National Library of Energy BETA

Sample records for warfare center hydrodynamic

  1. United States Naval Surface Warfare Center | Open Energy Information

    Open Energy Info (EERE)

    Warfare Center Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name United States Naval Surface Warfare Center Address Carderock, 9500 MacArthur Boulevard...

  2. Establishment of the United States Navy Mine Warfare Center of Excellence in the Corpus Christi Bay Area, Texas

    SciTech Connect (OSTI)

    Kosclski, J.L.; Boyer, R.; Sloger, W.

    1997-08-01

    The proposed establishment of the US Navy Mine Warfare Center of Excellence (MWCE) in the Corpus Christi Bay Area, Texas, involved the collocation of the Navy`s Mine Warfare and Mine Counter Measures assets in proximity to each other at Naval Station (NAVSTA) Ingleside and Naval Air Station (NAS) Corpus Christi, Texas. Collocation of these Navy forces would provide significant advantages in meeting mission and operational requirements. This action would improve the operational training and readiness of the forces. In addition to new construction or modifications at NAVSTA Ingleside, NAS Corpus Christi, and off-base; the establishment of offshore training and operating areas was required. When the project was first proposed in 1993, considerable concern was expressed by environmental interests, shrimpers, and state and federal resource agencies regarding the impact of the proposed training activities within Gulf waters. The Navy and Turner Collie and Braden, Inc., under contract to the Navy, conducted several technical studies and extensive coordination with concerned interests during the environmental impact statement process to identify and document the potential intensity, magnitude, and duration of impact from each proposed training activity.

  3. Naval Air Warfare Center, Aircraft Division at Warminster Environmental Materials Program. Phase 1. Interim report, October 1989-May 1992

    SciTech Connect (OSTI)

    Spadafora, S.J.; Hegedus, C.R.; Clark, K.J.; Eng, A.T.; Pulley, D.F.

    1992-06-24

    With the recent increase in awareness about the environment, there is an expanding concern of the deleterious effects of current materials and processes. Federal, state and local environmental agencies such as the EPA, State Air Resource Boards and local Air Quality Management Districts (AQMD) have issued legislation that restrict or prohibit the use and disposal of hazardous materials. National and local laws like the Clean Air and Clean Water Acts, Resource Conservation and Recovery Act, and AQMD regulations are examples of rules that govern the handling and disposal of hazardous materials and waste. The Department of Defense (DoD), in support of this effort, has identified the major generators of hazardous materials and hazardous waste to be maintenance depots and operations, particularly cleaning, pretreating, plating, painting and paint removal processes. Reductions of waste in these areas has been targeted as a primary goal in the DOD. The Navy is committed to significantly reducing its current hazardous waste generation and is working to attain a near zero discharge of hazardous waste by the year 2000. In order to attain these goals, the Naval Air Warfare Center Aircraft Division at Warminster has organized and is carrying out a comprehensive program in cooperation with the Naval Air Systems Command, the Air Force and the Department of Energy that deal with the elimination or reduction of hazardous materials. .... Environmental materials, Organic coatings, Inorganic pretreatments, Paint removal techniques, Cleaners, CFC'S.

  4. A point-centered arbitrary Lagrangian Eulerian hydrodynamic approach for tetrahedral meshes

    SciTech Connect (OSTI)

    Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.; Charest, Marc R.; Canfield, Thomas R.; Wohlbier, John G.

    2015-02-24

    We present a three dimensional (3D) arbitrary Lagrangian Eulerian (ALE) hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedral meshes. The new approach stores the conserved variables (mass, momentum, and total energy) at the nodes of the mesh and solves the conservation equations on a control volume surrounding the point. This type of an approach is termed a point-centered hydrodynamic (PCH) method. The conservation equations are discretized using an edge-based finite element (FE) approach with linear basis functions. All fluxes in the new approach are calculated at the center of each tetrahedron. A multidirectional Riemann-like problem is solved at the center of the tetrahedron. The advective fluxes are calculated by solving a 1D Riemann problem on each face of the nodal control volume. A 2-stage Runge–Kutta method is used to evolve the solution forward in time, where the advective fluxes are part of the temporal integration. The mesh velocity is smoothed by solving a Laplacian equation. The details of the new ALE hydrodynamic scheme are discussed. Results from a range of numerical test problems are presented.

  5. A point-centered arbitrary Lagrangian Eulerian hydrodynamic approach for tetrahedral meshes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.; Charest, Marc R.; Canfield, Thomas R.; Wohlbier, John G.

    2015-02-24

    We present a three dimensional (3D) arbitrary Lagrangian Eulerian (ALE) hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedral meshes. The new approach stores the conserved variables (mass, momentum, and total energy) at the nodes of the mesh and solves the conservation equations on a control volume surrounding the point. This type of an approach is termed a point-centered hydrodynamic (PCH) method. The conservation equations are discretized using an edge-based finite element (FE) approach with linear basis functions. All fluxes in the new approach are calculated at the center of each tetrahedron. A multidirectional Riemann-like problem is solved atmore » the center of the tetrahedron. The advective fluxes are calculated by solving a 1D Riemann problem on each face of the nodal control volume. A 2-stage Runge–Kutta method is used to evolve the solution forward in time, where the advective fluxes are part of the temporal integration. The mesh velocity is smoothed by solving a Laplacian equation. The details of the new ALE hydrodynamic scheme are discussed. Results from a range of numerical test problems are presented.« less

  6. A Godunov-like point-centered essentially Lagrangian hydrodynamic approach

    SciTech Connect (OSTI)

    Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.; Charest, Marc R.; Canfield, Thomas R.; Wohlbier, John G.

    2014-10-28

    We present an essentially Lagrangian hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedron meshes. The scheme reduces to a purely Lagrangian approach when the flow is linear or if the mesh size is equal to zero; as a result, we use the term essentially Lagrangian for the proposed approach. The motivation for developing a hydrodynamic method for tetrahedron meshes is because tetrahedron meshes have some advantages over other mesh topologies. Notable advantages include reduced complexity in generating conformal meshes, reduced complexity in mesh reconnection, and preserving tetrahedron cells with automatic mesh refinement. A challenge, however, is tetrahedron meshes do not correctly deform with a lower order (i.e. piecewise constant) staggered-grid hydrodynamic scheme (SGH) or with a cell-centered hydrodynamic (CCH) scheme. The SGH and CCH approaches calculate the strain via the tetrahedron, which can cause artificial stiffness on large deformation problems. To resolve the stiffness problem, we adopt the point-centered hydrodynamic approach (PCH) and calculate the evolution of the flow via an integration path around the node. The PCH approach stores the conserved variables (mass, momentum, and total energy) at the node. The evolution equations for momentum and total energy are discretized using an edge-based finite element (FE) approach with linear basis functions. A multidirectional Riemann-like problem is introduced at the center of the tetrahedron to account for discontinuities in the flow such as a shock. Conservation is enforced at each tetrahedron center. The multidimensional Riemann-like problem used here is based on Lagrangian CCH work [8, 19, 37, 38, 44] and recent Lagrangian SGH work [33-35, 39, 45]. In addition, an approximate 1D Riemann problem is solved on each face of the nodal control volume to advect mass, momentum, and total energy. The 1D Riemann problem produces fluxes [18] that remove a volume error in the PCH discretization. A 2-stage Runge–Kutta method is used to evolve the solution in time. The details of the new hydrodynamic scheme are discussed; likewise, results from numerical test problems are presented.

  7. A Godunov-like point-centered essentially Lagrangian hydrodynamic approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.; Charest, Marc R.; Canfield, Thomas R.; Wohlbier, John G.

    2014-10-28

    We present an essentially Lagrangian hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedron meshes. The scheme reduces to a purely Lagrangian approach when the flow is linear or if the mesh size is equal to zero; as a result, we use the term essentially Lagrangian for the proposed approach. The motivation for developing a hydrodynamic method for tetrahedron meshes is because tetrahedron meshes have some advantages over other mesh topologies. Notable advantages include reduced complexity in generating conformal meshes, reduced complexity in mesh reconnection, and preserving tetrahedron cells with automatic mesh refinement. A challenge, however, is tetrahedron meshesmore » do not correctly deform with a lower order (i.e. piecewise constant) staggered-grid hydrodynamic scheme (SGH) or with a cell-centered hydrodynamic (CCH) scheme. The SGH and CCH approaches calculate the strain via the tetrahedron, which can cause artificial stiffness on large deformation problems. To resolve the stiffness problem, we adopt the point-centered hydrodynamic approach (PCH) and calculate the evolution of the flow via an integration path around the node. The PCH approach stores the conserved variables (mass, momentum, and total energy) at the node. The evolution equations for momentum and total energy are discretized using an edge-based finite element (FE) approach with linear basis functions. A multidirectional Riemann-like problem is introduced at the center of the tetrahedron to account for discontinuities in the flow such as a shock. Conservation is enforced at each tetrahedron center. The multidimensional Riemann-like problem used here is based on Lagrangian CCH work [8, 19, 37, 38, 44] and recent Lagrangian SGH work [33-35, 39, 45]. In addition, an approximate 1D Riemann problem is solved on each face of the nodal control volume to advect mass, momentum, and total energy. The 1D Riemann problem produces fluxes [18] that remove a volume error in the PCH discretization. A 2-stage Runge–Kutta method is used to evolve the solution in time. The details of the new hydrodynamic scheme are discussed; likewise, results from numerical test problems are presented.« less

  8. A comparative study of staggered and cell-centered Lagrangian formulation for multimaterial hydrodynamics

    SciTech Connect (OSTI)

    Francois, Marianne M; Shashkov, Misha J; Lowrie, Robert B; Dendy, Edward D

    2010-10-13

    We compare a staggered Lagrangian formulation with a cell-centered Lagrangian formulation for a two-material compressible flow. In both formulation, we assume a single velocity field and rely on pressure relaxation techniques to close the system of equations. We employ Tipton's mixture model for both formulation. However, for the cell-centered formulation, employing Tipton's model for the mixture cell results in loss of conservation of total energy. We propose a numerical algorithm to correct this energy discrepancy. We test both algorithms on the two-materials Sod shock tube test problem and compare the results with the analytical solution.

  9. Colorado State University Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Colorado State University Address Daryl B. Simons Building, Engineering Research Center, 1320 Campus...

  10. Hydrodynamic blade guide

    DOE Patents [OSTI]

    Blaedel, Kenneth L. (Dublin, CA); Davis, Pete J. (Pleasanton, CA); Landram, Charles S. (Livermore, CA)

    2000-01-01

    A saw having a self-pumped hydrodynamic blade guide or bearing for retaining the saw blade in a centered position in the saw kerf (width of cut made by the saw). The hydrodynamic blade guide or bearing utilizes pockets or grooves incorporated into the sides of the blade. The saw kerf in the workpiece provides the guide or bearing stator surface. Both sides of the blade entrain cutting fluid as the blade enters the kerf in the workpiece, and the trapped fluid provides pressure between the blade and the workpiece as an inverse function of the gap between the blade surface and the workpiece surface. If the blade wanders from the center of the kerf, then one gap will increase and one gap will decrease and the consequent pressure difference between the two sides of the blade will cause the blade to re-center itself in the kerf. Saws using the hydrodynamic blade guide or bearing have particular application in slicing slabs from boules of single crystal materials, for example, as well as for cutting other difficult to saw materials such as ceramics, glass, and brittle composite materials.

  11. Biological warfare in the littorals. Final report

    SciTech Connect (OSTI)

    Larsen, R.W.

    1997-05-01

    Biological warfare (BW) has emerged as a significant threat to military operations and is particularly challenging at the operational level of warfare in a littoral environment. There are compelling reasons why an operational commander should be concerned about BW: global proliferation of biotechnology and biological weapons capabilities; suitability of BW for disrupting force projection across the littorals; and the vulnerability of American, allied and coalition forces to BW. The threat of facing an adversary capable and willing to use biological weapons will influence the commander`s application of the operational art across the six operational functions. Degradation of operational tempo, effects of psychological responses among the force, and stress on the organizational structure may challenge the command and control process. Operational intelligence will demand robust integration of technical analysis, intentions and warnings, meteorological information, and medical intelligence. The maneuver and movement processes will be taxed to function effectively when ports and airfields offer such lucrative BW targets. Biological weapons may dictate the location of operational fires assets as well as the make-up of the target lists. Operational logistics assumes great importance in the medical functions, decontamination processes, and troop replacement and unit reconstitution. Operational protection encompasses nearly every aspect of BW defense and will demand a balance between what is necessary and what is possible to protect. As daunting as the challenges appear, the operational-level commander has at his disposal many tools necessary to prepare for biological warfare in the littorals. Ultimately, the commander must convince his force, his allies, and his enemies that the command can fight effectively in a BW environment, on land and sea.

  12. Management of chemical warfare injuries (on CD-ROM). Data file

    SciTech Connect (OSTI)

    1996-08-01

    The threat of use of chemical warfare agents (agents of `mass destruction`) is no longer confined to the battlefield. Agent releases by terrorists in Japan in 1995 served to awaken the world to the dangers faced by civilian communities far removed from centers of armed conflict. The ability to save lives in the event of a chemical agent release turns on provision of immediate and correct medical care in the field and hospital. Being able to ensure availability of life-saving care depends on reaching both military and civilian medical personnel with information on chemical warfare agents and on keeping their skills and knowledge current. While this is of critical importance both to the Department of Defense and to civilian agencies charged with protecting the public, it also is a daunting and potentially expensive task in view of the numbers and geographic dispersion of persons to be trained. The Department of Defense has addressed and overcome these challenges, to the benefit of the military and civilians, by using computer technology as the vehicle by which cost-effective chemical warfare agent training may be conveniently delivered to all who require it. The multi-media instructional program, Management of Chemical Warfare Injuries, was developed for military use by the Naval Health Sciences Education and Training Command, with the technical assistance of the U.S. Army Medical Command. It was originally designed for delivery via video disc, a format used extensively within the Navy. However, in response to a request from the Federal Emergency Management Agency, the Office of the Secretary of Defense agreed to repackage the materials for delivery on CD-ROM in order to make them accessible to a larger audience. In addition, the Navy agreed to include on the two CD-ROMs which contain the program a ready reference not found on the video disc: the Army`s `Medical Management of Chemical Casualties` handbooks for field and medical personnel.

  13. CENTER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and people highlights from the Lujan Neutron Scattering Center at LANSCE CENTER SCIENCE & PEOPLE the Lujan April 2014 LA-UR-14-22812 I N S I D E 2 Seeking design rules for efficient lighting sources 3 Rate-dependent deformation mechanisms in beryllium 4 Improved understanding of a semiconductor used in infrared detectors 6 Mike Fitzsimmons elected NNSA Fellow 7 Pressure tuning: a new approach for making zero thermal expansion materials 8 Neutron scattering enables structural

  14. Hydrodynamic Testing Facilities Database | Open Energy Information

    Open Energy Info (EERE)

    Hydrodynamic Testing Facilities Database (Redirected from Hydrodynamic Testing Facilities) Jump to: navigation, search Facility Operators By viewing Hydrodynamic Testing Facilities...

  15. Tissue-based standoff biosensors for detecting chemical warfare agents

    DOE Patents [OSTI]

    Greenbaum, Elias; Sanders, Charlene A.

    2003-11-18

    A tissue-based, deployable, standoff air quality sensor for detecting the presence of at least one chemical or biological warfare agent, includes: a cell containing entrapped photosynthetic tissue, the cell adapted for analyzing photosynthetic activity of the entrapped photosynthetic tissue; means for introducing an air sample into the cell and contacting the air sample with the entrapped photosynthetic tissue; a fluorometer in operable relationship with the cell for measuring photosynthetic activity of the entrapped photosynthetic tissue; and transmitting means for transmitting analytical data generated by the fluorometer relating to the presence of at least one chemical or biological warfare agent in the air sample, the sensor adapted for deployment into a selected area.

  16. Carderock Tow Tank 3 | Open Energy Information

    Open Energy Info (EERE)

    3 Jump to: navigation, search Basic Specifications Facility Name Carderock Tow Tank 3 Overseeing Organization United States Naval Surface Warfare Center Hydrodynamic Testing...

  17. Skew resisting hydrodynamic seal

    DOE Patents [OSTI]

    Conroy, William T. (Pearland, TX); Dietle, Lannie L. (Sugar Land, TX); Gobeli, Jeffrey D. (Houston, TX); Kalsi, Manmohan S. (Houston, TX)

    2001-01-01

    A novel hydrodynamically lubricated compression type rotary seal that is suitable for lubricant retention and environmental exclusion. Particularly, the seal geometry ensures constraint of a hydrodynamic seal in a manner preventing skew-induced wear and provides adequate room within the seal gland to accommodate thermal expansion. The seal accommodates large as-manufactured variations in the coefficient of thermal expansion of the sealing material, provides a relatively stiff integral spring effect to minimize pressure-induced shuttling of the seal within the gland, and also maintains interfacial contact pressure within the dynamic sealing interface in an optimum range for efficient hydrodynamic lubrication and environment exclusion. The seal geometry also provides for complete support about the circumference of the seal to receive environmental pressure, as compared the interrupted character of seal support set forth in U.S. Pat. Nos. 5,873,576 and 6,036,192 and provides a hydrodynamic seal which is suitable for use with non-Newtonian lubricants.

  18. Pennsylvania State University Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    State University Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Pennsylvania State University Address Applied Research Laboratory, Garfield...

  19. Unconventional Nuclear Warfare Defense (UNWD) containment and mitigation subtask.

    SciTech Connect (OSTI)

    Wente, William Baker

    2005-06-01

    The objective of this subtask of the Unconventional Nuclear Warfare Design project was to demonstrate mitigation technologies for radiological material dispersal and to assist planners with incorporation of the technologies into a concept of operations. The High Consequence Assessment and Technology department at Sandia National Laboratories (SNL) has studied aqueous foam's ability to mitigate the effects of an explosively disseminated radiological dispersal device (RDD). These benefits include particle capture of respirable radiological particles, attenuation of blast overpressure, and reduction of plume buoyancy. To better convey the aqueous foam attributes, SNL conducted a study using the Explosive Release Atmospheric Dispersion model, comparing the effects of a mitigated and unmitigated explosive RDD release. Results from this study compared health effects and land contamination between the two scenarios in terms of distances of effect, population exposure, and remediation costs. Incorporating aqueous foam technology, SNL created a conceptual design for a stationary containment area to be located at a facility entrance with equipment that could minimize the effects from the detonation of a vehicle transported RDD. The containment design was evaluated against several criteria, including mitigation ability (both respirable and large fragment particle capture as well as blast overpressure suppression), speed of implementation, cost, simplicity, and required space. A mock-up of the conceptual idea was constructed at SNL's 9920 explosive test site to demonstrate the containment design.

  20. Load responsive hydrodynamic bearing

    DOE Patents [OSTI]

    Kalsi, Manmohan S. (Houston, TX); Somogyi, Dezso (Sugar Land, TX); Dietle, Lannie L. (Stafford, TX)

    2002-01-01

    A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.

  1. Hydrodynamic Testing Facilities Database | Open Energy Information

    Open Energy Info (EERE)

    Hydrodynamic Testing Facilities Database Jump to: navigation, search Facility Operators By viewing Hydrodynamic Testing Facilities in the list accompanying the map, one will be...

  2. University of Minnesota Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of Minnesota Address St. Anthony Falls Laboratory, 2 Third Avenue SE Place...

  3. University of Michigan Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    Michigan Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of Michigan Address 1085 South University Avenue Place Ann Arbor,...

  4. Tissue-based water quality biosensors for detecting chemical warfare agents

    DOE Patents [OSTI]

    Greenbaum, Elias; Sanders, Charlene A.

    2003-05-27

    A water quality sensor for detecting the presence of at least one chemical or biological warfare agent includes: a cell; apparatus for introducing water into the cell and discharging water from the cell adapted for analyzing photosynthetic activity of naturally occurring, free-living, indigenous photosynthetic organisms in water; a fluorometer for measuring photosynthetic activity of naturally occurring, free-living, indigenous photosynthetic organisms drawn into the cell; and an electronics package that analyzes raw data from the fluorometer and emits a signal indicating the presence of at least one chemical or biological warfare agent in the water.

  5. Dual Axis Radiographic Hydrodynamic Test Facility | National...

    National Nuclear Security Administration (NNSA)

    Dual Axis Radiographic Hydrodynamic Test Facility | National Nuclear Security ... Home About Us Our Programs Defense Programs Research, Development, Test, and ...

  6. Disruptive Innovation in Numerical Hydrodynamics

    SciTech Connect (OSTI)

    Waltz, Jacob I.

    2012-09-06

    We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.

  7. Foundation of Hydrodynamics of Strongly Interacting Systems

    SciTech Connect (OSTI)

    Wong, Cheuk-Yin

    2014-01-01

    Hydrodynamics and quantum mechanics have many elements in common, as the density field and velocity fields are common variables that can be constructed in both descriptions. Starting with the Schroedinger equation and the Klein-Gordon for a single particle in hydrodynamical form, we examine the basic assumptions under which a quantum system of particles interacting through their mean fields can be described by hydrodynamics.

  8. Analysis and prediction of aperiodic hydrodynamic oscillatory...

    Office of Scientific and Technical Information (OSTI)

    Analysis and prediction of aperiodic hydrodynamic oscillatory time series by feed-forward neural networks, fuzzy logic, and a local nonlinear predictor Citation Details In-Document ...

  9. A Two-Dimensional Radiation Hydrodynamics Code

    Energy Science and Technology Software Center (OSTI)

    2003-03-10

    Calculation of compressible and high energetic hydrodynamic fields including photon transport and heat conduction in two—dimensional curvilinear geometry.

  10. University of Maine Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    search Hydro | Hydrodynamic Testing Facilities Name University of Maine Address 208 Boardman Hall Place Orono, Maine Zip 04469 Sector Hydro Phone number (207) 581-2129 Website...

  11. Oregon State University Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    search Hydro | Hydrodynamic Testing Facilities Name Oregon State University Address O.H. Hinsdale Wave Research Laboratory, 220 Owen Hall Place Corvallis, Oregon Zip 97331...

  12. Sandia National Laboratories Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    Hydro | Hydrodynamic Testing Facilities Name Sandia National Laboratories Address P.O. Box 5800 Place Albuquerque, NM Zip 87185 Sector Hydro Website http:www.sandia.gov...

  13. Dual Axis Radiographic Hydrodynamic Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deputy Group Leader Tim Ferris (505) 665-2179 Email Hydrotests are critical in assessing nuclear weapons in nation's stockpile Dual Axis Radiographic Hydrodynamic Test facility ...

  14. Reevaluation of 1999 Health-Based Environmental Screening Levels (HBESLs) for Chemical Warfare Agents

    SciTech Connect (OSTI)

    Watson, Annetta Paule; Dolislager, Fredrick G

    2007-05-01

    This report evaluates whether new information and updated scientific models require that changes be made to previously published health-based environmental soil screening levels (HBESLs) and associated environmental fate/breakdown information for chemical warfare agents (USACHPPM 1999). Specifically, the present evaluation describes and compares changes that have been made since 1999 to U.S. Environmental Protection Agency (EPA) risk assessment models, EPA exposure assumptions, as well as to specific chemical warfare agent parameters (e.g., toxicity values). Comparison was made between screening value estimates recalculated with current assumptions and earlier health-based environmental screening levels presented in 1999. The chemical warfare agents evaluated include the G-series and VX nerve agents and the vesicants sulfur mustard (agent HD) and Lewisite (agent L). In addition, key degradation products of these agents were also evaluated. Study findings indicate that the combined effect of updates and/or changes to EPA risk models, EPA default exposure parameters, and certain chemical warfare agent toxicity criteria does not result in significant alteration to the USACHPPM (1999) health-based environmental screening level estimates for the G-series and VX nerve agents or the vesicant agents HD and L. Given that EPA's final position on separate Tier 1 screening levels for indoor and outdoor worker screening assessments has not yet been released as of May 2007, the study authors find that the 1999 screening level estimates (see Table ES.1) are still appropriate and protective for screening residential as well as nonresidential sites. As such, risk management decisions made on the basis of USACHPPM (1999) recommendations do not require reconsideration. While the 1999 HBESL values are appropriate for continued use as general screening criteria, the updated '2007' estimates (presented below) that follow the new EPA protocols currently under development are also protective. When EPA finalizes and documents a position on the matter of indoor and outdoor worker screening assessments, site-specific risk assessments should make use of modified models and criteria. Screening values such as those presented in this report may be used to assess soil or other porous media to determine whether chemical warfare agent contamination is present as part of initial site investigations (whether due to intentional or accidental releases) and to determine whether weather/decontamination has adequately mitigated the presence of agent residual to below levels of concern. However, despite the availability of scientifically supported health-based criteria, there are significant resources needs that should be considered during sample planning. In particular, few analytical laboratories are likely to be able to meet these screening levels. Analyses will take time and usually have limited confidence at these concentrations. Therefore, and particularly for the more volatile agents, soil/destructive samples of porous media should be limited and instead enhanced with headspace monitoring and presence-absence wipe sampling.

  15. Hydrodynamic enhanced dielectrophoretic particle trapping

    DOE Patents [OSTI]

    Miles, Robin R.

    2003-12-09

    Hydrodynamic enhanced dielectrophoretic particle trapping carried out by introducing a side stream into the main stream to squeeze the fluid containing particles close to the electrodes producing the dielelectrophoretic forces. The region of most effective or the strongest forces in the manipulating fields of the electrodes producing the dielectrophoretic forces is close to the electrodes, within 100 .mu.m from the electrodes. The particle trapping arrangement uses a series of electrodes with an AC field placed between pairs of electrodes, which causes trapping of particles along the edges of the electrodes. By forcing an incoming flow stream containing cells and DNA, for example, close to the electrodes using another flow stream improves the efficiency of the DNA trapping.

  16. Effects on the Physical Environment (Hydrodynamics, and Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Water Quality Food Web) Effects on the Physical Environment (Hydrodynamics, and Water Quality Food Web) Effects on the Physical Environment (Hydrodynamics, and Water Quality ...

  17. Violation of the Wiedemann-Franz Law in Hydrodynamic Electron...

    Office of Scientific and Technical Information (OSTI)

    Law in Hydrodynamic Electron Liquids This content will become publicly available on July 30, 2016 Prev Next Title: Violation of the Wiedemann-Franz Law in Hydrodynamic ...

  18. DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT, supports a critical component of LANL's primary mission: to...

  19. Chemistry of destroying chemical warfare agents in flame. Technical project report, April 1994-May 1995

    SciTech Connect (OSTI)

    Korobeinichev, O.P.; Chernov, A.A.; Shvartsberg, V.M.; Il`in, S.B.; Mokrushin, V.V.

    1995-05-01

    The goal of the research is to increase our understanding of flame chemistry of organophosphorus compounds (OPC). This class of chemicals includes chemical warfare agents. (CWAs) such as the nerve agents GB GD and VX, stockpiles of which in the United States and Former Soviet Union are scheduled for destruction by incineration or other technologies. Although high CWA destruction efficiency has been demonstrated in incinerator tests in the U.S. it is necessary to improve technology for achievement higher efficiency and lower level of pollutants. The knowledge of detailed destruction chemistry of the CWA and simulants can be obtained by studying the structure of flames, doped with simulants and CWA and by the development of the combustion model which will include the chemical mechanism of destroying CWA in flame. Alkyl phosphates and alkyl phosphonates are typical organophosphorus compounds, that are simulants of sarin.

  20. Radiation Hydrodynamics Test Problems with Linear Velocity Profiles

    SciTech Connect (OSTI)

    Hendon, Raymond C.; Ramsey, Scott D.

    2012-08-22

    As an extension of the works of Coggeshall and Ramsey, a class of analytic solutions to the radiation hydrodynamics equations is derived for code verification purposes. These solutions are valid under assumptions including diffusive radiation transport, a polytropic gas equation of state, constant conductivity, separable flow velocity proportional to the curvilinear radial coordinate, and divergence-free heat flux. In accordance with these assumptions, the derived solution class is mathematically invariant with respect to the presence of radiative heat conduction, and thus represents a solution to the compressible flow (Euler) equations with or without conduction terms included. With this solution class, a quantitative code verification study (using spatial convergence rates) is performed for the cell-centered, finite volume, Eulerian compressible flow code xRAGE developed at Los Alamos National Laboratory. Simulation results show near second order spatial convergence in all physical variables when using the hydrodynamics solver only, consistent with that solver's underlying order of accuracy. However, contrary to the mathematical properties of the solution class, when heat conduction algorithms are enabled the calculation does not converge to the analytic solution.

  1. Stabilizing geometry for hydrodynamic rotary seals

    DOE Patents [OSTI]

    Dietle, Lannie L. (Houston, TX); Schroeder, John E. (Richmond, TX)

    2010-08-10

    A hydrodynamic sealing assembly including a first component having first and second walls and a peripheral wall defining a seal groove, a second component having a rotatable surface relative to said first component, and a hydrodynamic seal comprising a seal body of generally ring-shaped configuration having a circumference. The seal body includes hydrodynamic and static sealing lips each having a cross-sectional area that substantially vary in time with each other about the circumference. In an uninstalled condition, the seal body has a length defined between first and second seal body ends which varies in time with the hydrodynamic sealing lip cross-sectional area. The first and second ends generally face the first and second walls, respectively. In the uninstalled condition, the first end is angulated relative to the first wall and the second end is angulated relative to the second wall. The seal body has a twist-limiting surface adjacent the static sealing lip. In the uninstalled condition, the twist-limiting surface is angulated relative to the peripheral wall and varies along the circumference. A seal body discontinuity and a first component discontinuity mate to prevent rotation of the seal body relative to the first component.

  2. Livermore Unstructured Lagrange Explicit Shock Hydrodynamics

    Energy Science and Technology Software Center (OSTI)

    2010-09-21

    LULESH v1.0 is a 3D unstructured Lagrange hydrodynamics simulation written specifically to solve a standard analytical test problem, known as the Sedov problem. In this problem, a quantum of energy is deposited into a gas and propagates through the gas over time.

  3. Center Organization | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Organization People People Scientific Advisory Board Center Organization

  4. Hydrodynamic experiment provides key data for Stockpile Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrodynamic experiment provides Stockpile Stewardship key data Los Alamos hydrodynamic experiment provides key data for Stockpile Stewardship Hydrodynamic experiments such as Leda involve non-nuclear surrogate materials that mimic many of the properties of nuclear materials. December 22, 2014 Los Alamos hydrodynamic experiment provides key data for Stockpile Stewardship "Leda," experimental vessel in the "Zero Room" at the underground U1a facility, at the Nevada National

  5. Emery Station Operations Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emery Station Operations Center

  6. COER Hydrodynamic Modeling Competition: Modeling the Dynamic Response of a Floating Body Using the WEC-Sim and FAST Simulation Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COER HYDRODYNAMIC MODELING COMPETITION: MODELING THE DYNAMIC RESPONSE OF A FLOATING BODY USING THE WEC-SIM AND FAST SIMULATION TOOLS Michael Lawson Braulio Barahona Garzon Fabian Wendt Yi-Hsiang Yu National Renewable Energy Laboratory Golden, Colorado, USA Carlos Michelen Sandia National Laboratories Albuquerque, New Mexico, USA ABSTRACT The Center for Ocean Energy Research (COER) at the University of Maynooth in Ireland organized a hydrodynamic modeling competition in conjunction with OMAE2015.

  7. Explosives Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives Center Explosives Center at Los Alamos National Laboratory A world leader in energetic materials research, development and applications, the Explosives Center's unique capabilities enable a dynamic, flexible response to address multiple evolving mission needs. explosives experiment Comprehensive energetic materials development, characterization and testing are key strengths at Los Alamos National Laboratory. An experimental explosive is shown igniting during small-scale impact

  8. Help Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory Advanced Simulation and Computing Menu Events Partnerships Help Center Events Partnerships Help Center Videos Advanced Simulation and Computing Program » Help Center Computing Help Center Help hotlines, hours of operation, training, technical assistance, general information Los Alamos National Laboratory Hours: Monday through Friday, 8:00 a.m. - noon, 1:00-5:00 p.m. Mountain time Telephone: (505) 665-4444 option 3 Fax: (505) 665-6333 E-mail: consult@lanl.gov 24

  9. operations center

    National Nuclear Security Administration (NNSA)

    servers and other critical Operations Center equipment

  10. Independent air supply system filtered to protect against biological and radiological agents (99.7%).
  11. <...

  12. Newtonian Hydrodynamics with Arbitrary Volumetric Sources

    SciTech Connect (OSTI)

    Lowrie, Robert Byron

    2015-11-12

    In this note, we derive how to handle mass, momentum, and energy sources for Newtonian hydrodynamics. Much of this is classic, although we’re unaware of a reference that treats mass sources, necessary for certain physics and the method of manufactured solutions. In addition, we felt it important to emphasize that the integral form of the governing equations results in a straightforward treatment of the sources. With the integral form, we’ll demonstrate that there’s no ambiguity between the Lagrangian and Eulerian form of the equations, which is less clear with the differential forms.

