Powered by Deep Web Technologies
Note: This page contains sample records for the topic "warm air furnace" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Reduce Air Infiltration in Furnaces  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program tip sheet describes how to save energy and costs by reducing air infiltration in industrial furnaces; tips include repairing leaks and increasing insulation.

Not Available

2006-01-01T23:59:59.000Z

2

Air Leakage of Furnaces and Air Handlers  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Leakage of Furnaces and Air Handlers Air Leakage of Furnaces and Air Handlers Title Air Leakage of Furnaces and Air Handlers Publication Type Journal Article LBNL Report Number LBNL-5553E Year of Publication 2010 Authors Walker, Iain S., Mile Lubliner, Darryl J. Dickerhoff, and William W. Delp Journal 2010 ACEEE Summer Study on Energy Efficiency in Buildings The Climate for efficiency is now Date Published 08/2010 Abstract In recent years, great strides have been made in reducing air leakage in residential and to a lesser extent small commercial forced air duct systems. Several authorities have introduced low leakage limits for thermal distribution systems; for example, the State of California Energy Code for Buildings gives credit for systems that leak less than 6% of the total air flow at 25 Pa.

3

Forced air fireplace furnace  

Science Conference Proceedings (OSTI)

The design of heating system for buildings including a fireplace with an open front hearth for burning firewood, a chimney extending from the upper portion of the hearth, a metal firebox being open in the front and closed on the sides and back, a plenum chamber within and surrounding the sides and back of the metal firebox and the chimney lower portion, a horizontal heat distribution chamber positioned in the building attic and communicating at one end with the plenum chamber is described. An air distribution duct connects to the other end of the air distributing chamber, the duct extending to discharge heated air to a place in the building remote from the fireplace. A fan is placed in the horizontal air distributing chamber, and a return air duct extends from selected place in the building and communicates with the plenum chamber lower portion so that the fan draws air through the return air duct, through the plenum chamber around the firebox where the air is heated, through the horizontal distribution chamber, and out through the distribution duct for circulation of the heated air within the building.

Bruce, R.W.; Gorman, R.E.

1980-10-28T23:59:59.000Z

4

Legendary West Virginia Senior Citizen Stays Warm With New Furnace |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Legendary West Virginia Senior Citizen Stays Warm With New Furnace Legendary West Virginia Senior Citizen Stays Warm With New Furnace Legendary West Virginia Senior Citizen Stays Warm With New Furnace April 1, 2010 - 7:16pm Addthis Joshua DeLung For the last 56 years, Beulah Sisk has lived in the same house in Princeton, W.Va. Beulah, who worked for 25 years at Lloyd's Pastry Shop, is well known in Princeton. People still see her on the streets today and recognize her as an icon in the community. After a wind storm damaged Beulah's home last year, it came as no surprise when a senior center employee, concerned for Beulah's safety, told her about the weatherization assistance program. "A tree fell on my house and damaged a lot of things, including my furnace," Beulah says. "I tried to have it repaired, but it still

5

Combustion Air Preheat on Steam Cracker Furnaces  

E-Print Network (OSTI)

Beginning in 1978, Exxon has started up nine large new steam cracking furnaces with various levels of air preheat, and has seven more under construction. Sources of heat have included process streams, flue gas and gas turbine exhaust. Several aspects of the technology employed have been patented in the U.S. and elsewhere. This paper discusses the use of process heat and gas turbine exhaust for air preheat to provide plant fuel savings of about 8% over and above a modern, fuel efficient alternative furnace without air preheat.

Kenney, W. F.

1983-01-01T23:59:59.000Z

6

Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)  

Science Conference Proceedings (OSTI)

Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from the furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature, and so on). For furnaces or boilers using an induced-draft (ID) fan, the furnace negative pressure depends on the fan performance and frictional losses between the fan inlet and the point of air leakage. In most cases, it would be necessary to measure or estimate negative pressure at the opening. The amount of air leakage, the heat lost in flue gases, and their effects on increased furnace or boiler fuel consumption can be calculated by using the equations and graphs given in Industrial Furnaces (see W. Trinks et al., below). Note that the actual heat input required to compensate for the heat loss in flue gases due to air leakage would be greater than the heat contained in the air leakage because of the effect of available heat in the furnace. For a high-temperature furnace that is not maintained properly, the fuel consumption increase due to air leakage can be as high as 10% of the fuel input.

Not Available

2011-10-01T23:59:59.000Z

7

Self-powered automatic secondary air controllers for woodstoves and small furnaces  

DOE Patents (OSTI)

This invention relates to the regulation of combustion in woodstoves, small furnaces and the like, so as to produce efficient combustion, while maximizing the possible heat output and minimizing air pollution. More specifically, the invention relates to controllers for automatically regulating and the supply of secondary combustion air to woodstoves, small furnaces or the like. 9 figs.

Siemer, D.D.

1989-03-15T23:59:59.000Z

8

Influence of Stratospheric Sudden Warming on AIRS Midtropospheric CO2  

Science Conference Proceedings (OSTI)

Midtropospheric CO2 retrievals from the Atmospheric Infrared Sounder (AIRS) were used to explore the influence of stratospheric sudden warming (SSW) on CO2 in the middle to upper troposphere. To choose the SSW events that had strong coupling ...

Xun Jiang; Jingqian Wang; Edward T. Olsen; Thomas Pagano; Luke L. Chen; Yuk L. Yung

2013-08-01T23:59:59.000Z

9

Warm-Air Intrusions in Arizona’s Meteor Crater  

Science Conference Proceedings (OSTI)

Episodic nighttime intrusions of warm air, accompanied by strong winds, enter the enclosed near-circular Meteor Crater basin on clear, synoptically undisturbed nights. Data analysis is used to document these events and to determine their spatial ...

Bianca Adler; C. David Whiteman; Sebastian W. Hoch; Manuela Lehner; Norbert Kalthoff

2012-06-01T23:59:59.000Z

10

The Impact of Forced Air System Blowers on Furnace Performance and Utility  

NLE Websites -- All DOE Office Websites (Extended Search)

The Impact of Forced Air System Blowers on Furnace Performance and Utility The Impact of Forced Air System Blowers on Furnace Performance and Utility Loads Speaker(s): Bert Phillips Date: November 7, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: James Lutz Bert Phillips will talk about the impact of forced air system blower performance on furnace or heating performance and on utility loads, and what can be done to reduce blower power requirements. He will also briefly discuss a ground source heat pump monitoring study that he just finished. Mr. Phillips is a registered Professional Engineer in three Canadian provinces and part owner of UNIES Ltd., an engineering firm in Winnipeg, Manitoba (60 miles straight north of the North Dakota/Minnesota border). He does research and HVAC system design and investigates

11

Estimation of Fuel Savings by Recuperation of Furnace Exhausts to Preheat Combustion Air  

E-Print Network (OSTI)

The recovery of waste energy in furnace exhaust gases is gaining in importance as fuel costs continue to escalate. Installation of a recuperator in the furnace exhaust stream to preheat the combustion air can result in considerable savings in fuel usage. These savings are primarily the result of the sensible heat increase of the combustion air and, to some extent, improved combustion efficiency. The amount of fuel saved will depend on the exhaust gas temperature, amount of excess air used, the type of burner and the furnace control system. These fuel savings may be accurately measured by metering the energy consumption per unit of production before and after installation of the recuperator. In the design of a waste heat recuperation system, it is necessary to be able to estimate the fuel saved by use of such a system. Standard industrial practice refers to the method described in the North American Combustion Handbook with its curves and tables that directly predict the percentage fuel savings. This paper analyzes the standard estimation technique and suggests a more realistic approach to calculation of percent fuel savings. Mass and enthalpy balances are provided for both methods and a typical furnace recuperation example is detailed to illustrate the differences in the two methods of calculating the percent energy saved.

Rebello, W. J.; Kohnken, K. H.; Phipps, H. R., Jr.

1980-01-01T23:59:59.000Z

12

Self-powered automatic secondary air controllers for woodstoves and small furnaces  

DOE Patents (OSTI)

A controller for automatically regulating the supply of secondary combustion air to woodstoves and small furnaces. The controller includes a movable air valve for controlling the amount of secondary air admitted into the chamber. A self powered means monitors the concentration of combustible gases and vapors and actuates the movable air valve to increase the supply of secondary air in response to increasing concentrations of the combustible gases and vapors. The self-powered means can be two fluid filled sensor bulbs, one of which has a coating of a combustion catalyst. Alternatively, the self powered means can be two metallic stripes laminated together, one of which is coated with a combustion catalyst, and when heated, causes the air valve to actuate.

Siemer, Darryl D. (Idaho Falls, ID)

1991-01-01T23:59:59.000Z

13

Furnaces and Boilers  

Energy.gov (U.S. Department of Energy (DOE))

Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either hot water or steam for heating.

14

Five-Year Climatology of Midtroposphere Dry Air Layers in Warm Tropical Ocean Regions as Viewed by AIRS/Aqua  

Science Conference Proceedings (OSTI)

Many studies have commented on the presence of midtroposphere dry air layers in normally moist areas of the warm-pool region in the tropical western Pacific Ocean. In this study, 5 yr of relative humidity (RH) observations from the Atmospheric ...

Sean P. F. Casey; Andrew E. Dessler; Courtney Schumacher

2009-09-01T23:59:59.000Z

15

Total environmental warming impact (TEWI) calculations for alternative automative air-conditioning systems  

SciTech Connect

The Montreal Protocol phase-out of chlorofluorocarbons (CFCs) has required manufacturers to develop refrigeration and air-conditioning systems that use refrigerants that can not damage stratospheric ozone. Most refrigeration industries have adapted their designs to use hydrochlorofluorocarbon (HCFC) or hydrofluorocarbon (HFC) refrigerants; new automobile air- conditioning systems use HFC-134a. These industries are now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants on global warming. Automobile air-conditioning has three separate impacts on global warming; (1) the effects of refrigerant inadvertently released to the atmosphere from accidents, servicing, and leakage; (2) the efficiency of the cooling equipment (due to the emission of C0{sub 2} from burning fuel to power the system); and (3) the emission of C0{sub 2} from burning fuel to transport the system. The Total Equivalent Warming Impact (TEWI) is an index that should be used to compare the global warming effects of alternative air-conditioning systems because it includes these contributions from the refrigerant, cooling efficiency, and weight. This paper compares the TEWI of current air-conditioning systems using HFC-134a with that of transcritical vapor compression system using carbon dioxide and systems using flammable refrigerants with secondary heat transfer loops. Results are found to depend on both climate and projected efficiency of C0{sub 2}systems. Performance data on manufacturing prototype systems are needed to verify the potential reductions in TEWI. Extensive field testing is also required to determine the performance, reliability, and ``serviceability`` of each alternative to HFC-134a to establish whether the potential reduction of TEWI can be achieved in a viable consumer product.

Sand, J.R.; Fischer, S.K.

1997-01-01T23:59:59.000Z

16

Field Measurements of Heating Efficiency of Electric Forced-Air Furnaces in Six Manufactured Homes.  

Science Conference Proceedings (OSTI)

This report presents the results of field measurements of heating efficiency for six manufactured homes in the Pacific Northwest heated with electric forced-air systems. This is the first in a series of regional and national efforts to measure in detail the heating efficiency of manufactured homes. Only six homes were included in this study because of budgetary constraints; therefore this is not a representative sample. These investigations do provide some useful information on the heating efficiency of these homes. Useful comparisons can be drawn between these study homes and site-built heating efficiencies measured with a similar protocol. The protocol used to test these homes is very similar to another Ecotope protocol used in the study conducted in 1992 and 1993 for the Bonneville Power Administration to test the heating efficiency of 24 homes. This protocol combined real-time power measurements of furnace energy usage with energy usage during co-heat periods. Accessory data such as house and duct tightness measurements and tracer gas measurements were used to describe these homes and their heating system efficiency. Ensuring that manufactured housing is constructed in an energy and resource efficient manner is of increasing concern to manufactured home builders and consumers. No comparable work has been done to measure the heating system efficiency of MCS manufactured homes, although some co-heat tests have been performed on manufactured homes heated with natural gas to validate HUD thermal standards. It is expected that later in 1994 more research of this kind will be conducted, and perhaps a less costly and less time-consuming method for testing efficiencies will be develops.

Davis, Bob; Palmiter, Larry S.; Siegel, Jeff

1994-07-26T23:59:59.000Z

17

Energy saving furnace controller  

Science Conference Proceedings (OSTI)

This patent describes a forced air heating system including a furnace controlled by a household thermostat. The furnace includes a burner, burning valve, heat exchanger, plenum and fan for circulating air through the heat exchanger and plenum. An auxiliary controller comprises: relay means connectable between the household thermostat and the furnace burner valve; and timing means for controlling the duty cycle of the furnace burner valve by opening and closing the relay. The timing means includes means for timing alternating first and second intervals, the first interval at least substantially equal to the length of time the furnace delays between a cell for heat from the household thermostat and the start of the furnace fan when the furnace is started from a cool state. The second interval corresponds to a percentage of the first interval.

Johnson, H.R.; Lombardi, S.E.

1987-05-26T23:59:59.000Z

18

Microsoft Word - ACEEE_06_FurnaceBlower_Paper413_lbl.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

BPM Motors in Residential Gas Furnaces: What are the Savings? BPM Motors in Residential Gas Furnaces: What are the Savings? James Lutz, Victor Franco, Alex Lekov, and Gabrielle Wong-Parodi Lawrence Berkeley National Laboratory, Berkeley, California ABSTRACT Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This paper examines both types of blower motors in non-condensing non-weatherized

19

Seasonal Prediction of Air Temperature Associated with the Growing-Season Start of Warm-Season Crops across Canada  

Science Conference Proceedings (OSTI)

Seasonal prediction of growing-season start of warm-season crops (GSSWC) is an important task for the agriculture sector to identify risks and opportunities in advance. On the basis of observational daily surface air temperature at 210 stations ...

Zhiwei Wu; Hai Lin; Ted O’Brien

2011-08-01T23:59:59.000Z

20

Comparison of global warming impacts of automobile air-conditioning concepts  

DOE Green Energy (OSTI)

The global warming impacts of conventional vapor compression automobile air conditioning using HFC-134a are compared with the potential impacts of four alternative concepts. Comparisons are made on the basis of total equivalent warming impact (TEWI) which accounts for the effects of refrigerant emissions, energy use to provide comfort cooling, and fuel consumed to transport the weight of the air conditioning system. Under the most favorable assumptions on efficiency and weight, transcritical compression using CO{sub 2} as the refrigerant and adsorption cooling with water and zeolite beds could reduce TEWI by up to 18%rlative to HFC-134a compression air conditioning. Other assumptions on weight and efficiency lead to significant increases in TEWI relative to HFC-134a, and it is impossible to determine which set of assumptios is valid from existing data, Neither Stirling cycle or thermoelectric cooling will reduce TEWI relative to EFC-134a. Brief comments are also made concerning technical barriers that must be overcome for succesful development of the new technologies.

NONE

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "warm air furnace" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Final report on the project entitled: Highly Preheated Combustion Air System with/without Oxygen Enrichment for Metal Processing Furnaces  

SciTech Connect

This work develops and demonstrates a laboratory-scale high temperature natural gas furnace that can operate with/without oxygen enrichment to significantly improve energy efficiency and reduce emissions. The laboratory-scale is 5ft in diameter & 8ft tall. This furnace was constructed and tested. This report demonstrates the efficiency and pollutant prevention capabilities of this test furnace. The project also developed optical detection technology to control the furnace output.

Arvind Atreya

2007-02-16T23:59:59.000Z

22

Global warming impacts of ozone-safe refrigerants and refrigeration, heating, and air-conditioning technologies  

SciTech Connect

International agreements mandate the phase-out of many chlorine containing compounds that are used as the working fluid in refrigeration, air-conditioning, and heating equipment. Many of the chemical compounds that have been proposed, and are being used in place of the class of refrigerants eliminated by the Montreal Protocol are now being questioned because of their possible contributions to global warming. Natural refrigerants are put forth as inherently superior to manufactured refrigerants because they have very low or zero global warming potentials (GWPs). Questions are being raised about whether or not these manufactured refrigerants, primarily hydrofluorocarbons (HFCs), should be regulated and perhaps phased out in much the same manner as CFCs and HCFCs. Several of the major applications of refrigerants are examined in this paper and the results of an analysis of their contributions to greenhouse warming are presented. Supermarket refrigeration is shown to be an application where alternative technologies have the potential to reduce emissions of greenhouse gases (GHG) significantly with no clear advantage to either natural or HFC refrigerants. Mixed results are presented for automobile air conditioners with opportunities to reduce GHG emissions dependent on climate and comfort criteria. GHG emissions for hermetic and factory built systems (i.e. household refrigerators/freezers, unitary equipment, chillers) are shown to be dominated by energy use with much greater potential for reduction through efficiency improvements than by selection of refrigerant. The results for refrigerators also illustrate that hydrocarbon and carbon dioxide blown foam insulation have lower overall effects on GHG emissions than HFC blown foams at the cost of increased energy use.

Fischer, S.; Sand, J.; Baxter, V.

1997-12-01T23:59:59.000Z

23

Energy and global warming impacts of next generation refrigeration and air conditioning technologies  

SciTech Connect

Significant developments have occurred in hydrofluorocarbon (HFC) and the application of ammonia and hydrocarbons as refrigerant working fluids since the original TEWI (Total Equivalent Warming Impact) report in 1991. System operating and performance data on alternative refrigerants and refrigeration technologies justify and updated evaluation of these new alternative refrigerants and competing technologies in well-characterized applications. Analytical and experimental results are used to show quantitative comparisons between HFCS, HFC blends, hydrocarbons, and ammonia, used as refrigerants. An objective evaluation is presented for commercial and near commercial non-CFC refrigerants/blowing agents and alternative refrigeration technologies. This information is needed for objective and quantitative decisions on policies addressing greenhouse gas emissions from refrigeration and air conditioning equipment. The evaluation assesses the energy use and global warming impacts of refrigeration and air conditioning technologies that could be commercialized during the phase out of HCFCS. Quantitative comparison TEWI for two application areas are presented. Opportunities for significant reductions in TEWI are seen with currently known refrigerants through improved maintenance and servicing practices and improved product designs.

Sand, J.R.; Fischer, S.K.; Baxter, V.D.

1996-10-01T23:59:59.000Z

24

Furnace Blower Electricity: National and Regional Savings Potential  

Science Conference Proceedings (OSTI)

Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80percent of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressure used in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, while warm climate locations will see less savings overall and negative savings in the high static pressure duct situations. Moderate climate locations will see little or no savings.

Florida Solar Energy Center; Franco, Victor; Franco, Victor; Lutz, Jim; Lekov, Alex; Gu, Lixing

2008-05-16T23:59:59.000Z

25

Furnace Black Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Furnace Black Furnace Black Characterization Sid Richardson Carbon Co Fort Worth, TX Dr. Michel Gerspacher 005F 2 Definitions Particle Aggregate = 20nm to 100nm "Diameter" = 200nm to 1,000nm "Length" = Set of Percolated Aggregates Particle (?) Aggregate Agglomerate Constituents Size = Tech/Scientific Challenge 005F 3 Furnace Process High Temperature Refractory Feedstock Oil Air Natural Gas Reaction Zone Quench 005F 4 Specific Surface Area 005F 5 Structure 3-D Morphology Key Characteristic Summary of Crystallographic Studies 005F 7 Methodologies 005F 8 Summary * For all furnace carbon black 12Å < L C < 17Å * Crystallite L a ≈ 25Å * Amorphous Carbon * No micropores * Very few surface groups (hetero atoms) { 005F 9 Effect of Heat Treatment on Amorphous Carbon

26

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network (OSTI)

Air-Handler Efficiency. ASHRAE Transactions, V. 110, Pt.1,Air Heating System Performance. ASHRAE Transactions, V. 104,Furnace Air Handlers Save? , ASHRAE Transactions, V. 110,

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

27

BPM Motors in Residential Gas Furnaces: What are theSavings?  

Science Conference Proceedings (OSTI)

Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This paper examines both types of blower motors in non-condensing non-weatherized gas furnaces at a range of static pressures. Fan performance data is based on manufacturer product literature and laboratory tests. We use field-measured static pressure in ducts to get typical system curves to calculate how furnaces would operate in the field. We contrast this with the electricity consumption of a furnace blower operating under the DOE test procedure and manufacturer rated conditions. Furnace electricity use is also affected by operating modes that happen at the beginning and end of each furnace firing cycle. These operating modes are the pre-purge and post-purge by the draft inducer, the on-delay and off-delay of the blower, and the hot surface ignitor operation. To accurately calculate this effect, we use the number of firing cycles in a typical California house in the Central Valley of California. Cooling hours are not considered in the DOE test procedure. We also account for furnace blower use by the air conditioner and stand-by power. Overall BPM motors outperform PSC motors, but the total electricity savings are significantly less than projected using the DOE test procedure conditions. The performance gains depend on the static pressure of the household ducts, which are typically much higher than in the test procedures.

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-05-12T23:59:59.000Z

28

Furnaces and Boilers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Furnaces and Boilers Furnaces and Boilers Furnaces and Boilers June 24, 2012 - 4:56pm Addthis Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. What does this mean for me? To maintain your heating system's efficiency and ensure healthy indoor air quality, it's critical to maintain the unit and its venting mechanism. Proper maintenance extends the life of your furnace or boiler and saves you money. Most U.S. homes are heated with either furnaces or boilers. Furnaces heat air and distribute the heated air through the house using ducts. Boilers heat water, and provide either hot water or steam for heating. Steam is distributed via pipes to steam radiators, and hot water can be distributed

29

Furnace Blower Electricity: National and Regional Savings Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

Furnace Blower Electricity: National and Regional Savings Potential Furnace Blower Electricity: National and Regional Savings Potential Title Furnace Blower Electricity: National and Regional Savings Potential Publication Type Report LBNL Report Number LBNL-417E Year of Publication 2008 Authors Franco, Victor H., James D. Lutz, Alexander B. Lekov, and Lixing Gu Document Number LBNL-417E Pagination 14 Date Published August 1 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80% of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressureused in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, whilewarm climate locations will see less savings overall and negative savings in the high static pressure duct situations. Moderate climate locations will see little or no savings.

30

Surface Meteorology and Air-Sea Fluxes in the Western Equatorial Pacific Warm Pool during the TOGA Coupled Ocean-Atmosphere Response Experiment  

Science Conference Proceedings (OSTI)

A major goal of the Coupled Ocean-Atmosphere Response Experiment (COARE) was to achieve significantly more accurate and complete descriptions of the surface meteorology and air-sea fluxes in the western equatorial warm pool region. Time series of ...

R. A. Weller; S. P. Anderson

1996-08-01T23:59:59.000Z

31

Warming of the North Pacific Ocean: Local Air–Sea Coupling and Remote Climatic Impacts  

Science Conference Proceedings (OSTI)

In this paper, global climatic response to the North Pacific oceanic warming is investigated in a series of coupled ocean–atmosphere modeling experiments. In the model, an idealized heating is imposed over the North Pacific Ocean, while the ocean ...

Lixin Wu; Chun Li

2007-06-01T23:59:59.000Z

32

Addressing Global Warming, Air Pollution Health Damage, and Long-Term Energy Needs Simultaneously  

E-Print Network (OSTI)

pollution simultaneously, namely wind- and solar energy for electric power, electric vehicles and diesel vehicles currently cause. 4) Studies to date suggest little reduction or an exacerbation of global estimates of the effects of cellulosic ethanol on global warming to date are premature and low. 6) Wind

Patzek, Tadeusz W.

33

Tube furnace  

DOE Patents (OSTI)

A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

Foster, K.G.; Frohwein, E.J.; Taylor, R.W.; Bowen, D.W.

1990-01-01T23:59:59.000Z

34

Enameling Furnaces  

Science Conference Proceedings (OSTI)

Table 13 Cycles for firing ground-coated and cover-coated sheet steel parts in a continuous furnace...Architectural panels 16-22 805 1480 2-4 Home laundry equipment 18-22 805 1480 4-5 Water heater tanks 7-16 870 1600 8-12 Range equipment 18-24 805 1480 3-5 Sanitary ware 14-18 815 1500 4-6 Signs 16-22 805 1480 3-5 (a) Temperature varies with composition of frit. (b) Time in hot zone of furnace...

35

Furnace assembly  

DOE Patents (OSTI)

A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

Panayotou, Nicholas F. (Kennewick, WA); Green, Donald R. (Richland, WA); Price, Larry S. (Pittsburg, CA)

1985-01-01T23:59:59.000Z

36

Relationship between Air–Sea Density Flux and Isopycnal Meridional Overturning Circulation in a Warming Climate  

Science Conference Proceedings (OSTI)

This study aims to explore the relationship between air–sea density flux and isopycnal meridional overturning circulation (MOC), using the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) model projections of the ...

MyeongHee Han; Igor Kamenkovich; Timour Radko; William E. Johns

2013-04-01T23:59:59.000Z

37

Furnace and Boiler Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Furnace and Boiler Basics Furnace and Boiler Basics Furnace and Boiler Basics August 16, 2013 - 2:50pm Addthis Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either hot water or steam for heating. Furnaces Furnaces are the most common heating systems used in homes in the United States. They can be all electric, gas-fired (including propane or natural gas), or oil-fired. Boilers Boilers consist of a vessel or tank where heat produced from the combustion of such fuels as natural gas, fuel oil, or coal is used to generate hot water or steam. Many buildings have their own boilers, while other buildings have steam or hot water piped in from a central plant. Commercial boilers are manufactured for high- or low-pressure applications.

38

List of Furnaces Incentives | Open Energy Information  

Open Energy Info (EERE)

Furnaces Incentives Furnaces Incentives Jump to: navigation, search The following contains the list of 688 Furnaces Incentives. CSV (rows 1-500) CSV (rows 501-688) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Nonprofit

39

Condensing furnaces: Lessons from a utility  

SciTech Connect

for the last several years about 90% of the new natural gas furnaces installed in Wisconsin have been condensing furnaces and a number of lessons have been learned. If you avoid the common mistakes, condensing furnaces typically can deliver heating savings of 20-35 % assuming the old furnace was in the 60% AFUE range. This article describes the common mistakes and how to avoid them: outside air needed 100%; benefits of sealed combustion; follow the installation manual scrupulously; how to avoid potential problems; tips on venting.

Beers, J. [Madison Gas and Electric Company, WI (United States)

1994-11-01T23:59:59.000Z

40

CWS-fired residential warm-air heating system. Quarterly report, January 22, 1987--April 30, 1987  

Science Conference Proceedings (OSTI)

The objective of this project is the development of a coal water slurry burning residential furnace. A literature survey has been performed. Also, the preliminary testing of prototype components was carried out. Design criteria and specifications are discussed.

Becker, F.E.; Smolensky, L.A.; McPeak, M.A.

1987-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm air furnace" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

1 2 3 4 5 6 Review of Solutions to Global Warming, Air Pollution, and Energy Security  

E-Print Network (OSTI)

14 This paper reviews and ranks major proposed energy-related solutions to global warming, 15 air pollution mortality, and energy security while considering other impacts of the 16 17 proposed solutions, such as on water supply, land use, wildlife, resource availability, thermal pollution, water chemical pollution, nuclear proliferation, and undernutrition. 18 Nine electric power sources and two liquid fuel options are considered. The electricity 19 sources include solar-photovoltaics (PV), concentrated solar power (CSP), wind, 20 geothermal, hydroelectric, wave, tidal, nuclear, and coal with carbon capture and storage 21 (CCS) technology. The liquid fuel options include corn-ethanol (E85) and cellulosic E85. 22 To place the electric and liquid fuel sources on an equal footing, we examine their 23 comparative abilities to address the problems mentioned by powering new-technology 24 vehicles, including battery-electric vehicles (BEVs), hydrogen fuel cell vehicles 25 (HFCVs), and flex-fuel vehicles run on E85. Twelve combinations of energy source-

Mark Z. Jacobson

2008-01-01T23:59:59.000Z

42

REVIEW www.rsc.org/ees | Energy & Environmental Science Review of solutions to global warming, air pollution, and energy security†  

E-Print Network (OSTI)

This paper reviews and ranks major proposed energy-related solutions to global warming, air pollution mortality, and energy security while considering other impacts of the proposed solutions, such as on water supply, land use, wildlife, resource availability, thermal pollution, water chemical pollution, nuclear proliferation, and undernutrition. Nine electric power sources and two liquid fuel options are considered. The electricity sources include solar-photovoltaics (PV), concentrated solar power (CSP), wind, geothermal, hydroelectric, wave, tidal, nuclear, and coal with carbon capture and storage (CCS) technology. The liquid fuel options include corn-ethanol (E85) and cellulosic-E85. To place the electric and liquid fuel sources on an equal footing, we examine their comparative abilities to address the problems mentioned by powering new-technology vehicles, including battery-electric vehicles (BEVs), hydrogen fuel cell vehicles (HFCVs), and flex-fuel vehicles run on E85. Twelve combinations of energy source-vehicle type are considered. Upon ranking and weighting each combination with respect to each of 11 impact categories, four clear divisions of ranking, or tiers, emerge. Tier 1 (highest-ranked) includes wind-BEVs and wind-HFCVs. Tier 2 includes CSP-BEVs, geothermal-BEVs, PV-BEVs, tidal-BEVs, and wave-BEVs. Tier 3 includes hydro-BEVs, nuclear-BEVs, and CCS-BEVs. Tier 4 includes corn- and cellulosic-E85. Wind-BEVs ranked first in seven out of 11 categories, including the two most

Mark Z. Jacobson

2008-01-01T23:59:59.000Z

43

Furnaces and Energy  

Science Conference Proceedings (OSTI)

Cast Shop for Aluminum Production: Furnaces and Energy ... Computational Analysis of Thermal Process of a Regenerative Aluminum Melting Furnace: Jimin ... and the appearance of innovative and competing stirrer systems in the market.

44

Furnace Design and Operation  

Science Conference Proceedings (OSTI)

...S. Lampman, Energy-Efficient Heat-Treating Furnace Design and Operation, Heat Treating, Vol 4, ASM Handbook, ASM International,

45

Anode Baking Furnace Operation  

Science Conference Proceedings (OSTI)

The course is directed toward plant managers, anode area managers, process engineers, technical managers, and baking furnace ... ENERGY MANAGEMENT.

46

Investigation Of Synergistic NOx Reduction From Cofiring And Air Staged Combustion Of Coal And Low Ash Dairy Biomass In A 30 Kilowatt Low NOx Furnace  

E-Print Network (OSTI)

Alternate, cost effective disposal methods must be developed for reducing phosphorous and nitrogen loading from land application of animal waste. Cofiring coal with animal waste, termed dairy biomass (DB), is the proposed thermo-chemical method to address this concern. DB is evaluated as a cofired fuel with Wyoming Powder River Basin (PRB) sub-bituminous coal in a small-scale 29 kW_(t) low NO_(x) burner (LNB) facility. Fuel properties, of PRB and DB revealed the following: a higher heating value of 29590 kJ/kg for dry ash free (DAF) coal and 21450 kJ/kg for DAF DB. A new method called Respiratory Quotient (RQ), defined as ratio of carbon dioxide moles to oxygen moles consumed in combustion, used widely in biology, was recently introduced to engineering literature to rank global warming potential (GWP) of fuels. A higher RQ means higher CO_(2) emission and higher GWP. PRB had an RQ of 0.90 and DB had an RQ of 0.92. For comparison purposes, methane has an RQ of 0.50. For unknown fuel composition, gas analyses can be adapted to estimate RQ values. The LNB was modified and cofiring experiments were performed at various equivalence ratios (phi) with pure coal and blends of PRB-DB. Standard emissions from solid fuel combustion were measured; then NO_(x) on a heat basis (g/GJ), fuel burnt fraction, and fuel nitrogen conversion percentage were estimated. The gas analyses yielded burnt fraction ranging from 89% to 100% and confirmed an RQ of 0.90 to 0.94, which is almost the same as the RQ based on fuel composition. At the 0.90 equivalence ratio, unstaged pure coal produced 653 ppm (377 g/GJ) of NOx. At the same equivalence ratio, a 90-10 PRB:LADB blended fuel produced 687 ppm (397 g/GJ) of NO_(x). By staging 20% of the total combustion air as tertiary air (which raised the equivalence ratio of the main burner to 1.12), NO_(x) was reduced to 545 ppm (304 g/GJ) for the 90-10 blended fuel. Analysis of variance showed that variances were statistically significant because of real differences between the independent variables (equivalence ratio, percent LADB in the fuel, and staging intensity).

Lawrence, Benjamin Daniel

2013-08-01T23:59:59.000Z

47

Plasma as a Blast Furnace Supplement: An Evaluation of Thermal Plasma Energy to Heat Blast Air for Iron Productiion, CMP Report No. 89-1  

Science Conference Proceedings (OSTI)

This study evaluates the use of thermal plasma heat for blast superheating in iron blast furnace operation. The basic research for this technology was carried out in the 1970's, primarily by the Centre des Recherches Metallurgiques (CRM) in Belgium. The main impetus for development was to increase productivity and efficiency and to decrease coke consumption. This was achieved by replacing some coke fuel by alternative injectant fuels (CH4, oil, coal, etc.) and compensating for these injectants by increas...

1990-10-31T23:59:59.000Z

48

Control of energy use in a furnace  

Science Conference Proceedings (OSTI)

This patent describes, in a residential furnace of the type which is responsive to a thermostat and has an electronic ignitor, and a circulating air blower that May be operated on a continuous basis, an improved process of controlling the thermostat, electrical ignitor and blower in an ignition sequence of the furnace. It comprises: upon receiving a call for heat from a thermostat, checking to determine if the circulating air blower is on; if the blower is on, turning it off; and only after the blower is turned off, turning on the ignitor to initiate the combustion process.

Ballard, G.W.; Dempsey, D.J.

1990-01-02T23:59:59.000Z

49

Biological Kraft Chemical Recycle for Augmentation of Recovery Furnace Capacity  

DOE Green Energy (OSTI)

The chemicals used in pulping of wood by the kraft process are recycled in the mill in the recovery furnace, which oxidizes organics while simultaneously reducing sulfate to sulfide. The recovery furnace is central to the economical operation of kraft pulp mills, but it also causes problems. The total pulp production of many mills is limited by the recovery furnace capacity, which cannot easily be increased. The furnace is one of the largest sources of air pollution (as reduced sulfur compounds) in the kraft pulp mill.

Stuart E. Strand

2001-12-06T23:59:59.000Z

50

Furnace Black Characterization  

E-Print Network (OSTI)

Furnace Black Characterization Sid Richardson Carbon Co Fort Worth, TX Dr. Michel Gerspacher #12 of Crystallographic Studies #12;005F7 Methodologies #12;005F8 Summary · For all furnace carbon black 12� Surface Unorganized Carbon Identified #12;005F11 SRCC's Model #12;005F12 Carbon Black Surface Activity

51

Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology  

SciTech Connect

The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

Not Available

1993-11-01T23:59:59.000Z

52

Simple Maintenance Saves Costly Furnace Repair/Replacement | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Simple Maintenance Saves Costly Furnace Repair/Replacement Simple Maintenance Saves Costly Furnace Repair/Replacement Simple Maintenance Saves Costly Furnace Repair/Replacement January 6, 2010 - 8:26am Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory For the past few weeks, my forced-air gas furnace has been on the fritz. I blame this on the fact that I haven't been as diligent as I should have been with regular furnace maintenance, which includes: Checking the condition of the vent connection pipe and chimney Checking the physical integrity of the heat exchanger Adjusting the controls to provide optimum water and air temperature settings for both efficiency and comfort Having a technician perform a combustion-efficiency test Checking the combustion chamber for cracks. Testing for carbon monoxide

53

Solar Warming Submitted to Avalanche.ca Journal Feb. 2008 Can solar warming contribute to dry slab avalanches?  

