; Fortmann, C; Schwarz, V; Redmer, R

2007-10-02T23:59:59.000Z

55

Global Warming, Soot, Ice  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Warming, Soot, Ice Speaker(s): James Hansen Date: November 7, 2003 - 12:00pm Location: 90-3122 Irreversible "dangerous anthropogenic interference" with the climate system...

56

Review of Multi-messenger observations of neutron rich matter  

E-Print Network (OSTI)

At very high densities, electrons react with protons to form neutron rich matter. This material is central to many fundamental questions in nuclear physics and astrophysics. Moreover, neutron rich matter is being studied with an extraordinary variety of new tools such as the Facility for Rare Isotope Beams (FRIB) and the Laser Interferometer Gravitational Wave Observatory (LIGO). We describe the Lead Radius Experiment (PREX) that uses parity violating electron scattering to measure the neutron radius of 208Pb. This has important implications for neutron stars and their crusts. We discuss X-ray observations of neutron star radii. These also have important implications for neutron rich matter. Gravitational waves (GW) open a new window on neutron rich matter. They come from sources such as neutron star mergers, rotating neutron star mountains, and collective r-mode oscillations. Using large scale molecular dynamics simulations, we find neutron star crust to be very strong. It can support mountains on rotating neutron stars large enough to generate detectable gravitational waves. Finally, neutrinos from core collapse supernovae (SN) provide another, qualitatively different probe of neutron rich matter. Neutrinos escape from the surface of last scattering known as the neutrino-sphere. This is a low density warm gas of neutron rich matter. Neutrino-sphere conditions can be simulated in the laboratory with heavy ion collisions. Observations of neutrinos can probe nucleosyntheses in SN. We believe that combing astronomical observations using photons, GW, and neutrinos, with laboratory experiments on nuclei, heavy ion collisions, and radioactive beams will fundamentally advance our knowledge of compact objects in the heavens, the dense phases of QCD, the origin of the elements, and of neutron rich matter.

C. J. Horowitz

2012-12-27T23:59:59.000Z

57

Quantum-Dense Metrology  

E-Print Network (OSTI)

Quantum metrology utilizes entanglement for improving the sensitivity of measurements. Up to now the focus has been on the measurement of just one out of two non-commuting observables. Here we demonstrate a laser interferometer that provides information about two non-commuting observables, with uncertainties below that of the meter's quantum ground state. Our experiment is a proof-of-principle of quantum dense metrology, and uses the additional information to distinguish between the actual phase signal and a parasitic signal due to scattered and frequency shifted photons. Our approach can be readily applied to improve squeezed-light enhanced gravitational-wave detectors at non-quantum noise limited detection frequencies in terms of a sub shot-noise veto-channel.

Sebastian Steinlechner; Jran Bauchrowitz; Melanie Meinders; Helge Mller-Ebhardt; Karsten Danzmann; Roman Schnabel

2012-11-15T23:59:59.000Z

58

Geometrical Optics of Dense Aerosols  

SciTech Connect

Assembling a free-standing, sharp-edged slab of homogeneous material that is much denser than gas, but much more rare ed than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed fi eld, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the nite particle density reduces the eff ective Stokes number of the flow, a critical result for controlled focusing. __________________________________________________

Hay, Michael J.; Valeo, Ernest J.; Fisch, Nathaniel J.

2013-04-24T23:59:59.000Z

59

Warm Gas Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Warm Gas Cleanup Warm Gas Cleanup NETL Office of Research and Development Project Number: FWP-2012.03.03 Task 5 Project Description The Environmental Protection Agency (EPA) has established strict regulations for the trace contaminant emissions from integrated gasification combined cycle (IGCC) systems. The Department of Energy (DOE) performance goals for trace contaminant removal were selected to meet or exceed EPA's standard limits for contaminants, as well as to avoid poisoning of: the catalysts utilized in making liquids from fuel gas the electrodes in fuel cells selective catalytic reduction (SCR) catalysts The objective of the NETL's ORD Warm Gas Cleanup project is to assist in achieving both DOE and EPA targets for trace contaminant capture from coal gasification, while preserving the high thermal efficiency of the IGCC system. To achieve this, both lab and pilot-scale research is underway to develop sorbents capable of removing the following contaminants from high temperature syngas (up to 550°F):

60

Warm Water Mass Formation  

Science Conference Proceedings (OSTI)

Poleward heat transport by the own implies warm Water mass formation, i.e., the retention by the tropical and subtropical ocean of some of its net radiant heat gain. Under what condition net heat retention becomes comparable to latent heat ...

G. T. Csanady

1984-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm dense matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

From nuclear matter to Neutron Stars  

E-Print Network (OSTI)

Neutron stars are the most dense objects in the observable Universe and conventionally one uses nuclear theory to obtain the equation of state (EOS) of dense hadronic matter and the global properties of these stars. In this work, we review various aspects of nuclear matter within an effective Chiral model and interlink fundamental quantities both from nuclear saturation as well as vacuum properties and correlate it with the star properties.

T. K. Jha

2009-02-02T23:59:59.000Z

62

Ultrasfast Dynamics in Dense Hydrogen Explored at Flash  

DOE Green Energy (OSTI)

The short pulse duration and high intensity of the FLASH (Free-electron LASer in Hamburg) allows us to generate and probe homogeneous warm dense non-equilibrium hydrogen within a single extreme ultraviolet (EUV) light pulse. By analyzing the spectrum of the 13.5 nm Thomson scattered light we determine the plasma temperature and density. We find that classical models of this interaction are in good agreement with our dense plasma conditions. In a FEL-pump FEL-probe experiment droplets of liquid hydrogen and their scattering behavior for different pump-probe setups were observed under 20{sup o} and 90{sup o}. We find that the scattering behavior of the scattered intensity depends on the scattering angle.

Hilbert, V; Zastrau, U; Neumayer, P; Hochhaus, D; Toleikis, S; Harmand, M; Przystawik, A; Tschentscher, T; Glenzer, S H; Doeppner, T; Fortmann, C; White, T; Gregori, G; Gode, S; Tiggesbaumker, J; Skruszewicz, S; Meiwes-Broer, K H; Sperling, P; Redmer, R; Forster, E

2011-08-01T23:59:59.000Z

63

A constitutive law for dense granular flows  

E-Print Network (OSTI)

A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.

Pierre Jop; Yol Forterre; Olivier Pouliquen

2006-12-05T23:59:59.000Z

64

Arrhenius and global warming  

SciTech Connect

Although concern about global atmospheric warming has intensified in recent decades, research into the greenhouse effect actually began in the 19th century. Fourier and other scientists appreciated that without heat-absorbing gases in the atmosphere, the temperature on the ground would be considerably lower, making life as we know it impossible. In 1896, the Swedish scientist Svante Arrhenius was the first to make a quantitative link between changes in carbon dioxide concentration and climate. Publication of his paper was celebrated at a recent Swedish workshop. 13 refs., 1 fig.

Uppenbrink, J.

1996-05-24T23:59:59.000Z

65

1 Numerical study of dense adjoint 2-color matter ?  

E-Print Network (OSTI)

We study the global symmetries of SU(2) gauge theory with N flavors of staggered fermions in the presence of a chemical potential. We motivate the special interest of the case N = 1 (staggered) with fermions in the adjoint representation of the gauge group. We present results from numerical simulations with both hybrid Monte Carlo and the Two-Step Multi-Bosonic algorithm. 1.

Simon H; Istvn Montvay B; Manfred Oevers C; Luigi Scorzato A; Jonivar Skullerud B

2000-01-01T23:59:59.000Z

66

The Breakup of Dense Filaments  

Science Conference Proceedings (OSTI)

The breakup of a long strip of dense fluid flowing over a sloping bottom is examined with the aid of a nonlinear two-layer analytical model. The inviscid strip is bounded by the sloping bottom from below and an interface (that intersects the ...

Doron Nof

1990-06-01T23:59:59.000Z

67

From the warm magnetized atomic medium to molecular clouds  

E-Print Network (OSTI)

{It has recently been proposed that giant molecular complexes form at the sites where streams of diffuse warm atomic gas collide at transonic velocities.} {We study the global statistics of molecular clouds formed by large scale colliding flows of warm neutral atomic interstellar gas under ideal MHD conditions. The flows deliver material as well as kinetic energy and trigger thermal instability leading eventually to gravitational collapse.} {We perform adaptive mesh refinement MHD simulations which, for the first time in this context, treat self-consistently cooling and self-gravity.} {The clouds formed in the simulations develop a highly inhomogeneous density and temperature structure, with cold dense filaments and clumps condensing from converging flows of warm atomic gas. In the clouds, the column density probability density distribution (PDF) peaks at $\\sim 2 \\times 10^{21} \\psc$ and decays rapidly at higher values; the magnetic intensity correlates weakly with density from $n \\sim 0.1$ to $10^4 \\pcc$, and then varies roughly as $n^{1/2}$ for higher densities.} {The global statistical properties of such molecular clouds are reasonably consistent with observational determinations. Our numerical simulations suggest that molecular clouds formed by the moderately supersonic collision of warm atomic gas streams.}

P. Hennebelle; R. Banerjee; E. Vazquez-Semadeni; R. Klessen; E. Audit

2008-05-09T23:59:59.000Z

68

WARM SPRINGS, OREGON  

DOE Green Energy (OSTI)

and, as part of its charter, has the responsibility to evaluate and develop renewable energy resources for the Confederated Tribes of Warm Springs. WSPWE recently completed a multi-year-year wind resource assessment of tribal lands, beginning with the installation of wind monitoring towers on the Mutton Mountains site in 2003, and collection of on-site wind data is ongoing. The study identified the Mutton Mountain site on the northeastern edge of the reservation as a site with sufficient wind resources to support a commercial power project estimated to generate over 226,000 MWh per year. Initial estimates indicate that the first phase of the project would be approximately 79.5 MW of installed capacity. This Phase 2 study expands and builds on the previously conducted Phase 1 Wind Resource Assessment, dated June 30, 2007. In order to fully assess the economic benefits that may accrue to the Tribes through wind energy development at Mutton Mountain, a planning-level opinion of probable cost was performed to define the costs associated with key design and construction aspects of the proposed project. This report defines the Mutton Mountain project costs and economics in sufficient detail to allow the Tribes to either build the project themselves or contract with a developer under the most favorable terms possible for the Tribes.

Jim Manion; Michael Lofting; Wil Sando; Emily Leslie; Randy Goff

2009-03-30T23:59:59.000Z

69

Global Warming and Extreme Weather  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Warming and Extreme Weather Global Warming and Extreme Weather Speaker(s): Michael Wehner Date: November 28, 2006 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Surabi Menon Extreme weather events can have serious impacts on human and ecological systems. Changes in the magnitude and frequency of extreme weather associated with changes in the mean climate are likely the most serious consequence of human induced global warming. Understanding what the future portends is vital if society hopes to adapt to the very different world that awaits. In this talk, we will exploit simple extreme value theory to make predictions about the late 21st century climate. Current work on the relationship between global warming and the hurricane cycle will also be presented. The bottom line is that events that are considered rare today

70

Global warming continues in 1989  

SciTech Connect

Nineteen eight-nine ranks as one of the warmest years on record despite the chill of unusually cool water in the tropical Pacific. The continued robustness of the warming trend that began in the mid-1970s lends support to claims that an intensifying greenhouse effect is behind it all, although that case has not yet been made definitively. Even at the current rate of global warming it will take another 10 years or so to be confident that the greenhouse effect is with us. Although the global warming trend is consistent with an increasing contribution by the greenhouse effect, direct signs that the greenhouse effect is intensifying are still hard to come by in the temperature record. Greenhouse models agree that if that is happening, the temperature increase should be most pronounced around the Arctic. Alaska, northwestern Canada, and northern Siberia warmed sharply in the 1980s, but the region from eastern Canada through Greenland and into Scandinavia cooled markedly.

Kerr, R.A.

1990-02-02T23:59:59.000Z

71

Authropogenic Warming in North Alaska?  

Science Conference Proceedings (OSTI)

Using permafrost boreholes, Lachenbruch and Marshall recently reported evidence for a 24C warming in North Alaska occurring at some undetermined time during the last century. Popular accounts suggest their findings are evidence for ...

Patrick J. Michaels; David E. Sappington; David E. Stooksbury

1988-09-01T23:59:59.000Z

72

The Psychology of Global Warming  

Science Conference Proceedings (OSTI)

The evidence in support of global warming and the lack of significant published evidence to the contrary provides an extraordinarily strong foundation for the scientific community's call for action on greenhouse gas emissions. However, public ...

Ben R. Newell; Andrew J. Pitman

2010-08-01T23:59:59.000Z

73

Solenoid transport of a heavy ion beam for warm dense matterstudies and inertial confinement fusion  

SciTech Connect

From February to July 2006, I have been doing research as a guest at Lawrence Berkeley National Laboratory (LBNL), in the Heavy Ion Fusion group. This internship, which counts as one semester in my master's program in France, I was very pleased to do it in a field that I consider has the beauty of fundamental physics, and at the same time the special appeal of a quest for a long-term and environmentally-respectful energy source. During my stay at LBNL, I have been involved in three projects, all of them related to Neutralized Drift Compression Experiment (NDCX). The first one, experimental and analytical, has consisted in measuring the effects of the eddy currents induced by the pulsed magnets in the conducting plates of the source and diagnostic chambers of the Solenoid Transport Experiment (STX, which is a subset of NDCX). We have modeled the effect and run finite-element simulations that have reproduced the perturbation to the field. Then, we have modified WARP, the Particle-In-Cell code used to model the whole experiment, in order to import realistic fields including the eddy current effects and some details of each magnet. The second project has been to take part in a campaign of WARP simulations of the same experiment to understand the leakage of electrons that was observed in the experiment as a consequence to some diagnostics and the failure of the electrostatic electron trap. The simulations have shown qualitative agreement with the measured phenomena, but are still in progress. The third project, rather theoretical, has been related to the upcoming target experiment of a thin aluminum foil heated by a beam to the 1-eV range. At the beginning I helped by analyzing simulations of the hydrodynamic expansion and cooling of the heated material. But, progressively, my work turned into making estimates for the nature of the liquid/vapor two-phase flow. In particular, I have been working on criteria and models to predict the formation of droplets, their size, and their partial or total evaporation in the expanding flow.

Armijo, Julien

2006-10-01T23:59:59.000Z

74

Accessibillity of Electron Bernstein Modes in Over-Dense Plasma  

SciTech Connect

Mode-conversion between the ordinary, extraordinary and electron Bernstein modes near the plasma edge may allow signals generated by electrons in an over-dense plasma to be detected. Alternatively, high frequency power may gain accessibility to the core plasma through this mode conversion process. Many of the tools used for ion cyclotron antenna de-sign can also be applied near the electron cyclotron frequency. In this paper, we investigate the possibilities for an antenna that may couple to electron Bernstein modes inside an over-dense plasma. The optimum values for wavelengths that undergo mode-conversion are found by scanning the poloidal and toroidal response of the plasma using a warm plasma slab approximation with a sheared magnetic field. Only a very narrow region of the edge can be examined in this manner; however, ray tracing may be used to follow the mode converted power in a more general geometry. It is eventually hoped that the methods can be extended to a hot plasma representation. Using antenna design codes, some basic antenna shapes will be considered to see what types of antennas might be used to detect or launch modes that penetrate the cutoff layer in the edge plasma.

Batchelor, D.B.; Bigelow, T.S.; Carter, M.D.

1999-04-12T23:59:59.000Z

75

Global Warming: Physics and Facts  

Science Conference Proceedings (OSTI)

This report contains papers on: A tutorial on global atmospheric energetics and the greenhouse effect; global climate models: what and how; comparison of general circulation models; climate and the earth`s radiation budget; temperature and sea level change; short-term climate variability and predictions; the great ocean conveyor; trace gases in the atmosphere: temporal and spatial trends; the geochemical carbon cycle and the uptake of fossil fuel CO{sub 2}; forestry and global warming; the physical and policy linkages; policy implications of greenhouse warming; options for lowering US carbon dioxide emissions; options for reducing carbon dioxide emissions; and science and diplomacy: a new partnership to protect the environment.

Levi, B.G. [Physics Today, New York, NY (United States); Hafemeister, D. [Committee on Foreign Relations (U.S. Senate), Washington, DC (United States); Scribner, R. [Georgetown Univ., Washington, DC (United States)] [eds.

1992-05-01T23:59:59.000Z

76

Global Warming: Physics and Facts  

Science Conference Proceedings (OSTI)

This report contains papers on: A tutorial on global atmospheric energetics and the greenhouse effect; global climate models: what and how; comparison of general circulation models; climate and the earth's radiation budget; temperature and sea level change; short-term climate variability and predictions; the great ocean conveyor; trace gases in the atmosphere: temporal and spatial trends; the geochemical carbon cycle and the uptake of fossil fuel CO{sub 2}; forestry and global warming; the physical and policy linkages; policy implications of greenhouse warming; options for lowering US carbon dioxide emissions; options for reducing carbon dioxide emissions; and science and diplomacy: a new partnership to protect the environment.

Levi, B.G. (Physics Today, New York, NY (United States)); Hafemeister, D. (Committee on Foreign Relations (U.S. Senate), Washington, DC (United States)); Scribner, R. (Georgetown Univ., Washington, DC (United States)) (eds.)

1992-01-01T23:59:59.000Z

77

Mechanical and Biological Characterization of Dense ...  

Science Conference Proceedings (OSTI)

... Characterization of Dense Nanocrystalline HA Consolidated by Field-Assisted Sintering. Author(s), Tien Bich Tran, James F. Shackelford, Joanna R. Groza.

78

Comment on "Quantum dense key distribution"  

E-Print Network (OSTI)

In this Comment we question the security of recently proposed by Degiovanni et al. [Phys. Rev. A 69 (2004) 032310] scheme of quantum dense key distribution.

Antoni Wojcik

2004-05-07T23:59:59.000Z

79

Policy implications of greenhouse warming  

SciTech Connect

Contents: background; the greenhouse gases and their effects; policy framework; adaptation; mitigation; international considerations; findings and conclusions; recommendations; questions and answers about greenhouse warming; background information on synthesis panel members and professional staff; and membership lists for effects, mitigation, and adaptation panels.

1991-01-01T23:59:59.000Z

80

Properties of warm absorbers in active galaxies: a systematic stability curve analysis  

E-Print Network (OSTI)

Signatures of warm absorbers are seen in soft X-ray spectra of about half of all Seyfert1 galaxies observed and in some quasars and blazars. We use the thermal equilibrium curve to study the influence of the shape of the ionizing continuum, density and the chemical composition of the absorbing gas on the existence and nature of the warm absorbers. We describe circumstances in which a stable warm absorber can exist as a multiphase medium or one with continuous variation in pressure. In particular we find the following results: i) the warm absorber exists only if the spectral index of the X-ray power-law ionizing continuum $\\alpha > 0.2$ and has a multiphase nature if $\\alpha \\sim 0.8$, which interestingly is the spectral index for most of the observed Seyfert 1 galaxies; ii) thermal and ionization states of highly dense warm absorbers are sensitive to their density if the ionizing continuum is sufficiently soft, i.e. dominated by the ultraviolet iii) absorbing gas with super-Solar metallicity is more likely to have a multiphase nature; iv) the nature of the warm absorber is significantly influenced by the absence of iron and associated elements which are produced in the later stages of star formation history in supernovae of type Ia.

Susmita Chakravorty; Ajit K. Kembhavi; Martin Elvis; Gary Ferland

2008-11-14T23:59:59.000Z

Note: This page contains sample records for the topic "warm dense matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

STAR FORMATION IN DENSE CLUSTERS  

SciTech Connect

A model of core-clump accretion with equally likely stopping describes star formation in the dense parts of clusters, where models of isolated collapsing cores may not apply. Each core accretes at a constant rate onto its protostar, while the surrounding clump gas accretes as a power of protostar mass. Short accretion flows resemble Shu accretion and make low-mass stars. Long flows resemble reduced Bondi accretion and make massive stars. Accretion stops due to environmental processes of dynamical ejection, gravitational competition, and gas dispersal by stellar feedback, independent of initial core structure. The model matches the field star initial mass function (IMF) from 0.01 to more than 10 solar masses. The core accretion rate and the mean accretion duration set the peak of the IMF, independent of the local Jeans mass. Massive protostars require the longest accretion durations, up to 0.5 Myr. The maximum protostar luminosity in a cluster indicates the mass and age of its oldest protostar. The distribution of protostar luminosities matches those in active star-forming regions if protostars have a constant birthrate but not if their births are coeval. For constant birthrate, the ratio of young stellar objects to protostars indicates the star-forming age of a cluster, typically {approx}1 Myr. The protostar accretion luminosity is typically less than its steady spherical value by a factor of {approx}2, consistent with models of episodic disk accretion.

Myers, Philip C., E-mail: pmyers@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2011-12-10T23:59:59.000Z

82

Why Are There Tropical Warm Pools?  

Science Conference Proceedings (OSTI)

Tropical warm pools appear as the primary mode in the distribution of tropical sea surface temperature (SST). Most previous studies have focused on the role of atmospheric processes in homogenizing temperatures in the warm pool and establishing ...

Amy C. Clement; Richard Seager; Raghu Murtugudde

2005-12-01T23:59:59.000Z

83

Dark Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

with other matter. Based on observations of the relationships between mass and gravity and the speed of the stars and other cosmological systems, scientists believe that...

84

Prediction of domestic warm-water consumption  

Science Conference Proceedings (OSTI)

The paper presents methodologies able to predict dynamic warm water consumption in district heating systems, using time-series analysis. A simulation model according to the day of a week has been chosen for modeling the domestic warm water consumption ... Keywords: autoregressive model, district heating systems, domestic warm water, prediction, simulation, time series models

Elena Serban; Daniela Popescu

2008-12-01T23:59:59.000Z

85

Heard Island global warming test  

SciTech Connect

In late January and early February 1991, an international team will conduct an experiment to test the possibility of measuring global warming in the world's oceans. The goal is to provide early indications of warming caused by the so-called greenhouse effect, the atmospheric buildup of CO{sub 2} and other gases. The method is based on the principle that acoustic energy travels through water between a source and receiver at a speed determined primarily by the water temperature. Thus acoustic travel time can be used as a temperature gauge. The idea is an outgrowth of suggestions made by Professor Walter Munk of the Scripps Institution of Oceanography and Professor Carl Wunsch of MIT in the early 1980s to use long-range underwater acoustic transmissions to measure changes in the heat content of the oceans.

Spindel, R.C. (Univ. of Washington, Seattle (USA))

1991-02-01T23:59:59.000Z

86

Hydrological consequences of global warming  

Science Conference Proceedings (OSTI)

The 2007 Intergovernmental Panel for Climate Change indicates there is strong evidence that the atmospheric concentration of carbon dioxide far exceeds the natural range over the last 650,000 years, and this recent warming of the climate system is unequivocal, resulting in more frequent extreme precipitation events, earlier snowmelt runoff, increased winter flood likelihoods, increased and widespread melting of snow and ice, longer and more widespread droughts, and rising sea level. The effects of recent warming has been well documented and climate model projections indicate a range of hydrological impacts with likely to very likely probabilities (67 to 99 percent) of occurring with significant to severe consequences in response to a warmer lower atmosphere with an accelerating hydrologic cycle.

Miller, Norman L.

2009-06-01T23:59:59.000Z

87

Warm or Steaming Ground | Open Energy Information  

Open Energy Info (EERE)

Warm or Steaming Ground Warm or Steaming Ground Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Warm or Steaming Ground Dictionary.png Warm or Steaming Ground: An area where geothermal heat is conducted to the earth's surface, warming the ground and sometimes causing steam to form when water is present. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Steam rising from the ground at Eldvorp, a 10 km row of craters, in Southwestern Iceland. http://www.visiticeland.com/SearchResults/Attraction/eldvorp Warm or steaming ground is often an indicator of a geothermal system beneath the surface. In some cases a geothermal system may not show any

88

Some Aspects of Dense Fog in the Midwestern United States  

Science Conference Proceedings (OSTI)

To better understand dense fog events in the midwestern United States, a fog climatology was developed that examines the surface weather conditions at dense fog onset and during dense fog events, in relationship to fog duration. Surface airways ...

Nancy E. Westcott

2007-06-01T23:59:59.000Z

89

Theoretical Model and Interpretation of Dense Plasma X-Ray Thomson Scattering  

Science Conference Proceedings (OSTI)

The authors present analytical expressions for the dynamic structure factor, or form factor S(k,{omega}), which is the quantity describing the inelastic x-ray cross section from a dense plasma or a simple liquid. The results, based on the random phase approximation (RPA) for the treatment on the charged particle coupling, can be applied to describe scattering from either weakly coupled classical plasmas or degenerate electron liquids. The form factor correctly reproduces the Compton energy downshift and the usual Fermi-Dirac electron velocity distribution for S(k,{omega}) in the case of a cold degenerate plasma. the usual concept of scattering parameter is also reinterpreted for the degenerate case in order to include the effect of the Thomas-Fermi screening. The results shown in this work can be applied to interpreting x-ray scattering in warm dense plasmas occurring in inertial confinement fusion experiments or inside the interior of planets.

Gregori, G; Landen, O; Hicks, D; Pasley, J; Collins, G; Celliers, P; Bastea, M; Glenzer, S

2002-04-03T23:59:59.000Z

90

Computer Simulations Indicate Calcium Carbonate Has a Dense Liquid...  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Simulations Indicate Calcium Carbonate Has a Dense Liquid Phase Computer Simulations Indicate Calcium Carbonate Has a Dense Liquid Phase Berkeley Lab research could help...

91

Quark Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Quark Quark Matter in Neutron Stars Prashanth Jaikumar Argonne National Laboratory, (PHY) September 7th, 2006 . - p.1/29 Outline * Neutron stars: observations by a theorist . - p.2/29 Outline * Neutron stars: observations by a theorist * Mass-Radius constraints on Equation of State (EoS) . - p.2/29 Outline * Neutron stars: observations by a theorist * Mass-Radius constraints on Equation of State (EoS) * Is quark matter inside neutron stars ruled out? . - p.2/29 Outline * Neutron stars: observations by a theorist * Mass-Radius constraints on Equation of State (EoS) * Is quark matter inside neutron stars ruled out? ------------------------ * Strange Quark stars: Features and "Findings" . - p.2/29 Outline * Neutron stars: observations by a theorist * Mass-Radius constraints on Equation of State (EoS) * Is quark matter inside neutron stars ruled out? ------------------------

92

Global warming and biological diversity  

SciTech Connect

This book is based on presentations given at the World Wildlife Fund's Conference on Consequences of the Greenhouse Effect for Biological Diverisity in 1988, and includes updated literature citations. The general topics covered in the book include the following: overview; summary of past responses of plants to climatic change; general ecological and physiological responses; ecosystems in 4 specific regions (arctic marine, Alaskan North Slope, NW US forests, and Mediterranean); global warming's implications for conservation. Ideas and data from many ecosystems and information about the relationships between biodiversity and climatic change are brought together with a balance of factual information and defensible scientific prognostication.

Peters, R.L.; Lovejoy, T.E. (eds.)

1992-01-01T23:59:59.000Z

93

Low frequency electromagnetic oscillations in dense degenerate electron-positron pair plasma, with and without ions  

SciTech Connect

Quantum plasma oscillations are studied in a strongly magnetized, ultra-dense plasma with degenerate electrons and positrons. The dispersive role of electron and positron quantum effects on low frequency (in comparison to electron cyclotron frequency) shear electromagnetic wave is investigated by employing hydrodynamic formulation. In the presence of ions, the density balance changes, and the electromagnetic wave (with frequency lower than the ion cyclotron frequency) is shown to couple with electrostatic ion mode under certain conditions. For such low frequency waves, it is also seen that the contribution of electron and positron degeneracy pressure is dominant as compared to their diffraction effects. The results are analyzed numerically for illustrative purpose pointing out their relevance to the dense laboratory (e.g., super-intense laser-dense matter interactions) and astrophysical plasmas.

Khan, S. A. [National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 45320 (Pakistan); Ayub, M. K. [National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 45320 (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Pohang University of Science and Technology (POSTECH), Pohang, Gyunbuk 790-784 (Korea, Republic of); Ahmad, Ali [National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 45320 (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan)

2012-10-15T23:59:59.000Z

94

Gamma-ray burst interaction with dense interstellar medium  

E-Print Network (OSTI)

Interaction of cosmological gamma ray burst radiation with the dense interstellar medium of host galaxy is considered. Gas dynamical motion of interstellar medium driven by gamma ray burst is investigated in 2D approximation for different initial density distributions of host galaxy matter and different total energy of gamma ray burst. The maximum velocity of motion of interstellar medium is $1.8\\cdot10^4$ km/s. Light curves of gamma ray burst afterglow are calculated for set of non homogeneous density, distribution gamma ray burst total energy, and different viewing angles. Spectra of gamma ray burst afterglow are modeled taking into account conversion of hard photons (soft X-ray, hard UV) to soft UV and optics photons.

Maxim Barkov; Gennady Bisnovatyi-Kogan

2004-10-07T23:59:59.000Z

95

Motor vehicles and global warming  

SciTech Connect

Energy use in transportation is one of the contributors to the concern over global warming. The primary greenhouse gases released by the transportation sector are carbon dioxide and chlorofluorocarbons. When all greenhouse gases are considered, CO{sub 2} emissions from the operation of highway vehicles worldwide represent about 4.7% of global warming enhancement. CO{sub 2} emissions from U.S. highway vehicles along represent about 2 to 2.5% of worldwide greenhouse gases. The use of CFCs in automotive air conditioning, in blowing foams for seats and padding and in the manufacture of electronic circuit boards accounted for 15% of the global usage of CFC-12 in 1985 according to the U.S. EPA. The Motor Vehicle Manufacturers Association supports the phase-out of CFC use provided that safe substitutes are available and that adequate lead time is allowed for.They suggest that reduction of greenhouse gases would require planning on a global scope to be effective. One alternative they suggest for further study is a carbon fee for reducing emissions of carbon dioxide. This fee would be levied on each type of fossil fuel, proportional to its carbon content per unit of energy.

Halberstadt, M.L.

1990-03-01T23:59:59.000Z

96

Changes in the Frequency of Extreme Warm-Season Surface Dewpoints in Northeastern Illinois: Implications for Cooling-System Design and Operation  

Science Conference Proceedings (OSTI)

Warm-season (1 May30 September) hourly dewpoint data were examined for temporal changes at two weather stations in northeastern Illinois during a 42-yr period (19592000). This area has dense population (greater than 8 million), and shifts to ...

Jesse Sparks; David Changnon; Jason Starke

2002-08-01T23:59:59.000Z

97

Hotel energy use contributes to global warming.  

E-Print Network (OSTI)

??Before learning about the consequences of global warming and the efforts hotels are making to reverse the effects, it is important to get a better (more)

Faja, Christine

2007-01-01T23:59:59.000Z

98

Nuclear matter to strange matter transition in holographic QCD  

E-Print Network (OSTI)

We construct a simple holographic QCD model to study nuclear matter to strange matter transition. The interaction of dense medium and hadrons is taken care of by imposing the force balancing condition for stable D4/D6/D6 configuration. By considering the intermediate and light flavor branes interacting with baryon vertex homogeneously distributed along R^3 space and requesting the energy minimization, we find that there is a well defined transition density as a function of current quark mass. We also find that as density goes up very high, intermediate (or heavy) and light quarks populate equally as expected from the Pauli principle. In this sense, the effect of the Pauli principle is realized as dynamics of D-branes.

Youngman Kim; Yunseok Seo; Sang-Jin Sin

2009-11-19T23:59:59.000Z

99

Greenhouse warming and the tropical water budget  

SciTech Connect

The present work takes issue with some of the theses of Lindzen's (1990) work on global warming, arguing in particular that Lindzen's work is hampered by the use of oversimplified models. Lindzen then presents a detailed reply to these arguments, emphasizing the fundamental importance of the upper tropospheric water-vapor budget to the question of global warming. 26 refs.

Betts, A.K.

1990-10-01T23:59:59.000Z

100

The Sinking of Warm-Core Rings  

Science Conference Proceedings (OSTI)

Intense cooling of a warm-core ring or warming of the fluids surrounding a ring can increase the density of that ring relative to the surrounding fluids. This increase in density can cause the ring to sink under the surrounding fluids. A simple ...

Rick Chapman; Doron Nof

1988-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm dense matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Dense high temperature ceramic oxide superconductors  

DOE Patents (OSTI)

Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

Landingham, Richard L. (Livermore, CA)

1993-01-01T23:59:59.000Z

102

Performance Evaluation of Dense Gas Dispersion Models  

Science Conference Proceedings (OSTI)

This paper summarizes the results of a study to evaluate the performance of seven dense gas dispersion models using data from three field experiments. Two models (DEGADIS and SLAB) are in the public domain and the other five (AIRTOX, CHARM, FOCUS,...

Jawad S. Touma; William M. Cox; Harold Thistle; James G. Zapert

1995-03-01T23:59:59.000Z

103

Dense high temperature ceramic oxide superconductors  

DOE Patents (OSTI)

Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

Landingham, R.L.

1993-10-12T23:59:59.000Z

104

Preparation of a dense, polycrystalline ceramic structure  

DOE Patents (OSTI)

Ceramic nanopowder was sealed inside a metal container under a vacuum. The sealed evacuated container was forced through a severe deformation channel at an elevated temperature below the melting point of the ceramic nanopowder. The result was a dense nanocrystalline ceramic structure inside the metal container.

Cooley, Jason (Los Alamos, NM); Chen, Ching-Fong (Los Alamos, NM); Alexander, David (Los Alamos, NM)

2010-12-07T23:59:59.000Z

105

Solar Warming Submitted to Avalanche.ca Journal Feb. 2008 Can solar warming contribute to dry slab avalanches?  

E-Print Network (OSTI)

Solar Warming Submitted to Avalanche.ca Journal Feb. 2008 Can solar warming contribute to dry slab, when signs of warming, such as relatively warm air temperatures, strong solar radiation, and moist by a skier on a steep south-west facing aspect. Solar warming may have contributed to this release. (photo

Jamieson, Bruce

106

A Decomposition of Feedback Contributions to Polar Warming Amplification  

Science Conference Proceedings (OSTI)

Polar surface temperatures are expected to warm 2-3 times faster than the global mean surface temperature; a phenomenon referred to as polar warming amplification. Therefore, understanding individual process contributions to the polar warming is ...

Patrick C. Taylor; Ming Cai; Aixue Hu; Jerry Meehl; Warren Washington; Guang J. Zhang

107

Matter Field, Dark Matter and Dark Energy  

E-Print Network (OSTI)

A model concerning particle theory and cosmology is proposed. Matter field, dark matter and dark energy are created by an energy flow from space to primordial matter fields at the phase transition in the early universe.

Masayasu Tsuge

2008-02-01T23:59:59.000Z

108

A Possible Effect of an Increase in the Warm-Pool SST on the Magnitude of El Nio Warming  

Science Conference Proceedings (OSTI)

El Nio warming corresponds to an eastward extension of the western Pacific warm pool; one thus naturally wonders whether an increase in the warm pool SST will result in stronger El Nios. This question, though elementary, has not drawn much ...

De-Zheng Sun

2003-01-01T23:59:59.000Z

109

Warm Springs State Hospital Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Warm Springs State Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs State Hospital Space Heating Low Temperature Geothermal...

110

Structures for dense, crack free thin films  

DOE Patents (OSTI)

The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

2011-03-08T23:59:59.000Z

111

Oxygen ion-conducting dense ceramic  

DOE Patents (OSTI)

Preparation, structure, and properties of mixed metal oxide compositions and their uses are described. Mixed metal oxide compositions of the invention have stratified crystalline structure identifiable by means of powder X-ray diffraction patterns. In the form of dense ceramic membranes, the present compositions demonstrate an ability to separate oxygen selectively from a gaseous mixture containing oxygen and one or more other volatile components by means of ionic conductivities.

Balachandran, Uthamalingam (Hinsdale, IL); Kleefisch, Mark S. (Plainfield, IL); Kobylinski, Thaddeus P. (Prospect, PA); Morissette, Sherry L. (Las Cruces, NM); Pei, Shiyou (Naperville, IL)

1998-01-01T23:59:59.000Z

112

The Dynamics of Warm and Cold Climates  

Science Conference Proceedings (OSTI)

The atmospheric dynamics of five different climate simulations with the GISS GCM are compared to investigate the changes that occur as climate warms or cools. There are two ice age simulations, the current and doubled CO2 climates, and a ...

D. Rind

1986-01-01T23:59:59.000Z

113

Response to Skeptics of Global Warming  

Science Conference Proceedings (OSTI)

The majority of the scientific community involved in climate research is convinced of the reality of a current and future global warming due to the greenhouse effect, a change that must be largely caused by human activities. However, a minority ...

William W. Kellogg

1991-04-01T23:59:59.000Z

114

Initial Precipitation Formation in Warm Florida Cumulus  

Science Conference Proceedings (OSTI)

The microphysical processes that lead to the development of precipitation in small, warm cumulus are examined using data from the Small Cumulus Microphysics Study near Cape Canaveral, Florida. Aircraft measurements are used to determine the ...