  13. Consistent description of kinetics and hydrodynamics of dusty plasma

    SciTech Connect (OSTI)

    Markiv, B.; Tokarchuk, M.; National University “Lviv Polytechnic,” 12 Bandera St., 79013 Lviv

    2014-02-15

    A consistent statistical description of kinetics and hydrodynamics of dusty plasma is proposed based on the Zubarev nonequilibrium statistical operator method. For the case of partial dynamics, the nonequilibrium statistical operator and the generalized transport equations for a consistent description of kinetics of dust particles and hydrodynamics of electrons, ions, and neutral atoms are obtained. In the approximation of weakly nonequilibrium process, a spectrum of collective excitations of dusty plasma is investigated in the hydrodynamic limit.

  14. Hydrodynamic effects on coalescence. (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Hydrodynamic effects on coalescence. Citation Details In-Document Search Title: Hydrodynamic effects on coalescence. The goal of this project was to design, build and test novel diagnostics to probe the effect of hydrodynamic forces on coalescence dynamics. Our investigation focused on how a drop coalesces onto a flat surface which is analogous to two drops coalescing, but more amenable to precise experimental measurements. We designed and built a flow cell to create an axisymmetric compression

  15. DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT, supports a critical component of LANL's primary mission: to ensure the safety, security, and effectiveness of nuclear weapons in our nation's stockpile. Los Alamos scientists built DARHT, the world's most powerful x-ray machine, to analyze mockups of nuclear weapons. At the Los Alamos National Laboratory (LANL), the Dual-Axis Radiographic Hydrodynamic Test Facility, or DARHT,

  16. Los Alamos conducts important hydrodynamic experiment in Nevada

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL conducts hydrodynamic experiment in Nevada Los Alamos conducts important hydrodynamic experiment in Nevada Hydrodynamic experiments such as Leda involve non-nuclear surrogate materials that mimic many of the properties of nuclear materials. September 8, 2014 Technicians at the Nevada National Security Site make final adjustments to the "Leda" experimental vessel in the "Zero Room" at the underground U1a facility. Technicians at the Nevada National Security Site make

  17. Effects on the Physical Environment (Hydrodynamics, and Water Quality Food

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Web) | Department of Energy and Water Quality Food Web) Effects on the Physical Environment (Hydrodynamics, and Water Quality Food Web) Effects on the Physical Environment (Hydrodynamics, and Water Quality Food Web) Office presentation icon 57_mhk_modeling.ppt More Documents & Publications Effects on the Physical Environment (Hydrodynamics, Sediment Transport, and Water Quality) Free Flow Energy (TRL 1 2 3 Component) - Design and Development of a Cross-Platform Submersible Generator

  18. Hydrodynamic experiment provides key data for Stockpile Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    weapon performance in the absence of full-scale underground nuclear testing," said Webster. Los Alamos hydrodynamic experiment provides key data for Stockpile Stewardship In...

  19. Los Alamos conducts important hydrodynamic experiment in Nevada

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear testing," said Webster. These experiments with surrogate materials provide a principle linkage with scaledfull-scale hydrodynamic tests, the suite of prior underground...

  20. MHK Projects/Marine Hydrodynamics Laboratory at the University...

    Open Energy Info (EERE)

    Marine Hydrodynamics Laboratory at the University of Michigan < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"map...

  21. University of New Hampshire Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    Hydrodynamic Testing Facilities Name University of New Hampshire Address Chase Ocean Engineering Laboratory, 24 Colovos Road Place Durham, NH Zip 03824 Sector Hydro Phone number...

  22. KIVA--Hydrodynamics Model for Chemically Reacting Flow with Spray...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Find More Like This Return to Search KIVA--Hydrodynamics Model for Chemically Reacting Flow with Spray Los Alamos National Laboratory Contact LANL...

  1. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  2. Explicit 2-D Hydrodynamic FEM Program

    Energy Science and Technology Software Center (OSTI)

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. Themore » isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less

  3. How Do I Know? A Guide to the Selection of Personal Protective Equipment for Use in Responding to A Release of Chemical Warfare Agents

    SciTech Connect (OSTI)

    Foust, C.B.

    1999-05-01

    An incident involving chemical warfare agents requires a unique hazardous materials (HAZMAT) response. As with an HAZMAT event, federal regulations prescribe that responders must be protected from exposure to the chemical agents. But unlike other HAZMAT events, special considerations govern selection of personal protective equipment (PPE). PPE includes all clothing, respirators and monitoring devices used to respond to a chemical release. PPE can differ depending on whether responders are military or civilian personnel.

  4. Triangular flow in hydrodynamics and transport theory

    SciTech Connect (OSTI)

    Alver, Burak Han [Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Gombeaud, Clement; Luzum, Matthew; Ollitrault, Jean-Yves [CNRS, URA2306, IPhT, Institut de physique theorique de Saclay, F-91191 Gif-sur-Yvette (France)

    2010-09-15

    In ultrarelativistic heavy-ion collisions, the Fourier decomposition of the relative azimuthal angle, {Delta}{phi}, distribution of particle pairs yields a large cos(3{Delta}{phi}) component, extending to large rapidity separations {Delta}{eta}>1. This component captures a significant portion of the ridge and shoulder structures in the {Delta}{phi} distribution, which have been observed after contributions from elliptic flow are subtracted. An average finite triangularity owing to event-by-event fluctuations in the initial matter distribution, followed by collective flow, naturally produces a cos(3{Delta}{phi}) correlation. Using ideal and viscous hydrodynamics and transport theory, we study the physics of triangular (v{sub 3}) flow in comparison to elliptic (v{sub 2}), quadrangular (v{sub 4}), and pentagonal (v{sub 5}) flow. We make quantitative predictions for v{sub 3} at RHIC and LHC as a function of centrality and transverse momentum. Our results for the centrality dependence of v{sub 3} show a quantitative agreement with data extracted from previous correlation measurements by the STAR collaboration. This study supports previous results on the importance of triangular flow in the understanding of ridge and shoulder structures. Triangular flow is found to be a sensitive probe of initial geometry fluctuations and viscosity.

  5. COMPUTATIONAL SCIENCE CENTER

    SciTech Connect (OSTI)

    DAVENPORT, J.

    2006-11-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together researchers in these areas and to provide a focal point for the development of computational expertise at the Laboratory. These efforts will connect to and support the Department of Energy's long range plans to provide Leadership class computing to researchers throughout the Nation. Recruitment for six new positions at Stony Brook to strengthen its computational science programs is underway. We expect some of these to be held jointly with BNL.

  6. THE APPLICATION OF SINGLE PARTICLE AEROSOL MASS SPECTROMETRY FOR THE DETECTION AND IDENTIFICATION OF HIGH EXPLOSIVES AND CHEMICAL WARFARE AGENTS

    SciTech Connect (OSTI)

    Martin, A

    2006-10-23

    Single Particle Aerosol Mass Spectrometry (SPAMS) was evaluated as a real-time detection technique for single particles of high explosives. Dual-polarity time-of-flight mass spectra were obtained for samples of 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazinane (RDX), and pentaerythritol tetranitrate (PETN); peaks indicative of each compound were identified. Composite explosives, Comp B, Semtex 1A, and Semtex 1H were also analyzed, and peaks due to the explosive components of each sample were present in each spectrum. Mass spectral variability with laser fluence is discussed. The ability of the SPAMS system to identify explosive components in a single complex explosive particle ({approx}1 pg) without the need for consumables is demonstrated. SPAMS was also applied to the detection of Chemical Warfare Agent (CWA) simulants in the liquid and vapor phases. Liquid simulants for sarin, cyclosarin, tabun, and VX were analyzed; peaks indicative of each simulant were identified. Vapor phase CWA simulants were adsorbed onto alumina, silica, Zeolite, activated carbon, and metal powders which were directly analyzed using SPAMS. The use of metal powders as adsorbent materials was especially useful in the analysis of triethyl phosphate (TEP), a VX stimulant, which was undetectable using SPAMS in the liquid phase. The capability of SPAMS to detect high explosives and CWA simulants using one set of operational conditions is established.

  7. Evaluation of Chemical Warfare Agent Percutaneous Vapor Toxicity: Derivation of Toxicity Guidelines for Assessing Chemical Protective Ensembles.

    SciTech Connect (OSTI)

    Watson, A.P.

    2003-07-24

    Percutaneous vapor toxicity guidelines are provided for assessment and selection of chemical protective ensembles (CPEs) to be used by civilian and military first responders operating in a chemical warfare agent vapor environment. The agents evaluated include the G-series and VX nerve agents, the vesicant sulfur mustard (agent HD) and, to a lesser extent, the vesicant Lewisite (agent L). The focus of this evaluation is percutaneous vapor permeation of CPEs and the resulting skin absorption, as inhalation and ocular exposures are assumed to be largely eliminated through use of SCBA and full-face protective masks. Selection of appropriately protective CPE designs and materials incorporates a variety of test parameters to ensure operability, practicality, and adequacy. One aspect of adequacy assessment should be based on systems tests, which focus on effective protection of the most vulnerable body regions (e.g., the groin area), as identified in this analysis. The toxicity range of agent-specific cumulative exposures (Cts) derived in this analysis can be used as decision guidelines for CPE acceptance, in conjunction with weighting consideration towards more susceptible body regions. This toxicity range is bounded by the percutaneous vapor estimated minimal effect (EME{sub pv}) Ct (as the lower end) and the 1% population threshold effect (ECt{sub 01}) estimate. Assumptions of exposure duration used in CPE certification should consider that each agent-specific percutaneous vapor cumulative exposure Ct for a given endpoint is a constant for exposure durations between 30 min and 2 hours.

  8. Violation of the Wiedemann-Franz Law in Hydrodynamic Electron...

    Office of Scientific and Technical Information (OSTI)

    Law in Hydrodynamic Electron Liquids Citation Details In-Document Search This content will become publicly available on July 30, 2016 Title: Violation of the Wiedemann-Franz Law in ...

  9. EIS-0228: Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impact of a proposal to construct and operate the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory (LANL)...

  10. Increasing Hydrodynamic Efficiency by Reducing Cross-Beam Energy Transfer

    Office of Scientific and Technical Information (OSTI)

    in Direct-Drive-Implosion Experiments (Journal Article) | SciTech Connect Increasing Hydrodynamic Efficiency by Reducing Cross-Beam Energy Transfer in Direct-Drive-Implosion Experiments Citation Details In-Document Search Title: Increasing Hydrodynamic Efficiency by Reducing Cross-Beam Energy Transfer in Direct-Drive-Implosion Experiments Authors: Froula, D. H. ; Igumenshchev, I. V. ; Michel, D. T. ; Edgell, D. H. ; Follett, R. ; Glebov, V. Yu. ; Goncharov, V. N. ; Kwiatkowski, J. ;

  11. Damaged Surface Hydrodynamics (DSH) Flash Report (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Technical Report: Damaged Surface Hydrodynamics (DSH) Flash Report Citation Details In-Document Search Title: Damaged Surface Hydrodynamics (DSH) Flash Report Abstract Not Provided. Authors: Rousculp, Christopher L. [1] ; Oro, David Michael [1] ; Morris, Christopher [1] ; Saunders, Alexander [1] ; Reass, William [1] ; Griego, Jeffrey Randall [1] ; Turchi, Peter John [1] ; Reinovsky, Robert Emil [1] + Show Author Affiliations Los Alamos National Lab. (LANL), Los Alamos, NM

  12. Hydrodynamics with chiral anomaly and charge separation in relativistic

    Office of Scientific and Technical Information (OSTI)

    heavy ion collisions (Journal Article) | DOE PAGES Hydrodynamics with chiral anomaly and charge separation in relativistic heavy ion collisions Title: Hydrodynamics with chiral anomaly and charge separation in relativistic heavy ion collisions Authors: Yin, Yi Search DOE PAGES for author "Yin, Yi" Search DOE PAGES for ORCID "000000033726909X" Search orcid.org for ORCID "000000033726909X" ; Liao, Jinfeng Publication Date: 2016-05-01 OSTI Identifier: 1240207

  13. Analysis and prediction of aperiodic hydrodynamic oscillatory time series

    Office of Scientific and Technical Information (OSTI)

    by feed-forward neural networks, fuzzy logic, and a local nonlinear predictor (Journal Article) | SciTech Connect Analysis and prediction of aperiodic hydrodynamic oscillatory time series by feed-forward neural networks, fuzzy logic, and a local nonlinear predictor Citation Details In-Document Search Title: Analysis and prediction of aperiodic hydrodynamic oscillatory time series by feed-forward neural networks, fuzzy logic, and a local nonlinear predictor Forecasting of aperiodic time

  14. COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC RESPONSE IN

    Office of Scientific and Technical Information (OSTI)

    SOLAR FLARES. I. THE NUMERICAL MODEL (Journal Article) | SciTech Connect COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC RESPONSE IN SOLAR FLARES. I. THE NUMERICAL MODEL Citation Details In-Document Search Title: COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC RESPONSE IN SOLAR FLARES. I. THE NUMERICAL MODEL Acceleration and transport of high-energy particles and fluid dynamics of atmospheric plasma are interrelated aspects of solar flares, but for convenience

  15. Effects on the Physical Environment (Hydrodynamics, Sediment Transport, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Quality) | Department of Energy Sediment Transport, and Water Quality) Effects on the Physical Environment (Hydrodynamics, Sediment Transport, and Water Quality) Effects on the Physical Environment (Hydrodynamics, Sediment Transport, and Water Quality) File 56_tools_methods_to_measure_predict_envrionmental_impacts_snl_roberts.pptx More Documents & Publications FY 09 Lab Call: Research & Assessment for MHK Development 2014 Water Power Program Peer Review Compiled Presentations:

  16. Hydrodynamic evolution and jet energy loss in Cu + Cu collisions

    SciTech Connect (OSTI)

    Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2011-04-15

    We present results from a hybrid description of Cu + Cu collisions using (3 + 1)-dimensional hydrodynamics (music) for the bulk evolution and a Monte Carlo simulation (martini) for the evolution of high-momentum partons in the hydrodynamical background. We explore the limits of this description by going to small system sizes and determine the dependence on different fractions of wounded nucleon and binary collisions scaling of the initial energy density. We find that Cu + Cu collisions are well described by the hybrid description at least up to 20% central collisions.

  17. 3-D HYDRODYNAMIC MODELING IN A GEOSPATIAL FRAMEWORK

    SciTech Connect (OSTI)

    Bollinger, J; Alfred Garrett, A; Larry Koffman, L; David Hayes, D

    2006-08-24

    3-D hydrodynamic models are used by the Savannah River National Laboratory (SRNL) to simulate the transport of thermal and radionuclide discharges in coastal estuary systems. Development of such models requires accurate bathymetry, coastline, and boundary condition data in conjunction with the ability to rapidly discretize model domains and interpolate the required geospatial data onto the domain. To facilitate rapid and accurate hydrodynamic model development, SRNL has developed a pre- and post-processor application in a geospatial framework to automate the creation of models using existing data. This automated capability allows development of very detailed models to maximize exploitation of available surface water radionuclide sample data and thermal imagery.

  18. Bisfuel links - Research centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research centers http://bioenergy.asu.edu/" target="_blank">Center for Bioenergy and Photosynthesis

  19. Plasmon excitation in metal slab by fast point charge: The role of additional boundary conditions in quantum hydrodynamic model

    SciTech Connect (OSTI)

    Zhang, Ying-Ying; An, Sheng-Bai; Song, Yuan-Hong Wang, You-Nian; Kang, Naijing; Miškovi?, Z. L.

    2014-10-15

    We study the wake effect in the induced potential and the stopping power due to plasmon excitation in a metal slab by a point charge moving inside the slab. Nonlocal effects in the response of the electron gas in the metal are described by a quantum hydrodynamic model, where the equation of electronic motion contains both a quantum pressure term and a gradient correction from the Bohm quantum potential, resulting in a fourth-order differential equation for the perturbed electron density. Thus, besides using the condition that the normal component of the electron velocity should vanish at the impenetrable boundary of the metal, a consistent inclusion of the gradient correction is shown to introduce two possibilities for an additional boundary condition for the perturbed electron density. We show that using two different sets of boundary conditions only gives rise to differences in the wake potential at large distances behind the charged particle. On the other hand, the gradient correction in the quantum hydrodynamic model is seen to cause a reduction in the depth of the potential well closest to the particle, and a reduction of its stopping power. Even for a particle moving in the center of the slab, we observe nonlocal effects in the induced potential and the stopping power due to reduction of the slab thickness, which arise from the gradient correction in the quantum hydrodynamic model.

  20. Method for maintaining a cutting blade centered in a kerf

    DOE Patents [OSTI]

    Blaedel, Kenneth L. (Dublin, CA); Davis, Pete J. (Pleasanton, CA); Landram, Charles S. (Livermore, CA)

    2002-01-01

    A saw having a self-pumped hydrodynamic blade guide or bearing for retaining the saw blade in a centered position in the saw kerf (width of cut made by the saw). The hydrodynamic blade guide or bearing utilizes pockets or grooves incorporated into the sides of the blade. The saw kerf in the workpiece provides the guide or bearing stator surface. Both sides of the blade entrain cutting fluid as the blade enters the kerf in the workpiece, and the trapped fluid provides pressure between the blade and the workpiece as an inverse function of the gap between the blade surface and the workpiece surface. If the blade wanders from the center of the kerf, then one gap will increase and one gap will decrease and the consequent pressure difference between the two sides of the blade will cause the blade to re-center itself in the kerf. Saws using the hydrodynamic blade guide or bearing have particular application in slicing slabs from boules of single crystal materials, for example, as well as for cutting other difficult to saw materials such as ceramics, glass, and brittle composite materials.

  1. Dual Axis Radiographic Hydrodynamic Test Facility | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Dual Axis Radiographic Hydrodynamic Test Facility | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary Tables Key Federal Legislation The information below includes a brief chronology and

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Local Examples Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Search Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Fuel Properties Search Fuel Properties Comparison Create a custom chart

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About the Data Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Summary Tables Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Federal Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Truckstop Electrification Truck Stop Electrification Locator Locate

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Vehicle and Infrastructure Cash-Flow Evaluation Model VICE 2.0: Vehicle

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives » Federal Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  17. Event-by-event hydrodynamics: A better tool to study the Quark-Gluon plasma

    SciTech Connect (OSTI)

    Grassi, Frederique

    2013-03-25

    Hydrodynamics has been established as a good tool to describe many data from relativistic heavyion collisions performed at RHIC and LHC. More recently, it has become clear that it is necessary to use event-by-event hydrodynamics (i.e. describe each collision individually using hydrodynamics), an approach first developed in Brazil. In this paper, I review which data require the use of event-by-event hydrodynamics and what more we may learn on the Quark-Gluon Plasma with this.

  18. Danforth Center Tour | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Danforth Center Tour Danforth Center Tour As part of our Events & Topics in Bioenergy and the Environment series, we hosted a tour to the Donald Danforth Plant Science Center to get a behind-the-scenes look at all the fascinating science being done on site.

  19. Center for Nonlinear Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Geophysical Experiences Materials Design Calendar NSEC Center for Nonlinear Studies Center for Nonlinear Studies Serving as an interface between mission...

  20. NREL: Education Center - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Center Printable Version Events Unless otherwise notified, events listed here will be held at the NREL Education Center, 15013 Denver West Parkway, Golden, CO. The...

  1. Child Development Centers

    Broader source: Energy.gov [DOE]

    Headquarters operates National Association for the Education of Young Children (NAEYC) accredited child development centers at its Forrestal and Germantown facilities. Each center provides day care...

  2. Development and Implementation of Radiation-Hydrodynamics Verification Test Problems

    SciTech Connect (OSTI)

    Marcath, Matthew J.; Wang, Matthew Y.; Ramsey, Scott D.

    2012-08-22

    Analytic solutions to the radiation-hydrodynamic equations are useful for verifying any large-scale numerical simulation software that solves the same set of equations. The one-dimensional, spherically symmetric Coggeshall No.9 and No.11 analytic solutions, cell-averaged over a uniform-grid have been developed to analyze the corresponding solutions from the Los Alamos National Laboratory Eulerian Applications Project radiation-hydrodynamics code xRAGE. These Coggeshall solutions have been shown to be independent of heat conduction, providing a unique opportunity for comparison with xRAGE solutions with and without the heat conduction module. Solution convergence was analyzed based on radial step size. Since no shocks are involved in either problem and the solutions are smooth, second-order convergence was expected for both cases. The global L1 errors were used to estimate the convergence rates with and without the heat conduction module implemented.

  3. Low torque hydrodynamic lip geometry for rotary seals

    DOE Patents [OSTI]

    Dietle, Lannie L.; Schroeder, John E.

    2015-07-21

    A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.

  4. Validating hydrodynamic growth in National Ignition Facility implosions

    SciTech Connect (OSTI)

    Peterson, J. L. Casey, D. T.; Hurricane, O. A.; Raman, K. S.; Robey, H. F.; Smalyuk, V. A.

    2015-05-15

    We present new hydrodynamic growth experiments at the National Ignition Facility, which extend previous measurements up to Legendre mode 160 and convergence ratio 4, continuing the growth factor dispersion curve comparison of the low foot and high foot pulses reported by Casey et al. [Phys. Rev. E 90, 011102(R) (2014)]. We show that the high foot pulse has lower growth factor and lower growth rate than the low foot pulse. Using novel on-capsule fiducial markers, we observe that mode 160 inverts sign (changes phase) for the high foot pulse, evidence of amplitude oscillations during the Richtmyer-Meshkov phase of a spherically convergent system. Post-shot simulations are consistent with the experimental measurements for all but the shortest wavelength perturbations, reinforcing the validity of radiation hydrodynamic simulations of ablation front growth in inertial confinement fusion capsules.

  5. Matching pre-equilibrium dynamics and viscous hydrodynamics

    SciTech Connect (OSTI)

    Martinez, Mauricio; Strickland, Michael

    2010-02-15

    We demonstrate how to match pre-equilibrium dynamics of a 0+1-dimensional quark-gluon plasma to second-order viscous hydrodynamical evolution. The matching allows us to specify the initial values of the energy density and shear tensor at the initial time of hydrodynamical evolution as a function of the lifetime of the pre-equilibrium period. We compare two models for pre-equilibrium quark-gluon plasma, longitudinal free streaming and collisionally broadened longitudinal expansion, and present analytic formulas that can be used to fix the necessary components of the energy-momentum tensor. The resulting dynamical models can be used to assess the effect of pre-equilibrium dynamics on quark-gluon plasma observables. Additionally, we investigate the dependence of entropy production on pre-equilibrium dynamics and discuss the limitations of the standard definitions of nonequilibrium entropy.

  6. Skew and twist resistant hydrodynamic rotary shaft seal

    DOE Patents [OSTI]

    Dietle, L.; Kalsi, M.S.

    1999-02-23

    A hydrodynamically lubricated squeeze packing type rotary shaft seal suitable for lubricant retention and environmental exclusion which incorporates one or more resilient protuberances which cooperate with the gland walls to hold the seal straight in its installation groove in unpressurized and low pressure lubricant retention applications thereby preventing skew-induced wear caused by impingement of abrasive contaminants present in the environment, and which also serve as radial bearings to prevent tipping of the seal within its installation gland. 14 figs.

  7. THE KOZAI-LIDOV MECHANISM IN HYDRODYNAMICAL DISKS

    SciTech Connect (OSTI)

    Martin, Rebecca G.; Nixon, Chris; Armitage, Philip J. [JILA, University of Colorado and NIST, UCB 440, Boulder, CO 80309 (United States); Lubow, Stephen H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Price, Daniel J. [Monash Centre for Astrophysics (MoCA), School of Mathematical Sciences, Monash University, Clayton, Vic. 3800 (Australia); Do?an, Suzan [Department of Astronomy and Space Sciences, University of Ege, Bornova, 35100 ?zmir (Turkey); King, Andrew [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2014-09-10

    We use three-dimensional hydrodynamical simulations to show that a highly misaligned accretion disk around one component of a binary system can exhibit global Kozai-Lidov cycles, where the inclination and eccentricity of the disk are interchanged periodically. This has important implications for accreting systems on all scales, for example, the formation of planets and satellites in circumstellar and circumplanetary disks, outbursts in X-ray binary systems, and accretion onto supermassive black holes.

  8. Skew and twist resistant hydrodynamic rotary shaft seal

    DOE Patents [OSTI]

    Dietle, Lannie (Sugar Land, TX); Kalsi, Manmohan Singh (Houston, TX)

    1999-01-01

    A hydrodynamically lubricated squeeze packing type rotary shaft seal suitable for lubricant retention and environmental exclusion which incorporates one or more resilient protuberances which and cooperate with the gland walls to hold the seal straight in its installation groove in unpressurized and low pressure lubricant retention applications thereby preventing skew-induced wear caused by impingement of abrasive contaminants present in the environment, and which also serve as radial bearings to prevent tipping of the seal within its installation gland.

  9. Parallel Implementation of Smoothed-Particle Hydrodynamics Method Using

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LAMMPS/Trilinos Implementation of Smoothed-Particle Hydrodynamics Method Using LAMMPS/Trilinos - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization

  10. Analytical Solutions of Landau (1+1)-Dimensional Hydrodynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sen, Abhisek; Gerhard, Jochen; Torrieri, Giorgio; Read, Jr, Kenneth F

    2014-01-01

    To help guide our intuition, summarize important features, and point out essential elements, we review the analytical solutions of Landau (1+1)-dimensional hydrodynamics and exhibit the full evolution of the dynamics from the very beginning to subsequent times. Special emphasis is placed on the matching and the interplay between the Khalatnikov solution and the Riemann simple wave solution at the earliest times and in the edge regions at later times.

  11. DYNA3D. Explicit 3-d Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Chu, R.; Amakai, M.; Lung, H.C.; Ishigai, T.

    1989-05-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  12. DYNA3D. Explicit 3-d Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Kennedy, T.

    1989-05-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, and resultant plasticity. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack `Tuesday` high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  13. Hydrodynamically Lubricated Rotary Shaft Having Twist Resistant Geometry

    DOE Patents [OSTI]

    Dietle, Lannie; Gobeli, Jeffrey D.

    1993-07-27

    A hydrodynamically lubricated squeeze packing type rotary shaft with a cross-sectional geometry suitable for pressurized lubricant retention is provided which, in the preferred embodiment, incorporates a protuberant static sealing interface that, compared to prior art, dramatically improves the exclusionary action of the dynamic sealing interface in low pressure and unpressurized applications by achieving symmetrical deformation of the seal at the static and dynamic sealing interfaces. In abrasive environments, the improved exclusionary action results in a dramatic reduction of seal and shaft wear, compared to prior art, and provides a significant increase in seal life. The invention also increases seal life by making higher levels of initial compression possible, compared to prior art, without compromising hydrodynamic lubrication; this added compression makes the seal more tolerant of compression set, abrasive wear, mechanical misalignment, dynamic runout, and manufacturing tolerances, and also makes hydrodynamic seals with smaller cross-sections more practical. In alternate embodiments, the benefits enumerated above are achieved by cooperative configurations of the seal and the gland which achieve symmetrical deformation of the seal at the static and dynamic sealing interfaces. The seal may also be configured such that predetermined radial compression deforms it to a desired operative configuration, even through symmetrical deformation is lacking.

  14. tracc-comuting-center-html

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Research and Analysis Computing Center

  15. DYNA3D. Explicit 3-D Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Whirley, R.G.; Englemann, B.E.

    1993-11-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack `Tuesday` high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  16. DYNA3D. Explicit 3-d Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Whirley, R.G.; Englemann, B.E.

    1993-11-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  17. DYNA3D. Explicit 3-D Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Whirley, R.G.

    1989-05-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack `Tuesday` high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  18. DYNA3D; Explicit 3-d Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Whirley, R.G.

    1989-05-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  19. DYNA3D. Explicit 3-d Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Whirley, R.G.; Englemann, B.E. )

    1993-11-30

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  20. DYNA3D. Explicit 3-D Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Whirley, R.G.

    1989-05-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  1. RAM: a Relativistic Adaptive Mesh Refinement Hydrodynamics Code

    SciTech Connect (OSTI)

    Zhang, Wei-Qun; MacFadyen, Andrew I.; /Princeton, Inst. Advanced Study

    2005-06-06

    The authors have developed a new computer code, RAM, to solve the conservative equations of special relativistic hydrodynamics (SRHD) using adaptive mesh refinement (AMR) on parallel computers. They have implemented a characteristic-wise, finite difference, weighted essentially non-oscillatory (WENO) scheme using the full characteristic decomposition of the SRHD equations to achieve fifth-order accuracy in space. For time integration they use the method of lines with a third-order total variation diminishing (TVD) Runge-Kutta scheme. They have also implemented fourth and fifth order Runge-Kutta time integration schemes for comparison. The implementation of AMR and parallelization is based on the FLASH code. RAM is modular and includes the capability to easily swap hydrodynamics solvers, reconstruction methods and physics modules. In addition to WENO they have implemented a finite volume module with the piecewise parabolic method (PPM) for reconstruction and the modified Marquina approximate Riemann solver to work with TVD Runge-Kutta time integration. They examine the difficulty of accurately simulating shear flows in numerical relativistic hydrodynamics codes. They show that under-resolved simulations of simple test problems with transverse velocity components produce incorrect results and demonstrate the ability of RAM to correctly solve these problems. RAM has been tested in one, two and three dimensions and in Cartesian, cylindrical and spherical coordinates. they have demonstrated fifth-order accuracy for WENO in one and two dimensions and performed detailed comparison with other schemes for which they show significantly lower convergence rates. Extensive testing is presented demonstrating the ability of RAM to address challenging open questions in relativistic astrophysics.

  2. Development of a Hydrodynamic and Transport model of Bellingham Bay in Support of Nearshore Habitat Restoration

    SciTech Connect (OSTI)

    Wang, Taiping; Yang, Zhaoqing; Khangaonkar, Tarang

    2010-04-22

    In this study, a hydrodynamic model based on the unstructured-grid finite volume coastal ocean model (FVCOM) was developed for Bellingham Bay, Washington. The model simulates water surface elevation, velocity, temperature, and salinity in a three-dimensional domain that covers the entire Bellingham Bay and adjacent water bodies, including Lummi Bay, Samish Bay, Padilla Bay, and Rosario Strait. The model was developed using Pacific Northwest National Laboratory’s high-resolution Puget Sound and Northwest Straits circulation and transport model. A sub-model grid for Bellingham Bay and adjacent coastal waters was extracted from the Puget Sound model and refined in Bellingham Bay using bathymetric light detection and ranging (LIDAR) and river channel cross-section data. The model uses tides, river inflows, and meteorological inputs to predict water surface elevations, currents, salinity, and temperature. A tidal open boundary condition was specified using standard National Oceanic and Atmospheric Administration (NOAA) predictions. Temperature and salinity open boundary conditions were specified based on observed data. Meteorological forcing (wind, solar radiation, and net surface heat flux) was obtained from NOAA real observations and National Center for Environmental Prediction North American Regional Analysis outputs. The model was run in parallel with 48 cores using a time step of 2.5 seconds. It took 18 hours of cpu time to complete 26 days of simulation. The model was calibrated with oceanographic field data for the period of 6/1/2009 to 6/26/2009. These data were collected specifically for the purpose of model development and calibration. They include time series of water-surface elevation, currents, temperature, and salinity as well as temperature and salinity profiles during instrument deployment and retrieval. Comparisons between model predictions and field observations show an overall reasonable agreement in both temporal and spatial scales. Comparisons of root mean square error values for surface elevation, velocity, temperature, and salinity time series are 0.11 m, 0.10 m/s, 1.28oC, and 1.91 ppt, respectively. The model was able to reproduce the salinity and temperature stratifications inside Bellingham Bay. Wetting and drying processes in tidal flats in Bellingham Bay, Samish Bay, and Padilla Bay were also successfully simulated. Both model results and observed data indicated that water surface elevations inside Bellingham Bay are highly correlated to tides. Circulation inside the bay is weak and complex and is affected by various forcing mechanisms, including tides, winds, freshwater inflows, and other local forcing factors. The Bellingham Bay model solution was successfully linked to the NOAA oil spill trajectory simulation model “General NOAA Operational Modeling Environment (GNOME).” Overall, the Bellingham Bay model has been calibrated reasonably well and can be used to provide detailed hydrodynamic information in the bay and adjacent water bodies. While there is room for further improvement with more available data, the calibrated hydrodynamic model provides useful hydrodynamic information in Bellingham Bay and can be used to support sediment transport and water quality modeling as well as assist in the design of nearshore restoration scenarios.