E-Print Network (OSTI)

Solar Warming Submitted to Avalanche.ca Journal Feb. 2008 Can solar warming contribute to dry slab, when signs of warming, such as relatively warm air temperatures, strong solar radiation, and moist by a skier on a steep south-west facing aspect. Solar warming may have contributed to this release. (photo

Jamieson, Bruce

54

Furnace Systems Technology Workshop  

Science Conference Proceedings (OSTI)

TMS Networking and Online Tools, X ... TMS Social Network and Site Tools .... furnace technology, fundamentals of fans and blowers, reduction of melt loss, refractory ... Sutton - Harbison-Walker Refractories; Jon Gillespie - Gillespie & Powers ...

55

High temperature furnace  

DOE Patents (OSTI)

A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

Borkowski, Casimer J. (Oak Ridge, TN)

1976-08-03T23:59:59.000Z

56

Partially Reduced Feedstocks and Blast Furnace Ironmaking ...  

Science Conference Proceedings (OSTI)

... Partially Reduced Feedstocks and Blast Furnace Ironmaking Carbon Intensity ... simple Rist-style blast furnace mass and energy balance, assuming furnace ...

57

Argonne Software Licensing: Glass Furnace Model (GFM)  

The Glass Furnace Model (GFM) The Glass Furnace Model (GFM) Version 4.0, a computational fluid dynamic (CFD) glass furnace simulation code was developed at Argonne ...

58

Air pollutant emissions prediction by process modelling - Application in the iron and steel industry in the case of a re-heating furnace  

Science Conference Proceedings (OSTI)

Monitoring air pollutant emissions of large industrial installations is necessary to ensure compliance with environmental legislation. Most of the available measurement techniques are expensive, and measurement conditions such as high-temperature emissions, ... Keywords: Artificial neural networks, CO2, Correlation method, Fume emissions, Multiple linear regression, NO2, Steelworks process modelling

Anda Ionescu; Yves Candau

2007-09-01T23:59:59.000Z

59

Laboratory Evaluation of Residential Furnace BlowerPerformance  

SciTech Connect

A testing program was undertaken at Lawrence Berkeley National Laboratory and an electric utility (Pacific Gas and Electric Co.) to compare the performance of furnace blowers. This laboratory testing program was undertaken to support potential changes to California Building Standards regarding in-field furnace blower energy use. This technical support includes identifying suitable performance metrics and target performance levels for use in standards. Five different combinations of blowers and residential furnaces were tested for air moving performance. Three different types of blower and motor combinations were tested in two different furnace cabinets. The blowers were standard forward--curved impellors and a prototype impeller with reverse-inclined blades. The motors were two 6-pole permanent split capacitor (PSC) single-phase induction motors, a brushless permanent magnet (BPM) motor and a prototype BPM designed for use with a prototype reverse-inclined impellor. The laboratory testing operated each blower and furnace combination over a range of air flows and pressure differences to determine air flow performance, power consumption and efficiency. Additional tests varied the clearance between the blower housing and the furnace cabinet, and the routing of air flow into the blower cabinet.

Walker, Iain S.; Lutz, Jim D.

2005-09-01T23:59:59.000Z

60

Furnace | OpenEI  

Open Energy Info (EERE)

Furnace Furnace Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

Note: This page contains sample records for the topic "warm air furnace" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler  

Science Conference Proceedings (OSTI)

The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by natural circulation to the waterwalls and divisional wall panels. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) without over-fire air and (2) with 20% over-fire air. The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from carbon steel to T91. The total heat transfer surface required in the oxygen-fired heat recovery area (HRA) is 25% less than the air-fired HRA due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are practically the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are very similar.

Andrew Seltzer

2005-01-01T23:59:59.000Z

62

Coupled Modes of the Warm Pool Climate System. Part I: The Role of Air–Sea Interaction in Maintaining Madden–Julian Oscillation  

Science Conference Proceedings (OSTI)

Over the warm pool of the equatorial Indian and western Pacific Oceans, both the climatological mean state and the processes of atmosphere–ocean interaction differ fundamentally from their counterparts over the cold tongue of the equatorial ...

Bin Wang; Xiaosu Xie

1998-08-01T23:59:59.000Z

63

Tritium extraction furnace  

DOE Patents (OSTI)

This invention is comprised of apparatus for heating an object such as a nuclear target bundle to release and recover hydrogen and contain the disposable residue for disposal. The apparatus comprises an inverted furnace, a sleeve/crucible assembly for holding and enclosing the bundle, conveying equipment for placing the sleeve onto the crucible and loading the bundle into the sleeve/crucible, a lift for raising the enclosed bundle into the furnace, and hydrogen recovery equipment including a trap and strippers, all housed in a containment having, negative internal pressure. The crucible/sleeve assembly has an internal volume that is sufficient to enclose and hold the bundle before heating; the crucible`s internal volume is sufficient by itself to hold and enclose the bundle`s volume after heating. The crucible can then be covered and disposed of, the sleeve, on the other hand, can be reused.

Heung, L.K.

1992-12-31T23:59:59.000Z

64

HIGH TEMPERATURE MICROSCOPE AND FURNACE  

DOE Patents (OSTI)

A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

Olson, D.M.

1961-01-31T23:59:59.000Z

65

Cupola Furnace Computer Process Model  

Science Conference Proceedings (OSTI)

The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

Seymour Katz

2004-12-31T23:59:59.000Z

66

Regenerative Burners Assessment in Holding Reverberatory Furnace  

Science Conference Proceedings (OSTI)

The assessment showed that the regenerative burner furnaces are not profitable in saving energy in addition to the negative impact on the furnace life.

67

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

SciTech Connect

Residential two-stage gas furnaces account for almost a quarter of the total number of models listed in the March 2005 GAMA directory of equipment certified for sale in the United States. Two-stage furnaces are expanding their presence in the market mostly because they meet consumer expectations for improved comfort. Currently, the U.S. Department of Energy (DOE) test procedure serves as the method for reporting furnace total fuel and electricity consumption under laboratory conditions. In 2006, American Society of Heating Refrigeration and Air-conditioning Engineers (ASHRAE) proposed an update to its test procedure which corrects some of the discrepancies found in the DOE test procedure and provides an improved methodology for calculating the energy consumption of two-stage furnaces. The objectives of this paper are to explore the differences in the methods for calculating two-stage residential gas furnace energy consumption in the DOE test procedure and in the 2006 ASHRAE test procedure and to compare test results to research results from field tests. Overall, the DOE test procedure shows a reduction in the total site energy consumption of about 3 percent for two-stage compared to single-stage furnaces at the same efficiency level. In contrast, the 2006 ASHRAE test procedure shows almost no difference in the total site energy consumption. The 2006 ASHRAE test procedure appears to provide a better methodology for calculating the energy consumption of two-stage furnaces. The results indicate that, although two-stage technology by itself does not save site energy, the combination of two-stage furnaces with BPM motors provides electricity savings, which are confirmed by field studies.

Lekov, Alex; Franco, Victor; Lutz, James

2006-05-12T23:59:59.000Z

68

The effects of improved residential furnace filtration on airborne particles  

SciTech Connect

Forced air furnaces with distributed ducting systems have always had an air filter, but traditionally the filter quality was only adequate to protect the furnace fan and heat exchanger from debris. In the past several years, there has been an increasing number of more effective particulate filters that are being marketed to reduce airborne particulate or dust. These include upgraded panel filters, passive electrostatic, active electrostatic, and HEPA or near-HEPA variants. Consumers are bewildered by the lack of standardized and comprehensible performance results and need better advice on whether it would be useful for them to upgrade their current furnace filter. In order to help them make these decisions, the whole range of available furnace filters were tested in six occupied houses. The filter efficiency was determined by particulate measurement in the ducting system before and after the filter. Indoor particulates were measured in a bedroom and living room, and outdoor levels were monitored simultaneously. Testing encompassed several weeks in each house, and the results are available in the whole range of particle sizes. The project also looked at the air-cleaning effectiveness of a stand-alone air cleaner and at the ozone production of electrostatic precipitators installed in 20 houses. Test results will be helpful in specifying suitable filtration for houses.

Fugler, D.; Bowser, D.; Kwan, W.

2000-07-01T23:59:59.000Z

69

High pressure furnace  

DOE Patents (OSTI)

A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

Morris, Donald E. (Kensington, CA)

1993-01-01T23:59:59.000Z

70

High pressure oxygen furnace  

DOE Patents (OSTI)

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

Morris, D.E.

1992-07-14T23:59:59.000Z

71

High pressure oxygen furnace  

DOE Patents (OSTI)

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

Morris, Donald E. (Kensington, CA)

1992-01-01T23:59:59.000Z

72

High pressure furnace  

DOE Patents (OSTI)

A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

Morris, D.E.

1993-09-14T23:59:59.000Z

73

WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI  

Open Energy Info (EERE)

WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI Jump to: navigation, search Name WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI)) Place Indiana Zip 46809 Sector Geothermal energy Product WaterFurnace develops and manufactures geothermal heating and cooling systems. References WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI))[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI)) is a company located in Indiana . References ↑ "WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI))"

74

Biomass Boiler and Furnace Emissions and Safety Regulations in the  

Open Energy Info (EERE)

Biomass Boiler and Furnace Emissions and Safety Regulations in the Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Jump to: navigation, search Tool Summary Name: Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Agency/Company /Organization: CONEG Policy Research Center Inc. Partner: Massachusetts Department of Energy Resources, Rick Handley and Associates, Northeast States for Coordinated Air Use Management (NESCAUM) Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, Economic Development Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Other Website: www.mass.gov/Eoeea/docs/doer/renewables/biomass/DOER%20Biomass%20Emiss Country: United States

75

Fossil fuel furnace reactor  

DOE Patents (OSTI)

A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

Parkinson, William J. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

76

Variable frequency microwave furnace system  

DOE Patents (OSTI)

A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

Bible, D.W.; Lauf, R.J.

1994-06-14T23:59:59.000Z

77

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network (OSTI)

Inc. Pigg, Scott. 2003. Electricity Use by New Furnaces: Astage furnaces offer national electricity savings, but withABORATORY Furnace Blower Electricity: National and Regional

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

78

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network (OSTI)

Method for Measuring the Energy Consumption of Furnaces andcalculating the energy consumption of two-stage furnaces.residential gas furnace energy consumption in the DOE test

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

79

Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Supercritical O2-Based PC Boiler  

Science Conference Proceedings (OSTI)

The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Supercritical Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE, Siemens, and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by forced circulation to the waterwalls at the periphery and divisional wall panels within the furnace. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) with cryogenic air separation unit (ASU) and (2) with oxygen ion transport membrane (OITM). The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from T2 to T92. Compared to the air-fired heat recovery area (HRA), the oxygen-fired HRA total heat transfer surface is 35% less for the cryogenic design and 13% less for the OITM design due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are nearly the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are similar.

Andrew Seltzer

2006-05-01T23:59:59.000Z

80

Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet)  

SciTech Connect

The objective of this project is to examine the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces, as measured by steady-state efficiency and AFUE. PARR identified twelve furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines Iowa metropolitan area and worked with a local HVAC contractor to retrieve them and test them for steady-state efficiency and AFUE in the lab. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace. After removal from the field the furnaces were transported to the Gas Technology Institute (GTI) laboratory, where PARR conducted steady-state efficiency and AFUE testing. The test results show that steady-state efficiency in the field was 6.4% lower than that measured for the same furnaces under standard conditions in the lab, which included tuning the furnace input and air flow rate. Comparing AFUE measured under ASHRAE standard conditions with the label value shows no reduction in efficiency for the furnaces in this study over their 15 to 24 years of operation when tuned to standard conditions. Further analysis of the data showed no significant correlation between efficiency change and the age or the rated efficiency of the furnace.

Rothgeb, S.; Brand, L.

2013-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm air furnace" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Measurement of airflow in residential furnaces  

E-Print Network (OSTI)

cut out of a piece of plywood that is attached to the inlet.the size of the furnace outlet cut in the plywood. ESLtaped the furnace to the plywood and strapped it in place.

Biermayer, Peter J.; Lutz, James; Lekov, Alex

2004-01-01T23:59:59.000Z

82

Coal combustion under conditions of blast furnace injection. Final technical report, September 1, 1992--August 31, 1993  

Science Conference Proceedings (OSTI)

A potentially new use for Illinois coal is as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. During the first phase of this project a number of the objectives were realized, specifically: (1) a blast furnace sampling system was developed and used successfully to collect samples inside an active furnace; (2) two sets of blast furnace samples were collected and petrographic analysis showed that char derived from injected coal is entering the reduction zone of the furnace; (3) a coal/char sampling probe was designed and fabricated; (4) the completion of a program of reactivity experiments on the injected coal char, blast furnace coke and Herrin No. 6 char. The results of the reactivity experiments indicate that Herrin No. 6 coal is similar or even superior to coals now being used in blast furnace injection and that additional testing is warranted.

Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology; Case, E.R. [Armco, Inc., Middletown, OH (United States). Research and Technology Div.

1993-12-31T23:59:59.000Z

83

Furnace Systems Technology Workshop Brochure (PDF)  

Science Conference Proceedings (OSTI)

To register, visit the furnace systems technology ... transfer, atmospheres and purging requirements, effective control systems, and fuel efficiency, production ...

84

Glass science tutorial: Lecture No. 4, commercial glass melting and associated air emission issues  

SciTech Connect

This document serves as a manual for a workshop on commercial glass melting and associated air emission issues. Areas covered include: An overview of the glass industry; Furnace design and construction practices; Melting furnace operation; Energy input methods and controls; Air legislation and regulations; Soda lime emission mechanisms; and, Post furnace emission controls. Supporting papers are also included.

Kruger, A.A.

1995-01-01T23:59:59.000Z

85

HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL (HARDI)  

Energy.gov (U.S. Department of Energy (DOE))

OE Framework Document and Stakeholder Meeting regarding the Enforcement of the updated Energy Conservation Standards for Air Conditioners, Furnaces and Heat Pumps.

86

Batch Preheat for glass and related furnace processing operations  

SciTech Connect

The objectives that our development work addressed are: (1) Establish through lab tests a salt eutectic with a melting point of about 250 F and a working range of 250 to 1800 F. (2) Establish the most economical material of construction for the screened salt eutectics identified in the first objective. (3) Establish the material of construction for the salt heater liner. Objectives 2 and 3 were determined through corrosion tests using selected metallurgical samples. Successful completion of the above-stated goals will be incorporated in a heat recovery design that can be used in high temperature processes and furnaces, typical of which is the glass melting process. The process design incorporates the following unit operations: a vertical batch heater (whereby the batch flows down through tubes in a shell and tube exchanger; a molten salt eutectic is circulated on the shell side); a molten salt heater utilizing furnace flue gas in a radiation type heater (molten salt is circulated in the annular space between the inner and outer shells of the vertical heater, and flue gas passes from the furnace exhaust through the inner shell of the heater); a cantilever type molten salt circulating pump; and a jacketed mixer/conveyor to drive off moisture from the batch prior to feeding the batch to the vertical batch heater. Historically, radiation heaters, when applied to glass or fiberglass furnace recuperation, have experienced failures due to uneven heat flux rates, which increases internal stresses and spot overheating conditions. Low heat transfer coefficients result in requirements for large heat transfer surface areas in gas to gas or gas to air exchangers. Fouling is another factor that results in lower unit availability and reduced performance. These factors are accommodated in this process by the incorporation of several design features. The salt heater will be a vertical double wall radiation design, similar to radiation air heaters used in high temperature heat recovery. The unit utilizes an inner shell that the furnace exhaust gas passes through: this provides essentially a self-cleaning surface. Utilization of radiation air heaters in fiberglass furnaces has demonstrated that the inner shell provides a surface from which molten ash can drain down. The molten salt eutectic will be pumped through the annulus between this inner wall and the outer wall of the unit. The annular space tempering via the molten salt will promote more uniform expansion for the unit, and thereby promote more uniform heat flux rates. Heat transfer would be via radiation mainly, with a minor convective contributor.

Energy & Environmental Resources, Inc

2002-08-12T23:59:59.000Z

87

Direct current, closed furnace silicon technology  

Science Conference Proceedings (OSTI)

The dc closed furnace technology for smelting silicon offers technical operating challenges, as well as, economic opportunities for off-gas recovery, reduced electrode consumption, reduced reductant oxidation losses, reduced energy consumption, and improved silicon recovery. The 10 mva dc closed furnace is located in East Selkirk, Manitoba. Construction of this pilot plant was started in September 1990. Following successful commissioning of the furnace in 1992, a number of smelting tests have been conducted aimed at optimization of the furnace operation and the raw material mix. The operation of a closed furnace is significantly different from an open furnace operation. The major difference being in the mechanical movement of the mix, off-gas recovery, and inability to observe the process. These differences made data collection and analysis critical in making operating decisions. This closed furnace was operated by computer control (state of the art in the smelling industry).

Dosaj, V.D. [Dow Corning Corp., Midland, MI (United States); May, J.B. [Dow Corning Corp., Freeland, MI (United States); Arvidson, A.N. [Meadow Materials, Manitoba (Canada)

1994-05-01T23:59:59.000Z

88

NETL: Water-Energy Interface - Improvement to Air2Air® Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

cooling tower with relatively drier and cooler ambient air. This is done in an air-to-air heat exchanger made up of plastic sheets with two discreet air pathways. As the warm,...

89

Ferrosilicon smelting in a direct current furnace  

DOE Patents (OSTI)

The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode. 1 figure.

Dosaj, V.D.; May, J.B.

1992-12-29T23:59:59.000Z

90

Blast Furnace Granulated Coal Injection System Demonstration...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Blast Furnace Granulated Coal Injection System Demonstration Project: A DOE Assessment June 2000 U. S. Department of Energy National Energy Technology Laboratory P.O. Box 880,...

91

Energy Control in Primary Aluminium Casthouse Furnaces  

Science Conference Proceedings (OSTI)

In order to effectively run a furnace with low energy consumption the burner's fuel ... Oxidation of Commercial Purity Aluminium Melts: An Experimental Study.

92

Measurement of airflow in residential furnaces  

SciTech Connect

In order to have a standard for furnaces that includes electricity consumption or for the efficiency of furnace blowers to be determined, it is necessary to determine the airflow of a furnace or furnace blower. This study focused on airflow testing, in order to determine if an existing test method for measuring blower airflow could be used to measure the airflow of a furnace, under conditions seen in actual installations and to collect data and insights into the operating characteristics of various types of furnace blowers, to use in the analysis of the electricity consumption of furnaces. Results of the measured airflow on furnaces with three types of blower and motor combinations are presented in the report. These included: (1) a forward-curved blower wheel with a typical permanent split capacitor (PSC) motor, (2) a forward-curved blower wheel with an electronically-commutated motor (ECM), and (3) a prototype blower, consisting of a backward-inclined blower wheel matched to an ECM motor prototype, which is being developed as an energy-saving alternative to conventional furnace blowers. The testing provided data on power consumption, static and total pressure, and blower speed.

Biermayer, Peter J.; Lutz, James; Lekov, Alex

2004-01-24T23:59:59.000Z

93

Dataplot Commands for Furnace Case Study  

Science Conference Proceedings (OSTI)

... variable label run Run Number variable label zone Furnace Location variable label wafer Wafer Number variable label filmthic Film Thickness (ang ...

2012-03-31T23:59:59.000Z

94

High Performance Sealing for Anode Baking Furnaces  

Science Conference Proceedings (OSTI)

Operation of an Open Type Anode Baking Furnace with a Temporary Crossover ... Wireless Communication for Secured Firing and Control Systems of Anode ...

95

Energy Efficiency Improvement in Anode Baking Furnaces  

Science Conference Proceedings (OSTI)

One of the high energy consumption facilities in a smelter is the Anode Baking ... Hydro Aluminium's Historical Evolution of Closed Type Anode Baking Furnace ...

96

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect

Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

Not Available

2011-10-01T23:59:59.000Z

97

VAPOR SHIELD FOR INDUCTION FURNACE  

DOE Patents (OSTI)

This patent relates to a water-cooled vapor shield for an inductlon furnace that will condense metallic vapors arising from the crucible and thus prevent their condensation on or near the induction coils, thereby eliminating possible corrosion or shorting out of the coils. This is accomplished by placing, about the top, of the crucible a disk, apron, and cooling jacket that separates the area of the coils from the interior of the cruclbIe and provides a cooled surface upon whlch the vapors may condense.

Reese, S.L.; Samoriga, S.A.

1958-03-11T23:59:59.000Z

98

Vertical two chamber reaction furnace  

DOE Patents (OSTI)

A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

Blaugher, R.D.

1999-03-16T23:59:59.000Z

99

Optimized Design of a Furnace Cooling System  

E-Print Network (OSTI)

This paper presents a case study of manufacturing furnace optimized re-design. The bottleneck in the production process is the cooling of heat treatment furnaces. These ovens are on an approximate 24-hour cycle, heating for 12 hours and cooling for 12 hours. Pressurized argon and process water are used to expedite cooling. The proposed modifications aim to minimize cycling by reducing cooling time; they are grouped into three fundamental mechanisms. The first is a recommendation to modify current operating procedures. This entails opening the furnace doors at higher than normal temperatures. A furnace temperature model based on current parameters is used to show the reduction in cooling time in response to opening the furnace doors at higher temperatures. The second mechanism considers the introduction of forced argon convection. Argon is used in the process to mitigate part oxidation. Cycling argon through the furnace during cooling increases convection over the parts and removes heat from the furnace envelope. Heat transfer models based on convective Nusselt correlations are used to determine the increase in heat transfer rate. The last mechanism considers a modification to the current heat exchanger. By decreasing the temperature of the water jacket and increasing heat exchanger efficiency, heat transfer from the furnace is increased and cooling time is shortened. This analysis is done using the Effectiveness-NTU method.

Morelli, F.; Bretschneider, R.; Dauzat, J.; Guymon, M.; Studebaker, J.; Rasmussen, B. P.

2013-01-01T23:59:59.000Z

100

Thermal Imaging Control of Furnaces and Combustors  

Science Conference Proceedings (OSTI)

The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

David M. Rue; Serguei Zelepouga; Ishwar K. Puri

2003-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "warm air furnace" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Precision control of high temperature furnaces  

DOE Patents (OSTI)

It is an object of the present invention to provide precision control of high temperature furnaces. It is another object of the present invention to combine the power of two power supplies of greatly differing output capacities in a single furnace. This invention combines two power supplies to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. Further, this invention comprises a means for high speed measurement of temperature of the process by the method of measuring the amount of current flow in a deliberately induced charged particle current.

Pollock, G.G.

1994-12-31T23:59:59.000Z

102

Building Technologies Office: Residential Furnaces and Boilers Framework  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Furnaces Residential Furnaces and Boilers Framework Meeting to someone by E-mail Share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Facebook Tweet about Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Twitter Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Google Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Delicious Rank Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Digg Find More places to share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement

103

Insulation of Pipe Bends Improves Efficiency of Hot Oil Furnaces  

E-Print Network (OSTI)

Thermodynamic analyses of processes indicated low furnace efficiencies on certain hot oil furnaces. Further investigation, which included Infrared (IR) thermography testing of several furnaces, identified extremely hot surfaces on the outside of the convective sections. Consultation with the furnace manufacturer then revealed that furnaces made in the 1960's tended to not insulate the pipe bends in the convective section. When insulation was added within the covers of the pipe bends on one furnace, the energy efficiency improved by approximately 11%. The total savings are approximately 14,000 Million Btu/yr on one furnace. Insulation will be applied to several other furnaces at the site.

Haseltine, D. M.; Laffitte, R. D.

1999-05-01T23:59:59.000Z

104

Global Warming, Soot, Ice  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Warming, Soot, Ice Speaker(s): James Hansen Date: November 7, 2003 - 12:00pm Location: 90-3122 Irreversible "dangerous anthropogenic interference" with the climate system...

105

How Do You Stay Warm While Saving Money and Energy in Extreme Weather? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Do You Stay Warm While Saving Money and Energy in Extreme How Do You Stay Warm While Saving Money and Energy in Extreme Weather? How Do You Stay Warm While Saving Money and Energy in Extreme Weather? February 3, 2011 - 6:30am Addthis Many states are getting extreme weather this week, with deep freezes, huge blizzards, and ice storms causing various problems across the country. Such weather can cause us to use energy a bit differently to stay warm and keep things running. Depending on where you are, you may be keeping the faucet dripping (so pipes don't freeze), your furnace might be working overtime in the cold, or you may be spending extra time warming up your car. In extreme conditions, it's important to be safe and take your own home and needs into account when taking these extra measures, while still considering your energy use and costs. For example, are your pipes in a

106

How Do You Stay Warm While Saving Money and Energy in Extreme Weather? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Warm While Saving Money and Energy in Extreme Warm While Saving Money and Energy in Extreme Weather? How Do You Stay Warm While Saving Money and Energy in Extreme Weather? February 3, 2011 - 6:30am Addthis Many states are getting extreme weather this week, with deep freezes, huge blizzards, and ice storms causing various problems across the country. Such weather can cause us to use energy a bit differently to stay warm and keep things running. Depending on where you are, you may be keeping the faucet dripping (so pipes don't freeze), your furnace might be working overtime in the cold, or you may be spending extra time warming up your car. In extreme conditions, it's important to be safe and take your own home and needs into account when taking these extra measures, while still considering your energy use and costs. For example, are your pipes in a

107

Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls  

Science Conference Proceedings (OSTI)

As aggressive reductions in boiler emissions are mandated, the electric utility industry has been moving toward installation of improved methods of burner flow measurement and control to optimize combustion for reduced emissions. Development of cost effective controls requires an understanding of how variations in air and coal flows relate to emission rates. This project used computational fluid dynamic (CFD) modeling to quantify the impacts of variations of burner air and fuel flows on furnace operating...

2005-12-12T23:59:59.000Z

108

Motor vehicles and global warming  

SciTech Connect

Energy use in transportation is one of the contributors to the concern over global warming. The primary greenhouse gases released by the transportation sector are carbon dioxide and chlorofluorocarbons. When all greenhouse gases are considered, CO{sub 2} emissions from the operation of highway vehicles worldwide represent about 4.7% of global warming enhancement. CO{sub 2} emissions from U.S. highway vehicles along represent about 2 to 2.5% of worldwide greenhouse gases. The use of CFCs in automotive air conditioning, in blowing foams for seats and padding and in the manufacture of electronic circuit boards accounted for 15% of the global usage of CFC-12 in 1985 according to the U.S. EPA. The Motor Vehicle Manufacturers Association supports the phase-out of CFC use provided that safe substitutes are available and that adequate lead time is allowed for.They suggest that reduction of greenhouse gases would require planning on a global scope to be effective. One alternative they suggest for further study is a carbon fee for reducing emissions of carbon dioxide. This fee would be levied on each type of fossil fuel, proportional to its carbon content per unit of energy.

Halberstadt, M.L.

1990-03-01T23:59:59.000Z

109

Ladle Refining Furnaces for the Steel Industry  

Science Conference Proceedings (OSTI)

There has been a tremendous interest in the use of ladle refining furnaces in the last few years. Several units have been or are being constructed in the United States and most steel companies are seriously considering installing them. The purpose of this report is to inform the member companies of EPRI of the development and operations of ladle furnaces and to assist steel companies in determining if ladle furnaces fit their goals and which particular unit would be best for their operation. In this repo...

1990-01-31T23:59:59.000Z

110

Retrofit Air Preheat Economics  

E-Print Network (OSTI)

Retrofit air preheat systems are the most reliable and efficient means to effect significant energy conservation for large existing industrial furnaces. Units can be quickly installed without a lengthy shutdown, and the furnace efficiency can be increased to a range of 89% to 92%. The economic justification for the addition of this equipment is presented in new total investment curves and simple payout curves for a range of fuel cost. This will enable the owner to quickly determine the preliminary feasibility and conceptual requirements for his project before proceeding with more vigorous work.

Goolsbee, J. A.

1981-01-01T23:59:59.000Z

111

Warm Gas Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Warm Gas Cleanup Warm Gas Cleanup NETL Office of Research and Development Project Number: FWP-2012.03.03 Task 5 Project Description The Environmental Protection Agency (EPA) has established strict regulations for the trace contaminant emissions from integrated gasification combined cycle (IGCC) systems. The Department of Energy (DOE) performance goals for trace contaminant removal were selected to meet or exceed EPA's standard limits for contaminants, as well as to avoid poisoning of: the catalysts utilized in making liquids from fuel gas the electrodes in fuel cells selective catalytic reduction (SCR) catalysts The objective of the NETL's ORD Warm Gas Cleanup project is to assist in achieving both DOE and EPA targets for trace contaminant capture from coal gasification, while preserving the high thermal efficiency of the IGCC system. To achieve this, both lab and pilot-scale research is underway to develop sorbents capable of removing the following contaminants from high temperature syngas (up to 550°F):

112

Multiple hearth furnace for reducing iron oxide  

SciTech Connect

A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

Brandon, Mark M. (Charlotte, NC); True, Bradford G. (Charlotte, NC)

2012-03-13T23:59:59.000Z

113

Optical Furnace offers improved semiconductor device ...  

This means that the furnace is almost immune to the contamination from hot walls of ... NREL 94-26 US 5,897,331 High Efficiency Low Cost Thin Film ...

114

Furnaces and Boilers | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

and Boilers June 24, 2012 - 4:56pm Addthis Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Upgrading to a high efficiency...

115

Mathematical model of a tube furnace for catalytic conversion of hydrocarbons  

Science Conference Proceedings (OSTI)

The tube furnace is a complex unit in which there are hundreds of reaction tubes and coils for heating the reaction mixture, gas, air, steam and water. Optimum design of such a unit can be done only with a mathematical model of it. A number of physicochemical processes occur in the reaction furnace: conversions of natural gas with heat supplied through the wall of the tube, combustion of fuel in the firebox, transfer of heat from the radiating walls or flame to the reaction tubes, heating of the vapor-gas mixture and other flows in the convective zone of the furnace. These processes are interrelated and there are some difficulties in writing a mathematical model for the furnace. We have adopted the following principle for construction of a model: individual processes are being modeled and the starting data for calculation of these are the results of modeling of other processes. Calculation is made by sequential approximations until material and thermal balances are observed for all processes, as is indicated on the calculation flowsheet. Thermal calculations were made by methods discussed in (2). Modeling the tube furnace on a computer makes it possible to determine its working characteristics and range of safe operation. Computer calculations permit the time required for design of furnaces to be reduced substantially and the quality of the design to be improved. Higher demands are beingmade on tube furnaces for catalytic conversion of natural gas both with regard to operating reliability and economy because of the sharp increase of the unit capacities of ammonia and methanol synthesis plants.

Stepanov, A.V.; Sul'zhik, N.I.; Kadygrob, L.A.; Gorlov, V.F.; Mishin, V.P.; Dugach, V.V.

1981-02-01T23:59:59.000Z

116

Coal combustion under conditions of blast furnace injection; [Quarterly] technical report, September 1--November 30, 1993  

SciTech Connect

A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. steel company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals f or such use.

Crelling, J.C.

1993-12-31T23:59:59.000Z

117

Warm Water Mass Formation  

Science Conference Proceedings (OSTI)

Poleward heat transport by the own implies warm Water mass formation, i.e., the retention by the tropical and subtropical ocean of some of its net radiant heat gain. Under what condition net heat retention becomes comparable to latent heat ...

G. T. Csanady

1984-02-01T23:59:59.000Z

118

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL  

Science Conference Proceedings (OSTI)

The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two different boilers, and to determine balance-of-plant impacts. The first long-term test was conducted on FirstEnergy's BMP Unit 3, and the second was conducted on AEP's Gavin Plant, Unit 1. The Gavin Plant test provided an opportunity to evaluate the effects of sorbent injected into the furnace on SO{sub 3} formed across an operating SCR reactor. A final task in the project was to compare projected costs for furnace injection of magnesium hydroxide slurries to estimated costs for other potential sulfuric acid control technologies. Estimates were developed for reagent and utility costs, and capital costs, for furnace injection of magnesium hydroxide slurries and seven other sulfuric acid control technologies. The estimates were based on retrofit application to a model coal-fired plant.

Gary M. Blythe

2004-01-01T23:59:59.000Z

119

Simulation of air flow in the typical boiler windbox segments  

Science Conference Proceedings (OSTI)

Simulation of turbulent air flow distribution in CFBC furnace, wherein primary air is entrained through inlet duct system called windbox, is attempted through state of art CAD/CFD softwares. Establishment of flow in windbox channel, distributed plate ... Keywords: CFBC boiler, air flow, combustor geometry, distributed plate nozzles, multi-block grids, recirculation flow, simulation of flow, unequal air flow, windbox channel

C. Bhasker

2002-12-01T23:59:59.000Z

120

Amazing furnace-free house  

Science Conference Proceedings (OSTI)

A new 24,450 ft/sub 2/ house is described which has the following features: (1) 100% solar heating in a 6500 degree-day climate; (2) a greenhouse which never drops below 32/sup 0/F; (3) steady fresh air inflow; (4) building costs comparable to conventional homes of the same size; (5) roof solar collector and high temperature attic thermal storage; (6) a Solar Staircase which controls seasonal insolation; (7) a rock bin (100 ton) for low temperature storage; and (8) durability with low maintenance. The design features necessary to obtain the above criteria are discussed as well as the operation of the house for winter and summer use. An air moving system (fan plus ducts) is an essential part of the house. (MJJ)

Shurcliff, W.A.

1982-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm air furnace" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Waste Heat Recovery – Submerged Arc Furnaces (SAF)  

E-Print Network (OSTI)

Submerged Arc Furnaces are used to produce high temperature alloys. These furnaces typically run at 3000°F using high voltage electricity along with metallurgical carbon to reduce metal oxides to pure elemental form. The process as currently designed consumes power and fuel that yields an energy efficiency of approximately 40% (Total Btu’s required to reduce to elemental form/ Btu Input). The vast majority of heat is lost to the atmosphere or cooling water system. The furnaces can be modified to recover this heat and convert it to power. The system will then reduce the amount of purchased power by approximately 25% without any additional use of fuel. The cost of this power is virtually unchanged over the life of the project because of the use of capital to displace fuel consumed from the purchased power source.

O'Brien, T.

2008-01-01T23:59:59.000Z

122

The Impact of Forced Air System Blowers on Furnace Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Canadian provinces and part owner of UNIES Ltd., an engineering firm in Winnipeg, Manitoba (60 miles straight north of the North DakotaMinnesota border). He does research and...

123

Measure Guideline: High Efficiency Natural Gas Furnaces  

SciTech Connect

This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

Brand, L.; Rose, W.

2012-10-01T23:59:59.000Z

124

Segmented ceramic liner for induction furnaces  

DOE Patents (OSTI)

A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.

Gorin, A.H.; Holcombe, C.E.

