Sample records for warfare center hydrodynamic

  1. Naval Undersea Warfare Center Division Newport utilities metering, Phase 1

    SciTech Connect (OSTI)

    Carroll, D.M.

    1992-11-01T23:59:59.000Z

    Pacific Northwest Laboratory developed this report for the US Navy's Naval Undersea Warfare Center Division Newport, Rhode Island (NUWC). The purpose of the report was to review options for metering electricity and steam used in the NUWC compound, and to make recommendations to NUWC for implementation under a follow-on project. An additional NUWC concern is a proposed rate change by the servicing utility, Newport Electric, which would make a significant shift from consumption to demand billing, and what effect that rate change would have on the NUWC utility budget. Automated, remote reading meters are available which would allow NUWC to monitor its actual utility consumption and demand for both the entire NUWC compound and by end-use in individual buildings. Technology is available to perform the meter reads and manipulate the data using a personal computer with minimal staff requirement. This is not meant to mislead the reader into assuming that there is no requirement for routine preventive maintenance. All equipment requires routine maintenance to maintain its accuracy. While PNL reviewed the data collected during the site visit, however, it became obvious that significant opportunities exist for reducing the utility costs other than accounting for actual consumption and demand. Unit costs for both steam and electricity are unnecessarily high, and options are presented in this report for reducing them. Additionally, NUWC has an opportunity to undertake a comprehensive energy resource management program to significantly reduce its energy demand, consumption, and costs.

  2. Naval Undersea Warfare Center Division Newport utilities metering, Phase 1

    SciTech Connect (OSTI)

    Carroll, D.M.

    1992-11-01T23:59:59.000Z

    Pacific Northwest Laboratory developed this report for the US Navy`s Naval Undersea Warfare Center Division Newport, Rhode Island (NUWC). The purpose of the report was to review options for metering electricity and steam used in the NUWC compound, and to make recommendations to NUWC for implementation under a follow-on project. An additional NUWC concern is a proposed rate change by the servicing utility, Newport Electric, which would make a significant shift from consumption to demand billing, and what effect that rate change would have on the NUWC utility budget. Automated, remote reading meters are available which would allow NUWC to monitor its actual utility consumption and demand for both the entire NUWC compound and by end-use in individual buildings. Technology is available to perform the meter reads and manipulate the data using a personal computer with minimal staff requirement. This is not meant to mislead the reader into assuming that there is no requirement for routine preventive maintenance. All equipment requires routine maintenance to maintain its accuracy. While PNL reviewed the data collected during the site visit, however, it became obvious that significant opportunities exist for reducing the utility costs other than accounting for actual consumption and demand. Unit costs for both steam and electricity are unnecessarily high, and options are presented in this report for reducing them. Additionally, NUWC has an opportunity to undertake a comprehensive energy resource management program to significantly reduce its energy demand, consumption, and costs.

  3. United States Naval Surface Warfare Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AG UMaAG JumpEuropeUnitedUnitedLSC JumpNaval

  4. Environmental assessment, aircraft chemical warfare survivability test program, Naval Air Warfare Center, Aircraft Division, Patuxent River, Maryland

    SciTech Connect (OSTI)

    NONE

    1992-02-01T23:59:59.000Z

    The proposed project, the Aircraft Chemical Warfare Survivability Test Program at Patuxent River Naval Air Station, involves the testing and development of aircraft systems and operating procedures for use in an environment contaminated with chemical/biological warfare agents. The tests will be performed in accordance with a directive from the chief of Naval Operations to obtain and maintain the capability to operate in a chemically-contaminated environment. These tests will be performed under outdoor, warm-weather conditions on a dredge disposal area and adjacent runways to simulate the conditions under which a real-life threat would be encountered.

  5. Establishment of the United States Navy Mine Warfare Center of Excellence in the Corpus Christi Bay Area, Texas

    SciTech Connect (OSTI)

    Kosclski, J.L.; Boyer, R. [Turner Collie and Braden, Inc., Houston, TX (United States); Sloger, W. [Naval Facilities Engineering Command, North Charleston, SC (United States). Southern Div.