  3. On freeze-out problem in relativistic hydrodynamics

    SciTech Connect (OSTI)

    Ivanov, Yu. B., E-mail: Y.Ivanov@gsi.de; Russkikh, V. N. [Gesellschaft fuer Schwerionenforschung mbH (Germany)

    2009-07-15

    A finite unbound system which is equilibrium in one reference frame is in general nonequilibrium in another frame. This is a consequence of the relative character of the time synchronization in the relativistic physics. This puzzle was a prime motivation of the Cooper-Frye approach to the freeze-out in relativistic hydrodynamics. Solution of the puzzle reveals that the Cooper-Frye recipe is far not a unique phenomenological method that meets requirements of energy-momentum conservation. Alternative freeze-out recipes are considered and discussed.

  4. Lower bound on the electroweak wall velocity from hydrodynamic instability

    SciTech Connect (OSTI)

    Mégevand, Ariel; Membiela, Federico Agustín; Sánchez, Alejandro D.

    2015-03-27

    The subsonic expansion of bubbles in a strongly first-order electroweak phase transition is a convenient scenario for electroweak baryogenesis. For most extensions of the Standard Model, stationary subsonic solutions (i.e., deflagrations) exist for the propagation of phase transition fronts. However, deflagrations are known to be hydrodynamically unstable for wall velocities below a certain critical value. We calculate this critical velocity for several extensions of the Standard Model and compare with an estimation of the wall velocity. In general, we find a region in parameter space which gives stable deflagrations as well as favorable conditions for electroweak baryogenesis.

  5. Skew And Twist Resistant Hydrodynamic Rotary Shaft Seal

    DOE Patents [OSTI]

    Dietle, Lannie; Kalsi, Manmohan Singh

    2000-03-14

    A hydrodynamically lubricated squeeze packing type rotary shaft seal suitable for lubricant retention and environmental exclusion which incorporates one or more resilient protuberances which and cooperate with the gland walls to hold the seal straight in its installation groove in unpressurized and low pressure lubricant retention applications thereby preventing skew-induced wear caused by impingement of abrasive contaminants present in the environment, and which also serve as radial bearings to prevent tipping of the seal within its installation gland. Compared to prior art, this invention provides a dramatic reduction of seal and shaft wear in abrasive environments and provides a significant increase in seal life.

  6. AECU-4439 PHYSICS AND MATHEMATICS HYDRODYNAMIC ASPECTS OF BOILING HEAT

    Office of Scientific and Technical Information (OSTI)

    AECU-4439 PHYSICS AND MATHEMATICS HYDRODYNAMIC ASPECTS OF BOILING HEAT TRANS FER (t h esi s) BY Novak Zuber June 1959 . - . Reaearch - Laboratory @is Angelei) 811~1 Ramo-Wooldridge Corporation University of California Los Angeles, California - 2 - .w- UNITED STATES ATOMIC ENERGY COMMISSION Technical Information Service L E G A L N O T I C E This report was prepared aa an account of Government sponsored work. Neither tbe United States, nor the Commission, nor MY person acting on behalf of the

  7. Hydrodynamic interactions in metal rod-like particle suspensions due to

    Office of Scientific and Technical Information (OSTI)

    induced charge electroosmosis (Journal Article) | SciTech Connect Hydrodynamic interactions in metal rod-like particle suspensions due to induced charge electroosmosis Citation Details In-Document Search Title: Hydrodynamic interactions in metal rod-like particle suspensions due to induced charge electroosmosis We present a theoretical and experimental study of the role of hydrodynamic interactions on the motion and dispersion of metal rod-like particles in the presence of an externally

  8. UAIEE and Industrial Assessment Centers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    55-62011| Industrial Assessment Centers * Started in 1976 * Currently 26 Centers across the US * Almost...

  9. Green Jobs Training Center

    Broader source: Energy.gov [DOE]

    Provides an overview of the training available through the Green Jobs Training Center including certification courses and the apprenticeship program.

  10. Applied Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARC Privacy and Security Notice Skip over navigation Search the JLab Site Applied Research Center Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Applied Research Center ARC Home Consortium News EH&S Reports print version ARC Resources Commercial Tenants ARC Brochure Library Conference Room Applied Research Center Applied Research Center front view Applied Research

  11. First National Technology Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Technology First National Technology Center Center Dennis Hughes FMA, RPA, P.E. Lead Property Manager, First National Buildings, Inc. 2 First National Technology First National Technology Center Center First National of Nebraska, Inc. - $12 Billion Assets - 5,400 employees - 6.6 million customers in 50 states - 60 banking locations Nebraska, Colorado, Kansas, South Dakota,Texas, Illinois - Largest in house merchant processor in United States Top ten VISA® and MasterCard® processor Top

  12. ARM - External Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govExternal Data Center External Data Center Order Data Description of External Data Streams Data Viewers and Plots (selected data sets) XDC Documentation External Data Center The ARM External Data Center (XDC) at Brookhaven National Laboratory identifies sources and acquires data, called "external data", to augment the data being generated within the program. The scientific need and the priorities for acquiring, processing and archiving the external data-streams are established by the

  13. Center for Advanced Photophysics | About The Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Victor Klimov - Center for Advanced Solar Photophysics Message from Center Director The solution to the global energy challenge requires revolutionary breakthroughs in areas such as the conversion of solar energy into electrical power or chemical fuels. The principles for capturing solar light and converting it into electrical charges have not changed for more than four decades. Previous advances in this area have mostly relied on iterative improvements in material quality and/or device

  14. Data center cooling method

    DOE Patents [OSTI]

    Chainer, Timothy J.; Dang, Hien P.; Parida, Pritish R.; Schultz, Mark D.; Sharma, Arun

    2015-08-11

    A method aspect for removing heat from a data center may use liquid coolant cooled without vapor compression refrigeration on a liquid cooled information technology equipment rack. The method may also include regulating liquid coolant flow to the data center through a range of liquid coolant flow values with a controller-apparatus based upon information technology equipment temperature threshold of the data center.

  15. Electron Microscopy Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Electron Microscopy Center Argonne Home > EMC > EMC Home Electron Microscopy Center Web Site has moved This page has moved to http://www.anl.gov/cnm/group/electron-microscopy-center. UChicago Argonne LLC Privacy & Security Notice

  16. Numerical simulation of the hydrodynamical combustion to strange quark matter

    SciTech Connect (OSTI)

    Niebergal, Brian; Ouyed, Rachid; Jaikumar, Prashanth

    2010-12-15

    We present results from a numerical solution to the burning of neutron matter inside a cold neutron star into stable u,d,s quark matter. Our method solves hydrodynamical flow equations in one dimension with neutrino emission from weak equilibrating reactions, and strange quark diffusion across the burning front. We also include entropy change from heat released in forming the stable quark phase. Our numerical results suggest burning front laminar speeds of 0.002-0.04 times the speed of light, much faster than previous estimates derived using only a reactive-diffusive description. Analytic solutions to hydrodynamical jump conditions with a temperature-dependent equation of state agree very well with our numerical findings for fluid velocities. The most important effect of neutrino cooling is that the conversion front stalls at lower density (below {approx_equal}2 times saturation density). In a two-dimensional setting, such rapid speeds and neutrino cooling may allow for a flame wrinkle instability to develop, possibly leading to detonation.

  17. Dynamic mesoscale model of dipolar fluids via fluctuating hydrodynamics

    SciTech Connect (OSTI)

    Persson, Rasmus A. X.; Chu, Jhih-Wei, E-mail: jwchu@nctu.edu.tw [Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Voulgarakis, Nikolaos K. [Department of Mathematics, Washington State University, Richland, Washington 99372 (United States)

    2014-11-07

    Fluctuating hydrodynamics (FHD) is a general framework of mesoscopic modeling and simulation based on conservational laws and constitutive equations of linear and nonlinear responses. However, explicit representation of electrical forces in FHD has yet to appear. In this work, we devised an Ansatz for the dynamics of dipole moment densities that is linked with the Poisson equation of the electrical potential ? in coupling to the other equations of FHD. The resulting ?-FHD equations then serve as a platform for integrating the essential forces, including electrostatics in addition to hydrodynamics, pressure-volume equation of state, surface tension, and solvent-particle interactions that govern the emergent behaviors of molecular systems at an intermediate scale. This unique merit of ?-FHD is illustrated by showing that the water dielectric function and ion hydration free energies in homogeneous and heterogenous systems can be captured accurately via the mesoscopic simulation. Furthermore, we show that the field variables of ?-FHD can be mapped from the trajectory of an all-atom molecular dynamics simulation such that model development and parametrization can be based on the information obtained at a finer-grained scale. With the aforementioned multiscale capabilities and a spatial resolution as high as 5 Ĺ, the ?-FHD equations represent a useful semi-explicit solvent model for the modeling and simulation of complex systems, such as biomolecular machines and nanofluidics.

  18. Adding kinetics and hydrodynamics to the CHEETAH thermochemical code

    SciTech Connect (OSTI)

    Fried, L.E., Howard, W.M., Souers, P.C.

    1997-01-15

    In FY96 we released CHEETAH 1.40, which made extensive improvements on the stability and user friendliness of the code. CHEETAH now has over 175 users in government, academia, and industry. Efforts have also been focused on adding new advanced features to CHEETAH 2.0, which is scheduled for release in FY97. We have added a new chemical kinetics capability to CHEETAH. In the past, CHEETAH assumed complete thermodynamic equilibrium and independence of time. The addition of a chemical kinetic framework will allow for modeling of time-dependent phenomena, such as partial combustion and detonation in composite explosives with large reaction zones. We have implemented a Wood-Kirkwood detonation framework in CHEETAH, which allows for the treatment of nonideal detonations and explosive failure. A second major effort in the project this year has been linking CHEETAH to hydrodynamic codes to yield an improved HE product equation of state. We have linked CHEETAH to 1- and 2-D hydrodynamic codes, and have compared the code to experimental data. 15 refs., 13 figs., 1 tab.

  19. Impacts of rotation on three-dimensional hydrodynamics of core-collapse supernovae

    SciTech Connect (OSTI)

    Nakamura, Ko; Kuroda, Takami; Kotake, Kei [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Takiwaki, Tomoya [Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2014-09-20

    We perform a series of simplified numerical experiments to explore how rotation impacts the three-dimensional (3D) hydrodynamics of core-collapse supernovae. For our systematic study, we employ a light-bulb scheme to trigger explosions and a three-flavor neutrino leakage scheme to treat deleptonization effects and neutrino losses from the proto-neutron-star interior. Using a 15 M {sub ?} progenitor, we compute 30 models in 3D with a wide variety of initial angular momentum and light-bulb neutrino luminosity. We find that the rotation can help the onset of neutrino-driven explosions for the models in which the initial angular momentum is matched to that obtained in recent stellar evolutionary calculations (?0.3-3 rad s{sup –1} at the center). For the models with larger initial angular momentum, the shock surface deforms to be more oblate due to larger centrifugal force. This not only makes the gain region more concentrated around the equatorial plane, but also makes the mass larger in the gain region. As a result, buoyant bubbles tend to be coherently formed and rise in the equatorial region, which pushes the revived shock toward ever larger radii until a global explosion is triggered. We find that these are the main reasons that the preferred direction of the explosion in 3D rotating models is often perpendicular to the spin axis, which is in sharp contrast to the polar explosions around the axis that were obtained in previous two-dimensional simulations.

  20. Alternative Fuels Data Center: About the Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About Printable Version Share this resource Send a link to Alternative Fuels Data Center: About the Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center: About the Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center: About the Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center: About the Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center: About the Alternative Fuels Data

  1. Scaling of magneto-quantum-radiative hydrodynamic equations: from laser-produced plasmas to astrophysics

    SciTech Connect (OSTI)

    Cross, J. E.; Gregori, G. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Reville, B., E-mail: j.e.cross@physics.ox.ac.uk [Centre for Plasma Physics, Queen's University Belfast, University Road, Belfast BT7 1NN (United Kingdom)

    2014-11-01

    We introduce the equations of magneto-quantum-radiative hydrodynamics. By rewriting them in a dimensionless form, we obtain a set of parameters that describe scale-dependent ratios of characteristic hydrodynamic quantities. We discuss how these dimensionless parameters relate to the scaling between astrophysical observations and laboratory experiments.

  2. Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics

    SciTech Connect (OSTI)

    Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos

    2015-05-21

    Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we develop a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena of associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture of the void probability and solvation free energy of apolar particles of different sizes. The present fluid model is well suited for a understanding emergent phenomena in nano-scale fluid systems.

  3. Integral approximations to classical diffusion and smoothed particle hydrodynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Du, Qiang; Lehoucq, R. B.; Tartakovsky, A. M.

    2014-12-31

    The contribution of the paper is the approximation of a classical diffusion operator by an integral equation with a volume constraint. A particular focus is on classical diffusion problems associated with Neumann boundary conditions. By exploiting this approximation, we can also approximate other quantities such as the flux out of a domain. Our analysis of the model equation on the continuum level is closely related to the recent work on nonlocal diffusion and peridynamic mechanics. In particular, we elucidate the role of a volumetric constraint as an approximation to a classical Neumann boundary condition in the presence of physical boundary.more » The volume-constrained integral equation then provides the basis for accurate and robust discretization methods. As a result, an immediate application is to the understanding and improvement of the Smoothed Particle Hydrodynamics (SPH) method.« less

  4. Relativistic Guiding Center Equations

    SciTech Connect (OSTI)

    White, R. B.; Gobbin, M.

    2014-10-01

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  5. Polymer Engineering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Polymer Engineering Center University of Wisconsin-Madison Experimental and Numerical Studies of the Temperature Field in Selective Laser Sintering to Improve Shrinkage and Warpage Prediction Prof. Dr.-Ing. Natalie Rudolph Polymer Engineering Center Department of Mechanical Engineering University of Wisconsin-Madison 1513 University Ave Madison, WI 53706 Advanced Qualification of Additive Manufacturing Materials Workshop, July 20-21, 2015 in Santa Fe, NM Polymer Engineering Center University of

  6. NREL: Education Center - Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Center Printable Version Programs NREL's Education Center in Golden, Colorado, offers a variety of program topics and experiences for students and adult groups addressing renewable energy and energy efficiency innovations and introducing the work of NREL. Monthly tours are also offered to give visitors an overview of our sustainable campus and featured buildings. Printable Version Education Center Home Hours, Directions & Contact Information Group Programs Students Adults Campus

  7. Center for Nonlinear Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Nonlinear Studies Center for Nonlinear Studies We conduct and support basic scientific research in nonlinear and complex systems phenomena and promote their use in applied research programs. Contact CNLS Office (505) 667-1444 Email Leader Robert Ecke (505) 667-6733 Email Conducting and supporting basic scientific research in nonlinear and complex systems phenomena The Center for Nonlinear Studies (CNLS) at Los Alamos chooses a small number (two to three) focus topics periodically and

  8. Lujan Neutron Scattering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    responds to radiological incident August 27, 2012 The Laboratory is investigating the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center August 27, 2012-The Laboratory is investigating the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE), a multidisciplinary accelerator facility used for both civilian and national security research. The

  9. WIPP - Joint Information Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Joint Information Center is located at 4021 National Parks Highway in Carlsbad, N.M. Joint Information Center In the unlikely event of an emergency, the WIPP Joint Information Center (JIC) serves as a central control point to coordinate multi-agency efforts to issue timely and accurate information to the public, news media and project employees. Emergency contact information: The public If the JIC is activated, members of the general public, including family members, may call (575) 234-7380

  10. LANSCE | Lujan Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lujan Center at LANSCE LANSCE » Lujan Center LANSCE Lujan Home Apply for Beamtime Scientists & Expertise Lujan Instruments User Resources Industrial Users Publications Training Office Science Thrust Areas Science Highlights Data Management Plan Contacts Lujan Center Leader Gus Sinnis 505.667.6069 Deputy Leader Fredrik Tovesson 505.665.9652 Deputy Leader & Experimental Area Manager Charles Kelsey 505.665.5579 Experiment Coordinator Victor Fanelli 505.667.8755 User Program Administration

  11. APS Conference Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combines intellectual stimulation with natural beauty. The Conference Center is within walking distance of the Argonne Guest House, a full-service, professionally-managed hotel and...

  12. Center of Innovation- Energy

    Broader source: Energy.gov [DOE]

    Jill Stuckey, Director, Center fof Innovation - Energy, presents on Georgia's workforce development opportunities for the Biomass/Clean Cities States Webinar.

  13. NREL: Education Center - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to reply. Your name: Your email address: Your message: Send Message Printable Version Education Center Home Hours, Directions & Contact Information Group Programs A Model of...

  14. Game Center | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Game Center September 2, 2010 It's a feature of Thomas Jefferson National Accelerator Laboratory that it has at least two other names, including Jefferson Lab and JLab. Similarly, parts of our organization go by different names - the Theory group, the Theory Department, the Theory Center and the Center for Theoretical and Computational Physics. But a new name might be "Game Center." Let me explain. Large-scale computing has been a major deal for the Department of Energy for many years.

  15. Data Center Cooling

    SciTech Connect (OSTI)

    Rutberg, Michael; Cooperman, Alissa; Bouza, Antonio

    2013-10-31

    The article discusses available technologies for reducing energy use for cooling data center facilities. This article addresses the energy savings and market potential of these strategies as well.

  16. ARM - News Center Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CenterNews Center Archive Media Contact Hanna Goss hanna-dot-goss-at-pnnl-dot-gov @armnewsteam Field Notes Blog Topics Field Notes107 AGU 3 AMIE 10 ARM Aerial Facility 2 ARM Mobile Facility 1 6 ARM Mobile Facility 2 47 ARM Mobile Facility 3 1 BAECC 1 BBOP 4 ENA 1 GOAMAZON 7 MAGIC 15 MC3E 17 PECAN 3 SGP 7 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories Features and Releases Facility News Field Notes Blog Events

  17. Polymer Engineering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center 1513 University Ave 1035 Mechanical Engineering building natalie.rudolph@wisc.edu Dielectric Analysis Dipl.-Phys. Alexander Chaloupka Fraunhofer ICT Branch...

  18. Biofuels Information Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Information Center BETO 2015 Peer Review Kristi Moriarty March 24, 2015 2 Goal ...docsfy06osti39181.pdf Electricity rates (residential, commercial, ...

  19. Extreme Environments (EFree) Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extreme Environments (EFree ) Center LLNL Co-PI: Jonathon Crowhurst e-mail bio Novel materials for energy applications Ultrafast reflectivity measurements under high pressure...

  20. ASU EFRC - Center researchers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center researchers Chad Simmons Academic Professional Gerdenis Kodis Research Assistant Professor Raimund Fromme Faculty Research Associate Yuichi Terazono Faculty Research Associate

  1. Energy efficient data centers

    SciTech Connect (OSTI)

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

    2004-03-30

    Data Center facilities, prevalent in many industries and institutions are essential to California's economy. Energy intensive data centers are crucial to California's industries, and many other institutions (such as universities) in the state, and they play an important role in the constantly evolving communications industry. To better understand the impact of the energy requirements and energy efficiency improvement potential in these facilities, the California Energy Commission's PIER Industrial Program initiated this project with two primary focus areas: First, to characterize current data center electricity use; and secondly, to develop a research ''roadmap'' defining and prioritizing possible future public interest research and deployment efforts that would improve energy efficiency. Although there are many opinions concerning the energy intensity of data centers and the aggregate effect on California's electrical power systems, there is very little publicly available information. Through this project, actual energy consumption at its end use was measured in a number of data centers. This benchmark data was documented in case study reports, along with site-specific energy efficiency recommendations. Additionally, other data center energy benchmarks were obtained through synergistic projects, prior PG&E studies, and industry contacts. In total, energy benchmarks for sixteen data centers were obtained. For this project, a broad definition of ''data center'' was adopted which included internet hosting, corporate, institutional, governmental, educational and other miscellaneous data centers. Typically these facilities require specialized infrastructure to provide high quality power and cooling for IT equipment. All of these data center types were considered in the development of an estimate of the total power consumption in California. Finally, a research ''roadmap'' was developed through extensive participation with data center professionals, examination of case study findings, and participation in data center industry meetings and workshops. Industry partners enthusiastically provided valuable insight into current practice, and helped to identify areas where additional public interest research could lead to significant efficiency improvement. This helped to define and prioritize the research agenda. The interaction involved industry representatives with expertise in all aspects of data center facilities, including specialized facility infrastructure systems and computing equipment. In addition to the input obtained through industry workshops, LBNL's participation in a three-day, comprehensive design ''charrette'' hosted by the Rocky Mountain Institute (RMI) yielded a number of innovative ideas for future research.

  2. Effect of Second-Order Hydrodynamics on a Floating Offshore Wind Turbine

    SciTech Connect (OSTI)

    Roald, L.; Jonkman, J.; Robertson, A.

    2014-05-01

    The design of offshore floating wind turbines uses design codes that can simulate the entire coupled system behavior. At the present, most codes include only first-order hydrodynamics, which induce forces and motions varying with the same frequency as the incident waves. Effects due to second- and higher-order hydrodynamics are often ignored in the offshore industry, because the forces induced typically are smaller than the first-order forces. In this report, first- and second-order hydrodynamic analysis used in the offshore oil and gas industry is applied to two different wind turbine concepts--a spar and a tension leg platform.

  3. Elliptic and Triangular Flow in Event-by-Event D=3+1 Viscous Hydrodynamics

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Elliptic and Triangular Flow in Event-by-Event D=3+1 Viscous Hydrodynamics Citation Details In-Document Search Title: Elliptic and Triangular Flow in Event-by-Event D=3+1 Viscous Hydrodynamics We present results for the elliptic and triangular flow coefficients v{sub 2} and v{sub 3} in Au+Au collisions at {radical}(s)=200 AGeV using event-by-event D=3+1 viscous hydrodynamic simulations. We study the effect of

  4. LANSCE | Lujan Center | Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Publications Please use the following acknowledgement when publishing results based on data measured at the Lujan Center: "This work has benefited from the use of [add here name of specific Lujan instruments] at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396." Year Citation citation # (as of 06/2013) Instrument 115

  5. LANSCE | Lujan Center | Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Publications Please use the following acknowledgement when publishing results based on data measured at the Lujan Center: "This work has benefited from the use of [add here name of specific Lujan instruments] at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396." Year Citation citation # (as of 06/2013) Instrument 244

  6. LANSCE | Lujan Center | Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Publications Please use the following acknowledgement when publishing results based on data measured at the Lujan Center: "This work has benefited from the use of [add here name of specific Lujan instruments] at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396." Year Citation citation # (as of 06/2013) Instrument 373

  7. Theory Center | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Jefferson Lab Theory Center Theoretical research at Jefferson Lab is critical to the lab's efforts to fulfill its scientific mission. A D D I T I O N A L L I N K S: Research Seminars Recent Talks Positions Student Fellowship JPAC top-right bottom-left-corner bottom-right-corner Theory Center The Center for Theoretical and Computational Physics pursues a broad program of research in support of the physics being studied at Jefferson Lab and related facilities around the world. The Theory

  8. ARM - News Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Media Contact Hanna Goss hanna-dot-goss-at-pnnl-dot-gov @armnewsteam Field Notes Blog Topics Field Notes107 AGU 3 AMIE 10 ARM Aerial Facility 2 ARM Mobile Facility 1 6 ARM Mobile Facility 2 47 ARM Mobile Facility 3 1 BAECC 1 BBOP 4 ENA 1 GOAMAZON 7 MAGIC 15 MC3E 17 PECAN 3 SGP 7 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories Features and Releases Facility News Field Notes Blog Events Employment Research

  9. Alternative Fuels Data Center: Biodiesel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Biodiesel on Google Bookmark Alternative Fuels Data Center: Biodiesel on Delicious Rank Alternative Fuels Data Center: Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Biodiesel on

  10. Alternative Fuels Data Center: Contacts

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About Printable Version Share this resource Send a link to Alternative Fuels Data Center: Contacts to someone by E-mail Share Alternative Fuels Data Center: Contacts on Facebook Tweet about Alternative Fuels Data Center: Contacts on Twitter Bookmark Alternative Fuels Data Center: Contacts on Google Bookmark Alternative Fuels Data Center: Contacts on Delicious Rank Alternative Fuels Data Center: Contacts on Digg Find More places to share Alternative Fuels Data Center: Contacts on AddThis.com...

  11. Alternative Fuels Data Center: Electricity

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electricity to someone by E-mail Share Alternative Fuels Data Center: Electricity on Facebook Tweet about Alternative Fuels Data Center: Electricity on Twitter Bookmark Alternative Fuels Data Center: Electricity on Google Bookmark Alternative Fuels Data Center: Electricity on Delicious Rank Alternative Fuels Data Center: Electricity on Digg Find More places to share Alternative Fuels Data Center:

  12. Alternative Fuels Data Center: Ethanol

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ethanol to someone by E-mail Share Alternative Fuels Data Center: Ethanol on Facebook Tweet about Alternative Fuels Data Center: Ethanol on Twitter Bookmark Alternative Fuels Data Center: Ethanol on Google Bookmark Alternative Fuels Data Center: Ethanol on Delicious Rank Alternative Fuels Data Center: Ethanol on Digg Find More places to share Alternative Fuels Data Center: Ethanol on AddThis.com... More

  13. Alternative Fuels Data Center: Hydrogen

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen to someone by E-mail Share Alternative Fuels Data Center: Hydrogen on Facebook Tweet about Alternative Fuels Data Center: Hydrogen on Twitter Bookmark Alternative Fuels Data Center: Hydrogen on Google Bookmark Alternative Fuels Data Center: Hydrogen on Delicious Rank Alternative Fuels Data Center: Hydrogen on Digg Find More places to share Alternative Fuels Data Center: Hydrogen on

  14. Alternative Fuels Data Center: Propane

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles » Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane to someone by E-mail Share Alternative Fuels Data Center: Propane on Facebook Tweet about Alternative Fuels Data Center: Propane on Twitter Bookmark Alternative Fuels Data Center: Propane on Google Bookmark Alternative Fuels Data Center: Propane on Delicious Rank Alternative Fuels Data Center: Propane on Digg Find More places to share Alternative Fuels Data Center: Propane on

  15. Alternative Fuels Data Center: Tools

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools to someone by E-mail Share Alternative Fuels Data Center: Tools on Facebook Tweet about Alternative Fuels Data Center: Tools on Twitter Bookmark Alternative Fuels Data Center: Tools on Google Bookmark Alternative Fuels Data Center: Tools on Delicious Rank Alternative Fuels Data Center: Tools on Digg Find More places to share Alternative Fuels Data Center: Tools on AddThis.com... Tools The Alternative Fuels Data Center offers a large collection of helpful tools. These calculators,

  16. Alternative Fuels Data Center: Widgets

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Widgets to someone by E-mail Share Alternative Fuels Data Center: Widgets on Facebook Tweet about Alternative Fuels Data Center: Widgets on Twitter Bookmark Alternative Fuels Data Center: Widgets on Google Bookmark Alternative Fuels Data Center: Widgets on Delicious Rank Alternative Fuels Data Center: Widgets on Digg Find More places to share Alternative Fuels Data Center: Widgets on AddThis.com... Widgets

  17. Alternative Fuels Data Center: Glossary

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center: Glossary to someone by E-mail Share Alternative Fuels Data Center: Glossary on Facebook Tweet about Alternative Fuels Data Center: Glossary on Twitter Bookmark Alternative Fuels Data Center: Glossary on Google Bookmark Alternative Fuels Data Center: Glossary on Delicious Rank Alternative Fuels Data Center: Glossary on Digg Find More places to share Alternative Fuels Data Center: Glossary on AddThis.com...

  18. Alternative Fuels Data Center: Webmaster

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About Printable Version Share this resource Send a link to Alternative Fuels Data Center: Webmaster to someone by E-mail Share Alternative Fuels Data Center: Webmaster on Facebook Tweet about Alternative Fuels Data Center: Webmaster on Twitter Bookmark Alternative Fuels Data Center: Webmaster on Google Bookmark Alternative Fuels Data Center: Webmaster on Delicious Rank Alternative Fuels Data Center: Webmaster on Digg Find More places to share Alternative Fuels Data Center: Webmaster on

  19. Simulating Magnetized Laboratory Plasmas with Smoothed Particle Hydrodynamics

    SciTech Connect (OSTI)

    Johnson, J N

    2009-07-02

    The creation of plasmas in the laboratory continues to generate excitement in the physics community. Despite the best efforts of the intrepid plasma diagnostics community, the dynamics of these plasmas remains a difficult challenge to both the theorist and the experimentalist. This dissertation describes the simulation of strongly magnetized laboratory plasmas with Smoothed Particle Hydrodynamics (SPH), a method born of astrophysics but gaining broad support in the engineering community. We describe the mathematical formulation that best characterizes a strongly magnetized plasma under our circumstances of interest, and we review the SPH method and its application to astrophysical plasmas based on research by Phillips [1], Buerve [2], and Price and Monaghan [3]. Some modifications and extensions to this method are necessary to simulate terrestrial plasmas, such as a treatment of magnetic diffusion based on work by Brookshaw [4] and by Atluri [5]; we describe these changes as we turn our attention toward laboratory experiments. Test problems that verify the method are provided throughout the discussion. Finally, we apply our method to the compression of a magnetized plasma performed by the Compact Toroid Injection eXperiment (CTIX) [6] and show that the experimental results support our computed predictions.

  20. IUTAM symposium on hydrodynamic diffusion of suspended particles

    SciTech Connect (OSTI)

    Davis, R.H.

    1995-12-31

    Hydrodynamic diffusion refers to the fluctuating motion of nonBrownian particles (or droplets or bubbles) which occurs in a dispersion due to multiparticle interactions. For example, in a concentrated sheared suspension, particles do not move along streamlines but instead exhibit fluctuating motions as they tumble around each other. This leads to a net migration of particles down gradients in particle concentration and in shear rate, due to the higher frequency of encounters of a test particle with other particles on the side of the test particle which has higher concentration or shear rate. As another example, suspended particles subject to sedimentation, centrifugation, or fluidization, do not generally move relative to the fluid with a constant velocity, but instead experience diffusion-like fluctuations in velocity due to interactions with neighboring particles and the resulting variation in the microstructure or configuration of the suspended particles. In flowing granular materials, the particles interact through direct collisions or contacts (rather than through the surrounding fluid); these collisions also cause the particles to undergo fluctuating motions characteristic of diffusion processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  1. Hybrid magneto-hydrodynamic simulation of a driven FRC

    SciTech Connect (OSTI)

    Rahman, H. U. Wessel, F. J.; Binderbauer, M. W.; Qerushi, A.; Rostoker, N.; Conti, F.; Plasma Diagnostics and Technologies Ltd., Via Giuntini 63, 56023 Navacchio ; Ney, P.

    2014-03-15

    We simulate a field-reversed configuration (FRC), produced by an “inductively driven” FRC experiment; comprised of a central-flux coil and exterior-limiter coil. To account for the plasma kinetic behavior, a standard 2-dimensional magneto-hydrodynamic code is modified to preserve the azimuthal, two-fluid behavior. Simulations are run for the FRC's full-time history, sufficient to include: acceleration, formation, current neutralization, compression, and decay. At start-up, a net ion current develops that modifies the applied-magnetic field forming closed-field lines and a region of null-magnetic field (i.e., a FRC). After closed-field lines form, ion-electron drag increases the electron current, canceling a portion of the ion current. The equilibrium is lost as the total current eventually dissipates. The time evolution and magnitudes of the computed current, ion-rotation velocity, and plasma temperature agree with the experiments, as do the rigid-rotor-like, radial-profiles for the density and axial-magnetic field [cf. Conti et al. Phys. Plasmas 21, 022511 (2014)].

  2. Numeric spectral radiation hydrodynamic calculations of supernova shock breakouts

    SciTech Connect (OSTI)

    Sapir, Nir; Halbertal, Dorri [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2014-12-01

    We present here an efficient numerical scheme for solving the non-relativistic one-dimensional radiation-hydrodynamics equations including inelastic Compton scattering, which is not included in most codes and is crucial for solving problems such as shock breakout. The devised code is applied to the problems of a steady-state planar radiation mediated shock (RMS) and RMS breakout from a stellar envelope. The results are in agreement with those of a previous work on shock breakout, in which Compton equilibrium between matter and radiation was assumed and the 'effective photon' approximation was used to describe the radiation spectrum. In particular, we show that the luminosity and its temporal dependence, the peak temperature at breakout, and the universal shape of the spectral fluence derived in this earlier work are all accurate. Although there is a discrepancy between the spectral calculations and the effective photon approximation due to the inaccuracy of the effective photon approximation estimate of the effective photon production rate, which grows with lower densities and higher velocities, the difference in peak temperature reaches only 30% for the most discrepant cases of fast shocks in blue supergiants. The presented model is exemplified by calculations for supernova 1987A, showing the detailed evolution of the burst spectrum. The incompatibility of the stellar envelope shock breakout model results with observed properties of X-ray flashes (XRFs) and the discrepancy between the predicted and observed rates of XRFs remain unexplained.