1994-07-26T23:59:59.000Z

125

Building America Top Innovations 2013 Profile Â… High-Performance Furnace Blowers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

annual fuel utilization annual fuel utilization efficiency (AFUE) and seasonal energy efficiency ratio (SEER) and at real installed conditions. A testing program was undertaken at two laboratories to compare the performance of furnace blowers over a range of static pressure differences that included standard rating points and measured field test pressures. Three different combinations of blowers and residential furnaces were tested. The laboratory test results for blower power and airflow were combined with DOE2 models of building loads, models of air conditioner performance, standby power, and igniter and combustion air blower power to determine potential energy and peak demand impacts. BUILDING TECHNOLOGIES OFFICE Recognizing Top Innovations in Building Science - The U.S. Department of Energy's

126

Building America Top Innovations 2013 Profile Â… High-Performance Furnace Blowers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Fuel Utilization Annual Fuel Utilization Efficiency [AFUE] and Seasonal Energy Efficiency Ratio [SEER] and at real installed conditions. A testing program was undertaken at two laboratories to compare the performance of furnace blowers over a range of static pressure differences that included standard rating points and measured field test pressures. Three different combinations of blowers and residential furnaces were tested. The laboratory test results for blower power and airflow were combined with DOE2 models of building loads, models of air conditioner performance, standby power, and igniter, and combustion air blower power to determine potential energy and peak demand impacts. BUILDING TECHNOLOGIES OFFICE Recognizing Top Innovations in Building Science - The U.S. Department of Energy's

127

Coal combustion under conditions of blast furnace injection. Technical report, March 1, 1994--May 31, 1994  

Science Conference Proceedings (OSTI)

A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This proposal is a follow-up to one funded for the 1992-93 period. It is intended to complete the study already underway with the Armco Inc. Steel Company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals for such use. During this quarter samples of two feed coals and the IBCSP 112 (Herrin No. 6) were prepared for reactivity testing and compared to blast furnace coke, and char fines taken from an active blast furnace. As the initial part of a broad reactivity analysis program, these same samples were also analyzed on a thermogravimetric analyzer (TGA) to determine their combustion and reactivity properties.

Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States)

1994-09-01T23:59:59.000Z

128

Coal combustion under conditions of blast furnace injection. Technical report, 1 December 1992--28 February 1993  

SciTech Connect

A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This proposed study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. The Amanda furnace of Armco is the only one in North America currently using coal injection and is, therefore, the only full scale testing facility available. During this quarter complete petrographic analyses of all of the samples so far collected were completed.

Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology; Case, E.R. [Armco, Inc., Middletown, OH (United States). Research and Technology Div.

1993-05-01T23:59:59.000Z

129

Modeling Energy Consumption of Residential Furnaces and Boilers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Consumption of Residential Furnaces and Boilers in U.S. homes Title Modeling Energy Consumption of Residential Furnaces and Boilers in U.S. homes Publication Type Report...

130

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network (OSTI)

Ducts Total Electricity Consumption (kWh/year) ity ni x FrDucts Total Electricity Consumption (kWh/year) nt a ni x Fryear. Furnace blowers account for about 80% of the total furnace electricity consumption

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

131

Grate Furnace Combustion: A Submodel for the Solid Fuel Layer  

Science Conference Proceedings (OSTI)

The reduction of NOx-formation in biomass fired grate furnaces requires the development of numerical models. To represent the variety in scales and physical processes playing a role in the conversion, newly developed ... Keywords: Grate furnace, biomass, reverse combustion

H. A. Kuijk; R. J. Bastiaans; J. A. Oijen; L. P. Goey

2007-05-01T23:59:59.000Z

132

Design and fabrication of a tin-sulfide annealing furnace  

E-Print Network (OSTI)

A furnace was designed and its heat transfer properties were analyzed for use in annealing thin-film tins-ulfide solar cells. Tin sulfide has been explored as an earth abundant solar cell material, and the furnace was ...

Lewis, Raymond, S.M. (Raymond A.) Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

133

Furnace Efficiency – Energy and Throughput - Programmaster.org  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium, Furnace Efficiency – Energy and Throughput. Sponsorship, The Minerals ...

134

Arrhenius and global warming  

SciTech Connect

Although concern about global atmospheric warming has intensified in recent decades, research into the greenhouse effect actually began in the 19th century. Fourier and other scientists appreciated that without heat-absorbing gases in the atmosphere, the temperature on the ground would be considerably lower, making life as we know it impossible. In 1896, the Swedish scientist Svante Arrhenius was the first to make a quantitative link between changes in carbon dioxide concentration and climate. Publication of his paper was celebrated at a recent Swedish workshop. 13 refs., 1 fig.

Uppenbrink, J.

1996-05-24T23:59:59.000Z

135

Stay Warm in Your Apartment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stay Warm in Your Apartment Stay Warm in Your Apartment Stay Warm in Your Apartment October 19, 2009 - 11:43am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy Yes, the Ghost of Winters Future has officially knocked on our front doors again. The leaves here in Washington, D.C., have started to turn toward their colorful crescendo, that spectacular finish before their end on the chilly ground. It makes me cold just thinking about it. Like me, you're probably not opening your windows much at night anymore. I'm holding out still, surrendering a little more of my beloved fresh air each night and dreading that first night when I have to pop the heater on. Last night, I only open my window about an inch. I guess that means it's time to think about locking out the cold air once and for all this year.

136

Stay Warm in Your Apartment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stay Warm in Your Apartment Stay Warm in Your Apartment Stay Warm in Your Apartment October 19, 2009 - 11:43am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy Yes, the Ghost of Winters Future has officially knocked on our front doors again. The leaves here in Washington, D.C., have started to turn toward their colorful crescendo, that spectacular finish before their end on the chilly ground. It makes me cold just thinking about it. Like me, you're probably not opening your windows much at night anymore. I'm holding out still, surrendering a little more of my beloved fresh air each night and dreading that first night when I have to pop the heater on. Last night, I only open my window about an inch. I guess that means it's time to think about locking out the cold air once and for all this year.

137

Field Demonstration of the Thermostone III Electric Thermal Storage Furnace  

Science Conference Proceedings (OSTI)

Heat storage furnaces use low-cost, off-peak electricity to satisfy all of a customer's heating needs. This field demonstration showed that prototype heat storage furnaces maintained comfort under diverse climate conditions, usage patterns, and lengths of off-peak periods. In addition, these furnaces effectively shifted the load to off-peak hours.

1992-04-01T23:59:59.000Z

138

Vertical feed stick wood fuel burning furnace system  

DOE Patents (OSTI)

A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

Hill, Richard C. (Orono, ME)

1984-01-01T23:59:59.000Z

139

Vertical feed stick wood fuel burning furnace system  

DOE Patents (OSTI)

A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

Hill, Richard C. (Orono, ME)

1982-01-01T23:59:59.000Z

140

The information furnace: consolidated home control  

Science Conference Proceedings (OSTI)

?The Information Furnace is a basement-installed PC-type device that integrates existing consumer home-control, infotainment, security and communication technologies to transparently provide accessible and value-added services. A modern home contains ... Keywords: Automation, Consumer electronics, Home-control, Multi-modal interfaces

Diomidis D. Spinellis

2003-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm air furnace" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

A Numerical Modeling Study of Warm Offshore Flow over Cool Water  

Science Conference Proceedings (OSTI)

Numerical simulations of boundary layer evolution in offshore flow of warm air over cool water are conducted and compared with aircraft observations of mean and turbulent fields made at Duck, North Carolina. Two models are used: a two-dimensional,...

Eric D. Skyllingstad; Roger M. Samelson; Larry Mahrt; Phil Barbour

2005-02-01T23:59:59.000Z

142

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Warm Air Furnaces Commercial Warm Air Furnaces Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) has regulated the energy efficiency level of commercial warm air furnaces since 1994. Commercial warm air furnaces are self-contained oil-fired or gas-fired furnaces that are designed to supply heated air through ducts to spaces that require it. Commercial warm air furnaces are industrial equipment and have a maximum rated input capacity of 225,000 British thermal units (Btu) an hour or more. Recent Updates | Standards | Test Procedures | Waiver, Exception, and Exemption Information | Statutory Authority | Historical Information | Contact Information Recent Updates DOE published a request for information regarding energy conservation standards for commercial warm air furnaces. 78 FR 25627 (May 2, 2013). For more information, please see the rulemaking webpage.

143

Global Warming Local Warning  

E-Print Network (OSTI)

informed consumption and lifestyle decisions. "Green energy must be put at the heart of sustainable from the expected increase in freak and extreme weather conditions. My concern as Green Party MEP working to combat aviation subsidies, since air transport is the fastest growing source of greenhouse gas

Williams, Paul

144

DENSE PHASE REBURN COMBUSTION SYSTEM (DPRCS) DEMONSTRATION ON A 154 MWE TANGENTIAL FURNACE: ADDITIONAL AREA OF INTEREST-TO DEVELOP AND DEMONSTRATE AN IN-FURNACE MULTI-POLLUTANT REDUCTION TECHNOLOGY TO REDUCE NOx, SO2 & Hg  

Science Conference Proceedings (OSTI)

Semi-dense phase pneumatic delivery and injection of calcium and sodium sorbents, and microfine powdered coal, at various sidewall elevations of an online operating coal-fired power plant, was investigated for the express purpose of developing an in-furnace, economic multi-pollutant reduction methodology for NO{sub x}, SO{sub 2} & Hg. The 154 MWe tangentially-fired furnace that was selected for a full-scale demonstration, was recently retrofitted for NO{sub x} reduction with a high velocity rotating-opposed over-fire air system. The ROFA system, a Mobotec USA technology, has a proven track record of breaking up laminar flow along furnace walls, thereby enhancing the mix of all constituents of combustion. The knowledge gained from injecting sorbents and micronized coal into well mixed combustion gases with significant improvement in particulate retention time, should serve well the goals of an in-furnace multi-pollutant reduction technology; that of reducing back-end cleanup costs on a wide variety of pollutants, on a cost per ton basis, by first accomplishing significant in-furnace reductions of all pollutants.

Allen C. Wiley; Steven Castagnero; Geoff Green; Kevin Davis; David White

2004-03-01T23:59:59.000Z

145

Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls  

SciTech Connect

This is the first Semiannual Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project is to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. Our approach is to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner flow controls. The Electric Power Research Institute (EPRI) is providing co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center are active participants in this project. This program contains multiple tasks and good progress is being made on all fronts. A project kickoff meeting was held in conjunction with NETL's 2002 Sensors and Control Program Portfolio Review and Roadmapping Workshop, in Pittsburgh, PA during October 15-16, 2002. Dr. Marc Cremer, REI, and Dr. Paul Wolff, EPRI I&C, both attended and met with the project COR, Susan Maley. Following the review of REI's database of wall-fired coal units, the project team selected a front wall fired 150 MW unit with a Riley Low NOx firing system including overfire air for evaluation. In addition, a test matrix outlining approximately 25 simulations involving variations in burner secondary air flows, and coal and primary air flows was constructed. During the reporting period, twenty-two simulations have been completed, summarized, and tabulated for sensitivity analysis. Based on these results, the team is developing a suitable approach for quantifying the sensitivity coefficients associated with the parametric tests. Some of the results of the CFD simulations of the single wall fired unit were presented in a technical paper entitled, ''CFD Investigation of the Sensitivity of Furnace Operational Conditions to Burner Flow Controls,'' presented at the 28th International Technical Conference on Coal Utilization and Fuel Systems in Clearwater, FL March 9-14, 2003. In addition to the work completed on the single wall fired unit, the project team made the selection of a 580 MW opposed wall fired unit to be the subject of evaluation in this program. Work is in progress to update the baseline model of this unit so that the parametric simulations can be initiated.

Marc Cremer; Kirsi St. Marie; Dave Wang

2003-04-30T23:59:59.000Z

146

Pilot plant testing of Illinois coal for blast furnace injection. Technical report, September 1--November 30, 1994  

Science Conference Proceedings (OSTI)

The purpose of this study is to evaluate the combustion of Illinois coal in the blast furnace injection process in a new and unique pilot plant test facility. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it is the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. It is intended to complete the study already underway with the Armco and Inland steel companies and to demonstrate quantitatively the suitability of both the Herrin No. 6 and Springfield No. 5 coals for blast furnace injection. The main feature of the current work is the testing of Illinois coals at CANMET`s (Canadian Centre for Mineral and Energy Technology) pilot plant coal combustion facility. This facility simulates blowpipe-tuyere conditions in an operating blast furnace, including blast temperature (900 C), flow pattern (hot velocity 200 m/s), geometry, gas composition, coal injection velocity (34 m/s) and residence time (20 ms). The facility is fully instrumented to measure air flow rate, air temperature, temperature in the reactor, wall temperature, preheater coil temperature and flue gas analysis. During this quarter a sample of the Herrin No. 6 coal (IBCSP 112) was delivered to the CANMET facility and testing is scheduled for the week of 11 December 1994. Also at this time, all of the IBCSP samples are being evaluated for blast furnace injection using the CANMET computer model.

Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

1994-12-31T23:59:59.000Z

147

Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls  

SciTech Connect

This is the Final Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project was to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. The focus of this project was to quantify the potential impacts of ''fine level'' controls rather than that of ''coarse level'' controls (i.e. combustion tuning). Although it is well accepted that combustion tuning will generally improve efficiency and emissions of an ''out of tune'' boiler, it is not as well understood what benefits can be derived through active multiburner measurement and control systems in boiler that has coarse level controls. The approach used here was to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner air and fuel flow rates. The Electric Power Research Institute (EPRI) provided co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center have been active participants in this project. CFD simulations were completed for five coal fired boilers as planned: (1) 150 MW wall fired, (2) 500 MW opposed wall fired, (3) 600 MW T-Fired, (4) 330 MW cyclone-fired, and (5) 200 MW T-Fired Twin Furnace. In all cases, the unit selections were made in order to represent units that were descriptive of the utility industry as a whole. For each unit, between 25 and 44 furnace simulations were completed in order to evaluate impacts of burner to burner variations in: (1) coal and primary air flow rate, and (2) secondary air flow rate. The parametric matrices of cases that were completed were defined in order to accommodate sensitivity analyses of the results. The sensitivity analyses provide a strategy for quantifying the rate of change of NOx or unburned carbon in the fly ash to a rate of change in secondary air or fuel or stoichiometric ratio for individual burners or groups of burners in order to assess the value associated with individual burner flow control. In addition, the sensitivity coefficients that were produced provide a basis for quantifying the differences in sensitivities for the different boiler types. In a ranking of the sensitivity of NOx emissions to variations in secondary air flow between the burners at a fixed lower furnace stoichiometric ratio in order of least sensitive to most sensitive, the results were: (1) 600 MW T-Fired Unit; (2) 500 MW Opposed Wall-Fired Unit; (3) 150 MW Wall-Fired Unit; (4) 100 MW T-Fired Unit; and (5) 330 MW Cyclone-Fired Unit.

Marc Cremer; Dave Wang; Connie Senior; Andrew Chiodo; Steven Hardy; Paul Wolff

2005-07-01T23:59:59.000Z

148

Method for processing aluminum spent potliner in a graphite electrode arc furnace  

DOE Patents (OSTI)

A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spend aluminum pot liner is crushed, iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine, and CO.

O' Connor, William K.; Turner, Paul C.; Addison, G.W. (AJT Enterprises, Inc.)

2002-12-24T23:59:59.000Z

149

Method for processing aluminum spent potliner in a graphite electrode ARC furnace  

SciTech Connect

A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spent aluminum pot liner is crushed iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine and CO.

O' Connor, William K. (Lebanon, OR); Turner, Paul C. (Independence, OR); Addison, Gerald W. (St. Stephen, SC)

2002-12-24T23:59:59.000Z

150

WARM SPRINGS, OREGON  

DOE Green Energy (OSTI)

and, as part of its charter, has the responsibility to evaluate and develop renewable energy resources for the Confederated Tribes of Warm Springs. WSPWE recently completed a multi-year-year wind resource assessment of tribal lands, beginning with the installation of wind monitoring towers on the Mutton Mountains site in 2003, and collection of on-site wind data is ongoing. The study identified the Mutton Mountain site on the northeastern edge of the reservation as a site with sufficient wind resources to support a commercial power project estimated to generate over 226,000 MWh per year. Initial estimates indicate that the first phase of the project would be approximately 79.5 MW of installed capacity. This Phase 2 study expands and builds on the previously conducted Phase 1 Wind Resource Assessment, dated June 30, 2007. In order to fully assess the economic benefits that may accrue to the Tribes through wind energy development at Mutton Mountain, a planning-level opinion of probable cost was performed to define the costs associated with key design and construction aspects of the proposed project. This report defines the Mutton Mountain project costs and economics in sufficient detail to allow the Tribes to either build the project themselves or contract with a developer under the most favorable terms possible for the Tribes.

Jim Manion; Michael Lofting; Wil Sando; Emily Leslie; Randy Goff

2009-03-30T23:59:59.000Z

151

The Utilization and Recovery of Energy from Blast Furnaces and Converters  

E-Print Network (OSTI)

The Bischoff Blast Furnace Top Gas Process for high pressure blast furnaces is presented as an example of a modern gas treatment process in the iron and steel industry: the work potential of the high pressure top gas is utilized in a plant comprising a gas cleaning unit for dust removal and a turbine for converting the recoverable thermal energy into mechanical and electrical energy. The adjustable annular gap scrubber for separating fine dust also serves as an element for regulating the gas pressure at the blast furnace top so that pressure control by the turbine and its control gear is no longer necessary. Moreover, in the event of a turbine outage the annular gap scrubber can be used as a low noise, pressure-throttling element. The economic use of a turbine for recovering energy from top gas depends on many parameters, such as top pressure, top gas rate, clean gas temperature, local cost of electric power, etc. A profitability analysis for a specific installation shows a remarkably short payback period. The process incorporates a new concept in blast air compression. Mechanical energy from the turbine is transferred directly to the axial flow compressor so that the prior conversion of energy via the power generating cycle is dispensed with. Coupled to the turbine is the compressor motor which, while rated to cover the full power requirement, uses about 40% less electrical power from the power supply system. Finally, as an example of the future potential of this process, a new continuous steelmaking process is presented which employs a closed top converter. The gas, held under pressure during refining, is subsequently cleaned and expanded as the blast furnace process described above. This gas is cleaned without any entrainment of air to furnish a gaseous fuel of high calorific value. Since the steelmaking process is continuous, the gas is constantly available and can be fed into the distribution system without any intermediate storage.

Hegemann, K. R.; Niess, T.; Baare, R. D.

1979-01-01T23:59:59.000Z

152

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

153

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

154

Rising Sea Levels Due to Global Warming Are Unstoppable  

NLE Websites -- All DOE Office Websites (Extended Search)

Rising Sea Levels Rising Sea Levels Due to Global Warming Are Unstoppable Rising Sea Levels Due to Global Warming Are Unstoppable Mitigation can slow down but not prevent sea level rise for centuries to come August 5, 2013 Contact: Linda Vu, Lvu@lbl.gov, +1 510 495 2402 washington.jpg Because seawater absorbs heat more slowly than the atmosphere above it, our oceans won't feel the full impact of the greenhouse gases already in the air for hundreds of years. Warm water expands, raising sea levels. (Courtesy W. Washington) Select to enlarge. A reduction in greenhouse gas emissions could greatly lessen the impacts of climate change. However, the gases already added to the atmosphere ensure a certain amount of sea level rise to come, even if future emissions are reduced. A study by National Center for Atmospheric Research (NCAR)

155

Assessment of selected furnace technologies for RWMC waste  

SciTech Connect

This report provides a description and initial evaluation of five selected thermal treatment (furnace) technologies, in support of earlier thermal technologies scoping work for application to the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried wastes. The cyclone furnace, molten salt processor, microwave melter, ausmelt (fuel fired lance) furnace, and molten metal processor technologies are evaluated. A system description and brief development history are provided. The state of development of each technology is assessed, relative to treatment of RWMC buried waste.

Batdorf, J.; Gillins, R. [Science Applications International Corp., Idaho Falls, ID (United States); Anderson, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1992-03-01T23:59:59.000Z

156

Global Warming and Extreme Weather  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Warming and Extreme Weather Global Warming and Extreme Weather Speaker(s): Michael Wehner Date: November 28, 2006 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Surabi Menon Extreme weather events can have serious impacts on human and ecological systems. Changes in the magnitude and frequency of extreme weather associated with changes in the mean climate are likely the most serious consequence of human induced global warming. Understanding what the future portends is vital if society hopes to adapt to the very different world that awaits. In this talk, we will exploit simple extreme value theory to make predictions about the late 21st century climate. Current work on the relationship between global warming and the hurricane cycle will also be presented. The bottom line is that events that are considered rare today

157

Global warming continues in 1989  

SciTech Connect

Nineteen eight-nine ranks as one of the warmest years on record despite the chill of unusually cool water in the tropical Pacific. The continued robustness of the warming trend that began in the mid-1970s lends support to claims that an intensifying greenhouse effect is behind it all, although that case has not yet been made definitively. Even at the current rate of global warming it will take another 10 years or so to be confident that the greenhouse effect is with us. Although the global warming trend is consistent with an increasing contribution by the greenhouse effect, direct signs that the greenhouse effect is intensifying are still hard to come by in the temperature record. Greenhouse models agree that if that is happening, the temperature increase should be most pronounced around the Arctic. Alaska, northwestern Canada, and northern Siberia warmed sharply in the 1980s, but the region from eastern Canada through Greenland and into Scandinavia cooled markedly.

Kerr, R.A.

1990-02-02T23:59:59.000Z

158

Authropogenic Warming in North Alaska?  

Science Conference Proceedings (OSTI)

Using permafrost boreholes, Lachenbruch and Marshall recently reported evidence for a 2°–4°C warming in North Alaska occurring at some undetermined time during the last century. Popular accounts suggest their findings are evidence for ...

Patrick J. Michaels; David E. Sappington; David E. Stooksbury

1988-09-01T23:59:59.000Z

159

The Psychology of Global Warming  

Science Conference Proceedings (OSTI)

The evidence in support of global warming and the lack of significant published evidence to the contrary provides an extraordinarily strong foundation for the scientific community's call for action on greenhouse gas emissions. However, public ...

Ben R. Newell; Andrew J. Pitman

2010-08-01T23:59:59.000Z

160

BPM Motors in Residential Gas Furnaces: What are the Savings...  

NLE Websites -- All DOE Office Websites (Extended Search)

or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity...

Note: This page contains sample records for the topic "warm air furnace" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Recovering Zinc and Lead from Electric Arc Furnace Dust  

Science Conference Proceedings (OSTI)

Aug 1, 2000 ... Non-member price: 25.00. TMS Student Member price: 10.00. Product In Stock. Description Increasing amounts of electric arc furnace dust ...

162

Induction Furnace Quench & Temper of Oil Field Tubular Goods  

Science Conference Proceedings (OSTI)

Because of the unique operating features of an induction furnace, each pipe is individually heat treated, producing more uniform properties than possible with ...

163

140th Annual Meeting & Exhibition Furnace Efficiency – Energy and ...  

Science Conference Proceedings (OSTI)

140th Annual Meeting & Exhibition. February 27 to March 3, 2011. San Diego Convention Center • San Diego, California USA. Furnace Efficiency – Energy and  ...

164

Effect Of Batch Charging Equipment On Glass Furnace Efficiency  

Science Conference Proceedings (OSTI)

This paper investigates the effects of batch pattern in the melt space caused by charging equipment on the energy efficiency of the furnace focusing on the ...

165

The Limitations of CFD Modeling for Furnace Atmosphere ... - TMS  

Science Conference Proceedings (OSTI)

Feb 1, 2002 ... The Limitations of CFD Modeling for Furnace Atmosphere Troubleshooting by P.F. Stratton, N. Saxena and M. Huggahalli ...

166

Maximum Rate of Pulverized Coal Injection into Blast Furnace with ...  

Science Conference Proceedings (OSTI)

The pulverized coal consumption efficiency is determined by means of microscopic and chemical analysis. The carbon structure of coke fines in the blast furnace ...

167

Energy Efficient Operation of Secondary Aluminum Melting Furnaces  

Science Conference Proceedings (OSTI)

Jun 1, 2007 ... Energy Efficient Operation of Secondary Aluminum Melting Furnaces by P.E. King, J.J. Hatem, and B.M. Golchert ...

168

The Comparison between Vertical Shaft Furnace and Rotary Kiln for ...  

Science Conference Proceedings (OSTI)

Therefore, calcination of coke used for aluminum reduction by vertical shaft furnace is more competitive based on the existing quality of the green petroleum  ...

169

Improved Furnace Efficiency through the Use of Refractory Materials  

Science Conference Proceedings (OSTI)

... refractory users, and academic institutions, to improve energy efficiency of U.S. industry through increased furnace efficiency brought about by the employment ...

170

Furnace Efficiency – Energy and Throughput - Programmaster.org  

Science Conference Proceedings (OSTI)

Since throughput and energy efficiency are very closely tied together, this symposium looks to optimize furnace operations in both areas. Specific methods to ...

171

Economics of Residential Gas Furnaces and Water Heaters in United...  

NLE Websites -- All DOE Office Websites (Extended Search)

single-family home construction market, the choice of what gas furnace and gas water heater combination to install is primarily driven by first cost considerations. In this...

172

Biomass Boiler and Furnace Emissions and Safety Regulations in...  

Open Energy Info (EERE)

in the Northeast States Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Agency...

173

NREL’s Optical Furnace Technology Sparks Solar Industry Interest  

NREL Principal Engineer Bhushan Sopori has fired up an optical furnace he developed to efficiently fabricate solar cells. Credit: Ray David, NREL

174

Breakthrough Furnace Can Cut Solar Industry Costs (Fact Sheet)  

SciTech Connect

A game-changing Optical Cavity Furnace (OCF), developed by NREL, uses optics to heat and purify solar cells at unmatched precision, while also boosting the cells' efficiency.

Not Available

2013-08-01T23:59:59.000Z

175

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network (OSTI)

cooling operation or standby, which account for a largethe cooling season, and standby. Furnace electricity use isElectricity Use during Standby PE standby Burner Operating

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

176

Development of Reverberatory Furnace Using in Copper Scrape ...  

Science Conference Proceedings (OSTI)

... Furnace Using in Copper Scrape Smelting by Reformed Natural Gas ... Oxidation Kinetics of Fe-Cr and Fe-V liquid Alloys under Controlled Oxygen Pressures.

177

Alloys for Ethylene Production Furnaces - Energy Innovation Portal  

Ethylene production is one of the most energy intensive processes in the chemical industry, due to the decoking necessary to maintain ethylene furnace ...

178

Control of carbon balance in a silicon smelting furnace  

DOE Patents (OSTI)

The present invention is a process for the carbothermic reduction of silicon dioxide to form elemental silicon. Carbon balance of the process is assessed by measuring the amount of carbon monoxide evolved in offgas exiting the furnace. A ratio of the amount of carbon monoxide evolved and the amount of silicon dioxide added to the furnace is determined. Based on this ratio, the carbon balance of the furnace can be determined and carbon feed can be adjusted to maintain the furnace in carbon balance.

Dosaj, V.D.; Haines, C.M.; May, J.B.; Oleson, J.D.

1992-12-29T23:59:59.000Z

179

Molten metal holder furnace and casting system incorporating the molten metal holder furnace  

DOE Patents (OSTI)

A bottom heated holder furnace (12) for containing a supply of molten metal includes a storage vessel (30) having sidewalls (32) and a bottom wall (34) defining a molten metal receiving chamber (36). A furnace insulating layer (42) lines the molten metal receiving chamber (36). A thermally conductive heat exchanger block (54) is located at the bottom of the molten metal receiving chamber (36) for heating the supply of molten metal. The heat exchanger block (54) includes a bottom face (65), side faces (66), and a top face (67). The heat exchanger block (54) includes a plurality of electrical heaters (70) extending therein and projecting outward from at least one of the faces of the heat exchanger block (54), and further extending through the furnace insulating layer (42) and one of the sidewalls (32) of the storage vessel (30) for connection to a source of electrical power. A sealing layer (50) covers the bottom face (65) and side faces (66) of the heat exchanger block (54) such that the heat exchanger block (54) is substantially separated from contact with the furnace insulating layer (42).

Kinosz, Michael J. (Apollo, PA); Meyer, Thomas N. (Murrysville, PA)

2003-02-11T23:59:59.000Z

180

Post combustion trials at Dofasco's KOBM furnace  

DOE Green Energy (OSTI)

Post combustion trials were conducted at Dofasco's 300 tonne KOBM furnace as part of the AISI Direct Steelmaking Program. The purpose of the project work was to measure the post combustion ratio (PCR) and heat transfer efficiency (HTE) of the post combustion reaction in a full size steelmaking vessel. A method of calculating PCR and HTE using off gas analysis and gas temperature was developed. The PCR and HTE were determined under normal operating conditions. Trials assessed the effect of lance height, vessel volume, foaming slag and pellet additions on PCR and HTE.

Farrand, B.L.; Wood, J.E.; Goetz, F.J.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm air furnace" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Comparison of Furnace Flue Gas Temperature Monitors  

Science Conference Proceedings (OSTI)

This report summarizes the results of a temperature monitor comparison study performed at Ameren Sioux Station, in Missouri. The study compared the accuracy and ease of use of two radiation-based monitors, an Infra-View and SpectraTemp, and a newer tunable-diode laser (TDL) absorption-based device, the LTS-100. The instruments, installed in the upper furnace and allowed to run continuously for approximately 8 weeks, monitored and recorded exit gas temperatures during normal boiler operation and one brief...

2006-09-22T23:59:59.000Z

182

Tips: Air Ducts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Ducts Air Ducts Tips: Air Ducts June 24, 2013 - 7:23pm Addthis Air Ducts: Out of Sight, Out of Mind. The unsealed ducts in your attic and crawlspaces lose air, and uninsulated ducts lose heat -- wasting energy and money. Air Ducts: Out of Sight, Out of Mind. The unsealed ducts in your attic and crawlspaces lose air, and uninsulated ducts lose heat -- wasting energy and money. Your air ducts are one of the most important systems in your home, and if the ducts are poorly sealed or insulated they are likely contributing to higher energy bills. Your home's duct system is a branching network of tubes in the walls, floors, and ceilings; it carries the air from your home's furnace and central air conditioner to each room. Ducts are made of sheet metal, fiberglass, or other materials.

183

Improved Heat Transfer and Performance of High Intensity Combustion Systems for Reformer Furnace Applications  

E-Print Network (OSTI)

Developments over the past fifteen years have evolved new short flame, high intensity (1,000,000 BTU/HR/ft3 ) combustion systems for industrial uses. Such systems produce a more uniform and higher heat flux than conventional low intensity systems and should enable substantial capital cost savings in new furnace applications. Recent performance improvements established from tests of high intensity combustion systems are described along with advances made in the analytical prediction of design performance. High intensity combustion systems can operate at zero excess air conditions without generating undesirable constituents in the exhaust. A more uniform gas temperature and gas emissivity renders modeling and design of the furnace radiant heat transfer section more realistic. 'Over-design' to allow for the less determinate conditions typical of low intensity, turbulent diffusion oil flame systems should be avoidable. A model has been set up and results generated which indicate the potentialities of the above premise. The application of vortex stabilized high intensity burners for reformer furnaces in the petrochemical industry is then reviewed and emphasized.

Williams, F. D. M.; Kondratas, H. M.

1983-01-01T23:59:59.000Z

184

Thermal Treatment of Solid Wastes Using the Electric Arc Furnace  

Science Conference Proceedings (OSTI)

A thermal waste treatment facility has been developed at the Albany Research Center (ARC) over the past seven years to process a wide range of heterogeneous mixed wastes, on a scale of 227 to 907 kg/h (500 to 2,000 lb/h). The current system includes a continuous feed system, a 3-phase AC, 0.8 MW graphite electrode arc furnace, and a dedicated air pollution control system (APCS) which includes a close-coupled thermal oxidizer, spray cooler, baghouse, and wet scrubber. The versatility of the complete system has been demonstrated during 5 continuous melting campaigns, ranging from 11 to 25 mt (12 to 28 st) of treated wastes per campaign, which were conducted on waste materials such as (a) municipal incinerator ash, (b) simulated low-level radioactive, high combustible-bearing mixed wastes, (c) simulated low-level radioactive liquid tank wastes, (d) heavy metal contaminated soils, and (e) organic-contaminated dredging spoils. In all cases, the glass or slag products readily passed the U.S. Environmental Protection Agency (EPA) Toxicity Characteristic Leachability Program (TCLP) test. Additional studies are currently under way on electric utility wastes, steel and aluminum industry wastes, as well as zinc smelter residues. Thermal treatment of these solid waste streams is intended to produce a metallic product along with nonhazardous glass or slag products.

O'Connor, W.K.; Turner, P.C.

1999-09-01T23:59:59.000Z

185

Residential Forced Air System Cabinet Leakage and Blower Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Forced Air System Cabinet Leakage and Blower Performance Residential Forced Air System Cabinet Leakage and Blower Performance Title Residential Forced Air System Cabinet Leakage and Blower Performance Publication Type Report LBNL Report Number LBNL-3383E Year of Publication 2010 Authors Walker, Iain S., Darryl J. Dickerhoff, and William W. Delp Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords air flow measurement, air leakage, blower power measurement, blowers, energy performance of buildings group, forced air systems, furnaces, indoor environment department, other, public interest energy research (pier) program, residential hvac Abstract This project evaluated the air leakage and electric power consumption of Residential HVAC components, with a particular focus on air leakage of furnace cabinets. Laboratory testing of HVAC components indicated that air leakage can be significant and highly variable from unit to unit - indicating the need for a standard test method and specifying maximum allowable air leakage in California State energy codes. To further this effort, this project provided technical assistance for the development of a national standard for Residential HVAC equipment air leakage. This standard is being developed by ASHRAE and is called "ASHRAE Standard 193P - Method of test for Determining the Air Leakage Rate of HVAC Equipment". The final part of this project evaluated techniques for measurement of furnace blower power consumption. A draft test procedure for power consumption was developed in collaboration with the Canadian General Standards Board: CSA 823 "Performance Standard for air handlers in residential space conditioning systems".

186

Heat pipes and use of heat pipes in furnace exhaust  

DOE Patents (OSTI)

An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

Polcyn, Adam D. (Pittsburgh, PA)

2010-12-28T23:59:59.000Z

187

Application of Regenerative Combustion Technology on Reheating Furnace in PISCO  

Science Conference Proceedings (OSTI)

The key features of the regenerative combustion technology were introduced and its application in the reheating furnace of Rail & Beam plant of PISCO£¨Panzhihua Iron & Steel Co.£©was discussed£®Comparedwith the traditional combustion technology£¬the ... Keywords: Regenerative Style, Combustion Technology, Reheating Furnace, Energy Conservation

Chen Yong; Pan Hong; Xue Nianfu

2011-02-01T23:59:59.000Z

188

Furnace Standards Enforcement Policy Statement | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Furnace Standards Enforcement Policy Statement Furnace Standards Enforcement Policy Statement Furnace Standards Enforcement Policy Statement On January 11, 2013, the Department of Justice, on behalf of DOE, and the American Public Gas Association (APGA) filed a joint motion asking the court to enter an agreement to settle APGA's challenge to DOE's June 27, 2011 Direct Final Rule. The settlement agreement would, among other things, vacate the energy conservation standards applicable to non-weatherized gas furnaces established in the DFR. In an exercise of its enforcement discretion, DOE will, during the pendency of the litigation, act in a manner consistent with the terms of the settlement agreement with regard to the enforcement of the standards. Furnace Standards Enforcement Policy Statement - April 5, 2013

189

ENERGY STAR Qualified Gas Furnaces | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Furnaces Gas Furnaces Consumer Data Apps Challenges Resources About Blogs Let's Talk Feedback Consumer You are here Data.gov » Communities » Consumer » Data ENERGY STAR Qualified Gas Furnaces Dataset Summary Description Gas Furnaces that have earned the ENERGY STAR are more efficient than standard models. ENERGY STAR is the trusted symbol for energy efficiency helping consumers save money and protect the environment through energy-efficient products and practices. More information on ENERGY STAR is available at www.energystar.gov. Tags {Furnaces,"Energy Star",products,"energy efficiency",efficient,"greenhouse gas emissions",climate,utility,utilities,household,savings,labels,partners,certification} Dataset Ratings Overall 0 No votes yet Data Utility

190

Method of operating a centrifugal plasma arc furnace  

DOE Patents (OSTI)

A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe{sub 3}O{sub 4}. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe{sub 2}O{sub 3}. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs.

Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

1998-03-24T23:59:59.000Z

191

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

1 FURNACE AND BOILER TECHNOLOGY19 Furnace and Boiler Lifetimes Used in the LCC Analysis (PBP RESULTS FOR GAS BOILERS USING ALTERNATIVE INSTALLATION

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

192

It's Not Too Late to Change Global Warming's Course - NERSC Science News  

NLE Websites -- All DOE Office Websites (Extended Search)

It's Not Too Late to It's Not Too Late to Change Global Warming's Course It's Not Too Late to Change Global Warming's Course Simulations Show That Cuts in Greenhouse Gas Emissions Would Save Arctic Ice, Reduce Sea Level Rise October 27, 2009 | Tags: Climate Research mitigation1.jpg Computer simulations show the extent that average air temperatures at Earth's surface could warm by 2080-2099 compared to 1980-1999, if (top) greenhouse gases emissions continue to climb at current rates, or if (middle) society cuts emissions by 70 percent. In the latter case, temperatures rise by less than 2°C (3.6°F) across nearly all of Earth's populated areas (the bottom panel shows warming averted). However, unchecked emissions could lead to warming of 3°C (5.4°F) or more across parts of Europe, Asia, North America, and Australia. (Image: Geophysical

193

Global Warming: Physics and Facts  

Science Conference Proceedings (OSTI)

This report contains papers on: A tutorial on global atmospheric energetics and the greenhouse effect; global climate models: what and how; comparison of general circulation models; climate and the earth`s radiation budget; temperature and sea level change; short-term climate variability and predictions; the great ocean conveyor; trace gases in the atmosphere: temporal and spatial trends; the geochemical carbon cycle and the uptake of fossil fuel CO{sub 2}; forestry and global warming; the physical and policy linkages; policy implications of greenhouse warming; options for lowering US carbon dioxide emissions; options for reducing carbon dioxide emissions; and science and diplomacy: a new partnership to protect the environment.

Levi, B.G. [Physics Today, New York, NY (United States); Hafemeister, D. [Committee on Foreign Relations (U.S. Senate), Washington, DC (United States); Scribner, R. [Georgetown Univ., Washington, DC (United States)] [eds.

1992-05-01T23:59:59.000Z

194

Global Warming: Physics and Facts  

Science Conference Proceedings (OSTI)

This report contains papers on: A tutorial on global atmospheric energetics and the greenhouse effect; global climate models: what and how; comparison of general circulation models; climate and the earth's radiation budget; temperature and sea level change; short-term climate variability and predictions; the great ocean conveyor; trace gases in the atmosphere: temporal and spatial trends; the geochemical carbon cycle and the uptake of fossil fuel CO{sub 2}; forestry and global warming; the physical and policy linkages; policy implications of greenhouse warming; options for lowering US carbon dioxide emissions; options for reducing carbon dioxide emissions; and science and diplomacy: a new partnership to protect the environment.

Levi, B.G. (Physics Today, New York, NY (United States)); Hafemeister, D. (Committee on Foreign Relations (U.S. Senate), Washington, DC (United States)); Scribner, R. (Georgetown Univ., Washington, DC (United States)) (eds.)

1992-01-01T23:59:59.000Z

195

Air-Conditioning Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air-Conditioning Basics Air-Conditioning Basics Air-Conditioning Basics August 16, 2013 - 1:59pm Addthis Air conditioning is one of the most common ways to cool homes and buildings. How Air Conditioners Work Air conditioners employ the same operating principles and basic components as refrigerators. Refrigerators use energy (usually electricity) to transfer heat from the cool interior of the refrigerator to the relatively warm surroundings; likewise, an air conditioner uses energy to transfer heat from the interior space to the relatively warm outside environment. An air conditioner uses a cold indoor coil called the evaporator. The condenser, a hot outdoor coil, releases the collected heat outside. The evaporator and condenser coils are serpentine tubing surrounded by aluminum fins. This tubing is usually made of copper.

196

Coal combustion under conditions of blast furnace injection. [Quarterly] technical report, 1 December 1993--28 February 1994  

SciTech Connect

A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. Steel Company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals for such use. During this quarter a sample of the feed coal that is being used for injection into the No. 7 Blast Furnace of Inland Steel has been analyzed petrographically and compared to both the Herrin No. 6 coal and Armco feed coal. Additional characterization is underway and an advanced program of pyrolysis and reactivity testing has been initiated.

Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

1994-06-01T23:59:59.000Z

197

Residential Forced Air System Cabinet Leakage and Blower Performance  

SciTech Connect

This project evaluated the air leakage and electric power consumption of Residential HVAC components, with a particular focus on air leakage of furnace cabinets. Laboratory testing of HVAC components indicated that air leakage can be significant and highly variable from unit to unit ? indicating the need for a standard test method and specifying maximum allowable air leakage in California State energy codes. To further this effort, this project provided technical assistance for the development of a national standard for Residential HVAC equipment air leakage. This standard is being developed by ASHRAE and is called"ASHRAE Standard 193P - Method of test for Determining the Air Leakage Rate of HVAC Equipment". The final part of this project evaluated techniques for measurement of furnace blower power consumption. A draft test procedure for power consumption was developed in collaboration with the Canadian General Standards Board: CSA 823"Performance Standard for air handlers in residential space conditioning systems".

Walker, Iain S.; Dickerhoff, Darryl J.; Delp, William W.

2010-03-01T23:59:59.000Z

198

Policy implications of greenhouse warming  

SciTech Connect

Contents: background; the greenhouse gases and their effects; policy framework; adaptation; mitigation; international considerations; findings and conclusions; recommendations; questions and answers about greenhouse warming; background information on synthesis panel members and professional staff; and membership lists for effects, mitigation, and adaptation panels.

1991-01-01T23:59:59.000Z

199

Air Conditioning | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conditioning Conditioning Air Conditioning July 1, 2012 - 6:28pm Addthis Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard How does it work? An air conditioner uses energy -- usually electricity -- to transfer heat from the interior of your home to the relatively warm outside environment. Two-thirds of all homes in the United States have air conditioners. Air conditioners use about 5% of all the electricity produced in the United States, at an annual cost of more than $11 billion to homeowners. As a

200

Why Are There Tropical Warm Pools?  

Science Conference Proceedings (OSTI)

Tropical warm pools appear as the primary mode in the distribution of tropical sea surface temperature (SST). Most previous studies have focused on the role of atmospheric processes in homogenizing temperatures in the warm pool and establishing ...

Amy C. Clement; Richard Seager; Raghu Murtugudde

2005-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm air furnace" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Strategic evaluation of investments in coal-dust fuel for blast furnaces  

SciTech Connect

The paper discusses the evaluation of venture investment projects in pulverized coal injection into blast furnaces.

S.V. Bogdanov; S.M. Kornilaev [State University of Management, Moscow (Russian Federation)

2009-07-01T23:59:59.000Z

202

Prediction of domestic warm-water consumption  

Science Conference Proceedings (OSTI)

The paper presents methodologies able to predict dynamic warm water consumption in district heating systems, using time-series analysis. A simulation model according to the day of a week has been chosen for modeling the domestic warm water consumption ... Keywords: autoregressive model, district heating systems, domestic warm water, prediction, simulation, time series models

Elena Serban; Daniela Popescu

2008-12-01T23:59:59.000Z

203

DOE Increases Energy Efficiency Standards for Residential Furnaces &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Increases Energy Efficiency Standards for Residential Furnaces DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers November 19, 2007 - 4:31pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has increased the energy efficiency standards for residential furnaces and boilers, underscoring the Department's commitment to meet its aggressive, five-year appliance standard rulemaking schedule, as established in its January 31, 2006, Report to Congress. The Department estimates that these amended standards, which become effective in 2015, will save the equivalent of the total amount of energy consumed by 2.5 million American households in one year, or approximately 0.25 quadrillion (10x15) British thermal

204

Covered Product Category: Residential Gas Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Furnaces Gas Furnaces Covered Product Category: Residential Gas Furnaces October 7, 2013 - 10:39am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including residential gas furnaces, which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases For the most up-to-date efficiency levels required by ENERGY STAR, look for

205

Oil-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. What does this mean for me? If you have an oil furnace or boiler, you can now burn oil blended

206

Oil-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. What does this mean for me? If you have an oil furnace or boiler, you can now burn oil blended

207

DOE Increases Energy Efficiency Standards for Residential Furnaces &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Increases Energy Efficiency Standards for Residential Furnaces DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers November 19, 2007 - 4:31pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has increased the energy efficiency standards for residential furnaces and boilers, underscoring the Department's commitment to meet its aggressive, five-year appliance standard rulemaking schedule, as established in its January 31, 2006, Report to Congress. The Department estimates that these amended standards, which become effective in 2015, will save the equivalent of the total amount of energy consumed by 2.5 million American households in one year, or approximately 0.25 quadrillion (10x15) British thermal

208

EOI, Electric Tube Conversion Furnaces | Y-12 National Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tube ... EOI, Electric Tube Conversion Furnaces B&W Y-12, LLC (hereafter known as "Y-12"; for additional company information, see the website), acting under its Prime Contract No....

209

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network (OSTI)

DOE and 2006 ASHRAE Test Procedures Furnace Controls Household Heating Requirementsprocedure (DOE 2004; Habart 2005) Heating Requirements areIn the DOE test procedure, the heating requirements of the

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

210

System for generating power with top pressure of blast furnaces  

SciTech Connect

A system for generating power with the top pressure of a plurality of blast furnaces by leading a gas from the top of the furnaces into turbines, corresponding in number to the furnaces, to convert the pressure of the gas into rotational energy and generate power by a generator coupled to the turbines. The turbines connected to the furnaces by main gas channels individually are aligned with their rotor shafts connected together into a single shaft which is connected to the generator. Preferably each pair of the adjacent turbines are arranged with their intake ends positioned in the center of the arrangement so that the gas flows toward the exhaust ends at both sides, or with their intake ends positioned at both sides to cause the gas to flow toward the exhaust ends in the center. The single shaft connecting the pair of turbines together has no intermediate bearing between these turbines.

Kihara, H.; Mizota, T.; Ohmachi, M.; Takao, K.; Toki, K.; Tomita, Y.

1983-06-14T23:59:59.000Z

211

Gas-Fired Boilers and Furnaces | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of...

212

Furnace characterization for horizontal shipping container thermal testing  

SciTech Connect

In order to perform regulatory thermal tests required by 10 CFR 71.73(c)(3) on the newly designed Horizontal Shipping Container (HSC), it was necessary to find a company involved in the business of heat treating who was willing to allow their furnace to be used for these tests. Of the companies responding to a request for interest, Lindberg Heat Treating Company`s Solon, Ohio, facility was found to be the best available vendor for this activity. Their furnace was instrumented and characterized such that these tests could be performed in a manner that would conform to the specifications contained in 10 CFR 71. It was found that Lindberg`s furnace was usable for this task, and recommendations concerning the use of this furnace for the above stated purpose are made herein.

Feldman, M.R.

1994-05-01T23:59:59.000Z

213

Effect of Batch Initial Velocity on the Glass Furnace Efficiency  

Science Conference Proceedings (OSTI)

There is a direct coloration between the batch distribution techniques and the furnace ... A Review: Solar Thermal Reactors for Materials Production ... Cellulose Acetate Membranes for CO2 Separation from Water-gas-shift Reaction Products.

214

Optical processing furnace with quartz muffle and diffuser ...  

An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz ...

215

Development of the Household Sample for Furnace and Boiler Life...  

NLE Websites -- All DOE Office Websites (Extended Search)

households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler...

216

Columbia Gas of Massachusetts - Residential Energy Efficiency...  

Open Energy Info (EERE)

Heater: 400 Storage Water Heaters: 100 Thermostat: 25 After Market Boiler Reset: 225 Heat Recovery Ventilator: 500 Equipment Requirements Warm Air Furnaces: 95% or greater...

217

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Warm Air Furnaces Standard Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) is considering amending energy...

218

Heard Island global warming test  

SciTech Connect

In late January and early February 1991, an international team will conduct an experiment to test the possibility of measuring global warming in the world's oceans. The goal is to provide early indications of warming caused by the so-called greenhouse effect, the atmospheric buildup of CO{sub 2} and other gases. The method is based on the principle that acoustic energy travels through water between a source and receiver at a speed determined primarily by the water temperature. Thus acoustic travel time can be used as a temperature gauge. The idea is an outgrowth of suggestions made by Professor Walter Munk of the Scripps Institution of Oceanography and Professor Carl Wunsch of MIT in the early 1980s to use long-range underwater acoustic transmissions to measure changes in the heat content of the oceans.

Spindel, R.C. (Univ. of Washington, Seattle (USA))

1991-02-01T23:59:59.000Z

219

Hydrological consequences of global warming  

Science Conference Proceedings (OSTI)

The 2007 Intergovernmental Panel for Climate Change indicates there is strong evidence that the atmospheric concentration of carbon dioxide far exceeds the natural range over the last 650,000 years, and this recent warming of the climate system is unequivocal, resulting in more frequent extreme precipitation events, earlier snowmelt runoff, increased winter flood likelihoods, increased and widespread melting of snow and ice, longer and more widespread droughts, and rising sea level. The effects of recent warming has been well documented and climate model projections indicate a range of hydrological impacts with likely to very likely probabilities (67 to 99 percent) of occurring with significant to severe consequences in response to a warmer lower atmosphere with an accelerating hydrologic cycle.

Miller, Norman L.

2009-06-01T23:59:59.000Z

220

NERSC Calculations Provide Independent Confirmation of Global Land Warming  

NLE Websites -- All DOE Office Websites (Extended Search)

Calculations Calculations Provide Independent Confirmation of Global Land Warming Since 1901 NERSC Calculations Provide Independent Confirmation of Global Land Warming Since 1901 September 9, 2013 | Tags: Climate Research, Hopper Contact: Jon Bashor, jbashor@lbl.gov, 510-486-5849 campo.jpg These maps show the changes in air temperatures over land as measured using thermometers (left side) and as calculated by the 20th Century Reanalysis project (left side). While more than 80 percent of the observed variation is captured by the computer model, the results show interesting differences in some regions such as the midwestern United States, Argentina and eastern Brazil. The differences may be due previously unrecognized issues with the pressure observations, variations in land use and land cover over time,

Note: This page contains sample records for the topic "warm air furnace" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Warm or Steaming Ground | Open Energy Information  

Open Energy Info (EERE)

Warm or Steaming Ground Warm or Steaming Ground Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Warm or Steaming Ground Dictionary.png Warm or Steaming Ground: An area where geothermal heat is conducted to the earth's surface, warming the ground and sometimes causing steam to form when water is present. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Steam rising from the ground at Eldvorp, a 10 km row of craters, in Southwestern Iceland. http://www.visiticeland.com/SearchResults/Attraction/eldvorp Warm or steaming ground is often an indicator of a geothermal system beneath the surface. In some cases a geothermal system may not show any

222

Global Warming and Greenhouse Gases  

Science Conference Proceedings (OSTI)

... NIST is producing new suites of primary gas standards for carbon dioxide, methane, carbon monoxide, and nitrous oxide in air at atmospheric levels ...

2013-09-20T23:59:59.000Z

223

NREL: News Feature - NREL Solar Technology Will Warm Air at ...  

NLE Websites -- All DOE Office Websites (Extended Search)

coved in perforated metal, with two men standing next to it. Enlarge image NREL's Craig Christensen and Chuck Kutscher stand next to a wall at the RSF that uses their...

224

Chimneys: Warm and Cozy or Easy Exit for Your Heat? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chimneys: Warm and Cozy or Easy Exit for Your Heat? Chimneys: Warm and Cozy or Easy Exit for Your Heat? Chimneys: Warm and Cozy or Easy Exit for Your Heat? January 12, 2010 - 10:21am Addthis Drew Bittner Web Manager, Office of Energy Efficiency and Renewable Energy Both of my childhood homes featured fireplaces. If you've had one, you know how terrific they can be-great places to bask on cold winter nights, an easy opportunity to toast marshmallows, picturesque, undeniably a pleasure in the house that has one. However, fireplaces have chimneys...and chimneys can be problems when it comes to home energy efficiency. For one thing, many people do not take care to close their chimney flue when there is no fire. This means warm air has an easy exit from your home; you have a big hole in your roof, after all, and warm air will take advantage of that. Ditto cold air in the

225

Global warming and biological diversity  

SciTech Connect

This book is based on presentations given at the World Wildlife Fund's Conference on Consequences of the Greenhouse Effect for Biological Diverisity in 1988, and includes updated literature citations. The general topics covered in the book include the following: overview; summary of past responses of plants to climatic change; general ecological and physiological responses; ecosystems in 4 specific regions (arctic marine, Alaskan North Slope, NW US forests, and Mediterranean); global warming's implications for conservation. Ideas and data from many ecosystems and information about the relationships between biodiversity and climatic change are brought together with a balance of factual information and defensible scientific prognostication.

Peters, R.L.; Lovejoy, T.E. (eds.)

1992-01-01T23:59:59.000Z

226

Do Changes in the Midlatitude Circulation Have Any Impact on the Arctic Surface Air Temperature Trend?  

Science Conference Proceedings (OSTI)

The warming of the near-surface air in the Arctic region has been larger than the global mean surface warming. There is general agreement that the Arctic amplification of the surface air temperature (SAT) trend to a considerable extent is due to ...

R. G. Graversen

2006-10-01T23:59:59.000Z

227

Warm-to-Cold Water Conversion in the Northern North Atlantic Ocean  

Science Conference Proceedings (OSTI)

A box Model of warm-to-cold-water conversion in the northern North Atlantic is developed and used to estimate conversion rates, given water mass temperatures, conversion paths and rate of air-sea heat exchange. The northern North Atlantic is ...

M. S. McCartney; L. D. Talley

1984-05-01T23:59:59.000Z

228

Modeling the subsurface thermal impact of Arctic thaw lakes in a warming climate  

Science Conference Proceedings (OSTI)

Warming air temperatures in the Arctic are modifying the rates of thermokarst processes along Alaska's Arctic Coastal Plain. The Arctic Coastal Plain is dominated by thaw lakes. These kilometer-scale lakes are the most visible surface features in the ... Keywords: MATLAB, Numerical model, Permafrost, Thaw lakes, Thermal model

N. Matell; R. S. Anderson; I. Overeem; C. Wobus; F. E. Urban; G. D. Clow

2013-04-01T23:59:59.000Z

229

Integrated municipal solid waste treatment using a grate furnace incinerator: The Indaver case  

SciTech Connect

An integrated installation for treatment of municipal solid waste and comparable waste from industrial origin is described. It consists of three grate furnace lines with flue gas treatment by half-wet scrubbing followed by wet scrubbing, and an installation for wet treatment of bottom ash. It is demonstrated that this integrated installation combines high recovery of energy (40.8% net) with high materials recovery. The following fractions were obtained after wet treatment of the bottom ash: ferrous metals, non-ferrous metals, three granulate fractions with different particle sizes, and sludge. The ferrous and non-ferrous metal fractions can both be recycled as high quality raw materials; the two larger particle size particle fractions can be applied as secondary raw materials in building applications; the sand fraction can be used for applications on a landfill; and the sludge is landfilled. For all components of interest, emissions to air are below the limit values. The integrated grate furnace installation is characterised by zero wastewater discharge and high occupational safety. Moreover, with the considered installation, major pollutants, such as PCDD/PCDF, Hg and iodine-136 are to a large extent removed from the environment and concentrated in a small residual waste stream (flue gas cleaning residue), which can be landfilled after stabilisation.

Vandecasteele, C. [Department of Chemical Engineering, Katholieke Universiteit Leuven, De Croylaan 46, 3001 Leuven (Belgium)], E-mail: carlo.vandecasteele@cit.kuleuven.be; Wauters, G. [Indaver, Dijle 17a, 2800 Mechelen (Belgium); Arickx, S. [Department of Chemical Engineering, Katholieke Universiteit Leuven, De Croylaan 46, 3001 Leuven (Belgium); Jaspers, M. [Indaver, Dijle 17a, 2800 Mechelen (Belgium); Van Gerven, T. [Department of Chemical Engineering, Katholieke Universiteit Leuven, De Croylaan 46, 3001 Leuven (Belgium)

2007-07-01T23:59:59.000Z

230

Ultrafast Spectroscopy of Warm Dense Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

of planet formation and structures as well as the evolution of an imploding inertial fusion capsule depends on our understanding of matter in the complex warm dense matter...

231

Hotel energy use contributes to global warming.  

E-Print Network (OSTI)

??Before learning about the consequences of global warming and the efforts hotels are making to reverse the effects, it is important to get a better… (more)

Faja, Christine

2007-01-01T23:59:59.000Z

232

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network (OSTI)

Refrigerating and Air-Conditioning Engineers, Inc. [Lennox]Refrigerating and Air-Conditioning Engineers, Inc. Pigg,Refrigerating and Air-Conditioning Engineers, Inc. Stanely,

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

233

Diagnostics of Climate Model Biases in Summer Temperature and Warm-Season Insolation for the Simulation of Regional Paddy Rice Yield in Japan  

Science Conference Proceedings (OSTI)

This study quantifies the ranges of climate model biases in surface air temperature for July and August (summer temperature) and daily total insolation for May–October (warm-season insolation) that can give simulated regional paddy rice yields ...

Toshichika Iizumi; Motoki Nishimori; Masayuki Yokozawa

2010-04-01T23:59:59.000Z

234

Application of Argonne's Glass Furnace Model to longhorn glass corporation oxy-fuel furnace for the production of amber glass.  

SciTech Connect

The objective of this project is to apply the Argonne National Laboratory's Glass Furnace Model (GFM) to the Longhorn oxy-fuel furnace to improve energy efficiency and to investigate the transport of gases released from the batch/melt into the exhaust. The model will make preliminary estimates of the local concentrations of water, carbon dioxide, elemental oxygen, and other subspecies in the entire combustion space as well as the concentration of these species in the furnace exhaust gas. This information, along with the computed temperature distribution in the combustion space may give indications on possible locations of crown corrosion. An investigation into the optimization of the furnace will be performed by varying several key parameters such as the burner firing pattern, exhaust number/size, and the boost usage (amount and distribution). Results from these parametric studies will be analyzed to determine more efficient methods of operating the furnace that reduce crown corrosion. Finally, computed results from the GFM will be qualitatively correlated to measured values, thus augmenting the validation of the GFM.

Golchert, B.; Shell, J.; Jones, S.; Energy Systems; Shell Glass Consulting; Anheuser-Busch Packaging Group

2006-09-06T23:59:59.000Z

235

Heat Waves, Global Warming, and Mitigation  

E-Print Network (OSTI)

reluctant to turn on their air conditioning. 91 83. NationalB. The Importance of Air Conditioning .. 1. Coolinga. Air Conditioning Required . b. ' Funding

Carlson, Ann E.

2008-01-01T23:59:59.000Z

236

Blast furnaces make way for new steel technology  

Science Conference Proceedings (OSTI)

Increasingly stringent environmental regulations, aging production units, and a competitive market are forcing iron and steelmakers to improve the environmental performance and cost efficiencies of their processes. The traditional integrated steel unit isn`t obsolete -- yet. Blast furnaces will be around for at least another 15 years. However, traditional technology is in for some changes, and stepped up rivalry from electric arc furnace minimills and ironmaking processes that use gas or coal. The paper discusses direct iron making processes, the DRI-minimill connection, the iron carbide process, and reclaiming iron from waste.

Ondrey, G.; Parkinson, G.; Moore, S.

1995-03-01T23:59:59.000Z

237

Optical processing furnace with quartz muffle and diffuser plate  

SciTech Connect

An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the door or wall of the muffle is also provided for controlling the source of optical energy. The quartz for the diffuser plate is surface etched (to give the quartz diffusive qualities) in the furnace during a high intensity burn-in process.

Sopori, Bhushan L. (Denver, CO)

1995-01-01T23:59:59.000Z

238

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program Eligibility Multi-Family Residential...

239

NREL's Optical Cavity Furnace Brings Together a Myriad of Advances for Processing Solar Cells (Fact Sheet)  

DOE Green Energy (OSTI)

Fact sheet on 2011 R&D 100 Award winner, the Optical Cavity Furnace. The innovative furnace uses light and unique light-induced effects to make higher-efficiency solar cells at lower cost.

Not Available

2011-08-01T23:59:59.000Z

240

Greenhouse warming and the tropical water budget  

SciTech Connect

The present work takes issue with some of the theses of Lindzen's (1990) work on global warming, arguing in particular that Lindzen's work is hampered by the use of oversimplified models. Lindzen then presents a detailed reply to these arguments, emphasizing the fundamental importance of the upper tropospheric water-vapor budget to the question of global warming. 26 refs.

Betts, A.K.

1990-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm air furnace" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The Sinking of Warm-Core Rings  

Science Conference Proceedings (OSTI)

Intense cooling of a warm-core ring or warming of the fluids surrounding a ring can increase the density of that ring relative to the surrounding fluids. This increase in density can cause the ring to sink under the surrounding fluids. A simple ...

Rick Chapman; Doron Nof

1988-04-01T23:59:59.000Z

242

Energy and global warming impacts of CFC alternative technologies  

Science Conference Proceedings (OSTI)

Chlorofluorocarbons (CFCs) are used in a number of applications and volumes of CFCs used grew at a tremendous pace during the 1960s and 1970s. However, in the mid-1980s, it was confirmed that these extremely useful chemicals contribute to the destruction of stratospheric ozone. These chemicals are being phased out of use rapidly to protect the ozone layer and it is very important that the replacements for CFCs do not result in a net increase in global warming by introducing less efficient processes that lead to higher energy use and increased carbon dioxide emissions. A study was conducted to identify those alternative chemicals and technologies that could replace CFCs in energy related applications before the year 2000, and to assess the total potential impact of these alternatives on global warming. The analysis for this project included an estimate of the direct effects from the release of blowing agents, refrigerants, and solvents into the atmosphere and the indirect effects in the form of carbon dioxide emissions resulting from energy use for commercial and residential heating and cooling, household and commercial refrigeration, building and automobile air-conditioning, and general metal and electronics solvent cleaning. The discussion in this paper focuses on those aspects of the study relevant to refrigeration and air-conditioning. In general the use of hydrofluorocarbon (HFC) and hydrochlorofluorocarbon (HCFC) alternatives for CFCs lead to large and sometimes dramatic reductions in total equivalent warming impact (TEWI), lifetime equivalent CO{sub 2} emissions. Most of the reductions result from decreased direct effects without significant changes in energy use.

Fischer, S.K.; Fairchild, P.D.; Hughes, P.J.

1992-07-01T23:59:59.000Z

243

Energy and global warming impacts of CFC alternative technologies  

Science Conference Proceedings (OSTI)

Chlorofluorocarbons (CFCs) are used in a number of applications and volumes of CFCs used grew at a tremendous pace during the 1960s and 1970s. However, in the mid-1980s, it was confirmed that these extremely useful chemicals contribute to the destruction of stratospheric ozone. These chemicals are being phased out of use rapidly to protect the ozone layer and it is very important that the replacements for CFCs do not result in a net increase in global warming by introducing less efficient processes that lead to higher energy use and increased carbon dioxide emissions. A study was conducted to identify those alternative chemicals and technologies that could replace CFCs in energy related applications before the year 2000, and to assess the total potential impact of these alternatives on global warming. The analysis for this project included an estimate of the direct effects from the release of blowing agents, refrigerants, and solvents into the atmosphere and the indirect effects in the form of carbon dioxide emissions resulting from energy use for commercial and residential heating and cooling, household and commercial refrigeration, building and automobile air-conditioning, and general metal and electronics solvent cleaning. The discussion in this paper focuses on those aspects of the study relevant to refrigeration and air-conditioning. In general the use of hydrofluorocarbon (HFC) and hydrochlorofluorocarbon (HCFC) alternatives for CFCs lead to large and sometimes dramatic reductions in total equivalent warming impact (TEWI), lifetime equivalent CO{sub 2} emissions. Most of the reductions result from decreased direct effects without significant changes in energy use.

Fischer, S.K.; Fairchild, P.D.; Hughes, P.J.

1992-01-01T23:59:59.000Z

244

The data furnace: heating up with cloud computing  

Science Conference Proceedings (OSTI)

In this paper, we argue that servers can be sent to homes and office buildings and used as a primary heat source. We call this approach the Data Furnace or DF. Data Furances have three advantages over traditional data centers: 1) a smaller carbon footprint ...

Jie Liu; Michel Goraczko; Sean James; Christian Belady; Jiakang Lu; Kamin Whitehouse

2011-06-01T23:59:59.000Z

245

Electrode immersion depth determination and control in electroslag remelting furnace  

DOE Patents (OSTI)

An apparatus and method for controlling an electroslag remelting furnace comprising adjusting electrode drive speed by an amount proportional to a difference between a metric of electrode immersion and a set point, monitoring impedance or voltage, and calculating the metric of electrode immersion depth based upon a predetermined characterization of electrode immersion depth as a function of impedance or voltage.

Melgaard, David K. (Albuquerque, NM); Beaman, Joseph J. (Austin, TX); Shelmidine, Gregory J. (Tijeras, NM)

2007-02-20T23:59:59.000Z

246

Lot sizing and furnace scheduling in small foundries  

Science Conference Proceedings (OSTI)

A lot sizing and scheduling problem prevalent in small market-driven foundries is studied. There are two related decision levels: (1) the furnace scheduling of metal alloy production, and (2) moulding machine planning which specifies the type and size ... Keywords: Lot sizing and scheduling, Meta-heuristics, Mixed integer programming

Silvio A. de Araujo; Marcos N. Arenales; Alistair R. Clark

2008-03-01T23:59:59.000Z

247

Coke quality for blast furnaces with coal-dust fuel  

SciTech Connect

Recently, plans have been developed for the introduction of pulverized coal injection (PCI) at various Russian metallurgical enterprises. The main incentive for switching to PCI is the recent price rises for Russian natural gas. The paper discusses the quality of coke for PCI into blast furnaces.

Y.A. Zolotukhin; N.S. Andreichikov [Eastern Coal-Chemistry Institute, Yekaterinburg (Russian Federation)

2009-07-01T23:59:59.000Z

248

Coke mineral transformations in the experimental blast furnace  

SciTech Connect

Blast furnace efficiency may be improved by optimizing coke reactivity. Some but not all forms of mineral matter in the coke modify its reactivity, but changes in mineral matter that occur within coke while in the blast furnace have not been fully quantified. To determine changes in mineral matter forms in the blast furnace, coke samples from a dissection study in the LKAB experimental blast furnace (EBF) were characterized using SEM/EDS analysis, EPMA (microprobe), and low-temperature ashing/quantitative XRD analysis. Variations in alkali concentration, particularly potassium, dominated the compositional changes. At high concentrations of potassium, the mineral matter was largely potassium-bearing but even more potassium was diffused throughout the coke and not associated with mineral matter. There was little difference in potassium concentration between the core and surface of the coke pieces, suggesting that potassium diffused rapidly through the whole coke. Iron, calcium, silicon, and aluminum concentrations were relatively constant in comparison, although the mineralogy of all elements changed significantly with changing temperature. 23 refs., 20 figs., 9 tabs.

Kelli Kazuberns; Sushil Gupta; Mihaela Grigore; David French; Richard Sakurovs; Mats Hallin; Bo Lindblom; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). Cooperative Research Centre for Coal in Sustainable Development (CCSD)

2008-09-15T23:59:59.000Z

249

A Decomposition of Feedback Contributions to Polar Warming Amplification  

Science Conference Proceedings (OSTI)

Polar surface temperatures are expected to warm 2-3 times faster than the global mean surface temperature; a phenomenon referred to as polar warming amplification. Therefore, understanding individual process contributions to the polar warming is ...

Patrick C. Taylor; Ming Cai; Aixue Hu; Jerry Meehl; Warren Washington; Guang J. Zhang

250

A Possible Effect of an Increase in the Warm-Pool SST on the Magnitude of El Niño Warming  

Science Conference Proceedings (OSTI)

El Niño warming corresponds to an eastward extension of the western Pacific warm pool; one thus naturally wonders whether an increase in the warm pool SST will result in stronger El Niños. This question, though elementary, has not drawn much ...

De-Zheng Sun

2003-01-01T23:59:59.000Z

251

Warm Springs State Hospital Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Warm Springs State Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs State Hospital Space Heating Low Temperature Geothermal...

252

"Hot" for Warm Water Cooling  

Science Conference Proceedings (OSTI)

Liquid cooling is key to reducing energy consumption for this generation of supercomputers and remains on the roadmap for the foreseeable future. This is because the heat capacity of liquids is orders of magnitude larger than that of air and once heat has been transferred to a liquid, it can be removed from the datacenter efficiently. The transition from air to liquid cooling is an inflection point providing an opportunity to work collectively to set guidelines for facilitating the energy efficiency of liquid-cooled High Performance Computing (HPC) facilities and systems. The vision is to use non-compressor-based cooling, to facilitate heat re-use, and thereby build solutions that are more energy-efficient, less carbon intensive and more cost effective than their air-cooled predecessors. The Energy Efficient HPC Working Group is developing guidelines for warmer liquid-cooling temperatures in order to standardize facility and HPC equipment, and provide more opportunity for reuse of waste heat. This report describes the development of those guidelines.

IBM Corporation; Energy Efficient HPC Working Group; Hewlett Packard Corporation; SGI; Cray Inc.; Intel Corporation; U.S. Army Engineer Research Development Center; Coles, Henry; Ellsworth, Michael; Martinez, David J.; Bailey, Anna-Maria; Banisadr, Farhad; Bates, Natalie; Coghlan, Susan; Cowley, David E.; Dube, Nicholas; Fields, Parks; Greenberg, Steve; Iyengar, Madhusudan; Kulesza, Peter R.; Loncaric, Josip; McCann, Tim; Pautsch, Greg; Patterson, Michael K.; Rivera, Richard G.; Rottman, Greg K.; Sartor, Dale; Tschudi, William; Vinson, Wade; Wescott, Ralph

2011-08-26T23:59:59.000Z

253

The Dynamics of Warm and Cold Climates  

Science Conference Proceedings (OSTI)

The atmospheric dynamics of five different climate simulations with the GISS GCM are compared to investigate the changes that occur as climate warms or cools. There are two ice age simulations, the current and doubled CO2 climates, and a ...

D. Rind

1986-01-01T23:59:59.000Z

254

Response to Skeptics of Global Warming  

Science Conference Proceedings (OSTI)

The majority of the scientific community involved in climate research is convinced of the reality of a current and future global warming due to the greenhouse effect, a change that must be largely caused by human activities. However, a minority ...

William W. Kellogg

1991-04-01T23:59:59.000Z

255

Initial Precipitation Formation in Warm Florida Cumulus  

Science Conference Proceedings (OSTI)

The microphysical processes that lead to the development of precipitation in small, warm cumulus are examined using data from the Small Cumulus Microphysics Study near Cape Canaveral, Florida. Aircraft measurements are used to determine the ...

Neil F. Laird; Harry T. Ochs III; Robert M. Rauber; L. Jay Miller

2000-11-01T23:59:59.000Z

256

The Tropical Warm Pool International Cloud Experiment  

Science Conference Proceedings (OSTI)

A comprehensive dataset describing tropical cloud systems and their environmental setting and impacts has been collected during the Tropical Warm Pool International Cloud Experiment (TWP-ICE) and Aerosol and Chemical Transport in Tropical ...

Peter T. May; James H. Mather; Geraint Vaughan; Keith N. Bower; Christian Jakob; Greg M. McFarquhar; Gerald G. Mace

2008-05-01T23:59:59.000Z

257

Dynamic and Thermodynamic Regulation of Ocean Warming  

Science Conference Proceedings (OSTI)

The relative roles of clouds, surface evaporation, and ocean heat transport in limiting maximum sea surface temperatures (SSTs) in the western Pacific warm pool are investigated by means of simple and intermediate coupled ocean–atmosphere models. ...