Neil F. Laird; Harry T. Ochs III; Robert M. Rauber; L. Jay Miller

2000-11-01T23:59:59.000Z

115

The Tropical Warm Pool International Cloud Experiment  

Science Conference Proceedings (OSTI)

A comprehensive dataset describing tropical cloud systems and their environmental setting and impacts has been collected during the Tropical Warm Pool International Cloud Experiment (TWP-ICE) and Aerosol and Chemical Transport in Tropical ...

Peter T. May; James H. Mather; Geraint Vaughan; Keith N. Bower; Christian Jakob; Greg M. McFarquhar; Gerald G. Mace

2008-05-01T23:59:59.000Z

116

Dynamic and Thermodynamic Regulation of Ocean Warming  

Science Conference Proceedings (OSTI)

The relative roles of clouds, surface evaporation, and ocean heat transport in limiting maximum sea surface temperatures (SSTs) in the western Pacific warm pool are investigated by means of simple and intermediate coupled oceanatmosphere models. ...

Tim Li; Timothy F. Hogan; C-P. Chang

2000-10-01T23:59:59.000Z

117

Numerical Simulation of Sudden Stratospheric Warmings  

Science Conference Proceedings (OSTI)

A mechanistic, quasi-geostrophic, semi-spectral model with a self-consistent calculation of the mean zonal flow fields is used to numerically simulate sudden stratospheric warmings generated by a single zonal harmonic (m) planetary wave. The ...

Mark R. Schoeberl; Darrell F. Strobel

1980-01-01T23:59:59.000Z

118

Scaling Potential Evapotranspiration with Greenhouse Warming  

Science Conference Proceedings (OSTI)

Potential evapotranspiration (PET) is a supply-independent measure of the evaporative demand of a terrestrial climate, of basic importance in climatology, hydrology, and agriculture. Future increases in PET from greenhouse warming are often cited ...

Jacob Scheff; Dargan M. W. Frierson

119

Separating signal and noise in climate warming  

NLE Websites -- All DOE Office Websites (Extended Search)

11162011 | NR-11-11-03 Separating signal and noise in climate warming Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov Printer-friendly A National Oceanic and Atmospheric...

120

Cold-blooded and warm-blooded  

NLE Websites -- All DOE Office Websites (Extended Search)

Cold-blooded and warm-blooded Cold-blooded and warm-blooded Name: Walter Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: What is the fundamental difference between cold-blooded and warm- blooded creatures? I know that reptile blood is a bit different than mammal blood, but is that the difference or is it a difference in the other cells of the body? Replies: Warm blooded refers to an animals ability to maintain its body temperature at a constant level. Cold blooded animal's bodies stay at the temperature of environment around them (more or less). The mechanism by which a warm blooded animal does this is by generating heat, mostly through muscle movement (but by other biochemical processes too). An example of this is shivering. Warm blooded animals also cool themselves off by sweating, panting (and other ways). In mammals the hypothalamic area of the brain has much to do with controlling these reflex processes

Note: This page contains sample records for the topic "warm dense matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Television news coverage of global warming  

Science Conference Proceedings (OSTI)

Citizens are expressing increased concern over the number and variety of environmental problems. Global warming in particular is a focus of concern for scientists and environmental groups. Such concern should naturally motivate individuals to seek information about these topics. Many people turn to the media, most usually television, for information on the nature of these problems. Consequently, this paper studied media coverage of environmental issues, specifically global warming. Television coverage was examined for: (1) the general nature of coverage; (2) biases in coverage; (3) visual images used to cover global warming; and (4) the congruity between visual and verbal messages in newscasts. Nightly newscasts from the three major American television networks were analyzed from 1993--1995 to determine the overall nature of global warming coverage since the Earth Summit in 1992. Results indicated that television news suffers from some serious inadequacies in its portrayal of global warming issues. The paper concludes by first discussing how its results intertwine with other work in the global warming and mass media field. Finally, the implications of inadequacies in media coverage for policy-makers when it comes to sound management of critical resources in this area are also discussed.

Nitz, M. [Univ. of Idaho, Moscow, ID (United States). School of Communication; Jarvis, S. [Univ. of Texas, Austin, TX (United States). Dept. of Speech Communication; Kenski, H. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Communication

1996-06-01T23:59:59.000Z

122

Supernovae as probes of cosmic parameters: estimating the bias from under-dense lines of sight  

E-Print Network (OSTI)

Correctly interpreting observations of sources such as type Ia supernovae (SNe Ia) require knowledge of the power spectrum of matter on AU scales - which is very hard to model accurately. Because under-dense regions account for much of the volume of the universe, light from a typical source probes a mean density significantly below the cosmic mean. The relative sparsity of sources implies that there could be a significant bias when inferring distances of SNe Ia, and consequently a bias in cosmological parameter estimation. While the weak lensing approximation should in principle give the correct prediction for this, linear perturbation theory predicts an effectively infinite variance in the convergence for ultra-narrow beams. We attempt to quantify the effect typically under-dense lines of sight might have in parameter estimation by considering three alternative methods for estimating distances, in addition to the usual weak lensing approximation. We find in each case this not only increases the errors in the...

Busti, V C; Clarkson, C

2013-01-01T23:59:59.000Z

123

ENVIRONMENT DEPENDENCE OF DARK MATTER HALOS IN SYMMETRON MODIFIED GRAVITY  

Science Conference Proceedings (OSTI)

We investigate the environment dependence of dark matter halos in the symmetron modified gravity scenario. The symmetron is one of three known mechanisms for screening a fifth force and thereby recovering general relativity in dense environments. The effectiveness of the screening depends on both the mass of the object and the environment it lies in. Using high-resolution N-body simulations we find a significant difference, which depends on the halo's mass and environment, between the lensing and dynamical masses of dark matter halos similar to the f(R) modified gravity. The symmetron can however yield stronger signatures due to a freedom in the strength of coupling to matter.

Winther, Hans A.; Mota, David F. [Institute of Theoretical Astrophysics, University of Oslo, NO-0315 Oslo (Norway); Li Baojiu [ICC, Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom)

2012-09-10T23:59:59.000Z

124

Can we delay a greenhouse warming  

SciTech Connect

This article reviews a book published by the Environmental Protection Agency. The book discussed the Greenhouse Effect which is a warming of the earth's atmosphere caused by the doubling of the atmospheric carbon dioxide concentration. The excess carbon dioxide is pollution derived from the burning of fossil fuels. The report suggested that the warming of the atmosphere would cause thawing of the polar regions which in turn would cause a rise in sea levels and flooding of the coastal lowlands. In addition to the flooding, the report predicted climate changes that would effect the productivity of croplands in the west. The authors of the report stressed that there was no way to avoid this warming of the earth. They suggested that people should start preparing for the inevitable.

Seidel, S.; Keyes, D.

1983-01-01T23:59:59.000Z

125

Physics Out Loud - Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Previous Video (Laser) Physics Out Loud Main Index Next Video (Neutron) Neutron Matter David Lawrence, a Jefferson Lab physicist, discusses matter...

126

On Load Balancing in a Dense Wireless  

E-Print Network (OSTI)

We study the load balancing problem in a dense wireless multihop network, where a typical path consists of large number of hops, i.e., the spatial scales of a typical distance between source and destination, and mean distance between the neighbouring nodes are strongly separated. In this limit, we present a general framework for analysing the traffic load resulting from a given set of paths and traffic demands. We formulate the load balancing problem as a minmax problem and give two lower bounds for the achievable minimal maximum traffic load. The framework is illustrated by an example of uniformly distributed traffic demands in a unit disk with a few families of paths given in advance. With these paths we are able to decrease the maximum traffic load by factor of 33 40% depending on the assumptions. The obtained traffic load level also comes quite near the tightest lower bound.

Multihop Network Esa; Esa Hyyti

2006-01-01T23:59:59.000Z

127

Oxygen ion-conducting dense ceramic  

DOE Patents (OSTI)

Preparation, structure, and properties of mixed metal oxide compositions containing at least strontium, cobalt, iron and oxygen are described. The crystalline mixed metal oxide compositions of this invention have, for example, structure represented by Sr.sub..alpha. (Fe.sub.1-x Co.sub.x).sub..alpha.+.beta. O.sub..delta. where x is a number in a range from 0.01 to about 1, .alpha. is a number in a range from about 1 to about 4, .beta. is a number in a range upward from 0 to about 20, and .delta. is a number which renders the compound charge neutral, and wherein the composition has a non-perovskite structure. Use of the mixed metal oxides in dense ceramic membranes which exhibit oxygen ionic conductivity and selective oxygen separation, are described as well as their use in separation of oxygen from an oxygen-containing gaseous mixture.

Balachandran, Uthamalingam (Hinsdale, IL); Kleefisch, Mark S. (Naperville, IL); Kobylinski, Thaddeus P. (Lisle, IL); Morissette, Sherry L. (Las Cruces, NM); Pei, Shiyou (Naperville, IL)

1997-01-01T23:59:59.000Z

128

Oxygen ion-conducting dense ceramic  

DOE Patents (OSTI)

Preparation, structure, and properties of mixed metal oxide compositions containing at least strontium, cobalt, iron and oxygen are described. The crystalline mixed metal oxide compositions of this invention have, for example, structure represented by Sr.sub..alpha. (Fe.sub.1-x Co.sub.x).sub..alpha.+.beta. O.sub..delta. where x is a number in a range from 0.01 to about 1, .alpha. is a number in a range from about 1 to about 4, .beta. is a number in a range upward from 0 to about 20, and .delta. is a number which renders the compound charge neutral, and wherein the composition has a non-perovskite structure. Use of the mixed metal oxides in dense ceramic membranes which exhibit oxygen ionic conductivity and selective oxygen separation, are described as well as their use in separation of oxygen from an oxygen-containing gaseous mixture.

Balachandran, Uthamalingam (Hinsdale, IL); Kleefisch, Mark S. (Naperville, IL); Kobylinski, Thaddeus P. (Lisle, IL); Morissette, Sherry L. (Las Cruces, NM); Pei, Shiyou (Naperville, IL)

1996-01-01T23:59:59.000Z

129

Research Areas | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

energy density plasmas at the quantum electrodynamic (QED) limit, relativistic thermal plasmas, and relativistic shocks. Warm Dense Matter Specific areas of interest...

130

Numerical Simulations of Wire and Foil Behaviors under Megaampere...  

National Nuclear Security Administration (NNSA)

2: High Energy Density, Plasmas, Magnetic Fields Numerical Simulations of Wire and Foil Electrical Explosion under Helical EMG Current Drive for Warm Dense Matter Generation S.F....

131

Supermassive Black Holes and the Warm Ionized  

E-Print Network (OSTI)

Supermassive Black Holes and the Warm Ionized Gas in Early-type Galaxies Renbin Yan University stars actively. (late-type galaxies) #12;Prevalence of Supermassive Black Holes in Massive Galaxies MBH merging Right after coalescing Post-merger Star Formation Rate Black Hole Accretion Rate #12;Maintenance

Wang, Ming-Jye

132

Can we delay a greenhouse warming  

SciTech Connect

The author comments on the EPA report dated September 1983 Can We Delay A Greenhouse Warming. He takes exception to the widely-held interpretation that the answer is not much. The contribution of other greenhouse gases such as methane and nitrous oxide to the EPA scenarios is pointed out, and the lack of understanding of their role is emphasised. (ACR)

Perry, A.M.

1983-01-01T23:59:59.000Z

133

Warm Pool Physics in a Coupled GCM  

Science Conference Proceedings (OSTI)

The physics of the IndoPacific warm pool are investigated using a coupled ocean atmosphere general circulation model. The model, developed at the Max-Planck-Institut fair Meteorologic, Hamburg, does not employ a flux correction and is used with ...

Niklas Schneider; Tim Barnett; Mojib Latif; Timothy Stockdale

1996-01-01T23:59:59.000Z

134

Warm winter storms in Central Chile  

Science Conference Proceedings (OSTI)

Central Chile is a densely populated region along the west coast of subtropical South America (30-36S) limited to the east by the Andes. Precipitation is concentrated in austral winter mostly associated with the passage of cold fronts. The ...

R. Garreaud

135

Carbon Nanotube Arrays: Synthesis of Dense Arrays of Well ...  

Carbon Nanotube Arrays: Synthesis of Dense Arrays of Well-Aligned Carbon Nanotubes Completely Filled with Titanium Carbide on Titanium Substrates

136

Integrated dense array and transect MT surveying at dixie valley...  

Open Energy Info (EERE)

2007 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Integrated dense array and transect MT surveying at dixie valley geothermal...

137

Dense Deposition of Nanocomposites by a Compact YAG Laser  

Science Conference Proceedings (OSTI)

Feb 1, 2002 ... Dense Deposition of Nanocomposites by a Compact YAG Laser by M. Senna and K. Hamada. Publisher: TMS. Product Format: PDF. Pages...

138

Observational Constraints on Past Attributable Warming and Predictions of Future Global Warming  

Science Conference Proceedings (OSTI)

This paper investigates the impact of aerosol forcing uncertainty on the robustness of estimates of the twentieth-century warming attributable to anthropogenic greenhouse gas emissions. Attribution analyses on three coupled climate models with ...

Peter A. Stott; John F. B. Mitchell; Myles R. Allen; Thomas L. Delworth; Jonathan M. Gregory; Gerald A. Meehl; Benjamin D. Santer

2006-07-01T23:59:59.000Z

139

The Role of Human Activity in the Recent Warming of Extremely Warm Daytime Temperatures  

Science Conference Proceedings (OSTI)

Formal detection and attribution analyses of changes in daily extremes give evidence of a significant human influence on the increasing severity of extremely warm nights and decreasing severity of extremely cold days and nights. This paper ...

Nikolaos Christidis; Peter A. Stott; Simon J. Brown

2011-04-01T23:59:59.000Z

140

Compressed Baryonic Matter: from Nuclei to Pulsars  

E-Print Network (OSTI)

Our world is wonderful because of the negligible baryonic part although unknown dark matter and dark energy dominate the Universe. Those nuclei in the daily life are forbidden to fuse by compression due to the Coulomb repulse, nevertheless, it is usually unexpected in extraterrestrial extreme-environments: the gravity in a core of massive evolved star is so strong that all the other forces (including the Coulomb one) could be neglected. Compressed baryonic matter is then produced after supernova, manifesting itself as pulsar-like stars observed. The study of this compressed baryonic matter can not only be meaningful in fundamental physics (e.g., the elementary color interaction at low-energy scale, testing gravity theories, detecting nano-Hertz background gravitational waves), but has also profound implications in engineering applications (including time standard and navigation), and additionally, is focused by Chinese advanced telescopes, either terrestrial or in space. Historically, in 1930s, L. Landau speculated that dense matter at supra-nuclear density in stellar cores could be considered as gigantic nuclei (the prototype of standard model of neutron star), however, we address that the residual compact object of supernova could be of condensed matter of quark clusters. The idea that pulsars are quark-cluster stars was not ruled out during the last decade, and we are expecting to test further by future powerful facilities. (in Chinese)

Renxin Xu

2013-10-12T23:59:59.000Z

Note: This page contains sample records for the topic "warm dense matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Energy Tax Credits: Stay Warm and Save MORE Money! | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Credits: Stay Warm and Save MORE Money Energy Tax Credits: Stay Warm and Save MORE Money October 29, 2008 - 6:00am Addthis Allison Casey Senior Communicator, NREL With all of...

142

An Interpretation of Sudden Warmings In Terms of Potential vorticity  

Science Conference Proceedings (OSTI)

A simple and concise interpretation of stratospheric sudden warmings is offered in terms Of the transient changes in the potential vorticity pattern. The warming is viewed as a manifestation of the reversal of the mean (zonally averaged) relative ...

H. C. Davies

1981-02-01T23:59:59.000Z

143

Forecast cloudy; The limits of global warming models  

SciTech Connect

This paper reports on climate models used to study global warming. It discusses factors which must be included in climate models, shortcomings of existing climate models, and scenarios for global warming.

Stone, P.H.

1992-02-01T23:59:59.000Z

144

An Analysis of Tropical Ocean Diurnal Warm Layers  

Science Conference Proceedings (OSTI)

During periods of light surface wind, a warm stable layer forms at the ocean surface with a maximum sea surface temperature (SST) in the early afternoon. The diurnal SST amplitude (DSA) associated with these diurnal warm layers (DWLs) can reach ...

Hugo Bellenger; Jean-Philippe Duvel

2009-07-01T23:59:59.000Z

145

Building Technologies Office: Low-Global Warming Potential Refrigerants  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Global Warming Low-Global Warming Potential Refrigerants Research Project to someone by E-mail Share Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Facebook Tweet about Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Twitter Bookmark Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Google Bookmark Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Delicious Rank Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Digg Find More places to share Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on AddThis.com... About Take Action to Save Energy

146

The Heat Balance of the Western Hemisphere Warm Pool  

Science Conference Proceedings (OSTI)

The thermodynamic development of the Western Hemisphere warm pool and its four geographic subregions are analyzed. The subregional warm pools of the eastern North Pacific and equatorial Atlantic are best developed in the boreal spring, while in ...

David B. Enfield; Sang-ki Lee

2005-07-01T23:59:59.000Z

147

Anthropogenic Warming of the Oceans: Observations and Model Results  

Science Conference Proceedings (OSTI)

Observations show the oceans have warmed over the past 40 yr, with appreciable regional variation and more warming at the surface than at depth. Comparing the observations with results from two coupled oceanatmosphere climate models [the ...

David W. Pierce; Tim P. Barnett; Krishna M. AchutaRao; Peter J. Gleckler; Jonathan M. Gregory; Warren M. Washington

2006-05-01T23:59:59.000Z

148

Mechanisms of Global Warming Impacts on Regional Tropical Precipitation  

Science Conference Proceedings (OSTI)

Mechanisms that determine the tropical precipitation anomalies under global warming are examined in an intermediate atmospheric model coupled with a simple land surface and a mixed layer ocean. To compensate for the warm tropospheric temperature, ...

Chia Chou; J. David Neelin

2004-07-01T23:59:59.000Z

149

Mechanisms for Global Warming Impacts on Precipitation Frequency and Intensity  

Science Conference Proceedings (OSTI)

Global warming mechanisms that cause changes in frequency and intensity of precipitation in the tropics are examined in climate model simulations. Under global warming, tropical precipitation tends to be more frequent and intense for heavy ...

Chia Chou; Chao-An Chen; Pei-Hua Tan; Kuan Ting Chen

2012-05-01T23:59:59.000Z

150

Comparing the effects of greenhouse gas emissions on global warming  

E-Print Network (OSTI)

Policies dealing with global warming require a measure of the effects of the emissions of greenhouse gases that create different magnitudes of instantaneous radiative forcing and have different lifetimes. The Global Warming ...

Eckaus, Richard S.

1990-01-01T23:59:59.000Z

151

California Policy Should Distinguish Biofuels by Differential Global Warming Effects  

E-Print Network (OSTI)

California Policy Should Distinguish Biofuels by Differential Global Warming Effects by Richard J: _______________________________________ Date #12;California Policy Should Distinguish Biofuels by Differential Global Warming Effects Richard J, 2006 #12;#12;ABSTRACT California Policy Should Distinguish Biofuels by Differential Global Warming

Kammen, Daniel M.

152

Towards dense linear algebra for hybrid GPU accelerated manycore systems  

Science Conference Proceedings (OSTI)

We highlight the trends leading to the increased appeal of using hybrid multicore+GPU systems for high performance computing. We present a set of techniques that can be used to develop efficient dense linear algebra algorithms for these systems. We illustrate ... Keywords: Dense linear algebra, Graphics processing units, Hybrid computing, Multicore processors, Parallel algorithms

Stanimire Tomov; Jack Dongarra; Marc Baboulin

2010-06-01T23:59:59.000Z

153

Latitudinal distribution of the recent Arctic warming  

Science Conference Proceedings (OSTI)

Increasing Arctic temperature, disappearance of Arctic sea ice, melting of the Greenland ice sheet, sea level rise, increasing strength of Atlantic hurricanes are these impending climate catastrophes supported by observations? Are the recent data really unprecedented during the observational records? Our analysis of Arctic temperature records shows that the Arctic and temperatures in the 1930s and 1940s were almost as high as they are today. We argue that the current warming of the Arctic region is affected more by the multi-decadal climate variability than by an increasing concentration of carbon dioxide. Unfortunately, none of the existing coupled Atmosphere-Ocean General Circulation Models used in the IPCC 2007 cIimate change assessment is able to reproduce neither the observed 20th century Arctic cIimate variability nor the latitudinal distribution of the warming.

Chylek, Petr [Los Alamos National Laboratory; Lesins, Glen K [DALLHOUSIE UNIV.; Wang, Muyin [UNIV OF WASHINGTON

2010-12-08T23:59:59.000Z

154

Global Warming Mitigation Investments Optimized under Uncertainty  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Warming Mitigation Investments Optimized under Uncertainty Global Warming Mitigation Investments Optimized under Uncertainty Speaker(s): Hermann Held Date: July 9, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Thomas McKone The Copenhagen Accord (2009) recognizes that 'the increase in global temperature should be below 2 degrees Celsius' (compared to pre-industrial levels, '2° target'). In recent years, energy economics have derived welfare-optimal investment streams into low-emission energy mixes and associated costs. According to our analyses, auxiliary targets that are in line with the 2° target could be achieved at relatively low costs if energy investments were triggered rather swiftly. While such analyses assume 'perfect foresight' of a benevolent 'social planner', an accompanying suite of experiments explicitly

155

Decarbonization and Sequestration for Mitigating Global Warming  

NLE Websites -- All DOE Office Websites (Extended Search)

DECARBONIZATION AND SEQUESTRATION FOR DECARBONIZATION AND SEQUESTRATION FOR MITIGATING GLOBAL WARMING M. Steinberg (msteinbe@bnl.gov); 631-344-3036 Brookhaven National Laboratory 12 South Upton Street Upton, NY 11973-5000, USA ABSTRACT Mitigating the global warming greenhouse effect while maintaining a fossil fuel economy, requires improving efficiency of utilization of fossil fuels, use of high hydrogen content fossil fuels, decarbonization of fossil fuels, and sequestering of carbon and CO 2 applied to all the sectors of the economy, electric power generation, transportation, and industrial, and domestic power and heat generation. Decarbonization means removal of carbon as C or CO 2 either before or after fossil fuel combustion and sequestration means disposal of the recovered C or CO 2 including its utilization. Removal and recovery of CO

156

Dense ceramic membranes for methane conversion  

DOE Green Energy (OSTI)

This report focuses on a mechanism for oxygen transport through mixed- oxide conductors as used in dense ceramic membrane reactors for the partial oxidation of methane to syngas (CO and H{sub 2}). The in-situ separation of O{sub 2} from air by the membrane reactor saves the costly cryogenic separation step that is required in conventional syngas production. The mixed oxide of choice is SrCo{sub 0.5}FeO{sub x}, which exhibits high oxygen permeability and has been shown in previous studies to possess high stability in both oxidizing and reducing conditions; in addition, it can be readily formed into reactor configurations such as tubes. An understanding of the electrical properties and the defect dynamics in this material is essential and will help us to find the optimal operating conditions for the conversion reactor. In this paper, we discuss the conductivities of the SrFeCo{sub 0.5}O{sub x} system that are dependent on temperature and partial pressure of oxygen. Based on the experimental results, a defect model is proposed to explain the electrical properties of this system. The oxygen permeability of SrFeCo{sub 0.5}O{sub x} is estimated by using conductivity data and is compared with that obtained from methane conversion reaction.

Balachandran, U.; Mieville, R.L.; Ma, B. [Argonne National Lab., IL (United States); Udovich, C.A. [Amoco Oil Co., Naperville, IL (United States)

1996-05-01T23:59:59.000Z

157

Borehole stability in densely welded tuffs  

SciTech Connect

The stability of boreholes, or more generally of underground openings (i.e. including shafts, ramps, drifts, tunnels, etc.) at locations where seals or plugs are to be placed is an important consideration in seal design for a repository (Juhlin and Sandstedt, 1989). Borehole instability or borehole breakouts induced by stress redistribution could negate the effectiveness of seals or plugs. Breakout fractures along the wall of repository excavations or exploratory holes could provide a preferential flowpath for groundwater or gaseous radionuclides to bypass the plugs. After plug installation, swelling pressures exerted by a plug could induce radial cracks or could open or widen preexisting cracks in the rock at the bottom of the breakouts where the tangential compressive stresses have been released by the breakout process. The purpose of the work reported here is to determine experimentally the stability of a circular hole in a welded tuff sample subjected to various external boundary loads. Triaxial and biaxial borehole stability tests have been performed on densely welded Apache Leap tuff samples and Topopah Spring tuff samples. The nominal diameter of the test hole is 13.3 or 14.4 mm for triaxial testing, and 25.4 mm for biaxial testing. The borehole axis is parallel to one of the principal stress axes. The boreholes are drilled through the samples prior to applying external boundary loads. The boundary loads are progressively increased until breakouts occur or until the maximum load capacity of the loading system has been reached. 74 refs.

Fuenkajorn, K.; Daemen, J.J.K. [Arizona Univ., Tucson, AZ (United States). Dept. of Mining and Geological Engineering

1992-07-01T23:59:59.000Z

158

Inference by replication in densely connected systems  

SciTech Connect

An efficient Bayesian inference method for problems that can be mapped onto dense graphs is presented. The approach is based on message passing where messages are averaged over a large number of replicated variable systems exposed to the same evidential nodes. An assumption about the symmetry of the solutions is required for carrying out the averages; here we extend the previous derivation based on a replica-symmetric- (RS)-like structure to include a more complex one-step replica-symmetry-breaking-like (1RSB-like) ansatz. To demonstrate the potential of the approach it is employed for studying critical properties of the Ising linear perceptron and for multiuser detection in code division multiple access (CDMA) under different noise models. Results obtained under the RS assumption in the noncritical regime give rise to a highly efficient signal detection algorithm in the context of CDMA; while in the critical regime one observes a first-order transition line that ends in a continuous phase transition point. Finite size effects are also observed. While the 1RSB ansatz is not required for the original problems, it was applied to the CDMA signal detection problem with a more complex noise model that exhibits RSB behavior, resulting in an improvement in performance.

Neirotti, Juan P.; Saad, David [The Neural Computing Research Group, Aston University, Birmingham B4 7ET (United Kingdom)

2007-10-15T23:59:59.000Z

159

Rethinking the economics of global warming  

SciTech Connect

Most of the debates over the impact of the greenhouse effect have centered around the reliability of computer models and have neglected considerations of the economic effects of attempts to reduce global warming. Economic models have certain limitations but the input of cost benefit analysis is needed for arriving at suitable policies for lowering anthropogenic input into warming of the earth. Care must be used in extrapolating from data of time periods which are inappropriate. Estimates of costs of reducing greenhouse-gas emissions also must include possible benefits; at present this is not being done. Economic models must address differences in the distribution of global warming's consequences over time and geographical space. The costs of delaying or accelerating reduction in greenhouse-gas emissions need to be included in policy considerations. A global agreement must not adversely affect developing countries. Faulty assumptions of the effect of market forces on costs impair economic models. We have to recognize that economic and environmental goals need not be incompatible. If economic models are viewed as possible scenarios and not as predictions, then these scenarios can be useful in determining policies for reducing the greenhouse effect without harming populations and their economies.

Miller, A.; Mintzer, I.; Brown, P.G. (Univ. of Maryland, College Park (USA))

1990-01-01T23:59:59.000Z

160

Warm Standby in Hierarchically Structured Process-Control Programs  

E-Print Network (OSTI)

We classify standby redundancy design space in process-control programs into the following three categories: cold standby, warm standby, and hot standby. Design parameters of warm standby are identified and the reliability of a system using warm standby is evaluated and compared with that of hot standby. Our analysis indicates that the warm standby scheme is particularly suitable for longlived unmaintainable systems, especially those operating in harsh environments where burst hardware failures are possible. The feasibility of warm standby is demonstrated with a simulated chemical batch reactor system.

Ing-Ray Chen And; Ing-ray Chen; Farokh B. Bastani

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm dense matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Studies say - tentatively - that greenhouse warming is here  

SciTech Connect

Published studies on greenhouse warming have been ambivalent as to whether warming has arrived. Now two independent studies of the climate record have incriminated the green-house effect in global warming, although they fall short of convicting it. Researchers at the Max Planck Institute for Meteorology in Hamburg are confident they have exonerated natural climatic variability, saying the observed global warming seems to large to account for the warming effect. A group from Lawrence Livermore National Laboratory directly implicates greenhouse warming by finding its geographic `fingerprinting` in the climate record of the past century. This article discusses both studies and how the results will affect future concerns in the area of greenhouse warming.

Kerr, R.A.

1995-06-16T23:59:59.000Z

162

RHIC | Why Does Quark Matter Matter?  

NLE Websites -- All DOE Office Websites (Extended Search)

Why Does Quark Matter 'Matter'? Why Does Quark Matter 'Matter'? The history of modern technological development can be viewed as a series of investigations, with ever increasing resolution, into the microscopic structure of matter. Since the days of the early Greek philosophers, science has been on a continual quest to find the smallest piece - the most fundamental building block - forming the substance of the universe. STAR researchers During that journey, many beautiful and exotic properties of the subatomic world have been discovered: particles with wave-like properties the ultimate position of which can never be known; "particles" of light that deliver a fixed amount of energy when they strike the atoms of a material's surface; particles in some types of electrical conductors that

163

Exothermic dark matter  

E-Print Network (OSTI)

We propose a novel mechanism for dark matter to explain the observed annual modulation signal at DAMA/LIBRA which avoids existing constraints from every other dark matter direct detection experiment including CRESST, CDMS, ...

Graham, Peter W.

164

Design of programmable matter  

E-Print Network (OSTI)

Programmable matter is a proposed digital material having computation, sensing, actuation, and display as continuous properties active over its whole extent. Programmable matter would have many exciting applications, like ...

Knaian, Ara N. (Ara Nerses), 1977-

2008-01-01T23:59:59.000Z

165

Tropical Cyclogenesis Factors in a Warming Climate  

E-Print Network (OSTI)

Understanding the underlying causes of tropical cyclone formation is crucial to predicting tropical cyclone behavior in a warming environment, given the Earth's current warming trend. This study examines two sets of simulations from the National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 3.1 (CAM3): one with aerosol forcings and one without. We looked at how four factors known to be important to tropical cyclone formation vary as carbon dioxde and the ensuing temperature changes increase to very high levels. These factors include Maximum Potential Intensity (MPI), mid-tropospheric moisture content, 200-850 mb vertical wind shear, and 850 mb absolute vorticity. We considered different representations of mid-tropospheric moisture by examining both relative humidity and chi, a non-dimensional measure of the saturation entropy deficit at 600 mb. We also looked at different combinations of these factors, including several variations of a Genesis Potential Index (GPI) and an incubation parameter, gamma, that is related to the length of time required to saturate the middle troposphere and aid tropical cyclogenesis. Higher MPI, lower saturation deficits and higher relative humidity, lower wind shear, and higher absolute vorticity all act to enhance the GPI and lower the incubation time, meaning larger environmental support for tropical cyclone development and intensification. In areas where tropical cyclone development is prevalent today, we found that shear generally decreased, but MPI decreased, absolute vorticity decreased, and the saturation deficit increases. Thus, in today's prevalent tropical cyclone regions, conditions become less favorable for development and intensification as the climate warms. On the other hand, genesis regions tend to push northward into the subtropics, as conditions become much more favorable for development up to ~40 degrees North due to both decreased wind shear and much higher MPI values.

Cathey, Stephen Christopher

2011-12-01T23:59:59.000Z

166

Advances in Complex Systems c ? World Scientific Publishing Company DENSE GRANULAR MEDIA AS ATHERMAL GLASSES.  

E-Print Network (OSTI)

I briefly describe how mean-field glass models can be extended to the case where the bath and friction are non-thermal. Solving their dynamics one discovers a temperature with a thermodynamic meaning associated with the slow rearrangements, even though there is no thermodynamic temperature at level of fast dynamics. This temperature can be shown to match the one defined on the basis of a flat measure over blocked (jammed) configurations. Numerical checks on realistic systems suggest that these features may be valid in general. 1. Glasses and Dense Granular Matter An ensemble of many elastic particles of irregular shapes at low temperatures and high densities forms a glass that is, an out of equilibrium system having a relaxation timescale that grows as the system ages. Granular matter would be just an example of this, albeit a rather special one, in that the thermal kinetic energy ? kBT per particle is negligible and that the gravity field plays an unusually important role. What in fact distinguishes granular matter from a glass at zero temperature and very high pressure is the non-thermal manner in which energy is

Jorge Kurchan

2001-01-01T23:59:59.000Z

167

On the performance and use of dense servers  

Science Conference Proceedings (OSTI)

Dense servers trade performance at the node level for higher deployment density and lower power consumption as well as the possibility of reduced cost of ownership. System performance and the details of energy consumption for this class of servers, however, ...

W. M. Felter; T. W. Keller; M. D. Kistler; C. Lefurgy; K. Rajamani; R. Rajamony; F. L. Rawson; B. A. Smith; E. Van Hensbergen

2003-09-01T23:59:59.000Z

168

Dense Water Formation beneath a Time-Dependent Coastal Polynya  

Science Conference Proceedings (OSTI)

Recent modeling studies of dense water formation beneath an idealized steady coastal polynya have provided simple analytical expressions for the maximum density anomaly achievable as a function of the polynya geometry and the imposed surface ...

David C. Chapman

1999-04-01T23:59:59.000Z

169

Symmetry energy of warm nuclear systems  

E-Print Network (OSTI)

The temperature dependence of the symmetry energy and symmetry free energy coefficients of infinite nuclear matter and of finite nuclei is investigated. For infinite matter, both these coefficients are found to have a weaker dependence on temperature at densities close to saturation; at low but homogeneous densities, the temperature dependence becomes stronger. For finite systems, different definitions of symmetry energy coefficients are encountered in the literature yielding different values. A resolution to this problem is suggested from a global liquid-drop-inspired fit of the energies and free energies of a host of nuclei covering the entire periodic table. The hot nucleus is modeled in a subtracted finite-temperature-Thomas-Fermi framework, with dynamical surface phonon coupling to nucleonic motion plugged in. Contrary to infinite nuclear matter, a substantial change in the symmetry energy coefficients is observed for finite nuclei with temperature.

Agrawal, B K; Samaddar, S K; Centelles, M; Vias, X

2013-01-01T23:59:59.000Z

170

Symmetry energy of warm nuclear systems  

E-Print Network (OSTI)

The temperature dependence of the symmetry energy and symmetry free energy coefficients of infinite nuclear matter and of finite nuclei is investigated. For infinite matter, both these coefficients are found to have a weaker dependence on temperature at densities close to saturation; at low but homogeneous densities, the temperature dependence becomes stronger. For finite systems, different definitions of symmetry energy coefficients are encountered in the literature yielding different values. A resolution to this problem is suggested from a global liquid-drop-inspired fit of the energies and free energies of a host of nuclei covering the entire periodic table. The hot nucleus is modeled in a subtracted finite-temperature-Thomas-Fermi framework, with dynamical surface phonon coupling to nucleonic motion plugged in. Contrary to infinite nuclear matter, a substantial change in the symmetry energy coefficients is observed for finite nuclei with temperature.

B. K. Agrawal; J. N. De; S. K. Samaddar; M. Centelles; X. Vias

2013-08-26T23:59:59.000Z

171

Swapping Global Warming Gases for Methane in Gas Hydrate ...  

Science Conference Proceedings (OSTI)

Swapping Global Warming Gases for Methane in Gas Hydrate Layer ... would serve as energy sources as well as carbon dioxide storage sites in the ...

2006-07-20T23:59:59.000Z

172

Warm Springs Water District District Heating Low Temperature...  

Open Energy Info (EERE)

Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal...

173

She, With a Warm Palm, the Skin Over My Spine.  

E-Print Network (OSTI)

??She, with a Warm Palm, the Skin over My Spine is a collection of sixnonfiction essays and three vignettes divided into two parts. The first (more)

Cambardella, Cara Maria Michele

2010-01-01T23:59:59.000Z

174

K-(alpha) X-ray Thomson Scattering From Dense Plasmas  

SciTech Connect

Spectrally resolved Thomson scattering using ultra-fast K-{alpha} x-rays has measured the compression and heating of shocked compressed matter. The evolution and coalescence of two shock waves traveling through a solid density LiH target were characterized by the elastic scattering component. The density and temperature at shock coalescence, 2.2 eV and 1.7 x 10{sup 23}cm{sup -3}, were determined from the plasmon frequency shift and the relative intensity of the elastic and inelastic scattering features in the collective scattering regime. The observation of plasmon scattering at coalescence indicates a transition to the dense metallic state in LiH. The density and temperature regimes accessed in these experiments are relevant for inertial confinement fusion experiments and for the study of planetary formation.