  3. A DENSITY-INDEPENDENT FORMULATION OF SMOOTHED PARTICLE HYDRODYNAMICS

    SciTech Connect (OSTI)

    Saitoh, Takayuki R.; Makino, Junichiro

    2013-05-01

    The standard formulation of the smoothed particle hydrodynamics (SPH) assumes that the local density distribution is differentiable. This assumption is used to derive the spatial derivatives of other quantities. However, this assumption breaks down at the contact discontinuity. At the contact discontinuity, the density of the low-density side is overestimated while that of the high-density side is underestimated. As a result, the pressure of the low-density (high-density) side is overestimated (underestimated). Thus, unphysical repulsive force appears at the contact discontinuity, resulting in the effective surface tension. This tension suppresses fluid instabilities. In this paper, we present a new formulation of SPH, which does not require the differentiability of density. Instead of the mass density, we adopt the internal energy density (pressure) and its arbitrary function, which are smoothed quantities at the contact discontinuity, as the volume element used for the kernel integration. We call this new formulation density-independent SPH (DISPH). It handles the contact discontinuity without numerical problems. The results of standard tests such as the shock tube, Kelvin-Helmholtz and Rayleigh-Taylor instabilities, point-like explosion, and blob tests are all very favorable to DISPH. We conclude that DISPH solved most of the known difficulties of the standard SPH, without introducing additional numerical diffusion or breaking the exact force symmetry or energy conservation. Our new SPH includes the formulation proposed by Ritchie and Thomas as a special case. Our formulation can be extended to handle a non-ideal gas easily.

  4. Density-shear instability in electron magneto-hydrodynamics

    SciTech Connect (OSTI)

    Wood, T. S. Hollerbach, R.; Lyutikov, M.

    2014-05-15

    We discuss a novel instability in inertia-less electron magneto-hydrodynamics (EMHD), which arises from a combination of electron velocity shear and electron density gradients. The unstable modes have a lengthscale longer than the transverse density scale, and a growth-rate of the order of the inverse Hall timescale. We suggest that this density-shear instability may be of importance in magnetic reconnection regions on scales smaller than the ion skin depth, and in neutron star crusts. We demonstrate that the so-called Hall drift instability, previously argued to be relevant in neutron star crusts, is a resistive tearing instability rather than an instability of the Hall term itself. We argue that the density-shear instability is of greater significance in neutron stars than the tearing instability, because it generally has a faster growth-rate and is less sensitive to geometry and boundary conditions. We prove that, for uniform electron density, EMHD is “at least as stable” as regular, incompressible MHD, in the sense that any field configuration that is stable in MHD is also stable in EMHD. We present a connection between the density-shear instability in EMHD and the magneto-buoyancy instability in anelastic MHD.

  5. BPA Visitor Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and is located at BPA headquarters in Portland, Oregon at 905 NE 11th Ave. (Public Transit @ the Lloyd Center MAX Station). Many of the publications available in the Visitor...

  6. Energy Technology Engineering Center

    Broader source: Energy.gov [DOE]

    The Energy Technology Engineering Center (ETEC) is located within Area IV of the Santa Susana Field Laboratory. The ETEC occupies 90-acres within the 290 acre site. The Santa Susana Field...

  7. Energy Security Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Security Center Energy Security Center Developing new ideas for reliable, secure, and sustainable carbon neutral energy solutions for the nation-the portal to LANL's diverse energy security research enterprise. Contact Leader Steven Buelow (505) 663 5629 Email Program Administrator Jutta Kayser (505) 663-5649 Email Research focus areas Materials and concepts for clean energy Science for renewable energy sources Superconducting cables Energy storage Fuel cells Mitigating impacts of global

  8. Center for Nanoscale Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. Academic, industrial, and international researchers from across the globe can access the center through its user program. Brief proposals are peer- reviewed for both non-proprietary (at no cost to the user) and proprietary (with cost-recovery rates) research. The center's goal is to support and explore ways to create functional hybrid nanomaterials and to tailor nanoscale interactions for grand

  9. LANSCE | Lujan Center | Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Lujan Center: Science & People The Lujan Center, Science & People April 2014 In This Issue: * Olivier Gourdon: A crystallographer keen on showing off the revealing properties of neutrons *Seeking design rules for efficient lighting sources * Rate-dependent deformation mechanisms in beryllium * Improved understanding of a semiconductor used in infrared detectors * Mike Fitzsimmons elected NNSA Fellow * Pressure tuning: a new approach for making zero thermal expansion materials *

  10. LANSCE | Lujan Center | Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Lujan Publications: 2009 - 2012 2012 | 2011 | 2010 | 2009 Publication acknowledgement Lujan Center monitors the number of papers published as a result of the use of our facilities. The Lujan Center's sponsoring agencies requires users to publish results from their non proprietary research. Authorship of publications based on research from user facilities should reflect the normal considerations of recognizing collaborations. Proprietary users are not required to publish. Users are

  11. Data center cooling system

    SciTech Connect (OSTI)

    Chainer, Timothy J; Dang, Hien P; Parida, Pritish R; Schultz, Mark D; Sharma, Arun

    2015-03-17

    A data center cooling system may include heat transfer equipment to cool a liquid coolant without vapor compression refrigeration, and the liquid coolant is used on a liquid cooled information technology equipment rack housed in the data center. The system may also include a controller-apparatus to regulate the liquid coolant flow to the liquid cooled information technology equipment rack through a range of liquid coolant flow values based upon information technology equipment temperature thresholds.

  12. Center for Nonlinear Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Contact Courses Summer School Engineering Information Science, Technology Geophysics, Planetary Physics, Signatures Applied Geophysical Experiences Materials Design Calendar NSEC » Center for Nonlinear Studies Center for Nonlinear Studies Serving as an interface between mission critical research at LANL and the outside research community. Contact Director Robert Ecke (505) 667-6733 Email Deputy Director Aric Hagberg (505) 665-4958 Email Executive Administrator Elissa (Ellie) Vigil (505)

  13. Biofuels Information Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Information Center BETO 2015 Peer Review Kristi Moriarty March 24, 2015 2 Goal Statement * The purpose of the Biofuels Information Center (BIC) task is to increase deployment of biofuels production facilities and infrastructure by providing essential biofuels data, tools, and information to all stakeholders * The Bioenergy Atlas tools provide interactive maps and analysis of all relevant biomass data with the purpose of growing the domestic bioenergy market for biofuels and biopower

  14. Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Welcome US DOE Energy Frontier Research Center The Center for Revolutionary Materials for Solid State Energy Conversion will focus on solid state conversion of thermal energy to useful electrical power, both to increase the efficiency of traditional industrial energy processes and to tap new unused sources of energy such as solar thermal. Additionally materials with enhanced thermoelectric properties will find application in high efficiency, environmentally benign climate control systems. Our

  15. Challenges in Simulation of Aerodynamics, Hydrodynamics, and Mooring-Line Dynamics of Floating Offshore Wind Turbines

    SciTech Connect (OSTI)

    Matha, D.; Schlipf, M.; Cordle, A.; Pereira, R.; Jonkman, J.

    2011-10-01

    This paper presents the current major modeling challenges for floating offshore wind turbine design tools and describes aerodynamic and hydrodynamic effects due to rotor and platform motions and usage of non-slender support structures.

  16. A Smoothed Particle Hydrodynamics-Based Fluid Model With a Spatially

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dependent Viscosity | Argonne Leadership Computing Facility A Smoothed Particle Hydrodynamics-Based Fluid Model With a Spatially Dependent Viscosity Authors: Martys, N.S., George, W.L., Chun, B., Lootens, D. A smoothed particle hydrodynamics approach is utilized to model a non-Newtonian fluid with a spatially varying viscosity. In the limit of constant viscosity, this approach recovers an earlier model for Newtonian fluids of Espa Publication Date: September, 2010 Name of Publication Source:

  17. Higher flow harmonics from ( 3 + 1 ) D event-by-event viscous hydrodynamics

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | DOE PAGES Higher flow harmonics from ( 3 + 1 ) D event-by-event viscous hydrodynamics « Prev Next » Title: Higher flow harmonics from ( 3 + 1 ) D event-by-event viscous hydrodynamics Authors: Schenke, Björn ; Jeon, Sangyong ; Gale, Charles Publication Date: 2012-02-09 OSTI Identifier: 1099129 Type: Publisher's Accepted Manuscript Journal Name: Physical Review C Additional Journal Information: Journal Volume: 85; Journal Issue: 2; Journal ID: ISSN 0556-2813 Publisher:

  18. Hydrodynamic evolution and jet energy loss in Cu + Cu collisions (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | DOE PAGES Hydrodynamic evolution and jet energy loss in Cu + Cu collisions « Prev Next » Title: Hydrodynamic evolution and jet energy loss in Cu + Cu collisions Authors: Schenke, Björn ; Jeon, Sangyong ; Gale, Charles Publication Date: 2011-04-18 OSTI Identifier: 1100252 Type: Publisher's Accepted Manuscript Journal Name: Physical review C. Nuclear physics Additional Journal Information: Journal Volume: 83; Journal Issue: 4; Journal ID: ISSN 0556-2813 Publisher: American

  19. Hydrodynamic interactions in metal rod-like particle suspensions due to

    Office of Scientific and Technical Information (OSTI)

    induced charge electroosmosis (Journal Article) | SciTech Connect Hydrodynamic interactions in metal rod-like particle suspensions due to induced charge electroosmosis Citation Details In-Document Search Title: Hydrodynamic interactions in metal rod-like particle suspensions due to induced charge electroosmosis Ă— You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is

  20. Higher flow harmonics from ( 3 + 1 ) D event-by-event viscous hydrodynamics

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Higher flow harmonics from ( 3 + 1 ) D event-by-event viscous hydrodynamics Citation Details In-Document Search Title: Higher flow harmonics from ( 3 + 1 ) D event-by-event viscous hydrodynamics Authors: Schenke, Björn ; Jeon, Sangyong ; Gale, Charles Publication Date: 2012-02-09 OSTI Identifier: 1099129 Type: Publisher's Accepted Manuscript Journal Name: Physical Review C Additional Journal Information: Journal Volume: 85; Journal Issue: 2; Journal ID:

  1. Hydrodynamic evolution and jet energy loss in Cu + Cu collisions (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Hydrodynamic evolution and jet energy loss in Cu + Cu collisions Citation Details In-Document Search Title: Hydrodynamic evolution and jet energy loss in Cu + Cu collisions Authors: Schenke, Björn ; Jeon, Sangyong ; Gale, Charles Publication Date: 2011-04-18 OSTI Identifier: 1100252 Type: Publisher's Accepted Manuscript Journal Name: Physical review C. Nuclear physics Additional Journal Information: Journal Volume: 83; Journal Issue: 4; Journal ID: ISSN 0556-2813

  2. Simulation of Explosion Ground Motions Using a Hydrodynamic-to-Elastic

    Office of Scientific and Technical Information (OSTI)

    Coupling Approach in Three-Dimensions (Journal Article) | SciTech Connect Journal Article: Simulation of Explosion Ground Motions Using a Hydrodynamic-to-Elastic Coupling Approach in Three-Dimensions Citation Details In-Document Search Title: Simulation of Explosion Ground Motions Using a Hydrodynamic-to-Elastic Coupling Approach in Three-Dimensions Authors: Xu, H ; Rodgers, A J ; Lomov, I N ; Petersson, N A ; Sjogreen, B ; Vorobiev, O Y Publication Date: 2012-05-06 OSTI Identifier: 1089529

  3. Follow-up on the Los Alamos National Laboratory Hydrodynamic Test Program

    Office of Environmental Management (EM)

    Follow-up on the Los Alamos National Laboratory Hydrodynamic Test Program DOE/IG-0930 December 2014 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 December 16, 2014 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "Follow-up on the Los Alamos National Laboratory Hydrodynamic Test Program" BACKGROUND A primary mission of the National Nuclear

  4. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific ...

  5. Alternative Fuels Data Center: Publications

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Publications Printable Version Share this resource Send a link to Alternative Fuels Data Center: Publications to someone by E-mail Share Alternative Fuels Data Center: Publications on Facebook Tweet about Alternative Fuels Data Center: Publications on Twitter Bookmark Alternative Fuels Data Center: Publications on Google Bookmark Alternative Fuels Data Center: Publications on Delicious Rank Alternative Fuels Data Center: Publications on Digg Find More places to share Alternative Fuels Data

  6. Alternative Fuels Data Center: Biobutanol

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biobutanol to someone by E-mail Share Alternative Fuels Data Center: Biobutanol on Facebook Tweet about Alternative Fuels Data Center: Biobutanol on Twitter Bookmark Alternative Fuels Data Center: Biobutanol on Google Bookmark Alternative Fuels Data Center: Biobutanol on Delicious Rank Alternative Fuels Data Center: Biobutanol on Digg Find More places to share Alternative Fuels Data Center: Biobutanol on AddThis.com... More in this section... Biobutanol Dimethyl Ether Methanol Renewable

  7. Alternative Fuels Data Center: Methanol

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Methanol to someone by E-mail Share Alternative Fuels Data Center: Methanol on Facebook Tweet about Alternative Fuels Data Center: Methanol on Twitter Bookmark Alternative Fuels Data Center: Methanol on Google Bookmark Alternative Fuels Data Center: Methanol on Delicious Rank Alternative Fuels Data Center: Methanol on Digg Find More places to share Alternative Fuels Data Center: Methanol on AddThis.com... More in this section... Biobutanol Dimethyl Ether Methanol Renewable Hydrocarbon Biofuels

  8. Alternative Fuels Data Center: Newsletters

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Publications » Newsletters Printable Version Share this resource Send a link to Alternative Fuels Data Center: Newsletters to someone by E-mail Share Alternative Fuels Data Center: Newsletters on Facebook Tweet about Alternative Fuels Data Center: Newsletters on Twitter Bookmark Alternative Fuels Data Center: Newsletters on Google Bookmark Alternative Fuels Data Center: Newsletters on Delicious Rank Alternative Fuels Data Center: Newsletters on Digg Find More places to share Alternative Fuels

  9. Alternative Fuels Data Center: Ridesharing

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ridesharing to someone by E-mail Share Alternative Fuels Data Center: Ridesharing on Facebook Tweet about Alternative Fuels Data Center: Ridesharing on Twitter Bookmark Alternative Fuels Data Center: Ridesharing on Google Bookmark Alternative Fuels Data Center: Ridesharing on Delicious Rank Alternative Fuels Data Center: Ridesharing on Digg Find More places to share Alternative Fuels Data Center: Ridesharing on AddThis.com... More in this section... Idle Reduction Parts & Equipment

  10. Alternative Fuels Data Center: Telework

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Telework to someone by E-mail Share Alternative Fuels Data Center: Telework on Facebook Tweet about Alternative Fuels Data Center: Telework on Twitter Bookmark Alternative Fuels Data Center: Telework on Google Bookmark Alternative Fuels Data Center: Telework on Delicious Rank Alternative Fuels Data Center: Telework on Digg Find More places to share Alternative Fuels Data Center: Telework on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior

  11. Alternative Fuels Data Center: Disclaimer

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Disclaimer to someone by E-mail Share Alternative Fuels Data Center: Disclaimer on Facebook Tweet about Alternative Fuels Data Center: Disclaimer on Twitter Bookmark Alternative Fuels Data Center: Disclaimer on Google Bookmark Alternative Fuels Data Center: Disclaimer on Delicious Rank Alternative Fuels Data Center: Disclaimer on Digg Find More places to share Alternative Fuels Data Center: Disclaimer on AddThis.com... Disclaimer The U.S. Department of Energy's (DOE) Alternative Fuels Data

  12. Alternative Fuels Data Center: Publications

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Publications Printable Version Share this resource Send a link to Alternative Fuels Data Center: Publications to someone by E-mail Share Alternative Fuels Data Center: Publications on Facebook Tweet about Alternative Fuels Data Center: Publications on Twitter Bookmark Alternative Fuels Data Center: Publications on Google Bookmark Alternative Fuels Data Center: Publications on Delicious Rank Alternative Fuels Data Center: Publications on Digg Find More places to share Alternative Fuels Data

  13. PNNL: News Center - Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    highlights News Center News Center Home News Releases 50th Anniversary Features Social Media Directory PNNL Leadership Our Experts Subscribe to Email News Service RSS...

  14. Building America Solution Center Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Solution Center Webinar July 22, 2015 Put New Tools and Content on the Building America Solution Center to Work for You CHRISSI ANTONOPOULOS Pacific NW National ...

  15. Learning Center | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Learning Center The Argonne Learning Center contains four student research laboratories, three learning classrooms and a historic 1960's control room facility where...

  16. DOE New Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is Part of New Research Center to do Energy Research at LSU The Department of Energy has awarded LSU a $12.5 million grant to set up an Energy Frontier Research Center (EFRC) to find greener and better sources of energy as efficient substitutes for fossil fuel. The EFRC will be headed by Jerry Spivey, McLaurin Shivers Professor of Chemical Engineering at LSU. His team will consist of 21 researchers from across nine institutions. The multi-disciplinary research project will utilize, among other

  17. WIPP Information Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP milestones are noted on banners at the WIPP Experience Exhibit at the Skeen-Whitlock Building in Carlsbad. The WIPP Experience Exhibit at 4021 National Parks Highway in Carlsbad, N.M. WIPP Information Center Address: 4021 National Parks Highway Carlsbad, NM 88220 Toll-free telephone number: 1-800-336-WIPP (9477) E-mail inquiries are welcomed For emergency contact information, please refer to the Joint Information Center page. Media Contacts Tim Runyon U.S. Department of Energy WIPP Recovery

  18. Carolinas Energy Career Center

    SciTech Connect (OSTI)

    Classens, Anver; Hooper, Dick; Johnson, Bruce

    2013-03-31

    Central Piedmont Community College (CPCC), located in Charlotte, North Carolina, established the Carolinas Energy Career Center (Center) - a comprehensive training entity to meet the dynamic needs of the Charlotte region's energy workforce. The Center provides training for high-demand careers in both conventional energy (fossil) and renewable energy (nuclear and solar technologies/energy efficiency). CPCC completed four tasks that will position the Center as a leading resource for energy career training in the Southeast: • Development and Pilot of a New Advanced Welding Curriculum, • Program Enhancement of Non-Destructive Examination (NDE) Technology, • Student Support through implementation of a model targeted toward Energy and STEM Careers to support student learning, • Project Management and Reporting. As a result of DOE funding support, CPCC achieved the following outcomes: • Increased capacity to serve and train students in emerging energy industry careers; • Developed new courses and curricula to support emerging energy industry careers; • Established new training/laboratory resources; • Generated a pool of highly qualified, technically skilled workers to support the growing energy industry sector.

  19. Alternative Fuels Data Center

    SciTech Connect (OSTI)

    2013-06-01

    Fact sheet describes the Alternative Fuels Data Center, which provides information, data, and tools to help fleets and other transportation decision makers find ways to reduce petroleum consumption through the use of alternative and renewable fuels, advanced vehicles, and other fuel-saving measures.

  20. Effects of Second-Order Hydrodynamics on a Semisubmersible Floating Offshore Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Bayati, I.; Jonkman, J.; Robertson, A.; Platt, A.

    2014-07-01

    The objective of this paper is to assess the second-order hydrodynamic effects on a semisubmersible floating offshore wind turbine. Second-order hydrodynamics induce loads and motions at the sum- and difference-frequencies of the incident waves. These effects have often been ignored in offshore wind analysis, under the assumption that they are significantly smaller than first-order effects. The sum- and difference-frequency loads can, however, excite eigenfrequencies of the system, leading to large oscillations that strain the mooring system or vibrations that cause fatigue damage to the structure. Observations of supposed second-order responses in wave-tank tests performed by the DeepCwind consortium at the MARIN offshore basin suggest that these effects might be more important than originally expected. These observations inspired interest in investigating how second-order excitation affects floating offshore wind turbines and whether second-order hydrodynamics should be included in offshore wind simulation tools like FAST in the future. In this work, the effects of second-order hydrodynamics on a floating semisubmersible offshore wind turbine are investigated. Because FAST is currently unable to account for second-order effects, a method to assess these effects was applied in which linearized properties of the floating wind system derived from FAST (including the 6x6 mass and stiffness matrices) are used by WAMIT to solve the first- and second-order hydrodynamics problems in the frequency domain. The method has been applied to the OC4-DeepCwind semisubmersible platform, supporting the NREL 5-MW baseline wind turbine. The loads and response of the system due to the second-order hydrodynamics are analysed and compared to first-order hydrodynamic loads and induced motions in the frequency domain. Further, the second-order loads and induced response data are compared to the loads and motions induced by aerodynamic loading as solved by FAST.

  1. Center Objective | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Objective The Science Center Publications Graduate Research opportunities Undergraduate research opportunities EFRC-501 graduate class Seminar schedules Center Objective Solar Fuel Our objective is to adapt the fundamental principles of natural photosynthesis to the man-made production of hydrogen or other fuels from sunlight A multidisciplinary team of the Center for Bio-Inspired Solar Fuel Production (BISfuel) researches artificial photosynthetic antennas and reaction centers that

  2. PNNL Electricity Infrastructure Operations Center | Open Energy...

    Open Energy Info (EERE)

    Electricity Infrastructure Operations Center Jump to: navigation, search Logo: Electricity Infrastructure Operations Center Name Electricity Infrastructure Operations Center...

  3. Annual Adaptive Management Report for Compensatory Mitigation at Keyport Lagoon: Mitigation of Pier B Development at the Bremerton Naval Facilities - Compensatory Mitigation at Keyport Lagoon - Naval Underwater Warfare Center Division - Keyport, Washington

    SciTech Connect (OSTI)

    Vavrinec, John; Borde, Amy B.; Woodruff, Dana L.; Brandenberger, Jill M.; Thom, Ronald M.; Wright, Cynthia L.; Cullinan, Valerie I.

    2012-06-01

    Unites States Navy capital improvement projects are designed to modernize and improve mission capacity. Such capital improvement projects often result in unavoidable environmental impacts by increasing over-water structures, which results in a loss of subtidal habitat within industrial areas of Navy bases. In the Pacific Northwest, compensatory mitigation often targets alleviating impacts to Endangered Species Act-listed salmon species. The complexity of restoring large systems requires limited resources to target successful and more coordinated mitigation efforts to address habitat loss and improvements in water quality that will clearly contribute to an improvement at the site scale and can then be linked to a cumulative net ecosystem improvement.

  4. Biosciences: Emery Station Operations Center (ESOC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biosciences: Emery Station Operations Center (ESOC

  5. Thurston Energy Outreach Center

    SciTech Connect (OSTI)

    Pierce, P.; Young, M.

    1984-09-01

    In Olympia, the Washington Energy Extension Service program is provided by the Olympic Renewable Resources Association's Energy Outreach Center. The Center has provided Thurston County residents with consistent and reliable information on energy conservation and renewable resources since 1980. During those four years, a seasonal pattern of activities has developed which reflects strong shifts in class attendance and inquiries by EOC users over the course of the year. Classes include: design of superinsulated passive solar and earth sheltered homes; sunspace design, coldframe construction and tax credits for solar energy systems; caulking, weatherstripping, storm windows and chimney cleaning; and solar and wood hot water systems. All are scheduled according to dictates of seasonal needs and interests.

  6. DOE Bioenergy Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy Research Center - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  7. Center for Integrated Nanotechnologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADEPS » MPA » MPA-CINT Center for Integrated Nanotechnologies Nanomaterials integration is one of many approaches we take in addressing a range of challenges, from human health to national defense. Contact Us CINT Co-Director Quanxi Jia Email Deputy Group Leader Kristin Omberg Email Group Office (505) 667-9243 First in-situ images of void collapse in explosives Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect explosives under shock

  8. LANSCE | Lujan Center | Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lujan Instruments Lujan Center Flight Paths Instrument Suite by Science Crystallography: NPDF, HIPD, HIPPO,PCS Engineering and Strain: HIPPO, SMARTS, NPDF Disordered Materials: NPDF, HIPD, HIPPO Large Scale Structures: LQD, ASTERIX Magnetism: ASTERIX, HIPD, HIPPO Biology: PCS, LQD Neutron Imaging: HIPPO, SMARTS, NPDF Nuclear Science and Technology: DANCE, FP5, FP12 Instrument Suite by Technique Powder Diffractometers: HIPD, HIPPO, NPDF, SMARTS Engineering Diffraction: SMARTS Reflectometer:

  9. Center for Functional Nanomaterials

    ScienceCinema (OSTI)

    BNL

    2009-09-01

    Staff from Brookhaven's new Center for Functional Nanomaterials (CFN) describe how this advanced facility will focus on the development and understanding of nanoscale materials. The CFN provides state-of-the-art capabilities for the fabrication and study of nanoscale materials, with an emphasis on atomic-level tailoring to achieve desired properties and functions. The overarching scientific theme of the CFN is the development and understanding of nanoscale materials that address the Nation's challenges in energy security.

  10. Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers Science for our Nation's Energy Future US Department of Energy Office of Science www.energyfrontier.us 43 ABOVE: CFSES addresses safe, secure and economical underground storage of CO2 by integrating multiple scientific disciplines to understand the various processes occurring from molecular to field scales. TOP: CFSES combines experimental data (top left) with state-of-the-art simulations (top right) to create tools that will help determine what will happen when CO2 is injected

  11. Earth Sciences Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Research Center - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  12. Building America Solution Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solution Center 2014 Building Technologies Office Peer Review Michael Baechler, michael.baechler@pnnl.gov Pacific Northwest National Laboratory Project Summary Timeline: Start date: October 2011 Planned end date: Ongoing Key Milestones 1. Launch supporting Energy Star, January 2013 2. Zero Energy Ready Home launch, June 2014 3. Existing home launch, winter 2015 Budget: Total DOE $ to date: $2,604,000 Total future DOE $: $4,500,000 (2 additional years development - 3 years of app and content

  13. Doyle Conservation Center (DCC)

    High Performance Buildings Database

    Leominster, MA Built on a 50-acre reservation in Leominster, the Doyle Conservation Center (DCC) houses core Trustees staff and serves as a central training facility that showcases the organization's conservation activities. The DCC's LEED Gold rating reflects the mission of the Trustees of Reservations, which is "To preserve, for public use and enjoyment, properties of exceptional scenic, historic, and ecological value in Massachusetts." The DCC is accessible to the public and is often rented out by various groups and organizations.

  14. National Fertilizer Development Center

    Office of Legacy Management (LM)

    h-L National Fertilizer Development Center May 15, 1980 nww Hr. William Et Mott, Director Environmental Control Technology Division Office of Environment Dcpartiaent of Energy Washington, DC 20545 Dear Mr. Mott: This is in response to your letter of May 5 requesting ccmments on a report dated Xarct; 1930 which summarizes a preliminary radiological survey of facilities used in the early 1950's for studies of recovery of uranium from leached zone ore. I have made a few suggested changes to the

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Bio-Based Transportation Research Funding The Surface Transportation Research, Development, and Deployment (STRDD) Program funds activities that promote innovation in transportation infrastructure, services, and operations. A portion of the funding made available to STRDD is set aside for the Bio-Based Transportation Research program to carry out bio-based research of national importance at research centers and through the National Biodiesel Board. For more information, see the STRDD Program

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Mower Incentive - Missouri Propane Education & Research Council Propane commercial mower incentives are available to public and private commercial mowing fleets registered to conduct business in Missouri. New propane commercial mowers are eligible for 15% of the cost of the equipment. Dedicated propane mower conversions are eligible for $750. New center articulated or oscillating frame tractors with at least a 32 horsepower engine are eligible for $1,000. Incentive recipients must

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Implementation Working Group A hydrogen implementation working group, consisting of federal, state, and county agency representatives and industry stakeholders, facilitates the establishment of infrastructure and policies across all state agencies with the goal of promoting the expansion of hydrogen-based energy in Hawaii. The Director of the Hawaii Center for Advanced Transportation Technologies serves as the state Hydrogen Implementation Coordinator (Coordinator). The Coordinator must

  18. Development of Fully Coupled Aeroelastic and Hydrodynamic Models for Offshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Jonkman, J. M.; Sclavounos, P. D.

    2006-01-01

    Aeroelastic simulation tools are routinely used to design and analyze onshore wind turbines, in order to obtain cost effective machines that achieve favorable performance while maintaining structural integrity. These tools employ sophisticated models of wind-inflow; aerodynamic, gravitational, and inertial loading of the rotor, nacelle, and tower; elastic effects within and between components; and mechanical actuation and electrical responses of the generator and of control and protection systems. For offshore wind turbines, additional models of the hydrodynamic loading in regular and irregular seas, the dynamic coupling between the support platform motions and wind turbine motions, and the dynamic characterization of mooring systems for compliant floating platforms are also important. Hydrodynamic loading includes contributions from hydrostatics, wave radiation, and wave scattering, including free surface memory effects. The integration of all of these models into comprehensive simulation tools, capable of modeling the fully coupled aeroelastic and hydrodynamic responses of floating offshore wind turbines, is presented.

  19. Survey of Multi-Material Closure Models in 1D Lagrangian Hydrodynamics

    SciTech Connect (OSTI)

    Maeng, Jungyeoul Brad; Hyde, David Andrew Bulloch

    2015-07-28

    Accurately treating the coupled sub-cell thermodynamics of computational cells containing multiple materials is an inevitable problem in hydrodynamics simulations, whether due to initial configurations or evolutions of the materials and computational mesh. When solving the hydrodynamics equations within a multi-material cell, we make the assumption of a single velocity field for the entire computational domain, which necessitates the addition of a closure model to attempt to resolve the behavior of the multi-material cells’ constituents. In conjunction with a 1D Lagrangian hydrodynamics code, we present a variety of both the popular as well as more recently proposed multi-material closure models and survey their performances across a spectrum of examples. We consider standard verification tests as well as practical examples using combinations of fluid, solid, and composite constituents within multi-material mixtures. Our survey provides insights into the advantages and disadvantages of various multi-material closure models in different problem configurations.

  20. Center for Inverse Design: Organization of the Center for Inverse...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    serve as primary point of contact with the U.S. Department of Energy (DOE) Office of Science; direct and manage all Center technical operations; lead the Center's Energy...

  1. Energy Frontier Research Center Center for Materials Science of Nuclear

    Office of Scientific and Technical Information (OSTI)

    Fuels (Technical Report) | SciTech Connect Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific Successes * The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative, experimental-based

  2. Energy Frontier Research Center Center for Materials Science of Nuclear

    Office of Scientific and Technical Information (OSTI)

    Fuels (Technical Report) | SciTech Connect Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Ă— You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize

  3. Energy Frontier Research Center Center for Materials Science of Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels (Technical Report) | SciTech Connect Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific Successes * The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative,

  4. CLSF (Center for Lignocellulose Structure and Formation) - About the Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About the Center EFRCs (Energy Frontier Research Centers) The Center for Lignocellulose Structure and Formation (CLSF) is one of 46 Energy Frontier Research Centers (EFRC) initially established in 2009 by the US Department of Energy to accelerate research to meet critical energy challenges of the 21st century. EFRCs integrate the expertise of multiple leading scientific investigators to enable fundamental research of a scope and complexity that would not be possible with the small group research

  5. Solar Technology Center

    SciTech Connect (OSTI)

    Boehm, Bob

    2011-04-27

    The Department of Energy, Golden Field Office, awarded a grant to the UNLV Research Foundation (UNLVRF) on August 1, 2005 to develop a solar and renewable energy information center. The Solar Technology Center (STC) is to be developed in two phases, with Phase I consisting of all activities necessary to determine feasibility of the project, including design and engineering, identification of land access issues and permitting necessary to determine project viability without permanently disturbing the project site, and completion of a National Environmental Policy Act (NEPA) Environmental Assessment. Phase II is the installation of infrastructure and related structures, which leads to commencement of operations of the STC. The STC is located in the Boulder City designated 3,000-acre Eldorado Valley Energy Zone, approximately 15 miles southwest of downtown Boulder City and fronting on Eldorado Valley Drive. The 33-acre vacant parcel has been leased to the Nevada Test Site Development Corporation (NTSDC) by Boulder City to accommodate a planned facility that will be synergistic with present and planned energy projects in the Zone. The parcel will be developed by the UNLVRF. The NTSDC is the economic development arm of the UNLVRF. UNLVRF will be the entity responsible for overseeing the lease and the development project to assure compliance with the lease stipulations established by Boulder City. The STC will be operated and maintained by University of Nevada, Las Vegas (UNLV) and its Center for Energy Research (UNLV-CER). Land parcels in the Eldorado Valley Energy Zone near the 33-acre lease are committed to the construction and operation of an electrical grid connected solar energy production facility. Other projects supporting renewable and solar technologies have been developed within the energy zone, with several more developments in the horizon.