Tim Li; Timothy F. Hogan; C-P. Chang

2000-10-01T23:59:59.000Z

258

Numerical Simulation of Sudden Stratospheric Warmings  

Science Conference Proceedings (OSTI)

A mechanistic, quasi-geostrophic, semi-spectral model with a self-consistent calculation of the mean zonal flow fields is used to numerically simulate sudden stratospheric warmings generated by a single zonal harmonic (m) planetary wave. The ...

Mark R. Schoeberl; Darrell F. Strobel

1980-01-01T23:59:59.000Z

259

Scaling Potential Evapotranspiration with Greenhouse Warming  

Science Conference Proceedings (OSTI)

Potential evapotranspiration (PET) is a supply-independent measure of the evaporative demand of a terrestrial climate, of basic importance in climatology, hydrology, and agriculture. Future increases in PET from greenhouse warming are often cited ...

Jacob Scheff; Dargan M. W. Frierson

260

Separating signal and noise in climate warming  

NLE Websites -- All DOE Office Websites (Extended Search)

11162011 | NR-11-11-03 Separating signal and noise in climate warming Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov Printer-friendly A National Oceanic and Atmospheric...

Note: This page contains sample records for the topic "warm air furnace" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Cold-blooded and warm-blooded  

NLE Websites -- All DOE Office Websites (Extended Search)

Cold-blooded and warm-blooded Cold-blooded and warm-blooded Name: Walter Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: What is the fundamental difference between cold-blooded and warm- blooded creatures? I know that reptile blood is a bit different than mammal blood, but is that the difference or is it a difference in the other cells of the body? Replies: Warm blooded refers to an animals ability to maintain its body temperature at a constant level. Cold blooded animal's bodies stay at the temperature of environment around them (more or less). The mechanism by which a warm blooded animal does this is by generating heat, mostly through muscle movement (but by other biochemical processes too). An example of this is shivering. Warm blooded animals also cool themselves off by sweating, panting (and other ways). In mammals the hypothalamic area of the brain has much to do with controlling these reflex processes

262

Television news coverage of global warming  

Science Conference Proceedings (OSTI)

Citizens are expressing increased concern over the number and variety of environmental problems. Global warming in particular is a focus of concern for scientists and environmental groups. Such concern should naturally motivate individuals to seek information about these topics. Many people turn to the media, most usually television, for information on the nature of these problems. Consequently, this paper studied media coverage of environmental issues, specifically global warming. Television coverage was examined for: (1) the general nature of coverage; (2) biases in coverage; (3) visual images used to cover global warming; and (4) the congruity between visual and verbal messages in newscasts. Nightly newscasts from the three major American television networks were analyzed from 1993--1995 to determine the overall nature of global warming coverage since the Earth Summit in 1992. Results indicated that television news suffers from some serious inadequacies in its portrayal of global warming issues. The paper concludes by first discussing how its results intertwine with other work in the global warming and mass media field. Finally, the implications of inadequacies in media coverage for policy-makers when it comes to sound management of critical resources in this area are also discussed.

Nitz, M. [Univ. of Idaho, Moscow, ID (United States). School of Communication; Jarvis, S. [Univ. of Texas, Austin, TX (United States). Dept. of Speech Communication; Kenski, H. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Communication

1996-06-01T23:59:59.000Z

263

Optical processing furnace with quartz muffle and diffuser plate  

DOE Patents (OSTI)

An optical furnace for annealing a process wafer is disclosed comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy. 5 figs.

Sopori, B.L.

1996-11-19T23:59:59.000Z

264

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF)  

SciTech Connect

A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluate the economic and technical feasibility of the concept, and prepare an R D plan to develop the concept further. Foster Wheeler Development Corporation is leading a team ofcompanies involved in this effort. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800[degrees]F in furnaces fired with cool-derived fuels and then directly heated in a natural-gas-fired combustor up to about 2400[degrees]F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuelgas is a relatively clean fuel, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need tobe a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only. A simplified process flow diagram is shown.

Not Available

1992-11-01T23:59:59.000Z

265

A Theoretical Study of Cold Air Damming  

Science Conference Proceedings (OSTI)

The dynamics of cold air damming are examined analytically with a two-layer steady state model. The upper layer is a warm and saturated cross-mountain (easterly or southeasterly onshore) flow. The lower layer is a cold mountain-parallel (...

Qin Xu

1990-12-01T23:59:59.000Z

266

Detailed model for practical pulverized coal furnaces and gasifiers  

Science Conference Proceedings (OSTI)

This study has been supported by a consortium of nine industrial and governmental sponsors. Work was initiated on May 1, 1985 and completed August 31, 1989. The central objective of this work was to develop, evaluate and apply a practical combustion model for utility boilers, industrial furnaces and gasifiers. Key accomplishments have included: Development of an advanced first-generation, computer model for combustion in three dimensional furnaces; development of a new first generation fouling and slagging submodel; detailed evaluation of an existing NO{sub x} submodel; development and evaluation of an improved radiation submodel; preparation and distribution of a three-volume final report: (a) Volume 1: General Technical Report; (b) Volume 2: PCGC-3 User's Manual; (c) Volume 3: Data Book for Evaluation of Three-Dimensional Combustion Models; and organization of a user's workshop on the three-dimensional code. The furnace computer model developed under this study requires further development before it can be applied generally to all applications; however, it can be used now by specialists for many specific applications, including non-combusting systems and combusting geseous systems. A new combustion center was organized and work was initiated to continue the important research effort initiated by this study. 212 refs., 72 figs., 38 tabs.

Smith, P.J.; Smoot, L.D.

1989-08-01T23:59:59.000Z

267

Global warming and end-use efficiency implications of replacing CFCs  

SciTech Connect

The direct contribution of CFCs to calculated global warming has been recognized for some time. As a result of the international agreement to phase out CFCs due to stratospheric ozone and the ensuing search for suitable alternatives, there has recently been increased attention on the DIRECT global warming potential (GWP) of the fluorocarbon alternatives as greenhouse gases. However, to date there has been little focus on the INDIRECT global warming effect arising from end-use efficiency changes and associated CO{sub 2} emissions. A study being conducted at Oak Ridge National Laboratory (ORNL) addresses this combined or total global warming impact of viable options to replace CFCs in their major energy-related applications. This paper reviews selected results for air-conditioning, refrigeration, and heat pump applications. The analysis indicates that the CFC user industries have made substantial progress in approaching near-equal energy efficiency with the HCFC/HFC alternative refrigerants. The findings also bring into question the relative importance of the DIRECT (chemical-related) effect in many applications. Replacing CFCs is an important step in reducing the total global warming impact, and at present the HCFC and HFCS appear to offer the best efficiency and lowest total impact of options available in the relatively short time period required for the transition away from CFCs.

Fairchild, P.D.; Fischer, S.K.

1991-12-31T23:59:59.000Z

268

Improving air handler efficiency in houses  

SciTech Connect

Although furnaces, air conditioners and heat pumps have become significantly more efficient over the last couple of decades, residential air handlers have typical efficiencies of only 10% to 15% due to poor electric motor performance and aerodynamically poor fans and fan housings. Substantial increases in performance could be obtained through improved air handler design and construction. A prototype residential air handler intended to address these issues has recently been developed. The prototype and a standard production fan were tested in a full-scale duct system and test chamber at LBNL specifically designed for testing heating, ventilation, and air conditioning systems. The laboratory tests compared efficiency, total airflow, sensitivity to duct system flow resistance, and the effects of installation in a smaller cabinet. The test results showed that the prototype air handler had about twice the efficiency of the standard air handler (averaged over a wide range of operating conditions) and was less sensitive to duct system flow resistance changes. The performance of both air handlers was significantly reduced by reducing the clearance between the air handler and cabinet it was placed in. These test results showed that in addition to the large scope for performance improvement, air handler fans need to be tested in the cabinets they operate in.

Walker, Iain S.

2004-05-01T23:59:59.000Z

269

Cool Roofs Are Ready to Save Energy, Cool Urban Heat Islands, and Help Slow Global Warming  

NLE Websites -- All DOE Office Websites (Extended Search)

roofing is the fastest growing sector roofing is the fastest growing sector of the building industry, as building owners and facility managers realize the immediate and long-term benefits of roofs that stay cool in the sun. Studies exploring the energy efficiency, cost-effectiveness, and sustainability of cool roofs show that in warm or hot climates, substituting a cool roof for a conventional roof can: * Reduce by up to 15% the annual air-

270

Warm conveyor belts in the ERA-Interim data set (1979-2010). Part I: Climatology and potential vorticity evolution.  

Science Conference Proceedings (OSTI)

A global climatology of warm conveyor belts (WCBs) is presented for the years 1979-2010, based upon trajectories calculated with ERA-Interim reanalyses. WCB trajectories are identified as strongly ascending air parcels (600 hPa in 2 days) near ...

Erica Madonna; Heini Wernli; Hanna Joos; Olivia Martius

271

Mechanisms Contributing to the Warming Hole and the Consequent U.S. East–West Differential of Heat Extremes  

Science Conference Proceedings (OSTI)

A linear trend calculated for observed annual mean surface air temperatures over the United States for the second-half of the twentieth century shows a slight cooling over the southeastern part of the country, the so-called warming hole, while ...

Gerald A. Meehl; Julie M. Arblaster; Grant Branstator

2012-09-01T23:59:59.000Z

272

Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow  

DOE Patents (OSTI)

Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

Pollock, G.G.

1997-01-28T23:59:59.000Z

273

Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow  

DOE Patents (OSTI)

Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

Pollock, George G. (San Ramon, CA)

1997-01-01T23:59:59.000Z

274

Can we delay a greenhouse warming  

SciTech Connect

This article reviews a book published by the Environmental Protection Agency. The book discussed the Greenhouse Effect which is a warming of the earth's atmosphere caused by the doubling of the atmospheric carbon dioxide concentration. The excess carbon dioxide is pollution derived from the burning of fossil fuels. The report suggested that the warming of the atmosphere would cause thawing of the polar regions which in turn would cause a rise in sea levels and flooding of the coastal lowlands. In addition to the flooding, the report predicted climate changes that would effect the productivity of croplands in the west. The authors of the report stressed that there was no way to avoid this warming of the earth. They suggested that people should start preparing for the inevitable.

Seidel, S.; Keyes, D.

1983-01-01T23:59:59.000Z

275

Ultrafast Spectroscopy of Warm Dense Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast Spectroscopy of Warm Dense Matter Print Ultrafast Spectroscopy of Warm Dense Matter Print Being neither solid, liquid, gas, nor plasma, warm dense matter (WDM) occupies a no man's land in the map of material phases. Its temperature can range between that of planetary cores (tens of thousands K) to that of stellar cores (hundreds of thousands K). Not only is it prevalent throughout the universe, it is relevant to inertial confinement fusion (ICF) and material performance under extreme conditions. However, because of its extreme temperatures and pressures, WDM tends to be drastically transient and thus difficult to study in the laboratory. Now, researchers have set up ultrafast x-ray absorption spectroscopy at the ALS to measure the electronic structure of WDMs, demonstrating that fast-changing electron temperatures of matter under extreme conditions can be determined with picosecond resolution.

276

Rohm and Haas: Furnace Replacement Project Saves Energy and Improves Production at a Chemical Plant  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program spotlight describes how Rohm and Haas's Deer Park, Texas, chemical plant reduced natural gas usage and energy costs by replacing inefficient furnace equipment.

Not Available

2006-02-01T23:59:59.000Z

277

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network (OSTI)

offsets the sizable electricity savings. References TitleElectricity and Natural Gas Efficiency Improvements forfueled by natural gas. Electricity consumption by a furnace

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

278

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

Experiences of residential consumers and utilities. OakStar (2008). Energy Star Residential Water Heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.

2010-01-01T23:59:59.000Z

279

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

appliance_standards/residential/water_ pool_heaters_prelim_Star (2008). Energy star residential water heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

280

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

SciTech Connect

In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This report describes calculation of equipment energy consumption (fuel and electricity) based on estimated conditions in a sample of homes that are representative of expected furnace and boiler installations. To represent actual houses with furnaces and boilers in the United States, we used a set of houses from the Residential Energy Consumption Survey of 1997 conducted by the Energy Information Administration. Our calculation methodology estimates the energy consumption of alternative (more-efficient) furnaces, if they were to be used in each house in place of the existing equipment. We developed the method of calculation described in this report for non-weatherized gas furnaces. We generalized the energy consumption calculation for this product class to the other furnace product classes. Fuel consumption calculations for boilers are similar to those for the other furnace product classes. The electricity calculations for boilers are simpler than for furnaces, because boilers do not provide thermal distribution for space cooling as furnaces often do.

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm air furnace" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Mathematical modelling of the flow and combustion of pulverized coal injected in ironmaking blast furnace.  

E-Print Network (OSTI)

??Pulverized coal injection (PCI) technology is widely practised in blast furnace ironmaking due to economic, operational and environmental benefits. High burnout of pulverized coal in… (more)

Shen, Yansong

2008-01-01T23:59:59.000Z

282

A 3D Mathematical Model of a Horizontal Anode Baking Furnace as ...  

Science Conference Proceedings (OSTI)

... phenomena occurring in the furnace and was validated using plant data. ... of the Composite Parts by Arranging Ply Lay-up for Even Resin Distribution and ...

283

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

SciTech Connect

In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This report describes calculation of equipment energy consumption (fuel and electricity) based on estimated conditions in a sample of homes that are representative of expected furnace and boiler installations. To represent actual houses with furnaces and boilers in the United States, we used a set of houses from the Residential Energy Consumption Survey of 1997 conducted by the Energy Information Administration. Our calculation methodology estimates the energy consumption of alternative (more-efficient) furnaces, if they were to be used in each house in place of the existing equipment. We developed the method of calculation described in this report for non-weatherized gas furnaces. We generalized the energy consumption calculation for this product class to the other furnace product classes. Fuel consumption calculations for boilers are similar to those for the other furnace product classes. The electricity calculations for boilers are simpler than for furnaces, because boilers do not provide thermal distribution for space cooling as furnaces often do.

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-02-01T23:59:59.000Z

284

Theoretical and experimental foundations for preparing coke for blast-furnace smelting  

SciTech Connect

This article examines the preparation of coke for blast-furnace smelting by a method that most fully meets the requirements of blast-furnace technology: screening of the -36 mm fraction, the separation of nut coke of the 15-36 mm fraction, and its charging into the furnace in a mixture with the iron-ore-bearing charge components. An analysis is made of trial use of coke of the Premium class on blast furnace No. 5 at the Enakievo Metallurgical Plant. Use of this coke makes it possible to reduce the consumption of skip coke by 3.2-4.1%.

A.L. Podkorytov; A.M. Kuznetsov; E.N. Dymchenko; V.P. Padalka; S.L. Yaroshevskii; A.V. Kuzin [Enakievo Metallurgical Plant, Enakievo (Ukraine)

2009-05-15T23:59:59.000Z

285

Co-gasification of biomass with coal and oil sands coke in a drop tube furnace.  

E-Print Network (OSTI)

??Chars were obtained from individual fuels and blends with different blend ratios of coal, coke and biomass in Drop Tube Furnace at different temperatures. Based… (more)

Gao, Chen

2010-01-01T23:59:59.000Z

286

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL  

Science Conference Proceedings (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the semi-annual Technical Progress Report for the time period April 1, 2001 through September 30, 2001. Additional balance of plant impact information for the two tests was reported in the Technical Progress Report for the time period October 1, 2001 through March 30, 2002. Additional information became available about the effects of byproduct magnesium hydroxide injection on SCR catalyst coupons during the long-term test at BMP, and those results were reported in the report for the time period April 1, 2002 through September 30, 2002. During the current period, process economic estimates were developed, comparing the costs of the furnace magnesium hydroxide slurry injection process tested as part of this project to a number of other candidate SO{sub 3}/sulfuric acid control technologies for coal-fired power plants. The results of this economic evaluation are included in this progress report.

Gary M. Blythe

2003-10-01T23:59:59.000Z

287

Air Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

What We Monitor & Why » What We Monitor & Why » Air Quality Air Quality To preserve our existing wilderness-area air quality, LANL implements a conscientious program of air monitoring. April 12, 2012 Real-time data monitoring for particulate matter An air monitoring field team member tests one of LANL's tapered element oscillating microbalance samplers, which collects real-time particulate matter data. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email LANL monitors air quality 24 hours a day, 365 days a year. Why we monitor air LANL monitors many different pathways in order to assess their impact on workers, the public, animals, and plants. We monitor the air around the Laboratory to ensure our operations are not affecting the air of nearby

288

Ga Air Compressor, Ga Air Compressor Products, Ga Air ...  

U.S. Energy Information Administration (EIA)

Ga Air Compressor, You Can Buy Various High Quality Ga Air Compressor Products from Global Ga Air Compressor Suppliers and Ga Air Compressor ...

289

Post combustion trials at Dofasco`s KOBM furnace  

DOE Green Energy (OSTI)

Post combustion trials were conducted at Dofasco`s 300 tonne KOBM furnace as part of the AISI Direct Steelmaking Program. The purpose of the project work was to measure the post combustion ratio (PCR) and heat transfer efficiency (HTE) of the post combustion reaction in a full size steelmaking vessel. A method of calculating PCR and HTE using off gas analysis and gas temperature was developed. The PCR and HTE were determined under normal operating conditions. Trials assessed the effect of lance height, vessel volume, foaming slag and pellet additions on PCR and HTE.

Farrand, B.L.; Wood, J.E.; Goetz, F.J.

1992-12-31T23:59:59.000Z

290

Variation in coke properties within the blast-furnace shop  

SciTech Connect

In active production at OAO Magnitogorskii Metallurgicheskii Kombinat (MMK), samples of melt materials were taken during shutdown and during planned repairs at furnaces 1 and 8. In particular, coke was taken from the tuyere zone at different distances from the tuyere tip. The mass of the point samples was 2-15 kg, depending on the sampling zone. The material extracted from each zone underwent magnetic separation and screening by size class. The resulting coke sample was averaged out and divided into parts: one for determining the granulometric composition and mechanical strength; and the other for technical analysis and determination of the physicochemical properties of the coke.

E.N. Stepanov; I.I. Mel'nikov; V.P. Gridasov; A.A. Stepanova [OAO Magnitogorskii Metallurgicheskii Kombinat (MMK), Magnitogorsk, (Russian Federation)

2009-04-15T23:59:59.000Z

291

Energy and global warming impacts of HFC refrigerants and emerging technologies: TEWI-III  

Science Conference Proceedings (OSTI)

The use of hydrofluorocarbons (BFCs) which were developed as alternative refrigerants and insulating foam blowing agents to replace chlorofluorocarbons (CFCs) is now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants and blowing agents on global warming. A Total Equivalent Warming Impact (TEWI) assessment analyzes the environmental affects of these halogenated working fluids in energy consuming applications by combining a direct effect resulting from the inadvertent release of HFCs to the atmosphere with an indirect effect resulting from the combustion of fossil fuels needed to provide the energy to operate equipment using these compounds as working fluids. TEWI is a more balanced measure of environmental impact because it is not based solely on the global warming potential (GWP) of the working fluid. It also shows the environmental benefit of efficient technologies that result in less CO{sub 2} generation and eventual emission to the earth`s atmosphere. The goal of TEWI is to assess total global warming impact of all the gases released to the atmosphere, including CO{sub 2} emissions from energy conversion. Alternative chemicals and technologies have been proposed as substitutes for HFCs in the vapor-compression cycle for refrigeration and air conditioning and for polymer foams in appliance and building insulations which claim substantial environmental benefits. Among these alternatives are: (1) Hydrocarbon (HC) refrigerants and blowing agents which have zero ozone depleting potential and a negligible global warming potential, (2) CO{sub 2} as a refrigerant and blowing agent, (3) Ammonia (NH{sub 3}) vapor compression systems, (4) Absorption chiller and heat pumping cycles using ammonia/water or lithium bromide/water, and (5) Evacuated panel insulations. This paper summarizes major results and conclusions of the detailed final report on the TEWI-111 study.

Sand, J.R.; Fischer, S.K.; Baxter, V.D.

1997-06-01T23:59:59.000Z

292

Indoor air movement acceptability and thermal comfort in hot-humid climates  

E-Print Network (OSTI)

comfort in warm conditions. ASHRAE Trans 84 (2): 263 – 277.Moving air for comfort. ASHRAE Journal: 18-29. [9] Zhang,control, and occupant comfort. ASHRAE Trans 110:17–35. [11

Candido, Christhina Maria

2010-01-01T23:59:59.000Z

293

Supermassive Black Holes and the Warm Ionized  

E-Print Network (OSTI)

Supermassive Black Holes and the Warm Ionized Gas in Early-type Galaxies Renbin Yan University stars actively. (late-type galaxies) #12;Prevalence of Supermassive Black Holes in Massive Galaxies MBH merging Right after coalescing Post-merger Star Formation Rate Black Hole Accretion Rate #12;Maintenance

Wang, Ming-Jye

294

Can we delay a greenhouse warming  

SciTech Connect

The author comments on the EPA report dated September 1983 Can We Delay A Greenhouse Warming. He takes exception to the widely-held interpretation that the answer is not much. The contribution of other greenhouse gases such as methane and nitrous oxide to the EPA scenarios is pointed out, and the lack of understanding of their role is emphasised. (ACR)

Perry, A.M.

1983-01-01T23:59:59.000Z

295

Warm Pool Physics in a Coupled GCM  

Science Conference Proceedings (OSTI)

The physics of the Indo–Pacific warm pool are investigated using a coupled ocean atmosphere general circulation model. The model, developed at the Max-Planck-Institut fair Meteorologic, Hamburg, does not employ a flux correction and is used with ...

Niklas Schneider; Tim Barnett; Mojib Latif; Timothy Stockdale

1996-01-01T23:59:59.000Z

296

Self-calibrated active pyrometer for furnace temperature measurements  

DOE Patents (OSTI)

Pyrometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The pyrometer includes a heterodyne millimeter/sub-millimeter-wave or microwave receiver including a millimeter/sub-millimeter-wave or microwave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. In an alternative embodiment, a translatable base plate and a visible laser beam allow slow mapping out of interference patterns and obtaining peak values therefor. The invention also includes a waveguide having a replaceable end portion, an insulating refractory sleeve and/or a source of inert gas flow. The pyrometer may be used in conjunction with a waveguide to form a system for temperature measurements in a furnace. The system may employ a chopper or alternatively, be constructed without a chopper. The system may also include an auxiliary reflector for surface emissivity measurements.

Woskov, Paul P. (Bedford, MA); Cohn, Daniel R. (Chestnuthill, MA); Titus, Charles H. (Newtown Square, PA); Surma, Jeffrey E. (Kennewick, WA)

1998-01-01T23:59:59.000Z

297

STATEMENT OF CONSIDERATIONS REQUEST BY AIR PRODUCTS AND CHEMICALS, INC. (AIR PRODUCTS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PATENT RIGHTS PATENT RIGHTS TO INVENTIONS MADE UNDER A CONTRACT ENTITLED "DYNAMIC EXPERT SYSTEMS CONTROL FOR OPTIMAL OXY-FUEL MELTER PERFORMANCE" - DOE CONTRACT DE-FC02-98CH10919; W(A)-98-021, CH-0989 Air Products and Chemicals, Inc. (Air Products) has requested an advance waiver of domestic and foreign patent rights to inventions of its employees and of its subcontractors other than those eligible to obtain title pursuant to P.L. 96-517, as amended, or National Laboratories. As brought out in the attached waiver petition, Air Products is leading what is essentially a teaming arrangement for the development and demonstration of a dynamic control system which will allow oxy-fuel glass melting furnaces to operate more efficiently on a continuous basis. As a result of the improved control system, Air Products anticipates a reduction of about

298

Observational Constraints on Past Attributable Warming and Predictions of Future Global Warming  

Science Conference Proceedings (OSTI)

This paper investigates the impact of aerosol forcing uncertainty on the robustness of estimates of the twentieth-century warming attributable to anthropogenic greenhouse gas emissions. Attribution analyses on three coupled climate models with ...

Peter A. Stott; John F. B. Mitchell; Myles R. Allen; Thomas L. Delworth; Jonathan M. Gregory; Gerald A. Meehl; Benjamin D. Santer

2006-07-01T23:59:59.000Z

299

The Role of Human Activity in the Recent Warming of Extremely Warm Daytime Temperatures  

Science Conference Proceedings (OSTI)

Formal detection and attribution analyses of changes in daily extremes give evidence of a significant human influence on the increasing severity of extremely warm nights and decreasing severity of extremely cold days and nights. This paper ...

Nikolaos Christidis; Peter A. Stott; Simon J. Brown

2011-04-01T23:59:59.000Z

300

Collection and conversion of silicon furnace waste gas into higher value products: Phase 3, 6 MW pilot plant dc closed furnace technology. Final report  

SciTech Connect

The construction and operation of a 6 MW, closed dc furnace for smelting silicon was the primary focus of Phase 3. A 6 MW, dc closed furnace pilot plant was built in East Selkirk, Manitoba, Canada. The furnace is equipped with world`s most modern automatic control system used to control and monitor the process variables and operational data. This control system is suitable for commercial applications and could be used with either closed or open dc furnaces for smelting silicon or ferrosilicon. The construction was started in September 1990, and the facility was operational within 18 months. Following successful commissioning of the pilot plant in June 1992, twelve smelting test campaigns were conducted through November 1994.

Dosaj, V.D.

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "warm air furnace" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Energy Tax Credits: Stay Warm and Save MORE Money! | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Credits: Stay Warm and Save MORE Money Energy Tax Credits: Stay Warm and Save MORE Money October 29, 2008 - 6:00am Addthis Allison Casey Senior Communicator, NREL With all of...

302

An Interpretation of Sudden Warmings In Terms of Potential vorticity  

Science Conference Proceedings (OSTI)

A simple and concise interpretation of stratospheric sudden warmings is offered in terms Of the transient changes in the potential vorticity pattern. The warming is viewed as a manifestation of the reversal of the mean (zonally averaged) relative ...

H. C. Davies

1981-02-01T23:59:59.000Z

303

Forecast cloudy; The limits of global warming models  

SciTech Connect

This paper reports on climate models used to study global warming. It discusses factors which must be included in climate models, shortcomings of existing climate models, and scenarios for global warming.

Stone, P.H.

1992-02-01T23:59:59.000Z

304

An Analysis of Tropical Ocean Diurnal Warm Layers  

Science Conference Proceedings (OSTI)

During periods of light surface wind, a warm stable layer forms at the ocean surface with a maximum sea surface temperature (SST) in the early afternoon. The diurnal SST amplitude (DSA) associated with these diurnal warm layers (DWLs) can reach ...

Hugo Bellenger; Jean-Philippe Duvel

2009-07-01T23:59:59.000Z

305

Sonoluminescence test for equation of state in warm dense matter  

E-Print Network (OSTI)

IN WARM DENSE MATTER Siu-Fai Ng 1, 2 , J. J. Barnard 3 , P.IN WARM DENSE MATTER Siu-Fai Ng 1, 2 , J. J. Barnard 3 , P.

Ng, Siu-Fai

2008-01-01T23:59:59.000Z

306

Building Technologies Office: Low-Global Warming Potential Refrigerants  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Global Warming Low-Global Warming Potential Refrigerants Research Project to someone by E-mail Share Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Facebook Tweet about Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Twitter Bookmark Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Google Bookmark Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Delicious Rank Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Digg Find More places to share Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on AddThis.com... About Take Action to Save Energy

307

The Heat Balance of the Western Hemisphere Warm Pool  

Science Conference Proceedings (OSTI)

The thermodynamic development of the Western Hemisphere warm pool and its four geographic subregions are analyzed. The subregional warm pools of the eastern North Pacific and equatorial Atlantic are best developed in the boreal spring, while in ...

David B. Enfield; Sang-ki Lee

2005-07-01T23:59:59.000Z

308

Anthropogenic Warming of the Oceans: Observations and Model Results  

Science Conference Proceedings (OSTI)

Observations show the oceans have warmed over the past 40 yr, with appreciable regional variation and more warming at the surface than at depth. Comparing the observations with results from two coupled ocean–atmosphere climate models [the ...

David W. Pierce; Tim P. Barnett; Krishna M. AchutaRao; Peter J. Gleckler; Jonathan M. Gregory; Warren M. Washington

2006-05-01T23:59:59.000Z

309

Mechanisms of Global Warming Impacts on Regional Tropical Precipitation  

Science Conference Proceedings (OSTI)

Mechanisms that determine the tropical precipitation anomalies under global warming are examined in an intermediate atmospheric model coupled with a simple land surface and a mixed layer ocean. To compensate for the warm tropospheric temperature, ...

Chia Chou; J. David Neelin

2004-07-01T23:59:59.000Z

310

Mechanisms for Global Warming Impacts on Precipitation Frequency and Intensity  

Science Conference Proceedings (OSTI)

Global warming mechanisms that cause changes in frequency and intensity of precipitation in the tropics are examined in climate model simulations. Under global warming, tropical precipitation tends to be more frequent and intense for heavy ...

Chia Chou; Chao-An Chen; Pei-Hua Tan; Kuan Ting Chen

2012-05-01T23:59:59.000Z

311

Comparing the effects of greenhouse gas emissions on global warming  

E-Print Network (OSTI)

Policies dealing with global warming require a measure of the effects of the emissions of greenhouse gases that create different magnitudes of instantaneous radiative forcing and have different lifetimes. The Global Warming ...

Eckaus, Richard S.

1990-01-01T23:59:59.000Z

312

Plan for the Startup of HA-21I Furnace Operations at the Plutonium Finishing Plant (PFP)  

Science Conference Proceedings (OSTI)

Achievement of Thermal Stabilization mission elements require the installation and startup of three additional muffle furnaces for the thermal stabilization of plutonium and plutonium bearing materials at the Plutonium Finishing Plant (PFP). The release to operate these additional furnaces will require an Activity Based Startup Review. The conduct of the Activity Based Startup Review (ABSR) was approved by Fluor Daniel Hanford on October 15, 1999. This plan has been developed with the objective of identifying those activities needed to guide the controlled startup of five furnaces from authorization to unrestricted operations by adding the HA-211 furnaces in an orderly and safe manner after the approval to Startup has been given. The Startup Plan provides a phased approach that bridges the activities between the completion of the Activity Based Startup Review authorizing the use of the three additional furnaces and the unrestricted operation of the five thermal stabilization muffle furnaces. The four phases are: (1) the initiation of five furnace operations using three empty (simulated full) boat charges from HA-211 and two full charges from HC-21C; (2) three furnace operations (one full charge from HA-211 and two full charges from HC-21C); (3) four furnace operations (two full charges from HA-211 and two full charges from HC-21C); and (4) integrated five furnace operations and unrestricted operations. Phase 1 of the Plan will be considered as the cold runs. This Plan also provides management oversight and administrative controls that are to be implemented until unrestricted operations are authorized. It also provides a formal review process for ensuring that all preparations needed for full five furnace operations are completed and formally reviewed prior to proceeding to the increased activity levels associated with five furnace operations. Specific objectives include: (1) To ensure that activities are conducted in a safe manner. (2) To provide supplemental technical and managerial support to Thermal Stabilization activities during the initial use of the HA-211 Furnaces until the commencement of full five furnace, unrestricted operations. (3) Ensure that operations can be conducted in a manner that meets PFP and DOE expectations associated with the principles of integrated safety management. (4) To ensure that all interfacing activities needed to meet Thermal Stabilization mission objectives are completed.

WILLIS, H.T.

2000-02-17T23:59:59.000Z

313

What Steps Do You Take to Maintain Your Furnace? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steps Do You Take to Maintain Your Furnace? Steps Do You Take to Maintain Your Furnace? What Steps Do You Take to Maintain Your Furnace? January 7, 2010 - 7:30am Addthis This week, Chris told you about his plans to maintain his furnace to keep it running efficiently. Proper maintenance is key to ensuring your heating and cooling systems are in working order. No one wants to wake up on the coldest day of the year to find that they have no heat! What steps do you take to maintain your furnace? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Brrrrr. It's Cold In There! Saving Energy and Money Starts at Home 31,000 Homes Weatherized in June

314

Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution  

Science Conference Proceedings (OSTI)

The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

Dr. Chenn Zhou

2012-08-15T23:59:59.000Z

315

Adaptation to space applications of a 2000 c furnace with oxidizing atmosphere  

SciTech Connect

The possibility of using a low weight low power consumption furnace with oxidizing atmosphere at 2000 C for space applications is discussed. The main heating element is made of zirconium oxide with a platinum preheating system. The structure and stabilization of zirconium oxide are detailed together with its application to the space situation. The static and dynamic regimes are discussed with regard to measurement of the resistivity as a function of temperature and dynamic model. The temperature distribution in the furnace and in a main heating element were studied in relation to thermal insulation and weight budget. A model is proposed for optimal control and thermostat using analog simulation. The final concept requires 350 W for an isothermal furnace of 20 mm diameter weighing 3 kg. The cases of temperature gradient furnaces and of universal furnaces are reviewed. (GRA)

1975-01-01T23:59:59.000Z

316

California Policy Should Distinguish Biofuels by Differential Global Warming Effects  

E-Print Network (OSTI)

California Policy Should Distinguish Biofuels by Differential Global Warming Effects by Richard J: _______________________________________ Date #12;California Policy Should Distinguish Biofuels by Differential Global Warming Effects Richard J, 2006 #12;#12;ABSTRACT California Policy Should Distinguish Biofuels by Differential Global Warming

Kammen, Daniel M.

317

Advanced In-Furnace NOx Control for Wall and Cyclone-Fired Boilers  

SciTech Connect

A NO{sub x} minimization strategy for coal-burning wall-fired and cyclone boilers was developed that included deep air staging, innovative oxygen use, reburning, and advanced combustion control enhancements. Computational fluid dynamics modeling was applied to refine and select the best arrangements. Pilot-scale tests were conducted by firing an eastern high-volatile bituminous Pittsburgh No.8 coal at 5 million Btu/hr in a facility that was set up with two-level overfire air (OFA) ports. In the wall-fired mode, pulverized coal was burned in a geometrically scaled down version of the B and W DRB-4Z{reg_sign} low-NO{sub x} burner. At a fixed overall excess air level of 17%, NO{sub x} emissions with single-level OFA ports were around 0.32 lb/million Btu at 0.80 burner stoichiometry. Two-level OFA operation lowered the NO{sub x} levels to 0.25 lb/million Btu. Oxygen enrichment in the staged burner reduced the NO{sub x} values to 0.21 lb/million Btu. Oxygen enrichment plus reburning and 2-level OFA operation further curbed the NO{sub x} emissions to 0.19 lb/million Btu or by 41% from conventional air-staged operation with single-level OFA ports. In the cyclone firing arrangement, oxygen enrichment of the cyclone combustor enabled high-temperature and deeply staged operation while maintaining good slag tapping. Firing the Pittsburgh No.8 coal in the optimum arrangement generated 112 ppmv NO{sub x} (0.15 lb/million Btu) and 59 ppmv CO. The optimum emissions results represent 88% NO{sub x} reduction from the uncontrolled operation. Levelized costs for additional NO{sub x} removal by various in-furnace control methods in reference wall-fired or cyclone-fired units already equipped with single-level OFA ports were estimated and compared with figures for SCR systems achieving 0.1 lb NO{sub x}/10{sup 6} Btu. Two-level OFA ports could offer the most economical approach for moderate NO{sub x} control, especially for smaller units. O{sub 2} enrichment in combination with 2-level OFA was not cost effective for wall-firing. For cyclone units, NO{sub x} removal by two-level OFA plus O{sub 2} enrichment but without coal reburning was economically attractive.