    1997-08-01T23:59:59.000Z

    The proposed establishment of the US Navy Mine Warfare Center of Excellence (MWCE) in the Corpus Christi Bay Area, Texas, involved the collocation of the Navy`s Mine Warfare and Mine Counter Measures assets in proximity to each other at Naval Station (NAVSTA) Ingleside and Naval Air Station (NAS) Corpus Christi, Texas. Collocation of these Navy forces would provide significant advantages in meeting mission and operational requirements. This action would improve the operational training and readiness of the forces. In addition to new construction or modifications at NAVSTA Ingleside, NAS Corpus Christi, and off-base; the establishment of offshore training and operating areas was required. When the project was first proposed in 1993, considerable concern was expressed by environmental interests, shrimpers, and state and federal resource agencies regarding the impact of the proposed training activities within Gulf waters. The Navy and Turner Collie and Braden, Inc., under contract to the Navy, conducted several technical studies and extensive coordination with concerned interests during the environmental impact statement process to identify and document the potential intensity, magnitude, and duration of impact from each proposed training activity.

  6. ELECTRONIC WARFARE NOVEMBER 2012

    E-Print Network [OSTI]

    US Army Corps of Engineers

    FM 3-36 ELECTRONIC WARFARE NOVEMBER 2012 DISTRIBUTION RESTRICTION: Approved for public release Electronic Warfare Contents Page PREFACE..............................................................................................................iv Chapter 1 ELECTRONIC WARFARE OVERVIEW ............................................................ 1

  7. Positioning Security from electronic warfare

    E-Print Network [OSTI]

    Kuhn, Markus

    Positioning Security from electronic warfare to cheating RFID and road-tax systems Markus Kuhn;Military positioning-security concerns Electronic warfare is primarily about denying or falsifying location of the importance of global positioning security has led to the military discipline of "navigation warfare". 5 #12

  8. Sandia National Laboratories: Carderock Naval Surface War-fare...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carderock Naval Surface War-fare Center Inter-Agency Agreement Signed between DOE's Wind and Water Power Program and Carderock On December 3, 2014, in Energy, News, News & Events,...

  9. Center-to-Limb Variation of Solar 3-D Hydrodynamical Simulations

    E-Print Network [OSTI]

    L. Koesterke; C. Allende Prieto; D. L. Lambert

    2008-02-15T23:59:59.000Z

    We examine closely the solar Center-to-Limb variation of continua and lines and compare observations with predictions from both a 3-D hydrodynamic simulation of the solar surface (provided by M. Asplund and collaborators) and 1-D model atmospheres. Intensities from the 3-D time series are derived by means of the new synthesis code ASSET, which overcomes limitations of previously available codes by including a consistent treatment of scattering and allowing for arbitrarily complex line and continuum opacities. In the continuum, we find very similar discrepancies between synthesis and observation for both types of model atmospheres. This is in contrast to previous studies that used a ``horizontally'' and time averaged representation of the 3-D model and found a significantly larger disagreement with observations. The presence of temperature and velocity fields in the 3-D simulation provides a significant advantage when it comes to reproduce solar spectral line shapes. Nonetheless, a comparison of observed and synthetic equivalent widths reveals that the 3-D model also predicts more uniform abundances as a function of position angle on the disk. We conclude that the 3-D simulation provides not only a more realistic description of the gas dynamics, but, despite its simplified treatment of the radiation transport, it also predicts reasonably well the observed Center-to-Limb variation, which is indicative of a thermal structure free from significant systematic errors.

  10. Analytic tools for information warfare

    SciTech Connect (OSTI)

    Vandewart, R.L.; Craft, R.L.

    1996-05-01T23:59:59.000Z

    Information warfare and system surety (tradeoffs between system functionality, security, safety, reliability, cost, usability) have many mechanisms in common. Sandia`s experience has shown that an information system must be assessed from a {ital system} perspective in order to adequately identify and mitigate the risks present in the system. While some tools are available to help in this work, the process is largely manual. An integrated, extensible set of assessment tools would help the surety analyst. This paper describes one approach to surety assessment used at Sandia, identifies the difficulties in this process, and proposes a set of features desirable in an automated environment to support this process.