Kritcher, A L; Neumayer, P; Castor, J; Doppner, T; Falcone, R W; Landen, O L; Lee, H J; Lee, R W; Morse, E C; Ng, A; Pollaine, S; Price, D; Glenzer, S H

2009-05-07T23:59:59.000Z

175

Supernovae as probes of cosmic parameters: estimating the bias from under-dense lines of sight  

E-Print Network (OSTI)

Correctly interpreting observations of sources such as type Ia supernovae (SNe Ia) require knowledge of the power spectrum of matter on AU scales - which is very hard to model accurately. Because under-dense regions account for much of the volume of the universe, light from a typical source probes a mean density significantly below the cosmic mean. The relative sparsity of sources implies that there could be a significant bias when inferring distances of SNe Ia, and consequently a bias in cosmological parameter estimation. While the weak lensing approximation should in principle give the correct prediction for this, linear perturbation theory predicts an effectively infinite variance in the convergence for ultra-narrow beams. We attempt to quantify the effect typically under-dense lines of sight might have in parameter estimation by considering three alternative methods for estimating distances, in addition to the usual weak lensing approximation. We find in each case this not only increases the errors in the inferred density parameters, but also introduces a bias in the posterior value.

V. C. Busti; R. F. L. Holanda; C. Clarkson

2013-09-25T23:59:59.000Z

176

100 LPW 800 Lm Warm White LED  

Science Conference Proceedings (OSTI)

An illumination grade warm white (WW) LED, having correlated color temperature (CCT) between 2800 K and 3500K and capable of producing 800 lm output at 100 lm/W, has been developed in this program. The high power WW LED is an ideal source for use as replacement for incandescent, and Halogen reflector and general purpose lamps of similar lumen value. Over the two year period, we have made following accomplishments: developed a high power warm white LED product and made over 50% improvements in light output and efficacy. The new high power WW LED product is a die on ceramic surface mountable LED package. It has four 1x1 mm{sup 2} InGaN pump dice flip chip attached to a ceramic submount in 2x2 array, covered by warm white phosphor ceramic platelets called Lumiramic? and an overmolded silicone lens encapsulating the LED array. The performance goal was achieved through breakthroughs in following key areas: (1) High efficiency pump LED development through pump LED active region design and epi growth quality improvement (funded by internal programs). (2) Increase in injection efficiency (IE) represented by reduction in forward voltage (V{sub f}) through the improvement of the silver-based p-contact and a reduction in spreading resistance. The injection efficiency was increased from 80% at the start of the program to 96% at the end of the program at 700 mA/mm{sup 2}. (3) Improvement in thermal design as represented by reduction in thermal resistance from junction to case, through improvement of the die to submount connection in the thin film flip chip (TFFC) LED and choosing the submount material of high thermal conductivity. A thermal resistance of 1.72 K/W was demonstrated for the high power LED package. (4) Improvement in extraction efficiency from the LED package through improvement of InGaN die level and package level optical extraction efficiency improvement. (5) Improvement in phosphor system efficiency by improving the lumen equivalent (LE) and phosphor package efficiency (PPE) through improvement in phosphor-package interactions. Another achievement in the development of the phosphor integration technology is the demonstration of tight color control. The high power WW LED product developed has been proven to have good reliability. The manufacturing of the product will be done in Philips Lumileds?? LUXEON Rebel production line which has produced billions of high power LEDs. The first high power WW LED product will be released to the market in 2011.

Decai Sun

2010-10-31T23:59:59.000Z

177

Liquid-gas phase transition in the canonical ensemble of asymmetric nuclear matter  

E-Print Network (OSTI)

Liquid-gas phase transition in the canonical ensemble of asymmetric nuclear matter K. Miyazaki E-mail: miyazakiro@rio.odn.ne.jp Abstract New calculus of the liquid-gas phase transition is developed. The appearance of the retrograde condensation is also proved. The liquid-gas phase transition in warm nuclear

178

Equation of state, universal profiles, scaling and macroscopic quantum effects in Warm Dark Matter galaxies  

E-Print Network (OSTI)

The Thomas-Fermi approach to galaxy structure determines selfconsistently and nonlinearly the gravitational potential of the fermionic WDM particles given their quantum distribution function f(E). Galaxy magnitudes as the halo radius r_h, mass M_h, velocity dispersion and phase space density are obtained. We derive the general equation of state for galaxies (relation between the pressure and the density), and provide an analytic expression. This clearly exhibits two regimes: (i) Large diluted galaxies for M_h > 2.3 10^6 Msun corresponding to temperatures T_0 > 0.017 K, described by the classical self gravitating WDM Boltzman regime and (ii) Compact dwarf galaxies for 1.6 10^6 Msun > M_h>M_{h,min}=30000 (2keV/m)^{16/5} Msun, T_0 10^6 Msun) reflects the WDM perfect gas behaviour. These theoretical results contrasted to robust and independent sets of galaxy data remarkably reproduce the observations. For the small galaxies, 10^6>M_h>M_{h,min} corresponding to effective temperatures T_0 < 0.017 K, the equation of state is galaxy dependent and the profiles are no more universal. These non-universal properties in small galaxies account to the quantum physics of the WDM fermions in the compact regime. Our results are independent of any WDM particle physics model, they only follow from the gravitational interaction of the WDM particles and their fermionic quantum nature.

H. J. de Vega; N. G. Sanchez

2013-10-23T23:59:59.000Z

179

Dilepton radiation measured in PHENIX probing the strongly interacting matter created at RHIC  

E-Print Network (OSTI)

PHENIX has measured $e^+e^-$ pairs from p+p and Au+Au collisions as function of mass and $p_T$. The data can be used to probe the properties of dense matter formed in Au+Au collision. The relation between electron pairs and virtual photons is discussed.

Y. Akiba; for the PHENIX Collaboration

2009-07-27T23:59:59.000Z

180

LLNL scientists find precipitation, global warming link  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 For immediate release: 11/11/2013 | NR-13-11-04 Lawrence Livermore scientists have found that observed changes in global precipitation are directly affected by human activities. LLNL scientists find precipitation, global warming link Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov LIVERMORE, Calif. -- The rain in Spain may lie mainly on the plain, but the location and intensity of that rain is changing not only in Spain but around the globe. A new study by Lawrence Livermore National Laboratory scientists shows that observed changes in global (ocean and land) precipitation are directly affected by human activities and cannot be explained by natural variability alone. The research appears in the Nov. 11 online edition of the Proceedings of the National Academy of Sciences.

Note: This page contains sample records for the topic "warm dense matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Quark Matter 2004  

NLE Websites -- All DOE Office Websites (Extended Search)

Seventeenth International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2004) took place in Oakland, California from January 11 - 17, 2004. The location...

182

Magnetization of neutron matter  

SciTech Connect

In this paper, we compute magnetization of neutron matter at strong magnetic field using the lowest order constrained variational (LOCV) technique.

Bigdeli, M. [Department of Physics, Zanjan University, P.O. Box 45195-313, Zanjan (Iran, Islamic Republic of)

2011-09-21T23:59:59.000Z

183

Dark matter at colliders  

SciTech Connect

We show that colliders can impose strong constraints on dark matter. We take an effective field theory approach where dark matter couples to quarks and gluons through high dimensional operators. We discuss limits on interactions of dark matter and hadronic matter from the ATLAS experiment at the Large Hadron Collider (LHC). For spin-independent scattering, the LHC limits are stronger than those from direct detection experiments for light WIMPs. For spin-dependent scattering, the LHC sets better limits over much of parameter space.

Yu Haibo [Department of Physics, University of Michigan, Ann Arbor, MI, 48109 (United States)

2013-05-23T23:59:59.000Z

184

Materials/Condensed Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Insulators ALS Reveals New State of Matter First Observation of Plasmarons in Graphene Electron Correlation in Iron-Based Superconductors Towards Heavy Fermions in Europium...

185

Impact of Strange Quark Matter Nuggets on Pycnonuclear Reaction Rates in the Crusts of Neutron Stars  

E-Print Network (OSTI)

This paper presents an investigation into the pycnonuclear reaction rates in dense crustal matter of neutron stars contaminated with strange quark matter nuggets. The presence of such nuggets in the crustal matter of neutron stars would be a natural consequence if Witten's strange quark matter hypothesis is correct. The methodology presented in this paper is a recreation of a recent representation of nuclear force interactions embedded within pycnonuclear reaction processes. The study then extends the methodology to incorporate distinctive theoretical characteristics of strange quark matter nuggets, like their low charge-per-baryon ratio, and then assesses their effects on the pycnonuclear reaction rates. Particular emphasis is put on the impact of color superconductivity on the reaction rates. Depending on whether or not quark nuggets are in this novel state of matter, their electric charge properties vary drastically which turns out to have a dramatic effect on the pycnonuclear reaction rates. Future nuclea...

Golf, Barbara; Weber, Fridolin

2009-01-01T23:59:59.000Z

186

Modification of Precipitation from Warm CloudsA Review  

Science Conference Proceedings (OSTI)

This review is begun with a brief summary of the current status of our understanding of the physics of precipitation in warm clouds. The impact of warm-cloud precipitation processes on the evolution of the ice phase in supercooled clouds also is ...

William R. Cotton

1982-02-01T23:59:59.000Z

187

Applied engineering on biosystems: the reduction in global warming  

Science Conference Proceedings (OSTI)

This work concerns the problem of decision making in the context of investment allocation in clean technology and in reforestation, aimed at reducing the global warming. In order to model the government actions, fuzzy rules are employed to represent ... Keywords: biosystems modeling, fuzzy control, global warming, optimization, simulation

J. A. M. Felippe de Souza; Marco A. L. Caetano; Douglas F. M. Gherardi; Takashi Yoneyama

2009-11-01T23:59:59.000Z

188

The Abyss of the Nordic Seas Is Warming  

Science Conference Proceedings (OSTI)

Over the past decade, the multiyear oceanographic time series from ocean weather station Mike at 66N, 2E indicate a warming by about 0.01C yr?1 in the deep water of the Norwegian Sea. The time of onset of this warming is depth dependent, ...

Svein sterhus; Tor Gammelsrd

1999-11-01T23:59:59.000Z

189

A Nonlinear Response of Sahel Rainfall to Atlantic Warming  

Science Conference Proceedings (OSTI)

The response over West Africa to uniform warming of the Atlantic Ocean is analyzed using idealized simulations with a regional climate model. With warming of 1 and 1.5 K, rainfall rates increase by 30%50% over most of West Africa. With Atlantic ...

Naresh Neupane; Kerry H. Cook

2013-09-01T23:59:59.000Z

190

A nonlinear response of Sahel rainfall to Atlantic warming  

Science Conference Proceedings (OSTI)

The response over West Africa to uniform warming of the Atlantic Ocean is analyzed using idealized simulations with a regional climate model. With warming of 1 K and 1.5 K, rainfall rates increase by 30-50% over most of West Africa. With Atlantic ...

Naresh Neupane; Kerry H. Cook

191

WOOD FLOORING 1. INTRODUCTION TO WARM AND WOOD FLOORING  

E-Print Network (OSTI)

This chapter describes the methodology used in EPAs Waste Reduction Model (WARM) to estimate streamlined life-cycle greenhouse gas (GHG) emission factors for wood flooring beginning at the waste generation reference point. 1 The WARM GHG emission factors are used to compare the net emissions associated with wood flooring in the following three waste management alternatives: source reduction, combustion, and landfilling.

unknown authors

2012-01-01T23:59:59.000Z

192

WOOD PRODUCTS 1. INTRODUCTION TO WARM AND WOOD PRODUCTS  

E-Print Network (OSTI)

This chapter describes the methodology used in EPAs Waste Reduction Model (WARM) to estimate streamlined life-cycle greenhouse gas (GHG) emission factors for wood products beginning at the point of waste generation. The WARM GHG emission factors are used to compare the net emissions associated with wood products in the following four materials management alternatives: source

unknown authors

2012-01-01T23:59:59.000Z

193

FIBERGLASS INSULATION 1. INTRODUCTION TO WARM AND FIBERGLASS INSULATION  

E-Print Network (OSTI)

This chapter describes the methodology used in EPAs Waste Reduction Model (WARM) to estimate streamlined life-cycle greenhouse gas (GHG) emission factors for fiberglass insulation beginning at the waste generation reference point. 1 The WARM GHG emission factors are used to compare the net emissions associated with fiberglass insulation in the following two waste management alternatives: source reduction and landfilling.

unknown authors

2012-01-01T23:59:59.000Z

194

Environment Dependence of Dark Matter Halos in Symmetron Modified Gravity  

E-Print Network (OSTI)

We investigate the environment dependence of dark matter halos in the symmetron modified gravity scenario. The symmetron is one of three known mechanisms for screening a fifth-force and thereby recovering General Relativity in dense environments. The effectiveness of the screening depends on both the mass of the object and the environment it lies in. Using high-resolution N-body simulations we find a significant difference, which depends on the halos mass and environment, between the lensing and dynamical masses of dark matter halos similar to the f(R) modified gravity. The symmetron can however yield stronger signatures due to a freedom in the strength of the coupling to matter.

Hans A. Winther; David F. Mota; Baojiu Li

2011-10-28T23:59:59.000Z

195

Geoengineering: Plan B Remedy for Global Warming Andrew A. Lacis  

NLE Websites -- All DOE Office Websites (Extended Search)

Geoengineering: Plan B Remedy for Global Warming Geoengineering: Plan B Remedy for Global Warming Andrew A. Lacis NASA Goddard Institute for Space Studies Accelerated melting of Greenland ice is a clear indication that consequences of global warming are real and impending. The underlying causes of global warming are well enough understood, but the necessary reduction of greenhouse gases to prevent irreversible climate change is unlikely to happen before the point of no return is reached. To reverse the impending sea level rise, geoengineering counter- measures may be required to counter the current global energy imbalance due to global warming. Of the many proposed remedies, deploying aerosols within the stratosphere offers realistic prospects. Sulfur injections in the lower stratosphere would have the cooling effect of naturally occurring volcanic aerosols. Soot at

196

Computer Simulations Indicate Calcium Carbonate Has a Dense Liquid Phase  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Simulations Computer Simulations Indicate Calcium Carbonate Has a Dense Liquid Phase Computer Simulations Indicate Calcium Carbonate Has a Dense Liquid Phase Berkeley Lab research could help scientists predict how carbon is stored underground August 22, 2013 | Tags: Earth Sciences, Geosciences Dan Krotz 510-486-4019 dakrotz@lbl.gov red2.jpg Artistic rendition of liquid-liquid separation in a supersaturated calcium carbonate solution. New research suggests that a dense liquid phase (shown in red in the background and in full atomistic detail based on computer simulations in the foreground) forms at the onset of calcium carbonate crystallization. (Credit: Berkeley Lab) Computer simulations conducted at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) could help scientists

197

Search for Dark Matter  

E-Print Network (OSTI)

The search for dark matter is a very wide an active field of research, and I necessarily concentrate here only in some aspects of it. I will review the prospects for direct and indirect dark matter searches of Weakly Interacting Massive Particles in the dark halo of our galaxy and focus in particular on the data of GLAST, PAMELA and DAMA.

Graciela B. Gelmini

2008-10-21T23:59:59.000Z

198

Insulator-to-Conducting Transition in Dense Fluid Helium  

Science Conference Proceedings (OSTI)

By combining diamond-anvil-cell and laser-driven shock wave techniques, we produced dense He samples up to 1.5 g/cm{sup 3} at temperatures reaching 60 kK. Optical measurements of reflectivity and temperature show that electronic conduction in He at these conditions is temperature-activated (semiconducting). A fit to the data suggests that the mobility gap closes with increasing density, and that hot dense He becomes metallic above {approx}1.9 g/cm{sup 3}. These data provide a benchmark to test models that describe He ionization at conditions found in astrophysical objects, such as cold white dwarf atmospheres.

Celliers, P. M.; Eggert, J. H.; Hicks, D. G.; Collins, G. W. [Lawrence Livermore National Laboratory, Post Office Box 808, Livermore, California 94551 (United States); Loubeyre, P.; Brygoo, S. [CEA/DAM/DIF, 91297 Arpajon. France (France); McWilliams, R. S. [Institute for Shock Physics, Washington State University, Pullman, Washington 99164 (United States); University of California, Berkeley, California 94720 (United States); Boehly, T. R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Jeanloz, R. [University of California, Berkeley, California 94720 (United States)

2010-05-07T23:59:59.000Z

199

Oblique propagation of nonlinear electrostatic waves in dense astrophysical magnetoplasmas  

SciTech Connect

Nonlinear quantum ion-acoustic waves in dense dissipative as well as non-dissipative magnetized plasmas are investigated employing the quantum hydrodynamic model. In this regard, Zakharov Kuznetsov Burgers equation is derived in quantum plasmas, for the first time, using the small amplitude perturbation expansion method. The unique features of nonlinear electrostatic structures in pure electron-ion quantum magnetoplasma are highlighted and the parametric domain of the applicability of the model is unequivocally expressed. The present study may be useful to understand the nonlinear propagation characteristics of electrostatic shock and solitary structures in dense astrophysical systems where the quantum effects are expected to dominate.

Masood, W.; Siddiq, M. [Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad 54000 (Pakistan); National Centre for Physics (NCP), Shahdara Valley Road, 44000, Islamabad (Pakistan); Rizvi, H. [Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad 54000 (Pakistan)

2011-10-15T23:59:59.000Z

200

Kinetic theory of the interdiffusion coefficient in dense plasmas  

DOE Green Energy (OSTI)

Naive applications of Spitzer's theory to very dense plasmas can lead to negative diffusion coefficients. The interdiffusion coefficients in Binary Ionic Mixtures (two species of point ions in a uniform neutralizing background) have been calculated recently using molecular dynamics techniques. These calculations can provide useful benchmarks for theoretical evaluations of the diffusion coefficient in dense plasma mixtures. This paper gives a brief description of a kinetic theoretic approximation to the diffusion coefficient which generalizes Spitzer to high density and is in excellent agreement with the computer simulations. 15 refs., 1 fig., 2 tabs.

Boercker, D.B.

1986-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm dense matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

MOLECULAR AND ATOMIC LINE SURVEYS OF GALAXIES. I. THE DENSE, STAR-FORMING GAS PHASE AS A BEACON  

Science Conference Proceedings (OSTI)

We predict the space density of molecular gas reservoirs in the universe and place a lower limit on the number counts of carbon monoxide (CO), hydrogen cyanide (HCN) molecular, and [C II] atomic emission lines in blind redshift surveys in the submillimeter-centimeter spectral regime. Our model uses (1) recently available HCN spectral line energy distributions (SLEDs) of local luminous infrared galaxies (LIRGs, L{sub IR} > 10{sup 11} L{sub Sun }), (2) a value for {epsilon}{sub *} = SFR/M{sub dense}(H{sub 2}) provided by new developments in the study of star formation feedback on the interstellar medium, and (3) a model for the evolution of the infrared luminosity density. Minimal 'emergent' CO SLEDs from the dense gas reservoirs expected in all star-forming systems in the universe are then computed from the HCN SLEDs since warm, HCN-bright gas will necessarily be CO-bright, with the dense star-forming gas phase setting an obvious minimum to the total molecular gas mass of any star-forming galaxy. We include [C II] as the most important of the far-infrared cooling lines. Optimal blind surveys with the Atacama Large Millimeter Array (ALMA) could potentially detect very distant (z {approx} 10-12) [C II] emitters in the {>=}ULIRG galaxy class at a rate of {approx}0.1-1 hr{sup -1} (although this prediction is strongly dependent on the star formation and enrichment history at this early epoch), whereas the (high-frequency) Square Kilometer Array will be capable of blindly detecting z > 3 low-J CO emitters at a rate of {approx}40-70 hr{sup -1}. The [C II] line holds special promise for detecting metal-poor systems with extensive reservoirs of CO-dark molecular gas where detection rates with ALMA can reach up to 2-7 hr{sup -1} in Bands 4-6.

Geach, James E. [Department of Physics, McGill University, 3600 rue University, Montreal, Quebec H3A 2T8 (Canada); Papadopoulos, Padelis P., E-mail: jimgeach@physics.mcgill.ca, E-mail: padelis@mpifr-bonn.mpg.de [Max Planck Institute for Radioastronomy, Auf dem Huegel 69, D-53121 Bonn (Germany)

2012-10-01T23:59:59.000Z

202

6382 JOURNAL OF CLIMATE VOLUME 19 The Southern Hemisphere Westerlies in a Warming World: Propping Open the Door to the Deep Ocean  

E-Print Network (OSTI)

A coupled climate model with poleward-intensified westerly winds simulates significantly higher storage of heat and anthropogenic carbon dioxide by the Southern Ocean in the future when compared with the storage in a model with initially weaker, equatorward-biased westerlies. This difference results from the larger outcrop area of the dense waters around Antarctica and more vigorous divergence, which remains robust even as rising atmospheric greenhouse gas levels induce warming that reduces the density of surface waters in the Southern Ocean. These results imply that the impact of warming on the stratification of the global ocean may be reduced by the poleward intensification of the westerlies, allowing the ocean to remove additional heat and anthropogenic carbon dioxide from the atmosphere. 1.

Joellen L. Russell; Keith W. Dixon; Anand Gnanadesikan; Ronald J. Stouffer; J. R. Toggweiler

2005-01-01T23:59:59.000Z

203

The Interaction of Radiative and Dynamical Processes during a Simulated Sudden Stratospheric Warming  

Science Conference Proceedings (OSTI)

An analysis of a spontaneous sudden stratospheric warming that occurred during a 2-year integration of the Langley Research Center Atmospheric Simulation Model is presented. The simulated warming resembles observed wave 1&rdquo warmings in the ...

R. B. Pierce; W. T. Blackshear; W. L. Grose; R. E. Turner; T. D. Fairlie

1993-12-01T23:59:59.000Z

204

The Predictability of Stratospheric Warming Events: More from the Troposphere or the Stratosphere?  

Science Conference Proceedings (OSTI)

The roles of the stratosphere and the troposphere in determining the predictability of stratospheric final warming and sudden warming events are evaluated in an idealized atmospheric model. For each stratospheric warming event simulated in the ...

Lantao Sun; Walter A. Robinson; Gang Chen

2012-02-01T23:59:59.000Z

205

Warm water vapor envelope in Mira variables and its effects on the apparent size from the near-infrared to the mid-infrared  

E-Print Network (OSTI)

We present a possible interpretation for the increase of the angular diameter of the Mira variables o Cet, R Leo, and chi Cyg from the K band to the 11 micron region revealed by the recent interferometric observations using narrow bandpasses where no salient spectral feature is present (Weiner et al. 2003a, 2003b). A simple two-layer model consisting of hot and cool H2O layers for the warm water vapor envelope can reproduce the angular diameters observed with Infrared Spatial Interferometer as well as the high-resolution TEXES spectra obtained in the 11 micron region. The strong absorption of H2O expected from the dense water vapor envelope is filled in by emission from the extended part of the envelope, and this results in the high-resolution 11 micron spectra which exhibit only weak, fine spectral features, masking the spectroscopic evidences of the dense, warm water vapor envelope. On the other hand, the presence of the warm water vapor envelope manifests itself as the larger angular diameters in the 11 micron region as compared to those measured in the near-infrared. Furthermore, comparison of the visibilities predicted in the near-infrared with observational results available in the literature demonstrates that our two-layer model for the warm water vapor envelope can also reproduce the observed near-infrared visibilities and angular diameters. The radii of the hot H2O layers in the three Mira variables are derived to be 1.5--1.7 Rstar with temperatures of 1800--2000 K and H2O column densities of (1--5) x 10^{21} cm^{-2}, while the radii of the cool H2O layers are derived to be 2.2--2.5 Rstar with temperatures of 1200--1400 K and H2O column densities of (1--7) x 10^{21} cm^{-2}.

Keiichi Ohnaka

2004-06-30T23:59:59.000Z

206

NETL: Gasification Systems - Integrated Warm Gas Multicontaminant Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Project Number: DE-FC26-05NT42459 Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Project ID: DE-FC26-05NT42459 Objective: The objective is to develop a warm multi-contaminant syngas cleaning system for operation between 300 and 700° F. This project will continue development of the RTI warm syngas cleanup technology suite. Based on the field testing results with real syngas from Eastman Chemical Company's gasifier under DOE Contract DE-AC26-99FT40675, additional technical issues need to be addressed to move the technologies used in warm syngas cleaning further towards commercial deployment especially for chemical/fuels production. These issues range from evaluation of startup and standby options for the more developed desulfurization processes to integration and actual pilot plant testing with real coal-derived syngas for the technologies that were tested at bench scale during Phase I. Development shall continue of the warm gas syngas cleaning technology platform through a combination of lab-scale R&D and larger integrated pilot plant testing with real coal-derived syngas as well as process/systems analysis and simulation for optimization of integration and intensification.

207

Offshore transport of dense water from the East Greenland shelf  

Science Conference Proceedings (OSTI)

Data from a mooring deployed at the edge of the East Greenland shelf south of Denmark Strait from September 2007 to October 2008 are analyzed to investigate the processes by which dense water is transferred off the shelf. It is found that water ...

B. E. Harden; R. S. Pickart; I. A. Renfrew

208

Dark matter dynamics  

E-Print Network (OSTI)

N-body simulations have revealed a wealth of information about dark matter halos but their results are largely empirical. Here we attempt to shed light on simulation results by using a combination of analytic and numerical ...

Zukin, Phillip Gregory

2012-01-01T23:59:59.000Z

209

The Heart of Matter  

E-Print Network (OSTI)

In this article I trace the development of the human understanding of the "Heart of Matter" from early concepts of "elements" (or alternatively "Panchmahabhootas") to the current status of "quarks" and "leptons" as the fundamental constituents of matter, interacting together via exchange of the various force carrier particles called "gauge bosons" such as the photon, W/Z-boson etc. I would like to show how our understanding of the fundamental constituents of matter has gone hand in hand with our understanding of the fundamental forces in nature. I will also outline how the knowledge of particle physics at the "micro" scale of less than a Fermi(one millionth of a nanometer), enables us to offer explanations of Cosmological observations at the "macro" scale. Consequently these observations, may in turn, help us address some very fundamental questions of the Physics at the "Heart of the Matter".

Godbole, Rohini M

2010-01-01T23:59:59.000Z

210

The Heart of Matter  

E-Print Network (OSTI)

In this article I trace the development of the human understanding of the "Heart of Matter" from early concepts of "elements" (or alternatively "Panchmahabhootas") to the current status of "quarks" and "leptons" as the fundamental constituents of matter, interacting together via exchange of the various force carrier particles called "gauge bosons" such as the photon, W/Z-boson etc. I would like to show how our understanding of the fundamental constituents of matter has gone hand in hand with our understanding of the fundamental forces in nature. I will also outline how the knowledge of particle physics at the "micro" scale of less than a Fermi(one millionth of a nanometer), enables us to offer explanations of Cosmological observations at the "macro" scale. Consequently these observations, may in turn, help us address some very fundamental questions of the Physics at the "Heart of the Matter".

Rohini M. Godbole

2010-06-30T23:59:59.000Z

211

Phases of Nuclear Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

and on the density of the nucleons. Thus we may ask what is the equation of state for nuclear matter? In their normal states of lowest energy, nuclei show liquid-like...

212

Programmable matter by folding  

E-Print Network (OSTI)

Programmable matter is a material whose properties can be programmed to achieve specific shapes or stiffnesses upon command. This concept requires constituent elements to interact and rearrange intelligently in order to ...

Wood, R. J.

213

Matter & Energy Electricity  

E-Print Network (OSTI)

See Also: Matter & Energy Electricity Energy Technology Computers & Math Distributed Computing Computer Science Science & Society Energy Issues Environmental Policies Reference Electric power transmission Distributed generation Electric power Grid computing ScienceDaily (Oct. 12, 2010) -- A new study

Hines, Paul

214

Dark matter: Theoretical perspectives  

SciTech Connect

I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ``new physics.`` The compelling candidates are: a very light axion ( 10{sup {minus}6} eV--10{sup {minus}4} eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

Turner, M.S. [Chicago Univ., IL (United States). Enrico Fermi Inst.]|[Fermi National Accelerator Lab., Batavia, IL (United States)

1993-01-01T23:59:59.000Z

215

Warm Weather and the Daily Commute | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Warm Weather and the Daily Commute Warm Weather and the Daily Commute Warm Weather and the Daily Commute May 7, 2013 - 12:02pm Addthis Biking to work helps you get some exercise while reducing your carbon footprint. | Photo courtesy of iStockphoto.com/olaser Biking to work helps you get some exercise while reducing your carbon footprint. | Photo courtesy of iStockphoto.com/olaser Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? Check out options for busing or carpooling in your area or, if you live close, try walking or biking to work. You know the weather is starting to warm up when you start hearing about those "bike, bus, or walk to work" challenges. And while my local news just started drumming up publicity for theirs, I've seen these events pop up in

216

Brooks Warm Springs Aquaculture Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Warm Springs Aquaculture Low Temperature Geothermal Facility Warm Springs Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Brooks Warm Springs Aquaculture Low Temperature Geothermal Facility Facility Brooks Warm Springs Sector Geothermal energy Type Aquaculture Location Fergus County, Montana Coordinates 47.2126745°, -109.4141° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

217

The Sensitivity of Mountain Snowpack Accumulation to Climate Warming  

Science Conference Proceedings (OSTI)

Controls on the sensitivity of mountain snowpack accumulation to climate warming (?S) are investigated. This is accomplished using two idealized, physically based models of mountain snowfall to simulate snowpack accumulation for the Cascade ...

Justin R. Minder

2010-05-01T23:59:59.000Z

218

Successive Modulation of ENSO to the Future Greenhouse Warming  

Science Conference Proceedings (OSTI)

The multidecadal modulation of the El NioSouthern Oscillation (ENSO) due to greenhouse warming has been analyzed herein by means of diagnostics of Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) coupled general ...

Soon-Il An; Jong-Seong Kug; Yoo-Geun Ham; In-Sik Kang

2008-01-01T23:59:59.000Z

219

Mechanisms of Remote Tropical Surface Warming during El Nio  

Science Conference Proceedings (OSTI)

The authors demonstrate through atmospheric general circulation model (the Community Climate Model version 3.10) simulations of the 1997/98 El Nio that the observed remote (i.e., outside the Pacific) tropical land and ocean surface warming ...

John C. H. Chiang; Benjamin R. Lintner

2005-10-01T23:59:59.000Z

220

Are You Keeping Warm This Winter? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Are You Keeping Warm This Winter? Are You Keeping Warm This Winter? Are You Keeping Warm This Winter? January 23, 2013 - 4:33pm Addthis An efficient heater can save money and energy while keeping you warmer. | Photo by Dennis Schroeder, NREL 20288. An efficient heater can save money and energy while keeping you warmer. | Photo by Dennis Schroeder, NREL 20288. Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? Get an energy audit and learn about your heating options to warm your home while saving money. Last week, I turned on the weather forecast to find that the entire central United States was hovering somewhere between 5 and 20 degrees. Talk about frigid! I've lived all over the country, and I know how incredibly miserable it is to do anything when the high barely ekes above 0 degrees

Note: This page contains sample records for the topic "warm dense matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Building Energy Software Tools Directory: AkWarm  

NLE Websites -- All DOE Office Websites (Extended Search)

AkWarm AkWarm AkWarm logo. Innovative, user-friendly, Windows-based software for home energy modeling. AkWarm is designed for weatherization assessment and the EPA Energy Star Home energy rating program. Features include: Graphical display of energy use by building component, improvement options analysis, design heat load, calculates CO2 emissions, and shows code compliance. Utility, weather data, and other libraries are maintained in a database library for easy updating. A separate database is available to archive all input and output data for detailed analysis of housing types, trends, amd energy use. Keywords home energy rating systems, home energy, residential modeling, weatherization Validation/Testing N/A Expertise Required Basic understanding of building construction, with a minimal level of

222

Are You Keeping Warm This Winter? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Are You Keeping Warm This Winter? Are You Keeping Warm This Winter? Are You Keeping Warm This Winter? January 23, 2013 - 4:33pm Addthis An efficient heater can save money and energy while keeping you warmer. | Photo by Dennis Schroeder, NREL 20288. An efficient heater can save money and energy while keeping you warmer. | Photo by Dennis Schroeder, NREL 20288. Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? Get an energy audit and learn about your heating options to warm your home while saving money. Last week, I turned on the weather forecast to find that the entire central United States was hovering somewhere between 5 and 20 degrees. Talk about frigid! I've lived all over the country, and I know how incredibly miserable it is to do anything when the high barely ekes above 0 degrees

223

Warm coats, big thanks | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Community / Warm coats, big thanks Community / Warm coats, big thanks Warm coats, big thanks Posted: January 9, 2014 - 2:23pm Over the last 12 years, Y-12ers have donated almost 7000 coats, sweaters and other winter wear to the Volunteer Ministry Center. As East Tennessee faces the coldest temperatures seen in a long while, Y-12ers have shown their volunteer spirit for the twelfth straight year by helping countless people stay warm thanks to another successful United Way Coat Drive to benefit the Volunteer Ministry Center. In total, the site donated 589 coats and winter wear items, 64 pairs of gloves, 47 scarves, and 66 hats and toboggans, which VMC makes available to the public through its Knoxville office. In addition, this year's efforts were expanded to include collection of toiletries for VMC. Y-12 collected more than 20 copy paper boxes full of

224

Wildfires may contribute more to global warming than previously predicted  

NLE Websites -- All DOE Office Websites (Extended Search)

Wildfires may contribute more to global warming Wildfires may contribute more to global warming Wildfires may contribute more to global warming than previously predicted They suggest that fire emissions could contribute a lot more to the observed climate warming than current estimates show. July 9, 2013 Haze of smoke emanating from the 2011 Las Conchas, NM fire. Haze of smoke emanating from the 2011 Las Conchas, NM fire. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "The fact that we are experiencing more fires and that climate change may increase fire frequency underscores the need to include these specialized particles in the computer models, and our results show how this can be done," Dubey said. Particle analysis shows "tar ball" effect is significant LOS ALAMOS, N.M., July 9, 2013-Wildfires produce a witch's brew of

225

Wildfires may contribute more to global warming than previously predicted  

NLE Websites -- All DOE Office Websites (Extended Search)

Wildfires may contribute more to global warming Wildfires may contribute more to global warming Wildfires may contribute more to global warming than previously predicted They suggest that fire emissions could contribute a lot more to the observed climate warming than current estimates show. July 9, 2013 Haze of smoke emanating from the 2011 Las Conchas, NM fire. Haze of smoke emanating from the 2011 Las Conchas, NM fire. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "The fact that we are experiencing more fires and that climate change may increase fire frequency underscores the need to include these specialized particles in the computer models, and our results show how this can be done," Dubey said. Particle analysis shows "tar ball" effect is significant LOS ALAMOS, N.M., July 9, 2013-Wildfires produce a witch's brew of

226

NOAA Predicts Mixed Bag of Drought, Flooding and Warm Weather...  

NLE Websites -- All DOE Office Websites (Extended Search)

NOAA Predicts Mixed Bag of Drought, Flooding and Warm Weather for Spring Print E-mail NOAA 2013 Spring Outlook Map Thursday, March 21, 2013 Featured by NOAA, a member of the U.S....

227

Warm Conveyor Belts in Idealized Moist Baroclinic Wave Simulations  

Science Conference Proceedings (OSTI)

This idealized modeling study of moist baroclinic waves addresses the formation of moist ascending airstreams, so-called warm conveyor belts (WCBs), their characteristics, and their significance for the downstream flow evolution. Baroclinic wave ...

Sebastian Schemm; Heini Wernli; Lukas Papritz

2013-02-01T23:59:59.000Z

228

A global warming forum: Scientific, economic, and legal overview  

SciTech Connect

A Global Warming Forum covers in detail five general subject areas aimed at providing first, the scientific background and technical information available on global warming and second, a study and evaluation of the role of economic, legal, and political considerations in global warming. The five general topic areas discussed are the following: (1) The role of geophysical and geoengineering methods to solve problems related to global climatic change; (2) the role of oceanographic and geochemical methods to provide evidence for global climatic change; (3) the global assessment of greenhouse gas production including the need for additional information; (4) natural resource management needed to provide long-term global energy and agricultural uses; (5) legal, policy, and educational considerations required to properly evaluate global warming proposals.

Geyer, R.A. (ed.)

1993-01-01T23:59:59.000Z

229

Influence of Stratospheric Sudden Warming on AIRS Midtropospheric CO2  

Science Conference Proceedings (OSTI)

Midtropospheric CO2 retrievals from the Atmospheric Infrared Sounder (AIRS) were used to explore the influence of stratospheric sudden warming (SSW) on CO2 in the middle to upper troposphere. To choose the SSW events that had strong coupling ...

Xun Jiang; Jingqian Wang; Edward T. Olsen; Thomas Pagano; Luke L. Chen; Yuk L. Yung

2013-08-01T23:59:59.000Z

230

Modeling the Impact of Warming in Climate Change Economics  

E-Print Network (OSTI)

Any economic analysis of climate change policy requires some model that describes the impact of warming on future GDP and consumption. Most integrated assessment models (IAMs) relate temperature to the level of real GDP ...

Pindyck, Robert S.

231

Rapid Development of the Tropical Cyclone Warm Core  

Science Conference Proceedings (OSTI)

This paper presents a simple theoretical argument to isolate the conditions under which a tropical cyclone can rapidly develop a warm-core thermal structure and subsequently approach a steady state. The theoretical argument is based on the ...