Hamid Sarv

2009-02-28T23:59:59.000Z

318

Exergy-based analysis and efficiency evaluation for an aluminum melting furnace in a die-casting plant  

Science Conference Proceedings (OSTI)

The efficiency of a natural gas-fired aluminum melting furnace in a die-casting plant is examined using energy and exergy methods, to improve understanding of the burner system in the furnace and so that potential improvements can be identified. Such ... Keywords: aluminum, die-casting, efficiency, energy, exergy, melting furnace

Marc A. Rosen; Dennis L. Lee

2009-02-01T23:59:59.000Z

319

Global Warming Mitigation Investments Optimized under Uncertainty  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Warming Mitigation Investments Optimized under Uncertainty Global Warming Mitigation Investments Optimized under Uncertainty Speaker(s): Hermann Held Date: July 9, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Thomas McKone The Copenhagen Accord (2009) recognizes that 'the increase in global temperature should be below 2 degrees Celsius' (compared to pre-industrial levels, '2° target'). In recent years, energy economics have derived welfare-optimal investment streams into low-emission energy mixes and associated costs. According to our analyses, auxiliary targets that are in line with the 2° target could be achieved at relatively low costs if energy investments were triggered rather swiftly. While such analyses assume 'perfect foresight' of a benevolent 'social planner', an accompanying suite of experiments explicitly

320

Decarbonization and Sequestration for Mitigating Global Warming  

NLE Websites -- All DOE Office Websites (Extended Search)

DECARBONIZATION AND SEQUESTRATION FOR DECARBONIZATION AND SEQUESTRATION FOR MITIGATING GLOBAL WARMING M. Steinberg (msteinbe@bnl.gov); 631-344-3036 Brookhaven National Laboratory 12 South Upton Street Upton, NY 11973-5000, USA ABSTRACT Mitigating the global warming greenhouse effect while maintaining a fossil fuel economy, requires improving efficiency of utilization of fossil fuels, use of high hydrogen content fossil fuels, decarbonization of fossil fuels, and sequestering of carbon and CO 2 applied to all the sectors of the economy, electric power generation, transportation, and industrial, and domestic power and heat generation. Decarbonization means removal of carbon as C or CO 2 either before or after fossil fuel combustion and sequestration means disposal of the recovered C or CO 2 including its utilization. Removal and recovery of CO

Note: This page contains sample records for the topic "warm air furnace" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Latitudinal distribution of the recent Arctic warming  

Science Conference Proceedings (OSTI)

Increasing Arctic temperature, disappearance of Arctic sea ice, melting of the Greenland ice sheet, sea level rise, increasing strength of Atlantic hurricanes are these impending climate catastrophes supported by observations? Are the recent data really unprecedented during the observational records? Our analysis of Arctic temperature records shows that the Arctic and temperatures in the 1930s and 1940s were almost as high as they are today. We argue that the current warming of the Arctic region is affected more by the multi-decadal climate variability than by an increasing concentration of carbon dioxide. Unfortunately, none of the existing coupled Atmosphere-Ocean General Circulation Models used in the IPCC 2007 cIimate change assessment is able to reproduce neither the observed 20th century Arctic cIimate variability nor the latitudinal distribution of the warming.

Chylek, Petr [Los Alamos National Laboratory; Lesins, Glen K [DALLHOUSIE UNIV.; Wang, Muyin [UNIV OF WASHINGTON

2010-12-08T23:59:59.000Z

322

Operation of an Open Type Anode Baking Furnace with a ...  

Science Conference Proceedings (OSTI)

Quality and Process Performance of Rotary Kilns and Shaft Calciners · Real Time Temperature Distribution during Sealing Process and Room Temperature Air ...

323

BPM Motors in Residential Gas Furnaces: What are the Savings?  

E-Print Network (OSTI)

duct systems. In addition, standby power consumption in BPMthe air conditioner or standby power. Figure 1: Distributionseason, and during standby. In the DOE test procedure, the

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-01-01T23:59:59.000Z

324

Warm Standby in Hierarchically Structured Process-Control Programs  

E-Print Network (OSTI)

We classify standby redundancy design space in process-control programs into the following three categories: cold standby, warm standby, and hot standby. Design parameters of warm standby are identified and the reliability of a system using warm standby is evaluated and compared with that of hot standby. Our analysis indicates that the warm standby scheme is particularly suitable for longlived unmaintainable systems, especially those operating in harsh environments where burst hardware failures are possible. The feasibility of warm standby is demonstrated with a simulated chemical batch reactor system.

Ing-Ray Chen And; Ing-ray Chen; Farokh B. Bastani

1994-01-01T23:59:59.000Z

325

Sandjet- A New Alternative for Cleaning Furnace Tubes  

E-Print Network (OSTI)

Energy management in modern refineries is becoming more difficult as the real cost of in-house and purchased fuel escalates and the quality of feed stocks decreases. Furnace tube maintenance has been made more complex by the presence of not only coke but extensive inorganic deposits while the demands of efficient fuel utilization require superior results from decoking procedures. Union Carbide Industrial Services Co., (UCISCO), is continuing the development of its proprietary 'SANDJET' system that removes coke as well as other inorganic deposits efficiently and rapidly. The procedure features computerized job planning and control in order to assure accurate estimates of cost and the proper selection of cleaning parameters and materials. Energy saving benefits of the process have recently become obvious and case studies summarizing these results are discussed. A description of the newly developed job controls and a brief summary of recent experiences in the field will be described in this paper.

Pollock, C. B.

1981-01-01T23:59:59.000Z

326

High-bandwidth continuous-flow arc furnace  

DOE Patents (OSTI)

A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics. 4 figs.

Hardt, D.E.; Lee, S.G.

1996-08-06T23:59:59.000Z

327

Rethinking the economics of global warming  

SciTech Connect

Most of the debates over the impact of the greenhouse effect have centered around the reliability of computer models and have neglected considerations of the economic effects of attempts to reduce global warming. Economic models have certain limitations but the input of cost benefit analysis is needed for arriving at suitable policies for lowering anthropogenic input into warming of the earth. Care must be used in extrapolating from data of time periods which are inappropriate. Estimates of costs of reducing greenhouse-gas emissions also must include possible benefits; at present this is not being done. Economic models must address differences in the distribution of global warming's consequences over time and geographical space. The costs of delaying or accelerating reduction in greenhouse-gas emissions need to be included in policy considerations. A global agreement must not adversely affect developing countries. Faulty assumptions of the effect of market forces on costs impair economic models. We have to recognize that economic and environmental goals need not be incompatible. If economic models are viewed as possible scenarios and not as predictions, then these scenarios can be useful in determining policies for reducing the greenhouse effect without harming populations and their economies.

Miller, A.; Mintzer, I.; Brown, P.G. (Univ. of Maryland, College Park (USA))

1990-01-01T23:59:59.000Z

328

Sorption Mechanisms for Mercury Capture in Warm Post-Gasification Gas Clean-Up Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorption MechaniSMS for Mercury Sorption MechaniSMS for Mercury capture in WarM poSt-GaSification GaS clean-up SySteMS Background Power generation systems employing gasification technology must remove a variety of potential air pollutants, including mercury, from the synthetic gas steam prior to combustion. In general, efforts to remove mercury have focused on removal at lower temperatures (under 300 °F). The ability to remove mercury at warm-gas cleanup conditions (300 °F to 700 °F) or in the hot-gas cleanup range (above 1200 °F) would provide plant operators with greater flexibility to choose the treatment method best suited to conditions at their plant. The University of Arizona is investigating the use of paper waste-derived sorbents (PWDS) for the removal of mercury and other trace metals at temperatures in and

329

Studies say - tentatively - that greenhouse warming is here  

SciTech Connect

Published studies on greenhouse warming have been ambivalent as to whether warming has arrived. Now two independent studies of the climate record have incriminated the green-house effect in global warming, although they fall short of convicting it. Researchers at the Max Planck Institute for Meteorology in Hamburg are confident they have exonerated natural climatic variability, saying the observed global warming seems to large to account for the warming effect. A group from Lawrence Livermore National Laboratory directly implicates greenhouse warming by finding its geographic `fingerprinting` in the climate record of the past century. This article discusses both studies and how the results will affect future concerns in the area of greenhouse warming.

Kerr, R.A.

1995-06-16T23:59:59.000Z

330

Heating, Ventilation, and Air Conditioning Renovations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations October 16, 2013 - 4:49pm Addthis Renewable Energy Options for HVAC Renovations Geothermal Heat Pumps (GHP) Solar Water Heating (SWH) Biomass Passive Solar Heating Biomass Heating Solar Ventilation Air Preheating Federal building renovations that encompass the heating, ventilation, and air conditioning (HVAC) systems in a facility provide a range of renewable energy opportunities. The primary technology option for HVAC renovations is geothermal heat pumps (GHP). Other options include leveraging a solar water heating (SWH) system to offset heating load or using passive solar heating or a biomass-capable furnace or boiler. Some facilities may also take

331

Fact Sheet: Isothermal Compressed Air Energy Storage (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SustainX SustainX American Recovery and Reinvestment Act (ARRA) Isothermal Compressed Air Energy Storage Demonstrating a modular, market-ready energy storage system that uses compressed air as a storage medium SustainX will demonstrate an isothermal compressed air energy storage (ICAES) system. Energy can be stored in compressed air, with minimal energy losses, and released when the air is later allowed to expand. Many traditional compressed air energy storage (CAES) projects store energy in underground geological formations such as salt caverns. However, in these systems, the air warms when it is compressed and cools when it is expanded. CAES systems generally use gas combustion turbines to reheat the cooled air before expansion. This process creates inefficiencies and emissions.

332

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Progress report No. 12, September--December 1994  

SciTech Connect

A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluating the economic and technical feasibility of the concept, and preparing an R&D plan to develop the concept further. There are two basic arrangements of our HIPPS cycle. Both are coal-fired combined cycles. One arrangement is the 35% natural gas HIPPS. Coal is converted to fuel gas and char in a pyrolysis process, and these fuels are fired in separate parts of a high temperature advanced furnace (HITAF). The char-fired furnace produces flue gas that is used to heat gas turbine air up to 1400 F. Alloy tubes are used for these tube banks. After leaving the alloy tube banks, the gas turbine air goes through a ceramic air heater where it is heated from 1400 F to 1800 F. The flue gas that goes through the ceramic air heater comes from the combustion of the fuel gas that is produced in the pyrolysis process. This fuel gas is cleaned to remove particulates and alkalies that would corrode and plug a ceramic air heater. The air leaving the ceramic air heater needs to be heated further to achieve the efficiency goal of 47%, and this is done by firing natural gas in the gas turbine combustor. An alternative arrangement of the HIPPS cycle is called the All Coal HIPPS. With this arrangement, the char is used to heat the gas turbine air to 1400 F as before, but instead of then going to a ceramic air heater, the air goes directly to the gas turbine combustor. The fuel gas generated in the pyrolyzer is used as fuel in the gas turbine combustor. In both cycle arrangements, heat is transferred to the steam cycle in the HITAF and a heat recovery steam generator (HRSG).

1995-06-01T23:59:59.000Z

333

Coke battery with 51-m{sup 3} furnace chambers and lateral supply of mixed gas  

SciTech Connect

The basic approaches employed in the construction of coke battery 11A at OAO Magnitogorskii Metallurgicheskii Kombinat are outlined. This battery includes 51.0-m{sup 3} furnaces and a dust-free coke-supply system designed by Giprokoks with lateral gas supply; it is heated exclusively by low-calorific mixed gas consisting of blast-furnace gas with added coke-oven gas. The 82 furnaces in the coke battery are divided into two blocks of 41. The gross coke output of the battery (6% moisture content) is 1140000 t/yr.

V.I. Rudyka; N.Y. Chebotarev; O.N. Surenskii; V.V. Derevich [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

334

State-of-the-Art in Residential and Small Commercial Air HandlerPerformance  

SciTech Connect

Although furnaces, air conditioners, and heat pumps have become significantly more efficient over the last couple of decades, residential air handlers have typical efficiencies of only 10% to 15% due to poor electric motor and aerodynamic performance. These low efficiencies indicate that there is significant room for improvement of air handler fans. The other 85-90% of the electricity used by air handlers is manifested as heat. This extra heat reduces air conditioning cooling and dehumidification performance and effectively acts as fuel switching for fossil fueled furnaces. For electric furnaces, this heat substitutes directly for the electric resistance heating elements. For heat pumps, this heat substitutes for compressor-based high COP heating and effectively reduces the COP of the heat pump. Using a combination of field observations and engineering judgment they can assemble a list of the problems that lead to low air handler efficiency and potential solutions to these problems, as shown. None of the problems require exotic or complex solutions and there are no technological barriers to adopting them. Some of the solutions are simple equipment swaps (using better electric motors), others require changes to the way the components are built (tighter tolerances) and other relate to HVAC equipment design (not putting large fans in small cabinets).

Walker, Iain S.

2005-03-01T23:59:59.000Z

335

Tropical Cyclogenesis Factors in a Warming Climate  

E-Print Network (OSTI)

Understanding the underlying causes of tropical cyclone formation is crucial to predicting tropical cyclone behavior in a warming environment, given the Earth's current warming trend. This study examines two sets of simulations from the National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 3.1 (CAM3): one with aerosol forcings and one without. We looked at how four factors known to be important to tropical cyclone formation vary as carbon dioxde and the ensuing temperature changes increase to very high levels. These factors include Maximum Potential Intensity (MPI), mid-tropospheric moisture content, 200-850 mb vertical wind shear, and 850 mb absolute vorticity. We considered different representations of mid-tropospheric moisture by examining both relative humidity and chi, a non-dimensional measure of the saturation entropy deficit at 600 mb. We also looked at different combinations of these factors, including several variations of a Genesis Potential Index (GPI) and an incubation parameter, gamma, that is related to the length of time required to saturate the middle troposphere and aid tropical cyclogenesis. Higher MPI, lower saturation deficits and higher relative humidity, lower wind shear, and higher absolute vorticity all act to enhance the GPI and lower the incubation time, meaning larger environmental support for tropical cyclone development and intensification. In areas where tropical cyclone development is prevalent today, we found that shear generally decreased, but MPI decreased, absolute vorticity decreased, and the saturation deficit increases. Thus, in today's prevalent tropical cyclone regions, conditions become less favorable for development and intensification as the climate warms. On the other hand, genesis regions tend to push northward into the subtropics, as conditions become much more favorable for development up to ~40 degrees North due to both decreased wind shear and much higher MPI values.

Cathey, Stephen Christopher

2011-12-01T23:59:59.000Z

336

Capture and Use of Coal Mine Ventilation-Air Methane  

NLE Websites -- All DOE Office Websites (Extended Search)

Capture and use of Coal Mine Capture and use of Coal Mine Ventilation - air Methane Background Methane emissions from coal mines represent about 10 percent of the U.S. anthropogenic methane released to the atmosphere. Methane-the second most important non-water greenhouse gas-is 21 times as powerful as carbon dioxide (CO 2 ) in its global warming potential. Ventilation-air methane (VAM)-the exhaust air from underground coal mines-is the largest source of coal mine methane, accounting for about half of the methane emitted from coal mines in the United States. Unfortunately, because of the low methane concentration (0.3-1.5 percent) in ventilation air, its beneficial use is difficult. However, oxidizing the methane to CO 2 and water reduces its global warming potential by 87 percent. A thermal

337

Modeling Energy Consumption of Residential Furnaces and Boilers...  

NLE Websites -- All DOE Office Websites (Extended Search)

6. American Society of Heating Refrigeration and Air-Conditioning Engineers, ASHRAE 1997 Handbook - Fundamentals. 1997, Atlanta, GA.p. 3.12. 7. Proctor, J. and D. Parker, Hidden...

338

Integrating Coal Gasification into a Rotary Kiln Electric Furnace Plant  

Science Conference Proceedings (OSTI)

Coal gasification is a potential alternative to conventional coal or natural gas- fired power plants ... Fundamentals of Spark-Plasma Sintering: Net-Shaping and Size Effects ... Investigation on a Microwave High-Temperature Air Heat Exchanger.

339

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

equipment = furnace Heating fuel = oil Home type = single orequipment = boiler Heating fuel = oil Home type = single orHOME HEATING FUEL CON 3 NATURAL GAS FROM UNDERGROUND PIPES = 1 BOTTLED GAS (LPG OR PROPANE) = 2 FUEL OIL

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

340

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Maximum Rebate $6,000 Program Info Funding Source New Hampshire Renewable Energy Fund (FY 2013) Start Date 04/14/2010 Expiration Date When progr State New Hampshire Program Type State Rebate Program Rebate Amount 30% Provider New Hampshire Public Utilities Commission The New Hampshire Public Utilities Commission (PUC) is offering rebates of 30% of the installed cost of qualifying new residential bulk-fed, wood-pellet central heating boilers or furnaces. The maximum rebate is $6,000. To qualify, systems must (1) become operational on or after May 1,

Note: This page contains sample records for the topic "warm air furnace" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Economics of Residential Gas Furnaces and Water Heaters in United States  

NLE Websites -- All DOE Office Websites (Extended Search)

Economics of Residential Gas Furnaces and Water Heaters in United States Economics of Residential Gas Furnaces and Water Heaters in United States New Construction Market Speaker(s): Alex Lekov Gabrielle Wong-Parodi James McMahon Victor Franco Date: May 8, 2009 - 12:00pm Location: 90-3122 In the new single-family home construction market, the choice of what gas furnace and gas water heater combination to install is primarily driven by first cost considerations. In this study, the authors use a life-cycle cost analysis approach that accounts for uncertainty and variability of inputs to assess the economic benefits of installing different gas furnace and water heater combinations. Among other factors, it assesses the economic feasibility of eliminating the traditional metal vents and replacing them with vents made of plastic materials used in condensing and power vent

342

Improving Gas Furnace Performance: A Field and Laboratory Study at End of Life  

SciTech Connect

Natural gas furnaces are rated for efficiency using the U.S. Department of Energy (DOE) annual fuel utilization efficiency (AFUE) test standard under controlled laboratory test conditions. In the home, these furnaces are then installed under conditions that can vary significantly from the standard, require adjustment by the installing contractor to adapt to field conditions, may or may not be inspected over their useful lifetimes, and can operate with little maintenance over a 30-year period or longer. At issue is whether the installation practices, field conditions, and wear over the life of the furnace reduce the efficiency significantly from the rated efficiency. In this project, nine furnaces, with 15-24 years of field service, were removed from Iowa homes and tested in the lab under four conditions to determine the effects of installation practices, field operating conditions, and age on efficiency.

Brand, L.; Yee, S.; Baker, J.

2013-08-01T23:59:59.000Z

343

Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions  

E-Print Network (OSTI)

Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NOx emissions while also generating electricity at an attractive heat rate. Design considerations and system costs are presented.

Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

1985-05-01T23:59:59.000Z

344

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

E-Print Network (OSTI)

is standard in HVAC design and fan selection books 6 . Theof modulating design options. The cooling fan curve passesfan curve and the duct system curve. We calculated the furnace fuel consumption for each design

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-01-01T23:59:59.000Z

345

Infrared Imaging of Temperature Distribution in a High Temperature X-Ray Diffraction Furnace  

Science Conference Proceedings (OSTI)

High Temperature X-ray Diffraction (HTXRD) is a very powerful tool for studies of reaction kinetics, phase transformations, and lattice thermal expansion of advanced materials. Accurate temperature measurement is a critical part of the technique. Traditionally, thermocouples, thermistors, and optical pyrometers have been used for temperature control and measurement and temperature could only be measured at a single point. Infrared imaging was utilized in this study to characterize the thermal gradients resulting from various sample and furnace configurations in a commercial strip heater furnace. Furnace configurations include a metallic strip heater, with and without a secondary surround heater, or a surround heater alone. Sample configurations include low and high thermal conductivity powders and solids. The IR imaging results have been used to calibrate sample temperatures in the HTXRD furnace.

Payzant, E.A.; Wang, H.

1999-04-05T23:59:59.000Z

346

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

of separate costs for natural gas or oil, and electricity.receives oil-fired boilers INPUTS First Cost Inputs The flowfurnaces, and oil-fired furnaces, we scaled the cost for

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

347

Microsoft Word - ACEEE_06_FurnaceBlower_Paper413_lbl.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

motors in non-condensing non-weatherized gas furnaces at a range of static pressures. Fan performance data is based on manufacturer product literature and laboratory tests. We...

348

Microsoft Word - ACEEE_06_ModulatingFurnaces_Paper236_lbl.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

found in the DOE test procedure and provides an improved methodology for calculating the energy consumption of two-stage furnaces. The objectives of this paper are to explore the...

349

Expert Meeting Report: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces  

SciTech Connect

This report describes a Building America expert meeting hosted on July 28, 2011, by the Partnership for Advanced Residential Retrofit team. The purpose of this meeting was to identify installation practices that provide the best installed efficiency for residential gas furnaces, explain how AFUE and field efficiency can differ, and investigate the impact of installation practices on the efficiency and long-term durability of the furnace.

Brand, L.

2012-03-01T23:59:59.000Z

350

Clean Coal III Project: Blast Furnace Granular Coal Injection Project Trial 1 Report - Blast Furnace Granular Coal Injection - Results with Low Volatile Coal  

SciTech Connect

This report describes the first coal trial test conducted with the Blast Furnace Granular Coal Injection System at Bethlehem Steel Corporation's Burns Harbor Plant. This demonstration project is divided into three phases: Phase I - Design Phase II - Construction Phase III - Operation The design phase was conducted in 1991-1993. Construction of the facility began in August 1993 and was completed in late 1994. The coal injection facility began operating in January 1995 and Phase III began in November 1995. The Trial 1 base test orI C furnace was carried out in October 1996 as a comparison period for the analysis of the operation during subsequent coal trials.

1997-11-01T23:59:59.000Z

351

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Quarterly progress report No. 3, July--September 1992  

SciTech Connect

A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluate the economic and technical feasibility of the concept, and prepare an R & D plan to develop the concept further. Foster Wheeler Development Corporation is leading a team ofcompanies involved in this effort. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800{degrees}F in furnaces fired with cool-derived fuels and then directly heated in a natural-gas-fired combustor up to about 2400{degrees}F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuelgas is a relatively clean fuel, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need tobe a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only. A simplified process flow diagram is shown.

Not Available

1992-11-01T23:59:59.000Z

352

Development of a bench-scale metal distillation furnace  

SciTech Connect

Design of an inductively heated bench-scale distillation furnace (retort) capable of processing actinides is described. The apparatus consists of a vacuum/inert gas bell jar, a bell-jar lift, a nonwater-cooled induction coil, the induction tank circuit, and a series of components designed to contain the metal melts and vapors. The apparatus is located within a nitrogen glovebox and is designed to process plutonium-containing feeds. The electrical parameters of the induction coil and tank circuit necessary for design were determined by two different methods; one is based solely on calculated impedance values, and the other used high-frequency impedance measurements on a mock-up of the induction coil/susceptor arrangement. During the design state, the two methods of determining electrical parameters gave similar results. With the as-built system, the impedance meter did detect some efficiency loss to the metal bell jar and coil support that the calculational method did not predict. These losses were not significant enough to cause operating problems, and thus, both methods were shown to be adequate for the intended purpose. Zinc and magnesium were distilled, and uranium was melted in a successful series of shake-down runs.

Vest, M.A.; Lewandowski, E.F.; Pierce, R.D.; Smith, J.L. [Argonne National Lab., IL (United States). Chemical Technology Div.

1997-12-01T23:59:59.000Z

353

Detailed model for practical pulverized coal furnaces and gasifiers  

SciTech Connect

The need to improve efficiency and reduce pollutant emissions commercial furnaces has prompted energy companies to search for optimized operating conditions and improved designs in their fossil-fuel burning facilities. Historically, companies have relied on the use of empirical correlations and pilot-plant data to make decisions about operating conditions and design changes. The high cost of collecting data makes obtaining large amounts of data infeasible. The main objective of the data book is to provide a single source of detailed three-dimensional combustion and combustion-related data suitable for comprehensive combustion model evaluation. Five tasks were identified as requirements to achieve the main objective. First, identify the types of data needed to evaluate comprehensive combustion models, and establish criteria for selecting the data. Second, identify and document available three-dimensional combustion data related to pulverized coal combustion. Third, collect and evaluate three-dimensional data cases, and select suitable cases based on selection criteria. Fourth, organize the data sets into an easy-to-use format. Fifth, evaluate and interpret the nature and quality of the data base. 39 refs., 15 figs., 14 tabs.

Philips, S.D.; Smoot, L.D.

1989-08-01T23:59:59.000Z

354

Swapping Global Warming Gases for Methane in Gas Hydrate ...  

Science Conference Proceedings (OSTI)

Swapping Global Warming Gases for Methane in Gas Hydrate Layer ... would serve as energy sources as well as carbon dioxide storage sites in the ...

2006-07-20T23:59:59.000Z

355

Warm Springs Water District District Heating Low Temperature...  

Open Energy Info (EERE)

Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal...

356

Intense Ion Beam for Warm Dense Matter Physics  

E-Print Network (OSTI)

charged particle physics Introduction . . . . . . . . .Driven Warm Dense Matter Physics, Four Point Sher- atonIntroduction to Plasma Physics, Plenum Press, New York [18

Heimbucher, Lynn

2008-01-01T23:59:59.000Z

357

She, With a Warm Palm, the Skin Over My Spine.  

E-Print Network (OSTI)

??She, with a Warm Palm, the Skin over My Spine is a collection of sixnonfiction essays and three vignettes divided into two parts. The first… (more)

Cambardella, Cara Maria Michele

2010-01-01T23:59:59.000Z

358

List of Central Air conditioners Incentives | Open Energy Information  

Open Energy Info (EERE)

Central Air conditioners Incentives Central Air conditioners Incentives Jump to: navigation, search The following contains the list of 1032 Central Air conditioners Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1032) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) Utility Rebate Program Texas Commercial Installer/Contractor

359

Pressure Regain Strategies for Existing Air Distribution Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pressure Regain Strategies for Pressure Regain Strategies for Existing Air Distribution Systems Arlan Burdick IBACOS, Inc. Pressure Regain Strategies for Existing Air Distribution Systems Problem Statement Thermal enclosure upgrades can reduce peak loads by 50%. If the furnace is right-sized for this new peak load and the ducts are not modified or replaced, the resulting airflows at the supply registers will be significantly reduced. -Will the outlets meet industry standards for performance? - Should they be replaced to achieve good room air mixing? - Should the end of the duct be modified to improve airflow characteristics? Pressure Regain Strategies for Existing Air Distribution Systems Expected Results We expect to find a cost-effective solution to gaining proper airflow to a room without completely replacing

360

100 LPW 800 Lm Warm White LED  

Science Conference Proceedings (OSTI)

An illumination grade warm white (WW) LED, having correlated color temperature (CCT) between 2800 K and 3500K and capable of producing 800 lm output at 100 lm/W, has been developed in this program. The high power WW LED is an ideal source for use as replacement for incandescent, and Halogen reflector and general purpose lamps of similar lumen value. Over the two year period, we have made following accomplishments: developed a high power warm white LED product and made over 50% improvements in light output and efficacy. The new high power WW LED product is a die on ceramic surface mountable LED package. It has four 1x1 mm{sup 2} InGaN pump dice flip chip attached to a ceramic submount in 2x2 array, covered by warm white phosphor ceramic platelets called Lumiramicâ?¢ and an overmolded silicone lens encapsulating the LED array. The performance goal was achieved through breakthroughs in following key areas: (1) High efficiency pump LED development through pump LED active region design and epi growth quality improvement (funded by internal programs). (2) Increase in injection efficiency (IE) represented by reduction in forward voltage (V{sub f}) through the improvement of the silver-based p-contact and a reduction in spreading resistance. The injection efficiency was increased from 80% at the start of the program to 96% at the end of the program at 700 mA/mm{sup 2}. (3) Improvement in thermal design as represented by reduction in thermal resistance from junction to case, through improvement of the die to submount connection in the thin film flip chip (TFFC) LED and choosing the submount material of high thermal conductivity. A thermal resistance of 1.72 K/W was demonstrated for the high power LED package. (4) Improvement in extraction efficiency from the LED package through improvement of InGaN die level and package level optical extraction efficiency improvement. (5) Improvement in phosphor system efficiency by improving the lumen equivalent (LE) and phosphor package efficiency (PPE) through improvement in phosphor-package interactions. Another achievement in the development of the phosphor integration technology is the demonstration of tight color control. The high power WW LED product developed has been proven to have good reliability. The manufacturing of the product will be done in Philips Lumiledsâ?? LUXEON Rebel production line which has produced billions of high power LEDs. The first high power WW LED product will be released to the market in 2011.

Decai Sun

2010-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "warm air furnace" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Global Warming: A Science Overview for the A/C Industry  

SciTech Connect

Fossil fuels (i.e., coal, oil, and natural gas) provide about 85% of the world's energy, sustaining our standard-of-living. They are inexpensive, transportable, safe, and relatively abundant. At the same time, their use contributes to problems such as air quality and acid rain that are being addressed through various control efforts and to the problem of global warming, which is now being considered by governments of the world. This talk will focus on six key aspects of the scientific findings that are leading to proposals for significant limitation of the emissions of fossil-fuel-derived carbon dioxide and limitations on emissions of other greenhouse gases that can influence the global climate, including substances used in the refrigeration and air-conditioning industries.

MacCracken, M.C.

1999-12-06T23:59:59.000Z

362

Energy and global warming impacts of CFC alternative technologies for foam building insulations  

Science Conference Proceedings (OSTI)

Chlorofluorocarbons (CFCS) have been used as blowing agents in foam insulation, as the working fluids in cooling and refrigeration equipment, and as solvents in general and precision cleaning applications since their introduction in the 1930s. The number of applications and volumes of CFCs used grew at a tremendous pace during the 1960s and 1970s, but in the mid-1980s it was confirmed that these extremely useful chemicals contribute to the destruction of stratospheric zone and that they are the primary cause of the CFCs have also been found to be second only to carbon dioxide as a factor causing increased greenhouse warming. These chemicals are being phased out of use rapidly to protect the ozone layer and it is very important that the replacements for CFCs do not result in a net increase in global warming by introducing less efficient processes that lead to higher energy use and increased carbon dioxide emissions. A study was conducted to identify those alternative chemicals and technologies that could replace CFCs in energy related applications before the year 2000, and to assess the total potential impact of those alternatives on global warming. The analysis for this project included an estimate of the direct effects from the release of blowing agents, refrigerants, and solvents into the atmosphere and the indirect effects of carbon dioxide emissions resulting from energy use for commercial and residential building insulation, household and commercial refrigeration, building and automobile air conditioning, and general metal and electronics solvent cleaning. This paper focuses on those aspects of the study relevant to building insulation. In general the hydrofluorocarbon (HFC) and hydrochlorofluorocarbon alternatives for CFCs lead to large and sometimes dramatic reductions in total equivalent warming impact, lifetime equivalent C0{sub 2} emissions (TEWI). Most of the reductions result from decreased direct effects without significant changes in energy use.

Fischer, S.K.; Fairchild, P.D.; Hughes, P.J.

1992-09-01T23:59:59.000Z

363

Energy and global warming impacts of CFC alternative technologies for foam building insulations  

SciTech Connect

Chlorofluorocarbons (CFCS) have been used as blowing agents in foam insulation, as the working fluids in cooling and refrigeration equipment, and as solvents in general and precision cleaning applications since their introduction in the 1930s. The number of applications and volumes of CFCs used grew at a tremendous pace during the 1960s and 1970s, but in the mid-1980s it was confirmed that these extremely useful chemicals contribute to the destruction of stratospheric zone and that they are the primary cause of the CFCs have also been found to be second only to carbon dioxide as a factor causing increased greenhouse warming. These chemicals are being phased out of use rapidly to protect the ozone layer and it is very important that the replacements for CFCs do not result in a net increase in global warming by introducing less efficient processes that lead to higher energy use and increased carbon dioxide emissions. A study was conducted to identify those alternative chemicals and technologies that could replace CFCs in energy related applications before the year 2000, and to assess the total potential impact of those alternatives on global warming. The analysis for this project included an estimate of the direct effects from the release of blowing agents, refrigerants, and solvents into the atmosphere and the indirect effects of carbon dioxide emissions resulting from energy use for commercial and residential building insulation, household and commercial refrigeration, building and automobile air conditioning, and general metal and electronics solvent cleaning. This paper focuses on those aspects of the study relevant to building insulation. In general the hydrofluorocarbon (HFC) and hydrochlorofluorocarbon alternatives for CFCs lead to large and sometimes dramatic reductions in total equivalent warming impact, lifetime equivalent C0{sub 2} emissions (TEWI). Most of the reductions result from decreased direct effects without significant changes in energy use.

Fischer, S.K.; Fairchild, P.D.; Hughes, P.J.

1992-01-01T23:59:59.000Z

364

LLNL scientists find precipitation, global warming link  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 For immediate release: 11/11/2013 | NR-13-11-04 Lawrence Livermore scientists have found that observed changes in global precipitation are directly affected by human activities. LLNL scientists find precipitation, global warming link Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov LIVERMORE, Calif. -- The rain in Spain may lie mainly on the plain, but the location and intensity of that rain is changing not only in Spain but around the globe. A new study by Lawrence Livermore National Laboratory scientists shows that observed changes in global (ocean and land) precipitation are directly affected by human activities and cannot be explained by natural variability alone. The research appears in the Nov. 11 online edition of the Proceedings of the National Academy of Sciences.

365

Uncertainty of calorimeter measurements at NREL's high flux solar furnace  

DOE Green Energy (OSTI)

The uncertainties of the calorimeter and concentration measurements at the High Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL) are discussed. Two calorimeter types have been used to date. One is an array of seven commercially available circular foil calorimeters (gardon or heat flux gages) for primary concentrator peak flux (up to 250 W/cm{sup 2}). The second is a cold-water calorimeter designed and built by the University of Chicago to measure the average exit power of the reflective compound parabolic secondary concentrator used at the HFSF (over 3.3 kW across a 1.6cm{sup {minus}2} exit aperture, corresponding to a flux of about 2 kW/cm{sup 2}). This paper discussed the uncertainties of the calorimeter and pyrheliometer measurements and resulting concentration calculations. The measurement uncertainty analysis is performed according to the ASME/ANSI standard PTC 19.1 (1985). Random and bias errors for each portion of the measurement are analyzed. The results show that as either the power or the flux is reduced, the uncertainties increase. Another calorimeter is being designed for a new, refractive secondary which will use a refractive material to produce a higher average flux (5 kW/cm{sup 2}) than the reflective secondary. The new calorimeter will use a time derivative of the fluid temperature as a key measurement of the average power out of the secondary. A description of this calorimeter and test procedure is also presented, along with a pre-test estimate of major sources of uncertainty. 8 refs., 4 figs., 3 tabs.

Bingham, C.E.

1991-12-01T23:59:59.000Z

366

Air Resources: Prevention and Control of Air Contamination and Air  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Resources: Prevention and Control of Air Contamination and Air Air Resources: Prevention and Control of Air Contamination and Air Pollution, Air Quality Classifications and Standards, and Air Quality Area Classifications (New York) Air Resources: Prevention and Control of Air Contamination and Air Pollution, Air Quality Classifications and Standards, and Air Quality Area Classifications (New York) < Back Eligibility Agricultural Fuel Distributor Industrial Institutional Investor-Owned Utility Local Government Multi-Family Residential Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Transportation Tribal Government Utility Program Info State New York Program Type Environmental Regulations Provider NY Department of Environmental Conservation These regulations establish emissions limits and permitting and operational

367

Modification of Precipitation from Warm Clouds—A Review  

Science Conference Proceedings (OSTI)

This review is begun with a brief summary of the current status of our understanding of the physics of precipitation in warm clouds. The impact of warm-cloud precipitation processes on the evolution of the ice phase in supercooled clouds also is ...