  11. Proceedings of RIKEN BNL Research Center Workshop entitled Hydrodynamics in Heavy Ion Collisions and QCD Equation of State (Volume 88)

    SciTech Connect (OSTI)

    Karsch,F.; Kharzeev, D.; Molnar, K.; Petreczky, P.; Teaney, D.

    2008-04-21T23:59:59.000Z

    The interpretation of relativistic heavy-ion collisions at RHIC energies with thermal concepts is largely based on the relative success of ideal (nondissipative) hydrodynamics. This approach can describe basic observables at RHIC, such as particle spectra and momentum anisotropies, fairly well. On the other hand, recent theoretical efforts indicate that dissipation can play a significant role. Ideally viscous hydrodynamic simulations would extract, if not only the equation of state, but also transport coefficients from RHIC data. There has been a lot of progress with solving relativistic viscous hydrodynamics. There are already large uncertainties in ideal hydrodynamics calculations, e.g., uncertainties associated with initial conditions, freezeout, and the simplified equations of state typically utilized. One of the most sensitive observables to the equation of state is the baryon momentum anisotropy, which is also affected by freezeout assumptions. Up-to-date results from lattice quantum chromodynamics on the transition temperature and equation of state with realistic quark masses are currently available. However, these have not yet been incorporated into the hydrodynamic calculations. Therefore, the RBRC workshop 'Hydrodynamics in Heavy Ion Collisions and QCD Equation of State' aimed at getting a better understanding of the theoretical frameworks for dissipation and near-equilibrium dynamics in heavy-ion collisions. The topics discussed during the workshop included techniques to solve the dynamical equations and examine the role of initial conditions and decoupling, as well as the role of the equation of state and transport coefficients in current simulations.

  12. Intelligent Command and Control Agent in Electronic Warfare Settings

    E-Print Network [OSTI]

    Noh, Sanguk

    Intelligent Command and Control Agent in Electronic Warfare Settings Sanguk Noh,1, Unseob Jeong2, 1Ã?cation, and the selection of alternative countermeasures against threats in electronic warfare settings. We introduce in simulated electronic warfare settings. C 2010 Wiley Periodicals, Inc. 1. INTRODUCTION To counter

  13. NEW: Network-Enabled Electronic Warfare for Target

    E-Print Network [OSTI]

    Cheng, Xiuzhen "Susan"

    NEW: Network-Enabled Electronic Warfare for Target Recognition QILIAN LIANG University of Texas-enabled electronic warfare (NEW) is the development of modeling and simulation efforts that explore the advantages-enabled electronic warfare (NEW) is the form of electronic combat used in NCW. Focus is placed on a network

  14. Computational models of intergroup competition and warfare.

    SciTech Connect (OSTI)

    Letendre, Kenneth (University of New Mexico); Abbott, Robert G.

    2011-11-01T23:59:59.000Z

    This document reports on the research of Kenneth Letendre, the recipient of a Sandia Graduate Research Fellowship at the University of New Mexico. Warfare is an extreme form of intergroup competition in which individuals make extreme sacrifices for the benefit of their nation or other group to which they belong. Among animals, limited, non-lethal competition is the norm. It is not fully understood what factors lead to warfare. We studied the global variation in the frequency of civil conflict among countries of the world, and its positive association with variation in the intensity of infectious disease. We demonstrated that the burden of human infectious disease importantly predicts the frequency of civil conflict and tested a causal model for this association based on the parasite-stress theory of sociality. We also investigated the organization of social foraging by colonies of harvester ants in the genus Pogonomyrmex, using both field studies and computer models.

  15. air defense warfare: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for FORCEnet Cruise Missile Defense by Juan G. Camacho; Lawrence F. Guest; Belen M. Hernandez; Thomas M in Systems Engineering (MSSE) Cohort 5 from the Naval Surface Warfare...

  16. History 383: Warfare in the Twentieth Century Spring 2014

    E-Print Network [OSTI]

    McShea, Daniel W.