  6. Providence Newberg Medical Center

    High Performance Buildings Database

    Newberg, Oregon In 2002, Providence Health & Services began planning a new 188,000 square foot medical center in Newberg, Oregon to respond to the growing community's need for accessible health care. Since this was Providence's first new hospital in almost thirty years, its leaders decided to approach the project through innovative planning, design, and construction, including the achievement of lifecycle energy savings and a potential LEED certification. The hospital is comprised of 40 inpatient beds with views out to the surrounding rural landscape or into lushly planted internal courtyards.

  7. COMPUTATIONAL SCIENCE CENTER

    SciTech Connect (OSTI)

    DAVENPORT, J.

    2005-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.

  8. Valley Forge Corporate Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    55 Jefferson Ave. Valley Forge Corporate Center Norristown, PA 19403-2497 Pauline Foley Assistant General Counsel 610.666.8248 | Fax - 610.666.8211 foleyp@pjm.com October 30, 2013 Via Electronic Mail: juliea.smith@hq.doe.gov Christopher.lawrence@hq.doe.gov Julie A. Smith Office of Electricity Delivery and Energy Reliability Mail Code: OE-20 U.S. Department of Energy 1000 Independence Avenue, SW Washington, D.C. 20585 Re: Department of Energy - Improving Performance of Federal Permitting and

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Do alternative fuel vehicles (AFVs) improve air quality? How does the use of alternative fuels affect smog formation? You may find answers to these and other questions through the U.S. Department of Energy's (DOE) Alternative Fuels Data Center (AFDC)-the nation's most com- prehensive repository of perfor- mance data and general informa- tion on AFVs. To date, more than 600 vehi- cles-including light-duty cars, trucks, vans, transit buses, and heavy-duty trucks-have been tested on various

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Vehicle (NGV) and Fueling Infrastructure Rebates - Texas Gas Service The Texas Gas Service Conservation Program offers a rebate of up to $2,000 for the purchase of a qualified NGV or $3,000 for the conversion of a gasoline powered vehicle to operate on natural gas. The rebate is available for up to five vehicles per customer, and only centers certified by the Railroad Commission of Texas may perform conversions. A rebate of $1,000 is also available for the purchase of a natural gas

  11. Data center coolant switch

    DOE Patents [OSTI]

    Iyengar, Madhusudan K.; Parida, Pritish R.; Schultz, Mark D.

    2015-10-06

    A data center cooling system is operated in a first mode; it has an indoor portion wherein heat is absorbed from components in the data center, and an outdoor heat exchanger portion wherein outside air is used to cool a first heat transfer fluid (e.g., water) present in at least the outdoor heat exchanger portion of the cooling system during the first mode. The first heat transfer fluid is a relatively high performance heat transfer fluid (as compared to the second fluid), and has a first heat transfer fluid freezing point. A determination is made that an appropriate time has been reached to switch from the first mode to a second mode. Based on this determination, the outdoor heat exchanger portion of the data cooling system is switched to a second heat transfer fluid, which is a relatively low performance heat transfer fluid, as compared to the first heat transfer fluid. It has a second heat transfer fluid freezing point lower than the first heat transfer fluid freezing point, and the second heat transfer fluid freezing point is sufficiently low to operate without freezing when the outdoor air temperature drops below a first predetermined relationship with the first heat transfer fluid freezing point.

  12. Resource Center | Department of Energy

    Energy Savers [EERE]

    Resource Center Resource Center Welcome! The Building Technologies Office (BTO) carries out technology research, development, market stimulation, and regulatory activities through an ongoing process of planning and analysis, implementation, and review. The BTO Resource Center includes links to documents and solution centers that guide the program management process and illustrate associated results and public benefits. Please email btoweb@ee.doe.gov with any questions. Emerging Technologies

  13. Information Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center Information Center The U.S. Department of Energy's (DOE) Office of Enterprise Assessments (EA) provides expert evaluations of management performance in safety, security and other areas by seasoned experts who are independent of line management. Information related to enforcement, safety, security, emergency management and cyber performance management is made available to the public in the EA Information Center. Enforcement Info Center The Department's Enforcement Office conducts

  14. Data Center Airflow Management Retrofit

    Broader source: Energy.gov [DOE]

    Case study bulletin describes the data center airflow management retrofit. The study includes information about how the data center energy densities (measured in power-use per square foot), increase energy savings for cooling, and how it can be realized by optimizing airflow pathways within the data center.

  15. Effect of Second-Order Hydrodynamics on Floating Offshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Roald, L.; Jonkman, J.; Robertson, A,; Chokani, N.

    2013-07-01

    Offshore winds are generally stronger and more consistent than winds on land, making the offshore environment attractive for wind energy development. A large part of the offshore wind resource is however located in deep water, where floating turbines are the only economical way of harvesting the energy. The design of offshore floating wind turbines relies on the use of modeling tools that can simulate the entire coupled system behavior. At present, most of these tools include only first-order hydrodynamic theory. However, observations of supposed second-order hydrodynamic responses in wave-tank tests performed by the DeepCwind consortium suggest that second-order effects might be critical. In this paper, the methodology used by the oil and gas industry has been modified to apply to the analysis of floating wind turbines, and is used to assess the effect of second-order hydrodynamics on floating offshore wind turbines. The method relies on combined use of the frequency-domain tool WAMIT and the time-domain tool FAST. The proposed assessment method has been applied to two different floating wind concepts, a spar and a tension-leg-platform (TLP), both supporting the NREL 5-MW baseline wind turbine. Results showing the hydrodynamic forces and motion response for these systems are presented and analysed, and compared to aerodynamic effects.

  16. Recent Hydrodynamics Improvements to the RELAP5-3D Code

    SciTech Connect (OSTI)

    Richard A. Riemke; Cliff B. Davis; Richard.R. Schultz

    2009-07-01

    The hydrodynamics section of the RELAP5-3D computer program has been recently improved. Changes were made as follows: (1) improved turbine model, (2) spray model for the pressurizer model, (3) feedwater heater model, (4) radiological transport model, (5) improved pump model, and (6) compressor model.

  17. Center for Inverse Design: Principal Investigators in the Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inverse Design Principal Investigators in the Center for Inverse Design This page provides brief descriptions of the principal investigators within the Center for Inverse Design. More complete biographical summaries are also available. Principal investigators are organized within their research institutions-the National Renewable Energy Laboratory (NREL), Colorado School of Mines (CSM), Oregon State University (OSU), Northwestern University (NU), Stanford Linear Accelerator Center (SLAC),

  18. National Carbon Capture Center Launches Post-Combustion Test Center |

    Office of Environmental Management (EM)

    Department of Energy Carbon Capture Center Launches Post-Combustion Test Center National Carbon Capture Center Launches Post-Combustion Test Center June 6, 2011 - 2:32pm Addthis Jenny Hakun What does this mean for me? Commercial deployment of the processes tested here could cut carbon pollution. Innovation is important to finding ways to make energy cleaner. And testing the ideas and processes that researchers come up with is critical to moving ideas from the lab to the marketplace. That's

  19. National Carbon Capture Center Launches Post-Combustion Test Center |

    Office of Environmental Management (EM)

    Department of Energy Carbon Capture Center Launches Post-Combustion Test Center National Carbon Capture Center Launches Post-Combustion Test Center June 7, 2011 - 1:00pm Addthis Washington, D.C. - The recent successful commissioning of an Alabama-based test facility is another step forward in research that will speed deployment of innovative post-combustion carbon dioxide (CO2) capture technologies for coal-based power plants, according to the U.S. Department of Energy (DOE). Technologies

  20. Industrial Assessment Centers (IACs) | Department of Energy

    Office of Environmental Management (EM)

    Technical Assistance Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Small- and medium-sized manufacturers may be...

  1. BLM National Training Center | Open Energy Information

    Open Energy Info (EERE)

    National Training Center Jump to: navigation, search Logo: BLM National Training Center Name: BLM National Training Center Address: 9828 North 31st Avenue Place: Phoenix, AZ Zip:...

  2. Sandia Energy - Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Frontier Research Center Home Energy Research EFRCs Solid-State Lighting Science EFRC Energy Frontier Research Center Energy Frontier Research CenterTara...

  3. Natural Gas Technologies Center | Open Energy Information

    Open Energy Info (EERE)

    Technologies Center Jump to: navigation, search Logo: Natural Gas Technologies Center Name: Natural Gas Technologies Center Address: 1350, Nobel, Boucherville, Quebec, Canada...

  4. Western Cooling Efficiency Center | Open Energy Information

    Open Energy Info (EERE)

    Cooling Efficiency Center Jump to: navigation, search Name: Western Cooling Efficiency Center Place: Davis, CA Website: http: References: Western Cooling Efficiency Center 1...

  5. Clean Energy Solutions Center | Open Energy Information

    Open Energy Info (EERE)

    Center Jump to: navigation, search Logo: Clean Energy Solutions Center Name Clean Energy Solutions Center AgencyCompany Organization Clean Energy Ministerial Sector Energy Focus...

  6. Arizona Solar Center | Open Energy Information

    Open Energy Info (EERE)

    Center Jump to: navigation, search Logo: Arizona Solar Center Name: Arizona Solar Center Place: Mesa, Arizona Number of Employees: 1-10 Year Founded: 1999 Website:...

  7. Hydrogen Engine Center HEC | Open Energy Information

    Open Energy Info (EERE)

    Engine Center HEC Jump to: navigation, search Name: Hydrogen Engine Center (HEC) Place: Algona, Iowa Zip: IA 50511 Sector: Hydro, Hydrogen Product: The Hydrogen Engine Center (HEC)...

  8. Easton Pond Business Center | Open Energy Information

    Open Energy Info (EERE)

    Easton Pond Business Center Jump to: navigation, search Name Easton Pond Business Center Facility Easton Pond Business Center Sector Wind energy Facility Type Small Scale Wind...

  9. Minco Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Center Jump to: navigation, search Name Minco Wind Energy Center Facility Minco Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  10. Weatherford Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Weatherford Wind Energy Center Jump to: navigation, search Name Weatherford Wind Energy Center Facility Weatherford Wind Energy Center Sector Wind energy Facility Type Commercial...

  11. Mountaineer Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Mountaineer Wind Energy Center Jump to: navigation, search Name Mountaineer Wind Energy Center Facility Mountaineer Wind Energy Center Sector Wind energy Facility Type Commercial...

  12. Wyoming Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Center Jump to: navigation, search Name Wyoming Wind Energy Center Facility Wyoming Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  13. Vantage Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Center Jump to: navigation, search Name Vantage Wind Energy Center Facility Vantage Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  14. Oliver Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Center Jump to: navigation, search Name Oliver Wind Energy Center Facility Oliver Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  15. Center for Advanced Photophysics | Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory National Renewable Energy Laboratory U.S. Department of Energy Home About The Center Science Publications News & Press Releases Center Science The research of this Center focuses on (1) novel physical principles for solar energy conversion, (2) charge manipulation and exploratory photovoltaic device structures, and (3) novel nanomaterials. Research Thrusts Diagram of three overlapping circles. The upper left circle is labeled as Novel Physical Principles and

  16. Center for Inverse Design: Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center the Inverse Design Highlights Read short descriptions of some recent successes by researchers within the Center for Inverse Design, an Energy Research Frontier Center led by the National Renewable Energy Laboratory. Illustration of Seebeck coefficient mapping instrument showing various components in an "exploded" view. Spatially Resolved Seebeck Coefficient Measurements An instrument for spatially resolved Seebeck coefficient measurements has been developed and applied to test

  17. Center for Advanced Solar Photophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Welcome to the Center for Advanced Solar Photophysics (CASP) Solution-processed solar cells The goal of this center is to explore and exploit the unique physics of nanostructured materials to boost the efficiency of solar energy conversion through novel light-matter interactions, controlled excited-state dynamics, and engineered carrier-carrier coupling. Examples of phenomena that are studied in the center include field enhancement in metal nanostructures for improved light-harvesting and

  18. Modeling the Structural Response from a Propagating High Explosive Using Smooth Particle Hydrodynamics

    SciTech Connect (OSTI)

    Margraf, J

    2012-06-12

    This report primarily concerns the use of two massively parallel finite element codes originally written and maintained at Lawrence Livermore National Laboratory. ALE3D is an explicit hydrodynamics code commonly employed to simulate wave propagation from high energy scenarios and the resulting interaction with nearby structures. This coupled response ensures that a structure is accurately applied with a blast loading varying both in space and time. Figure 1 illustrates the radial outward propagation of a pressure wave due to a center detonated spherical explosive originating from the lower left. The radial symmetry seen in this scenario is lost when instead a cylindrocal charge is detonated. Figure 2 indicates that a stronger, faster traveling pressure wave occurs in the direction of the normal axis to the cylinder. The ALE3D name is derived because of the use of arbitrary-Lagrange-Eulerian elements in which the mesh is allowed to advect; a process through which the mesh is modified to alleviate tanlging and general mesh distortion often cuased by high energy scenarios. The counterpart to an advecting element is a Lagrange element, whose mesh moves with the material. Ideally all structural components are kept Lagrange as long as possible to preserve accuracy of material variables and minimize advection related errors. Advection leads to mixed zoning, so using structural Lagrange elements also improves the visualization when post processing the results. A simplified representation of the advection process is shown in Figure 3. First the mesh is distorted due to material motion during the Lagrange step. The mesh is then shifted to an idealized and less distorted state to prevent irregular zones caused by the Lagrange motion. Lastly, the state variables are remapped to the elements of the newly constructed mesh. Note that Figure 3 represents a purely Eulerian mesh relaxation because the mesh is relocated back to the pre-Lagrange position. This is the case when the material flows through a still mesh. This is not typically done in an ALE3D analysis, especially if Lagrange elements exist. Deforming Lagrange elements would certainly tangle with a Eulerian mesh eventually. The best method in this case is to have an advecting mesh positioned as some relaxed version of the pre and post Lagrange step; this gives the best opportunity of modeling a high energy event with a combination of Lagrange and ALE elements. Dyne3D is another explicit dynamic analysis code, ParaDyn being the parallel version. ParaDyn is used for predicting the transient response of three dimensional structures using Lagrangian solid mechanics. Large deformation and mesh tangling is often resolved through the use of an element deletion scheme. This is useful to accommodate component failure, but if it is done purely as a means to preserve a useful mesh it can lead to problems because it does not maintain continuity of the material bulk response. Whatever medium exists between structural components is typically not modeled in ParaDyn. Instead, a structure either has a known loading profile applied or given initial conditions. The many included contact algorithms can calculate the loading response of materials if and when they collide. A recent implementation of an SPH module in which failed or deleted material nodes are converted to independent particles is currently being utilized for a variety of spall related problems and high velocity impact scenarios. Figure 4 shows an example of a projectile, given an initial velocity, and how it fails the first plate which generates SPH particles which then interact with and damage the second plate.

  19. Regency Centers | Open Energy Information

    Open Energy Info (EERE)

    with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration Partnership Year 2009 Link to project...

  20. ORISE: Center for Epidemiologic Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Center for Epidemiologic Research (CER). CER has changed over time as worker health assessment needs have evolved. Since the early 1990s, CER researchers have concentrated on...

  1. Massachusetts realizes wind center dream

    Broader source: Energy.gov [DOE]

    The new testing center will be able to test blades longer than 50 meters, which currently can only be done overseas.

  2. Solar Energy Research Center (SERC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Research Center (SERC) Community Berkeley Global Campus Environmental Documents Tours Community Programs Friends of Berkeley Lab Navigate Section Community ...

  3. Low torque hydrodynamic lip geometry for bi-directional rotation seals

    DOE Patents [OSTI]

    Dietle, Lannie L. (Houston, TX); Schroeder, John E. (Richmond, TX)

    2011-11-15

    A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.

  4. Low torque hydrodynamic lip geometry for bi-directional rotation seals

    DOE Patents [OSTI]

    Dietle, Lannie L. (Houston, TX); Schroeder, John E. (Richmond, TX)

    2009-07-21

    A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.

  5. OC5 Project Phase I: Validation of Hydrodynamic Loading on a Fixed Cylinder: Preprint

    SciTech Connect (OSTI)

    Robertson, A. N.; Wendt, F. F.; Jonkman, J. M.; Popko, W.; Vorpahl, F.; Stansberg, C. T.; Bachynski, E. E.; Bayati, I.; Beyer, F.; de Vaal, J. B.; Harries, R.; Yamaguchi, A.; Shin, H.; Kim, B.; van der Zee, T.; Bozonnet, P.; Aguilo, B.; Bergua, R.; Qvist, J.; Qijun, W.; Chen, X.; Guerinel, M.; Tu, Y.; Yutong, H.; Li, R.; Bouy, L.

    2015-04-23

    This paper describes work performed during the first half of Phase I of the Offshore Code Comparison Collaboration Continuation, with Correlation project (OC5). OC5 is a project run under the IEA Wind Research Task 30, and is focused on validating the tools used for modeling offshore wind systems. In this first phase, simulated responses from a variety of offshore wind modeling tools were modeling tools were validated against tank test data of a fixed, suspended cylinder (without a wind turbine) that was tested under regular and irregular wave conditions at MARINTEK. The results from this phase include an examination of different approaches one can use for defining and calibrating hydrodynamic coefficients for a model, and the importance of higher-order wave models in accurately modeling the hydrodynamic loads on offshore substructures.

  6. Validation of Hydrodynamic Load Models Using CFD for the OC4-DeepCwind Semisubmersible: Preprint

    SciTech Connect (OSTI)

    Benitz, M. A.; Schmidt, D. P.; Lackner, M. A.; Stewart, G. M.; Jonkman, J.; Robertson, A.

    2015-03-01

    Computational fluid dynamics (CFD) simulations were carried out on the OC4-DeepCwind semi-submersible to obtain a better understanding of how to set hydrodynamic coefficients for the structure when using an engineering tool such as FAST to model the system. The focus here was on the drag behavior and the effects of the free-surface, free-ends and multi-member arrangement of the semi-submersible structure. These effects are investigated through code-to-code comparisons and flow visualizations. The implications on mean load predictions from engineering tools are addressed. The work presented here suggests that selection of drag coefficients should take into consideration a variety of geometric factors. Furthermore, CFD simulations demonstrate large time-varying loads due to vortex shedding, which FAST's hydrodynamic module, HydroDyn, does not model. The implications of these oscillatory loads on the fatigue life needs to be addressed.

  7. Liquid contact resonance atomic force microscopy via experimental reconstruction of the hydrodynamic function

    SciTech Connect (OSTI)

    Tung, Ryan C. Killgore, Jason P.; Hurley, Donna C.

    2014-06-14

    We present a method to correct for surface-coupled inertial and viscous fluid loading forces in contact resonance (CR) atomic force microscopy (AFM) experiments performed in liquid. Based on analytical hydrodynamic theory, the method relies on experimental measurements of the AFM cantilever's free resonance peaks near the sample surface. The free resonance frequencies and quality factors in both air and liquid allow reconstruction of a continuous hydrodynamic function that can be used to adjust the CR data in liquid. Validation experiments utilizing thermally excited free and in-contact spectra were performed to assess the accuracy of our approach. Results show that the method recovers the air frequency values within approximately 6%. Knowledge of fluid loading forces allows current CR analysis techniques formulated for use in air and vacuum environments to be applied to liquid environments. Our technique greatly extends the range of measurement environments available to CR-AFM.

  8. PNNL Electricity Infrastructure Operations Center | Open Energy...

    Open Energy Info (EERE)

    PNNL Electricity Infrastructure Operations Center (Redirected from Electricity Infrastructure Operations Center) Jump to: navigation, search Logo: Electricity Infrastructure...

  9. Solar Energy Resource Center | Department of Energy

    Energy Savers [EERE]

    Resource Center Solar Energy Resource Center Sub Program Topic Resource Search Results Title Date Author SubProgram Topic Description

  10. Hydrodynamic simulations of a combined hydrogen, helium thermonuclear runaway on a 10-km neutron star

    SciTech Connect (OSTI)

    Starrfield, S.; Kenyon, S.; Truran, J.W.; Sparks, W.M.

    1983-01-01

    We have used a Lagrangian, hydrodynamic stellar-evolution computer code to evolve a thermonuclear runaway in the accreted hydrogen rich envelope of a 1.0M, 10-km neutron star. Our simulation produced an outburst which lasted about 2000 sec and peak effective temperature was 3 keV. The peak luminosity exceeded 2 x 10/sup 5/ L. A shock wave caused a precursor in the light curve which lasted 10/sup -5/ sec.

  11. Hydrodynamic models for slurry bubble column reactors. Seventh technical progress report, January--March 1996

    SciTech Connect (OSTI)

    Gidaspow, D.

    1996-04-01

    The objective of this investigation is to convert our ``learning gas solid-liquid`` fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and the volume fractions of gas, liquid and particulate phase. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. A hydrodynamic model for multiphase flows, based on the principles of mass, momentum and energy conservation for each phase, was developed and applied to model gas-liquid, gas-liquid-solid fluidization and gas-solid-solid separation. To simulate the industrial slurry bubble column reactors, a computer program based on the hydrodynamic model was written with modules for chemical reactions (e.g. the synthesis of methanol), phase changes and heat exchangers. In the simulations of gas-liquid two phases flow system, the gas hold-ups, computed with a variety of operating conditions such as temperature, pressure, gas and liquid velocities, agree well with the measurements obtained at Air Products` pilot plant. The hydrodynamic model has more flexible features than the previous empirical correlations in predicting the gas hold-up of gas-liquid two-phase flow systems. In the simulations of gas-liquid-solid bubble column reactors with and without slurry circulation, the code computes volume fractions, temperatures and velocity distributions for the gas, the liquid and the solid phases, as well as concentration distributions for the species (CO, H{sub 2}, CH{sub 3}0H, ... ), after startup from a certain initial state. A kinetic theory approach is used to compute a solid viscosity due to particle collisions. Solid motion and gas-liquid-solid mixing are observed on a color PCSHOW movie made from computed time series data. The steady state and time average catalyst concentration profiles, the slurry height and the rates of methanol production agree well with the measurements obtained at an Air Products` pilot plant.

  12. Clean Energy Application Center

    SciTech Connect (OSTI)

    Freihaut, Jim

    2013-09-30

    The Mid Atlantic Clean Energy Application Center (MACEAC), managed by The Penn State College of Engineering, serves the six states in the Mid-Atlantic region (Pennsylvania, New Jersey, Delaware, Maryland, Virginia and West Virginia) plus the District of Columbia. The goals of the Mid-Atlantic CEAC are to promote the adoption of Combined Heat and Power (CHP), Waste Heat Recovery (WHR) and District Energy Systems (DES) in the Mid Atlantic area through education and technical support to more than 1,200 regional industry and government representatives in the region. The successful promotion of these technologies by the MACEAC was accomplished through the following efforts; (1)The MACEAC developed a series of technology transfer networks with State energy and environmental offices, Association of Energy Engineers local chapters, local community development organizations, utilities and, Penn State Department of Architectural Engineering alumni and their firms to effectively educate local practitioners about the energy utilization, environmental and economic advantages of CHP, WHR and DES; (2) Completed assessments of the regional technical and market potential for CHP, WHR and DE technologies application in the context of state specific energy prices, state energy and efficiency portfolio development. The studies were completed for Pennsylvania, New Jersey and Maryland and included a set of incentive adoption probability models used as a to guide during implementation discussions with State energy policy makers; (3) Using the technical and market assessments and adoption incentive models, the Mid Atlantic CEAC developed regional strategic action plans for the promotion of CHP Application technology for Pennsylvania, New Jersey and Maryland; (4) The CHP market assessment and incentive adoption model information was discussed, on a continuing basis, with relevant state agencies, policy makers and Public Utility Commission organizations resulting in CHP favorable incentive programs in New Jersey, Pennsylvania, Maryland and Delaware; (5) Developed and maintained a MACEAC website to provide technical information and regional CHP, WHR and DE case studies and site profiles for use by interested stakeholders in information transfer and policy discussions; (6) Provided Technical Assistance through feasibility studies and on site evaluations. The MACEAC completed 28 technical evaluations and 9 Level 1 CHP analyses ; and (7) the MACEAC provided Technical Education to the region through a series of 29 workshops and webinars, 37 technical presentations, 14 seminars and participation in 13 CHP conferences.

  13. Saving Energy at Data Centers

    SciTech Connect (OSTI)

    2007-10-12

    Data centers provide mission-critical computing functions essential to the daily operation of top U.S. economic, scientific, and technological organizations. These data centers consume large amounts of energy to run and maintain their computer systems, servers, and associated high-performance components.

  14. The shock/shear platform for planar radiation-hydrodynamics experiments on the National Ignition Facility

    SciTech Connect (OSTI)

    Doss, F. W.; Kline, J. L.; Flippo, K. A.; Perry, T. S.; DeVolder, B. G.; Tregillis, I.; Loomis, E. N.; Merritt, E. C.; Murphy, T. J.; Welser-Sherrill, L.; Fincke, J. R.

    2015-04-17

    An indirectly-driven shock tube experiment fielded on the National Ignition Facility (NIF) was used to create a high-energy-density hydrodynamics platform at unprecedented scale. Scaling up a shear-induced mixing experiment previously fielded at OMEGA, the NIF shear platform drives 130 ?m/ns shocks into a CH foam-filled shock tube (~ 60 mg/cc) with interior dimensions of 1.5 mm diameter and 5 mm length. The pulse-shaping capabilities of the NIF are used to extend the drive for >10 ns, and the large interior tube volumes are used to isolate physics-altering edge effects from the region of interest. The scaling of the experiment to the NIF allows for considerable improvement in maximum driving time of hydrodynamics, in fidelity of physics under examination, and in diagnostic clarity. Details of the experimental platform and post-shot simulations used in the analysis of the platform-qualifying data are presented. Hydrodynamic scaling is used to compare shear data from OMEGA with that from NIF, suggesting a possible change in the dimensionality of the instability at late times from one platform to the other.

  15. The shock/shear platform for planar radiation-hydrodynamics experiments on the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Doss, F. W.; Kline, J. L.; Flippo, K. A.; Perry, T. S.; DeVolder, B. G.; Tregillis, I.; Loomis, E. N.; Merritt, E. C.; Murphy, T. J.; Welser-Sherrill, L.; et al

    2015-04-17

    An indirectly-driven shock tube experiment fielded on the National Ignition Facility (NIF) was used to create a high-energy-density hydrodynamics platform at unprecedented scale. Scaling up a shear-induced mixing experiment previously fielded at OMEGA, the NIF shear platform drives 130 μm/ns shocks into a CH foam-filled shock tube (~ 60 mg/cc) with interior dimensions of 1.5 mm diameter and 5 mm length. The pulse-shaping capabilities of the NIF are used to extend the drive for >10 ns, and the large interior tube volumes are used to isolate physics-altering edge effects from the region of interest. The scaling of the experiment tomore » the NIF allows for considerable improvement in maximum driving time of hydrodynamics, in fidelity of physics under examination, and in diagnostic clarity. Details of the experimental platform and post-shot simulations used in the analysis of the platform-qualifying data are presented. Hydrodynamic scaling is used to compare shear data from OMEGA with that from NIF, suggesting a possible change in the dimensionality of the instability at late times from one platform to the other.« less

  16. Better Buildings Residential Program Solution Center Demonstration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Residential Program Solution Center Demonstration Better Buildings Residential Program Solution Center Demonstration Better Buildings Residential Program Solution Center Demonstration from the U.S. Department of Energy. PDF icon Solution Center Demo More Documents & Publications Building Science Solutions Â… Faster and Better Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential Program Solution Center

  17. Center for Inverse Design: About the Center for Inverse Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organization Partner Institutions Principal Investigators Research Thrusts & Subtasks Approach Publications SharePoint Collaboration Tool For research results, information, and discussion board Learn more about some recent research highlights from the Center for Inverse Design Meet some of our principal investigators in the Center for Inverse Design by viewing the short videos Download latest chart of efficiencies determined by certified agencies/labs of best research solar cells worldwide

  18. Alternative Fuels Data Center: Fuel Prices

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel

  19. Center for Energy Efficient Design

    High Performance Buildings Database

    Rocky Mount, VA As the first Passivhaus public school in North America, the Center for Energy Efficient Design (CEED) in Rocky Mount, Virginia, is a national model for green school construction. An extension of The Leonard A.

  20. Energy Frontier Research Center News

    Office of Science (SC) Website

    a>, was supported in part by the Solid-State Solar Thermal Energy Conversion Center (S3TEC), an EFRC led by Gang Chen at MIT.

    ...

  1. WIPP Activates Emergency Operations Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 5, 2015 WIPP Activates Emergency Operations Center At approximately 7:00 p.m. MDT on Tuesday, August 4, the Waste Isolation Pilot Plant (WIPP) activated the Emergency...

  2. USCA Convocation Center 375 Robert ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 2013 USCA Convocation Center 375 Robert M. Bell Parkway, Aiken, SC 29801 Cash Bar Reception 6:00-6:45 pm BanquetLecture 7:00 pm Tickets: 50 per person Must be...

  3. Kirsch Center for Environmental Studies

    High Performance Buildings Database

    Cupertino, CA The Kirsch Center for Environmental Studies is a two story building completed in summer 2005. The center is the home of the Biological, Health and Environmental Sciences Division of the De Anza College. On the first floor there is a biodiversity lab, a biodiversity outdoor classroom, an energy exhibit hall, a small group learning space, a 90-seat lecture classroom and two 45-seat lecture classrooms.

  4. ORISE: Center for Epidemiologic Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Epidemiologic Research The Oak Ridge Institute for Science and Education (ORISE) has been building its capability in epidemiology since 1978. Early ORISE studies of mortality among U.S. Department of Energy (DOE) nuclear workers led researchers to develop increasing expertise in epidemiologic research, occupational health studies and DOE worker populations. ORISE's researchers and skills coalesced into an operating unit that became the Center for Epidemiologic Research (CER). CER has

  5. LANSCE | Lujan Center | Ancillary Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ancillary Equipment For general questions, please contact the Lujan Center Sample Environments responsible: Victor Fanelli | vfanelli@lanl.gov | 505.667.8755 Sample and Equipment Shipping Instructions For questions regarding shipping procedures, contact the Lujan Center Experiment Coordinator: TBA Low Temperature Equipment Specifications Flight Path/Instrument Compatibility Responsible Displex closed-cycle refrigerators Tmin= 4 K to 12 K Tmax= 300 K to 340 K 11 - Asterix 04 - HIPPO 03 - HIPD 10

  6. WINDExchange: About Regional Resource Centers

    Wind Powering America (EERE)

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers About Economic Development Siting About Regional Resource Centers Significant expansion of wind energy deployment will be required to achieve the President's goal of doubling renewable energy production in the United States by 2020. Wind energy currently provides more than 4% of the nation's electricity but has the potential to provide much more. Increasing the country's percentage from wind power will mean

  7. Karen Nunez, Procedures Center Manager

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Karen Nunez, Procedures Center Manager Print Procedures Center Manager Karen Nunez has been working somewhat "behind the scenes" at the ALS for the past seven years, ensuring that documentation for the many procedures involved in ALS operations is clear, correct, and up to date. She works with a plethora of ALS engineers, operators, technicians, and scientists, who all lend their technical expertise to her work. "I maintain the documents that help people maintain the

  8. Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Home The Combustion Energy Frontier Research Center (CEFRC) was established by the US Department of Energy (DOE) in August 2009 as one of the 46 new centers around the country dedicated to addressing the pressing issues of energy sustainability, energy security, and climate change. The CEFRC, funded at $20 million over 5 years and directed by Professor Chung K. Law of Princeton University, focuses on the combustion of fossil and alternative fuels to produce heat and power. The research team

  9. Information Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center Information Center Congressional Testimony Testimony to Congress by various members of OE. Library Repository of reports and documents; fact sheets; presentations and other documentation from peer review events; and Federal Register notices. Educational Resources Educational material on the generation, transmission, and usage of electricity as well as how the electric grid works and how it needs to be modernized. Reporting Reporting to OE including Electric Disturbance Incidents and

  10. NNSA Service Center Chart | Department of Energy

    Office of Environmental Management (EM)

    NNSA Service Center Chart NNSA Service Center Chart Office of Chief Counsel at the NNSA Service Center in Albuquerque, NM PDF icon NNSA Service Center Chart More Documents & Publications Technical Qualification Program Accreditation Schedule 2011 Annual Planning Summary for NNSA Service Center (NNSASC) EIS-0466: Notice of Intent to Prepare an Environmental Impact Statement

  11. Final Report for "Verification and Validation of Radiation Hydrodynamics for Astrophysical Applications"

    SciTech Connect (OSTI)

    Zingale, M; Howell, L H

    2010-03-17

    The motivation for this work is to gain experience in the methodology of verification and validation (V&V) of astrophysical radiation hydrodynamics codes. In the first period of this work, we focused on building the infrastructure to test a single astrophysical application code, Castro, developed in collaboration between Lawrence Livermore National Laboratory (LLNL) and Lawrence Berkeley Laboratory (LBL). We delivered several hydrodynamic test problems, in the form of coded initial conditions and documentation for verification, routines to perform data analysis, and a generalized regression test suite to allow for continued automated testing. Astrophysical simulation codes aim to model phenomena that elude direct experimentation. Our only direct information about these systems comes from what we observe, and may be transient. Simulation can help further our understanding by allowing virtual experimentation of these systems. However, to have confidence in our simulations requires us to have confidence in the tools we use. Verification and Validation is a process by which we work to build confidence that a simulation code is accurately representing reality. V&V is a multistep process, and is never really complete. Once a single test problem is working as desired (i.e. that problem is verified), one wants to ensure that subsequent code changes do not break that test. At the same time, one must also search for new verification problems that test the code in a new way. It can be rather tedious to manually retest each of the problems, so before going too far with V&V, it is desirable to have an automated test suite. Our project aims to provide these basic tools for astrophysical radiation hydrodynamics codes.