Jonathan L. Vigh; Wayne H. Schubert

2009-11-01T23:59:59.000Z

232

On the Height of the Warm Core in Tropical Cyclones  

Science Conference Proceedings (OSTI)

The warm-core structure of tropical cyclones is examined in idealized simulations using the Weather Research and Forecasting (WRF) Model. The maximum perturbation temperature in a control simulation occurs in the midtroposphere (56 km), in ...

Daniel P. Stern; David S. Nolan

2012-05-01T23:59:59.000Z

233

Greenhouse Warming: Is the Mid-Holocene a Good Analogue?  

Science Conference Proceedings (OSTI)

The mid-Holocene period (from approximately 9000 to 6000 years before present) is often suggested as an analogue for enhanced greenhouse warming. The changes in net radiative forcing at the top of the atmosphere are very different; increases in ...

John F. B. Mitchell

1990-11-01T23:59:59.000Z

234

Sudden Stratospheric Warming and Anomalous U.S. Weather  

Science Conference Proceedings (OSTI)

Severe distortion of tropospheric circulation is associated with major sudden stratospheric warming (SSW) events. This distortion consisting primarily of weakening of smaller-scale synoptic mats and development of strong blocking activity, is ...

James P. McGuirk; Donald A. Douglas

1988-01-01T23:59:59.000Z

235

Warm Rain Study in HawaiiRain Initiation  

Science Conference Proceedings (OSTI)

More than 300 hours of aircraft flights were conducted in Hawaii from 1977 to 1979 to study precipitation mechanisms in warm rain. Airborne instruments were used to measure drop size distributions over the size range from cloud droplets to ...

Tsutomu Takahashi

1981-02-01T23:59:59.000Z

236

Supervised Learning Approaches to Classify Sudden Stratospheric Warming Events  

Science Conference Proceedings (OSTI)

Sudden stratospheric warmings are prominent examples of dynamical wavemean flow interactions in the Arctic stratosphere during Northern Hemisphere winter. They are characterized by a strong temperature increase on time scales of a few days and a ...

Christian Blume; Katja Matthes; Illia Horenko

2012-06-01T23:59:59.000Z

237

Small-Scale Variability in Warm Continental Cumulus Clouds  

Science Conference Proceedings (OSTI)

We have analyzed small-scale fluctuations in microphysical, dynamical and thermodynamical parameters measured in two warm cumulus clouds during the Cooperative Convective Precipitation Experiment (CCOPE) project (1981) in light of predictions of ...

P. H. Austin; M. B. Baker; A. M. Blyth; J. B. Jensen

1985-06-01T23:59:59.000Z

238

A 15-Year Climatology of Warm Conveyor Belts  

Science Conference Proceedings (OSTI)

This study presents the first climatology of so-called warm conveyor belts (WCBs), strongly ascending moist airstreams in extratropical cyclones that, on the time scale of 2 days, rise from the boundary layer to the upper troposphere. The ...

Sabine Eckhardt; Andreas Stohl; Heini Wernli; Paul James; Caroline Forster; Nicole Spichtinger

2004-01-01T23:59:59.000Z

239

Global Warming Shifts the Monsoon Circulation, Drying South Asia  

Science Conference Proceedings (OSTI)

Monsoon rainfall over South Asia has decreased during the last 5 to 6 decades according to several sets of observations. Although sea surface temperature (SST) has risen across the Indo-Pacific warm pool during this period, the expected ...

H. Annamalai; Jan Hafner; K. P. Sooraj; P. Pillai

2013-05-01T23:59:59.000Z

240

Regulation of Moist Convection over the West Pacific Warm Pool  

Science Conference Proceedings (OSTI)

The mechanisms that regulate moist convection over the warm tropical oceans are not well understood. One school of thought holds that convection is caused by the convergence of moisture, which in turn is produced by an independent dynamical ...

David J. Raymond

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm dense matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Definition: Warm or Steaming Ground | Open Energy Information  

Open Energy Info (EERE)

heat is conducted to the earth's surface, warming the ground and sometimes causing steam to form when water is present. Ret LikeLike UnlikeLike You like this.Sign Up to see...

242

Warming and Freshening in the Abyssal Southeastern Indian Ocean  

Science Conference Proceedings (OSTI)

Warming and freshening of abyssal waters in the eastern Indian Ocean between 1994/95 and 2007 are quantified using data from two closely sampled high-quality occupations of a hydrographic section extending from Antarctica northward to the ...

Gregory C. Johnson; Sarah G. Purkey; John L. Bullister

2008-10-01T23:59:59.000Z

243

Monitoring Global Climate Change: The Case of Greenhouse Warming  

Science Conference Proceedings (OSTI)

Recent record high temperatures and drought conditions in many regions of the United States have prompted heightened concern about whether these are early manifestations of the global green house warming projected by the major climate models. An ...

Fred B. Wood

1990-01-01T23:59:59.000Z

244

Mechanisms Affecting the Overturning Response in Global Warming Simulations  

Science Conference Proceedings (OSTI)

Climate models used to produce global warming scenarios exhibit widely diverging responses of the thermohaline circulation (THC). To investigate the mechanisms responsible for this variability, a regional Atlantic Ocean model driven with forcing ...

U. Schweckendiek; J. Willebrand

2005-12-01T23:59:59.000Z

245

Cloud Clusters and Superclusters over the Oceanic Warm Pool  

Science Conference Proceedings (OSTI)

Infrared satellite images of the oceanic warm-pool region (8OE-160W) have been objectively processed to reveal tropical cloud clusters with temperature colder than a given threshold. Cloud clusters span a somewhat lognormal distribution of ...

Brain E. Mapes; Robert A. Houze Jr.

1993-05-01T23:59:59.000Z

246

Long-Term Evolution of Elongated Warm Eddies  

Science Conference Proceedings (OSTI)

The purpose of this research is to investigate the evolution of elongated warm eddies. A shallow-water, reduced-gravity, primitive equation model is used to perform a multicase numerical experiment, which includes vortices of very different ...

Edgar G. Pava; Manuel Lpez

1994-10-01T23:59:59.000Z

247

Warm-Air Intrusions in Arizonas Meteor Crater  

Science Conference Proceedings (OSTI)

Episodic nighttime intrusions of warm air, accompanied by strong winds, enter the enclosed near-circular Meteor Crater basin on clear, synoptically undisturbed nights. Data analysis is used to document these events and to determine their spatial ...

Bianca Adler; C. David Whiteman; Sebastian W. Hoch; Manuela Lehner; Norbert Kalthoff

2012-06-01T23:59:59.000Z

248

Does Global Warming Cause Intensified Interannual Hydroclimate Variability?  

Science Conference Proceedings (OSTI)

The idea that global warming leads to more droughts and floods has become commonplace without clear indication of what is meant by this statement. Here, the authors examine one aspect of this problem and assess whether interannual variability of ...

Richard Seager; Naomi Naik; Laura Vogel

2012-05-01T23:59:59.000Z

249

The Dynamics of Northern Hemisphere Stratospheric Final Warming Events  

Science Conference Proceedings (OSTI)

A lag composite analysis is performed of the zonal-mean structure and dynamics of Northern Hemisphere stratospheric final warming (SFW) events. SFW events are linked to distinct zonal wind deceleration signatures in the stratosphere and ...

Robert X. Black; Brent A. McDaniel

2007-08-01T23:59:59.000Z

250

Mesoscale Predictability of an Extreme Warm-Season Precipitation Event  

Science Conference Proceedings (OSTI)

A mesoscale model is used to investigate the mesoscale predictability of an extreme precipitation event over central Texas on 29 June 2002 that lasted through 7 July 2002. Both the intrinsic and practical aspects of warm-season predictability, ...

Fuqing Zhang; Andrew M. Odins; John W. Nielsen-Gammon

2006-04-01T23:59:59.000Z

251

Interpretation of Simulated Global Warming Using a Simple Model  

Science Conference Proceedings (OSTI)

A simple energy balance model with two parameters, an effective heat capacity and an effective climate sensitivity, is used to interpret six GCM simulations of greenhouse gasinduced global warming. By allowing the parameters to vary in time, the ...

I. G. Watterson

2000-01-01T23:59:59.000Z

252

Inferences of Predictability Associated with Warm Season Precipitation Episodes  

Science Conference Proceedings (OSTI)

Herein preliminary findings are reported from a radar-based climatology of warm season precipitation episodes. Episodes are defined as timespace clusters of heavy precipitation that often result from sequences of organized convection such as ...

R. E. Carbone; J. D. Tuttle; D. A. Ahijevych; S. B. Trier

2002-07-01T23:59:59.000Z

253

Diurnal Variations of Warm-Season Precipitation over Northern China  

Science Conference Proceedings (OSTI)

This study examines the diurnal variations of the warm-season precipitation over northern China using the high-resolution precipitation products obtained from the Climate Prediction Centers morphing technique (CMORPH) during MayAugust of 2003...

Huizhong He; Fuqing Zhang

2010-04-01T23:59:59.000Z

254

Physics of Greenhouse Effect and Convection in Warm Oceans  

Science Conference Proceedings (OSTI)

Sea surface temperature (SST) in roughly 50% of the tropical Pacific Ocean is warm enough (SST > 300 K) to permit deep convection. This paper examines the effects of deep convection on the climatological mean vertical distributions of water vapor ...

A. K. Inamdar; V. Ramanathan

1994-05-01T23:59:59.000Z

255

Assessment of boreal forest historical C dynamics in Yukon River Basin: relative roles of warming and fire regime change  

Science Conference Proceedings (OSTI)

Carbon (C) dynamics of boreal forest ecosystems have substantial implications for efforts to mitigate the rise of atmospheric CO2 and may be substantially influenced by warming and changing wildfire regimes. In this study we applied a large-scale ecosystem model that included dynamics of organic soil horizons and soil organic matter characteristics of multiple pools to assess forest C stock changes of the Yukon River Basin (YRB) in Alaska, USA, and Canada from 1960 through 2006, a period characterized by substantial climate warming and increases in wildfire. The model was calibrated for major forests with data from long-term research sites and evaluated using a forest inventory database. The regional assessment indicates that forest vegetation C storage increased by 46 Tg C, but that total soil C storage did not change appreciably during this period. However, further analysis suggests that C has been continuously lost from the mineral soil horizon since warming began in the 1970s, but has increased in the amorphous organic soil horizon. Based on a factorial experiment, soil C stocks would have increased by 158 Tg C if the YRB had not undergone warming and changes in fire regime. The analysis also identified that warming and changes in fire regime were approximately equivalent in their effects on soil C storage, and interactions between these two suggests that the loss of organic horizon thickness associated with increases in wildfire made deeper soil C stocks more vulnerable to loss via decomposition. Subbasin analyses indicate that C stock changes were primarily sensitive to the fraction of burned forest area within each subbasin and that boreal forest ecosystems in the YRB are currently transitioning from being sinks to sources at ;0.7% annual area burned. We conclude that it is important for international mitigation efforts focused on controlling atmospheric CO2 to consider how climate warming and changes in fire regime may concurrently affect the CO2 sink strength of boreal forests. It is also important for large-scale biogeochemical and earth system models to include organic soil dynamics in applications to assess regional C dynamics of boreal forests responding to warming and changes in fire regime.

Yuan, Fengming [ORNL; Yi, Shuhua [Cold and Arid Regions Environmental and Engineering Research Institute, CAS; McGuire, A. David [University of Alaska; Johnson, Kristopher D [University of Alaska, Fairbanks; Liang, Jingjing [University of Alaska, Fairbanks; Harden, Jennifer [USGS, Menlo Park, CA; Kasischke, Eric S. [University of Maryland, College Park; Kurz, Werner [Canadian Forest Service

2012-01-01T23:59:59.000Z

256

Persistence of soil organic matter as an ecosystem property  

Science Conference Proceedings (OSTI)

Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readilyand this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming.

Schmidt, M.W.; Torn, M. S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kgel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; Nannipieri, P.; Rasse, D.P.; Weiner, S.; Trumbore, S.E.

2011-08-15T23:59:59.000Z

257

Matter in Extreme Conditions Instrument - Conceptual Design Report  

Science Conference Proceedings (OSTI)

The SLAC National Accelerator Laboratory (SLAC), in collaboration with Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL), and the University of California at Los Angeles (UCLA), is constructing a Free-Electron Laser (FEL) research facility. The FEL has already met its performance goals in the wavelength range 1.5 nm - 0.15 nm. This facility, the Linac Coherent Light Source (LCLS), utilizes the SLAC 2-Mile Linear Accelerator (linac) and will produce sub-picosecond pulses of short wavelength X-rays with very high peak brightness and almost complete transverse coherence. The final one-third of the SLAC linac is used as the source of electrons for the LCLS. The high energy electrons are transported across the SLAC Research Yard, into a tunnel which houses a long undulator. In passing through the undulator, the electrons are bunched by the force of their own synchrotron radiation and produce an intense, monochromatic, spatially coherent beam of X-rays. By varying the electron energy, the FEL X-ray wavelength is tunable from 1.5 nm to 0.15 nm. The LCLS includes two experimental halls as well as X-ray optics and infrastructure necessary to create a facility that can be developed for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of designing and constructing an X-ray instrument in order to exploit the unique scientific capability of LCLS by creating extreme conditions and study the behavior of plasma under those controlled conditions. This instrument will address the Office of Science, Fusion Energy Sciences, mission objective related to study of Plasma and Warm Dense Matter as described in the report titled LCLS, the First Experiments, prepared by the LCLS Scientific Advisory Committee (SAC) in September 2000. The technical objective of the LCLS Matter in Extreme Conditions (MEC) Instrument project is to design, build, and install at the LCLS an X-ray instrument that will complement the initial instrument suite included in the LCLS construction and the LUSI Major Item of Equipment (MIE) Instruments. As the science programs advance and new technological challenges appear, instrumentation must be developed and ready to conquer these new opportunities. The MEC concept has been developed in close consultation with the scientific community through a series of workshops team meetings and focused reviews. In particular, the MEC instrument has been identified as meeting one of the most urgent needs of the scientific community based on the advice of the LCLS Scientific Advisory Committee (SAC) in response to an open call for letters of intent (LOI) from the breadth of the scientific community. The primary purpose of the MEC instrument is to create High Energy Density (HED) matter and measure its physical properties. There are three primary elements of the MEC instrument: (A) Optical laser drivers that will create HED states by irradiation in several ways and provide diagnostics capability; (B) The LCLS x-ray free electron laser, which will provide the unique capability to create, probe and selectively pump HED states; and, (C) A suite of diagnostic devices required to observe the evolution of the HED state. These elements when combined in the MEC instrument meet the 'Mission Need' as defined in CD-0. For the purposes of the description we separate the types of experiments to be performed into three categories: (1) High pressure: Here we are interested in the generation of high pressure using the optical lasers to irradiate a surface that ablates and drives a pressure wave into a sample, similar to a piston. The pressures that can be reached exceed 1 Mbar and the properties of interest are for example, the reflectivity, conductivity, opacity as well as the changes driven by the pressure wave on, e.g., condensed matter structure. These phenomena will be studied by means of diffraction measurements, measurements of the pressure wave characteristics, in situ probing by

Boyce, R.F.; Boyce, R.M.; Haller, G.; Hastings, J.B.; Hays, G.; Lee, H.J.; /SLAC; Lee, R.W.; /LLNL, Livermore; Nagler, B.; /Rutherford; Scharfenstein, M.; Marsh, D.; White, W.E.; /SLAC

2009-12-09T23:59:59.000Z

258

Perturbative probes of QCD matter at the Large Hadron Collider  

E-Print Network (OSTI)

The main results on electroweak probes, jets, high-pT hadrons, heavy-flavour and quarkonia production from the first two years of heavy-ion operation at the Large Hadron Collider (LHC) are briefly reviewed. Data measured at center-of-mass energies sqrt(s_NN) = 2.76 TeV in lead-lead (Pb-Pb) collisions are compared to proton-proton (p-p) measurements in order to extract information on the properties of hot and dense strongly-interacting matter.

David d'Enterria

2012-07-18T23:59:59.000Z

259

Anomalous thermodynamics and phase transitions of neutron-star matter  

E-Print Network (OSTI)

In this letter we show that the presence of the long-range Coulomb force in dense stellar matter implies that the total charge cannot be associated with a chemical potential, even if it is a conserved quantity. As a further consequence, the analytical properties of the partition sum are modified, changing the order of the phase transitions and affecting the possible occurrence of critical behaviours. The peculiar thermodynamic properties of the system can be understood introducing a model hamiltonian in which each charge is independently neutralized by a uniform background of opposite charge.

P. Chomaz; F. Gulminelli; C. Ducoin; P. Napolitani; K. H. O. Hasnaoui

2005-07-27T23:59:59.000Z

260

Light front approach to correlations in hot quark matter  

E-Print Network (OSTI)

We investigate two-quark correlations in hot and dense quark matter. To this end we use the light front field theory extended to finite temperature $T$ and chemical potential $\\mu$. Therefore it is necessary to develop quantum statistics formulated on the light front plane. As a test case for light front quantization at finite $T$ and $\\mu$ we consider the NJL model. The solution of the in-medium gap equation leads to a constituent quark mass which depends on $T$ and $\\mu$. Two-quark systems are considered in the pionic and diquark channel. We compute the masses of the two-body system using a $T$-matrix approach.

S. Strauss; M. Beyer; S. Mattiello

2005-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm dense matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Perturbative probes of QCD matter at the Large Hadron Collider  

E-Print Network (OSTI)

The main results on electroweak probes, jets, high-pT hadrons, heavy-flavour and quarkonia production from the first two years of heavy-ion operation at the Large Hadron Collider (LHC) are briefly reviewed. Data measured at center-of-mass energies sqrt(s_NN) = 2.76 TeV in lead-lead (Pb-Pb) collisions are compared to proton-proton (p-p) measurements in order to extract information on the properties of hot and dense strongly-interacting matter.

d'Enterria, David

2012-01-01T23:59:59.000Z

262

DARK MATTER AS AN ACTIVE GRAVITATIONAL AGENT IN CLOUD COMPLEXES  

SciTech Connect

We study the effect that the dark matter background (DMB) has on the gravitational energy content and, in general, on the star formation efficiency (SFE) of a molecular cloud (MC). We first analyze the effect that a dark matter halo, described by the Navarro-Frenk-White density profile, has on the energy budget of a spherical, homogeneous cloud located at different distances from the halo center. We found that MCs located in the innermost regions of a massive galaxy can feel a contraction force greater than their self-gravity due to the incorporation of the potential of the galaxy's dark matter halo. We also calculated analytically the gravitational perturbation that an MC produces over a uniform DMB (uniform at the scales of an MC) and how this perturbation will affect the evolution of the MC itself. The study shows that the star formation in an MC will be considerably enhanced if the cloud is located in a dense and low velocity dark matter environment. We confirm our results by measuring the SFE in numerical simulations of the formation and evolution of MCs within different DMBs. Our study indicates that there are situations where the dark matter's gravitational contribution to the evolution of the MCs should not be neglected.

Suarez-Madrigal, Andres; Ballesteros-Paredes, Javier; Colin, Pedro; D'Alessio, Paola, E-mail: a.suarez@crya.unam.mx [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Apdo. Postal 72-3 (Xangari), Morelia, Michocan, Mexico C.P. 58089 (Mexico)

2012-04-01T23:59:59.000Z

263

Dense ceramic membranes for converting methane to syngas  

DOE Green Energy (OSTI)

Dense mixed-oxide ceramics capable of conducting both electrons and oxygen ions are promising materials for partial oxygenation of methane to syngas. We are particularly interested in an oxide based on the Sr-Fe-Co-O system. Dense ceramic membrane tubes have been fabricated by a plastic extrusion technique. The sintered tubes were then used to selectively transport oxygen from air through the membrane to make syngas without the use of external electrodes. The sintered tubes have operated for >1000 h, and methane conversion efficiencies of >98% have been observed. Mechanical properties, structural integrity of the tubes during reactor operation, results of methane conversion, selectivity of methane conversion products, oxygen permeation, and fabrication of multichannel configurations for large-scale production of syngas will be presented.

Balachandran, U.; Dusek, J.T.; Picciolo, J.J.; Ma, B.; Maiya, P.S.; Mieville, R.L. [Argonne National Lab., IL (United States); Kleefisch, M.S.; Udovich, C.A. [Amoco Exploration/Production, Naperville, IL (United States)

1995-07-01T23:59:59.000Z

264

The Dense Stellar Systems Around Galactic Massive Black Holes  

E-Print Network (OSTI)

The central regions of galaxies show the presence of massive black holes and/or dense stellar systems. The question about their modes of formation is still under debate. A likely explanation of the formation of the central dense stellar systems in both spiral and elliptical galaxies is based on the orbital decay of massive globular clusters in the central region of galaxies due to kinetic energy dissipation by dynamical friction. Their merging leads to the formation of a nuclear star cluster, like that of the Milky Way, where a massive black hole (Sgr A*) is also present. Actually, high precision N-body simulations (Antonini, Capuzzo-Dolcetta et al. 2012, ApJ, 750, 111) show a good fit to the observational characteristics of the Milky Way nuclear cluster, giving further reliability to the cited `migratory' model for the formation of compact systems in the inner galaxy regions.

Capuzzo-Dolcetta, R; Spera, M

2013-01-01T23:59:59.000Z

265

Solar System Signatures of Impacts by Compact Ultra Dense Objects  

E-Print Network (OSTI)

As a means of detecting compact ultra dense objects (CUDOs) with nuclear density or greater, and a mass $10^{-10}solar system bodies. We find that a heavy enough CUDO pulverizes, heats and entrains material in a small cylinder around its trajectory through the target body. Because the resulting impact features endure for geologic timescales, data is accumulated over the history of the solar system. Exclusion of all CUDO impact signatures would set a strong limit on their local abundance.

Labun, Lance; Rafelski, Johann

2011-01-01T23:59:59.000Z

266

Method for making dense crack free thin films  

DOE Patents (OSTI)

The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

2007-01-16T23:59:59.000Z

267

Stark broadening in hot, dense laser-produced plasmas  

SciTech Connect

Broadened Lyman-$alpha$ x-ray lines from neon X and argon XVIII radiators, which are immersed in a hot, dense deuterium or deuterium-tritium plasma, are discussed. In particular, these lines are analyzed for several temperature-density cases, characteristic of laser-produced plasmas; special attention paid to the relative importance of ion, electron, and Doppler effects. Static ion microfield distribution functions are tabulated.

Tighe, R.J.; Hooper, C.F. Jr.

1976-01-01T23:59:59.000Z

268

A Dense Current Flowing down a Sloping Bottom in a Rotating Fluid  

Science Conference Proceedings (OSTI)

A density-driven current was generated in the laboratory by releasing dense fluid over a sloping bottom in a rotating freshwater system. The behavior of the dense fluid descending the slope has been investigated by systematically varying four ...

C. Cenedese; J. A. Whitehead; T. A. Ascarelli; M. Ohiwa

2004-01-01T23:59:59.000Z

269

CONCERNING THE DUAL GROUP OF A DENSE SUBGROUP  

E-Print Network (OSTI)

Abstract. Throughout this Abstract, G is a topological Abelian group and ?G is the space of continuous homomorphisms from G into T in the compact-open topology. A dense subgroup D of G determines G if the (necessarily continuous) surjective isomorphism ?G ? ?D given by h ? ? h|D is a homeomorphism, and G is determined if each dense subgroup of G determines G. The principal result in this area, obtained independently by L. Auenhofer and M. J. Chasco, is the following: Every metrizable group is determined. The authors offer several related results, including these. (1) There are (many) nonmetrizable, noncompact, determined groups. (2) If the dense subgroup Di determines Gi with Gi compact, then ?i Di determines ?i Gi. In particular, if each Gi is compact then ?i Gi determines ?i Gi. (3) Let G be a locally bounded group and let G + denote G with its Bohr topology. Then G is determined if and only if G + is determined. (4) Let non(N) be the least cardinal ? such that some X ? T of cardinality ? has positive outer measure. No compact G with w(G) ? non(N) is determined; thus if non(N) = ?1 (in particular if CH holds), an infinite compact group G is determined if and only if w(G) = ?. Question. Is there in ZFC a cardinal ? such that a compact group G is determined if and only if w(G) < ?? Is ? = non(N)? ? = ?1?

W. W. Comfort; S. U. Raczkowski; F. Javier Trigos-arrieta

2002-01-01T23:59:59.000Z

270

PROTON-CONDUCTING DENSE CERAMIC MEMBRANES FOR HYDROGEN SEPARATION  

DOE Green Energy (OSTI)

Dense perovskite-type structured ceramic membranes, SrCe{sub 0.95}Tm{sub 0.05}O{sub 3} (SCTm), of different thickness, were prepared by the dry-press method. Membrane thickness was varied from 3 mm to 150 {micro}m. The hydrogen permeation flux was found to be inversely proportional to the thickness of the dense films, indicating that the bulk diffusion rather than the surface reaction played a dominant role in the H{sub 2} transport through these dense membranes within the studied thickness range. Hydrogen permeation flux increases with increasing upstream hydrogen partial pressure and decreasing downstream hydrogen partial pressure. The activation energy for hydrogen permeation through the SCTm membrane is about 116 kJ/mol in 600-700 C and 16 kJ/mol in 750-950 C. This indicates a change in the electrical and protonic conduction mechanism at around 700 C. Pd-Cu thin films were synthesized with elemental palladium and copper targets by the sequential R.F. sputter deposition on porous substrates. Pd-Cu alloy films could be formed after proper annealing. The deposited Pd-Cu films were gas-tight. This result demonstrated the feasibility of obtaining an ultrathin SCTm film by the sequential sputter deposition of Sr, Ce and Tm metals followed by proper annealing and oxidation. Such ultrathin SCTm membranes will offer sufficiently high hydrogen permeance for practical applications.

Jerry Y. S. Lin; Scott Cheng; Vineet Gupta

2003-12-01T23:59:59.000Z

271

Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds  

Science Conference Proceedings (OSTI)

The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a breakthrough particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.

Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O'Hern; Paul Tortora

2008-02-29T23:59:59.000Z

272

Materials/Condensed Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials/Condensed Matter Print Materials/Condensed Matter Print Materials research provides the foundation on which the economic well being of our high-tech society rests. The impact of advanced materials ranges dramatically over every aspect of our modern world from the minutiae of daily life to the grand scale of our national economy. Invariably, however, breakthroughs to new technologies trace their origin both to fundamental research in the basic properties of condensed matter and to applied research aimed at manipulating properties (structural, physical, chemical, electrical, magnetic, optical, etc.). Increasingly, the frontiers of materials research include materials that are "strongly correlated," characterized by strong coupling between a material's electrons with other electrons, magnetism, or the material lattice itself. This coupling often results in novel behavior, such as superconductivity, that may lead to technologically important applications.

273

Phase transition from hadronic matter to quark matter  

Science Conference Proceedings (OSTI)

We study the phase transition from nuclear matter to quark matter within the SU(3) quark mean field model and NJL model. The SU(3) quark mean field model is used to give the equation of state for nuclear matter, while the equation of state for color superconducting quark matter is calculated within the NJL model. It is found that at low temperature, the phase transition from nuclear to color superconducting quark matter will take place when the density is of order 2.5?0 - 5?0. At zero density, the quark phase will appear when the temperature is larger than about 148 MeV. The phase transition from nuclear matter to quark matter is always first order, whereas the transition between color superconducting quark matter and normal quark matter is second order.

P. Wang; A.W. Thomas; A.G. Williams

2007-04-01T23:59:59.000Z

274

PROTON-CONDUCTING DENSE CERAMIC MEMBRANES FOR HYDROGEN SEPARATION  

DOE Green Energy (OSTI)

Dense thin films of SrCe{sub 0.95}Tm{sub 0.05}O{sub 3-{delta}} (SCTm) with perovskite structure were prepared on porous alumina or SCTm substrates by the methods of (1) polymeric-gel casting and (2) dry-pressing. The polymeric-gel casting method includes preparation of mixed metal oxide gel and coating of the gel on a macroporous alumina support. Micrometer thick SCTm films of the perovskite structure can be obtained by the polymeric-gel casting method. However, the deposited films are not hermetic and it may require about 50 coatings in order to obtain gas-tight SCTm films by this method. Pd-Cu thin films were synthesized with elemental palladium and copper targets by the sequential R.F. sputter deposition on porous substrates. Pd-Cu alloy films could be formed after proper annealing. The deposited Pd-Cu films were gas-tight. This result demonstrated the feasibility of obtaining an ultrathin SCTm film by the sequential sputter deposition of Sr, Ce and Tm metals followed by proper annealing and oxidation. Such ultrathin SCTm membranes will offer sufficiently high hydrogen permeance for practical applications. Thin gas-tight SCTm membranes were synthesized on porous SCTm supports by the dry-pressing method. In this method, the green powder of SCTm was prepared by wet chemical method using metal nitrates as the precursors. Particle size of the powder was revealed to be a vital factor in determining the porosity and shrinkage of the sintered disks. Small particle size formed the dense film while large particle size produced porous substrates. The SCTm film thickness was varied from 1 mm to 0.15 mm by varying the amount of the target powder. A close match between the shrinkage of the substrate and the dense film led to the defect free-thin films. The selectivity of H{sub 2} over He with these films was infinite. The chemical environment on each side of the membrane influenced the H{sub 2} permeation flux as it had concurrent effects on the driving force and electronic/ionic conductivities. The H{sub 2} permeation rates were found to be inversely proportional to the thickness of the dense film indicating that bulk diffusion rather than surface reaction played a dominant role in H{sub 2} transport through these dense films within the studied thickness range (150 {micro}m - 1 mm).

Jerry Y.S. Lin; Vineet Gupta; Scott Cheng

2004-11-01T23:59:59.000Z

275

Global crop yield losses from recent warming  

Science Conference Proceedings (OSTI)

Global yields of the world-s six most widely grown crops--wheat, rice, maize, soybeans, barley, sorghum--have increased since 1961. Year-to-year variations in growing season minimum temperature, maximum temperature, and precipitation explain 30% or more of the variations in yield. Since 1991, climate trends have significantly decreased yield trends in all crops but rice, leading to foregone production since 1981 of about 12 million tons per year of wheat or maize, representing an annual economic loss of $1.2 to $1.7 billion. At the global scale, negative impacts of climate trends on crop yields are already apparent. Annual global temperatures have increased by {approx}0.4 C since 1980, with even larger changes observed in several regions (1). While many studies have considered the impacts of future climate changes on food production (2-5), the effects of these past changes on agriculture remain unclear. It is likely that warming has improved yields in some areas, reduced them in others, and had negligible impacts in still others; the relative balance of these effects at the global scale is unknown. An understanding of this balance would help to anticipate impacts of future climate changes, as well as to more accurately assess recent (and thereby project future) technologically driven yield progress. Separating the contribution of climate from concurrent changes in other factors--such as crop cultivars, management practices, soil quality, and atmospheric carbon dioxide (CO{sub 2}) levels--requires models that describe the response of yields to climate. Studies of future global impacts of climate change have typically relied on a bottom-up approach, whereby field scale, process-based models are applied to hundreds of representative sites and then averaged (e.g., ref 2). Such approaches require input data on soil and management conditions, which are often difficult to obtain. Limitations on data quality or quantity can thus limit the utility of this approach, especially at the local scale (6-8). At the global scale, however, many of the processes and impacts captured by field scale models will tend to cancel out, and therefore simpler empirical/statistical models with fewer input requirements may be as accurate (8, 9). Empirical/statistical models also allow the effects of poorly modeled processes (e.g., pest dynamics) to be captured and uncertainties to be readily quantified (10). Here we develop new, empirical/statistical models of global yield responses to climate using datasets on broad-scale yields, crop locations, and climate variability. We focus on global average yields for the six most widely grown crops in the world: wheat, rice, maize, soybeans, barley, and sorghum. Production of these crops accounts for over 40% of global cropland area (11). 55% of non-meat calories, and over 70% of animal feed (12).

Lobell, D; Field, C

2006-06-02T23:59:59.000Z

276

Physics of Hot Partonic Matter at LHC-ALICE  

SciTech Connect

The field of high energy nuclear physics has recently reached epoch making discoveries at the Relativistic Heavy Ton Collider at Brookhaven National Laboratory, highlighted with that of new state of nuclear matter with partonic degrees of freedom. The ALICE experiment at the Large Hadron Collider at CERN aims at comprehensive investigation and understanding of properties of the hot and dense partonic matter, as the only experiment dedicated to nucleus-nucleus collisions at the facility. Physics prospects at ALICE are reviewed including jet quenching as a probe of energy loss of quarks in the created medium, direct and thermal photons as vital probes of the thermal properties, and quarkonia as a beloved probe of color deconfinement, along with latest status of the detector systems including the high resolution electromagnetic calorimeter, PHOS, and a quick report from the first operation of LHC and ALICE in December, 2009.

Shigaki, K. [Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan)

2010-06-01T23:59:59.000Z

277

Revisiting the matter power spectra in $f(R)$ gravity  

E-Print Network (OSTI)

In this paper, we study the non-linear matter power spectrum in a specific family of $f(R)$ models that can reproduce the $\\Lambda$CDM background expansion history, using high resolution $N$-body simulations based on the {\\sc ecosmog} code. We measure the matter power spectrum in the range of $0.05h{\\rm Mpc}^{-1}10^{-3}$, we find no chameleon screening in dense regions at late times ($z<3$), which means that those models could be ruled out due to the factor-of-1/3 enhancement to the strength of Newtonian gravity. We also give the best-fit parameters for a generalised PPF fitting formula which works well for the models studied here.

He, Jian-hua; Jing, Yipeng

2013-01-01T23:59:59.000Z

278

More data needed to support or disprove global warming theory  

SciTech Connect

Reports of global warming are prevalent in the popular press. With the exception of Scandinavia, no major energy tax laws have been passed to date. But environmental pressures may change this, and the change could have a profound effect on refiners. These are the views of Gerald T. Westbrook, of TSBV Consultants, Houston. Westbrook summarized recent global-warming research, and his position on the subject, at the National Petroleum Refiners Association annual meeting, held March 16--18, in San Antonio. The greenhouse effect is real, says Westbrook. It is important, however, to distinguish between the two major mechanisms of the greenhouse effect: natural warming and anthropogenic warming (changes in the concentration of greenhouse gases caused by man). Without greenhouse gases the earth`s equilibrium temperature would be {minus}18 C. The effect of the gases is to raise the equilibrium temperature to 15 C. In the early 1980s, computer models estimated global warming over the past 100 years to be as much as 2.3 C. By 1986, those estimates had been reduced to 1.0 C, and in 1988, a range of 0.63 {+-} 0.2 C was reported. In 1995, a report by the Intergovernmental Panel on Climate change (IPCC) cited a range of 0.3--0.6 C. Westbrook asserts that the earth`s motion anomalies--orbit eccentricity, axial tilt, and wobbles--lead to dramatic changes in insolation, and are the dominant force over the last 160,000 years.

1997-05-26T23:59:59.000Z

279

Matter & Energy Solar Energy  

E-Print Network (OSTI)

See Also: Matter & Energy Solar Energy· Electronics· Materials Science· Earth & Climate Energy at the University of Illinois, the future of solar energy just got brighter. Although silicon is the industry Electronics Over 1.2 Million Electronics Parts, Components and Equipment. www.AlliedElec.com solar energy

Rogers, John A.

280

Little Higgs Dark Matter  

E-Print Network (OSTI)

The introduction of T parity dramatically improves the consistency of Little Higgs models with precision electroweak data, and renders the lightest T-odd particle (LTP) stable. In the Littlest Higgs model with T parity, the LTP is typically the T-odd heavy photon, which is weakly interacting and can play the role of dark matter. We analyze the relic abundance of the heavy photon, including its coannihilations with other T-odd particles, and map out the regions of the parameter space where it can account for the observed dark matter. We evaluate the prospects for direct and indirect discovery of the heavy photon dark matter. The direct detection rates are quite low and a substantial improvement in experimental sensitivity would be required for observation. A substantial flux of energetic gamma rays is produced in the annihilation of the heavy photons in the galactic halo. This flux can be observed by the GLAST telescope, and, if the distribution of dark matter in the halo is favorable, by ground-based telescope arrays such as VERITAS and HESS.