William R. Cotton

1982-02-01T23:59:59.000Z

368

Applied engineering on biosystems: the reduction in global warming  

Science Conference Proceedings (OSTI)

This work concerns the problem of decision making in the context of investment allocation in clean technology and in reforestation, aimed at reducing the global warming. In order to model the government actions, fuzzy rules are employed to represent ... Keywords: biosystems modeling, fuzzy control, global warming, optimization, simulation

J. A. M. Felippe de Souza; Marco A. L. Caetano; Douglas F. M. Gherardi; Takashi Yoneyama

2009-11-01T23:59:59.000Z

369

The Abyss of the Nordic Seas Is Warming  

Science Conference Proceedings (OSTI)

Over the past decade, the multiyear oceanographic time series from ocean weather station Mike at 66°N, 2°E indicate a warming by about 0.01°C yr?1 in the deep water of the Norwegian Sea. The time of onset of this warming is depth dependent, ...

Svein Østerhus; Tor Gammelsrød

1999-11-01T23:59:59.000Z

370

A Nonlinear Response of Sahel Rainfall to Atlantic Warming  

Science Conference Proceedings (OSTI)

The response over West Africa to uniform warming of the Atlantic Ocean is analyzed using idealized simulations with a regional climate model. With warming of 1 and 1.5 K, rainfall rates increase by 30%–50% over most of West Africa. With Atlantic ...

Naresh Neupane; Kerry H. Cook

2013-09-01T23:59:59.000Z

371

A nonlinear response of Sahel rainfall to Atlantic warming  

Science Conference Proceedings (OSTI)

The response over West Africa to uniform warming of the Atlantic Ocean is analyzed using idealized simulations with a regional climate model. With warming of 1 K and 1.5 K, rainfall rates increase by 30-50% over most of West Africa. With Atlantic ...

Naresh Neupane; Kerry H. Cook

372

WOOD FLOORING 1. INTRODUCTION TO WARM AND WOOD FLOORING  

E-Print Network (OSTI)

This chapter describes the methodology used in EPA’s Waste Reduction Model (WARM) to estimate streamlined life-cycle greenhouse gas (GHG) emission factors for wood flooring beginning at the waste generation reference point. 1 The WARM GHG emission factors are used to compare the net emissions associated with wood flooring in the following three waste management alternatives: source reduction, combustion, and landfilling.

unknown authors

2012-01-01T23:59:59.000Z

373

WOOD PRODUCTS 1. INTRODUCTION TO WARM AND WOOD PRODUCTS  

E-Print Network (OSTI)

This chapter describes the methodology used in EPA’s Waste Reduction Model (WARM) to estimate streamlined life-cycle greenhouse gas (GHG) emission factors for wood products beginning at the point of waste generation. The WARM GHG emission factors are used to compare the net emissions associated with wood products in the following four materials management alternatives: source

unknown authors

2012-01-01T23:59:59.000Z

374

FIBERGLASS INSULATION 1. INTRODUCTION TO WARM AND FIBERGLASS INSULATION  

E-Print Network (OSTI)

This chapter describes the methodology used in EPA’s Waste Reduction Model (WARM) to estimate streamlined life-cycle greenhouse gas (GHG) emission factors for fiberglass insulation beginning at the waste generation reference point. 1 The WARM GHG emission factors are used to compare the net emissions associated with fiberglass insulation in the following two waste management alternatives: source reduction and landfilling.

unknown authors

2012-01-01T23:59:59.000Z

375

Efficiency Maine Business Programs (Unitil Gas) - Commercial...  

Open Energy Info (EERE)

Furnaces; 1000 Condensing Boilers: 1500 - 4500 Non-Condensing Boilers: 750-3,000 Steam Boiler: 800 or 1MBtuh Infrared Unit Heaters: 500 Natural Gas Warm-Air Unit...

376

Section D: SPACE HEATING  

U.S. Energy Information Administration (EIA)

Central warm-air furnace with ducts to individual rooms other than a heat pump ..... 03 Steam/Hot water ... REVERSE Heat pump ... Don't have a separate water heater ...

377

Buildings Energy Data Book: 7.4 Efficiency Standards for Commercial...  

Buildings Energy Data Book (EERE)

Warm Air Furnaces Effective for products manufactured on or after January 1, 1994 Thermal Efficiency (1) Gas-fired, with capacity 225,000 Btuhr Not less than 80%...

378

Geoengineering: Plan B Remedy for Global Warming Andrew A. Lacis  

NLE Websites -- All DOE Office Websites (Extended Search)

Geoengineering: Plan B Remedy for Global Warming Geoengineering: Plan B Remedy for Global Warming Andrew A. Lacis NASA Goddard Institute for Space Studies Accelerated melting of Greenland ice is a clear indication that consequences of global warming are real and impending. The underlying causes of global warming are well enough understood, but the necessary reduction of greenhouse gases to prevent irreversible climate change is unlikely to happen before the point of no return is reached. To reverse the impending sea level rise, geoengineering counter- measures may be required to counter the current global energy imbalance due to global warming. Of the many proposed remedies, deploying aerosols within the stratosphere offers realistic prospects. Sulfur injections in the lower stratosphere would have the cooling effect of naturally occurring volcanic aerosols. Soot at

379

CSER 99-007 Criticality Safety Evaluation Report for PFP Glovebox HA-21I Muffle Furnace Operation for Plutonium Stabilization  

SciTech Connect

Criticality Safety Evaluation Report for operation of PFP Glovebox HA-21I muffle furnace for plutonium stabilization. Glovebox limits are specified for processing metal and oxide fissile materials.

DOBBIN, K.D.

1999-12-16T23:59:59.000Z

380

Wednesday, December 8, 2010 Global Warming  

E-Print Network (OSTI)

rising and people in developing countries are consuming more energy per capita... ...and more demand, but not renewable) Energy consumption is rising faster than the renewables are growing, so more oil, coal that are emitted directly to air So this is $100 per 400 gallons, or 25 cents per gallon. Per capita emissions

Toohey, Darin W.

Note: This page contains sample records for the topic "warm air furnace" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The Interaction of Radiative and Dynamical Processes during a Simulated Sudden Stratospheric Warming  

Science Conference Proceedings (OSTI)

An analysis of a spontaneous sudden stratospheric warming that occurred during a 2-year integration of the Langley Research Center Atmospheric Simulation Model is presented. The simulated warming resembles observed “wave 1&rdquo warmings in the ...

R. B. Pierce; W. T. Blackshear; W. L. Grose; R. E. Turner; T. D. Fairlie

1993-12-01T23:59:59.000Z

382

The Predictability of Stratospheric Warming Events: More from the Troposphere or the Stratosphere?  

Science Conference Proceedings (OSTI)

The roles of the stratosphere and the troposphere in determining the predictability of stratospheric final warming and sudden warming events are evaluated in an idealized atmospheric model. For each stratospheric warming event simulated in the ...

Lantao Sun; Walter A. Robinson; Gang Chen

2012-02-01T23:59:59.000Z

383

Economics of residential gas furnaces and water heaters in United States new construction market  

SciTech Connect

New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2009-05-06T23:59:59.000Z

384

Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture  

SciTech Connect

The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittal’s Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

Seaman, John

2013-01-14T23:59:59.000Z

385

A Feasibility Study for Recycling Used Automotive Oil Filters In A Blast Furnace  

SciTech Connect

This feasibility study has indicated that of the approximately 120,000 tons of steel available to be recycled from used oil filters (UOF's), a maximum blast furnace charge of 2% of the burden may be anticipated for short term use of a few months. The oil contained in the most readily processed UOF's being properly hot drained and crushed is approximately 12% to 14% by weight. This oil will be pyrolized at a rate of 98% resulting in additional fuel gas of 68% and a condensable hydrocarbon fraction of 30%, with the remaining 2% resulting as carbon being added into the burden. Based upon the writer's collected information and assessment, there appears to be no operational problems relating to the recycling of UOF's to the blast furnace. One steel plant in the US has been routinely charging UOF's at about 100 tons to 200 tons per month for many years. Extensive analysis and calculations appear to indicate no toxic consideration as a result of the pyrolysis of the small contained oil ( in the 'prepared' UOFs) within the blast furnace. However, a hydrocarbon condensate in the ''gasoline'' fraction will condense in the blast furnace scrubber water and may require additional processing the water treatment system to remove benzene and toluene from the condensate. Used oil filters represent an additional source of high quality iron units that may be effectively added to the charge of a blast furnace for beneficial value to the operator and to the removal of this resource from landfills.

Ralph M. Smailer; Gregory L. Dressel; Jennifer Hsu Hill

2002-01-21T23:59:59.000Z

386

Method of regulating the amount of underfire air for combustion of wood fuels in spreader-stroke boilers  

DOE Patents (OSTI)

A method of metering underfire air for increasing efficiency and reducing particulate emissions from wood-fire, spreader-stoker boilers is disclosed. A portion of the combustion air, approximately one pound of air per pound of wood, is fed through the grate into the fuel bed, while the remainder of the combustion air is distributed above the fuel in the furnace, and the fuel bed is maintained at a depth sufficient to consume all oxygen admitted under fire and to insure a continuous layer of fresh fuel thereover to entrap charred particles inside the fuel bed.

Tuttle, Kenneth L. (Federal Way, WA)

1980-01-01T23:59:59.000Z

387

Energy Basics: Solar Air Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Homes & Buildings Printable Version Share this resource Lighting & Daylighting Passive Solar Design Space Heating & Cooling Cooling Systems Heating Systems Furnaces & Boilers Wood...

388

NETL: Gasification Systems - Integrated Warm Gas Multicontaminant Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Project Number: DE-FC26-05NT42459 Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Project ID: DE-FC26-05NT42459 Objective: The objective is to develop a warm multi-contaminant syngas cleaning system for operation between 300 and 700° F. This project will continue development of the RTI warm syngas cleanup technology suite. Based on the field testing results with real syngas from Eastman Chemical Company's gasifier under DOE Contract DE-AC26-99FT40675, additional technical issues need to be addressed to move the technologies used in warm syngas cleaning further towards commercial deployment especially for chemical/fuels production. These issues range from evaluation of startup and standby options for the more developed desulfurization processes to integration and actual pilot plant testing with real coal-derived syngas for the technologies that were tested at bench scale during Phase I. Development shall continue of the warm gas syngas cleaning technology platform through a combination of lab-scale R&D and larger integrated pilot plant testing with real coal-derived syngas as well as process/systems analysis and simulation for optimization of integration and intensification.

389

HEU Holdup Measurements in 321-M B and Spare U-Al Casting Furnaces  

Science Conference Proceedings (OSTI)

The Analytical Development Section of Savannah River Technology Center (SRTC) was requested by the Facilities Decontamination Division (FDD) to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The 321-M facility was used to fabricate enriched uranium fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the production reactors. This report covers holdup measurements in two uranium aluminum alloy (U-Al) casting furnaces. Our results indicate an upper limit of 235U content for the B and Spare furnaces of 51 and 67 g respectively. This report discusses the methodology, non-destructive assay (NDA) measurements, and results of the uranium holdup on the two furnaces.

Salaymeh, S.R.

2002-04-30T23:59:59.000Z

390

Apparatus having inductively coupled coaxial coils for measuring buildup of slay or ash in a furnace  

DOE Patents (OSTI)

The buildup of slag or ash on the interior surface of a furnace wall is monitored by disposing two coils to form a transformer which is secured adjacent to the inside surface of the furnace wall. The inductive coupling between the two coils of the transformer is affected by the presence of oxides of iron in the slag or ash which is adjacent to the transformer, and the application of a voltage to one winding produces a voltage at the other winding that is related to the thickness of the slag or ash buildup on the inside surface of the furnace wall. The output of the other winding is an electrical signal which can be used to control an alarm or the like or provide an indication of the thickness of the slag or ash buildup at a remote location.

Mathur, Mahendra P. (Pittsburgh, PA); Ekmann, James M. (Bethel Park, PA)

1989-01-01T23:59:59.000Z

391

Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility Facility Furnace Creek Ranch Sector Geothermal energy Type Pool and Spa Location Death Valley, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

392

DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE CAPTURE PROJECT AT THE ARCELORMITTAL USA, INC. INDIANA HARBOR STEEL MILL, EAST CHICAGO, INDIANA U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE CAPTURE PROJECT AT THE ARCELORMITTAL USA, INC. INDIANA HARBOR STEEL MILL, EAST CHICAGO, INDIANA U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1745 iii COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: Final Environmental Assessment for the Blast Furnace Gas Flare Capture Project at the ArcelorMittal USA, Inc. Indiana Harbor Steel Mill, East Chicago, Indiana

393

Blast furnace granular coal injection project. Annual report, January--December 1993  

SciTech Connect

This initial annual report describes the Blast Furnace Granular Coal Injection project being implemented at Bethlehem Steel Corporation`s (BSC) Burns Harbor, Indiana, plant. This installation will be the first in the United States to employ British Steel technology that uses granular coal to provide part of the fuel requirement of blast furnaces. The project will demonstrate/assess a broad range of technical/economic issues associated with the use of coal for this purpose. These include: coal grind size, coal injection rate, coal source (type) and blast furnace conversion method. Preliminary Design (Phase 1) began in 1991 with detailed design commencing in 1993. Construction at Burns Harbor (Phase 2) began in August 1993. Construction is expected to complete in the first quarter of 1995 which will be followed by the demonstration test program (Phase 3). Progress is described.

1994-06-01T23:59:59.000Z

394

Development of the Household Sample for Furnace and Boiler Life-Cycle Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Analysis Title Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Analysis Publication Type Report LBNL Report Number LBNL-55088 Year of Publication 2005 Authors Whitehead, Camilla Dunham, Victor H. Franco, Alexander B. Lekov, and James D. Lutz Document Number LBNL-55088 Pagination 22 Date Published May 31 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract Residential household space heating energy use comprises close to half of all residential energy consumption. Currently, average space heating use by household is 43.9 Mbtu for a year. An average, however, does not reflect regional variation in heating practices, energy costs, or fuel type. Indeed, a national average does not capture regional or consumer group cost impacts from changing efficiency levels of heating equipment. The US Department of Energy sets energy standards for residential appliances in, what is called, a rulemaking process. The residential furnace and boiler efficiency rulemaking process investigates the costs and benefits of possible updates to the current minimum efficiency regulations. Lawrence Berkeley National Laboratory (LBNL) selected the sample used in the residential furnace and boiler efficiency rulemaking from publically available data representing United States residences. The sample represents 107 million households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler rulemaking. This paper describes the choice of criteria to select the sample of houses used in the rulemaking process. The process of data extraction is detailed in the appendices and is easily duplicated.The life-cycle cost is calculated in two ways with a household marginal energy price and a national average energy price. The LCC results show that using an national average energy price produces higher LCC savings but does not reflect regional differences in energy price.

395

Warm Weather and the Daily Commute | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Warm Weather and the Daily Commute Warm Weather and the Daily Commute Warm Weather and the Daily Commute May 7, 2013 - 12:02pm Addthis Biking to work helps you get some exercise while reducing your carbon footprint. | Photo courtesy of iStockphoto.com/olaser Biking to work helps you get some exercise while reducing your carbon footprint. | Photo courtesy of iStockphoto.com/olaser Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? Check out options for busing or carpooling in your area or, if you live close, try walking or biking to work. You know the weather is starting to warm up when you start hearing about those "bike, bus, or walk to work" challenges. And while my local news just started drumming up publicity for theirs, I've seen these events pop up in

396

Brooks Warm Springs Aquaculture Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Warm Springs Aquaculture Low Temperature Geothermal Facility Warm Springs Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Brooks Warm Springs Aquaculture Low Temperature Geothermal Facility Facility Brooks Warm Springs Sector Geothermal energy Type Aquaculture Location Fergus County, Montana Coordinates 47.2126745°, -109.4141° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

397

The Sensitivity of Mountain Snowpack Accumulation to Climate Warming  

Science Conference Proceedings (OSTI)

Controls on the sensitivity of mountain snowpack accumulation to climate warming (?S) are investigated. This is accomplished using two idealized, physically based models of mountain snowfall to simulate snowpack accumulation for the Cascade ...

Justin R. Minder

2010-05-01T23:59:59.000Z

398

Successive Modulation of ENSO to the Future Greenhouse Warming  

Science Conference Proceedings (OSTI)

The multidecadal modulation of the El Niño–Southern Oscillation (ENSO) due to greenhouse warming has been analyzed herein by means of diagnostics of Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) coupled general ...

Soon-Il An; Jong-Seong Kug; Yoo-Geun Ham; In-Sik Kang

2008-01-01T23:59:59.000Z

399

Mechanisms of Remote Tropical Surface Warming during El Niño  

Science Conference Proceedings (OSTI)

The authors demonstrate through atmospheric general circulation model (the Community Climate Model version 3.10) simulations of the 1997/98 El Niño that the observed “remote” (i.e., outside the Pacific) tropical land and ocean surface warming ...

John C. H. Chiang; Benjamin R. Lintner

2005-10-01T23:59:59.000Z

400

Are You Keeping Warm This Winter? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Are You Keeping Warm This Winter? Are You Keeping Warm This Winter? Are You Keeping Warm This Winter? January 23, 2013 - 4:33pm Addthis An efficient heater can save money and energy while keeping you warmer. | Photo by Dennis Schroeder, NREL 20288. An efficient heater can save money and energy while keeping you warmer. | Photo by Dennis Schroeder, NREL 20288. Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? Get an energy audit and learn about your heating options to warm your home while saving money. Last week, I turned on the weather forecast to find that the entire central United States was hovering somewhere between 5 and 20 degrees. Talk about frigid! I've lived all over the country, and I know how incredibly miserable it is to do anything when the high barely ekes above 0 degrees

Note: This page contains sample records for the topic "warm air furnace" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Building Energy Software Tools Directory: AkWarm  

NLE Websites -- All DOE Office Websites (Extended Search)

AkWarm AkWarm AkWarm logo. Innovative, user-friendly, Windows-based software for home energy modeling. AkWarm is designed for weatherization assessment and the EPA Energy Star Home energy rating program. Features include: Graphical display of energy use by building component, improvement options analysis, design heat load, calculates CO2 emissions, and shows code compliance. Utility, weather data, and other libraries are maintained in a database library for easy updating. A separate database is available to archive all input and output data for detailed analysis of housing types, trends, amd energy use. Keywords home energy rating systems, home energy, residential modeling, weatherization Validation/Testing N/A Expertise Required Basic understanding of building construction, with a minimal level of

402

Are You Keeping Warm This Winter? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Are You Keeping Warm This Winter? Are You Keeping Warm This Winter? Are You Keeping Warm This Winter? January 23, 2013 - 4:33pm Addthis An efficient heater can save money and energy while keeping you warmer. | Photo by Dennis Schroeder, NREL 20288. An efficient heater can save money and energy while keeping you warmer. | Photo by Dennis Schroeder, NREL 20288. Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? Get an energy audit and learn about your heating options to warm your home while saving money. Last week, I turned on the weather forecast to find that the entire central United States was hovering somewhere between 5 and 20 degrees. Talk about frigid! I've lived all over the country, and I know how incredibly miserable it is to do anything when the high barely ekes above 0 degrees

403

Warm coats, big thanks | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Community / Warm coats, big thanks Community / Warm coats, big thanks Warm coats, big thanks Posted: January 9, 2014 - 2:23pm Over the last 12 years, Y-12ers have donated almost 7000 coats, sweaters and other winter wear to the Volunteer Ministry Center. As East Tennessee faces the coldest temperatures seen in a long while, Y-12ers have shown their volunteer spirit for the twelfth straight year by helping countless people stay warm thanks to another successful United Way Coat Drive to benefit the Volunteer Ministry Center. In total, the site donated 589 coats and winter wear items, 64 pairs of gloves, 47 scarves, and 66 hats and toboggans, which VMC makes available to the public through its Knoxville office. In addition, this year's efforts were expanded to include collection of toiletries for VMC. Y-12 collected more than 20 copy paper boxes full of

404

Wildfires may contribute more to global warming than previously predicted  

NLE Websites -- All DOE Office Websites (Extended Search)

Wildfires may contribute more to global warming Wildfires may contribute more to global warming Wildfires may contribute more to global warming than previously predicted They suggest that fire emissions could contribute a lot more to the observed climate warming than current estimates show. July 9, 2013 Haze of smoke emanating from the 2011 Las Conchas, NM fire. Haze of smoke emanating from the 2011 Las Conchas, NM fire. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "The fact that we are experiencing more fires and that climate change may increase fire frequency underscores the need to include these specialized particles in the computer models, and our results show how this can be done," Dubey said. Particle analysis shows "tar ball" effect is significant LOS ALAMOS, N.M., July 9, 2013-Wildfires produce a witch's brew of

405

Wildfires may contribute more to global warming than previously predicted  

NLE Websites -- All DOE Office Websites (Extended Search)

Wildfires may contribute more to global warming Wildfires may contribute more to global warming Wildfires may contribute more to global warming than previously predicted They suggest that fire emissions could contribute a lot more to the observed climate warming than current estimates show. July 9, 2013 Haze of smoke emanating from the 2011 Las Conchas, NM fire. Haze of smoke emanating from the 2011 Las Conchas, NM fire. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "The fact that we are experiencing more fires and that climate change may increase fire frequency underscores the need to include these specialized particles in the computer models, and our results show how this can be done," Dubey said. Particle analysis shows "tar ball" effect is significant LOS ALAMOS, N.M., July 9, 2013-Wildfires produce a witch's brew of

406

NOAA Predicts Mixed Bag of Drought, Flooding and Warm Weather...  

NLE Websites -- All DOE Office Websites (Extended Search)

NOAA Predicts Mixed Bag of Drought, Flooding and Warm Weather for Spring Print E-mail NOAA 2013 Spring Outlook Map Thursday, March 21, 2013 Featured by NOAA, a member of the U.S....

407

Warm Conveyor Belts in Idealized Moist Baroclinic Wave Simulations  

Science Conference Proceedings (OSTI)

This idealized modeling study of moist baroclinic waves addresses the formation of moist ascending airstreams, so-called warm conveyor belts (WCBs), their characteristics, and their significance for the downstream flow evolution. Baroclinic wave ...

Sebastian Schemm; Heini Wernli; Lukas Papritz

2013-02-01T23:59:59.000Z

408

A global warming forum: Scientific, economic, and legal overview  

SciTech Connect

A Global Warming Forum covers in detail five general subject areas aimed at providing first, the scientific background and technical information available on global warming and second, a study and evaluation of the role of economic, legal, and political considerations in global warming. The five general topic areas discussed are the following: (1) The role of geophysical and geoengineering methods to solve problems related to global climatic change; (2) the role of oceanographic and geochemical methods to provide evidence for global climatic change; (3) the global assessment of greenhouse gas production including the need for additional information; (4) natural resource management needed to provide long-term global energy and agricultural uses; (5) legal, policy, and educational considerations required to properly evaluate global warming proposals.

Geyer, R.A. (ed.)

1993-01-01T23:59:59.000Z

409

Modeling the Impact of Warming in Climate Change Economics  

E-Print Network (OSTI)

Any economic analysis of climate change policy requires some model that describes the impact of warming on future GDP and consumption. Most integrated assessment models (IAMs) relate temperature to the level of real GDP ...

Pindyck, Robert S.

410

Rapid Development of the Tropical Cyclone Warm Core  

Science Conference Proceedings (OSTI)

This paper presents a simple theoretical argument to isolate the conditions under which a tropical cyclone can rapidly develop a warm-core thermal structure and subsequently approach a steady state. The theoretical argument is based on the ...

Jonathan L. Vigh; Wayne H. Schubert

2009-11-01T23:59:59.000Z

411

On the Height of the Warm Core in Tropical Cyclones  

Science Conference Proceedings (OSTI)

The warm-core structure of tropical cyclones is examined in idealized simulations using the Weather Research and Forecasting (WRF) Model. The maximum perturbation temperature in a control simulation occurs in the midtroposphere (5–6 km), in ...

Daniel P. Stern; David S. Nolan

2012-05-01T23:59:59.000Z

412

Greenhouse Warming: Is the Mid-Holocene a Good Analogue?  

Science Conference Proceedings (OSTI)

The mid-Holocene period (from approximately 9000 to 6000 years before present) is often suggested as an analogue for enhanced greenhouse warming. The changes in net radiative forcing at the top of the atmosphere are very different; increases in ...

John F. B. Mitchell

1990-11-01T23:59:59.000Z

413

Sudden Stratospheric Warming and Anomalous U.S. Weather  

Science Conference Proceedings (OSTI)

Severe distortion of tropospheric circulation is associated with major sudden stratospheric warming (SSW) events. This distortion consisting primarily of weakening of smaller-scale synoptic mats and development of strong blocking activity, is ...

James P. McGuirk; Donald A. Douglas

1988-01-01T23:59:59.000Z

414

Warm Rain Study in Hawaii—Rain Initiation  

Science Conference Proceedings (OSTI)

More than 300 hours of aircraft flights were conducted in Hawaii from 1977 to 1979 to study precipitation mechanisms in warm rain. Airborne instruments were used to measure drop size distributions over the size range from cloud droplets to ...

Tsutomu Takahashi

1981-02-01T23:59:59.000Z

415

Supervised Learning Approaches to Classify Sudden Stratospheric Warming Events  

Science Conference Proceedings (OSTI)

Sudden stratospheric warmings are prominent examples of dynamical wave–mean flow interactions in the Arctic stratosphere during Northern Hemisphere winter. They are characterized by a strong temperature increase on time scales of a few days and a ...

Christian Blume; Katja Matthes; Illia Horenko

2012-06-01T23:59:59.000Z

416

Small-Scale Variability in Warm Continental Cumulus Clouds  

Science Conference Proceedings (OSTI)

We have analyzed small-scale fluctuations in microphysical, dynamical and thermodynamical parameters measured in two warm cumulus clouds during the Cooperative Convective Precipitation Experiment (CCOPE) project (1981) in light of predictions of ...

P. H. Austin; M. B. Baker; A. M. Blyth; J. B. Jensen

1985-06-01T23:59:59.000Z

417

A 15-Year Climatology of Warm Conveyor Belts  

Science Conference Proceedings (OSTI)

This study presents the first climatology of so-called warm conveyor belts (WCBs), strongly ascending moist airstreams in extratropical cyclones that, on the time scale of 2 days, rise from the boundary layer to the upper troposphere. The ...

Sabine Eckhardt; Andreas Stohl; Heini Wernli; Paul James; Caroline Forster; Nicole Spichtinger

2004-01-01T23:59:59.000Z

418

Global Warming Shifts the Monsoon Circulation, Drying South Asia  

Science Conference Proceedings (OSTI)

Monsoon rainfall over South Asia has decreased during the last 5 to 6 decades according to several sets of observations. Although sea surface temperature (SST) has risen across the Indo-Pacific warm pool during this period, the expected ...

H. Annamalai; Jan Hafner; K. P. Sooraj; P. Pillai

2013-05-01T23:59:59.000Z

419

Regulation of Moist Convection over the West Pacific Warm Pool  

Science Conference Proceedings (OSTI)

The mechanisms that regulate moist convection over the warm tropical oceans are not well understood. One school of thought holds that convection is caused by the convergence of moisture, which in turn is produced by an independent dynamical ...

David J. Raymond

1995-11-01T23:59:59.000Z

420

Definition: Warm or Steaming Ground | Open Energy Information  

Open Energy Info (EERE)

heat is conducted to the earth's surface, warming the ground and sometimes causing steam to form when water is present. Ret LikeLike UnlikeLike You like this.Sign Up to see...

Note: This page contains sample records for the topic "warm air furnace" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Warming and Freshening in the Abyssal Southeastern Indian Ocean  

Science Conference Proceedings (OSTI)

Warming and freshening of abyssal waters in the eastern Indian Ocean between 1994/95 and 2007 are quantified using data from two closely sampled high-quality occupations of a hydrographic section extending from Antarctica northward to the ...

Gregory C. Johnson; Sarah G. Purkey; John L. Bullister

2008-10-01T23:59:59.000Z

422

Monitoring Global Climate Change: The Case of Greenhouse Warming  

Science Conference Proceedings (OSTI)

Recent record high temperatures and drought conditions in many regions of the United States have prompted heightened concern about whether these are early manifestations of the global green house warming projected by the major climate models. An ...

Fred B. Wood

1990-01-01T23:59:59.000Z

423

Mechanisms Affecting the Overturning Response in Global Warming Simulations  

Science Conference Proceedings (OSTI)

Climate models used to produce global warming scenarios exhibit widely diverging responses of the thermohaline circulation (THC). To investigate the mechanisms responsible for this variability, a regional Atlantic Ocean model driven with forcing ...

U. Schweckendiek; J. Willebrand

2005-12-01T23:59:59.000Z

424

Cloud Clusters and Superclusters over the Oceanic Warm Pool  

Science Conference Proceedings (OSTI)

Infrared satellite images of the oceanic warm-pool region (8O°E-160°W) have been objectively processed to reveal tropical “cloud clusters” with temperature colder than a given threshold. Cloud clusters span a somewhat lognormal distribution of ...

Brain E. Mapes; Robert A. Houze Jr.

1993-05-01T23:59:59.000Z

425

Long-Term Evolution of Elongated Warm Eddies  

Science Conference Proceedings (OSTI)

The purpose of this research is to investigate the evolution of elongated warm eddies. A shallow-water, reduced-gravity, primitive equation model is used to perform a multicase numerical experiment, which includes vortices of very different ...

Edgar G. Pavía; Manuel López

1994-10-01T23:59:59.000Z

426

Does Global Warming Cause Intensified Interannual Hydroclimate Variability?  

Science Conference Proceedings (OSTI)

The idea that global warming leads to more droughts and floods has become commonplace without clear indication of what is meant by this statement. Here, the authors examine one aspect of this problem and assess whether interannual variability of ...

Richard Seager; Naomi Naik; Laura Vogel

2012-05-01T23:59:59.000Z

427

The Dynamics of Northern Hemisphere Stratospheric Final Warming Events  

Science Conference Proceedings (OSTI)

A lag composite analysis is performed of the zonal-mean structure and dynamics of Northern Hemisphere stratospheric final warming (SFW) events. SFW events are linked to distinct zonal wind deceleration signatures in the stratosphere and ...

Robert X. Black; Brent A. McDaniel

2007-08-01T23:59:59.000Z

428

Mesoscale Predictability of an Extreme Warm-Season Precipitation Event  

Science Conference Proceedings (OSTI)

A mesoscale model is used to investigate the mesoscale predictability of an extreme precipitation event over central Texas on 29 June 2002 that lasted through 7 July 2002. Both the intrinsic and practical aspects of warm-season predictability, ...

Fuqing Zhang; Andrew M. Odins; John W. Nielsen-Gammon

2006-04-01T23:59:59.000Z

429

Interpretation of Simulated Global Warming Using a Simple Model  

Science Conference Proceedings (OSTI)

A simple energy balance model with two parameters, an effective heat capacity and an effective climate sensitivity, is used to interpret six GCM simulations of greenhouse gas–induced global warming. By allowing the parameters to vary in time, the ...

I. G. Watterson

2000-01-01T23:59:59.000Z

430

Inferences of Predictability Associated with Warm Season Precipitation Episodes  

Science Conference Proceedings (OSTI)

Herein preliminary findings are reported from a radar-based climatology of warm season precipitation “episodes.” Episodes are defined as time–space clusters of heavy precipitation that often result from sequences of organized convection such as ...

R. E. Carbone; J. D. Tuttle; D. A. Ahijevych; S. B. Trier

2002-07-01T23:59:59.000Z

431

Diurnal Variations of Warm-Season Precipitation over Northern China  

Science Conference Proceedings (OSTI)

This study examines the diurnal variations of the warm-season precipitation over northern China using the high-resolution precipitation products obtained from the Climate Prediction Center’s morphing technique (CMORPH) during May–August of 2003–...

Huizhong He; Fuqing Zhang

2010-04-01T23:59:59.000Z

432

Physics of Greenhouse Effect and Convection in Warm Oceans  

Science Conference Proceedings (OSTI)

Sea surface temperature (SST) in roughly 50% of the tropical Pacific Ocean is warm enough (SST > 300 K) to permit deep convection. This paper examines the effects of deep convection on the climatological mean vertical distributions of water vapor ...

A. K. Inamdar; V. Ramanathan

1994-05-01T23:59:59.000Z

433

Probing warm dense lithium by inelastic X-ray scattering  

E-Print Network (OSTI)

-26000, NWFP, Pakistan 9 Institut f¨ur Kernphysik, Technische Universit¨at Darmstadt, Schlo�gartenstr. 9-temperature superconductors and nuclear matter1 . Warm dense matter, defined by temperatures of a few electron volts

Loss, Daniel

434

Air Pollution (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

This article states regulations for monitoring air pollution, methods for permit applications, emission limitations for pollutants and air quality standards.

435

Saving Energy and Reducing Emissions from the Regeneration Air System of a Butane Dehydrogenation Plant  

E-Print Network (OSTI)

Texas Petrochemicals operates a butane dehydrogenation unit producing MTBE for reformulated gasoline that was originally constructed when energy was cheap and prior to environmental regulation. The process exhausts 900,000 pounds per hour of air at 900 to 1100°F containing CO and VOC. By installing a furnace/heat recovery steam generator, Texas Petrochemicals achieved significant reductions of VOC, CO, and NOx, along with energy savings.

John, T. P.

1998-04-01T23:59:59.000Z

436

Co-combustion of refuse derived fuel and coal in a cyclone furnace at the Baltimore Gas and Electric Company, C. P. Crane Station  

DOE Green Energy (OSTI)

A co-combustion demonstration burn of coal and fluff refuse-derived fuel (RDF) was conducted by Teledyne National and Baltimore Gas and Electric Company. This utility has two B and W cyclone furnaces capable of generating 400 MW. The facility is under a prohibition order to convert from No. 6 oil to coal; as a result, it was desirable to demonstrate that RDF, which has a low sulfur content, can be burned in combination with coals containing up to 2% sulfur, thus reducing overall sulfur emissions without deleterious effects. Each furnace consists of four cyclones capable of generating 1,360,000 pounds per hour steam. The tertiary air inlet of one of the cyclones was modified with an adapter to permit fluff RDF to be pneumatically blown into the cyclone. At the same time, coal was fed into the cyclone furnace through the normal coal feeding duct, where it entered the burning chamber tangentially and mixed with the RDF during the burning process. Secondary shredded fluff RDF was prepared by the Baltimore County Resource Recovery Facility. The RDF was discharged into a receiving station consisting of a belt conveyor discharging into a lump breaker, which in turn, fed the RDF into a pneumatic line through an air-lock feeder. A total of 2316 tons were burned at an average rate of 5.6 tons per hour. The average heat replacement by RDF for the cyclone was 25%, based on Btu input for a period of forty days. The range of RDF burned was from 3 to 10 tons per hour, or 7 to 63% heat replacement. The average analysis of the RDF (39 samples) for moisture, ash, heat (HHV) and sulfur content were 18.9%, 13.4%, 6296 Btu/lb and 0.26% respectively. RDF used in the test was secondary shredded through 1-1/2 inch grates producing the particle size distribution of from 2 inches to .187 inches. Findings to date after inspection of the boiler and superheater indicate satisfactory results with no deleterious effects from the RDF.

Not Available

1982-03-01T23:59:59.000Z

437

Research on Stability Criterion of Furnace Flame Combustion Based on Image Processing  

Science Conference Proceedings (OSTI)

This paper proposes and analyzes the stability criterion of furnace flame combustion based on image processing, which uses the maximum criterion of gray scale difference, the distance criterion of gravity center and mass center in the high temperature ... Keywords: image processing, stability, flame detection, boiler safety

Rongbao Chen, Wuting Fan, Jingci Bian, Fanhui Meng

2012-12-01T23:59:59.000Z

438

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

E-Print Network (OSTI)

alternative furnaces used in each house required derivation of the heating and coolingalternative efficiency levels and design options to meet the same heating and coolingand cooling loads of each sample house are known, it is possible to estimate what the energy consumption of alternative (

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-01-01T23:59:59.000Z

439

Recovery of titanium values from titanium grinding swarf by electric furnace smelting  

DOE Patents (OSTI)

A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag. 1 fig.