  12. Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems

    Energy Science and Technology Software Center (OSTI)

    1994-06-20

    FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors,more » gasifiers, and FCC (Fluid Catalytic Cracker) reactors.« less

  13. Magneto-hydrodynamic detection of vortex shedding for molten salt flow sensing.

    SciTech Connect (OSTI)

    Kruizenga, Alan Michael; Crocker, Robert W.

    2012-09-01

    High temperature flow sensors must be developed for use with molten salts systems at temperatures in excess of 600%C2%B0C. A novel magneto-hydrodynamic sensing approach was investigated. A prototype sensor was developed and tested in an aqueous sodium chloride solution as a surrogate for molten salt. Despite that the electrical conductivity was a factor of three less than molten salts, it was found that the electrical conductivity of an electrolyte was too low to adequately resolve the signal amidst surrounding noise. This sensor concept is expected to work well with any liquid metal application, as the generated magnetic field scales proportionately with electrical conductivity.

  14. Simulating Rayleigh-Taylor (RT) instability using PPM hydrodynamics @scale on Roadrunner (u)

    SciTech Connect (OSTI)

    Woodward, Paul R; Dimonte, Guy; Rockefeller, Gabriel M; Fryer, Christopher L; Dimonte, Guy; Dai, W; Kares, R. J.

    2011-01-05

    The effect of initial conditions on the self-similar growth of the RT instability is investigated using a hydrodynamics code based on the piecewise-parabolic-method (PPM). The PPM code was converted to the hybrid architecture of Roadrunner in order to perform the simulations at extremely high speed and spatial resolution. This paper describes the code conversion to the Cell processor, the scaling studies to 12 CU's on Roadrunner and results on the dependence of the RT growth rate on initial conditions. The relevance of the Roadrunner implementation of this PPM code to other existing and anticipated computer architectures is also discussed.

  15. Galactic scale gas flows in colliding galaxies: 3-Dimensional, N-body/hydrodynamics experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Galactic Scale Gas Flows in Colliding Galaxies: a-Dimensional, N-bodyjHydrodynamics Experiments Susan A. Lamb* NORDITA and Neils Bohr Institute, Blegdamsvej 17, DK-2100, Kpbenhaven 0, Danmark. Richard A. Gerber University of Illinois at Urbana-Champaign, Departments of Physics and Astronomy, 1110 W. Green Street, Urbana, IL 61801, U.S.A. and Dinshaw S. Balsara t Johns Hopkins University, Department of Physics and Astronomy, Homewood Campu.s, Baltimore, MD 21218, U.S.A. Abstract. We present some

  16. Categorical Exclusion Determinations: Energy Technology Engineering Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Energy Technology Engineering Center Categorical Exclusion Determinations: Energy Technology Engineering Center Categorical Exclusion Determinations issued by Energy Technology Engineering Center. DOCUMENTS AVAILABLE FOR DOWNLOAD No downloads found for this office.

  17. Facilities and Centers | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities and Centers Center for Electrical Energy Storage Argonne Tandem Linac Accelerator System Argonne-Northwestern Solar Energy Research Center Center for Nanoscale Materials Facilities & Centers Argonne's Physical Sciences and Engineering Directorate is home to several different state-of-the-art national user facilities as well as two Energy Frontier Research Centers. The Argonne Tandem Linac Accelerator System (ATLAS) is a leading user facility for nuclear structure research in the

  18. DOE - Office of Legacy Management -- Visitors Center

    Office of Legacy Management (LM)

    Ohio > Fernald > Visitors Center > Visitors Center Fernald Preserve, Ohio Visitors Center Fernald Visitors Center Visitors Center Directions Event Calendar Community Meeting Room, Program Shelter, and Resource Room Program/Speaker Request Brochures Fact Sheets Technical Papers BioBlitz Geocaching Pets Policy The Fernald Preserve Visitors Center is a 10,000-square-foot green building that celebrates the rich and varied history of the Fernald site. Information on the site's natural,

  19. EERE: Alternative Fuels Data Center Home Page

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find More places to share EERE: Alternative Fuels

  20. Alternative Fuels Data Center: Case Studies

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Case Studies Printable Version Share this resource Send a link to Alternative Fuels Data Center: Case Studies to someone by E-mail Share Alternative Fuels Data Center: Case Studies on Facebook Tweet about Alternative Fuels Data Center: Case Studies on Twitter Bookmark Alternative Fuels Data Center: Case Studies on Google Bookmark Alternative Fuels Data Center: Case Studies on Delicious Rank Alternative Fuels Data Center: Case Studies on Digg Find More places to share Alternative Fuels Data

  1. Alternative Fuels Data Center: Data Downloads

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Data Downloads to someone by E-mail Share Alternative Fuels Data Center: Data Downloads on Facebook Tweet about Alternative Fuels Data Center: Data Downloads on Twitter Bookmark Alternative Fuels Data Center: Data Downloads on Google Bookmark Alternative Fuels Data Center: Data Downloads on Delicious Rank Alternative Fuels Data Center: Data Downloads on Digg Find More places to share Alternative Fuels Data

  2. Alternative Fuels Data Center: Emerging Fuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative

  3. Alternative Fuels Data Center: Flexible Fuel Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg

  4. Alternative Fuels Data Center: Idle Reduction

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Idle Reduction to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction on Google Bookmark Alternative Fuels Data Center: Idle Reduction on Delicious Rank Alternative Fuels Data Center: Idle Reduction on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction on AddThis.com... More in this section... Idle Reduction Benefits

  5. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Maps & Data Printable Version Share this resource Send a link to Alternative Fuels Data Center: Maps and Data to someone by E-mail Share Alternative Fuels Data Center: Maps and Data on Facebook Tweet about Alternative Fuels Data Center: Maps and Data on Twitter Bookmark Alternative Fuels Data Center: Maps and Data on Google Bookmark Alternative Fuels Data Center: Maps and Data on Delicious Rank Alternative Fuels Data Center: Maps and Data on Digg Find More places to share Alternative Fuels

  6. Alternative Fuels Data Center: Natural Gas

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles » Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Natural Gas on Google Bookmark Alternative Fuels Data Center: Natural Gas on Delicious Rank Alternative Fuels Data Center: Natural Gas on Digg Find More places to share Alternative Fuels Data

  7. Alternative Fuels Data Center: Natural Gas Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Natural Gas Vehicles to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicles on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicles on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicles on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicles on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicles on Digg Find

  8. Alternative Fuels Data Center: News and Features

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About Printable Version Share this resource Send a link to Alternative Fuels Data Center: News and Features to someone by E-mail Share Alternative Fuels Data Center: News and Features on Facebook Tweet about Alternative Fuels Data Center: News and Features on Twitter Bookmark Alternative Fuels Data Center: News and Features on Google Bookmark Alternative Fuels Data Center: News and Features on Delicious Rank Alternative Fuels Data Center: News and Features on Digg Find More places to share

  9. Alternative Fuels Data Center: Project Assistance

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About Printable Version Share this resource Send a link to Alternative Fuels Data Center: Project Assistance to someone by E-mail Share Alternative Fuels Data Center: Project Assistance on Facebook Tweet about Alternative Fuels Data Center: Project Assistance on Twitter Bookmark Alternative Fuels Data Center: Project Assistance on Google Bookmark Alternative Fuels Data Center: Project Assistance on Delicious Rank Alternative Fuels Data Center: Project Assistance on Digg Find More places to share

  10. Alternative Fuels Data Center: Propane Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Vehicles to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicles on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicles on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicles on Google Bookmark Alternative Fuels Data Center: Propane Vehicles on Delicious Rank Alternative Fuels Data Center: Propane Vehicles on Digg Find More places to share

  11. Alternative Fuels Data Center: Spanish Resources

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About Printable Version Share this resource Send a link to Alternative Fuels Data Center: Spanish Resources to someone by E-mail Share Alternative Fuels Data Center: Spanish Resources on Facebook Tweet about Alternative Fuels Data Center: Spanish Resources on Twitter Bookmark Alternative Fuels Data Center: Spanish Resources on Google Bookmark Alternative Fuels Data Center: Spanish Resources on Delicious Rank Alternative Fuels Data Center: Spanish Resources on Digg Find More places to share

  12. Alternative Fuels Data Center: State Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Information to someone by E-mail Share Alternative Fuels Data Center: State Information on Facebook Tweet about Alternative Fuels Data Center: State Information on Twitter Bookmark Alternative Fuels Data Center: State Information on Google Bookmark Alternative Fuels Data Center: State Information on Delicious Rank Alternative Fuels Data Center: State Information on Digg Find More places to share Alternative Fuels Data Center: State Information on AddThis.com... Icon of a state map on a

  13. Alternative Fuels Data Center: Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Cost Calculator to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator on

  14. Alternative Fuels Data Center: Vehicle Search

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools » Vehicle Search Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Search to someone by E-mail Share Alternative Fuels Data Center: Vehicle Search on Facebook Tweet about Alternative Fuels Data Center: Vehicle Search on Twitter Bookmark Alternative Fuels Data Center: Vehicle Search on Google Bookmark Alternative Fuels Data Center: Vehicle Search on Delicious Rank Alternative Fuels Data Center: Vehicle Search on Digg Find More places to share

  15. Alternative Fuels Data Center: Active Transit

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Active Transit to someone by E-mail Share Alternative Fuels Data Center: Active Transit on Facebook Tweet about Alternative Fuels Data Center: Active Transit on Twitter Bookmark Alternative Fuels Data Center: Active Transit on Google Bookmark Alternative Fuels Data Center: Active Transit on Delicious Rank Alternative Fuels Data Center: Active Transit on Digg Find More places to share Alternative Fuels Data Center: Active Transit on AddThis.com... More in this section... Idle Reduction Parts

  16. Alternative Fuels Data Center: Biodiesel Benefits

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Benefits to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Benefits on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Benefits on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Benefits on Google Bookmark Alternative Fuels Data Center: Biodiesel Benefits on Delicious Rank Alternative Fuels Data Center: Biodiesel Benefits on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Benefits on AddThis.com... More in this section...

  17. Alternative Fuels Data Center: Biodiesel Blends

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Blends to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blends on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blends on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blends on Google Bookmark Alternative Fuels Data Center: Biodiesel Blends on Delicious Rank Alternative Fuels Data Center: Biodiesel Blends on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blends on AddThis.com... More in this section... Biodiesel Basics

  18. Alternative Fuels Data Center: Biodiesel Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in

  19. Alternative Fuels Data Center: Biodiesel Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling

  20. Alternative Fuels Data Center: Biodiesel Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center:

  1. Alternative Fuels Data Center: Diesel Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Diesel Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Diesel Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center:

  2. Alternative Fuels Data Center: Dimethyl Ether

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Dimethyl Ether to someone by E-mail Share Alternative Fuels Data Center: Dimethyl Ether on Facebook Tweet about Alternative Fuels Data Center: Dimethyl Ether on Twitter Bookmark Alternative Fuels Data Center: Dimethyl Ether on Google Bookmark Alternative Fuels Data Center: Dimethyl Ether on Delicious Rank Alternative Fuels Data Center: Dimethyl Ether on Digg Find More places to share Alternative Fuels Data Center: Dimethyl Ether on AddThis.com... More in this section... Biobutanol Dimethyl Ether

  3. Alternative Fuels Data Center: Electricity Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on

  4. Alternative Fuels Data Center: Ethanol Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this

  5. Alternative Fuels Data Center: Ethanol Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on

  6. Alternative Fuels Data Center: Ethanol Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Ethanol Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Vehicle

  7. Alternative Fuels Data Center: Hybrid Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric

  8. Alternative Fuels Data Center: Hydrogen Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Basics to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Basics on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Basics on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Basics on Google Bookmark Alternative Fuels Data Center: Hydrogen Basics on Delicious Rank Alternative Fuels Data Center: Hydrogen Basics on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Basics on AddThis.com... More in this section... Hydrogen Basics Production

  9. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations

  10. Alternative Fuels Data Center: Latest Additions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Publications » Latest Additions Printable Version Share this resource Send a link to Alternative Fuels Data Center: Latest Additions to someone by E-mail Share Alternative Fuels Data Center: Latest Additions on Facebook Tweet about Alternative Fuels Data Center: Latest Additions on Twitter Bookmark Alternative Fuels Data Center: Latest Additions on Google Bookmark Alternative Fuels Data Center: Latest Additions on Delicious Rank Alternative Fuels Data Center: Latest Additions on Digg Find More

  11. Alternative Fuels Data Center: Mass Transit

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Mass Transit to someone by E-mail Share Alternative Fuels Data Center: Mass Transit on Facebook Tweet about Alternative Fuels Data Center: Mass Transit on Twitter Bookmark Alternative Fuels Data Center: Mass Transit on Google Bookmark Alternative Fuels Data Center: Mass Transit on Delicious Rank Alternative Fuels Data Center: Mass Transit on Digg Find More places to share Alternative Fuels Data Center: Mass Transit on AddThis.com... More in this section... Idle Reduction Parts & Equipment

  12. Alternative Fuels Data Center: Natural Gas Benefits

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Benefits to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Benefits on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Benefits on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Benefits on Google Bookmark Alternative Fuels Data Center: Natural Gas Benefits on Delicious Rank Alternative Fuels Data Center: Natural Gas Benefits on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Benefits on AddThis.com... More in this

  13. Alternative Fuels Data Center: Natural Gas Distribution

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Distribution to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Distribution on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Distribution on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Distribution on Google Bookmark Alternative Fuels Data Center: Natural Gas Distribution on Delicious Rank Alternative Fuels Data Center: Natural Gas Distribution on Digg Find More places to share Alternative Fuels Data Center: Natural Gas

  14. Alternative Fuels Data Center: Propane Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Basics to someone by E-mail Share Alternative Fuels Data Center: Propane Basics on Facebook Tweet about Alternative Fuels Data Center: Propane Basics on Twitter Bookmark Alternative Fuels Data Center: Propane Basics on Google Bookmark Alternative Fuels Data Center: Propane Basics on Delicious Rank Alternative Fuels Data Center: Propane Basics on Digg Find More places to share Alternative Fuels Data Center: Propane Basics on AddThis.com... More in this section... Propane Basics Production &

  15. Alternative Fuels Data Center: Propane Benefits

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Benefits to someone by E-mail Share Alternative Fuels Data Center: Propane Benefits on Facebook Tweet about Alternative Fuels Data Center: Propane Benefits on Twitter Bookmark Alternative Fuels Data Center: Propane Benefits on Google Bookmark Alternative Fuels Data Center: Propane Benefits on Delicious Rank Alternative Fuels Data Center: Propane Benefits on Digg Find More places to share Alternative Fuels Data Center: Propane Benefits on AddThis.com... More in this section... Propane Basics

  16. Alternative Fuels Data Center: Propane Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on

  17. Alternative Fuels Data Center: Propane Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Availability to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Propane

  18. Alternative Fuels Data Center: Propane Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle

  19. Alternative Fuels Data Center: Propane Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emissions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Emissions on

  20. Alternative Fuels Data Center: Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversions Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Vehicle Conversions on Digg Find More

  1. Alternative Fuels Data Center: Vehicle Search

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC » Tools » Vehicle Search Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Search to someone by E-mail Share Alternative Fuels Data Center: Vehicle Search on Facebook Tweet about Alternative Fuels Data Center: Vehicle Search on Twitter Bookmark Alternative Fuels Data Center: Vehicle Search on Google Bookmark Alternative Fuels Data Center: Vehicle Search on Delicious Rank Alternative Fuels Data Center: Vehicle Search on Digg Find More places to

  2. Alternative Fuels Data Center: Biodiesel Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Biodiesel Related Links to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Related Links on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Related Links on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Related Links on Google Bookmark Alternative Fuels Data Center: Biodiesel Related Links on Delicious Rank Alternative Fuels Data Center: Biodiesel Related Links

  3. Alternative Fuels Data Center: Blender Pump Dispensers

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Blender Pump Dispensers to someone by E-mail Share Alternative Fuels Data Center: Blender Pump Dispensers on Facebook Tweet about Alternative Fuels Data Center: Blender Pump Dispensers on Twitter Bookmark Alternative Fuels Data Center: Blender Pump Dispensers on Google Bookmark Alternative Fuels Data Center: Blender Pump Dispensers on Delicious Rank Alternative Fuels Data Center: Blender Pump Dispensers on Digg Find More places to share Alternative Fuels Data Center: Blender Pump Dispensers on

  4. Alternative Fuels Data Center: Conversion Regulations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversion Regulations to someone by E-mail Share Alternative Fuels Data Center: Conversion Regulations on Facebook Tweet about Alternative Fuels Data Center: Conversion Regulations on Twitter Bookmark Alternative Fuels Data Center: Conversion Regulations on Google Bookmark Alternative Fuels Data Center: Conversion Regulations on Delicious Rank Alternative Fuels Data Center: Conversion Regulations on Digg Find More places to share Alternative Fuels Data Center: Conversion Regulations on

  5. Alternative Fuels Data Center: E85 Specification

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    E85 Specification to someone by E-mail Share Alternative Fuels Data Center: E85 Specification on Facebook Tweet about Alternative Fuels Data Center: E85 Specification on Twitter Bookmark Alternative Fuels Data Center: E85 Specification on Google Bookmark Alternative Fuels Data Center: E85 Specification on Delicious Rank Alternative Fuels Data Center: E85 Specification on Digg Find More places to share Alternative Fuels Data Center: E85 Specification on AddThis.com... More in this section...

  6. Alternative Fuels Data Center: Electricity Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electricity Related Links to someone by E-mail Share Alternative Fuels Data Center: Electricity Related Links on Facebook Tweet about Alternative Fuels Data Center: Electricity Related Links on Twitter Bookmark Alternative Fuels Data Center: Electricity Related Links on Google Bookmark Alternative Fuels Data Center: Electricity Related Links on Delicious Rank Alternative Fuels Data Center: Electricity

  7. Alternative Fuels Data Center: Ethanol Blends

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Blends to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blends on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blends on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blends on Google Bookmark Alternative Fuels Data Center: Ethanol Blends on Delicious Rank Alternative Fuels Data Center: Ethanol Blends on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blends on AddThis.com... More in this section... Ethanol Basics Blends E15

  8. Alternative Fuels Data Center: Ethanol Feedstocks

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Feedstocks to someone by E-mail Share Alternative Fuels Data Center: Ethanol Feedstocks on Facebook Tweet about Alternative Fuels Data Center: Ethanol Feedstocks on Twitter Bookmark Alternative Fuels Data Center: Ethanol Feedstocks on Google Bookmark Alternative Fuels Data Center: Ethanol Feedstocks on Delicious Rank Alternative Fuels Data Center: Ethanol Feedstocks on Digg Find More places to share Alternative Fuels Data Center: Ethanol Feedstocks on AddThis.com... More in this section...

  9. Alternative Fuels Data Center: Ethanol Production

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Production to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production on Google Bookmark Alternative Fuels Data Center: Ethanol Production on Delicious Rank Alternative Fuels Data Center: Ethanol Production on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production on AddThis.com... More in this section...

  10. Alternative Fuels Data Center: Ethanol Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ethanol Related Links to someone by E-mail Share Alternative Fuels Data Center: Ethanol Related Links on Facebook Tweet about Alternative Fuels Data Center: Ethanol Related Links on Twitter Bookmark Alternative Fuels Data Center: Ethanol Related Links on Google Bookmark Alternative Fuels Data Center: Ethanol Related Links on Delicious Rank Alternative Fuels Data Center: Ethanol Related Links on Digg Find

  11. Alternative Fuels Data Center: Hydrogen Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Related Links to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Related Links on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Related Links on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Related Links on Google Bookmark Alternative Fuels Data Center: Hydrogen Related Links on Delicious Rank Alternative Fuels Data Center: Hydrogen Related Links on

  12. Alternative Fuels Data Center: Lifecycle Energy Balance

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center: Lifecycle Energy Balance to someone by E-mail Share Alternative Fuels Data Center: Lifecycle Energy Balance on Facebook Tweet about Alternative Fuels Data Center: Lifecycle Energy Balance on Twitter Bookmark Alternative Fuels Data Center: Lifecycle Energy Balance on Google Bookmark Alternative Fuels Data Center: Lifecycle Energy Balance on Delicious Rank Alternative Fuels Data Center: Lifecycle Energy

  13. Alternative Fuels Data Center: Natural Gas Production

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Production to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Production on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Production on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Production on Google Bookmark Alternative Fuels Data Center: Natural Gas Production on Delicious Rank Alternative Fuels Data Center: Natural Gas Production on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Production on AddThis.com... More

  14. Alternative Fuels Data Center: Pollutants and Health

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels & Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Pollutants and Health to someone by E-mail Share Alternative Fuels Data Center: Pollutants and Health on Facebook Tweet about Alternative Fuels Data Center: Pollutants and Health on Twitter Bookmark Alternative Fuels Data Center: Pollutants and Health on Google Bookmark Alternative Fuels Data Center: Pollutants and Health on Delicious Rank Alternative Fuels Data Center: Pollutants and Health

  15. Alternative Fuels Data Center: Propane Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Related Links to someone by E-mail Share Alternative Fuels Data Center: Propane Related Links on Facebook Tweet about Alternative Fuels Data Center: Propane Related Links on Twitter Bookmark Alternative Fuels Data Center: Propane Related Links on Google Bookmark Alternative Fuels Data Center: Propane Related Links on Delicious Rank Alternative Fuels Data Center: Propane Related Links on Digg Find

  16. Alternative Fuels Data Center: Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Related Links to someone by E-mail Share Alternative Fuels Data Center: Related Links on Facebook Tweet about Alternative Fuels Data Center: Related Links on Twitter Bookmark Alternative Fuels Data Center: Related Links on Google Bookmark Alternative Fuels Data Center: Related Links on Delicious Rank Alternative Fuels Data Center: Related Links on Digg Find More places to share Alternative Fuels Data

  17. Alternative Fuels Data Center: Vehicle Conversion Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Conversion Basics to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversion Basics on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversion Basics on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Google Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Delicious Rank Alternative Fuels Data Center: Vehicle Conversion Basics on Digg Find More places to share Alternative Fuels Data Center: Vehicle

  18. Alternative Fuels Data Center: Video Download Help

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Case Studies Printable Version Share this resource Send a link to Alternative Fuels Data Center: Video Download Help to someone by E-mail Share Alternative Fuels Data Center: Video Download Help on Facebook Tweet about Alternative Fuels Data Center: Video Download Help on Twitter Bookmark Alternative Fuels Data Center: Video Download Help on Google Bookmark Alternative Fuels Data Center: Video Download Help on Delicious Rank Alternative Fuels Data Center: Video Download Help on Digg Find More

  19. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Maps & Data Printable Version Share this resource Send a link to Alternative Fuels Data Center: Maps and Data to someone by E-mail Share Alternative Fuels Data Center: Maps and Data on Facebook Tweet about Alternative Fuels Data Center: Maps and Data on Twitter Bookmark Alternative Fuels Data Center: Maps and Data on Google Bookmark Alternative Fuels Data Center: Maps and Data on Delicious Rank Alternative Fuels Data Center: Maps and Data on Digg Find More places to share Alternative Fuels

  20. T E C Center Inc aka TEC Incubator Center | Open Energy Information

    Open Energy Info (EERE)

    E C Center Inc aka TEC Incubator Center Jump to: navigation, search Name: T.E.C. Center Inc. (aka TEC Incubator Center) Place: United States Sector: Services Product: General...

  1. Litchfield Correctional Center District Heating Low Temperature...

    Open Energy Info (EERE)

    Litchfield Correctional Center District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Litchfield Correctional Center District Heating Low Temperature...

  2. River Valley Technology Center | Open Energy Information

    Open Energy Info (EERE)

    Valley Technology Center Jump to: navigation, search Name: River Valley Technology Center Place: United States Sector: Services Product: General Financial & Legal Services (...

  3. NREL: National Center for Photovoltaics Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Center for Photovoltaics The National Center for Photovoltaics (NCPV) at NREL focuses on technology innovations that drive industry growth in U.S. photovoltaic (PV)...

  4. Baylor University - Renewable Aviation Fuels Development Center...

    Open Energy Info (EERE)

    University - Renewable Aviation Fuels Development Center Jump to: navigation, search Name: Baylor University - Renewable Aviation Fuels Development Center Address: One Bear Place...

  5. Mobile Business Innovation Center | Open Energy Information

    Open Energy Info (EERE)

    Innovation Center Jump to: navigation, search Name: Mobile Business Innovation Center Place: United States Product: Government & NGO ( Government Public sector ) References:...

  6. Clean Energy Innovation Center | Open Energy Information

    Open Energy Info (EERE)

    Innovation Center Jump to: navigation, search Name: Clean Energy Innovation Center Place: Denver, Colorado Product: US Business Incubator located in Denver, Colorado. Coordinates:...

  7. Boulder Innovation Center | Open Energy Information

    Open Energy Info (EERE)

    Innovation Center Jump to: navigation, search Name: Boulder Innovation Center Address: 1900 15th Street Place: Boulder, Colorado Zip: 80302 Region: Rockies Area Number of...

  8. German Aerospace Center DLR | Open Energy Information

    Open Energy Info (EERE)

    Aerospace Center DLR Jump to: navigation, search Name: German Aerospace Center (DLR) Place: Stuttgart, Germany Zip: 70569 Product: Stuttgart-based, agency that manages the...

  9. Montana Groundwater Information Center Webpage | Open Energy...

    Open Energy Info (EERE)

    Center Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Groundwater Information Center Webpage Abstract Provides access to...

  10. Ricardo Detroit Technical Center | Open Energy Information

    Open Energy Info (EERE)

    Ricardo Detroit Technical Center Jump to: navigation, search Name: Ricardo Detroit Technical Center Place: Van Buren Township, Michigan Zip: 48111-1641 Sector: Services Product:...

  11. NAHB Research Center | Open Energy Information

    Open Energy Info (EERE)

    NAHB Research Center Jump to: navigation, search Name: NAHB Research Center Place: Upper Marlboro, MD Information About Partnership with NREL Partnership with NREL Yes Partnership...

  12. Harold Washington Social Security Administration (SSA) Center...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Harold Washington Social Security Administration (SSA) Center Water Conservation and Green Energy Harold Washington Social Security Administration (SSA) Center Water Conservation ...

  13. NRG Energy Center Paxton | Open Energy Information

    Open Energy Info (EERE)

    adjacent to Bruce Mangione Steam Plant. Operates as NRG Energy Center Paxton, a merchant plant owned by parent company NRG Thermal. References: NRG Energy Center Paxton1 This...

  14. Misgav Technology Center MTC | Open Energy Information

    Open Energy Info (EERE)

    Misgav Technology Center MTC Jump to: navigation, search Name: Misgav Technology Center (MTC) Place: Israel Sector: Services Product: General Financial & Legal Services (...

  15. Boston Technology Venture Center | Open Energy Information

    Open Energy Info (EERE)

    Technology Venture Center Jump to: navigation, search Name: Boston Technology Venture Center Place: United States Sector: Services Product: General Financial & Legal Services (...

  16. Washington Technology Center | Open Energy Information

    Open Energy Info (EERE)

    Logo: Washington Technology Center Name: Washington Technology Center Address: 300 Fluke Hall Place: Seattle, Washington Zip: 98195 Region: Pacific Northwest Area Website:...

  17. NREL: Renewable Resource Data Center Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Resource Data Center Photo of a man and a woman checking solar measurement instruments. The Renewable Resource Data Center (RReDC) provides access to an extensive...

  18. Solar Energy Resource Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Resource Center Solar Energy Resource Center Sub Program Topic Resource Search Results Title Date Author SubProgram Topic Description...

  19. Illinois Sustainable Technologies Center | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Illinois Sustainable Technologies Center Facility Illinois Sustainable Technologies Center Sector Wind energy Facility Type Commercial Scale Wind...

  20. Industrial Assessment Centers Update, March 2015 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Read the Industrial Assessment Centers (IAC) Update -- March 2015 Industrial Assessment Centers Quarterly Update, March 2015 More Documents & Publications Industrial Assessment...

  1. Y-12: Seawolf to National Prototype Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Propulsor, which ultimately led to Y-12 being designated as the National Prototype Center. ... This "propulsor development center" at Y-12 led to other opportunities for unique designs ...

  2. Automation Alley Technology Center | Open Energy Information

    Open Energy Info (EERE)

    Alley Technology Center Jump to: navigation, search Name: Automation Alley Technology Center Place: United States Sector: Services Product: General Financial & Legal Services (...

  3. Braintree Business Development Center | Open Energy Information

    Open Energy Info (EERE)

    Braintree Business Development Center Jump to: navigation, search Name: Braintree Business Development Center Address: 201 E 5th Street Place: Mansfield, Ohio Zip: 44902 Phone...

  4. Renewable Energy Technology Center | Open Energy Information

    Open Energy Info (EERE)

    Center Jump to: navigation, search Name: Renewable Energy Technology Center Place: Hamburg, Hamburg, Germany Zip: D-22335 Sector: Wind energy Product: RETC, a JV formed which will...

  5. Channel Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Channel Energy Center Jump to: navigation, search Name: Channel Energy Center Place: Texas Phone Number: 713.830.2000 Website: www.calpine.compowerplant.as Outage Hotline:...

  6. Industrial Assessment Centers Small Manufacturers Reduce Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOEEE-1278 Industrial Assessment Centers Small Manufacturers Reduce Energy & Increase Productivity Since 1976, the Industrial Assessment Centers (IACs), administered by the US...

  7. Presentation: Better Buildings Residential Program Solution Center...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation: Better Buildings Residential Program Solution Center, from the U.S. Department of Energy's Better Buildings Neighborhood Program, April 2014. Solution Center Overview...

  8. Ryszard Jankowiak | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    785.532.6666 Website: Kansas State University Research Affiliate Dr. Jankowiak's photosynthesis research centers on photosynthetic reaction centers and photosynthetic antenna...

  9. North Carolina Solar Center | Open Energy Information

    Open Energy Info (EERE)

    Solar Center Jump to: navigation, search Name: North Carolina Solar Center Sector: Renewable Energy Product: Promotes the use of renewable energy technologies with funding from the...

  10. German Aerospace Center (DLR) | Open Energy Information

    Open Energy Info (EERE)

    German Aerospace Center (DLR) Name: German Aerospace Center (DLR) Place: Cologne, Germany Number of Employees: 5001-10,000 Website: www.dlr.deendesktopdefault.a Coordinates:...

  11. Progress in indirect and direct-drive planar experiments on hydrodynamic instabilities at the ablation front

    SciTech Connect (OSTI)

    Casner, A. Masse, L.; Huser, G.; Galmiche, D.; Liberatore, S.; Riazuelo, G.; Delorme, B.; Martinez, D.; Remington, B.; Smalyuk, V. A.; Igumenshchev, I.; Michel, D. T.; Froula, D.; Seka, W.; Goncharov, V. N.; Olazabal-Loumé, M.; Nicolaï, Ph.; Breil, J.; Tikhonchuk, V. T.; Fujioka, S.; and others

    2014-12-15

    Understanding and mitigating hydrodynamic instabilities and the fuel mix are the key elements for achieving ignition in Inertial Confinement Fusion. Cryogenic indirect-drive implosions on the National Ignition Facility have evidenced that the ablative Rayleigh-Taylor Instability (RTI) is a driver of the hot spot mix. This motivates the switch to a more flexible higher adiabat implosion design [O. A. Hurricane et al., Phys. Plasmas 21, 056313 (2014)]. The shell instability is also the main candidate for performance degradation in low-adiabat direct drive cryogenic implosions [Goncharov et al., Phys. Plasmas 21, 056315 (2014)]. This paper reviews recent results acquired in planar experiments performed on the OMEGA laser facility and devoted to the modeling and mitigation of hydrodynamic instabilities at the ablation front. In application to the indirect-drive scheme, we describe results obtained with a specific ablator composition such as the laminated ablator or a graded-dopant emulator. In application to the direct drive scheme, we discuss experiments devoted to the study of laser imprinted perturbations with special phase plates. The simulations of the Richtmyer-Meshkov phase reversal during the shock transit phase are challenging, and of crucial interest because this phase sets the seed of the RTI growth. Recent works were dedicated to increasing the accuracy of measurements of the phase inversion. We conclude by presenting a novel imprint mitigation mechanism based on the use of underdense foams. The foams induce laser smoothing by parametric instabilities thus reducing the laser imprint on the CH foil.