Andreas Birkedal; Andrew Noble; Maxim Perelstein; Andrew Spray

2006-03-09T23:59:59.000Z

Note: This page contains sample records for the topic "warm dense matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Matter: the fundamental particles  

E-Print Network (OSTI)

"The largest particle physics centre in the world is located in Europe. It straddles the Franco-Swiss border, near Geneva. At CERN - the European Organisation for Nuclear Research , which is focused on the science of nuclear matter rather than on the exploitation of atomic energy - there are over 6 500 scientists." (1 page)

Landua, Rolf

2007-01-01T23:59:59.000Z

282

Roosevelt Warm Springs Institute for Rehab. Space Heating Low Temperature  

Open Energy Info (EERE)

Space Heating Low Temperature Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Roosevelt Warm Springs Institute for Rehab. Space Heating Low Temperature Geothermal Facility Facility Roosevelt Warm Springs Institute for Rehab. Sector Geothermal energy Type Space Heating Location Warm Springs, Georgia Coordinates 32.8904081°, -84.6810381° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

283

Rising Sea Levels Due to Global Warming Are Unstoppable  

NLE Websites -- All DOE Office Websites (Extended Search)

Rising Sea Levels Rising Sea Levels Due to Global Warming Are Unstoppable Rising Sea Levels Due to Global Warming Are Unstoppable Mitigation can slow down but not prevent sea level rise for centuries to come August 5, 2013 Contact: Linda Vu, Lvu@lbl.gov, +1 510 495 2402 washington.jpg Because seawater absorbs heat more slowly than the atmosphere above it, our oceans won't feel the full impact of the greenhouse gases already in the air for hundreds of years. Warm water expands, raising sea levels. (Courtesy W. Washington) Select to enlarge. A reduction in greenhouse gas emissions could greatly lessen the impacts of climate change. However, the gases already added to the atmosphere ensure a certain amount of sea level rise to come, even if future emissions are reduced. A study by National Center for Atmospheric Research (NCAR)

284

ARM - Publications: Science Team Meeting Documents: Tropical Warm Pool  

NLE Websites -- All DOE Office Websites (Extended Search)

Tropical Warm Pool International Cloud Experiment Tropical Warm Pool International Cloud Experiment May, Peter Bureau or Meteorology Research Centre Mather, James Pacific Northwest National Laboratory Jakob, Christian BMRC One of the most complete data sets describing tropical convection ever collected will result from the upcoming Tropical Warm Pool International Cloud Experiment (TWPICE) in the area around Darwin in late 2005 and early 2006. The aims of the experiment will be to examine convective cloud systems from their initial stages through to the decay of the cirrus generated and to measure their impact on the environment. The experiment design includes an unprecedented network of ground-based observations (soundings, active and passive remote sensors) combined with a large range of low, mid and high altitude aircraft for in-situ and remote sensing

285

Chemical And Isotopic Investigation Of Warm Springs Associated With Normal  

Open Energy Info (EERE)

Isotopic Investigation Of Warm Springs Associated With Normal Isotopic Investigation Of Warm Springs Associated With Normal Faults In Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Chemical And Isotopic Investigation Of Warm Springs Associated With Normal Faults In Utah Details Activities (3) Areas (1) Regions (0) Abstract: Thermal springs associated with normal faults in Utah have been analyzed for major cations and anions, and oxygen and hydrogen isotopes. Springs with measured temperatures averaging greater than 40°C are characterized by Na + K- and SO4 + Cl-rich waters containing 103 to 104 mg/l of dissolved solids. Lower temperature springs, averaging less than 40°C, are more enriched in Ca + Mg relative to Na + K. Chemical variations monitored through time in selected thermal springs are probably produced by

286

Warm Springs State Hospital Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

State Hospital Space Heating Low Temperature Geothermal State Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs State Hospital Space Heating Low Temperature Geothermal Facility Facility Warm Springs State Hospital Sector Geothermal energy Type Space Heating Location Warm Springs, Montana Coordinates 46.1813145°, -112.78476° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

287

Legendary West Virginia Senior Citizen Stays Warm With New Furnace |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Legendary West Virginia Senior Citizen Stays Warm With New Furnace Legendary West Virginia Senior Citizen Stays Warm With New Furnace Legendary West Virginia Senior Citizen Stays Warm With New Furnace April 1, 2010 - 7:16pm Addthis Joshua DeLung For the last 56 years, Beulah Sisk has lived in the same house in Princeton, W.Va. Beulah, who worked for 25 years at Lloyd's Pastry Shop, is well known in Princeton. People still see her on the streets today and recognize her as an icon in the community. After a wind storm damaged Beulah's home last year, it came as no surprise when a senior center employee, concerned for Beulah's safety, told her about the weatherization assistance program. "A tree fell on my house and damaged a lot of things, including my furnace," Beulah says. "I tried to have it repaired, but it still

288

NETL: Gasification Systems - Warm Gas Multi-Contaminant Removal System  

NLE Websites -- All DOE Office Websites (Extended Search)

Warm Gas Multi-Contaminant Removal System Warm Gas Multi-Contaminant Removal System Project Number: DE-SC00008243 TDA Research, Inc. is developing a high-capacity, low-cost sorbent that removes anhydrous ammonia (NH3), mercury (Hg), and trace contaminants from coal- and coal/biomass-derived syngas. The clean-up system will be used after the bulk warm gas sulfur removal step, and remove NH3 and Hg in a regenerable manner while irreversibly capturing all other trace metals (e.g., Arsenic, Selenium) reducing their concentrations to sub parts per million (ppm) levels. Current project plans include identifying optimum chemical composition and structure that provide the best sorbent performance for removing trace contaminants, determining the effect of operating parameters, conducting multiple-cycle experiments to test the life of the sorbent for NH3 and Hg removal, and conducting a preliminary design of the sorbent reactor.

289

Stay Warm in Your Apartment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stay Warm in Your Apartment Stay Warm in Your Apartment Stay Warm in Your Apartment October 19, 2009 - 11:43am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy Yes, the Ghost of Winters Future has officially knocked on our front doors again. The leaves here in Washington, D.C., have started to turn toward their colorful crescendo, that spectacular finish before their end on the chilly ground. It makes me cold just thinking about it. Like me, you're probably not opening your windows much at night anymore. I'm holding out still, surrendering a little more of my beloved fresh air each night and dreading that first night when I have to pop the heater on. Last night, I only open my window about an inch. I guess that means it's time to think about locking out the cold air once and for all this year.

290

Stay Warm in Your Apartment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stay Warm in Your Apartment Stay Warm in Your Apartment Stay Warm in Your Apartment October 19, 2009 - 11:43am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy Yes, the Ghost of Winters Future has officially knocked on our front doors again. The leaves here in Washington, D.C., have started to turn toward their colorful crescendo, that spectacular finish before their end on the chilly ground. It makes me cold just thinking about it. Like me, you're probably not opening your windows much at night anymore. I'm holding out still, surrendering a little more of my beloved fresh air each night and dreading that first night when I have to pop the heater on. Last night, I only open my window about an inch. I guess that means it's time to think about locking out the cold air once and for all this year.

291

Atmospheric Radiation Measurement Tropical Warm Pool International Cloud Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

Tropical Warm Pool Tropical Warm Pool International Cloud Experiment General Description The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) was a collaborative effort led by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program and the Australian Bureau of Meteorology. Beginning January 21 and ending February 14, 2006, the experiment was conducted in the region near the ARM Climate Research Facility in Darwin, Northern Australia. This permanent facility is fully equipped with sophisticated instruments for measuring cloud and other atmospheric properties to provide a long-term record of continuous observational data. Measurements obtained from the other experiment components (explained below) will complement this dataset to provide a detailed description of the tropical atmosphere.

292

Development of dense ceramic membranes for methane conversion  

DOE Green Energy (OSTI)

The most significant cost associated with partial oxidation of methane to syngas is that of the oxygen plant. In this paper, the authors offer a technology, based on dense ceramic membranes, that uses air as the oxidant for methane conversion reactions, thus eliminating the need for the oxygen plant. Certain ceramic materials exhibit both electronic and ionic conductivities (of particular interest is oxygen-ion conductivity). These materials transport not only oxygen ions (functioning as selective oxygen separators) but also electrons back from the reactor side to the oxygen/reduction interface. No external electrodes are required, and, if the driving potential of transport is adequate, the partial oxidation reactions should be spontaneous. Such a system will operate without an externally applied potential. Oxygen is transported across the ceramic material in the form of oxygen ions, not oxygen molecules. Recent reports in the literature suggest that dense ceramic membranes made of these mixed conductors can successfully separate oxygen from air at flux rates that could be considered commercially feasible. Thus, these membranes have the potential to improve the economics of methane conversion processes. In principle, the dense ceramic materials can be shaped into hollow-tube reactors, in which air passes over the outside of the membrane and methane flows through the inside. The surfaces can also be reversed. The membrane is permeable to oxygen at high temperatures, but not to nitrogen or other gases. Thus, only oxygen from air can be transported through the membrane to the inside of the reactor surface, where it reacts with methane. Other geometric forms, such as honeycombs or corrugations, of the reactor are possible and can provide substantially greater surface areas for reaction.

Balachandran, U.; Dusek, J.T.; Maiya, P.S.; Ma, B.; Mieville, R.L. [Argonne National Lab., IL (United States). Energy Technology Div.; Kleefisch, M.S.; Udovich, C.A.; Fleisch, T.H. [Amoco Exploration/Production, Naperville, IL (United States); Bose, A.C. [USDOE Pittsburgh Energy Technology Center, PA (United States)

1995-06-01T23:59:59.000Z

293

Electronic Structure of Dense Plasmas by X-Ray Scattering  

DOE Green Energy (OSTI)

We present an improved analytical expression for the x-ray dynamic structure factor from a dense plasma which includes the effects of weakly bound electrons. This result can be applied to describe scattering from low to moderate Z plasmas, and it covers the entire range of plasma conditions that can be found in inertial confinement fusion experiments, from ideal to degenerate up to moderately coupled systems. We use our theory to interpret x-ray scattering experiments from solid density carbon plasma and to extract accurate measurements of electron temperature, electron density and charge state. We use our experimental results to validate various equation-of-state models for carbon plasmas.

Gregori, G; Glenzer, S H; Rogers, F J; Pollaine, S M; Froula, D H; Blancard, C; Faussurier, G; Renaudin, P; Kuhlbrodt, S; Redmer, R; Landen, O L

2003-10-07T23:59:59.000Z

294

Exp6-polar thermodynamics of dense supercritical water  

SciTech Connect

We introduce a simple polar fluid model for the thermodynamics of dense supercritical water based on a Buckingham (exp-6) core and point dipole representation of the water molecule. The proposed exp6-polar thermodynamics, based on ideas originally applied to dipolar hard spheres, performs very well when tested against molecular dynamics simulations. Comparisons of the model predictions with experimental data available for supercritical water yield excellent agreement for the shock Hugoniot, isotherms and sound speeds, and are also quite good for the self-diffusion constant and relative dielectric constant. We expect the present approach to be also useful for other small polar molecules and their mixtures.

Bastea, S; Fried, L E

2007-12-13T23:59:59.000Z

295

Design of a repetitively pulsed megajoule dense-plasma focus  

SciTech Connect

This report describes a 1 pulse per second, dense-plasma-focus (DPF) materials-testing device capable of delivering a minimum of 10$sup 15$ neutrons per pulse. Moderate scaling up from existing designs is shown to be sufficient to provide 2 x 10$sup 13$ neutrons/ cm$sup 2$. s to a suitable target. The average power consumption, which has become a major issue due to the energy crisis, is analyzed with respect to other plasma devices and is shown to be highly favorable. Also discussed is a novel approach to capacitor-bank and switch design with respect to repetitive-pulse operation. (auth)

Zucker, O.; Bostick, W.; Gullickson, R.; Long, J.; Luce, J.; Sahlin, H.

1975-08-01T23:59:59.000Z

296

The 7. global warming international conference and expo: Abstracts  

SciTech Connect

This conference was held April 1--3, 1996 in Vienna, Austria. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on global warming. Topics of interest include the following: global and regional natural resource management; energy, transportation, minerals and natural resource management; industrial technology and greenhouse gas emission; strategies for the mitigation of greenhouse gas emission; greenhouse gas production/utilization and carbon budgets; strategies for promoting the understanding of global change; international policy strategy and economics; and global warming and public health. Individual papers have been processed separately for inclusion in the appropriate data bases.

NONE

1996-12-31T23:59:59.000Z

297

Energy Matters in Washington State Page 1 Energy Matters  

E-Print Network (OSTI)

Energy Matters in Washington State ­ Page 1 Energy Matters in Washington State June 2008 Updated November 2009 Updated and Revised October 2013 Grand Coulee Dam #12;Energy Matters in Washington State ­ Page 2 Copyright © 2013 Washington State University Energy Program. 905 Plum Street SE, P.O. Box 43169

Collins, Gary S.

298

Conventional BCS, Unconventional BCS, and Non-BCS Hidden Dineutron Phases in Neutron Matter  

E-Print Network (OSTI)

The nature of pairing correlations in neutron matter is re-examined. Working within the conventional approximation in which the $nn$ pairing interaction is provided by a realistic bare $nn$ potential fitted to scattering data, it is demonstrated that the standard BCS theory fails in regions of neutron number density where the pairing constant $\\lambda$, depending crucially on density, has a non-BCS negative sign. We are led to propose a non-BCS scenario for pairing phenomena in neutron matter that involves the formation of a hidden dineutron state. In low-density neutron matter where the pairing constant has the standard BCS sign, two phases organized by pairing correlations are possible and compete energetically: a conventional BCS phase and a dineutron phase. In dense neutron matter, where $\\lambda$ changes sign, only the dineutron phase survives and exists until the critical density for termination of pairing correlations is reached at approximately twice the neutron density in heavy atomic nuclei.

V. A. Khodel; J. W. Clark; V. R. Shaginyan; M. V. Zverev

2013-10-20T23:59:59.000Z

299

Linking the gaseous and the condensed phases of matter: The slow electron and its interactions  

SciTech Connect

The interfacing of the gaseous and the condensed phases of matter as effected by interphase and cluster studies on the behavior of key reactions involving slow electrons either as reacting initial particles or as products of the reactions themselves is discussed. Emphasis is placed on the measurement of both the cross sections and the energetics involved, although most of the available information to date is on the latter. The discussion is selectively focussed on electron scattering (especially the role of negative ion states in gases, clusters, and dense matter), ionization, electron attachment and photodetachment. The dominant role of the electric polarization of the medium is emphasized.

Christophorou, L.G.

1993-12-31T23:59:59.000Z

300

Quark Matter 2004 Conference Hotel  

NLE Websites -- All DOE Office Websites (Extended Search)

as the conference Hotel. It is adjacent to the Oakland Convention Center where all Quark Matter talks will be held. Quark Matter attendees can get a reduced price of 126...

Note: This page contains sample records for the topic "warm dense matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Centrifugal torque in rotating matter  

E-Print Network (OSTI)

Thermal molecular motion in combination with rotation and differences in centrifugal forces causes a torque in matter. The effect is derived for gas but does also exist in liquid and solid matter.

Jonsson, David

2010-01-01T23:59:59.000Z

302

Superdense muonic matter  

DOE Green Energy (OSTI)

A possible method of creation of superdense matter with approximate atomic density 4 x 10/sup 29/cm/sup -3/ is suggested. A pulsed beam of 10/sup 8/ muons, with duration 3 x 10/sup -6/sec is shone on liquid hydrogen of volume approx.(300A)/sup 3/. A muon charge-exchanges with an electron in a hydrogen atom: with enough muonic hydrogen atoms, the compressibility tends to diverge and condensation into a much higher density state begins. The muon beam should be cooled by the ionization process and channeled through crystal axes before irradiation on the hydrogen specimen. When magnetic fields are present upon irradiation, the fields may be enhanced up to 10/sup 9/ Gauss. A possible state of this matter is speculated.

Tajima, T.

1987-07-01T23:59:59.000Z

303

Rigid particulate matter sensor  

DOE Patents (OSTI)

A sensor to detect particulate matter. The sensor includes a first rigid tube, a second rigid tube, a detection surface electrode, and a bias surface electrode. The second rigid tube is mounted substantially parallel to the first rigid tube. The detection surface electrode is disposed on an outer surface of the first rigid tube. The detection surface electrode is disposed to face the second rigid tube. The bias surface electrode is disposed on an outer surface of the second rigid tube. The bias surface electrode is disposed to face the detection surface electrode on the first rigid tube. An air gap exists between the detection surface electrode and the bias surface electrode to allow particulate matter within an exhaust stream to flow between the detection and bias surface electrodes.

Hall, Matthew (Austin, TX)

2011-02-22T23:59:59.000Z

304

At the heart of the matter: the origin of bulgeless dwarf galaxies and Dark Matter cores  

E-Print Network (OSTI)

For almost two decades the properties of "dwarf" galaxies have challenged the Cold Dark Matter (CDM) paradigm of galaxy formation. Most observed dwarf galaxies consists of a rotating stellar disc embedded in a massive DM halo with a near constant-density core. Yet, models based on the CDM scenario invariably form galaxies with dense spheroidal stellar "bulges" and steep central DM profiles, as low angular momentum baryons and DM sink to the center of galaxies through accretion and repeated mergers. Processes that decrease the central density of CDM halos have been identified, but have not yet reconciled theory with observations of present day dwarfs. This failure is potentially catastrophic for the CDM model, possibly requiring a different DM particle candidate. This Letter presents new hydrodynamical simulations in a Lambda$CDM framework where analogues of dwarf galaxies, bulgeless and with a shallow central DM profile, are formed. This is achieved by resolving the inhomogeneous interstellar medium, resulting in strong outflows from supernovae explosions which remove low angular momentum gas. This inhibits the formation of bulges and decreases the dark-matter density to less than half within the central kiloparsec. Realistic dwarf galaxies are thus shown to be a natural outcome of galaxy formation in the CDM scenario.

Fabio Governato; Chris Brook; Lucio Mayer; Alyson Brooks; George Rhee; James Wadsley; Patrik Jonsson; Beth Willman; Greg Stinson; Thomas Quinn; Piero Madau

2009-11-11T23:59:59.000Z

305

Brookhaven Condensed Matter Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Matter Physics Condensed Matter Physics Condensed matter physicists study the properties of bulk matter-solids and liquids-as well as the properties exhibited at surfaces and interfaces, with a view to obtaining a fundamental understanding of the unusual properties that materials can exhibit. These problems are some of the most challenging in physics today, but have the huge pay-off in that such an understanding may ultimately lead to improved materials for use in applications as diverse as computing, memory storage, electric motors, and energy storage and transport. At Brookhaven Lab, this work includes both experimental and theoretical studies. Much of the experimental work carried out today uses the National Synchrotron Light Source (NSLS, shown at right)-one of the premiere synchrotron light sources of the last two decades. Commissioned in the 1980s, the NSLS is host to more than 2,200 users per year and produces copious amounts of light, from the infrared to the ultraviolet to the x-ray. By using this light as a probe, scientists can learn about the arrangement of the atoms and electrons in the materials and how they behave under various conditions. Among other projects, BNL scientists have played leading roles in the development and application of resonant and inelastic x-ray scattering techniques to the study of magnetic and other materials, have pioneered the use of photoemission techniques (based on the photoelectric effect that Einstein first understood 100 years ago) for looking at electronic and magnetic materials, and have carried out some of the seminal experiments to understand the atomic and magnetic structure at surfaces.

306

Space Time Matter inflation  

E-Print Network (OSTI)

We study a model of power-law inflationary inflation using the Space-Time-Matter (STM) theory of gravity for a five dimensional (5D) canonical metric that describes an apparent vacuum. In this approach the expansion is governed by a single scalar (neutral) quantum field. In particular, we study the case where the power of expansion of the universe is $p \\gg 1$. This kind of model is more successful than others in accounting for galaxy formation.

Mariano Anabitarte; Mauricio Bellini

2005-08-31T23:59:59.000Z

307

Aging Matters What's Inside  

E-Print Network (OSTI)

Aging Matters What's Inside Letter from the dean PSU winS Carter award artiSan eConomy eLi BUi and Public affairs 2008 fall newsletter www.pdx.edu/cupa aGinG is a modern fact of life. In 2006 the world's population of adults aged 60 or over was 650 million. By 2025 that number will nearly double. By 2050

Bertini, Robert L.

308

Evolution of the Internet k-dense structure  

E-Print Network (OSTI)

As the Internet AS-level topology grows over time, some of its structural properties remain unchanged. Such time- invariant properties are generally interesting, because they tend to reflect some fundamental processes or constraints behind Internet growth. As has been shown before, the time-invariant structural properties of the Internet include some most basic ones, such as the degree distribution or clustering. Here we add to this time-invariant list a non-trivial property - k-dense decomposition. This property is derived from a recursive form of edge multiplicity, defined as the number of triangles that share a given edge. We show that after proper normalization, the k- dense decomposition of the Internet has remained stable over the last decade, even though the Internet size has approximately doubled, and so has the k-density of its k-densest core. This core consists mostly of content providers peering at Internet eXchange Points, and it only loosely overlaps with the high-degree or high-rank AS core, con...

Orsini, Chiara; Lenzini, Luciano; Krioukov, Dmitri

2013-01-01T23:59:59.000Z

309

Normal matter storage of antiprotons  

SciTech Connect

Various simple issues connected with the possible storage of anti p in relative proximity to normal matter are discussed. Although equilibrium storage looks to be impossible, condensed matter systems are sufficiently rich and controllable that nonequilibrium storage is well worth pursuing. Experiments to elucidate the anti p interactions with normal matter are suggested. 32 refs.

Campbell, L.J.

1987-01-01T23:59:59.000Z

310

Dark Energy and Dark Matter  

E-Print Network (OSTI)

A brief overview of our current understanding of abundance and properties of dark energy and dark matter is presented. A more focused discussion of supersymmetric dark matter follows. Included is a frequentist approach to the supersymmetric parameter space and consequences for the direct detection of dark matter.

Keith A. Olive

2010-01-27T23:59:59.000Z

311

dark matter dark energy inflation  

E-Print Network (OSTI)

theory dark matter dark energy inflation The National Science Foundation The Kavli Foundation NSF Site Review November 28-29, 2005 #12;dark matter dark energy inflation NSF Site Visit ­ November 28 Gravitation initial conditions beyond single-field slow roll #12;dark matter dark energy inflation NSF Site

Hu, Wayne

312

Quantum Condensed Matter | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantum Condensed Matter SHARE Quantum Condensed Matter Neutron scattering is a uniquely powerful probe for measuring the structure and dynamics of condensed matter. As such it is...

313

Quantum Condensed Matter | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantum Condensed Matter SHARE Quantum Condensed Matter Neutron scattering is a uniquely powerful probe for measuring the structure and dynamics of condensed matter. As such it is...

314

Quantum Condensed Matter Division | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantum Condensed Matter Division SHARE Quantum Condensed Matter Division QCMD Director Steve Nagler The Quantum Condensed Matter Division (QCMD) enables and conducts a broad...

315

Detecting the Nonstationary Response of ENSO to Greenhouse Warming  

Science Conference Proceedings (OSTI)

On the basis of the latest greenhouse warming experiment performed with the Max-Planck Institut coupled atmosphere/isopycnal ocean model (ECHAM4/OPYC) it is shown that not only the climate mean but also the statistics of higher-order statistical ...

A. Timmermann

1999-07-01T23:59:59.000Z

316

8th Global warming international conference and exposition  

Science Conference Proceedings (OSTI)

Abstracts are presented from The 8th Annual Global Warming international conference and expo. Topics centered around greenhouse gas emission and disposal methods, policy and economics, carbon budget, and resource management. Individual reports have been processed separately for the United States Department of Energy databases.

NONE

1997-12-31T23:59:59.000Z

317

Arctic Ocean Warming Contributes to Reduced Polar Ice Cap  

Science Conference Proceedings (OSTI)

Analysis of modern and historical observations demonstrates that the temperature of the intermediate-depth (150900 m) Atlantic water (AW) of the Arctic Ocean has increased in recent decades. The AW warming has been uneven in time; a local 1C ...

Igor V. Polyakov; Leonid A. Timokhov; Vladimir A. Alexeev; Sheldon Bacon; Igor A. Dmitrenko; Louis Fortier; Ivan E. Frolov; Jean-Claude Gascard; Edmond Hansen; Vladimir V. Ivanov; Seymour Laxon; Cecilie Mauritzen; Don Perovich; Koji Shimada; Harper L. Simmons; Vladimir T. Sokolov; Michael Steele; John Toole

2010-12-01T23:59:59.000Z

318

Regional Simulations of Greenhouse Warming Including Natural Variability  

Science Conference Proceedings (OSTI)

The perception of the hypothesized greenhouse effect will differ dramatically depending upon the location on the earth at which the effect is analyzed. This is due mainly to two causes: 1) the warming signal depends upon the position on the earth,...

Kwang-Y. Kim; Gerald R. North

1995-11-01T23:59:59.000Z

319

POLYLACTIDE (PLA) BIOPOLYMER 1. INTRODUCTION TO WARM AND PLA  

E-Print Network (OSTI)

This chapter describes the methodology used in EPAs Waste Reduction Model (WARM) to estimate streamlined life-cycle greenhouse gas (GHG) emission factors for Natureworks Ingeo polylactide (PLA) biopolymer resin, beginning at the waste generation reference point. Due to the large number of end applications for PLA (e.g., food containers, bottles and other consumer products) and the

unknown authors

2012-01-01T23:59:59.000Z

320

Effects of a Warm Oceanic Feature on Hurricane Opal  

Science Conference Proceedings (OSTI)

On 4 October 1995, Hurricane Opal deepened from 965 to 916 hPa in the Gulf of Mexico over a 14-h period upon encountering a warm core ring (WCR) in the ocean shed by the Loop Current during an upper-level atmospheric trough interaction. Based on ...

Lynn K. Shay; Gustavo J. Goni; Peter G. Black

2000-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm dense matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Global Warming Effects on U.S. Hurricane Damage  

Science Conference Proceedings (OSTI)

While many studies of the effects of global warming on hurricanes predict an increase in various metrics of Atlantic basin-wide activity, it is less clear that this signal will emerge from background noise in measures of hurricane damage, which ...

Kerry Emanuel

2011-10-01T23:59:59.000Z

322

Warming Trends in the Arctic from Clear Sky Satellite Observations  

Science Conference Proceedings (OSTI)

Satellite thermal infrared data on surface temperatures provide pan-Arctic coverage from 1981 to 2001 during cloud-free conditions and reveal large warming anomalies in the 1990s compared to the 1980s and regional variability in the trend. The ...

Josefino C. Comiso

2003-11-01T23:59:59.000Z

323

Global hydrological cycle response to rapid and slow global warming  

Science Conference Proceedings (OSTI)

We analyze the response of global water vapor to global warming in a series of fully coupled climate model simulations. We find that a roughly 7% per Kelvin rate of increase of water vapor with global surface temperature is robust only for rapid ...

Larissa Back; Karen Russ; Zhengyu Liu; Kuniaki Inoue; Jiaxu Zhang; Bette Otto-Bliesner

324

Myth or reality; Some data dispute global warming theory  

SciTech Connect

Science in March 1990 published a National Aeronautics and Space Administration (NASA) analysis of data collected from 1979 through 1988 by the TIROS-N series of weather satellites. The data include the most precise global temperature measurements ever taken. The study found no evidence of global warming from the greenhouse effect during that period. If anything, the short-term trend was toward cooling, since the average of the first five years, 1979 to 1983, was warmer than the most recent five. The NASA findings can be added to a burgeoning body of scientific data seriously questioning the contention that Earth is threatened by global warming resulting from a greenhouse effect primarily instigated by man. Ironically, James Hansen, director of NASA's Goddard Institute for Space Studies, has been the nation's most outspoken advocate of the thesis that, because concentrations of carbon dioxide (CO{sub 2}) and other greenhouse gases, such as methane, have risen by 30 percent in the last 100 years and are expected to rise another 40 percent by 2050, the planet eventually will warm by about 4 degrees Celsius. According to this hypothesis, the warming will cause major coastal flooding, inland droughts and sundry other catastrophes. But Reid Bryson, founder of the Institute for Environmental Studies at the University of Wisconsin, contends Hansen's thesis cannot be accepted, and Michael Schlesinger, professor of meteorology at the University of Illinois, asserts the chance that global warming has already been detected is pretty close to zero.

Lee, R.W.

1991-04-01T23:59:59.000Z

325

THE DYNAMICS OF DENSE CORES IN THE PERSEUS MOLECULAR CLOUD. II. THE RELATIONSHIP BETWEEN DENSE CORES AND THE CLOUD  

Science Conference Proceedings (OSTI)

We utilize the extensive data sets available for the Perseus molecular cloud to analyze the relationship between the kinematics of small-scale dense cores and the larger structures in which they are embedded. The kinematic measures presented here can be used in conjunction with those discussed in our previous work as strong observational constraints that numerical simulations (or analytic models) of star formation should match. We find that dense cores have small motions with respect to the {sup 13}CO gas, about one third of the {sup 13}CO velocity dispersion along the same line of sight. Within each extinction region, the core-to-core velocity dispersion is about half of the total ({sup 13}CO) velocity dispersion seen in the region. Large-scale velocity gradients account for roughly half of the total velocity dispersion in each region, similar to what is predicted from large-scale turbulent modes following a power spectrum of P(k) {proportional_to} k {sup -4}.

Kirk, Helen; Johnstone, Doug [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1 (Canada); Pineda, Jaime E.; Goodman, Alyssa, E-mail: hkirk@cfa.harvard.ed [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2010-11-01T23:59:59.000Z

326

Difficulties for Compact Composite Object Dark Matter  

E-Print Network (OSTI)

It has been suggested ``that DM particles are strongly interacting composite macroscopically large objects ... made of well known light quarks (or ... antiquarks)." In doing so it is argued that these compact composite objects (CCOs) are ``natural explanations of many observed data, such as [the] 511 keV line from the bulge of our galaxy" observed by INTEGRAL and the excess of diffuse gamma-rays in the 1-20 MeV band observed by COMPTEL. Here we argue that the atmospheres of positrons that surround CCOs composed of di-antiquark pairs in the favoured Colour-Flavour-Locked superconducting state are sufficiently dense as to stringently limit the penetration of interstellar electrons incident upon them, resulting in an extreme suppression of previously estimated rates of positronium, and hence the flux of 511 keV photons resulting from their decays, and also in the rate of direct electron-positron annihilations, which yield the MeV photons proposed to explain the 1-20 MeV excess. We also demonstrate that even if a fraction of positrons somehow penetrated to the surface of the CCOs, the extremely strong electric fields generated from the bulk antiquark matter would result in the destruction of positronium atoms long before they decay.

Daniel T. Cumberbatch; Glenn D. Starkman; Joseph Silk

2006-06-18T23:59:59.000Z

327

Thermodynamics of electroweak matter  

E-Print Network (OSTI)

This paper is a slightly modified version of the introductory part of a PhD thesis, also containing the articles hep-ph/0303019, hep-ph/0510375 and hep-ph/0512177. We provide a short history of the research of electroweak thermodynamics and a brief introduction to the theory as well as to the necessary theoretical tools needed to work at finite temperatures. We then review computations regarding the pressure of electroweak matter at high temperatures (the full expression of the perturbative expansion of the pressure is given in the appendix) and the electroweak phase diagram at finite chemical potentials. Finally, we compare electroweak and QCD thermodynamics.

A. Gynther

2006-09-21T23:59:59.000Z

328

Molecular Dynamics Simulations of Temperature Equilibration in Dense Hydrogen  

DOE Green Energy (OSTI)

The temperature equilibration rate in dense hydrogen (for both T{sub i} > T{sub e} and T{sub i} < T{sub e}) has been calculated with large-scale molecular dynamics simulations for temperatures between 10 and 300 eV and densities between 10{sup 20}/cc to 10{sup 24}/cc. Careful attention has been devoted to convergence of the simulations, including the role of semiclassical potentials. We find that for Coulomb logarithms L {approx}> 1, Brown-Preston-Singleton [Brown et al., Phys. Rep. 410, 237 (2005)] with the sub-leading corrections and the fit of Gericke-Murillo-Schlanges [Gericke et al., PRE 65, 036418 (2003)] to the T-matrix evaluation of the collision operator, agrees with the MD data to within the error bars of the simulation. For more strongly-coupled plasmas where L {approx}< 1, our numerical results are consistent with the fit of Gericke-Murillo-Schlanges.

Glosli, J; Graziani, F; More, R; Murillo, M; Streitz, F; Surh, M; Benedict, L; Hau-Riege, S; Langdon, A; London, R

2008-02-14T23:59:59.000Z

329

Dense Granular Flows Sebastian Chialvo and Sankaran Sundaresan  

NLE Websites -- All DOE Office Websites (Extended Search)

and Refinement and Refinement of a Comprehensive Model for Dense Granular Flows Sebastian Chialvo and Sankaran Sundaresan Princeton University This work is supported by DOE-UCR grant DE-FE0006932. Logo The NETL logotype illustrated on this page is the institutional signature for the U.S. Department of Energy, National Energy Technology Laboratory-NETL. Its function is to be the graphic identi cation for that organization. The relationship among the elements of this logo is essential to preserve this identity. The speci cations included on these pages will assist in the proper display of this logo and should be fol- lowed exactly. Questions concerning this logo and its application may be addressed to the NETL O ce of Public A airs Coordination, Contact.PublicA airs@NETL.DOE.GOV.

330

Elemental: a new framework for distributed memory dense matrix computations.  

SciTech Connect

Parallelizing dense matrix computations to distributed memory architectures is a well-studied subject and generally considered to be among the best understood domains of parallel computing. Two packages, developed in the mid 1990s, still enjoy regular use: ScaLAPACK and PLAPACK. With the advent of many-core architectures, which may very well take the shape of distributed memory architectures within a single processor, these packages must be revisited since the traditional MPI-based approaches will likely need to be extended. Thus, this is a good time to review lessons learned since the introduction of these two packages and to propose a simple yet effective alternative. Preliminary performance results show the new solution achieves competitive, if not superior, performance on large clusters.

Romero, N.; Poulson, J.; Marker, B.; Hammond, J.; Van de Geijn, R. (LCF); (The Univ. of Texas at Austin)

2012-02-14T23:59:59.000Z

331

Dynamical density functional theory for dense atomic liquids  

E-Print Network (OSTI)

Starting from Newton's equations of motion, we derive a dynamical density functional theory (DDFT) applicable to atomic liquids. The theory has the feature that it requires as input the Helmholtz free energy functional from equilibrium density functional theory. This means that, given a reliable equilibrium free energy functional, the correct equilibrium fluid density profile is guaranteed. We show that when the isothermal compressibility is small, the DDFT generates the correct value for the speed of sound in a dense liquid. We also interpret the theory as a dynamical equation for a coarse grained fluid density and show that the theory can be used (making further approximations) to derive the standard mode coupling theory that is used to describe the glass transition. The present theory should provide a useful starting point for describing the dynamics of inhomogeneous atomic fluids.

A. J. Archer

2006-04-25T23:59:59.000Z

332

Get Ready for Fall: Leaf Peeping, Staying Warm, and Saving Money...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Get Ready for Fall: Leaf Peeping, Staying Warm, and Saving Money Get Ready for Fall: Leaf Peeping, Staying Warm, and Saving Money September 21, 2009 - 3:04pm Addthis Allison Casey...

333

A New Look at Stratospheric Sudden Warmings. Part I: Climatology and Modeling Benchmarks  

Science Conference Proceedings (OSTI)

Stratospheric sudden warmings are the clearest and strongest manifestation of dynamical coupling in the stratospheretroposphere system. While many sudden warmings have been individually documented in the literature, this study aims at ...

Andrew J. Charlton; Lorenzo M. Polvani

2007-02-01T23:59:59.000Z

334

Can CGCMs Simulate the Twentieth-Century Warming Hole in the Central United States?  

Science Conference Proceedings (OSTI)

The observed lack of twentieth-century warming in the central United States (CUS), denoted here as the warming hole, was examined in 55 simulations driven by external historical forcings and in 19 preindustrial control (unforced) simulations ...

Kenneth E. Kunkel; Xin-Zhong Liang; Jinhong Zhu; Yiruo Lin

2006-09-01T23:59:59.000Z

335

Sensitivities and Mechanisms of the Zonal Mean Atmospheric Circulation Response to Tropical Warming  

Science Conference Proceedings (OSTI)

Although El Nio and global warming are both characterized by warming in the tropical upper troposphere, the latitudinal changes of the Hadley cell edge and midlatitude eddy-driven jet are opposite in sign. Using an idealized dry atmospheric model,...

Lantao Sun; Gang Chen; Jian Lu

2013-08-01T23:59:59.000Z

336

A Perfect Prognosis Scheme for Forecasting Warm-Season Lightning over Florida  

Science Conference Proceedings (OSTI)

This study develops and evaluates a statistical scheme for forecasting warm-season lightning over Florida. Four warm seasons of analysis data from the Rapid Update Cycle (RUC) and lightning data from the National Lightning Detection Network are ...

Phillip E. Shafer; Henry E. Fuelberg

2008-06-01T23:59:59.000Z

337

A Simple Dynamical Model of the Warm-Water Branch of the Middepth Meridional Overturning Cell  

Science Conference Proceedings (OSTI)

A reduced-gravity model is presented of the warm-water branch of the middepth meridional overturning circulation in a rectangular basin with a circumpolar connection. The model describes the balance between production of warm water by Ekman ...

R. M. Samelson

2009-05-01T23:59:59.000Z

338

How Do You Stay Warm While Saving Money and Energy in Extreme...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stay Warm While Saving Money and Energy in Extreme Weather? How Do You Stay Warm While Saving Money and Energy in Extreme Weather? February 3, 2011 - 6:30am Addthis Many states are...

339

Phase Speed Spectra and the Latitude of Surface Westerlies: Interannual Variability and Global Warming Trend  

Science Conference Proceedings (OSTI)

The extratropical annular-mode-like atmospheric responses to ENSO and global warming and the internal variability of annular modes are associated with similar, yet distinct, dynamical characteristics. In particular, La Nia, global warming, and ...