Gerdemann, S.J.; White, J.C.

1998-08-04T23:59:59.000Z

440

Directly induced swing for closed loop control of electroslag remelting furnace  

DOE Patents (OSTI)

An apparatus and method are disclosed for controlling an electroslag remelting furnace, imposing a periodic fluctuation on electrode drive speed and thereby generating a predictable voltage swing signal. The fluctuation is preferably done by imposition of a sine, square, or sawtooth wave on the drive dc offset signal. 8 figs.

Damkroger, B.

1998-04-07T23:59:59.000Z

Note: This page contains sample records for the topic "warm air furnace" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Treatment studies of plutonium-bearing INEEL waste surrogates in a bench-scale arc furnace  

SciTech Connect

Since 1989, the Subsurface Disposal Area (SDA) at the Idaho National Environmental and Engineering Laboratory (INEEL) has been included on the National Priority List for remediation. Arc- and plasma-heated furnaces are being considered for converting the radioactive mixed waste buried in the SDA to a stabilized-vitreous form. Nonradioactive, surrogate SDA wastes have been melted during tests in these types of furnaces, but data are needed on the behavior of transuranic (TRU) constituents, primarily plutonium, during thermal treatment. To begin collecting this data, plutonium-spiked SDA surrogates were processed in a bench-scale arc furnace to quantify the fate of the plutonium and other hazardous and nonhazardous metals. Test conditions included elevating the organic, lead, chloride, and sodium contents of the surrogates. Blends having higher organic contents caused furnace power levels to fluctuate. An organic content corresponding to 50% INEEL soil in a soil-waste blend was the highest achievable before power fluctuations made operating conditions unacceptable. The glass, metal, and off-gas solids produced from each surrogate blend tested were analyzed for elemental (including plutonium) content and the partitioning of each element to the corresponding phase was calculated.

Freeman, C.J.

1997-05-01T23:59:59.000Z

442

Atomic-absorption analysis in a graphite furnace fitted with a metal ballast collector  

SciTech Connect

One reason for the deterioration in sensitivity in the electrothermal atomic absorption spectroscopy of petroleum products is the uncontrolled spread and diffusion of the liquid throughout the furnace. This paper describes a metal ballast collector whose wettability and sorptive properties contain the sample and allow for its uniform and controlled evaporation and atomization.

Katskov, D.A.; Vasil' eva, L.A.; Grinshtein, I.L.; Savel' eva, G.O.

1987-10-01T23:59:59.000Z

443

Using coal-dust fuel in Ukrainian and Russian blast furnaces  

SciTech Connect

Ukrainian and Russian blast-furnace production falls short of the best global practices. It is no secret that, having switched to oxygen and natural gas in the 1960s, the blast-furnace industries have improved the batch and technological conditions and have attained a productivity of 2.5 and even 3 t/(m{sup 3} day), but have not been able to reduce coke consumption below 400 kg/t, which was the industry standard 40 years ago. The situation is particularly bad in Ukraine: in 2007, furnace productivity was 1.5-2 t/m{sup 3}, with a coke consumption of 432-530 kg/t. Theoretical considerations and industrial experience over the last 20 years show that the large-scale introduction of pulverized fuel, with simultaneous improvement in coke quality and in batch and technological conditions, is the only immediately available means of reducing coke consumption considerably (by 20-40%). By this means, natural-gas consumption is reduced or eliminated, and the efficiency of blast-furnace production and ferrous metallurgy as a whole is increased.

A.A. Minaev; A.N. Ryzhenkov; Y.G. Banninkov; S.L. Yaroshevskii; Y.V. Konovalov; A.V. Kuzin [Donetsk National Technical University, Donetsk (Russian Federation)

2008-02-15T23:59:59.000Z

444

Experimental Characterization of Canola Oil Emulsion Combustion in a Modified Furnace  

E-Print Network (OSTI)

Vegetable oils have been researched as alternative source of energy for many years because they have proven themselves as efficient fuel sources for diesel engines when used in the form of biodiesel, vegetable oil–diesel blends, vegetable oil-water-diesel blends and mixtures thereof. However, very few studies involving the use of emulsified low grade alcohols in straight vegetable oils, as fuels for combustion have been published. Even, the published literature involves the use of emulsified fuels only for compression ignition diesel engines. Through this project, an attempt has been made to suggest the use of alcohol-in-vegetable oil emulsions (AVOE) as an alternate fuel in stationary burners like electric utility boiler producing steam for electricity generation and more dynamic systems like diesel engines. The main goal of this study is to understand the effect of the combustion of different methanol-in-canola oil emulsions, swirl angle and equivalence ratio on the emission levels of NOx, unburned hydrocarbons (UHC), CO and CO2. The 30 kW furnace facility available at Coal and Biomass Energy Laboratory at Texas A & M University was modified using a twin fluid atomizer, a swirler and a new liquid fuel injection system. The swirler blades were positioned at 60° and 51° angles (with respect to vertical axis) in order to achieve swirl numbers of 1.40 and 1.0, respectively. The three different fuels studied were, pure canola oil, 89-9 emulsion [9 percent methanol – in – 89 percent canola oil emulsion with 2 percent surfactant (w/w)] and 85-12.5 emulsion [12.5 percent methanol – in – 85 percent canola oil (w/w) emulsion with 2.5 percent surfactant]. All the combustion experiments were conducted for a constant heat output of 72,750 kJ/hr. One of the major findings of this research work was the influence of fuel type and swirl number on emission levels. Both the emulsions produced lower NOx, unburned (UHC) hydrocarbon and CO emissions than pure canola oil at both swirl numbers and all equivalence ratios. The emulsions also showed higher burned fraction values than pure oil and produced more CO2. Comparing the performance of only the two emulsions, it was seen that the percentage amount of methanol added to the blend had a definite positive impact on the combustion products of the fuel. The higher the percentage of methanol in the emulsions, the lesser the NOx, UHC and CO emissions. Of all the three fuels, 85-12.5 emulsion produced the least emissions. The vorticity imparted to the secondary air by the swirler also affected the emission levels. Increased vorticity at higher swirl number led to proper mixing of air and fuel which minimized emission levels at SN = 1.4. The effect of equivalence ratio on NO_x formation requires a more detailed analysis especially with regards to the mechanism which produces nitrogen oxides during the combustion of the studied fuels.

Bhimani, Shreyas Mahesh

2011-05-01T23:59:59.000Z

445

Assessment of thermal swing absorption alternatives for producing oxygen enriched combustion air  

SciTech Connect

It has been established that oxygen enriched combustion (OEC) can substantially improve the thermal efficiency and productivity of a furnace. An OEC performance study by the Union Carbide Corporation found that in furnaces with flue gas temperatures above 2,000{degree}F, a high level of oxygen (O{sub 2}) enrichment (50% to 100% O{sub 2}) will result in a 40% to 60% fuel savings. The US DOE's (Department of Energy) Office of Industrial Programs (OIP) has sponsored several research development projects and engineering assessments relevant to the production of oxygen enriched air (OEA) and its use in combustion systems. In an OIP-sponsored assessment of research and development opportunities for combustion technologies, Taratec Corporation indicated that thermal swing absorption (TSA) offers a potentially viable option for producing low-cost oxygen enriched combustion air (OECA). In fact, an integrated, TSA-based oxygen enriched air production system driven by waste heat from furnace exhaust may be more energy- and cost-efficient than the alternative technologies. The study presented in this document further investigates and assesses TSA alternatives for producing low-cost OECA. 7 refs., 4 figs., 5 tabs.

Not Available

1990-04-01T23:59:59.000Z

446

Glass Furnace Model (GFM) development and technology transfer program final report.  

Science Conference Proceedings (OSTI)

A Glass Furnace Model (GFM) was developed under a cost-shared R&D program by the U.S. Department of Energy's Argonne National Laboratory in close collaboration with a consortium of five glass industry members: Techneglas, Inc., Owens-Corning, Libbey, Inc., Osram Sylvania, Inc., and Visteon, Inc. Purdue University and Mississippi State University's DIAL Laboratory were also collaborators in the consortium. The GFM glass furnace simulation model that was developed is a tool industry can use to help define and evaluate furnace design changes and operating strategies to: (1) reduce energy use per unit of production; (2) solve problems related to production and glass quality by defining optimal operating windows to reduce cullet generation due to rejects and maximize throughput; and (3) make changes in furnace design and/or operation to reduce critical emissions, such as NO{sub x} and particulates. A two-part program was pursued to develop and validate the furnace model. The focus of the Part I program was to develop a fully coupled furnace model which had the requisite basic capabilities for furnace simulation. The principal outcome from the Phase I program was a furnace simulation model, GFM 2.0, which was copyrighted. The basic capabilities of GFM 2.0 were: (1) built-in burner models that can be included in the combustion space simulation; (2) a participating media spectral radiation model that maintains local and global energy balances throughout the furnace volume; and (3) a multiphase (liquid, solid) melt model that calculates (does not impose) the batch-melting rate and the batch length. The key objectives of the Part II program, which overlapped the Part I program were: (1) to incorporate a full multiphase flow analytical capability with reduced glass chemistry models in the glass melt model and thus be able to compute and track key solid, gas, and liquid species through the melt and the combustion space above; and (2) to incorporate glass quality indices into the simulation to facilitate optimization studies with regard to productivity, energy use and emissions. Midway through the Part II program, however, at the urging of the industrial consortium members, the decision was made to refocus limited resources on transfer of the existing GFM 2.0 software to the industry to speed up commercialization of the technology. This decision, in turn, necessitated a de-emphasis of the development of the planned final version of the GFM software that had full multiphase capability, GFM 3.0. As a result, version 3.0 was not completed; considerable progress, however, was made before the effort was terminated. The objectives of the Technology Transfer program were to transfer the Glass Furnace Model (GFM) to the glass industry and to promote its widespread use by providing the requisite technical support to allow effective use of the software. GFM Version 2.0 was offered at no cost on a trial, six-month basis to expedite its introduction to and use by the industry. The trial licenses were issued to generate a much more thorough user beta test of the software than the relatively small amount completed by the consortium members prior to the release of version 2.0.

Lottes, S. A.; Petrick, M.; Energy Systems

2007-12-04T23:59:59.000Z

447

Global warming implications of non-fluorocarbon technologies as CFC replacements  

SciTech Connect

Many technologies could be developed for use in place of conventional compression systems for refrigeration and air conditioning. Comparisons of the global warming impacts using TEWI (Total Equivalent Warming Impact) can be used to identify alternatives that have the potential for lower environmental impacts than electric-driven vapor compression systems using HCFCs and HFCs. Some options, such as secondary heat transfer loops in commercial refrigeration systems to reduce refrigerant charge and emission rates, could be useful in reducing the losses of refrigerants to the atmosphere. Use of ammonia instead of a fluorocarbon in a system with a secondary loop offers only a small potential for decreasing TEWI, and this may not warrant the increased complexity and risks of using ammonia in a retail sales environment. A few technologies, such as adsorption heat pumps, have efficiency levels that show reduced TEWI levels compared to conventional and state of the art compression systems, and further development could lead to an even more favorable comparison. Health and safety risks of the alternative technologies and the materials they employ must also be considered.

Fischer, S.K.; Tomlinson, J.J.

1993-12-31T23:59:59.000Z

448

Estimation of radiative properties and temperature distributions in coal-fired boiler furnaces by a portable image processing system  

Science Conference Proceedings (OSTI)

This paper presented an experimental investigation on the estimation of radiative properties and temperature distributions in a 670 t/h coal-fired boiler furnace by a portable imaging processing system. The portable system has been calibrated by a blackbody furnace. Flame temperatures and emissivities were measured by the portable system and equivalent blackbody temperatures were deduced. Comparing the equivalent blackbody temperatures measured by the portable system and the infrared pyrometer, the relative difference is less than 4%. The reconstructed pseudo-instantaneous 2-D temperature distributions in two cross-sections can disclose the combustion status inside the furnace. The measured radiative properties of particles in the furnace proved there is significant scattering in coal-fired boiler furnaces and it can provide useful information for the calculation of radiative heat transfer and numerical simulation of combustion in coal-fired boiler furnaces. The preliminary experimental results show this technology will be helpful for the combustion diagnosis in coal-fired boiler furnaces. (author)

Li, Wenhao; Lou, Chun; Sun, Yipeng; Zhou, Huaichun [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074 Hubei (China)

2011-02-15T23:59:59.000Z

449

Global warming and the future of coal carbon capture and storage  

SciTech Connect

The paper considers how best to change the economic calculus of power plant developers so they internalize CCS costs when selecting new generation technologies. Five policy tools are analyzed: establishing a greenhouse gas cap-and-trade program; imposing carbon taxes; defining CCS systems as a so-called Best Available Control Technology for new power plants under the USA Clean Air Act's New Source Review program; developing a 'low carbon portfolio' standard that requires utilities to provide an increasing proportion of power from low-carbon generation sources over time; and requiring all new coal power plants to meet an 'emission performance' standard that limits CO{sub 2} emissions to levels achievable with CCS systems. Each of these tools has advantages and drawbacks but an emission performance standard for new power plants is likely to be most effective in spurring broad-scale adoption of CCS systems. Chapter headings are: global warming and the future of coal; new coal-fired power plants threaten all other efforts to combat global warming; a potential path to zero emissions through carbon capture and storage; CO{sub 2} capture at coal plants: the promise of IGCC and other technologies; barriers to commercialization of IGCC technology; crossing the chasm: a new policy framework to push ccs implementation forward; encouraging CCS systems with carbon caps and trading programs; using the existing Clean Air Act to require CCS systems for new coal plants; retail low carbon portfolio standard; carbon tax; emission performance standards for new coal power plants; and conclusions. 16 figs.

Ken Berlin; Robert M. Sussman [Skadden Arps, Slate, Meagher and Flom (United States)

2007-05-15T23:59:59.000Z

450

The Development of Arctic Air Masses in Northwest Canada and Their Behavior in a Warming Climate  

Science Conference Proceedings (OSTI)

Surface observations, soundings, and a thermodynamic budget are used to investigate the formation process of 93 arctic airmass events. The events involve very cold surface temperatures—an average of ?42.8°C at Norman Wells, a centrally located ...

Jessica K. Turner; John R. Gyakum

2011-09-01T23:59:59.000Z

451

Enhancement of Evaporation from a Large Northern Lake by the Entrainment of Warm, Dry Air  

Science Conference Proceedings (OSTI)

The turbulent exchange of water vapor and heat were measured above Great Slave Lake, Northwest Territories, Canada, using the eddy covariance method for most of the ice-free period in 1997, 1998, and 1999. In all years, evaporation tended to ...

Peter D. Blanken; Wayne R. Rouse; William M. Schertzer

2003-08-01T23:59:59.000Z

452

More data needed to support or disprove global warming theory  

SciTech Connect

Reports of global warming are prevalent in the popular press. With the exception of Scandinavia, no major energy tax laws have been passed to date. But environmental pressures may change this, and the change could have a profound effect on refiners. These are the views of Gerald T. Westbrook, of TSBV Consultants, Houston. Westbrook summarized recent global-warming research, and his position on the subject, at the National Petroleum Refiners Association annual meeting, held March 16--18, in San Antonio. The greenhouse effect is real, says Westbrook. It is important, however, to distinguish between the two major mechanisms of the greenhouse effect: natural warming and anthropogenic warming (changes in the concentration of greenhouse gases caused by man). Without greenhouse gases the earth`s equilibrium temperature would be {minus}18 C. The effect of the gases is to raise the equilibrium temperature to 15 C. In the early 1980s, computer models estimated global warming over the past 100 years to be as much as 2.3 C. By 1986, those estimates had been reduced to 1.0 C, and in 1988, a range of 0.63 {+-} 0.2 C was reported. In 1995, a report by the Intergovernmental Panel on Climate change (IPCC) cited a range of 0.3--0.6 C. Westbrook asserts that the earth`s motion anomalies--orbit eccentricity, axial tilt, and wobbles--lead to dramatic changes in insolation, and are the dominant force over the last 160,000 years.

1997-05-26T23:59:59.000Z

453

Global crop yield losses from recent warming  

Science Conference Proceedings (OSTI)

Global yields of the world-s six most widely grown crops--wheat, rice, maize, soybeans, barley, sorghum--have increased since 1961. Year-to-year variations in growing season minimum temperature, maximum temperature, and precipitation explain 30% or more of the variations in yield. Since 1991, climate trends have significantly decreased yield trends in all crops but rice, leading to foregone production since 1981 of about 12 million tons per year of wheat or maize, representing an annual economic loss of $1.2 to $1.7 billion. At the global scale, negative impacts of climate trends on crop yields are already apparent. Annual global temperatures have increased by {approx}0.4 C since 1980, with even larger changes observed in several regions (1). While many studies have considered the impacts of future climate changes on food production (2-5), the effects of these past changes on agriculture remain unclear. It is likely that warming has improved yields in some areas, reduced them in others, and had negligible impacts in still others; the relative balance of these effects at the global scale is unknown. An understanding of this balance would help to anticipate impacts of future climate changes, as well as to more accurately assess recent (and thereby project future) technologically driven yield progress. Separating the contribution of climate from concurrent changes in other factors--such as crop cultivars, management practices, soil quality, and atmospheric carbon dioxide (CO{sub 2}) levels--requires models that describe the response of yields to climate. Studies of future global impacts of climate change have typically relied on a bottom-up approach, whereby field scale, process-based models are applied to hundreds of representative sites and then averaged (e.g., ref 2). Such approaches require input data on soil and management conditions, which are often difficult to obtain. Limitations on data quality or quantity can thus limit the utility of this approach, especially at the local scale (6-8). At the global scale, however, many of the processes and impacts captured by field scale models will tend to cancel out, and therefore simpler empirical/statistical models with fewer input requirements may be as accurate (8, 9). Empirical/statistical models also allow the effects of poorly modeled processes (e.g., pest dynamics) to be captured and uncertainties to be readily quantified (10). Here we develop new, empirical/statistical models of global yield responses to climate using datasets on broad-scale yields, crop locations, and climate variability. We focus on global average yields for the six most widely grown crops in the world: wheat, rice, maize, soybeans, barley, and sorghum. Production of these crops accounts for over 40% of global cropland area (11). 55% of non-meat calories, and over 70% of animal feed (12).

Lobell, D; Field, C

2006-06-02T23:59:59.000Z

454

Metal-Air Batteries  

Science Conference Proceedings (OSTI)

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

455

Roosevelt Warm Springs Institute for Rehab. Space Heating Low Temperature  

Open Energy Info (EERE)

Space Heating Low Temperature Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Roosevelt Warm Springs Institute for Rehab. Space Heating Low Temperature Geothermal Facility Facility Roosevelt Warm Springs Institute for Rehab. Sector Geothermal energy Type Space Heating Location Warm Springs, Georgia Coordinates 32.8904081°, -84.6810381° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

456

ARM - Publications: Science Team Meeting Documents: Tropical Warm Pool  

NLE Websites -- All DOE Office Websites (Extended Search)

Tropical Warm Pool International Cloud Experiment Tropical Warm Pool International Cloud Experiment May, Peter Bureau or Meteorology Research Centre Mather, James Pacific Northwest National Laboratory Jakob, Christian BMRC One of the most complete data sets describing tropical convection ever collected will result from the upcoming Tropical Warm Pool International Cloud Experiment (TWPICE) in the area around Darwin in late 2005 and early 2006. The aims of the experiment will be to examine convective cloud systems from their initial stages through to the decay of the cirrus generated and to measure their impact on the environment. The experiment design includes an unprecedented network of ground-based observations (soundings, active and passive remote sensors) combined with a large range of low, mid and high altitude aircraft for in-situ and remote sensing

457

Atmospheric Radiation Measurement Tropical Warm Pool International Cloud Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

Tropical Warm Pool Tropical Warm Pool International Cloud Experiment General Description The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) was a collaborative effort led by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program and the Australian Bureau of Meteorology. Beginning January 21 and ending February 14, 2006, the experiment was conducted in the region near the ARM Climate Research Facility in Darwin, Northern Australia. This permanent facility is fully equipped with sophisticated instruments for measuring cloud and other atmospheric properties to provide a long-term record of continuous observational data. Measurements obtained from the other experiment components (explained below) will complement this dataset to provide a detailed description of the tropical atmosphere.

458

Chemical And Isotopic Investigation Of Warm Springs Associated With Normal  

Open Energy Info (EERE)

Isotopic Investigation Of Warm Springs Associated With Normal Isotopic Investigation Of Warm Springs Associated With Normal Faults In Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Chemical And Isotopic Investigation Of Warm Springs Associated With Normal Faults In Utah Details Activities (3) Areas (1) Regions (0) Abstract: Thermal springs associated with normal faults in Utah have been analyzed for major cations and anions, and oxygen and hydrogen isotopes. Springs with measured temperatures averaging greater than 40°C are characterized by Na + K- and SO4 + Cl-rich waters containing 103 to 104 mg/l of dissolved solids. Lower temperature springs, averaging less than 40°C, are more enriched in Ca + Mg relative to Na + K. Chemical variations monitored through time in selected thermal springs are probably produced by

459

Warm Springs State Hospital Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

State Hospital Space Heating Low Temperature Geothermal State Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs State Hospital Space Heating Low Temperature Geothermal Facility Facility Warm Springs State Hospital Sector Geothermal energy Type Space Heating Location Warm Springs, Montana Coordinates 46.1813145°, -112.78476° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

460

NETL: Gasification Systems - Warm Gas Multi-Contaminant Removal System  

NLE Websites -- All DOE Office Websites (Extended Search)

Warm Gas Multi-Contaminant Removal System Warm Gas Multi-Contaminant Removal System Project Number: DE-SC00008243 TDA Research, Inc. is developing a high-capacity, low-cost sorbent that removes anhydrous ammonia (NH3), mercury (Hg), and trace contaminants from coal- and coal/biomass-derived syngas. The clean-up system will be used after the bulk warm gas sulfur removal step, and remove NH3 and Hg in a regenerable manner while irreversibly capturing all other trace metals (e.g., Arsenic, Selenium) reducing their concentrations to sub parts per million (ppm) levels. Current project plans include identifying optimum chemical composition and structure that provide the best sorbent performance for removing trace contaminants, determining the effect of operating parameters, conducting multiple-cycle experiments to test the life of the sorbent for NH3 and Hg removal, and conducting a preliminary design of the sorbent reactor.

Note: This page contains sample records for the topic "warm air furnace" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The 7. global warming international conference and expo: Abstracts  

SciTech Connect

This conference was held April 1--3, 1996 in Vienna, Austria. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on global warming. Topics of interest include the following: global and regional natural resource management; energy, transportation, minerals and natural resource management; industrial technology and greenhouse gas emission; strategies for the mitigation of greenhouse gas emission; greenhouse gas production/utilization and carbon budgets; strategies for promoting the understanding of global change; international policy strategy and economics; and global warming and public health. Individual papers have been processed separately for inclusion in the appropriate data bases.

NONE

1996-12-31T23:59:59.000Z

462

Feasibility of air capture  

E-Print Network (OSTI)

Capturing CO2 from air, referred to as Air Capture, is being proposed as a viable climate change mitigation technology. The two major benefits of air capture, reported in literature, are that it allows us to reduce the ...

Ranjan, Manya

2010-01-01T23:59:59.000Z

463

Furnace Creek Inn Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Inn Pool & Spa Low Temperature Geothermal Facility Inn Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Furnace Creek Inn Pool & Spa Low Temperature Geothermal Facility Facility Furnace Creek Inn Sector Geothermal energy Type Pool and Spa Location Death Valley, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

464

Modeling Energy Consumption of Residential Furnaces and Boilers in U.S. Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

24 24 Modeling Energy Consumption of Residential Furnaces and Boilers in U.S. Homes James Lutz, Camilla Dunham-Whitehead, Alex Lekov, and James McMahon Energy Analysis Department Environmental Energy Technologies Division Ernest Orlando Lawrence Berkeley National Laboratory University of California Berkeley, CA 94720 February 2004 This work was supported by the Office of Building Technologies and Community Systems of the U.S. Department of Energy, under Contract No. DE-AC03-76SF00098. ABSTRACT In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an

465

Lance for fuel and oxygen injection into smelting or refining furnace  

DOE Patents (OSTI)

A furnace for smelting iron ore and/or refining molten iron is equipped with an overhead pneumatic lance, through which a center stream of particulate coal is ejected at high velocity into a slag layer. An annular stream of nitrogen or argon enshrouds the coal stream. Oxygen is simultaneously ejected in an annular stream encircling the inert gas stream. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus to react with carbon monoxide gas rising from slag layer, thereby adding still more heat to the furnace. 7 figures.

Schlichting, M.R.

1994-12-20T23:59:59.000Z

466

Global Cooling: Policies to Cool the World and Offset Global Warming from CO2 Using Reflective Roofs and Pavements  

Science Conference Proceedings (OSTI)

Increasing the solar reflectance of the urban surface reduce its solar heat gain, lowers its temperatures, and decreases its outflow of thermal infrared radiation into the atmosphere. This process of 'negative radiative forcing' can help counter the effects of global warming. In addition, cool roofs reduce cooling-energy use in air conditioned buildings and increase comfort in unconditioned buildings; and cool roofs and cool pavements mitigate summer urban heat islands, improving outdoor air quality and comfort. Installing cool roofs and cool pavements in cities worldwide is a compelling win-win-win activity that can be undertaken immediately, outside of international negotiations to cap CO{sub 2} emissions. We propose an international campaign to use solar reflective materials when roofs and pavements are built or resurfaced in temperate and tropical regions.

Akbari, Hashem; Levinson, Ronnen; Rosenfeld, Arthur; Elliot, Matthew

2009-08-28T23:59:59.000Z

467

Desulphurization and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge  

SciTech Connect

Laboratory tests were conducted for removal of SO{sub 2} from simulated flue gas and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge. Tests were conducted for the flue gas flow from 12 to 18 Nm{sup 3}/h, the simulated gas temperature from 80 to 120 {sup o}C, the inlet flux of wastewater from 33 to 57 L/h, applied voltage from 0 to 27 kV, and SO{sub 2} initial concentration was about 1,430 mg/m{sup 3}. Results showed that wastewater from blast furnace has an excellent ability of desulphurization (about 90%) and pulsed corona discharge can enhance the desulphurization efficiency. Meanwhile, it was observed that the SO{sub 2} removal ratio decreased along with increased cycle index, while it increased as the flux of flue gas was reduced, and increased when the flux of wastewater from blast furnace was increased. In addition, results demonstrated that the content of sulfate radical produced in wastewater increase with an increment of applied pulsed voltage, cycle index, or the flux of flue gas. Furthermore, the results indicated that the higher the inlet content of cyanide the better removal effect of it, and the removal rate can reach 99.9% with a residence time of 2.1 s in the pulsed corona zone during the desulphurization process when the inlet content was higher, whereas there was almost no removal effect when the inlet content was lower. This research may attain the objective of waste control, and can provide a new way to remove SO{sub 2} from flue gas and simultaneously degrade wastewater from blast furnace for integrated steel plants.

Li, S.L.; Feng, Q.B.; Li, L.; Xie, C.L.; Zhen, L.P. [Huazhong University of Science and Technology, Wuhan (China)

2009-03-15T23:59:59.000Z

468

Joint TVA EPRI Evaluation of Steel Arc Furnace Regulation Impacts and Potential Innovative Mitigation Solutions: Phase I  

Science Conference Proceedings (OSTI)

The Tennessee Valley Authority (TVA) is considering the costs and benefits of serving arc furnace loads. One potential adverse power system impact of arc furnaces is that their electric power consumption is extremely volatile and can significantly impact the short-term frequency regulation requirements of the TVA power system, increasing the regulating reserve requirements needed to meet North American Electric Reliability Council (NERC) reliability criteria. A one-month analysis of TVA regulation ...

2013-12-13T23:59:59.000Z

469

A heuristic predictive logic controller applied to hybrid solar air conditioning plant  

Science Conference Proceedings (OSTI)

This paper shows the development of a heuristic predictive logic controller (HPLoC) applied to a solar air conditioning plant. The plant uses two energy sources, solar and gas, in order to warm up the water. The hot water feeds a single-effect absorption ...

Darine Zambrano; Winston García-Gabín; Eduardo F. Camacho

2007-04-01T23:59:59.000Z

470

Primary zone air proportioner  

SciTech Connect

An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

Cleary, Edward N. G. (San Diego, CA)

1982-10-12T23:59:59.000Z

471

Air Pollution Control (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation establishes the Department of Environmental Management and the Air Pollution Control Board, which are tasked with the prevention, abatement, and control of air pollution by all...

472

Production and blast-furnace smelting of boron-alloyed iron-ore pellets  

Science Conference Proceedings (OSTI)

Industrial test data are presented regarding the production (at Sokolovsk-Sarbaisk mining and enrichment enterprise) and blast-furnace smelting (at Magnitogorsk metallurgical works) of boron-alloyed iron-ore pellets (500000 t). It is shown that, thanks to the presence of boron, the compressive strength of the roasted pellets is increased by 18.5%, while the strength in reduction is doubled; the limestone consumption is reduced by 11%, the bentonite consumption is halved, and the dust content of the gases in the last section of the roasting machines is reduced by 20%. In blast-furnace smelting, the yield of low-sulfur (<0.02%) hot metal is increased from 65-70 to 85.1% and the furnace productivity from 2.17-2.20 to 2.27 t/(m{sup 3} day); coke consumption is reduced by 3-8 kg/t of hot metal. The plasticity and stamping properties of 08IO auto-industry steel are improved by microadditions of boron.

A.A. Akberdin; A.S. Kim [Abishev Chemicometallurgical Institute, Abishev (Kazakhstan)

2008-08-15T23:59:59.000Z

473

Method for providing variable output gas-fired furnace with a constant temperature rise and efficiency  

Science Conference Proceedings (OSTI)

A method is described for providing a variable output gas-fired furnace means with a constant temperature rise and efficiency where the furnace means includes burners, a blower, a thermostat and a delay timer, the method comprising the steps of: sensing the temperature in an area to be conditioned; comparing the sensed temperature to a predetermined set point; if the sensed temperature deviates from the predetermined set point by more than a predetermined amount, gas is supplied to the burners and the blower is started; determining the reference revolution per minute of the blower; determining the reference cubic feet per minute delivered by the blower; determining the manifold pressure; determining whether the furnace is in a high heat or a low heat mode of operation; determining the desired cubic feet per minute delivered by the blower for the current mode of operation; reading the actual revolution per minute of the blower; adjusting the speed of the blower motor if the actual and desired revolution per minute of the blower are not the same; determining whether the thermostat is satisfied; if the thermostat is not satisfied, returning to the step of determining the manifold pressure; and if the thermostat is satisfied, shutting off the gas and starting the delay timer.

Ballard, G.W.; Thompson, K.D.

1987-08-25T23:59:59.000Z

474

RADIATION HEAT TRANSFER ENVIRONMENT IN FIRE AND FURNACE TESTS OF RADIOACTIVE MATERIALS PAKCAGES  

SciTech Connect

The Hypothetical Accident Conditions (HAC) sequential test of radioactive materials packages includes a thermal test to confirm the ability of the package to withstand a transportation fire event. The test specified by the regulations (10 CFR 71) consists of a 30 minute, all engulfing, hydrocarbon fuel fire, with an average flame temperature of at least 800 C. The requirements specify an average emissivity for the fire of at least 0.9, which implies an essentially black radiation environment. Alternate test which provide equivalent total heat input at the 800 C time averaged environmental temperature may also be employed. When alternate tests methods are employed, such as furnace or gaseous fuel fires, the equivalence of the radiation environment may require justification. The effects of furnace and open confinement fire environments are compared with the regulatory fire environment, including the effects of gases resulting from decomposition of package overpack materials. The results indicate that furnace tests can produce the required radiation heat transfer environment, i.e., equivalent to the postulated pool fire. An open enclosure, with transparent (low emissivity) fire does not produce an equivalent radiation environment.

Smith, A

2008-12-31T23:59:59.000Z

475

Development of the household sample for furnace and boilerlife-cycle cost analysis  

Science Conference Proceedings (OSTI)

Residential household space heating energy use comprises close to half of all residential energy consumption. Currently, average space heating use by household is 43.9 Mbtu for a year. An average, however, does not reflect regional variation in heating practices, energy costs, or fuel type. Indeed, a national average does not capture regional or consumer group cost impacts from changing efficiency levels of heating equipment. The US Department of Energy sets energy standards for residential appliances in, what is called, a rulemaking process. The residential furnace and boiler efficiency rulemaking process investigates the costs and benefits of possible updates to the current minimum efficiency regulations. Lawrence Berkeley National Laboratory (LBNL) selected the sample used in the residential furnace and boiler efficiency rulemaking from publically available data representing United States residences. The sample represents 107 million households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler rulemaking. This paper describes the choice of criteria to select the sample of houses used in the rulemaking process. The process of data extraction is detailed in the appendices and is easily duplicated. The life-cycle cost is calculated in two ways with a household marginal energy price and a national average energy price. The LCC results show that using an national average energy price produces higher LCC savings but does not reflect regional differences in energy price.

Whitehead, Camilla Dunham; Franco, Victor; Lekov, Alex; Lutz, Jim

2005-05-31T23:59:59.000Z

476

The Fuel Accident Condition Simulator (FACS) furnace system for high temperature performance testing of VHTR fuel  

SciTech Connect

The AGR-1 irradiation of TRISO-coated particle fuel specimens was recently completed and represents the most successful such irradiation in US history, reaching peak burnups of greater than 19% FIMA with zero failures out of 300,000 particles. An extensive post-irradiation examination (PIE) campaign will be conducted on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature safety testing. A new furnace system has been designed, built, and tested to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000 degrees C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, and Eu), iodine, and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator furnace system and the associated fission gas monitoring system, as well as preliminary system calibration results.

Paul A. Demkowicz; David V. Laug; Dawn M. Scates; Edward L. Reber; Lyle G. Roybal; John B. Walter; Jason M. Harp; Robert N. Morris

2012-10-01T23:59:59.000Z

477

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

SciTech Connect

Residential space and water heating accounts for over 90percent of total residential primary gas consumption in the United States. Condensing space and water heating equipment are 10-30percent more energy-efficient than conventional space and water heating. Currently, condensing gas furnaces represent 40 percent of shipments and are common in the Northern U.S. market. Meanwhile, manufacturers are planning to develop condensing gas storage water heaters to qualify for Energy Star? certification. Consumers, installers, and builders who make decisions about installing space and water heating equipment generally do not perform an analysis to assess the economic impacts of different combinations and efficiencies of space and water heating equipment. Thus, equipment is often installed without taking into consideration the potential life-cycle economic and energy savings of installing space and water heating equipment combinations. Drawing on previous and current analysis conducted for the United States Department of Energy rulemaking on amended standards for furnaces and water heaters, this paper evaluates the extent to which condensing equipment can provide life-cycle cost-effectiveness in a representative sample of single family American homes. The economic analyses indicate that significant energy savings and consumer benefits may result from large-scale introduction of condensing water heaters combined with condensing furnaces in U.S. residential single-family housing, particularly in the Northern region. The analyses also shows that important benefits may be overlooked when policy analysts evaluate the impact of space and water heating equipment separately.

Lekov, Alex; Franco, Victor; Meyers, Steve

2010-05-14T23:59:59.000Z

478

Detecting the Nonstationary Response of ENSO to Greenhouse Warming  

Science Conference Proceedings (OSTI)

On the basis of the latest greenhouse warming experiment performed with the Max-Planck Institut coupled atmosphere/isopycnal ocean model (ECHAM4/OPYC) it is shown that not only the climate mean but also the statistics of higher-order statistical ...

A. Timmermann

1999-07-01T23:59:59.000Z