  12. The effects of early time laser drive on hydrodynamic instability growth in National Ignition Facility implosions

    SciTech Connect (OSTI)

    Peterson, J. L.; Clark, D. S.; Suter, L. J.; Masse, L. P.

    2014-09-15

    Defects on inertial confinement fusion capsule surfaces can seed hydrodynamic instability growth and adversely affect capsule performance. The dynamics of shocks launched during the early period of x-ray driven National Ignition Facility (NIF) implosions determine whether perturbations will grow inward or outward at peak implosion velocity and final compression. In particular, the strength of the first shock, launched at the beginning of the laser pulse, plays an important role in determining Richtmyer-Meshkov (RM) oscillations on the ablation front. These surface oscillations can couple to the capsule interior through subsequent shocks before experiencing Rayleigh-Taylor (RT) growth. We compare radiation hydrodynamic simulations of NIF implosions to analytic theories of the ablative RM and RT instabilities to illustrate how early time laser strength can alter peak velocity growth. We develop a model that couples the RM and RT implosion phases and captures key features of full simulations. We also show how three key parameters can control the modal demarcation between outward and inward growth.

  13. The Kozai-Lidov mechanism in hydrodynamical disks. II. Effects of binary and disk parameters

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fu, Wen; Lubow, Stephen H.; Martin, Rebecca G.

    2015-07-01

    Martin et al. (2014b) showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai–Lidov (KL) oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the KL mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions,more » binary mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the KL mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.« less

  14. Performance evaluation of half-wetted hydrodynamic bearings with DLC coated surfaces.

    SciTech Connect (OSTI)

    Eryilmaz, O.; Erdemir, A.; Energy Systems

    2008-01-01

    In conventional liquid lubrication it is assumed that surfaces are fully wetted and no slip occurs between the fluid and the solid boundary. Under the 'no slip' condition the maximum shear gradient occurs at the fluid-surface interface. When one or both surfaces are non-wetted by the fluid, boundary slip can occur due to weak bonding between the fluid and the solid surface, which reduces shear stresses in the fluid adjacent to the non-wetted surface. A thrust bearing tribometer was used to compare the performance of 'no slip' hydrodynamic thrust bearings with bearings surfaces that were made to slip at the interface between the surface and fluid. Hydrophobic surfaces on both runner and bearing were achieved with the deposition of hydrogenated diamond like carbon (H-DLC) films, produced by plasma-enhanced CVD on titanium alloy surfaces. Hydrophilic surfaces were created through the surface modification of DLC. A mixtures of water and glycerol was used as the lubricant. The tests were conducted using different constant bearing gaps. The normal load and the torque or traction force between the rotating runner and hydrodynamic thrust bearing were measured with load cells. The experimental results confirmed that load support is still possible when surfaces are partially-wetted or nonwetted.

  15. Selective evaporation of focusing fluid in two-fluid hydrodynamic print head.

    SciTech Connect (OSTI)

    Keicher, David M.; Cook, Adam W.

    2014-09-01

    The work performed in this project has demonstrated the feasibility to use hydrodynamic focusing of two fluid steams to create a novel micro printing technology for electronics and other high performance applications. Initial efforts focused solely on selective evaporation of the sheath fluid from print stream provided insight in developing a unique print head geometry allowing excess sheath fluid to be separated from the print flow stream for recycling/reuse. Fluid flow models suggest that more than 81 percent of the sheath fluid can be removed without affecting the print stream. Further development and optimization is required to demonstrate this capability in operation. Print results using two-fluid hydrodynamic focusing yielded a 30 micrometers wide by 0.5 micrometers tall line that suggests that the cross-section of the printed feature from the print head was approximately 2 micrometers in diameter. Printing results also demonstrated that complete removal of the sheath fluid is not necessary for all material systems. The two-fluid printing technology could enable printing of insulated conductors and clad optical interconnects. Further development of this concept should be pursued.

  16. Hydrodynamic instability growth and mix experiments at the National Ignition Facility

    SciTech Connect (OSTI)

    Smalyuk, V. A.; Barrios, M.; Caggiano, J. A.; Casey, D. T.; Cerjan, C. J.; Clark, D. S.; Edwards, M. J.; Haan, S. W.; Hammel, B. A.; Hamza, A.; Hsing, W. W.; Hurricane, O.; Kroll, J.; Landen, O. L.; Lindl, J. D.; Ma, T.; McNaney, J. M.; Mintz, M.; Parham, T.; Peterson, J. L.; and others

    2014-05-15

    Hydrodynamic instability growth and its effects on implosion performance were studied at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 443, 2841 (2004)]. Implosion performance and mix have been measured at peak compression using plastic shells filled with tritium gas and containing embedded localized carbon-deuterium diagnostic layers in various locations in the ablator. Neutron yield and ion temperature of the deuterium-tritium fusion reactions were used as a measure of shell-gas mix, while neutron yield of the tritium-tritium fusion reaction was used as a measure of implosion performance. The results have indicated that the low-mode hydrodynamic instabilities due to surface roughness were the primary culprits for yield degradation, with atomic ablator-gas mix playing a secondary role. In addition, spherical shells with pre-imposed 2D modulations were used to measure instability growth in the acceleration phase of the implosions. The capsules were imploded using ignition-relevant laser pulses, and ablation-front modulation growth was measured using x-ray radiography for a shell convergence ratio of ?2. The measured growth was in good agreement with that predicted, thus validating simulations for the fastest growing modulations with mode numbers up to 90 in the acceleration phase. Future experiments will be focused on measurements at higher convergence, higher-mode number modulations, and growth occurring during the deceleration phase.

  17. Hydrodynamic modeling for corrosion control in the oil and gas industry

    SciTech Connect (OSTI)

    Palacios, C.A.; Morales, J.L.

    1995-10-01

    This article describes a methodology used to select and establish corrosion control programs. These include corrosion rate predictions using well known correlations for flowing systems, materials selection, optimization of inhibitors and corrosion monitoring techniques. The methodology characterizes internal corrosion phenomenon integrating the hydrodynamic conditions of the flow (flow velocities, flow pattern, liquid holdups, and where the condensation is taking place within a pipeline) with those that predict corrosion rates. It can be applied in the whole oil/gas production system, including subsurface and surface equipment. The methodology uses single and two phase flow modeling techniques to: (1) optimize the entire production system to obtain the most efficient objective flow rate, taking into consideration the corrosive/erosive nature of the produced fluids and (2) characterize the corrosion nature of oil and gas transmission lines. As an example of its use, a characterization of corrosion nature of a gas transmission line is described. The hydrodynamic simulation was performed using commercially available simulators, and the corrosion rates were determined using published correlations. Results using this methodology allowed for corrosion control strategies, protection and monitoring criteria, and inhibition optimization.

  18. Optimization of a Two-Fluid Hydrodynamic Model of Churn-Turbulent Flow

    SciTech Connect (OSTI)

    Donna Post Guillen

    2009-07-01

    A hydrodynamic model of two-phase, churn-turbulent flows is being developed using the computational multiphase fluid dynamics (CMFD) code, NPHASE-CMFD. The numerical solutions obtained by this model are compared with experimental data obtained at the TOPFLOW facility of the Institute of Safety Research at the Forschungszentrum Dresden-Rossendorf. The TOPFLOW data is a high quality experimental database of upward, co-current air-water flows in a vertical pipe suitable for validation of computational fluid dynamics (CFD) codes. A five-field CMFD model was developed for the continuous liquid phase and four bubble size groups using mechanistic closure models for the ensemble-averaged Navier-Stokes equations. Mechanistic models for the drag and non-drag interfacial forces are implemented to include the governing physics to describe the hydrodynamic forces controlling the gas distribution. The closure models provide the functional form of the interfacial forces, with user defined coefficients to adjust the force magnitude. An optimization strategy was devised for these coefficients using commercial design optimization software. This paper demonstrates an approach to optimizing CMFD model parameters using a design optimization approach. Computed radial void fraction profiles predicted by the NPHASE-CMFD code are compared to experimental data for four bubble size groups.

  19. A harmonic polynomial cell (HPC) method for 3D Laplace equation with application in marine hydrodynamics

    SciTech Connect (OSTI)

    Shao, Yan-Lin Faltinsen, Odd M.

    2014-10-01

    We propose a new efficient and accurate numerical method based on harmonic polynomials to solve boundary value problems governed by 3D Laplace equation. The computational domain is discretized by overlapping cells. Within each cell, the velocity potential is represented by the linear superposition of a complete set of harmonic polynomials, which are the elementary solutions of Laplace equation. By its definition, the method is named as Harmonic Polynomial Cell (HPC) method. The characteristics of the accuracy and efficiency of the HPC method are demonstrated by studying analytical cases. Comparisons will be made with some other existing boundary element based methods, e.g. Quadratic Boundary Element Method (QBEM) and the Fast Multipole Accelerated QBEM (FMA-QBEM) and a fourth order Finite Difference Method (FDM). To demonstrate the applications of the method, it is applied to some studies relevant for marine hydrodynamics. Sloshing in 3D rectangular tanks, a fully-nonlinear numerical wave tank, fully-nonlinear wave focusing on a semi-circular shoal, and the nonlinear wave diffraction of a bottom-mounted cylinder in regular waves are studied. The comparisons with the experimental results and other numerical results are all in satisfactory agreement, indicating that the present HPC method is a promising method in solving potential-flow problems. The underlying procedure of the HPC method could also be useful in other fields than marine hydrodynamics involved with solving Laplace equation.

  20. Assessment of Dissolved Oxygen Mitigation at Hydropower Dams Using an Integrated Hydrodynamic/Water Quality/Fish Growth Model

    SciTech Connect (OSTI)

    Bevelhimer, Mark S; Coutant, Charles C

    2006-07-01

    Dissolved oxygen (DO) in rivers is a common environmental problem associated with hydropower projects. Approximately 40% of all FERC-licensed projects have requirements to monitor and/or mitigate downstream DO conditions. Most forms of mitigation for increasing DO in dam tailwaters are fairly expensive. One area of research of the Department of Energy's Hydropower Program is the development of advanced turbines that improve downstream water quality and have other environmental benefits. There is great interest in being able to predict the benefits of these modifications prior to committing to the cost of new equipment. In the case of turbine replacement or modification, there is a need for methods that allow us to accurately extrapolate the benefits derived from one or two turbines with better design to the replacement or modification of all turbines at a site. The main objective of our study was to demonstrate a modeling approach that integrates the effects of flow and water quality dynamics with fish bioenergetics to predict DO mitigation effectiveness over long river segments downstream of hydropower dams. We were particularly interested in demonstrating the incremental value of including a fish growth model as a measure of biological response. The models applied are a suite of tools (RMS4 modeling system) originally developed by the Tennessee Valley Authority for simulating hydrodynamics (ADYN model), water quality (RQUAL model), and fish growth (FISH model) as influenced by DO, temperature, and available food base. We parameterized a model for a 26-mile reach of the Caney Fork River (Tennessee) below Center Hill Dam to assess how improvements in DO at the dam discharge would affect water quality and fish growth throughout the river. We simulated different types of mitigation (i.e., at the turbine and in the reservoir forebay) and different levels of improvement. The model application successfully demonstrates how a modeling approach like this one can be used to assess whether a prescribed mitigation is likely to meet intended objectives from both a water quality and a biological resource perspective. These techniques can be used to assess the tradeoffs between hydropower operations, power generation, and environmental quality.

  1. Early anisotropic hydrodynamics and thermalization and Hanbury-Brown-Twiss puzzles in the BNL Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect (OSTI)

    Ryblewski, Radoslaw; Florkowski, Wojciech

    2010-08-15

    We address the problem of whether the early thermalization and Hanbury-Brown-Twiss (HBT) puzzles in relativistic heavy-ion collisions may be solved by the assumption that the early dynamics of the produced matter is locally anisotropic. The hybrid model describing the purely transverse hydrodynamic evolution followed by the perfect-fluid hydrodynamic stage is constructed. The transition from the transverse to perfect-fluid hydrodynamics is described by the Landau matching conditions applied at a fixed proper time {tau}{sub tr}. The global fit to the RHIC data reproduces the soft hadronic observables (the pion, kaon, and the proton spectra, the pion and kaon elliptic flow, and the pion HBT radii) with the accuracy of about 20%. These results indicate that the assumption of the very fast thermalization may be relaxed. In addition, the presented model suggests that a large part of the inconsistencies between the theoretical and experimental HBT results may be removed.

  2. NREL National Bioenergy Center Overview

    SciTech Connect (OSTI)

    Foust, Thomas; Pienkos, Phil; Sluiter, Justin; Magrini, Kim; McMillan, Jim

    2014-07-28

    The demand for clean, sustainable, secure energy is growing... and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is answering the call. NREL's National Bioenergy Center is pioneering biofuels research and development and accelerating the pace these technologies move into the marketplace.

  3. Arizona Foundation Expands Weatherization Training Center

    Broader source: Energy.gov [DOE]

    Read about one weatherization training center that's looking forward to an onslaught of new trainees.

  4. National Bioenergy Center Biochemical Platform Integration Project

    SciTech Connect (OSTI)

    Not Available

    2008-07-01

    April through June 2008 update on activities of the National Bioenergy Center's Biochemical Platform Integration Project.

  5. PIA - Environmental Management Consolidated Business Center (EMCBC) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Management Consolidated Business Center (EMCBC) PIA - Environmental Management Consolidated Business Center (EMCBC) PIA - Environmental Management Consolidated Business Center (EMCBC) PDF icon PIA - Environmental Management Consolidated Business Center (EMCBC) More Documents & Publications PIA - Bonneville Power Adminstration Ethics Helpline PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 LM Records Handling System (LMRHS01) - Rocky

  6. Center publications | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center publications All papers by year Subtask 1 Subtask 2 Subtask 3 Subtask 4 Subtask 5 Kupitz, Christopher; Basu, Shibom; Grotjohann, Ingo; Fromme, Raimund; Zatsepin, Nadia A.; Rendek, Kimberly N.; Hunter, Mark; Shoeman, Robert L.; White, Thomas A.; Wang, Dingjie; James, Daniel; Yang, Jay-How; Cobb, Danielle E.; Brenda, Reeder; Raymond, G. Sierra; Liu, Haiguang; Barty, Anton; Aquila, Andrew L.; Deponte, Daniel; Kirian, Richard A.; Bari, Sadia; Bergkamp, Jesse J.; Beyerlein, Kenneth R.; Bogan,

  7. Modifications of Carbonate Fracture Hydrodynamic Properties by CO{sub 2}-Acidified Brine Flow

    SciTech Connect (OSTI)

    Deng, Hang; Ellis, Brian R.; Peters, Catherine A.; Fitts, Jeffrey P.; Crandall, Dustin; Bromhal, Grant S.

    2013-08-01

    Acidic reactive flow in fractures is relevant in subsurface activities such as CO{sub 2} geological storage and hydraulic fracturing. Understanding reaction-induced changes in fracture hydrodynamic properties is essential for predicting subsurface flows such as leakage, injectability, and fluid production. In this study, x-ray computed tomography scans of a fractured carbonate caprock were used to create three dimensional reconstructions of the fracture before and after reaction with CO{sub 2}-acidified brine (Ellis et al., 2011, Greenhouse Gases: Sci. Technol., 1:248-260). As expected, mechanical apertures were found to increase substantially, doubling and even tripling in some places. However, the surface geometry evolved in complex ways including ‘comb-tooth’ structures created from preferential dissolution of calcite in transverse sedimentary bands, and the creation of degraded zones, i.e. porous calcite-depleted areas on reacted fracture surfaces. These geometric alterations resulted in increased fracture roughness, as measured by surface Z{sub 2} parameters and fractal dimensions D{sub f}. Computational fluid dynamics (CFD) simulations were conducted to quantify the changes in hydraulic aperture, fracture transmissivity and permeability. The results show that the effective hydraulic apertures are smaller than the mechanical apertures, and the changes in hydraulic apertures are nonlinear. Overestimation of flow rate by a factor of two or more would be introduced if fracture hydrodynamic properties were based on mechanical apertures, or if hydraulic aperture is assumed to change proportionally with mechanical aperture. The differences can be attributed, in part, to the increase in roughness after reaction, and is likely affected by contiguous transverse sedimentary features. Hydraulic apertures estimated by the 1D statistical model and 2D local cubic law (LCL) model are consistently larger than those calculated from the CFD simulations. In addition, a novel ternary segmentation method was devised to handle the degraded zones, allowing for a bounding analysis of the effects on hydraulic properties. We found that the degraded zones account for less than 15% of the fracture volume, but cover 70% to 80% of the fracture surface. When the degraded zones are treated as part of the fracture, the fracture transmissivities are two to four times larger because the fracture surfaces after reaction are not as rough as they would be if one considers the degraded zone as part of the rock. Therefore, while degraded zones created during geochemical reactions may not significantly increase mechanical aperture, this type of feature cannot be ignored and should be treated with prudence when predicting fracture hydrodynamic properties.

  8. Service Center Evaluation Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Service Center Evaluation Guide Service Center Evaluation Guide To be assured of a quality product, customers of motor repair service centers need to be knowledgeable about the service they're purchasing. This guide provides information to assist in evaluating motor repair service centers. PDF icon Service Center Evaluation Guide (November 1999) More Documents & Publications Selected Bibliography on Electric Motor Repair Motor Repair Tech Brief Model Repair Specifications for Low Voltage

  9. Fermilab | Illinois Accelerator Research Center | Illinois Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Center Illinois Accelerator Research Center photo: IARC The pictured Illinois Accelerator Research Center will provide approximately 83,000 square feet of technical, office and classroom space for scientists and industrial partners. More pictures of the finished building. The Illinois Accelerator Research Center (IARC) is a new accelerator research facility being built at Fermi National Accelerator Laboratory. At the Illinois Accelerator Research Center, scientists and engineers

  10. Alternative Fuels Data Center: Transportation System Efficiency

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Transportation System Efficiency to someone by E-mail Share Alternative Fuels Data Center: Transportation System Efficiency on Facebook Tweet about Alternative Fuels Data Center: Transportation System Efficiency on Twitter Bookmark Alternative Fuels Data Center: Transportation System Efficiency on Google Bookmark Alternative Fuels Data Center: Transportation System Efficiency on Delicious Rank Alternative Fuels Data Center: Transportation System Efficiency on Digg Find More places to share

  11. Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Hydrocarbon Biofuels to someone by E-mail Share Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Facebook Tweet about Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Twitter Bookmark Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Google Bookmark Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Delicious Rank Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Digg Find More places to share Alternative Fuels

  12. Alternative Fuels Data Center: ASTM Biodiesel Specifications

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ASTM Biodiesel Specifications to someone by E-mail Share Alternative Fuels Data Center: ASTM Biodiesel Specifications on Facebook Tweet about Alternative Fuels Data Center: ASTM Biodiesel Specifications on Twitter Bookmark Alternative Fuels Data Center: ASTM Biodiesel Specifications on Google Bookmark Alternative Fuels Data Center: ASTM Biodiesel Specifications on Delicious Rank Alternative Fuels Data Center: ASTM Biodiesel Specifications on Digg Find More places to share Alternative Fuels Data

  13. Connectivity structures and differencing techniques for staggered-grid free-Lagrange hydrodynamics

    SciTech Connect (OSTI)

    Burton, D.E.

    1992-06-01

    We consider a variation of the free-Lagrange (FL) method which is appropriate to staggered-grid differencing of the hydrodynamics equations (SGH) and will be termed the staggered free-Lagrange method or SFL. The SFL method discretizes space into general polygonal or polyhedral cells. The numerical differencing techniques and connectivity templates used for SFL differ markedly from those used by other unstructured grid methods, such as finite element (FE) and triangular/tetrahedral based free-Lagrange (TFL). The paper discusses the spatial discretization for both 2D and 3D geometry, differencing templates, object-oriented data management, and mesh optimization and refinement strategies. The suite of mesh optimization primitives is extended, giving rise to a powerful hybrid method called adaptive free-Lagrange (AFL) which is applied to a test problem.

  14. Computational and experimental studies of hydrodynamic instabilities and turbulent mixing (Review of NVIIEF efforts)

    SciTech Connect (OSTI)

    Andronov, V.A.; Zhidov, I.G.; Meskov, E.E.; Nevmerzhitskii, N.V.; Nikiforov, V.V.; Razin, A.N.; Rogatchev, V.G.; Tolshmyakov, A.I.; Yanilkin, Yu.V.

    1995-02-01

    This report describes an extensive program of investigations conducted at Arzamas-16 in Russia over the past several decades. The focus of the work is on material interface instability and the mixing of two materials. Part 1 of the report discusses analytical and computational studies of hydrodynamic instabilities and turbulent mixing. The EGAK codes are described and results are illustrated for several types of unstable flow. Semiempirical turbulence transport equations are derived for the mixing of two materials, and their capabilities are illustrated for several examples. Part 2 discusses the experimental studies that have been performed to investigate instabilities and turbulent mixing. Shock-tube and jelly techniques are described in considerable detail. Results are presented for many circumstances and configurations.

  15. Smoothed Particle Hydrodynamics pore-scale simulations of unstable immiscible flow in porous media

    SciTech Connect (OSTI)

    Bandara, Dunusinghe Mudiyanselage Uditha C.; Tartakovsky, Alexandre M.; Oostrom, Martinus; Palmer, Bruce J.; Grate, Jay W.; Zhang, Changyong

    2013-12-01

    We have conducted a series of high-resolution numerical experiments using the Pair-Wise Force Smoothed Particle Hydrodynamics (PF-SPH) multiphase flow model. First, we derived analytical expressions relating parameters in the PF-SPH model to the surface tension and static contact angle. Next, we used the model to study viscous fingering, capillary fingering, and stable displacement of immiscible fluids in porous media for a wide range of capillary numbers and viscosity ratios. We demonstrated that the steady state saturation profiles and the boundaries of viscous fingering, capillary fingering, and stable displacement regions compare favorably with micromodel laboratory experimental results. For displacing fluid with low viscosity, we observed that the displacement pattern changes from viscous fingering to stable displacement with increasing injection rate. When a high viscosity fluid is injected, transition behavior from capillary fingering to stable displacement occurred as the flow rate was increased. These observation also agree with the results of the micromodel laboratory experiments.

  16. HYDRODYNAMIC THERMAL MODELING OF 9-CELL ILC CAVITY ELECTROPOLISHING AND IMPLICATIONS FOR IMPROVING THE EP PROCESS

    SciTech Connect (OSTI)

    Charles Reece; John Mammosser; Jun Ortega

    2008-02-12

    Multi-cell niobium cavities often obtain the highest performance levels after having been subjected to an electropolishing (EP) process. The horizontal EP process first developed at KEK/Nomura Plating for TRISTAN[1] cavities is being applied to TESLA-style cavities and other structures for the XFEL and ILC R&D. Jefferson Lab is presently carrying this activity in the US. Because the local electropolishing current density is highly temperature dependent, we have created using CFDesign™ a full-scale hydrodynamic model which simulates the various thermal conditions present during 9-cell cavity electropolishing. The results of these simulations are compared with exterior surface temperature data gathered during ILC cavity EP at JLab. Having benchmarked the simulation, we explore the affect of altered boundary conditions in order to evaluate potentially beneficial modifications to the current standard process.

  17. On the explanation and calculation of anomalous reflood hydrodynamics in large PWR cores

    SciTech Connect (OSTI)

    Rodriguez, S.E.

    1985-01-01

    Reflood hydrodynamics from large-scale (1:20) test facilities in Japan have yielded apparently anomalous behavior relative to FLECHT tests. Namely, even at reflooding rates below one inch per second, very large liquid volume fractions (10-15%) exist above the quench fronts shortly after flood begins; thus cladding temperature excursions are terminated early in the reflood phase. This paper discusses an explanation for this behavior: liquid films on the core's unheated rods. The experimental findings are shown to be correctly simulated with a new four-field (vapor, films, droplets) version of the best-estimate TRAC-PF1 computer code, TRAC-FF. These experimental and analytical findings have important implications for PWR large-break LOCA licensing.

  18. Mixed-RKDG Finite Element Methods for the 2-D Hydrodynamic Model for Semiconductor Device Simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Zhangxin; Cockburn, Bernardo; Jerome, Joseph W.; Shu, Chi-Wang

    1995-01-01

    In this paper we introduce a new method for numerically solving the equations of the hydrodynamic model for semiconductor devices in two space dimensions. The method combines a standard mixed finite element method, used to obtain directly an approximation to the electric field, with the so-called Runge-Kutta Discontinuous Galerkin (RKDG) method, originally devised for numerically solving multi-dimensional hyperbolic systems of conservation laws, which is applied here to the convective part of the equations. Numerical simulations showing the performance of the new method are displayed, and the results compared with those obtained by using Essentially Nonoscillatory (ENO) finite difference schemes. Frommore » the perspective of device modeling, these methods are robust, since they are capable of encompassing broad parameter ranges, including those for which shock formation is possible. The simulations presented here are for Gallium Arsenide at room temperature, but we have tested them much more generally with considerable success.« less

  19. Clean Energy Solutions Center (Presentation)

    SciTech Connect (OSTI)

    Reategui, S.

    2012-07-01

    The Clean Energy Ministerial launched the Clean Energy Solutions Center in April, 2011 for major economy countries, led by Australia and U.S. with other CEM partners. Partnership with UN-Energy is extending scope to support all developing countries: 1. Enhance resources on policies relating to energy access, small to medium enterprises (SMEs), and financing programs; 2. Offer expert policy assistance to all countries; 3. Expand peer to peer learning, training, and deployment and policy data for developing countries.

  20. Catalysis Center for Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalysis Center for Energy Innovation Spring Symposium - April 10-11, 2016 SUNDAY, APRIL 10, 2016 Venue: The Patrick T. Harker Interdisciplinary Science & Engineering Laboratory (ISE Lab) University of Delaware  Newark, Delaware TIME EVENT LOCATION 9:30-10:45 Short Course Session I: Analytical Characterization Instructors: Professor Paul Dauenhauer (University of Minnesota) Jeff Everhart (University of Delaware) 322 ISE Lab 10:45-11:00 Break 11:00-12:30 Short Course Session II:

  1. LANSCE | Lujan Center | Instruments | SMARTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectrometer for Materials Research at Temperature and Stress | SMARTS Materials in Extreme Environments and Geoscience The SMARTS is a third-generation neutron diffractometer optimized for the study of engineering materials. It was funded by DOE and constructed at the Lujan Center, coming online in the summer of 2001. SMARTS provides an exciting range of capabilities for studying polycrystalline materials focusing on two areas: the measurement of deformation under stress and extreme

  2. News | Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Home Full Updated List of Publications Now Available Online! The full publication list of the RMSSEC EFRC is avaialble online at the follwoing DOE website. This list is frequently updated and will provide users with the latest information on Center publications. http://science.energy.gov/bes/efrc/publications/ New ZT record set by RMSSEC researchers - appears in Nature magazine RMSSEC researchers have once again set a new recored in terms of thermoelectric performance of a material. In work

  3. Materials Science and Engineering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Engineering Center - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  4. Los Alamos Neutron Science Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos Neutron Science Center lansce.lanl.gov lansce-user-office@lanl.gov mesaheader Beam Status Accelerator Ops (Internal) Operating Schedule Long Range Operating Schedule User Resources User Agreements Proposals Visit Registration Schedules Experiment Reports User Satisfaction Survey Reviews Users User Office User Program LANSCE User Group Rosen Scholar Rosen Prize News & Multimedia News Multimedia Events Profiles Highlights Seminars Activity Reports The Pulse User Program Headlines

  5. About | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About About The Energy Frontier Research Center (EFRC) program is focused on the scientific groundwork needed to meet the global need for abundant, clean, and economical energy. Under the direction of Professor Robert Blankenship, the Lucille P. Markey Distinguished Professor of Arts and Sciences, Departments of Biology and Chemistry, Washington University (WUSTL) received an EFRC award effective August 1, 2009. To address the purpose of the EFRC initiative, WUSTL created the Photosynthetic

  6. Craig Thomas Discovery & Visitor Center

    High Performance Buildings Database

    Moose, WY Grand Teton National Park's rugged landscape and stunning array of wildlife attract nearly three million visitors every year, making it one of our most popular national parks. A new Grand Teton National Park visitor center near the park's headquarters north of Jackson, Wyoming, replaces an outdated building, educates an increased number of visitors, and inspires further exploration of this extraordinary landscape. The project site is located along the Snake River, between a riparian forest and a sagebrush meadow.

  7. Novel techniques for slurry bubble column hydrodynamics. Annual technical progress report No. 1, July 1, 1995--June 30, 1996

    SciTech Connect (OSTI)

    Dudukovic, M.P.; Fan, L.S.; Chang, Min

    1997-05-01

    The objective of this cooperative research effort between Washington University, Ohio State University and Exxon Research and Engineering Company is to improve the basis for scale-up and operation of slurry bubble column reactors for syngas conversion and other coal conversion processes by increased reliance on experimentally verified hydrodynamic models. The first year of this three year program was spent on developing and tuning the experimental tools that can provide accurate measurement of pertinent hydrodynamic quantities, such as velocity field and holdup distribution, for validation of hydrodynamic models. Advances made in preparing the unique Computer Automated Radioactive Particle Tracing (CARPT) technique for use in high pressure systems are described in this report The work done on developing a reliable beat transfer coefficient measurement probe at operating conditions of interest is also described. Finally, the work done in preparing the Exxon pilot plant facilities for high pressure runs and pertinent hydrodynamic measurements is outlined together with preliminary studies of matching the fluid dynamics program predictions and data in a two dimensional column.

  8. Direct nucleonemission from hot and dense regions described in the hydrodynamical model of relativistic heavy ion collisions

    SciTech Connect (OSTI)

    Barz, H.W.; Csernai, L.P.; Greiner, W.

    1982-08-01

    The collision process is described by hydrodynamical equations. The escape of nucleons which do not take part in the thermal equilibrium are considered by including drain terms in these equations. The energy spectra of the escaped nucleons and of nucleons evaporated after the break up of the fluid are compared.

  9. Alternative Fuels Data Center: E15

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    E15 to someone by E-mail Share Alternative Fuels Data Center: E15 on Facebook Tweet about Alternative Fuels Data Center: E15 on Twitter Bookmark Alternative Fuels Data Center: E15 on Google Bookmark Alternative Fuels Data Center: E15 on Delicious Rank Alternative Fuels Data Center: E15 on Digg Find More places to share Alternative Fuels Data Center: E15 on AddThis.com... More in this section... Ethanol Basics Blends E15 E85 Specifications Production & Distribution Feedstocks Related Links

  10. Air Risk Information Support Center

    SciTech Connect (OSTI)

    Shoaf, C.R.; Guth, D.J.

    1990-12-31

    The Air Risk Information Support Center (Air RISC) was initiated in early 1988 by the US Environmental Protection Agency`s (EPA) Office of Health and Environmental Assessment (OHEA) and the Office of Air Quality Planning and Standards (OAQPS) as a technology transfer effort that would focus on providing information to state and local environmental agencies and to EPA Regional Offices in the areas of health, risk, and exposure assessment for toxic air pollutants. Technical information is fostered and disseminated by Air RISCs three primary activities: (1) a {open_quotes}hotline{close_quotes}, (2) quick turn-around technical assistance projects, and (3) general technical guidance projects. 1 ref., 2 figs.

  11. Joint Center for Artificial Photosynthesis

    ScienceCinema (OSTI)

    Koval, Carl; Lee, Kenny; Houle, Frances; Lewis, Nate

    2013-12-19

    The Joint Center for Artificial Photosynthesis (JCAP) is the nation's largest research program dedicated to the development of an artificial solar-fuel generation technology. Established in 2010 as a U.S. Department of Energy (DOE) Energy Innovation Hub, JCAP aims to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide as inputs. JCAP brings together more than 140 top scientists and researchers from the California Institute of Technology and its lead partner, Berkeley Lab, along with collaborators from the SLAC National Accelerator Laboratory, and the University of California campuses at Irvine and San Diego.