Gang Chen; Jian Lu; Dargan M. W. Frierson

2008-11-01T23:59:59.000Z

340

Diagnostic Study of a Wavenumber-2 Stratospheric Sudden Warming in a Transformed Eulerian-Mean Formalism  

Science Conference Proceedings (OSTI)

The intense wavenumber-2 stratospheric warming of February 1979 is analyzed in a transformed Eulerian-mean formalism, and compared with diagnostics generated by the model warming of Dunkerton et al. (1981). Significant differences in the ...

T. N. Palmer

1981-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm dense matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Tropical Stabilization of the Thermohaline Circulation in a Greenhouse Warming Simulation  

Science Conference Proceedings (OSTI)

Most global climate models simulate a weakening of the North Atlantic thermohaline circulation (THC) in response to enhanced greenhouse warming. Both surface warming and freshening in high latitudes, the so-called sinking region, contribute to ...

M. Latif; E. Roeckner; U. Mikolajewicz; R. Voss

2000-06-01T23:59:59.000Z

342

How Dry is the Tropical Free Troposphere? Implications for Global Warming Theory  

Science Conference Proceedings (OSTI)

The humidity of the free troposphere is being increasingly scrutinized in climate research due to its central role in global warming theory through positive water vapor feedback. This feedback is the primary source of global warming in general ...

Roy W. Spencer; William D. Braswell

1997-06-01T23:59:59.000Z

343

Are There Any Satisfactory Geologic Analogs for a Future Greenhouse Warming?  

Science Conference Proceedings (OSTI)

There have been numerous attempts to propose past warm time periods as analogs for a future greenhouse warming. In this paper it is argued that, although paleoclimate studies may provide important insights into process operating in the climate ...

Thomas J. Crowley

1990-11-01T23:59:59.000Z

344

The Supercooled Warm Rain Process and the Specification of Freezing Precipitation  

Science Conference Proceedings (OSTI)

About 30% of freezing precipitation cases are observed to occur in a subfreezing atmosphere (contrary to the classical melting ice model). We explain these cases with the concept of the supercolled warm rain process (SWRP): the warm rain ...

George J. Huffman; Gene Alfred Norman Jr.

1988-11-01T23:59:59.000Z

345

The Unusual Midwinter Warming in the Southern Hemisphere Stratosphere 2002: A Comparison to Northern Hemisphere Phenomena  

Science Conference Proceedings (OSTI)

A strong midwinter warming occurred in the Southern Hemisphere (SH) stratosphere in September 2002. Based on experiences from the Northern Hemisphere (NH), this event can be defined as a major warming with a breakdown of the polar vortex in ...

Kirstin Krger; Barbara Naujokat; Karin Labitzke

2005-03-01T23:59:59.000Z

346

Laser Cooling and Cold Atomic Matter  

Science Conference Proceedings (OSTI)

Laser Cooling and Cold Atomic Matter: to advance the understanding and applications of cold atomic matter, including ...

2012-05-30T23:59:59.000Z

347

Modular invariant partition function of critical dense polymers  

E-Print Network (OSTI)

A lattice model of critical dense polymers is solved exactly for arbitrary system size on the torus. More generally, an infinite family of lattice loop models is studied on the torus and related to the corresponding Fortuin-Kasteleyn random cluster models. Starting with a cylinder, the commuting periodic single-row transfer matrices are built from the periodic Temperley-Lieb algebra extended by the shift operators Omega and Omega^{-1}. In this enlarged algebra, the non-contractible loop fugacity is alpha and the contractible loop fugacity is beta. The torus is formed by gluing the top and bottom of the cylinder. This gives rise to a variety of non-contractible loops winding around the torus. Because of their nonlocal nature, the standard matrix trace does not produce the proper geometric torus. Instead, we introduce a modified matrix trace for this purpose. This is achieved by using a representation of the enlarged periodic Temperley-Lieb algebra with a parameter v that keeps track of the winding of defects on the cylinder. The transfer matrix representatives and their eigenvalues thus depend on v. The modified trace is constructed as a linear functional on planar connectivity diagrams in terms of matrix traces Tr_d (with a fixed number of defects d) and Chebyshev polynomials of the first kind. For critical dense polymers, where beta=0, the transfer matrix eigenvalues are obtained by solving a functional equation in the form of an inversion identity. The solution depends on d and is subject to selection rules which we prove. Simplifications occur if all non-contractible loop fugacities are set to alpha=2 in which case the traces are evaluated at v=1. In the continuum scaling limit, the corresponding conformal torus partition function obtained from finite-size corrections agrees with the known modular invariant partition function of symplectic fermions.

Alexi Morin-Duchesne; Paul A. Pearce; Jorgen Rasmussen

2013-03-20T23:59:59.000Z

348

Dense ceramic membranes for partial oxygenation of methane  

DOE Green Energy (OSTI)

The most significant cost associated with partial oxidation of methane to syngas is that of the oxygen plant. In this paper, the authors offer a technology that is based on dense ceramic membranes and that uses air as the oxidant for methane-conversion reactions, thus eliminating the need for the oxygen plant. Certain ceramic materials exhibit both electronic and ionic conductivities (of particular interest is oxygen-ion conductivity). These materials transport not only oxygen ions (functioning as selective oxygen separators) but also electrons back from the reactor side to the oxygen/reduction interface. No external electrodes are required and if the driving potential of transport is sufficient, the partial oxidation reactions should be spontaneous. Such a system will operate without an externally applied potential. Oxygen is transported across the ceramic material in the form of oxygen anions, not oxygen molecules. In principle, the dense ceramic materials can be shaped into a hollow-tube reactor, with air passed over the outside of the membrane and methane through the inside. The membrane is permeable to oxygen at high temperatures, but not to nitrogen or any other gas. Long tubes of La-Sr-Fe-Co-O (SFC) membrane were fabricated by plastic extrusion, and thermal stability of the tubes was studied as a function of oxygen partial pressure by high-temperature XRD. Mechanical properties were measured and found to be acceptable for a reactor material. Fracture of certain SFC tubes was the consequence of an oxygen gradient that introduced a volumetric lattice difference between the inner and outer walls. However, tubes made with a particular stoichiometry (SFC-2) provided methane conversion efficiencies of >99% in a reactor. Some of the reactor tubes have operated for up to {approx} 1,000 h.

Balachandran, U.; Dusek, J.T.; Sweeney, S.M.; Mieville, R.L.; Maiya, P.S. [Argonne National Lab., IL (United States). Energy Technology Div.; Kleefisch, M.S.; Pei, S.; Kobylinski, T.P. [Amoco Research Center, Naperville, IL (United States); Bose, A.C. [USDOE Pittsburgh Energy Technology Center, PA (United States)

1994-05-01T23:59:59.000Z

349

A dark matter scaling relation from mirror dark matter  

E-Print Network (OSTI)

Mirror dark matter, and other similar dissipative dark matter candidates, need an energy source to stabilize dark matter halos in spiral galaxies. It has been suggested previously that ordinary supernovae can potentially supply the required energy. By matching the energy supplied to the halo from supernovae to that lost due to radiative cooling, we here derive a rough scaling relation, $R_{SN} \\propto \\rho_0 r_0^2$ ($R_{SN}$ is the supernova rate and $\\rho_0, \\ r_0$ the dark matter central density and core radius). Such a relation is consistent with dark matter properties inferred from studies of spiral galaxies with halo masses larger than $3\\times 10^{11} M_\\odot$. We speculate that other observed galaxy regularities might be explained within the framework of such dissipative dark matter.

R. Foot

2013-03-07T23:59:59.000Z

350

The effect of experimental warming and precipitation change on proteolytic enzyme activity: positive feedbacks  

E-Print Network (OSTI)

.8 1.4 739 Harvard Forest-Prospect Hill HF1 Petersham, MA Temperate Forest Warming 42.5 ?72.2 7.8 1172 Harvard Forest-Barre Woods HF2 Petersham, MA Temperate Forest Warming 42.5 ?72.2 7.8 1172 Harvard Forest-N 9 Warming HFN Petersham, MA Temperate Forest Warming 42.5 ?72.2 7.8 1172 Boston Area Climate

Minnesota, University of

351

Numerical simulation on dense gas dispersion and fire characteristics after liquefied natural gas release.  

E-Print Network (OSTI)

??This PhD dissertation mainly studies the prediction, simulation and mitigation methods of the two main hazards in LNG (Liquefied Natural Gas) industry, LNG vapor dense (more)

Sun, Biao

2012-01-01T23:59:59.000Z

352

Using Nuclear Fusion Reactions to Peer Inside the Core of a Dense...  

Office of Science (SC) Website

Using Nuclear Fusion Reactions to Peer Inside the Core of a Dense Hot Plasma Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES...

353

Resonant nonstationary amplification of polychromatic laser pulses and conical emission in an optically dense ensemble of neon metastable atoms  

E-Print Network (OSTI)

Experimental and numerical investigation of single-beam and pump-probe interaction with a resonantly absorbing dense extended medium under strong and weak field-matter coupling is presented. Significant probe beam amplification and conical emission were observed. Under relatively weak pumping and high medium density, when the condition of strong coupling between field and resonant matter is fulfilled, the probe amplification spectrum has a form of spectral doublet. Stronger pumping leads to the appearance of a single peak of the probe beam amplification at the transition frequency. The greater probe intensity results in an asymmetrical transmission spectrum with amplification at the blue wing of the absorption line and attenuation at the red one. Under high medium density, a broad band of amplification appears. Theoretical model is based on the solution of the Maxwell-Bloch equations for a two-level system. Different types of probe transmission spectra obtained are attributed to complex dynamics of a coherent medium response to broadband polychromatic radiation of a multimode dye laser.

S. N. Bagayev; V. S. Egorov; I. B. Mekhov; P. V. Moroshkin; I. A. Chekhonin; E. M. Davliatchine; E. Kindel

2003-04-03T23:59:59.000Z

354

Resonant nonstationary amplification of polychromatic laser pulses and conical emission in an optically dense ensemble of neon metastable atoms  

SciTech Connect

Experimental and numerical investigation of single-beam and pump-probe interaction with a resonantly absorbing dense extended medium under strong and weak field-matter coupling is presented. Significant probe beam amplification and conical emission were observed. Under relatively weak pumping and high medium density, when the condition of strong coupling between field and resonant matter is fulfilled, the probe amplification spectrum has a form of spectral doublet. Stronger pumping leads to the appearance of a single peak of the probe beam amplification at the transition frequency. The greater probe intensity results in an asymmetrical transmission spectrum with amplification at the blue wing of the absorption line and attenuation at the red one. Under high medium density, a broadband of amplification appears. The theoretical model is based on the solution of the Maxwell-Bloch equations for a two-level system. Different types of probe transmission spectra obtained are attributed to complex dynamics of a coherent medium response to broadband polychromatic radiation of a multimode dye laser.

Bagayev, S.N. [Institute of Laser Physics, Siberian Branch of the Russian Academy of Sciences, Lavrentyeva 13/3, 630090 Novosibirsk (Russian Federation); Egorov, V.S.; Mekhov, I.B.; Moroshkin, P.V.; Chekhonin, I.A. [Department of Optics, St. Petersburg State University, Ulianovskaya 1, Petrodvorets, 198504 St. Petersburg (Russian Federation); Davliatchine, E.M.; Kindel, E. [Institut fuer Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Str. 19, 17489 Greifswald (Germany)

2003-10-01T23:59:59.000Z

355

Warm Pool SST Variability in Relation to the Surface Energy Balance  

Science Conference Proceedings (OSTI)

The warm tropical oceans underlie the most convective regions on earth and are a critical component of the earths climate, yet there are differing opinions on the processes that control warm pool SST. The IndoPacific warm pool is characterized ...

John Fasullo; Peter J. Webster

1999-05-01T23:59:59.000Z

356

Impact of Strange Quark Matter Nuggets on Pycnonuclear Reaction Rates in the Crusts of Neutron Stars  

E-Print Network (OSTI)

This paper presents an investigation into the pycnonuclear reaction rates in dense crustal matter of neutron stars contaminated with strange quark matter nuggets. The presence of such nuggets in the crustal matter of neutron stars would be a natural consequence if Witten's strange quark matter hypothesis is correct. The methodology presented in this paper is a recreation of a recent representation of nuclear force interactions embedded within pycnonuclear reaction processes. The study then extends the methodology to incorporate distinctive theoretical characteristics of strange quark matter nuggets, like their low charge-per-baryon ratio, and then assesses their effects on the pycnonuclear reaction rates. Particular emphasis is put on the impact of color superconductivity on the reaction rates. Depending on whether or not quark nuggets are in this novel state of matter, their electric charge properties vary drastically which turns out to have a dramatic effect on the pycnonuclear reaction rates. Future nuclear fusion network calculations may thus have the potential to shed light on the existence of strange quark matter nuggets and on whether or not they are in a color superconducting state, as suggested by QCD.

Barbara Golf; Joe Hellmers; Fridolin Weber

2009-06-12T23:59:59.000Z

357

NERSC Calculations Provide Independent Confirmation of Global Land Warming  

NLE Websites -- All DOE Office Websites (Extended Search)

Calculations Calculations Provide Independent Confirmation of Global Land Warming Since 1901 NERSC Calculations Provide Independent Confirmation of Global Land Warming Since 1901 September 9, 2013 | Tags: Climate Research, Hopper Contact: Jon Bashor, jbashor@lbl.gov, 510-486-5849 campo.jpg These maps show the changes in air temperatures over land as measured using thermometers (left side) and as calculated by the 20th Century Reanalysis project (left side). While more than 80 percent of the observed variation is captured by the computer model, the results show interesting differences in some regions such as the midwestern United States, Argentina and eastern Brazil. The differences may be due previously unrecognized issues with the pressure observations, variations in land use and land cover over time,

358

Warm Springs Greenhouses Greenhouse Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Greenhouses Greenhouse Low Temperature Geothermal Facility Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Warm Springs Greenhouses Sector Geothermal energy Type Greenhouse Location Banks, Idaho Coordinates 44.0804473°, -116.1240151° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

359

Warm Springs Water District District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Water District District Heating Low Temperature Geothermal Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal Facility Facility Warm Springs Water District Sector Geothermal energy Type District Heating Location Boise, Idaho Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

360

Estimating impacts of warming temperatures on California's electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

impacts of warming temperatures on California's electricity impacts of warming temperatures on California's electricity system Title Estimating impacts of warming temperatures on California's electricity system Publication Type Journal Article Year of Publication 2013 Authors Sathaye, Jayant A., Larry L. Dale, Peter H. Larsen, Gary A. Fitts, Kevin Koy, Sarah M. Lewis, and André Frossard Pereira de Lucena Journal Global Environmental Change Volume 23 Start Page 499 Issue 2 Pagination 499-511 Date Published 04/2013 Keywords EES-EG, electricity markets and policy group Abstract Despite a clear need, little research has been carried out at the regional-level to quantify potential climate-related impacts to electricity production and delivery systems. This paper introduces a bottom-up study of climate change impacts on California's energy infrastructure, including high temperature effects on power plant capacity, transmission lines, substation capacity, and peak electricity demand. End-of-century impacts were projected using the A2 and B1 Intergovernmental Panel on Climate Change emission scenarios. The study quantifies the effect of high ambient temperatures on electricity generation, the capacity of substations and transmission lines, and the demand for peak power for a set of climate scenarios. Based on these scenarios, atmospheric warming and associated peak demand increases would necessitate up to 38% of additional peak generation capacity and up to 31% additional transmission capacity, assuming current infrastructure. These findings, although based on a limited number of scenarios, suggest that additional funding could be put to good use by supporting R&D into next generation cooling equipment technologies, diversifying the power generation mix without compromising the system's operational flexibility, and designing effective demand side management programs.

Note: This page contains sample records for the topic "warm dense matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The PICASSO Dark Matter Experiment  

Science Conference Proceedings (OSTI)

The PICASSO experiment searches for cold dark matter through the direct detection of weakly interacting massive particles (WIMPs) via their spin?dependent interactions with fluorine at SNOLAB

Ubi Wichoski; The PICASSO Collaboration

2011-01-01T23:59:59.000Z

362

Statistical Mechanics of Jammed Matter  

E-Print Network (OSTI)

A thermodynamic formulation of jammed matter is reviewed. Experiments and simulations of compressed emulsions and granular materials are then used to provide a foundation for the thermodynamics.

Hernan A. Makse; Jasna Brujic; Sam F. Edwards

2005-03-03T23:59:59.000Z

363

An Introduction to Particulate Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

for Fiscal Year 2014. Title An Introduction to Particulate Matter Publication Type Book Chapter Year of Publication 2009 Authors Prisco, Joe, Rich Hill, Pam Lembke, D. Moore,...

364

Nuclear Matter and Nuclear Dynamics  

E-Print Network (OSTI)

Highlights on the recent research activity, carried out by the Italian Community involved in the "Nuclear Matter and Nuclear Dynamics" field, will be presented.

M Colonna

2009-02-26T23:59:59.000Z

365

North Florida Global Warming Study Group | Open Energy Information  

Open Energy Info (EERE)

Florida Global Warming Study Group Florida Global Warming Study Group Jump to: navigation, search Name North Florida Global Warming Study Group Address 8342 Compass Rose Dr S Place Jacksonville, Florida Zip 32216 Year founded 2003 Phone number 9047379211 Website [atilley@unf.edu atilley@unf.edu ] Notes This is an email newslist. Coordinates 30.259044°, -81.571333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.259044,"lon":-81.571333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

Potential bias of model projected greenhouse warming in irrigated regions  

SciTech Connect

Atmospheric general circulation models (GCMs) used to project climate responses to increased CO{sub 2} generally omit irrigation of agricultural land. Using the NCAR CAM3 GCM coupled to a slab-ocean model, we find that inclusion of an extreme irrigation scenario has a small effect on the simulated temperature and precipitation response to doubled CO{sub 2} in most regions, but reduced warming by as much as 1 C in some agricultural regions, such as Europe and India. This interaction between CO{sub 2} and irrigation occurs in cases where agriculture is a major fraction of the land surface and where, in the absence of irrigation, soil moisture declines are projected to provide a positive feedback to temperature change. The reduction of warming is less than 25% of the temperature increase modeled for doubled CO{sub 2} in most regions; thus greenhouse warming will still be dominant. However, the results indicate that land use interactions may be an important component of climate change uncertainty in some agricultural regions. While irrigated lands comprise only {approx}2% of the land surface, they contribute over 40% of global food production. Climate changes in these regions are therefore particularly important to society despite their relatively small contribution to average global climate.

Lobell, D; Bala, G; Bonfils, C; Duffy, P

2006-04-27T23:59:59.000Z

367

[Global warming and the running average sunspot number  

SciTech Connect

It has been reported in your pages that the Bush administration`s views and actions regarding how or whether to react to possible global warming due to greenhouse gases have been influenced by the so-called Marshall report. This unrefereed report, released by the George C. Marshall Institute, had as its principal conclusion the finding that the 0.5{degree} C global warming of the last century was mostly due to solar variability and, thus, the greenhouse warming of the 21st century can be expected to be a relatively small l{degree} C or so. The authors support this finding by comparing the 33-year running average sunspot number with the trend in annual average global temperature and noting the parallel between the two, especially during the 1940s--1960s when the temperature trend was downward. Subsequent letters to Science debated the merits of this and other conclusions contained in the report. I now present additional technical evidence which shows that, quite aside from the question of whether the data presented in the report support its conclusions, the actual figure on which the above conclusion is based is in error.

Fernau, M.E.

1994-05-01T23:59:59.000Z

368

Global Warming Solutions Inc previously Southern Investments Inc | Open  

Open Energy Info (EERE)

Warming Solutions Inc previously Southern Investments Inc Warming Solutions Inc previously Southern Investments Inc Jump to: navigation, search Name Global Warming Solutions Inc (previously Southern Investments Inc) Place Houston, Texas Zip 77002 Sector Solar Product Developer of a combined PV and thermal energy solar system called light electric and thermal generator (LETG). Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

369

Global warming and global dioxide emission: An empirical study  

Science Conference Proceedings (OSTI)

In this paper, the dynamic relationship between global surface temperature (global warming) and global carbon dioxide emission (CO{sub 2}) is modelled and analyzed by causality and spectral analysis in the time domain and frequency domain, respectively. Historical data of global CO{sub 2} emission and global surface temperature anomalies over 129 years from 1860-1988 are used in this study. The causal relationship between the two phenomena is first examined using the Sim and Granger causality test in the time domain after the data series are filtered by ARIMA models. The Granger causal relationship is further scrutinized and confirmed by cross-spectral and multichannel spectral analysis in the frequency domain. The evidence found from both analyses proves that there is a positive causal relationship between the two variables. The time domain analysis suggests that Granger causality exists between global surface temperature and global CO{sub 2} emission. Further, CO{sub 2} emission causes the change in temperature. The conclusions are further confirmed by the frequency domain analysis, which indicates that the increase in CO{sub 2} emission causes climate warming because a high coherence exists between the two variables. Furthermore, it is proved that climate changes happen after an increase in CO{sub 2} emission, which confirms that the increase in CO{sub 2} emission does cause global warming. 27 refs., 10 figs., 5 tabs.

Linyan Sun [Xian Jiaotong Univ., Shaanxi (China); Wang, M. [Saint Mary`s Univ., Halifax, Nova Scotia (Canada)

1996-04-01T23:59:59.000Z

370

Availability of 3-out-of Warm Standby System  

E-Print Network (OSTI)

Introduction Standby techC6A4P are used to improve system availability. Usually, a k-out-of-n:G standby system is assumedthu whm an operating component fails, a standby component becomes active and th system is working if at least k components are fault-free. In general,ther arethC6 types in component standby, i.e., cold,hd and warm standby. Cold standby impliesthe inactive components h ve a zero failure rate. Hot standby impliesthl an inactive componenthx th same failure rate aswh6 it is in operation. Warm standby impliesthi an inactive componenthx a failure rate between cold and hdC it is also called dormant failure in some papers. k-out-of-n:G warm standby systemsh ve been used in several research fields including medical diagnosis, redundant-system testing, power plant system and so on. Th.C h ve been many articles concerning study on availability of k-out-of-n:G syst

Tielingzhan Nonmember And; Specialsection On; Michio Horigome; M Er

2000-01-01T23:59:59.000Z

371

Global Warming: some back-of-the-envelope calculations  

E-Print Network (OSTI)

We do several simple calculations and measurements in an effort to gain understanding of global warming and the carbon cycle. Some conclusions are interesting: (i) There has been global warming since the end of the "little ice age" around 1700. There is no statistically significant evidence of acceleration of global warming since 1940. (ii) The increase of CO_2 in the atmosphere, beginning around 1940, accurately tracks the burning of fossil fuels. Burning all of the remaining economically viable reserves of oil, gas and coal over the next 150 years or so will approximately double the pre-industrial atmospheric concentration of CO_2. The corresponding increase in the average temperature, due to the greenhouse effect, is quite uncertain: between 1.3 and 4.8K. This increase of temperature is (partially?) offset by the increase of aerosols and deforestation. (iii) Ice core samples indicate that the pre-historic CO_2 concentration and temperature are well correlated. We conclude that changes in the temperatures o...

Fabara, C

2005-01-01T23:59:59.000Z

372

Cold Dark Matter Resuscitated?  

E-Print Network (OSTI)

The Cold Dark Matter (CDM) model has an elegant simplicitly which makes it very predictive, but when its parameters are fixed at their `canonical' values its predictions are in conflict with observational data. There is, however, much leeway in the initial conditions within the CDM framework. We advocate a re-examination of the CDM model, taking into account modest variation of parameters from their canonical values. We find that CDM models with $n=0.8$--0.9 and $h=0.45$--0.50 can fit the available data. Our ``best fit'' CDM model has $n=0.9$, $h=0.45$ and $C_2^{T}/C_2^{S}=0.7$. We discuss the current state of observations which could definitely rule out this model.

Martin White; Douglas Scott; Joe Silk; Marc Davis

1995-08-02T23:59:59.000Z

373

Winners and losers in a world with global warming: Noncooperation, altruism, and social welfare  

SciTech Connect

In this paper, global warming is an asymmetric transboundary externality which benefits some countries or regions and harms others. Few environmental problems have captured the public`s imagination as much and attracted as much scrutiny as global warming. The general perception is that global warming is a net social bad, and that across-the-board abatement of greenhouse gas emissions is therefore desirable. Despite many interesting academic contributions, not all of the basic economics of this phenomenon have been fully worked out. The authors use a simple two-country model to analyze the effects of global warming on resource allocations, the global-warming stock, and national and global welfare.

Caplan, A.J. [Weber State Univ., Ogden, UT (United States). Dept. of Economics; Ellis, C.J.; Silva, E.C.D. [Univ. of Oregon, Eugene, OR (United States). Dept. of Economics

1999-05-01T23:59:59.000Z

374

Impact of Dark Matter Microhalos on Signatures for Direct and Indirect Detection  

E-Print Network (OSTI)

Detecting dark matter as it streams through detectors on Earth relies on knowledge of its phase space density on a scale comparable to the size of our solar system. Numerical simulations predict that our Galactic halo contains an enormous hierarchy of substructures, streams and caustics, the remnants of the merging hierarchy that began with tiny Earth mass microhalos. If these bound or coherent structures persist until the present time, they could dramatically alter signatures for the detection of weakly interacting elementary particle dark matter (WIMP). Using numerical simulations that follow the coarse grained tidal disruption within the Galactic potential and fine grained heating from stellar encounters, we find that microhalos, streams and caustics have a negligible likelihood of impacting direct detection signatures implying that dark matter constraints derived using simple smooth halo models are relatively robust. We also find that many dense central cusps survive, yielding a small enhancement in the signal for indirect detection experiments.

Aurel Schneider; Lawrence M. Krauss; Ben Moore

2010-04-30T23:59:59.000Z

375

Dense Packings of Superdisks and the Role of Symmetry  

E-Print Network (OSTI)

We construct the densest known two-dimensional packings of superdisks in the plane whose shapes are defined by |x^(2p) + y^(2p)| 0.5, with the circular-disk case p = 1) and concave-shaped particles (0 Donev, Torquato and Stillinger, J. Comput. Phys. 202 (2005) 737] suggest exact constructions of the densest known packings. We find that the packing density (covering fraction of the particles) increases dramatically as the particle shape moves away from the "circular-disk" point (p = 1). In particular, we find that the maximal packing densities of superdisks for certain p 6 = 1 are achieved by one of the two families of Bravais lattice packings, which provides additional numerical evidence for Minkowski's conjecture concerning the critical determinant of the region occupied by a superdisk. Moreover, our analysis on the generated packings reveals that the broken rotational symmetry of superdisks influences the packing characteristics in a non-trivial way. We also propose an analytical method to construct dense packings of concave superdisks based on our observations of the structural properties of packings of convex superdisks.

Y. Jiao; F. H. Stillinger; S. Torquato

2007-12-04T23:59:59.000Z

376

THE FORMATION OF YOUNG DENSE STAR CLUSTERS THROUGH MERGERS  

SciTech Connect

Young star clusters such as NGC 3603 and Westerlund 1 and 2 in the Milky Way and R136 in the Large Magellanic Cloud are dynamically more evolved than expected based on their current relaxation times. In particular, the combination of a high degree of mass segregation, a relatively low central density, and the large number of massive runaway stars in their vicinity are hard to explain with the monolithic formation of these clusters. Young star clusters can achieve such a mature dynamical state if they formed through the mergers of a number of less massive clusters. The shorter relaxation times of less massive clusters cause them to dynamically evolve further by the time they merge, and the merger product preserves the memory of the dynamical evolution of its constituent clusters. With a series of N-body simulations, we study the dynamical evolution of single massive clusters and those that are assembled through merging smaller clusters together. We find that the formation of massive star clusters through the mergers of smaller clusters can reproduce the currently observed spatial distribution of massive stars, the density, and the characteristics (number and mass distribution) of the stars ejected as runaways from young dense clusters. We therefore conclude that these clusters and possibly other young massive star clusters formed through the mergers of smaller clusters.

Fujii, M. S.; Portegies Zwart, S. F. [Leiden Observatory, Leiden University, NL-2300RA Leiden (Netherlands); Saitoh, T. R. [Interactive Research Center of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551 (Japan)

2012-07-01T23:59:59.000Z

377

PROTON-CONDUCTING DENSE CERAMIC MEMBRANES FOR HYDROGEN SEPARATION  

DOE Green Energy (OSTI)

This project is aimed at preparation of thin membranes of a modified strontium ceramic material on porous substrates with improved hydrogen permeance. The research work conducted in this reporting period was focused on studying synthesis methods for preparation of thin thulium doped strontium cerate (SrCe{sub 0.95}Tm{sub 0.05}O{sub 3}, SCTm) membranes. The following two methods were studied in the past year: (1) polymeric-gel casting and (2) dry-pressing. The polymeric-gel casting method includes preparation of mixed metal oxide gel and coating of the gel on a macroporous alumina support. Micrometer thick SCTm films of the perovskite structure can be obtained by this method. However, the deposited films are not hermetic and it may require about 50 coatings in order to obtain gas-tight SCTm films by this method. Asymmetric SCTm membranes consisting of a thick macroporous SCTm support and a thin SCTm layer can be effectively prepared by the dry-pressing method. The membranes were prepared by pressing together a thick layer of coarse SCTm powder and a thin layer of finer SCTm powder, followed by calcination and sintering under proper conditions. The asymmetric SCTm membranes have desired phase structure and are hermetic. Hydrogen permeation flux through the SCT membranes is inversely proportional to the thickness of the dense layer of the asymmetric membranes. The results show a substantial improvement in hydrogen permeation flux by reducing the SCTm membrane thickness.

Jerry Y.S. Lin

2002-12-01T23:59:59.000Z

378

Energy Matters in Washington State  

E-Print Network (OSTI)

Energy Matters in Washington State Energy Matters in Washington State www.energy.wsu.edu/library/ November 2009 #12;905 Plum Street SE, Building 3 P.O. Box 43169 Olympia, Washington 98504-3169 Energy University Extension Energy Program. 905 Plum Street SE, Building 3, P.O. Box 43169, Olympia, Washington

Collins, Gary S.

379

Physics of greenhouse effect and convection in warm Oceans  

SciTech Connect

Sea surface temperatures (SST) in roughly 50% of the tropical Pacific Ocean is warm enough (SST > 300 K) to permit deep convection. This paper examines the effects of deep convection on the climatological mean vertical distributions of water vapor and its greenhouse effect over such warm oceans. The study also examines the link between SST, vertical distribution of water vapor, and its greenhouse effect in the tropical oceans. The radiation model calculations do not include the effects of clouds. The data are grouped into nonconvective and convective categories using SST as an index for convective activity. On average, convective regions are more humid, trap significantly more longwave radiation, and emit more radiation to the sea surface. The greenhouse effect in regions of convection operates as per classical ideas, that is, as the SST increases, the atmosphere traps the excess longwave energy emitted by the surface and reradiates it locally back to the ocean surface. The important departure from the classical picture is that the net (up minus down) fluxes at the surface and at the top-of-the atmosphere decrease with an increase in SST; that is, the surface and the surface-troposphere column lose the ability to radiate the excess energy to space. The cause of this upper greenhouse effect at the surface is the rapid increase in the lower-troposphere humidity with SST; that of the column is due to a combination of increase in humidity in the entire column and increase in the lapse rate within the lower troposphere. The increase in the vertical distribution of humidity far exceeds that which can be attributed to the temperature dependence of saturation vapor pressure; that is, the tropospheric relative humidity is larger in convective regions. The positive coupling between SST and the radiative warming of the surface by the water vapor greenhouse effect is also shown to exist on interannual time scales. 35 refs., 17 figs. 4 tabs.

Inamdar, A.K.; Ramanathan, V. (Univ. of California, San Diego, La Jolla, CA (United States))

1994-05-01T23:59:59.000Z

380

Energy and global warming impacts of CFC alternative technologies  

Science Conference Proceedings (OSTI)

Chlorofluorocarbons (CFCs) are used in a number of applications and volumes of CFCs used grew at a tremendous pace during the 1960s and 1970s. However, in the mid-1980s, it was confirmed that these extremely useful chemicals contribute to the destruction of stratospheric ozone. These chemicals are being phased out of use rapidly to protect the ozone layer and it is very important that the replacements for CFCs do not result in a net increase in global warming by introducing less efficient processes that lead to higher energy use and increased carbon dioxide emissions. A study was conducted to identify those alternative chemicals and technologies that could replace CFCs in energy related applications before the year 2000, and to assess the total potential impact of these alternatives on global warming. The analysis for this project included an estimate of the direct effects from the release of blowing agents, refrigerants, and solvents into the atmosphere and the indirect effects in the form of carbon dioxide emissions resulting from energy use for commercial and residential heating and cooling, household and commercial refrigeration, building and automobile air-conditioning, and general metal and electronics solvent cleaning. The discussion in this paper focuses on those aspects of the study relevant to refrigeration and air-conditioning. In general the use of hydrofluorocarbon (HFC) and hydrochlorofluorocarbon (HCFC) alternatives for CFCs lead to large and sometimes dramatic reductions in total equivalent warming impact (TEWI), lifetime equivalent CO{sub 2} emissions. Most of the reductions result from decreased direct effects without significant changes in energy use.

Fischer, S.K.; Fairchild, P.D.; Hughes, P.J.

1992-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm dense matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy and global warming impacts of CFC alternative technologies  

Science Conference Proceedings (OSTI)

Chlorofluorocarbons (CFCs) are used in a number of applications and volumes of CFCs used grew at a tremendous pace during the 1960s and 1970s. However, in the mid-1980s, it was confirmed that these extremely useful chemicals contribute to the destruction of stratospheric ozone. These chemicals are being phased out of use rapidly to protect the ozone layer and it is very important that the replacements for CFCs do not result in a net increase in global warming by introducing less efficient processes that lead to higher energy use and increased carbon dioxide emissions. A study was conducted to identify those alternative chemicals and technologies that could replace CFCs in energy related applications before the year 2000, and to assess the total potential impact of these alternatives on global warming. The analysis for this project included an estimate of the direct effects from the release of blowing agents, refrigerants, and solvents into the atmosphere and the indirect effects in the form of carbon dioxide emissions resulting from energy use for commercial and residential heating and cooling, household and commercial refrigeration, building and automobile air-conditioning, and general metal and electronics solvent cleaning. The discussion in this paper focuses on those aspects of the study relevant to refrigeration and air-conditioning. In general the use of hydrofluorocarbon (HFC) and hydrochlorofluorocarbon (HCFC) alternatives for CFCs lead to large and sometimes dramatic reductions in total equivalent warming impact (TEWI), lifetime equivalent CO{sub 2} emissions. Most of the reductions result from decreased direct effects without significant changes in energy use.

Fischer, S.K.; Fairchild, P.D.; Hughes, P.J.

1992-01-01T23:59:59.000Z

382

FINAL REPORT WIND POWER WARM SPRINGS RESERVATION TRIBAL LANDS DOE GRANT NUMBER DE-FG36-07GO17077 SUBMITTED BY WARM SPRINGS POWER & WATER ENTERPRISES A CORPORATE ENTITY OF THE CONFEDERATED TRIBES OF WARM SPRINGS WARM SPRINGS, OREGON  

SciTech Connect

Wind Generation Feasibility Warm Springs Power and Water Enterprises (WSPWE) is a corporate entity owned by the Confederated Tribes of the Warm Springs Reservation, located in central Oregon. The organization is responsible for managing electrical power generation facilities on tribal lands and, as part of its charter, has the responsibility to evaluate and develop renewable energy resources for the Confederated Tribes of Warm Springs. WSPWE recently completed a multi-year-year wind resource assessment of tribal lands, beginning with the installation of wind monitoring towers on the Mutton Mountains site in 2003, and collection of on-site wind data is ongoing. The study identified the Mutton Mountain site on the northeastern edge of the reservation as a site with sufficient wind resources to support a commercial power project estimated to generate over 226,000 MWh per year. Initial estimates indicate that the first phase of the project would be approximately 79.5 MW of installed capacity. This Phase 2 study expands and builds on the previously conducted Phase 1 Wind Resource Assessment, dated June 30, 2007. In order to fully assess the economic benefits that may accrue to the Tribes through wind energy development at Mutton Mountain, a planning-level opinion of probable cost was performed to define the costs associated with key design and construction aspects of the proposed project. This report defines the Mutton Mountain project costs and economics in sufficient detail to allow the Tribes to either build the project themselves or contract with a developer under the most favorable terms possible for the Tribes.

Jim Manion; Michael Lofting; Wil Sando; Emily Leslie; Randy Goff

2009-03-30T23:59:59.000Z

383

Signal and noise in global warming detection. Final report  

SciTech Connect

The specific objectives of this study were the following: (1) What is the expected sampling error and bias incurred in estimation of the global average temperature from a finite number of point gauges? (2) What is the best one can do by optimally arranging N point gauges, how can one make best use of existing data at N point gauges by optimally weighting them? (3) What is a good estimation of the signal of global warming based upon simple models of the climate system? (4) How does one develop an optimal signal detection technique from the knowledge of signal and noise?

North, G.R.

1998-11-01T23:59:59.000Z

384

Scientists studying the greenhouse effect challenge fears of global warming  

SciTech Connect

The author discusses the controversy in the scientific community about the significance of the increased gases causing the greenhouse effect to be detrimental to the earth's ecosystems. He states that the most important aspect of the controversy is the fact that governments are embarking on foolish activities in order to prevent global warming. The fact that scientists offer research with contradicting results furthers the confusion as to what the best course of action is. The government agencies that control policy need to appropriate funds to study specific climatic changes and what effect carbon dioxide and other gases have on the atmosphere.

Wheeler, D.L.

1990-07-01T23:59:59.000Z

385

The rising tide: Global warming and world sea levels  

SciTech Connect

The author presents a broad-based and well-written approach to the impacts of sea level rise. Besides chapters on global warming, sources of sea level variability and the future, the effects on coastal nations, the book contains an important action-oriented discussion of proposed legislation and guidelines for planning and management aimed at reducing loss and damage produced by sea-level rise. The list of acknowledgements includes all the leading practitioners in the field. The references and information are current; reports and information from 1989 and 1990 meetings are included.

Edgerton, L.T.

1991-01-01T23:59:59.000Z

386

Indirect Drive Warm-Loaded Ignition Target Design  

SciTech Connect

This document summarizes the Indirect Drive Warm-Loaded Ignition Target design. These targets either use a fill tube or the capsule is strong enough to withstand the room temperature pressure of the DT fuel. Only features that affect the design of the NIF Cryogenic Target System (NCTS) are presented. The design presented is the current thinking and may evolve further. The NCTS should be designed to accommodate a range of targets and target scales, as described here. The interface location between the target and the NCTS cryostat is at the target base / gripper joint, the tamping gas gland/gland joint, and the electrical plug/receptacle joint.

Bernat, T P; Gibson, C R

2004-09-03T23:59:59.000Z

387

Sheet metal stamping die design for warm forming  

DOE Patents (OSTI)

In metal stamping dies, by taking advantage of improved material flow by selectively warming the die, flat sections of the die can contribute to the flow of material throughout the workpiece. Local surface heating can be accomplished by placing a heating block in the die. Distribution of heating at the flat lower train central regions outside of the bend region allows a softer flow at a lower stress to enable material flow into the thinner, higher strain areas at the bend/s. The heating block is inserted into the die and is powered by a power supply.

Ghosh, Amit K. (Ann Arbor, MI)

2003-04-22T23:59:59.000Z

388

600 a Current Leads with Dry and Compact Warm Terminals  

E-Print Network (OSTI)

For the LHC magnet test benches 26 pairs of conventional helium vapour-cooled 600 A current leads are required. The first pair of 600 A current leads has been designed and built by industry and tested at CERN. The main component of the lead is the heat exchanger, which consists of two concentric copper pipes. Special attention was also given to the design of the warm terminal in order to avoid any condensation and to resist at an electrical test of 2 kV. The paper describes construction details and compares calculated and measured values of the main parameters.

Andersen, T P; Vullierme, B

2002-01-01T23:59:59.000Z

389

The Unification and Cogeneration of Dark Matter and Baryonic Matter  

E-Print Network (OSTI)

In grand unified theories with gauge groups larger than SU(5), the multiplets that contain the known quarks and leptons also contain fermions that are singlets under the Standard Model gauge group. Some of these could be the dark matter of the universe. Grand unified theories can also have accidental U(1) global symmetries (analogous to B-L in minimal SU(5)) that can stabilize dark matter. These ideas are illustrated in an SU(6) model.

S. M. Barr

2011-09-12T23:59:59.000Z

390

The Unification and Cogeneration of Dark Matter and Baryonic Matter  

E-Print Network (OSTI)

In grand unified theories with gauge groups larger than SU(5), the multiplets that contain the known quarks and leptons also contain fermions that are singlets under the Standard Model gauge group. Some of these could be the dark matter of the universe. Grand unified theories can also have accidental U(1) global symmetries (analogous to B-L in minimal SU(5)) that can stabilize dark matter. These ideas are illustrated in an SU(6) model.

Barr, S M

2011-01-01T23:59:59.000Z

391

The Energy of Charged Matter  

E-Print Network (OSTI)

In this talk I will discuss some of the techniques that have been developed over the past 35 years to estimate the energy of charged matter. These techniques have been used to solve stability of (fermionic) matter in different contexts, and to control the instability of charged bosonic matter. The final goal will be to indicate how these techniques with certain improvements can be used to prove Dyson's 1967 conjecture for the energy of a charged Bose gas--the sharp $N^{7/5}$ law.

Jan Philip Solovej

2004-04-16T23:59:59.000Z

392

Matter Matters: Unphysical Properties of the Rh = ct Universe  

E-Print Network (OSTI)

It is generally agreed that there is matter in the universe and, in this paper, we show that the existence of matter is extremely problematic for the proposed Rh = ct universe. Considering a dark energy component with an equation of state of w=-1/3, it is shown that the presence of matter destroys the strict expansion properties that define the evolution of Rh = ct cosmologies, distorting the observational properties that are touted as its success. We further examine whether an evolving dark energy component can save this form of cosmological expansion in the presence of matter by resulting in an expansion consistent with a mean value of = -1/3, finding that the presence of mass requires unphysical forms of the dark energy component in the early universe. We conclude that matter in the universe significantly limits the fundamental properties of the Rh = ct cosmology, and that novel, and unphysical, evolution of the matter component would be required to save it. Given this, Rh = ct cosmology is not simpler or...

Lewis, Geraint F

2013-01-01T23:59:59.000Z

393

Low frequency electrostatic and electromagnetic modes of ultracold magnetized nonuniform dense plasmas  

SciTech Connect

A coupled linear dispersion relation for the basic electrostatic and electromagnetic waves in the ultracold nonuniform magnetized dense plasmas has been obtained which interestingly is analogous to the classical case. The scales of macroscopic phenomena and the interparticle quantum interactions are discussed. It is important to point out that hydrodynamic models cannot take into account strong quantum effects and they are not applicable to very dense plasmas. The analysis is presented with applications to dense plasmas which are relevant to both laboratory and astrophysical environments.

Saleem, H. [National Centre for Physics (NCP), Quaid-i-Azam University Campus, Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Ahmad, Ali [Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Theoretical Plasma Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad (Pakistan); Khan, S. A. [National Centre for Physics (NCP), Quaid-i-Azam University Campus, Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Department of Physics, Government College Bagh AJK (Pakistan)

2008-09-15T23:59:59.000Z

394

The role of clouds and oceans in global greenhouse warming  

SciTech Connect

During the past three years we have conducted several studies using models and a combination of satellite data, in situ meteorological and oceanic data, and paleoclimate reconstructions, under the DoE program, Quantifying the Link Between Change in Radiative Balance and Atmospheric Temperature''. Our goals were to investigate effects of global cloudiness variations on global climate and their implications for cloud feedback and continue development and application of NYU transient climate/ocean models, with emphasis on coupled effects of greenhouse warming and feedbacks by both the clouds and oceans. Our original research plan emphasized the use of cloud, surface temperature and ocean data sets interpreted by focused climate/ocean models to develop a cloud radiative forcing scenario for the past 100 years and to assess the transient climate response; to narrow key uncertainties in the system; and to identify those aspects of the climate system most likely to be affected by greenhouse warming over short, medium and long time scales.

Hoffert, M.I.

1992-12-01T23:59:59.000Z

395

The role of nuclear energy in mitigating greenhouse warming  

SciTech Connect

A behavioral, top-down, forced-equilibrium market model of long-term ({approximately} 2,100) global energy-economics interactions has been modified with a bottom-up nuclear energy model and used to construct consistent scenarios describing future impacts of civil nuclear materials flows in an expanding, multi-regional (13) world economy. The relative measures and tradeoffs between economic (GNP, tax impacts, productivity, etc.), environmental (greenhouse gas accumulations, waste accumulation, proliferation risk), and energy (resources, energy mixes, supply-side versus demand-side attributes) interactions that emerge from these analyses are focused herein on advancing understanding of the role that nuclear energy (and other non-carbon energy sources) might play in mitigating greenhouse warming. Two ostensibly opposing scenario drivers are investigated: (a) demand-side improvements in (non-price-induced) autonomous energy efficiency improvements; and (b) supply-side carbon-tax inducements to shift energy mixes towards reduced- or non-carbon forms. In terms of stemming greenhouse warming for minimal cost of greenhouse-gas abatement, and with the limitations of the simplified taxing schedule used, a symbiotic combination of these two approaches may offer advantages not found if each is applied separately.

Krakowski, R.A.

1997-12-31T23:59:59.000Z

396

Ashton Warm Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Ashton Warm Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Ashton Warm Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.095,"lon":-111.4583,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

Warm molecular hydrogen in the Spitzer SINGS galaxy sample  

E-Print Network (OSTI)

(simplified) Results on the properties of warm H2 in 57 normal galaxies are derived from H2 rotational transitions, obtained as part of SINGS. This study extends previous extragalactic surveys of H2, the most abundant constituent of the molecular ISM, to more common systems (L_FIR = e7 to 6e10 L_sun) of all morphological and nuclear types. The S(1) transition is securely detected in the nuclear regions of 86% of SINGS galaxies with stellar masses above 10^9.5 M_sun. The derived column densities of warm H2 (T > ~100 K), even though averaged over kiloparsec-scale areas, are commensurate with those of resolved PDRs; the median of the sample is 3e20 cm-2. They amount to between 1% and >30% of the total H2. The power emitted in the sum of the S(0) to S(2) transitions is on average 30% of the [SiII] line power, and ~4e-4 of the total infrared power (TIR) within the same area for star-forming galaxies, which is consistent with excitation in PDRs. The fact that H2 emission scales tightly with PAH emission, even thoug...

Roussel, H; Hollenbach, D J; Draine, B T; Smith, J D; Armus, L; Schinnerer, E; Walter, F; Engelbracht, C W; Thornley, M D; Kennicutt, R C; Calzetti, D; Dale, D A; Murphy, E J; Bot, C

2007-01-01T23:59:59.000Z

398

Why the Earth has not warmed as much as expected?  

Science Conference Proceedings (OSTI)

The observed increase in global mean surface temperature (GMST) over the industrial era is less than 40% of that expected from observed increases in long-lived greenhouse gases together with the best-estimate equilibrium climate sensitivity given by the 2007 Assessment Report of the Intergovernmental Panel on Climate Change. Possible reasons for this warming discrepancy are systematically examined here. The warming discrepancy is found to be due mainly to some combination of two factors: the IPCC best estimate of climate sensitivity being too high and/or the greenhouse gas forcing being partially offset by forcing by increased concentrations of atmospheric aerosols; the increase in global heat content due to thermal disequilibrium accounts for less than 25% of the discrepancy, and cooling by natural temperature variation can account for only about 15%. Current uncertainty in climate sensitivity is shown to preclude determining the amount of future fossil fuel CO2 emissions that would be compatible with any chosen maximum allowable increase in GMST; even the sign of such allowable future emissions is unconstrained. Resolving this situation, by empirical determination of the earth's climate sensitivity from the historical record over the industrial period or through use of climate models whose accuracy is evaluted by their performance over this period, is shown to require substantial reduction in the uncertainty of aerosol forcing over this period.

Schwartz, S.E.

2010-05-01T23:59:59.000Z

399

MSD Condensed Matter Theory - Argonne National Laboratories,...  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Condensed Matter Theory Condensed Matter Theory research interacts with the materials research program at ANL through a mix of individual theoretical studies and...

400

Quantum Condensed Matter Division | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantum Condensed Matter Division Steve Nagler, QCMD Director QCMD Director Steve Nagler. The Quantum Condensed Matter Division (QCMD) enables and conducts a broad program of...

Note: This page contains sample records for the topic "warm dense matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Brookhaven Soft Condensed Matter Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

surface freezing are still unresolved. One objective of the soft matter program at Brookhaven is to understand the behavior of ultra-thin organic films on solid and liquid...

402

Shear viscosity of nuclear matter  

E-Print Network (OSTI)

In this talk I report my recent study on the shear viscosity of neutron-rich nuclear matter from a relaxation time approach. An isospin- and momentum-dependent interaction is used in the study. Effects of density, temperature, and isospin asymmetry of nuclear matter on its shear viscosity have been discussed. Similar to the symmetry energy, the symmetry shear viscosity is defined and its density and temperature dependence are studied.

Jun Xu

2013-02-01T23:59:59.000Z

403

Strongly interacting parton matter equilibration  

Science Conference Proceedings (OSTI)

We study the kinetic and chemical equilibration in 'infinite' parton matter within the Parton-Hadron-String Dynamics transport approach. The 'infinite' matter is simulated within a cubic box with periodic boundary conditions initialized at different energy densities. Particle abundances, kinetic energy distributions, and the detailed balance of the off-shell quarks and gluons in the strongly-interacting quarkgluon plasma are addressed and discussed.

Ozvenchuk, V., E-mail: ozvenchuk@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies (Germany); Linnyk, O. [Goethe-Universitaet, Institut fuer Theoretische Physik (Germany); Bratkovskaya, E. [Frankfurt Institute for Advanced Studies (Germany); Gorenstein, M. [NAS Ukraine, Bogolyubov Institute for Theoretical Physics (Ukraine); Cassing, W. [Justus-Liebig Universitaet, Institut fuer Theoretische Physik (Germany)

2012-07-15T23:59:59.000Z

404

Cosmology, Thermodynamics and Matter Creation  

E-Print Network (OSTI)

Several approaches to the matter creation problem in the context of cosmological models are summarily reviewed. A covariant formulation of the general relativistic imperfect simple fluid endowed with a process of matter creation is presented. By considering the standard big bang model, it is shown how the recent results of Prigogine et alii \\cite{1} can be recovered and, at the same time their limits of validity are explicited.

J. A. S. Lima; M. O. Calvao; I. Waga

2007-08-24T23:59:59.000Z

405

Shear viscosity of nuclear matter  

E-Print Network (OSTI)

In this talk I report my recent study on the shear viscosity of neutron-rich nuclear matter from a relaxation time approach. An isospin- and momentum-dependent interaction is used in the study. Effects of density, temperature, and isospin asymmetry of nuclear matter on its shear viscosity have been discussed. Similar to the symmetry energy, the symmetry shear viscosity is defined and its density and temperature dependence are studied.

Xu, Jun

2013-01-01T23:59:59.000Z

406

Mixed-conducting dense ceramics for gas separation applications.  

DOE Green Energy (OSTI)

Mixed-conducting (electronic and ionic conducting) dense ceramics are used in many applications, including fuel cells, gas separation membranes, batteries, sensors, and electrocatalysis. This paper describes mixed-conducting ceramic membranes that are being developed to selectively remove oxygen and hydrogen from gas streams in a nongalvanic mode of operation (i.e., with no electrodes or external power supply). Ceramic membranes made of Sr-Fe-Co oxide (SFC), which exhibits high combined electronic and oxygen ionic conductivities, can be used for high-purity oxygen separation and/or partial oxidation of methane to synthesis gas (syngas, a mixture of CO and H{sub 2}). The electronic and ionic conductivities of SFC were found to be comparable in magnitude. Steady-state oxygen permeability of SFC has been measured as a function of oxygen-partial-pressure gradient and temperature. For an {approx}3-mm-thick membrane, the oxygen permeability was {approx}2.5 scc{center_dot}cm{sup {minus}2}{center_dot}min{sup {minus}1} at 900 C. Oxygen permeation increases as membrane thickness decreases. Tubular SFC membranes have been fabricated and operated at 900 C for {approx}1000 h in converting methane into syngas. The oxygen permeated through the membrane reacted with methane in the presence of a catalyst and produced syngas. We also studied the transport properties of yttria-doped BaCeO{sub 3{minus}{delta}} (BCY) by impedance spectroscopy and open-cell voltage (OCV) measurement. Total conductivity of the BCY sample increased from {approx}5 x 10{sup {minus}3} {Omega}{sup {minus}1}{center_dot}cm{sup {minus}1} to {approx}2 x 10{sup {minus}2} {Omega}{sup {minus}1}{center_dot}cm{sup {minus}1}, whereas the protonic transference number decreased from 0.87 to 0.63 and the oxygen transference number increased from 0.03 to 0.15 as temperature increased from 600 to 800 C. Unlike SFC, in which the ionic and electronic conductivities are nearly equivalent BCY exhibits protonic conductivity that is significantly higher than its electronic conductivity. To enhance the electronic conductivity and therefore to increase hydrogen permeation, metal powder was combined with the BCY to form a cermet membrane, Nongalvanic permeation of hydrogen through the BCY-cermet membranes was demonstrated and characterized as a function of membrane thickness.

Balachandran, U.; Dorris, S. E.; Dusek, J. T.; Guan, J.; Liu, M.; Ma, B.; Maiya, P. S.; Picciolo, J. J.

1999-06-22T23:59:59.000Z

407

A warm-start approach for large-scale stochastic linear programs?  

E-Print Network (OSTI)

Aug 29, 2006 ... The reduced tree selection induces a function r : T ?TR that maps each ...... We applied our warm-start strategy to the capacity assignment...

408

Integrated dense array and transect MT surveying at dixie valley geothermal  

Open Energy Info (EERE)

dense array and transect MT surveying at dixie valley geothermal dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal alteration and deep fluid sources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Integrated dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal alteration and deep fluid sources Authors Philip E. Wannamaker, William M. Doerner and Derrick P. Hasterok Conference proceedings, 32th workshop on geothermal reservoir Engineering, Stanford University; Stanford University; 2007 Published Publisher Not Provided, 2007 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Integrated dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal

409

SpaceTime Characteristics of Light Transmitted through Dense Clouds: A Green's Function Analysis  

Science Conference Proceedings (OSTI)

Here, previous work using photon diffusion theory to describe radiative transfer through dense plane-parallel clouds at nonabsorbing wavelengths is extended. The focus is on the scaling of space- and time-domain moments for transmitted light with ...

Anthony B. Davis; Alexander Marshak

2002-09-01T23:59:59.000Z

410

A bayesian approach for building detection in densely build-up high resolution satellite image  

Science Conference Proceedings (OSTI)

In this paper, we present a novel automatic approach for building detection from high resolution satellite image with densely build-up buildings. Unlike the previous approaches which normally start with lines and junctions, our approach is based on regions. ...

Zongying Song; Chunhong Pan; Q. Yang

2006-09-01T23:59:59.000Z

411

Remez-type inequality for non-dense M?ntz spaces with ... - CECM  

E-Print Network (OSTI)

REMEZ-TYPE INEQUALITY FOR NON-DENSE. M8UNTZ SPACES WITH EXPLICIT BOUND. PEtER BoRwEin AnD TAm wAs ?RD wElyi. AbstRAct.

412

Dense Plasma Focus Fusion Neutron Sources Progress at NSTec, September 2011  

Science Conference Proceedings (OSTI)

A number of dense plasma focus (DPF) sources are introduced, including their operating characteristics and current activities. Neutron resonance spectroscopy is discussed and the feasibility of using DPF for neutron sources is considered.

Hagen, E. C.

2011-07-02T23:59:59.000Z

413

On the Cascading of Dense Shelf Waters in the Irminger Sea  

Science Conference Proceedings (OSTI)

Hydrographic data collected in the Irminger Sea in the 1990s2000s indicate that dense shelf waters carried by the East Greenland Current south of the Denmark Strait intermittently descend (cascade) down the continental slope and merge with the ...

Anastasia Falina; Artem Sarafanov; Herl Mercier; Pascale Lherminier; Alexey Sokov; Nathalie Daniault

2012-12-01T23:59:59.000Z

414

Tripolar vortex formation in dense quantum plasma with ion-temperature-gradients  

SciTech Connect

We have derived system of nonlinear equations governing the dynamics of low-frequency electrostatic toroidal ion-temperature-gradient mode for dense quantum magnetoplasma. For some specific profiles of the equilibrium density, temperature, and ion velocity gradients, the nonlinear equations admit a stationary solution in the form of a tripolar vortex. These results are relevant to understand nonlinear structure formation in dense quantum plasmas in the presence of equilibrium ion-temperature and density gradients.

Qamar, Anisa; Ata-ur-Rahman [Institute of Physics and Electronics, University of Peshawar, Khyber Pakhtoon Khwa 25000 (Pakistan); National Center for Physics Shahdrah Valley Road, Islamabad 44000 (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Physics Department, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

2012-05-15T23:59:59.000Z

415

A Dark-Matter Spike at the Galactic Center?  

E-Print Network (OSTI)

The past growth of the central black hole (BH) might have enhanced the density of cold dark matter halo particles at the Galactic center. We compute this effect in realistic growth models of the present (2-3)*10**6 solar mass BH from a low-mass seed BH, with special attention to dynamical modeling in a realistic galaxy environment with merger and orbital decay of a seed BH formed generally outside the exact center of the halo. An intriguing ``very-dense spike'' of dark matter has been claimed in models of Gondolo and Silk with density high enough to contradict with experimental upper bounds of neutralino annihilation radiation. This ``spike'' disappears completely or is greatly weakened when we include important dynamical processes neglected in their idealized/restrictive picture with cold particles surrounding an at-the-center zero-seed adiabaticly-growing BH. For the seed BH to spiral in and settle to the center within a Hubble time by dynamical friction, the seed mass must be at least a significant fraction of the present BH. Any subsequent at-the-center growth of the BH and steepening of the central Keplerian potential well can squeeze the halo density distribution only mildly, whether the squeezing happens adiabatically or instantaneously.

Piero Ullio; HongSheng Zhao; Marc Kamionkowski

2001-01-26T23:59:59.000Z

416

Preface to Symposium: Matter at Extreme Conditions: Theory and Application  

DOE Green Energy (OSTI)

The subject of ''Matter at Extreme Conditions'' encompasses a wide range of phenomena the thrust of which is to address the physical and chemical behaviors of materials exposed to ''abnormal'' conditions of high pressures, temperature extremes, or external fields. Recent advances in theoretical methodologies and first principle computational studies have predicted unusual properties and unraveled a few surprises when matter is subjected to such strains: a reversed and anomalous Doppler effects in shocked periodic media, the possible existence of low temperature liquid metallic state of hydrogen, and a superionic phase of water at high temperature and pressure. A unified approach from quantum mechanical principles allows for exploring such diverse and disparate subjects as ultracold plasmas in a strong magnetic field, and the dynamic aspects of Bose-Einstein condensates. These topics, which are aptly presented in this symposium, are but a few examples of interesting discoveries and methodologies in this active and exciting area of research. The development of reactive force fields from quantum mechanical principles for use in conjunction with molecular dynamics provide us with an invaluable tool for large-scale simulations to study the chemical transformations and decomposition products of complex organic systems at extreme conditions. Simulations implementing classical fields can provide an unprecedented access to the short time scales of chemical events that occur in dense fluids at high-temperature, and for the study of atomic clusters under strong laser pulses.

Manaa, M R

2005-07-20T23:59:59.000Z

417

Dissipative hydrodynamic evolution of hot quark matter at finite baryon density  

E-Print Network (OSTI)

High-energy heavy ion collider experiments at RHIC and LHC have revealed that relativistic hydrodynamic models describe the hot and dense quark matter quantitatively. In this study, I develop a novel dissipative hydrodynamic model at finite baryon density to investigate the net baryon rapidity distribution. The results show that the distribution is widened in hydrodynamic evolution, which implies that the transparency of the collisions is effectively enhanced. This suggests that the kinetic energy loss for medium production at the initial stage could be larger. Furthermore, the net baryon distribution is found sensitive to baryon diffusion, implying that dissipative hydrodynamic modeling would be important for understanding the hot medium.

Monnai, Akihiko

2013-01-01T23:59:59.000Z

418

Dense Membranes for Anode Supported all Perovskite IT-SOFCs  

DOE Green Energy (OSTI)

Innovative wet chemical synthetic techniques were employed to obtain highly ionic conducting dense perovskites, mixed conducting porous perovskites, and electronically conducting perovskite membranes to be as electrolyte, cathode, anode, and interconnect for assembling all perovskite IT-SOFC system. Processing conditions were optimized to obtain well sintered LSM, LSF, LSCF, LNF, and LCF for SOFC cell and stacks working at 600-800 C. Series of nanocrystalline bulk and thin films of La{sub 0.8}Sr{sub 0.2}Ga{sub 0.83}Mg{sub 0.17}O{sub 2.815}, LaSr{sub 0.2}Fe{sub 0.8}O{sub 3}, LaSr{sub 0.2}Co{sub 0.8}Fe{sub 0.2}O{sub 3}, La{sub 0.8}Ni{sub 0.7}Fe{sub 0.3}O{sub 3}, LaCr{sub 0.7}Fe{sub 0.3}O{sub 3} were prepared at very low temperatures and characterized using XRD, SEM, HRTEM, XPS, EXAFS, and EIS techniques. The influence of preparation techniques on the microstructure, grain-size and consequently on the electrical transport properties were investigated. Processing conditions, sintering temperature (1200-1500 C) and time severely affected the grain size (< 0.1 {micro}m to 10 {micro}m) and the resistance in all grain-boundary (3 k{Omega} to175 k{Omega}). Through investigations of A and B site doping in perovskite materials, we have reduced cathode-electrolyte interfacial resistance, will be very effective for the SOFCs operating {approx} 750 C. Epitaxial films of LiFeNiO{sub 3}, for SOFCs cathode were deposited on LaAl{sub 2}O{sub 3}, MgO, and YSZ single crystals by pulsed laser deposition (PLD) method, and characterized using advanced spectroelectrochemical techniques. The film orientations depend on the substrate planes. Surface morphology of the films also depends on the substrate orientations. These films showed different electrode properties depending on the orientations. The porous characteristic of the electrode materials are achieved by the combination of combustion and microwave sintering using SiC as susceptor (1200-1400 C). Concurrently, the other oxygen ionic/protonic conducting oxides (perovskites, pyrochlores, and apatites) were also prepared, characterized and understood the role in the development of reduced temperature SOFCs. In this HBCU/MI -research and educational project, we have emphasized the need to expand research opportunities for talented undergraduate and graduate African American students and junior faculty in the field of power sources based on nanoscience. We have paired the selected three undergraduate and two graduate students with full time research staff (PDF), for experimental measurements and discussions via preparing students to present the work in regional, national and international conferences. These students on an average made one presentation per year out side the SUBR campus. The effort in this project yielded 7 publications in refereed journals and about 15 in conference proceedings including NETL annual review meetings. Further, we have initiated a collaborative research and educational outreach project entitled 'Center for Hydrogen Energy and Advanced Power [CHEAP]' with University of West Indies-St. Augustine, Trinidad & Tobago (T &T).

Rambabu Bobba

2007-09-15T23:59:59.000Z

419

Microsoft Word - Warm Rinse Guidance 6 29 2010_FINAL _2_  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The following is a draft U.S. Department of Energy interpretive rule, which sets out the The following is a draft U.S. Department of Energy interpretive rule, which sets out the Department's views on the application of the clothes washer testing procedure described in 10 CFR § 430 Appendix J1. This draft interpretive rule represents the Department's interpretation of its existing regulations and is exempt from the notice and comment requirements of the Administrative Procedure Act. See 5 U.S.C. § 553(b)(A). Nevertheless, we are interested in receiving feedback from the public on the interpretation set forth below. Therefore, the Department is accepting comments from the public until July 30, 2010. Comments should be provided in WordPerfect, Microsoft Word, PDF, or text file format by sending an email to: WarmRinse.FAQ@hq.doe.gov. At the end of the

420

New electric technologies to reduce global warming impacts  

SciTech Connect

Advanced electric technologies hold significant potential to reduce global warming impact through reduction of primary fuel needed to power end-use applications. These reductions can occur in two forms: (1) reduced kilowatt-hour usage and power plant emissions through efficiency improvements and technological enhancements of existing electrically-driven applications; (2) the development of new electric technologies to replace traditional fossil-fuel driven applications which can result in less overall primary energy consumption and lower overall emissions. Numerous new electric technologies are presently being developed by the Electric Power Research Institute. The technologies reviewed in this paper include: Microwave Fabric Dryer, Advanced Heat Pumps, Heat Pump Water Heater, Infrared Sand Reclaimer, Freeze Concentration, Membrane Water Recovery, Microwave Petrochemical Production, Infrared Drying, and Electric Vehicles. Full commercialization of these technologies can result in significant energy savings and CO[sub 2] reductions, in addition to improving the competitiveness of businesses using these technologies.

Courtright, H.A. (Electric Power Research Inst., Palo Alto, CA (United States))

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm dense matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Storage and retrieval of thermal light in warm atomic vapor  

SciTech Connect

We report slowed propagation and storage and retrieval of thermal light in warm rubidium vapor using the effect of electromagnetically induced transparency (EIT). We first demonstrate slowed propagation of the probe thermal light beam through an EIT medium by measuring the second-order correlation function of the light field using the Hanbury-Brown-Twiss interferometer. We also report an experimental study on the effect of the EIT slow-light medium on the temporal coherence of thermal light. Finally, we demonstrate the storage and retrieval of the thermal light beam in the EIT medium. The direct measurement of the photon number statistics of the retrieved light field shows that the photon number statistics are preserved during the storage and retrieval processes.

Cho, Young-Wook; Kim, Yoon-Ho [Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of)

2010-09-15T23:59:59.000Z

422

Warmly Debated: The Little Ice Age and the Construction of Historical Climatic Regimes, 1650-1950  

E-Print Network (OSTI)

Climatic change has been the subject of investigation and spirited debate for more than three centuries. One important element of this debate has been the search for and definition of unique, impermanent climatic regimes measurable by historic time. The Medieval Warm Period and the Little Ice Age are the two most commonly referenced and discussed of such regimes. This thesis examines the theories and debates that preceded and surrounded the formal definition of the Little Ice Age as an historic period of approximately 1550-1850 AD. This thesis begins by describing early attempts to measure and record climatic conditions during the late seventeenth and early eighteenth centuries while also demonstrating that climatic change and climatic influence were matters of concern for both the scientific and philosophical elite and the public. By the first decade of the nineteenth century, however, discussion of climatic change had begun to center on comparisons of the medieval past and the cooler present. Climatic change itself often intruded on debates about past climates during the early nineteenth century. By 1900, however, both scholars and laymen had begun to recognize that some form of climatic change had occurred in the sixteenth century. Early twentieth century scholars such as Otto Pettersson, Charles Rabot, and Ellsworth Huntington helped define the boundaries and significance of historical climatic regimes. When Francois Matthes wrote of a "little ice-age" in 1939, he was not creating a wholly new idea; he was instead engaging in a centuries-old debate over the climatic conditions of the last millennium.

Gilson, Christopher R.

2010-05-01T23:59:59.000Z

423

The Effect of the Sea Ice Freshwater Flux on Southern Ocean Temperatures in CCSM3: Deep-Ocean Warming and Delayed Surface Warming  

Science Conference Proceedings (OSTI)

This study explores the role of sea ice freshwater and salt fluxes in modulating twenty-first-century surface warming in the Southern Ocean via analysis of sensitivity experiments in the Community Climate System Model, version 3 (CCSM3). In ...

Clark H. Kirkman IV; Cecilia M. Bitz

2011-05-01T23:59:59.000Z

424

Warm Water Oxidation Verification - Scoping and Stirred Reactor Tests  

Science Conference Proceedings (OSTI)

Scoping tests to evaluate the effects of agitation and pH adjustment on simulant sludge agglomeration and uranium metal oxidation at {approx}95 C were performed under Test Instructions(a,b) and as per sections 5.1 and 5.2 of this Test Plan prepared by AREVA. (c) The thermal testing occurred during the week of October 4-9, 2010. The results are reported here. For this testing, two uranium-containing simulant sludge types were evaluated: (1) a full uranium-containing K West (KW) container sludge simulant consisting of nine predominant sludge components; (2) a 50:50 uranium-mole basis mixture of uraninite [U(IV)] and metaschoepite [U(VI)]. This scoping study was conducted in support of the Sludge Treatment Project (STP) Phase 2 technology evaluation for the treatment and packaging of K-Basin sludge. The STP is managed by CH2M Hill Plateau Remediation Company (CHPRC) for the U.S. Department of Energy. Warm water ({approx}95 C) oxidation of sludge, followed by immobilization, has been proposed by AREVA and is one of the alternative flowsheets being considered to convert uranium metal to UO{sub 2} and eliminate H{sub 2} generation during final sludge disposition. Preliminary assessments of warm water oxidation have been conducted, and several issues have been identified that can best be evaluated through laboratory testing. The scoping evaluation documented here was specifically focused on the issue of the potential formation of high strength sludge agglomerates at the proposed 95 C process operating temperature. Prior hydrothermal tests conducted at 185 C produced significant physiochemical changes to genuine sludge, including the formation of monolithic concretions/agglomerates that exhibited shear strengths in excess of 100 kPa (Delegard et al. 2007).

Braley, Jenifer C.; Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

2011-06-15T23:59:59.000Z

425

Fake Dark Matter at Colliders  

E-Print Network (OSTI)

If the dark matter (DM) consists of a weakly interacting massive particle (WIMP), it can be produced and studied at future collider experiments like those at the LHC. The production of collider-stable WIMPs is characterized by hard scattering events with large missing transverse energy. Here we point out that the discovery of this well-characterized DM signal may turn out to be a red herring. We explore an alternative explanation -- fake dark matter -- where the only sources of missing transverse energy are standard model neutrinos. We present examples of such models, focusing on supersymmetric models with R-parity violation. We also briefly discuss means of differentiating fake dark matter from the production of new collider-stable particles.

Chang, Spencer

2009-01-01T23:59:59.000Z

426

Fake Dark Matter at Colliders  

E-Print Network (OSTI)

If the dark matter (DM) consists of a weakly interacting massive particle (WIMP), it can be produced and studied at future collider experiments like those at the LHC. The production of collider-stable WIMPs is characterized by hard scattering events with large missing transverse energy. Here we point out that the discovery of this well-characterized DM signal may turn out to be a red herring. We explore an alternative explanation -- fake dark matter -- where the only sources of missing transverse energy are standard model neutrinos. We present examples of such models, focusing on supersymmetric models with R-parity violation. We also briefly discuss means of differentiating fake dark matter from the production of new collider-stable particles.

Spencer Chang; Andre de Gouvea

2009-01-30T23:59:59.000Z

427

The greenhouse effect: Chicken Little and our response to global warming  

SciTech Connect

In this article the author suggests that global warming studies are ambiguous and have generated a chicken little response in the public and in policymakers. Uncertainties in studies of ocean warming and ozone depletion are discussed as well as the role of other trace gases such as methane, chlorofluorocarbons and nitrogen oxides.

Michaels, P.J.

1989-07-01T23:59:59.000Z

428

Cheap coal said top enemy in fighting global warming By Alister Doyle, Environment Correspondent  

E-Print Network (OSTI)

Cheap coal said top enemy in fighting global warming By Alister Doyle, Environment Correspondent OSLO, Sept 28 (Reuters) - Cheap coal will be the main enemy in a fight against global warming in the 21st century because high oil prices are likely to encourage a shift to coal before wind or solar power

Calov, Reinhard

429

A mechanism for landocean contrasts in global monsoon trends in a warming climate  

E-Print Network (OSTI)

A mechanism for land­ocean contrasts in global monsoon trends in a warming climate J. Fasullo of the global monsoon record involves reported decreases in rainfall over land during an era in which the global in the monsoons in a warming climate while bolstering the concept of the global monsoon in the context of shared

Fasullo, John

430

Time-Dependent Internal Energy Budgets of the Tropical Warm Water Pools  

Science Conference Proceedings (OSTI)

The exchange of internal energy between the warm water pools of the tropical oceans and the overlying atmosphere is thought to play a central role in the evolving climate system of the earth. Spatial displacements of the warm water pools are ...

John M. Toole; Huai-Min Zhang; Michael J. Caruso

2004-03-01T23:59:59.000Z

431

A Comparative Analysis of Global Warming Policies for California's Electricity Sector  

E-Print Network (OSTI)

i A Comparative Analysis of Global Warming Policies for California's Electricity Sector Sara Kamins #12;ii A COMPARATIVE ANALYSIS OF GLOBAL WARMING POLICIES FOR CALIFORNIA'S ELECTRICITY SECTOR By: Sara...................................................................................................................11 1.4. Literature Review on Comparisons of Carbon-Reducing Electricity Policies

Kammen, Daniel M.

432

Dark energy from bulk matter  

SciTech Connect

We consider the possibility of getting accelerated expansion and w=-1 crossing in the context of a braneworld cosmological setup, endowed with a bulk energy-momentum tensor. For a given ansatz of the bulk content, we demonstrate that the bulk pressures dominate the dynamics at late times and can lead to accelerated expansion. We also analyze the constraints under which we can get a realistic profile for the effective equation of state and conclude that matter in the bulk has the effect of dark energy on the brane. Furthermore, we show that it is possible to simulate the behavior to a Chaplygin gas using nonexotic bulk matter.