  12. Center for Advanced Solar Photophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Call for Exploratory Projects CASP invites LANL researchers to propose new ideas, materials, methods or theories to support and expand the goals and capabilities of the Center. Accepted proposals will be funded in the range of $20K - $40K for an initial exploratory period of up to 9 months. Successful seed projects may then be further considered for future longer-term funding. All LANL researchers may apply. Students and post-docs are strongly encouraged to respond to this call. Information on

  13. Data Center Energy-Efficiency Best Practices

    Broader source: Energy.gov [DOE]

    This seminar covers why energy-efficient data centers are critical, energy-efficiency opportunities, and energy management improvement processes. Topics include best practices for acquisition, benchmarking, performance metrics, and managing energy and environmental systems in Federal data centers.

  14. Energy 101: Energy Efficient Data Centers

    Broader source: Energy.gov [DOE]

    Data centers provide mission-critical computing functions vital to the daily operation of top U.S. economic, scientific, and technological organizations. These data centers consume large amounts of...

  15. The Solar Center Inc | Open Energy Information

    Open Energy Info (EERE)

    Center Inc Place: New Jersey, New Jersey Zip: 7834 Sector: Solar Product: US-based PV and solar passive system installer. References: The Solar Center Inc1 This article is a...

  16. Y-12 and the Jack Case Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 21, 2014, Patrick Case, Jack Case's youngest son, called me. He was at the New Hope Center and wanted to visit the Jack Case Center. I explained that it would have to wait...

  17. High Plains Tech Center | Open Energy Information

    Open Energy Info (EERE)

    Owner High Plains Tech Center Energy Purchaser High Plains Tech Center Location Woodward OK Coordinates 36.40645133, -99.4282195 Show Map Loading map... "minzoom":false,"mappi...

  18. NSIDC Data Center: Energy Reduction Strategies (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-05-01

    The Green Data Center Project was a successful effort to significantly reduce the energy use of the National Snow and Ice Data Center (NSIDC) and this paper describes this project.

  19. High Performance Computing Data Center (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-08-01

    This two-page fact sheet describes the new High Performance Computing Data Center being built in the ESIF and talks about some of the capabilities and unique features of the center.

  20. Renewable Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Center Jump to: navigation, search Name: Renewable Energy Center Place: Gyeonggi-Do, Korea (Republic) Zip: 448-994 Sector: Renewable Energy Product: Part of KEMCO that deals with...

  1. High Performance Computing Data Center (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    This two-page fact sheet describes the new High Performance Computing Data Center in the ESIF and talks about some of the capabilities and unique features of the center.

  2. Data Centers and Servers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the quick-start guide. Identify opportunities for improvement in your data center by reading about these 12 strategies to save energy in data centers. Learn about the top...

  3. Midwest Clean Energy Application Center

    SciTech Connect (OSTI)

    Cuttica, John; Haefke, Cliff

    2013-12-31

    The Midwest Clean Energy Application Center (CEAC) was one of eight regional centers that promoted and assisted in transforming the market for combined heat and power (CHP), waste heat to power (WHP), and district energy (DE) technologies and concepts throughout the United States between October 1, 2009 and December 31, 2013. The key services the CEACs provided included:  Market Opportunity Analyses – Supporting analyses of CHP market opportunities in diverse markets including industrial, federal, institutional, and commercial sectors.  Education and Outreach – Providing information on the energy and non-energy benefits and applications of CHP to state and local policy makers, regulators, energy end-users, trade associations and others. Information was shared on the Midwest CEAC website: www.midwestcleanergy.org.  Technical Assistance – Providing technical assistance to end-users and stakeholders to help them consider CHP, waste heat to power, and/or district energy with CHP in their facility and to help them through the project development process from initial CHP screening to installation. The Midwest CEAC provided services to the Midwest Region that included the states of Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin.

  4. Data Center Energy Practitioner (DCEP) Program

    SciTech Connect (OSTI)

    2011-06-01

    This document provides details about the U.S. Department of Energy Data Center Energy Practitioner (DCEP) Program.

  5. Portsmouth Environmental Information Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portsmouth Environmental Information Center Portsmouth Environmental Information Center PORTS EIC.jpg The Portsmouth Environmental Information Center (EIC) provides greater accessibility for residents interested in learning more about DOE's environmental management activities being conducted at the Portsmouth Gaseous Diffusion Plant. A reading room is available for residents who wish to review material at the center, while copies of documents at the EIC can be reproduced free of charge for the

  6. Energy Frontier Research Centers - Technical Summaries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lahti, University of Massachusetts Amherst ... 47 Center for Solar and Thermal Energy Conversion (CSTEC) Peter F. Green, University of Michigan ......

  7. Emergence of Natural Gas Market Centers

    Reports and Publications (EIA)

    1996-01-01

    Discusses the value of market centers in today's marketplace, highlighting their importance in capacity and financial transactions.

  8. Solar Energy Resource Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resource Center Solar Energy Resource Center The SunShot Initiative's Solar Energy Resource Center contains work developed by DOE, national laboratories and SunShot awardees. The Solar Energy Resource Center has over 100 unique documents which provide information on model standards and codes, utility policies, solar facilities, financing, incentives, market analysis, solar basics manufacturing, workforce development, shared solar, planning, zoning, permitting, and interconnection. Partner

  9. LED Lighting in a Performing Arts Center

    SciTech Connect (OSTI)

    Wilkerson, A. M.; Abell, T. C.; T., E. Perrin

    2015-07-31

    GATEWAY demonstration report of LED wall washer retrofit lighting at the University of Maryland Clarice Smith Performing Arts Center.

  10. NREL Visitors Center Closing Temporarily for Remodeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visitors Center Closing Temporarily for Remodeling Media may contact: George Douglas, 303-275-4096 email: George Douglas Golden, Colo., Sept. 6, 2000 - The Visitors Center at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) will be closed Friday, Sept. 8 through Friday, Sept. 22 for the installation of new floor tile and carpet. Visitors Center staff expects to re-open the building for normal operation on Monday, Sept. 25. Contact the Visitors Center volunteer

  11. Field Communications Control Center Technical Organizational

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field Communications Control Center Technical Organizational Operational Physical Security AuthenticatorsPasswords Network TopologyBackdoor and Vendor Connections Software...

  12. WINDExchange: Wind Energy Regional Resource Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers About Economic Development Siting Wind Energy Regional Resource Centers The U.S. Department of Energy's Regional Resource Centers provide unbiased wind energy information to communities and decision makers to help them evaluate wind energy potential and learn about wind power's benefits and impacts in their regions. During their first year of operations, the Regional Resource Centers impacted more than 12,000

  13. Sandia National Laboratories: Cooperative Monitoring Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cooperative Monitoring Center IPB Building "Achieving International Security Through Technical Collaborations" Established at Sandia National Laboratories in 1994, the Cooperative...

  14. Benchmarking Help Center Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Help Center Guide Benchmarking Help Center Guide This guide provides recommendations for establishing a benchmarking help center based on experiences and lessons learned in New York City and Seattle. PDF icon Benchmarking Help Center Guide More Documents & Publications Energy Disclosure and Leasing Standards: Best Practices Benchmarking Outreach and Data Collection Techniques for External Portfolios Energy Performance Benchmarking and Disclosure Policies for Public and Commercial Buildings

  15. Presentation: Better Buildings Residential Program Solution Center

    Broader source: Energy.gov [DOE]

    Presentation: Better Buildings Residential Program Solution Center, from the U.S. Department of Energy, Better Buildings Neighborhood Program.

  16. CenterPoint Comments | Department of Energy

    Energy Savers [EERE]

    CenterPoint Comments CenterPoint Comments CenterPoint Comments on the Smart Grid RFI: Addressing Policy and Logistical Challenges PDF icon CenterPoint Comments More Documents & Publications City Utilities of Springfield Missouri Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges Dairyland Power Cooperative Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges Comments of North American Electric Reliability Corporation (NERC) to DOE Smart Grid RFI:

  17. National Training Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Organizational Chart » National Training Center National Training Center MISSION The National Training Center (NTC), the Department's Center of Excellence for Security and Safety Training and Professional Development, designs, develops, and implements state-of-the-art security and safety training programs for Department federal and contractor personnel nationwide, including the National Nuclear Security Administration (NNSA). Conducts on-going job analysis, and develops and delivers training in

  18. Data Center Optimization Plan | Department of Energy

    Office of Environmental Management (EM)

    Data Center Optimization Plan Data Center Optimization Plan The Department of Energy (DOE) is committed to the overall reduction in the number of its data centers, consolidation of IT services, energy efficiency improvements, and cost reductions in data center / IT infrastructure operations. In coordination with DOE's Strategic Sustainability Performance Plan (SSPP), DOE has set goals and performance targets that meet or exceed FDCCI objectives while introducing transformational IT services and

  19. Building America Solution Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Solution Center Building America Solution Center World-Class Research At Your Fingertips The Building America Solution Center provides residential building professionals with access to expert information on hundreds of high-performance design and construction topics, including air sealing and insulation, HVAC components, windows, indoor air quality, and much more. Explore the Building America Solution Center. The user-friendly interface delivers a variety of resources for each

  20. Industrial Assessment Centers (IACs) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance » Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Small- and medium-sized manufacturers may be eligible to receive a no-cost assessment provided by DOE Industrial Assessment Centers (IACs). Teams located at 24 universities around the country conduct the energy audits to identify opportunities to improve productivity, reduce waste, and save energy. IACs typically identify more than $130,000 in potential annual

  1. Clean Energy Solutions Center Services (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  2. Environmental Management Consolidated Business Center (EMCBC) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Services » Program Management » Environmental Management Consolidated Business Center (EMCBC) Environmental Management Consolidated Business Center (EMCBC) Environmental Management Consolidated Business Center (EMCBC) SITE OVERVIEW The Department of Energy (DOE) established the EMCBC in Cincinnati, OH, on June 7, 2004, to provide Environmental Management customers with required and improved business and technical support services. Establishing the EMCBC allowed EM's Closure

  3. The Effect of Roll Waves on the Hydrodynamics of Falling Films Observed in Vertical Column Absorbers

    SciTech Connect (OSTI)

    Miller, W.A.

    2001-06-28

    A thin falling film is well suited to simultaneous heat and mass transfer because of the small thermal resistance through the film and because of the large contact surface achievable at low flow rates. The film enters as a smooth laminar flow and quickly transitions into small-amplitude wavy flow. The waves grown in length and amplitude and are identified as roll waves. This flow regime is termed wavy-laminar flow, and modern heat and mass transfer equipment operate in this complicated transition regime. Research published in open literature has shown the mass flow rate in the rollwaves to be about 10 to 20 times greater than that in the laminar substrate. As the film fully develops, the waves grow in mass and the film substrate thins because fluid is swept from the substrate by the secondary flows of the roll wave. Many studies have been conducted to measure and correlate the film thickness of wavy-laminar flows. Literature data show that Nusselt's theory for smooth laminar flow can over predict the film thickness by as much as 20% for certain wavy-laminar flow conditions. The hydrodynamics of falling films were therefore studied to measure the film thickness of a free-surface falling film and to better understand the parameters that affect the variations of the film thickness. A flow loop was set up for measuring the thickness, wave amplitude,and frequency of a film during hydrodynamic flow. Decreasing the pipe diameter caused the amplitude of the wavy flow to diminish. Measurements monitored from stations along the falling film showed a thinning of film thickness. Fully developed flow required large starting lengths of about 0.5 m. The film thickness increases as the Reynolds number (Re) increases. Increasing the Kapitza number (Ka) causes a decrease in the film thickness. Regression analysis showed that the Re and Ka numbers described the data trends in wavy-laminar flow. Rather than correlating the Re number in discrete ranges of the Ka number as earlier researchers have done, this research made the Ka number an independent regression variable along with the Re number. The correlation explains 96% of the total variation in the data and predicts the experimental data within an absolute average deviation of {+-} 4.0%. The correlation supports the calculation of a fully developed film thickness for wavy-laminar falling films.

  4. Southern Energy Efficiency Center (SEEC)

    SciTech Connect (OSTI)

    Vieira, Robin; Sonne, Jeffrey; Withers, Charles; Cummings, James; Verdict, Malcolm; Roberts, Sydney

    2009-09-30

    The Southern Energy Efficiency Center (SEEC) builds collaborative partnerships with: state and local governments and their program support offices, the building delivery industry (designers, contractors, realtors and commissioning agents), product manufacturers and their supply chains, utilities and their program implementers, consumers and other stakeholders in order to forge a strong regional network of building energy efficiency allies. Through a project Steering Committee composed of the state energy offices and building industry stakeholders, the SEEC works to establish consensus-based goals, priorities and strategies at the regional, state and local levels that will materially advance the deployment of high-performance “beyond code” buildings. In its first Phase, SEEC will provide limited technical and policy support assistance, training, certification and education to a wide spectrum of the building construction, codes and standards, and the consumer marketplace.

  5. Ohio Advanced Energy Manufacturing Center

    SciTech Connect (OSTI)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI has recently commercialized.

  6. AIR FORCE SPECIAL WEAPONS CENTER

    Office of Legacy Management (LM)

    HEADQUARTERS aII?y 9 AIR FORCE SPECIAL WEAPONS CENTER 1 AIR FORCE SYSTEMS COMMAND . - KlRTlAND AIR FORCE BASE, NEW MEXICO - k FINAL REPORT O N AIR FORCE PARTICIPATION PROJECT RULISON .1 O c t o b e r 1969 P r e p a r e d by : CONT INENTAL TEST D I V I S ION DIRECTORATE OF NUCLEAR FIELD OPERATIONS This page intentionally left blank INDEX AIR FORCE PARTICIPATION I N PROJECT RULISON FINAL REPORT PARAGRAPH BASIC REPORT SUBJECT R e f e r e n c e s PAGE 2 G e n e r a l 1 3 P l a n n i n g 3 4 Command

  7. Dual axis radiographic hydrodynamic test facility. Final environmental impact statement, Volume 2: Public comments and responses

    SciTech Connect (OSTI)

    1995-08-01

    On May 12, 1995, the U.S. Department of Energy (DOE) issued the draft Dual Axis Radiographic Hydrodynamic Test Facility Environmental Impact Statement (DARHT EIS) for review by the State of New Mexico, Indian Tribes, local governments, other Federal agencies, and the general public. DOE invited comments on the accuracy and adequacy of the draft EIS and any other matters pertaining to their environmental reviews. The formal comment period ran for 45 days, to June 26, 1995, although DOE indicated that late comments would be considered to the extent possible. As part of the public comment process, DOE held two public hearings in Los Alamos and Santa Fe, New Mexico, on May 31 and June 1, 1995. In addition, DOE made the draft classified supplement to the DARHT EIS available for review by appropriately cleared individuals with a need to know the classified information. Reviewers of the classified material included the State of New Mexico, the U.S. Environmental Protection Agency, the Department of Defense, and certain Indian Tribes. Volume 2 of the final DARHT EIS contains three chapters. Chapter 1 includes a collective summary of the comments received and DOE`s response. Chapter 2 contains the full text of the public comments on the draft DARHT EIS received by DOE. Chapter 3 contains DOE`s responses to the public comments and an indication as to how the comments were considered in the final EIS.

  8. Hydrodynamic simulation of non-thermal pressure profiles of galaxy clusters

    SciTech Connect (OSTI)

    Nelson, Kaylea; Nagai, Daisuke; Lau, Erwin T.

    2014-09-01

    Cosmological constraints from X-ray and microwave observations of galaxy clusters are subjected to systematic uncertainties. Non-thermal pressure support due to internal gas motions in galaxy clusters is one of the major sources of astrophysical uncertainties. Using a mass-limited sample of galaxy clusters from a high-resolution hydrodynamical cosmological simulation, we characterize the non-thermal pressure fraction profile and study its dependence on redshift, mass, and mass accretion rate. We find that the non-thermal pressure fraction profile is universal across redshift when galaxy cluster radii are defined with respect to the mean matter density of the universe instead of the commonly used critical density. We also find that the non-thermal pressure is predominantly radial, and the gas velocity anisotropy profile exhibits strong universality when galaxy cluster radii are defined with respect to the mean matter density of the universe. However, we find that the non-thermal pressure fraction is strongly dependent on the mass accretion rate of the galaxy cluster. We provide fitting formulae for the universal non-thermal pressure fraction and velocity anisotropy profiles of gas in galaxy clusters, which should be useful in modeling astrophysical uncertainties pertinent to using galaxy clusters as cosmological probes.

  9. Hydrodynamic Modeling of Air Blast Propagation from the Humble Redwood Chemical High Explosive Detonations Using GEODYN

    SciTech Connect (OSTI)

    Chipman, V D

    2011-09-20

    Two-dimensional axisymmetric hydrodynamic models were developed using GEODYN to simulate the propagation of air blasts resulting from a series of high explosive detonations conducted at Kirtland Air Force Base in August and September of 2007. Dubbed Humble Redwood I (HR-1), these near-surface chemical high explosive detonations consisted of seven shots of varying height or depth of burst. Each shot was simulated numerically using GEODYN. An adaptive mesh refinement scheme based on air pressure gradients was employed such that the mesh refinement tracked the advancing shock front where sharp discontinuities existed in the state variables, but allowed the mesh to sufficiently relax behind the shock front for runtime efficiency. Comparisons of overpressure, sound speed, and positive phase impulse from the GEODYN simulations were made to the recorded data taken from each HR-1 shot. Where the detonations occurred above ground or were shallowly buried (no deeper than 1 m), the GEODYN model was able to simulate the sound speeds, peak overpressures, and positive phase impulses to within approximately 1%, 23%, and 6%, respectively, of the actual recorded data, supporting the use of numerical simulation of the air blast as a forensic tool in determining the yield of an otherwise unknown explosion.

  10. HEAVY DUST OBSCURATION OF z = 7 GALAXIES IN A COSMOLOGICAL HYDRODYNAMIC SIMULATION

    SciTech Connect (OSTI)

    Kimm, Taysun; Cen, Renyue

    2013-10-10

    Hubble Space Telescope observations with the Wide Field Camera 3/Infrared reveal that galaxies at z ? 7 have very blue ultraviolet (UV) colors, consistent with these systems being dominated by young stellar populations with moderate or little attenuation by dust. We investigate UV and optical properties of the high-z galaxies in the standard cold dark matter model using a high-resolution adaptive mesh refinement cosmological hydrodynamic simulation. For this purpose, we perform panchromatic three-dimensional dust radiative transfer calculations on 198 galaxies of stellar mass 5 × 10{sup 8}-3 × 10{sup 10} M{sub ?} with three parameters: the dust-to-metal ratio, the extinction curve, and the fraction of directly escaped light from stars (f{sub esc}). Our stellar mass function is found to be in broad agreement with Gonzalez et al., independent of these parameters. We find that our heavily dust-attenuated galaxies (A{sub V} ? 1.8) can also reasonably match modest UV-optical colors, blue UV slopes, as well as UV luminosity functions, provided that a significant fraction (?10%) of light directly escapes from them. The observed UV slope and scatter are better explained with a Small-Magellanic-Cloud-type extinction curve, whereas a Milky-Way-type curve also predicts blue UV colors due to the 2175 Ĺ bump. We expect that upcoming observations by the Atacama Large Millimeter/submillimeter Array will be able to test this heavily obscured model.

  11. THE GENERAL RELATIVISTIC EQUATIONS OF RADIATION HYDRODYNAMICS IN THE VISCOUS LIMIT

    SciTech Connect (OSTI)

    Coughlin, Eric R.; Begelman, Mitchell C. E-mail: mitch@jila.colorado.edu

    2014-12-20

    We present an analysis of the general relativistic Boltzmann equation for radiation, appropriate to the case where particles and photons interact through Thomson scattering, and derive the radiation energy-momentum tensor in the diffusion limit with viscous terms included. Contrary to relativistic generalizations of the viscous stress tensor that appear in the literature, we find that the stress tensor should contain a correction to the comoving energy density proportional to the divergence of the four-velocity, as well as a finite bulk viscosity. These modifications are consistent with the framework of radiation hydrodynamics in the limit of large optical depth, and do not depend on thermodynamic arguments such as the assignment of a temperature to the zeroth-order photon distribution. We perform a perturbation analysis on our equations and demonstrate that as long as the wave numbers do not probe scales smaller than the mean free path of the radiation, the viscosity contributes only decaying, i.e., stable, corrections to the dispersion relations. The astrophysical applications of our equations, including jets launched from super-Eddington tidal disruption events and those from collapsars, are discussed and will be considered further in future papers.

  12. Hydrodynamic Modeling Analysis for Leque Island and zis a ba Restoration Feasibility Study

    SciTech Connect (OSTI)

    Whiting, Jonathan M.; Khangaonkar, Tarang

    2015-01-31

    Ducks Unlimited, Inc. in collaboration with Washington State Department of Fish and Wildlife (WDFW), and Stillaguamish Tribe of Indians have proposed the restoration of Leque Island and zis a ba (formerly Matterand) sites near the mouth of Old Stillaguamish River Channel in Port Susan Bay, Washington. The Leque Island site, which is owned by WDFW, consists of nearly 253 acres of land south of Highway 532 that is currently behind a perimeter dike. The 90-acres zis a ba site, also shielded by dikes along the shoreline, is located just upstream of Leque Island and is owned by Stillaguamish Tribes. The proposed actions consider the removal or modification of perimeter dikes at both locations to allow estuarine functions to be restored. The overall objective of the proposed projects is to remove the dike barriers to 1) provide connectivity and access between the tidal river channel and the restoration site for use by juvenile migrating salmon and 2) create a self-sustaining tidal marsh habitat. Ducks Unlimited engaged Pacific Northwest National Laboratory (PNNL) to develop a three-dimensional hydrodynamic model of the Port Susan Bay, Skagit Bay, and the interconnecting Leque Island region for use in support of the feasibility assessment for the Leque Island and zis a ba restoration projects. The objective of this modeling-based feasibility assessment is to evaluate the performance of proposed restoration actions in terms of achieving habitat goals while assessing the potential hydraulic and sediment transport impacts to the site and surrounding parcels of land.

  13. Hydrodynamic injection with pneumatic valving for microchip electrophoresis with total analyte utilization

    SciTech Connect (OSTI)

    Sun, Xuefei; Kelly, Ryan T.; Danielson, William F.; Agrawal, Nitin; Tang, Keqi; Smith, Richard D.

    2011-04-26

    A novel hydrodynamic injector that is directly controlled by a pneumatic valve has been developed for reproducible microchip capillary electrophoresis (CE) separations. The poly(dimethylsiloxane) (PDMS) devices used for evaluation comprise a separation channel, a side channel for sample introduction, and a pneumatic valve aligned at the intersection of the channels. A low pressure (? 3 psi) applied to the sample reservoir is sufficient to drive sample into the separation channel. The rapidly actuated pneumatic valve enables injection of discrete sample plugs as small as ~100 pL for CE separation. The injection volume can be easily controlled by adjusting the intersection geometry, the solution back pressure and the valve actuation time. Sample injection could be reliably operated at different frequencies (< 0.1 Hz to >2 Hz) with good reproducibility (peak height relative standard deviation ? 3.6%) and no sampling biases associated with the conventional electrokinetic injections. The separation channel was dynamically coated with a cationic polymer, and FITC-labeled amino acids were employed to evaluate the CE separation. Highly efficient (? 7.0 × 103 theoretical plates for the ~2.4 cm long channel) and reproducible CE separations were obtained. The demonstrated method has numerous advantages compared with the conventional techniques, including repeatable and unbiased injections, no sample waste, high duty cycle, controllable injected sample volume, and fewer electrodes with no need for voltage switching. The prospects of implementing this injection method for coupling multidimensional separations, for multiplexing CE separations and for sample-limited bioanalyses are discussed.

  14. THE DISTRIBUTION OF SATELLITES AROUND CENTRAL GALAXIES IN A COSMOLOGICAL HYDRODYNAMICAL SIMULATION

    SciTech Connect (OSTI)

    Dong, X. C.; Lin, W. P.; Wang, Yang Ocean; Kang, X.; Dutton, Aaron A.; Macciň, Andrea V. E-mail: kangxi@pmo.ac.cn

    2014-08-20

    Observations have shown that the spatial distribution of satellite galaxies is not random, but rather is aligned with the major axes of central galaxies (CGs). The strength of the alignment is dependent on the properties of both the satellites and centrals. Theoretical studies using dissipationless N-body simulations are limited by their inability to directly predict the shape of CGs. Using hydrodynamical simulations including gas cooling, star formation, and feedback, we carry out a study of galaxy alignment and its dependence on the galaxy properties predicted directly from the simulations. We found that the observed alignment signal is well produced, as is the color dependence: red satellites and red centrals both show stronger alignments than their blue counterparts. The reason for the stronger alignment of red satellites is that most of them stay in the inner region of the dark matter halo where the shape of the CG better traces the dark matter distribution. The dependence of alignment on the color of CGs arises from the halo mass dependence, since the alignment between the shape of the central stellar component and the inner halo increases with halo mass. We also find that the alignment of satellites is most strongly dependent on their metallicity, suggesting that the metallicity of satellites, rather than color, is a better tracer of galaxy alignment on small scales. This could be tested in future observational studies.

  15. HYDRODYNAMICS OF CORE-COLLAPSE SUPERNOVAE AT THE TRANSITION TO EXPLOSION. I. SPHERICAL SYMMETRY

    SciTech Connect (OSTI)

    Fernandez, Rodrigo [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)

    2012-04-20

    We study the transition to runaway expansion of an initially stalled core-collapse supernova shock. The neutrino luminosity, mass accretion rate, and neutrinospheric radius are all treated as free parameters. In spherical symmetry, this transition is mediated by a global non-adiabatic instability that develops on the advection time and reaches nonlinear amplitude. Here, we perform high-resolution, time-dependent hydrodynamic simulations of stalled supernova shocks with realistic microphysics to analyze this transition. We find that radial instability is a sufficient condition for runaway expansion if the neutrinospheric parameters do not vary with time and if heating by the accretion luminosity is neglected. For a given unstable mode, transition to runaway occurs when fluid in the gain region reaches positive specific energy. We find approximate instability criteria that accurately describe the behavior of the system over a wide region of parameter space. The threshold neutrino luminosities are in general different than the limiting value for a steady-state solution. We hypothesize that multidimensional explosions arise from the excitation of unstable large-scale modes of the turbulent background flow, at threshold luminosities that are lower than in the laminar case.

  16. Hydrodynamic models for slurry bubble column reactors. Sixth technical progress report

    SciTech Connect (OSTI)

    Gidaspow, D.

    1996-01-01

    The objective of this investigation is to convert the gas-solid-liquid fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and the volume fractions of gas, liquid and particulate phases. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. This report presents measurements of granular temperature of Air Products catalyst. The report is in the form of a preliminary paper, entitled ``Dynamics of Liquid-Solid Fluidized Beds with Small Catalyst Particles.`` The principal results are as follows: (1) For the liquid-solid system the granular temperature is much smaller than for a corresponding gas-solid system. This may be due to the larger viscosity of the liquid in comparison to air. (2) The collisional viscosity of the catalyst is correspondingly much smaller than that of catalyst particles in the air. (3) The dominant frequency of density oscillations is near two Hertz, as expected for a gas-solid fluidized bed. There exists a link between this low frequency and the high frequency of catalyst particle oscillations. The Air Products fluidized bed reactor is designed to produce methanol and synthetic fuels from synthesis gas.

  17. Smolt Responses to Hydrodynamic Conditions in Forebay Flow Nets of Surface Flow Outlets, 2007

    SciTech Connect (OSTI)

    Johnson, Gary E.; Richmond, Marshall C.; Hedgepeth, J. B.; Ploskey, Gene R.; Anderson, Michael G.; Deng, Zhiqun; Khan, Fenton; Mueller, Robert P.; Rakowski, Cynthia L.; Sather, Nichole K.; Serkowski, John A.; Steinbeck, John R.

    2009-04-01

    This study provides information on juvenile salmonid behaviors at McNary and The Dalles dams that can be used by the USACE, fisheries resource managers, and others to support decisions on long-term measures to enhance fish passage. We researched smolt movements and ambient hydrodynamic conditions using a new approach combining simultaneous acoustic Doppler current profiler (ADCP) and acoustic imaging device (AID) measurements at surface flow outlets (SFO) at McNary and The Dalles dams on the Columbia River during spring and summer 2007. Because swimming effort vectors could be computed from the simultaneous fish and flow data, fish behavior could be categorized as passive, swimming against the flow (positively rheotactic), and swimming with the flow (negatively rheotactic). We present bivariate relationships to provide insight into fish responses to particular hydraulic variables that engineers might consider during SFO design. The data indicate potential for this empirical approach of simultaneous water/fish measurements to lead to SFO design guidelines in the future.

  18. Computation of Nonlinear Hydrodynamic Loads on Floating Wind Turbines Using Fluid-Impulse Theory: Preprint

    SciTech Connect (OSTI)

    Kok Yan Chan, G.; Sclavounos, P. D.; Jonkman, J.; Hayman, G.

    2015-04-02

    A hydrodynamics computer module was developed for the evaluation of the linear and nonlinear loads on floating wind turbines using a new fluid-impulse formulation for coupling with the FAST program. The recently developed formulation allows the computation of linear and nonlinear loads on floating bodies in the time domain and avoids the computationally intensive evaluation of temporal and nonlinear free-surface problems and efficient methods are derived for its computation. The body instantaneous wetted surface is approximated by a panel mesh and the discretization of the free surface is circumvented by using the Green function. The evaluation of the nonlinear loads is based on explicit expressions derived by the fluid-impulse theory, which can be computed efficiently. Computations are presented of the linear and nonlinear loads on the MIT/NREL tension-leg platform. Comparisons were carried out with frequency-domain linear and second-order methods. Emphasis was placed on modeling accuracy of the magnitude of nonlinear low- and high-frequency wave loads in a sea state. Although fluid-impulse theory is applied to floating wind turbines in this paper, the theory is applicable to other offshore platforms as well.

  19. Verification of coronal loop diagnostics using realistic three-dimensional hydrodynamic models

    SciTech Connect (OSTI)

    Winebarger, Amy R.; Lionello, Roberto; Linker, Jon A.; Miki?, Zoran; Mok, Yung E-mail: lionel@predsci.com E-mail: mikicz@predsci.com

    2014-11-10

    Many different techniques have been used to characterize the plasma in the solar corona: density-sensitive spectral line ratios are used to infer the density, the evolution of coronal structures in different passbands is used to infer the temperature evolution, and the simultaneous intensities measured in multiple passbands are used to determine the emission measure distributions. All these analysis techniques assume that the intensity of the structures can be isolated through background subtraction. In this paper, we use simulated observations from a three-dimensional hydrodynamic simulation of a coronal active region to verify these diagnostics. The density and temperature from the simulation are used to generate images in several passbands and spectral lines. We identify loop structures in the simulated images and calculate the background. We then determine the density, temperature, and emission measure distribution as a function of time from the observations and compare these with the true temperature and density of the loop. We find that the overall characteristics of the temperature, density, and emission measure are recovered by the analysis methods, but the details are not. For instance, the emission measure curves calculated from the simulated observations are much broader than the true emission measure distribution, though the average temperature evolution is similar. These differences are due, in part, to a limitation of the analysis methods, but also to inadequate background subtraction.

  20. HYDRODYNAMIC MODELS FOR SLURRY BUBBLE COLUMN REACTORS. FINAL TECHNICAL REPORT ALSO INCLUDES THE QUARTERLY TECHNICAL REPORT FOR THE PERIOD 01/01/1997 - 03/31/1997.

    SciTech Connect (OSTI)

    DIMITRI GIDASPOW

    1997-08-15

    The objective of this study is to develop a predictive experimentally verified computational fluid dynamic (CFD) three phase model. It predicts the gas, liquid and solid hold-ups (volume fractions) and flow patterns in the industrially important bubble-coalesced (churn-turbulent) regime. The input into the model can be either particulate viscosities as measured with a Brookfield viscometer or effective restitution coefficient for particles. A combination of x-ray and {gamma}-ray densitometers was used to measure solid and liquid volume fractions. There is a fair agreement between the theory and the experiment. A CCD camera was used to measure instantaneous particle velocities. There is a good agreement between the computed time average velocities and the measurements. There is an excellent agreement between the viscosity of 800 {micro}m glass beads obtained from measurement of granular temperature (random kinetic energy of particles) and the measurement using a Brookfield viscometer. A relation between particle Reynolds stresses and granular temperature was found for developed flow. Such measurement and computations gave a restitution coefficient for a methanol catalyst to be about 0.9. A transient, two-dimensional hydrodynamic model for production of methanol from syn-gas in an Air Products/DOE LaPorte slurry bubble column reactor was developed. The model predicts downflow of catalyst at the walls and oscillatory particle and gas flow at the center, with a frequency of about 0.7 Hertz. The computed temperature variation in the rector with heat exchangers was only about 5 K, indicating good thermal management. The computed slurry height, the gas holdup and the rate of methanol production agree with LaPorte's reported data. Unlike the previous models in the literature, this model computes the gas and the particle holdups and the particle rheology. The only adjustable parameter in the model is the effective particle restitution coefficient.