Bogdanos, C.; Dimitriadis, A.; Tamvakis, K. [Physics Department, University of Ioannina, Ioannina GR451 10 (Greece)

2007-04-15T23:59:59.000Z

433

WORKINGPAPER SERIES Number 150CAP AND DIVIDEND: HOW TO CURB GLOBAL WARMING WHILE PROTECTING THE INCOMES OF AMERICAN FAMILIES  

E-Print Network (OSTI)

This essay examines the distributional effects of a cap-and-dividend policy for reducing carbon emission in the United States: a policy that auctions carbon permits and rebates the revenue to the public on an equal per capita basis. The aim of the policy is to reduce U.S. emissions of carbon dioxide, the main pollutant causing global warming, while at the same time protecting the real incomes of middle-income and lower-income American families. The number of permits is set by a statutory cap on carbon emissions that gradually diminishes over time. The sale of carbon permits will generate very large revenues, posing the critical question of who will get the money. The introduction of carbon permits or, for that matter, any policy to curb emissions will raise prices of fossil fuels, Key words: Global warming; fossil fuels; climate change; carbon permits; cap-and-dividend; cap-and-auction; cap-and-trade. and have a regressive impact on income distribution, since fuel expenditures represent a larger fraction of income for lower-income households than for upper-income households. The net effect of carbon emission-reduction policies depends on who gets the money that households pay in higher prices. We find that a cap-and-dividend policy would have a strongly progressive net effect. Moreover, the majority of U.S. households would be net winners in purely monetary terms: that is, their real incomes, after paying higher fuel prices and receiving their dividends, would rise. From the standpoints of both distributional equity and political feasibility, a cap-and-dividend policy is therefore an attractive way to curb carbon emissions. s s

James K. Boyce; Matthew Riddle; James K. Boyce; Matthew Riddle

2007-01-01T23:59:59.000Z

434

It's Not Too Late to Change Global Warming's Course - NERSC Science News  

NLE Websites -- All DOE Office Websites (Extended Search)

It's Not Too Late to It's Not Too Late to Change Global Warming's Course It's Not Too Late to Change Global Warming's Course Simulations Show That Cuts in Greenhouse Gas Emissions Would Save Arctic Ice, Reduce Sea Level Rise October 27, 2009 | Tags: Climate Research mitigation1.jpg Computer simulations show the extent that average air temperatures at Earth's surface could warm by 2080-2099 compared to 1980-1999, if (top) greenhouse gases emissions continue to climb at current rates, or if (middle) society cuts emissions by 70 percent. In the latter case, temperatures rise by less than 2°C (3.6°F) across nearly all of Earth's populated areas (the bottom panel shows warming averted). However, unchecked emissions could lead to warming of 3°C (5.4°F) or more across parts of Europe, Asia, North America, and Australia. (Image: Geophysical

435

How Do You Stay Warm While Saving Money and Energy in Extreme Weather? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Do You Stay Warm While Saving Money and Energy in Extreme How Do You Stay Warm While Saving Money and Energy in Extreme Weather? How Do You Stay Warm While Saving Money and Energy in Extreme Weather? February 3, 2011 - 6:30am Addthis Many states are getting extreme weather this week, with deep freezes, huge blizzards, and ice storms causing various problems across the country. Such weather can cause us to use energy a bit differently to stay warm and keep things running. Depending on where you are, you may be keeping the faucet dripping (so pipes don't freeze), your furnace might be working overtime in the cold, or you may be spending extra time warming up your car. In extreme conditions, it's important to be safe and take your own home and needs into account when taking these extra measures, while still considering your energy use and costs. For example, are your pipes in a

436

How Do You Stay Warm While Saving Money and Energy in Extreme Weather? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Warm While Saving Money and Energy in Extreme Warm While Saving Money and Energy in Extreme Weather? How Do You Stay Warm While Saving Money and Energy in Extreme Weather? February 3, 2011 - 6:30am Addthis Many states are getting extreme weather this week, with deep freezes, huge blizzards, and ice storms causing various problems across the country. Such weather can cause us to use energy a bit differently to stay warm and keep things running. Depending on where you are, you may be keeping the faucet dripping (so pipes don't freeze), your furnace might be working overtime in the cold, or you may be spending extra time warming up your car. In extreme conditions, it's important to be safe and take your own home and needs into account when taking these extra measures, while still considering your energy use and costs. For example, are your pipes in a

437

The Information and the Matter  

E-Print Network (OSTI)

In this article a revised, to some extent, version of the Information concept as utmost fundamental essence ("The Information and the Matter",v1) is presented - a little more logical grounds and may be of a philosophy, the correction and the development of the gravity force concept, etc...

S. V. Shevchenko; V. V. Tokarevsky

2007-03-05T23:59:59.000Z

438

Solar Neutrino Matter Effects Redux  

E-Print Network (OSTI)

Following recent low-threshold analysis of the Sudbury Neutrino Observatory and asymmetry measurements of the BOREXINO Collaboration of the solar neutrino flux, we revisit the analysis of the matter effects in the Sun. We show that solar neutrino data constrains the mixing angle $\\theta_{13}$ poorly and that subdominant Standard Model effects can mimic the effects of the physics beyond the Standard Model.

A. B. Balantekin; A. Malkus

2011-09-24T23:59:59.000Z

439

The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification  

E-Print Network (OSTI)

Gupta, B. Turk, M. Lesemann. RTI/Eastman warm syngas clean-feasibility analysis of RTI warm gas cleanup(WGCU)reactor was constructed by RTI from DOE-Morgantown gasifier,

Luo, Qian

2012-01-01T23:59:59.000Z

440

How Does the Eye Warm? Part I: A Potential Temperature Budget Analysis of an Idealized Tropical Cyclone  

Science Conference Proceedings (OSTI)

In this first part of a two-part study, the mechanisms that accomplish the warming in the eye of tropical cyclones are investigated through a potential temperature budget analysis of an idealized simulation. The spatial structure of warming varies ...

Daniel P. Stern; Fuqing Zhang

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm dense matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Roles of Anomalous Tibetan Plateau Warming on the Severe 2008 Winter Storm in Central-Southern China  

Science Conference Proceedings (OSTI)

Anomalous warming occurred over the Tibetan Plateau (TP) before and during the disastrous freezing rain and heavy snow hitting central and southern China in January 2008. The relationship between the TP warming and this extreme event is ...

Qing Bao; Jing Yang; Yimin Liu; Guoxiong Wu; Bin Wang

2010-06-01T23:59:59.000Z

442

LandOcean Warming Contrast over a Wide Range of Climates: Convective Quasi-Equilibrium Theory and Idealized Simulations  

Science Conference Proceedings (OSTI)

Surface temperatures increase at a greater rate over land than ocean in simulations and observations of global warming. It has previously been proposed that this landocean warming contrast is related to different changes in lapse rates over land ...

Michael P. Byrne; Paul A. OGorman

2013-06-01T23:59:59.000Z

443

Universal Ownership: Why Environmental Externalities Matter to  

Open Energy Info (EERE)

Universal Ownership: Why Environmental Externalities Matter to Universal Ownership: Why Environmental Externalities Matter to Institutional Investors Jump to: navigation, search Tool Summary Name: Universal Ownership: Why Environmental Externalities Matter to Institutional Investors Agency/Company /Organization: UNEP-Financing Initiative Focus Area: Industry Topics: Co-benefits assessment Resource Type: Lessons learned/best practices Website: www.unepfi.org/fileadmin/documents/universal_ownership.pdf Universal Ownership: Why Environmental Externalities Matter to Institutional Investors Screenshot References: Universal Ownership: Why Environmental Externalities Matter to Institutional Investors[1] Logo: Universal Ownership: Why Environmental Externalities Matter to Institutional Investors Summary "This study assesses the financial implications of unsustainable natural

444

Dynamical properties of nuclear and stellar matter and the symmetry energy  

Science Conference Proceedings (OSTI)

The effects of density dependence of the symmetry energy on the collective modes and dynamical instabilities of cold and warm nuclear and stellar matter are studied in the framework of relativistic mean-field hadron models. The existence of the collective isovector and possibly an isoscalar collective mode above saturation density is discussed. It is shown that soft equations of state do not allow for a high-density isoscalar collective mode; however, if the symmetry energy is hard enough, an isovector mode will not disappear at high densities. The crust-core transition density and pressure are obtained as a function of temperature for {beta}-equilibrium matter with and without neutrino trapping. Estimations of the size of the clusters formed in the nonhomogeneous phase, as well as the corresponding growth rates and distillation effect, are made. It is shown that cluster sizes increase with temperature, that the distillation effect close to the inner edge of the crust-core transition is very sensitive to the symmetry energy, and that, within a dynamical instability calculation, the pasta phase exists in warm compact stars up to 10-12 MeV.

Pais, Helena; Santos, Alexandre; Brito, Lucilia; Providencia, Constanca [Centro de Fisica Computacional, Department of Physics, University of Coimbra, P-3004-516 Coimbra (Portugal)

2010-08-15T23:59:59.000Z

445

Greenhouse warming potential of candidate gaseous diffusion plant coolants  

SciTech Connect

A preliminary estimate has been made of the greenhouse warming potential (GWP) of coolants under consideration as substitutes for CFC-114 in the gaseous diffusion plants. Coolants are not at present regulated on the basis of GWP, but may well be in the future. Use of c-C{sub 4}F{sub 8} or n-C{sub 4}F{sub 10} is estimated to have three to four times the greenhouse impact of an equivalent use of CFC-114. Neither of the substitutes, of course, would cause any ozone depletion. HCFC-124 (a probable commercial substitute for CFC-114, but not presently under serious consideration due to its relatively high UF{sub 6} reactivity) would have much less greenhouse and ozone depletion impact than CFC-114. The GWP estimates derive from a simple model that approximately reproduces literature values for similar compounds. The major uncertainty in these estimates lies in the atmospheric lifetime, especially of the perfluorocarbon compounds, for which little reliable information exists. In addition to GWP estimates for coolants, the overall greenhouse impact of the gaseous diffusion plants is calculated, including indirect power-related CO{sub 2} emissions. This result is used to compare greenhouse impacts of nuclear- and coal-produced electricity. 11 refs., 2 figs., 5 tabs.

Trowbridge, L.D.

1991-03-01T23:59:59.000Z

446

Global warming projections: Sensitivity to deep ocean mixing  

E-Print Network (OSTI)

The climatological impact of increases in greenhouse gas concentrations in the atmosphere, despite being a subject of intensive study in recent years, is still very uncertain [1, 2]. One major uncertainty affecting possible climate change that has not received enough attention is the uncertainty in heat uptake by the deep ocean. We analyze the influence of this process and its uncertainty on climate predictions by means of numerical simulations with a 2-dimensional (2D) climate model. In the case of high climate sensitivity, as a result of uncertainty in deep ocean heat uptake, there is more than a factor of two uncertainty in the predicted increase of surface temperature. The corresponding uncertainty in the sea level rise due to thermal expansion is much larger than the uncertainty in the predicted temperature change and is significant even in the case of low climate sensitivity. The uncertainty in the rate of heat uptake by the deep ocean has not been included in the projections of climate change made by the Intergovernmental Panel on Climate Change (IPCC) [1,2]. However, our results show that this uncertainty plays a very important role in defining the ranges ofpossible warming and, especially, of sea level rise. To assess the uncertainty we have used a 2-dimensional (zonally averaged) climate model, the MIT 2D model [3,4,5]. This model allows us to

Andrei P. Sokolov; Peter H. Stone

1996-01-01T23:59:59.000Z

447

FORMATION OF ORGANIC MOLECULES AND WATER IN WARM DISK ATMOSPHERES  

Science Conference Proceedings (OSTI)

Observations from Spitzer and ground-based infrared spectroscopy reveal significant diversity in the molecular emission from the inner few AU of T Tauri disks. We explore theoretically the possible origin of this diversity by expanding on our earlier thermal-chemical model of disk atmospheres. We consider how variations in grain settling, X-ray irradiation, accretion-related mechanical heating, and the oxygen-to-carbon ratio can affect the thermal and chemical properties of the atmosphere at 0.25-40 AU. We find that these model parameters can account for many properties of the detected molecular emission. The column density of the warm (200-2000 K) molecular atmosphere is sensitive to grain settling and the efficiency of accretion-related heating, which may account, at least in part, for the large range in molecular emission fluxes that have been observed. The dependence of the atmospheric properties on the model parameters may also help to explain trends that have been reported in the literature between molecular emission strength and mid-infrared color, stellar accretion rate, and disk mass. We discuss whether some of the differences between our model results and the observations (e.g., for water) indicate a role for vertical transport and freezeout in the disk midplane. We also discuss how planetesimal formation in the outer disk (beyond the snowline) may imprint a chemical signature on the inner few AU of the disk and speculate on possible observational tracers of this process.

Najita, Joan R. [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Adamkovics, Mate; Glassgold, Alfred E. [Astronomy Department, University of California, Berkeley, CA 94720 (United States)

2011-12-20T23:59:59.000Z

448

Global warming---The role for nuclear power  

SciTech Connect

Nuclear power is currently making an important contribution to our energy requirements. It provides 17% of the world's electricity today --- almost 20% in the US. Reducing the emissions of carbon dioxide over the next 30 to 50 years sufficiently to address the issue of global warming can only be accomplished by a combination of much improved energy efficiency, substantial growth in use of nuclear power, and substantial growth in use of renewable energy. This paper discusses new initiatives in the major nuclear technologies (LWR, HTGR, LMR) which are emerging from a fundamental reexamination of nuclear power in response to the challenges and opportunities in the 21st century. To fulfill its role, nuclear power must gain worldwide acceptance as a viable energy option. The use of modern technology and passive'' safety features in next-generation nuclear power plants offers the potential to simplify their design and operation, enhance their safety, and reduce the cost of electricity. With such improvements, we believe nuclear power can regain public confidence and make a significant contribution to our energy future. 24 refs., 2 figs., 1 tab.

Jones, J.E. Jr.; Fulkerson, W. (Oak Ridge National Lab., TN (USA))

1989-01-01T23:59:59.000Z

449

Transitional solar dynamics, cosmic rays and global warming  

E-Print Network (OSTI)

Solar activity is studied using a cluster analysis of the time-fluctuations of the sunspot number. It is shown that in an Historic period the high activity components of the solar cycles exhibit strong clustering, whereas in a Modern period (last seven solar cycles: 1933-2007) they exhibit a white-noise (non-)clustering behavior. Using this observation it is shown that in the Historic period, emergence of the sunspots in the solar photosphere was strongly dominated by turbulent photospheric convection. In the Modern period, this domination was broken by a new more active dynamics of the inner layers of the convection zone. Then, it is shown that the dramatic change of the sun dynamics at the transitional period (between the Historic and Modern periods, solar cycle 1933-1944yy) had a clear detectable impact on Earth climate. A scenario of a chain of transitions in the solar convective zone is suggested in order to explain the observations, and a forecast for the global warming is suggested on the basis of this scenario. A relation between the recent transitions and solar long-period chaotic dynamics has been found. Contribution of the galactic turbulence (due to galactic cosmic rays) has been discussed. These results are also considered in a content of chaotic climate dynamics at millennial timescales.

A. Bershadskii

2008-05-14T23:59:59.000Z

450

Heat and Mass Budgets of the Warm Upper Layer of the Tropical Atlantic Ocean in 197999  

Science Conference Proceedings (OSTI)

The mass and heat budgets of the warm upper-ocean layer are investigated in the equatorial Atlantic using in situ observations during the period 197999, which encompassed a series of warm events in the equatorial Atlantic. The warm water layer ...

F. Vauclair; Y. du Penhoat; G. Reverdin

2004-04-01T23:59:59.000Z

451

The Microscopic Approach to Nuclear Matter and Neutron Star Matter  

E-Print Network (OSTI)

We review a variety of theoretical and experimental investigations aimed at improving our knowledge of the nuclear matter equation of state. Of particular interest are nuclear matter extreme states in terms of density and/or isospin asymmetry. The equation of state of matter with unequal concentrations of protons and neutrons has numerous applications. These include heavy-ion collisions, the physics of rare, short-lived nuclei and, on a dramatically different scale, the physics of neutron stars. The "common denominator" among these (seemingly) very different systems is the symmetry energy, which plays a crucial role in both the formation of the neutron skin in neutron-rich nuclei and the radius of a neutron star (a system 18 orders of magnitude larger and 55 orders of magnitude heavier). The details of the density dependence of the symmetry energy are not yet sufficiently constrained. Throughout this article, our emphasis will be on the importance of adopting a microscopic approach to the many-body problem, which we believe to be the one with true predictive power.

Francesca Sammarruca

2010-01-31T23:59:59.000Z

452

Coupled modes in magnetized dense plasma with relativistic-degenerate electrons  

SciTech Connect

Low frequency electrostatic and electromagnetic waves are investigated in ultra-dense quantum magnetoplasma with relativistic-degenerate electron and non-degenerate ion fluids. The dispersion relation is derived for mobile as well as immobile ions by employing hydrodynamic equations for such plasma under the influence of electromagnetic forces and pressure gradient of relativistic-degenerate Fermi gas of electrons. The result shows the coexistence of shear Alfven and ion modes with relativistically modified dispersive properties. The relevance of results to the dense degenerate plasmas of astrophysical origin (for instance, white dwarf stars) is pointed out with brief discussion on ultra-relativistic and non-relativistic limits.

Khan, S. A. [National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 45320 (Pakistan)

2012-01-15T23:59:59.000Z

453

Acoustic double layer structures in dense magnetized electron-positron-ion plasmas  

SciTech Connect

The acoustic double layer structures are studied using quantum hydrodynamic model in dense magnetized electron-positron-ion plasmas. The extended Korteweg-de Vries is derived using reductive perturbation method. It is found that increase in the ion concentration in dense magnetized electron-positron plasmas increases the amplitude as well as the steepness of the double layer structure. However, increase in the magnetic field strength and decrease in the obliqueness of the nonlinear acoustic wave enhances only the steepness of the double layer structures. The numerical results have also been shown by using the data of the outer layer regions of white dwarfs given in the literature.

Akhtar, N.; Mahmood, S. [Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad 44000 (Pakistan); Department of Physics and Applied Mathematics, PIEAS, P. O. Nilore, Islamabad 44000 (Pakistan)

2011-11-15T23:59:59.000Z

454

A General Effective Action for Quark Matter and its Application to Color Superconductivity  

E-Print Network (OSTI)

I derive a general effective theory for hot and/or dense quark matter. After introducing general projection operators for hard and soft quark and gluon degrees of freedom, I explicitly compute the functional integral for the hard quark and gluon modes in the QCD partition function. Upon appropriate choices for the projection operators one recovers various well-known effective theories such as the Hard Thermal Loop/ Hard Dense Loop Effective Theories as well as the High Density Effective Theory by Hong and Schaefer. I then apply the effective theory to cold and dense quark matter and show how it can be utilized to simplify the weak-coupling solution of the color-superconducting gap equation. In general, one considers as relevant quark degrees of freedom those within a thin layer of width 2 Lambda_q around the Fermi surface and as relevant gluon degrees of freedom those with 3-momenta less than Lambda_gl. It turns out that it is necessary to choose Lambda_q << Lambda_gl, i.e., scattering of quarks along the Fermi surface is the dominant process. Moreover, this special choice of the two cutoff parameters Lambda_q and Lambda_gl facilitates the power-counting of the numerous contributions in the gap-equation. In addition, it is demonstrated that both the energy and the momentum dependence of the gap function has to be treated self-consistently in order to determine the imaginary part of the gap function. For quarks close to the Fermi surface the imaginary part is calculated explicitly and shown to be of sub-subleading order in the gap equation.

Philipp T. Reuter

2006-02-13T23:59:59.000Z

455

Effects of warming on the structure and function of a boreal black spruce forest  

Science Conference Proceedings (OSTI)

A strong argument can be made that there is a greater need to study the effect of warming on boreal forests more than on any other terrestrial biome. Boreal forests, the second largest forest biome, are predicted to experience the greatest warming of any forest biome in the world, but a process-based understanding of how warming will affect the structure and function of this economically and ecologically important forest biome is lacking. The effects of warming on species composition, canopy structure and biogeochemical cycles are likely to be complex; elucidating the underlying mechanisms will require long-term whole-ecosystem manipulation to capture all the complex feedbacks (Shaver et al. 2000, Rustad et al. 2001, Stromgren 2001). The DOE Program for Ecosystem Research funded a three year project (2002-2005) to use replicated heated chambers on soil warming plots in northern Manitoba to examine the direct effects of whole-ecosystem warming. We are nearing completion of our first growing season of measurements (fall 2004). In spite of the unforeseen difficulty of installing the heating cable, our heating and irrigation systems worked extremely well, maintaining environmental conditions within 5-10% of the specified design 99% of the time. Preliminary data from these systems, all designed and built by our laboratory at the University of Wisconsin, support our overall hypothesis that warming will increase the carbon sink strength of upland boreal black spruce forests. I request an additional three years of funding to continue addressing the original objectives: (1) Examine the effect of warming on phenology of overstory, understory and bryophyte strata. Sap flux systems and dendrometer bands, monitored by data loggers, will be used to quantify changes in phenology and water use. (2) Quantify the effects of warming on nitrogen and water use by overstory, understory and bryophytes. (3) Compare effects of warming on autotrophic respiration and above- and belowground net primary production (NPP) budgets. Autotrophic respiration budgets will be constructed using chamber measurements for each tissue and NPP and standard allometry techniques (Gower et al. 1999). (4) Compare microbial and root dynamics, and net soil surface CO2 flux, of control and warmed soils to identify causes that may explain the hypothesized minimal effect of soil warming on soil surface CO2 flux. Fine root production and turnover will be quantified using minirhizotrons, and microbial dynamics will be determined using laboratory mineralization incubations. Soil surface CO2 flux will be measured using automated soil surface CO2 flux systems and portable CO2 analyzers. The proposed study builds on the existing research programs Gower has in northern Manitoba and would not be possible without in-kind services and financial support from Manitoba Hydro and University of Wisconsin.

Stith T.Gower

2010-03-03T23:59:59.000Z

456

THE ENERGY GAP IN NUCLEAR MATTER  

E-Print Network (OSTI)

W-7405-eng-48 THE ENERGY GAP IN NUCLEAR MATTER V. J. Emery31, 1960 .po THE ENERGY GAP IN NUCLEAR HNrTEh V. J. ? :merysingle-particle energy in nuclear matter. The internucleon

Emery, V.J.

2008-01-01T23:59:59.000Z

457

Quark matter conductivity in strong magnetic background  

SciTech Connect

Applying the ideas and methods of condensed matter physics we calculate the quantum conductivity of quark matter in magnetic field. In strong field quantum conductivity is proportional to the square root of the field.

Kerbikov, B. O., E-mail: borisk@itep.ru [Institute for Theoretical and Experimental Physics (Russian Federation)

2012-06-15T23:59:59.000Z

458

Cold quark matter in compact stars  

Science Conference Proceedings (OSTI)

We used an equation of state for the cold quark matter to the study of properties of quark stars. We also discuss the absolute stability of quark matter and compute the mass-radius relation for self-bound stars.

Franzon, B.; Fogaca, D. A.; Navarra, F. S. [Instituto de Fisica, Universidade de Sao Paulo Rua do Matao, Travessa R, 187, 05508-090 Sao Paulo, SP (Brazil); Horvath, J. E. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao, 1226, 05508-090, Sao Paulo, SP (Brazil)

2013-03-25T23:59:59.000Z

459

Semi-annihilation of dark matter  

E-Print Network (OSTI)

We show that the thermal relic abundance of dark matter can be affected by a new type of reaction: semi-annihilation. Semi-annihilation takes the schematic form ..., where psi i are stable dark matter particles and phi is ...

DEramo, Francesco

460

Dark matter axions and caustic rings  

SciTech Connect

This report contains discussions on the following topics: the strong CP problem; dark matter axions; the cavity detector of galactic halo axions; and caustic rings in the density distribution of cold dark matter halos.

Sikivie, P.

1997-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm dense matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Just the Basics: Particulate Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

is Particulate is Particulate Matter? One of the major components of air pollution is particulate matter, or PM. PM refers to airborne particles that include dust, dirt, soot, smoke, and liquid droplets. These particles can range in size from microscopic to large enough to be seen. PM is characterized by its size, with fine particles of less than 2.5 micrometers in size designated as PM 2.5 and coarser particles between 2.5 and 10 micrometers in size designated as PM 10 . PM arises from many sources, including combustion occurring in factories, power plants, cars, trucks, buses, trains, or wood fires; or through simple agitation of existing particulates by tilling of land, quarrying and stone-crushing, and off- road vehicular movement. Of particular interest is PM generated during diesel

462

Magnetization of neutron star matter  

E-Print Network (OSTI)

The magnetization of neutron star matter in magnetic fields is studied by employing the FSUGold interaction. It is found that the magnetic susceptibilities of the charged particles (proton, electron and muon) can be larger than that of neutron. The effects of the anomalous magnetic moments (AMM) of each component on the magnetic susceptibility are examined in detail. It is found that the proton and electron AMM affect their respective magnetic susceptibility evidently in strong magnetic fields. In addition, they are the protons instead of the electrons that contribute most significantly to the magnetization of the neutron star matter in a relative weak magnetic field, and the induced magnetic field due to the magnetization can be appear to be very large. Finally, the effect of the density-dependent symmetry energy on the magnetization is discussed.

Dong, Jianmin; Gu, Jianzhong

2013-01-01T23:59:59.000Z

463

Impact of the Southern ocean winds on sea-ice - ocean interaction and its associated global ocean circulation in a warming world  

E-Print Network (OSTI)

This dissertation discusses a linkage between the Southern Ocean (SO) winds and the global ocean circulation in the framework of a coarse-resolution global ocean general circulation model coupled to a sea-ice model. In addition to reexamination of the conventional linkage that begins with northward Ekman transport and extends to the North Atlantic (NA) overturning, the author investigates a new linkage that begins with the Southern Hemisphere (SH) sea-ice ocean interaction perturbed by the anomalous SO winds and extends to the SH overturning, the response of the NA overturning, and the long-term baroclinic adjustment of the Antarctic Circumpolar Current (ACC). How the above two linkages will interact with each other in a warming world is also investigated. An interactive momentum flux forcing, allowing for the strength of momentum flux between atmosphere and sea ice to vary in response to the simulated sea-ice conditions, enhances wind-driven ice divergence to increase the fraction of leads and polynyas, which increases dense water formation, and thus intensifies convection. Within three experimental frameworks, this increased dense water consistently increases the Antarctic Bottom Water formation, which directly intensifies the SH overturning and indirectly weakens the NA overturning. As a result of the hemispheric change in overturning circulations, the meridional density gradient across the ACC appears to increase, ultimately increasing the baroclinic part of the ACC via an enhanced thermal wind shear. Subsequently, impacts of the poleward shifted and intensified SH subpolar westerly winds (SWWs) on the global ocean circulation are investigated in phases. When the SWWs are only shifted poleward, the effect of the anomalous winds is transmitted to the northern NA, decreasing both the NA overturning and the North Atlantic Deep Water (NADW) outflow. However, when the SWWs are shifted poleward and intensified, this effect is cut off by the intensified Deacon cell overturning, and is not transmitted to the northern NA, and instead increases the NADW outflow substantially. To sum up, with respect to the SO winds perturbed by the global warming, the SH overturning cell and the NADW outflow increase, leading to an increase in the volume transport of the ACC.

Cheon, Woo Geunn

2008-08-01T23:59:59.000Z

464

Neutron Condensed Matter Science Staff Directory  

Science Conference Proceedings (OSTI)

Neutron Condensed Matter Science Staff Directory. Dr. Dan Neumann, Group Leader, 301-975-5252. ... Macromolecular and Microstructural Sciences. ...

2013-04-01T23:59:59.000Z

465

Light-matter Interactions in Semiconductor Nanostructures  

Science Conference Proceedings (OSTI)

Light-matter interactions in Semiconductor Nanostructures. ... We investigate the interaction of light with semiconductor-based nanostructures. ...

2012-05-30T23:59:59.000Z

466

Quantum Nature of Light and Matter  

Science Conference Proceedings (OSTI)

Quantum Nature of Light and Matter. to explore fundamental aspects of the quantum nature of light and its interaction with ...

2012-05-30T23:59:59.000Z

467

Neutrino Opacities in Nuclear Matter  

E-Print Network (OSTI)

Neutrino-matter cross sections and interaction rates are central to the core-collapse supernova phenomenon and, very likely, to the viability of the explosion mechanism itself. In this paper, we describe the major neutrino scattering, absorption, and production processes that together influence the outcome of core collapse and the cooling of protoneutron stars. One focus is on energy redistribution and many-body physics, but our major goal is to provide a useful resource for those interested in supernova neutrino microphysics.

Adam Burrows; Sanjay Reddy; Todd A. Thompson

2004-04-21T23:59:59.000Z

468

Dark Matter and Dark Energy  

E-Print Network (OSTI)

This is a short review, aimed at a general audience, of several current subjects of research in cosmology. The topics discussed include the cosmic microwave background (CMB), with particular emphasis on its relevance for testing inflation; dark matter, with a brief review of astrophysical evidence and more emphasis on particle candidates; and cosmic acceleration and some of the ideas that have been put forward to explain it. A glossary of technical terms and acronyms is provided.

Marc Kamionkowski

2007-06-20T23:59:59.000Z

469

Dark Matter and Dark Energy  

E-Print Network (OSTI)

This is a short review, aimed at a general audience, of several current subjects of research in cosmology. The topics discussed include the cosmic microwave background (CMB), with particular emphasis on its relevance for testing inflation; dark matter, with a brief review of astrophysical evidence and more emphasis on particle candidates; and cosmic acceleration and some of the ideas that have been put forward to explain it. A glossary of technical terms and acronyms is provided.

Kamionkowski, Marc

2007-01-01T23:59:59.000Z

470

Decoupling Dark Energy from Matter  

E-Print Network (OSTI)

We examine the embedding of dark energy in high energy models based upon supergravity and extend the usual phenomenological setting comprising an observable sector and a hidden supersymmetry breaking sector by including a third sector leading to the acceleration of the expansion of the universe. We find that gravitational constraints on the non-existence of a fifth force naturally imply that the dark energy sector must possess an approximate shift symmetry. When exact, the shift symmetry provides an example of a dark energy sector with a runaway potential and a nearly massless dark energy field whose coupling to matter is very weak, contrary to the usual lore that dark energy fields must couple strongly to matter and lead to gravitational inconsistencies. Moreover, the shape of the potential is stable under one-loop radiative corrections. When the shift symmetry is slightly broken by higher order terms in the Khler potential, the coupling to matter remains small. However, the cosmological dynamics are largely affected by the shift symmetry breaking operators leading to the appearance of a minimum of the scalar potential such that dark energy behaves like an effective cosmological constant from very early on

Carsten Van De Bruck; Jrme Martin; et al.

2009-01-01T23:59:59.000Z

471

astro-ph/0212275 Dark Group: Dark Energy and Dark Matter  

E-Print Network (OSTI)

We study the possibility that a dark group, a gauge group with particles interacting with the standard model particles only via gravity, is responsible for containing the dark energy and dark matter required by present day observations. We show that it is indeed possible and we determine the constrains for the dark group. The non-perturbative effects generated by a strong gauge coupling constant can de determined and a scalar potential for the dark meson fields is generated parameterizing the dark energy. On the other hand it is the massive particles, e.g. dark baryons, of the dark gauge group that give the corresponding dark matter. The mass of the dark particles is of the order of the condensation scale ?c and the temperature is 4-5 times smaller then the photons temperature. The dark matter is of the warm matter type and it gives good fit to structure formation. The only parameters of the model are the number of particles of the dark group. The conditions to not introduce any fine tuning of the energy density at the condensation scale plus the CMB spectrum constrains the condensation scale to 0.2 eV dark matter with mass m = 42eV, a temperature TDM = T?/4.85 and a free streaming scale ?fs = 1.6Mpc with a contain mass M = 4 10 11 M ? (M ? is the solar mass). The dark energy has an equation of state parameter today wo = ?0.9 and the model agrees well with the CMB data. The cosmological observations are pushing the condensation scale to an epoch close to radiation and matter equality and this late time phase transition is the reason why the universe is accelerating at present time. 1

A. De La Macorra

2002-01-01T23:59:59.000Z

472

Pump Systems Matter Mission and Vision | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

issionofPumpSystemsMatter.pdf More Documents & Publications Overview of Pump Systems Matter Hydraulic Institute Member Benefits Course Overview Pump Systems Matter Optimization...

473

Comments on [open quotes]Global warming: A reduced threat [close quotes] by P. J. Michaels and D. E. Stooksbury  

SciTech Connect

The author of this letter criticizes Michaels and Stooksbury (1992) for arguing that, because climate models predict more warming for the last century than has been observed, the model predictions of major greenhouse warming must be wrong. It is the position of the author that this is not a valid argument, although the warming may have been relatively mild. In this letter, the author defends the belief that the magnitude of the recent warming actually tells very little about the sensitivity of the climate system to greenhouse gas emissions. Reasons for the warming observed over the last hundred years are summarized. 4 refs.

Duffy, P.B. (Lawrence Livermore National Lab., CA (United States))

1993-05-01T23:59:59.000Z

474

The problem of big bang matter vs. anti-matter symmetry  

Science Conference Proceedings (OSTI)

The Big Bang was symmetrical in the particles and radiation emitted from its singularity source, which implies its resulting in equal amounts of matter and anti-matter and their prompt mutual annihilation. But that did not take place. The favored explanation ... Keywords: anti-matter, big bang, gamma ray bursts, matter, mutual annihilation, universe

Roger Ellman

2011-02-01T23:59:59.000Z

475

DOE's Energy Savers Website Helps Consumers "Stay Warm, Save Money" |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Savers Website Helps Consumers "Stay Warm, Save Money" Energy Savers Website Helps Consumers "Stay Warm, Save Money" DOE's Energy Savers Website Helps Consumers "Stay Warm, Save Money" October 1, 2008 - 3:43pm Addthis DOE Helps Americans Be Energy Efficient at Home and Save on Energy Costs WASHINGTON - The U.S. Department of Energy (DOE) today, on the first day of Energy Awareness Month, launched the Stay Warm, Save Money website and educational outreach campaign to help consumers be more energy efficient and save on energy costs. The information focuses on proactive ways to implement simple, cost-effective, energy saving solutions for both homes and businesses this winter and will expand to year-round home energy efficient tips. The site also features the Department's work to develop

476

A New Visibility Parameterization for Warm-Fog Applications in Numerical Weather Prediction Models  

Science Conference Proceedings (OSTI)

The objective of this work is to suggest a new warm-fog visibility parameterization scheme for numerical weather prediction (NWP) models. In situ observations collected during the Radiation and Aerosol Cloud Experiment, representing boundary ...

I. Gultepe; M. D. Mller; Z. Boybeyi

2006-11-01T23:59:59.000Z

477

Ocean Heat Transport as a Cause for Model Uncertainty in Projected Arctic Warming  

Science Conference Proceedings (OSTI)

The Arctic climate is governed by complex interactions and feedback mechanisms between the atmosphere, ocean, and solar radiation. One of its characteristic features, the Arctic sea ice, is very vulnerable to anthropogenically caused warming. ...

Irina Mahlstein; Reto Knutti

2011-03-01T23:59:59.000Z

478

Inferring Climate Change from Underground Temperatures: Apparent Climatic Stability and Apparent Climatic Warming  

Science Conference Proceedings (OSTI)

Data are used to demonstrate two effects apparent in ground surface temperature histories coming from inversions of borehole temperatures: apparent climatic warming and apparent climatic stability. Unrecognized local terrain effects, such as ...

Trevor Lewis; Walter Skinner

2003-09-01T23:59:59.000Z

479

NOGAPS-ALPHA Simulations of the 2002 Southern Hemisphere Stratospheric Major Warming  

Science Conference Proceedings (OSTI)

A high-altitude version of the Navy Operational Global Atmospheric Prediction System (NOGAPS) spectral forecast model is used to simulate the unusual September 2002 Southern Hemisphere stratospheric major warming. Designated as NOGAPS-Advanced ...

Douglas R. Allen; Lawrence Coy; Stephen D. Eckermann; John P. McCormack; Gloria L. Manney; Timothy F. Hogan; Young-Joon Kim

2006-02-01T23:59:59.000Z

480

Effect of Aerosol on the Susceptibility and Efficiency of Precipitation in Warm Trade Cumulus Clouds  

Science Conference Proceedings (OSTI)

Large-eddy simulations of warm, trade wind cumulus clouds are conducted for a range of aerosol conditions with a focus on precipitating clouds. Individual clouds are tracked over the course of their lifetimes. Precipitation rate decreases ...

Hongli Jiang; Graham Feingold; Armin Sorooshian

2010-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm dense matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Probing the Fast and Slow Components of Global Warming by Returning Abruptly to Preindustrial Forcing  

Science Conference Proceedings (OSTI)

The fast and slow components of global warming in a comprehensive climate model are isolated by examining the response to an instantaneous return to preindustrial forcing. The response is characterized by an initial fast exponential decay with an ...

Isaac M. Held; Michael Winton; Ken Takahashi; Thomas Delworth; Fanrong Zeng; Geoffrey K. Vallis

2010-05-01T23:59:59.000Z

482

Decadal Fluctuations in Planetary Wave Forcing Modulate Global Warming in Late Boreal Winter  

Science Conference Proceedings (OSTI)

The warming trend in global surface temperatures over the last 40 yr is clear and consistent with anthropogenic increases in greenhouse gases. Over the last 2 decades, this trend appears to have accelerated. In contrast to this general behavior, ...

Judah Cohen; Mathew Barlow; Kazuyuki Saito

2009-08-01T23:59:59.000Z

483