    1 History 383: Warfare in the Twentieth Century Spring 2014 Carr Room 114 Wednesdays and Fridays on guerrilla and irregular warfare, due on Wednesday, April 2 before class; OR a paper on intelligence and war: No Electronics in Class: Please do not use laptops, cell phones, or other electronic devices during class. If you

  17. Navy Warfare Development Command (NWDC) is hosting a Pacific Rim Innovation Symposium on October 10-11, 2012, at the SPAWAR Center in San Diego, Ca., for junior leaders from E-5 to O-5. The event is scheduled to start at 12:00

    E-Print Network [OSTI]

    Navy Warfare Development Command (NWDC) is hosting a Pacific Rim Innovation Symposium on October 10 will be brought forward to senior Navy leadership. Agenda: 10 OCT (All Times Pacific Daylight Time) 1200 Welcome of Breakout Group Issues 1730 Adjourn for the Day 11 OCT 1200 Navy Innovation Resources, CAPT David Tyler, ACo

  18. air warfare center: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    City Florida. Please send Idaho, University of 76 Updated 1-12 Dr. Ronald E. Smiley Materials Science Websites Summary: served as NAVAIR's Director for Corporate Operations...

  19. An Outline of the Three-Layer Survivability Analysis Architecture for Strategic Information Warfare Research

    E-Print Network [OSTI]

    Krings, Axel W.

    An Outline of the Three-Layer Survivability Analysis Architecture for Strategic Information Warfare of strategic information warfare. To simplify the research problem, we assume that the information warfare (IW) is conducted in an isolated paradigm, which we call an electronic cosmos (e- cosmos), i.e., independent

  20. Tissue-based standoff biosensors for detecting chemical warfare agents

    DOE Patents [OSTI]

    Greenbaum, Elias; Sanders, Charlene A.

    2003-11-18T23:59:59.000Z

    A tissue-based, deployable, standoff air quality sensor for detecting the presence of at least one chemical or biological warfare agent, includes: a cell containing entrapped photosynthetic tissue, the cell adapted for analyzing photosynthetic activity of the entrapped photosynthetic tissue; means for introducing an air sample into the cell and contacting the air sample with the entrapped photosynthetic tissue; a fluorometer in operable relationship with the cell for measuring photosynthetic activity of the entrapped photosynthetic tissue; and transmitting means for transmitting analytical data generated by the fluorometer relating to the presence of at least one chemical or biological warfare agent in the air sample, the sensor adapted for deployment into a selected area.

  1. Network-centric Warfare and the Globalization of Technology: Transforming simple tools into dangerous weapons

    E-Print Network [OSTI]

    Oh, Ann

    2009-01-01T23:59:59.000Z

    simple tools into dangerous weapons New applications ofprogressive, but also dangerous when applied to warfare. Theabove, also a powerful and dangerous tool for terrorists to

  2. Subversion as a Threat in Information Warfare Emory A. Anderson1

    E-Print Network [OSTI]

    Irvine, Cynthia E.

    Subversion as a Threat in Information Warfare Emory A. Anderson1 , Cynthia E. Irvine2 , and Roger R-mail: Roger.Schell@aesec.com; ABSTRACT As adversaries develop Information Warfare capabilities, the threat for subversion, that this threat is real, and that it represents a significant vulnerability. Mitigation

  3. Warfare as an Agent of Culture Change: The Archaeology of Guerrilla Warfare on the 19th Century Missouri/Kansas Border

    E-Print Network [OSTI]

    Raab, Ann M.

    2012-05-31T23:59:59.000Z

    pattern recognition. This research investigates the socio-economic responses of households to this style of warfare, including restrictions on provisioning, contraction of trade networks, and the militarization of household economy as reflected in weapons...

  4. Hydrodynamics of vegetated channels

    E-Print Network [OSTI]

    Nepf, Heidi

    This paper highlights some recent trends in vegetation hydrodynamics, focusing on conditions within channels and spanning spatial scales from individual blades, to canopies or vegetation patches, to the channel reach. At ...

  5. Hydrodynamics of the Vacuum

    E-Print Network [OSTI]

    P. M. Stevenson

    2005-07-30T23:59:59.000Z

    Hydrodynamics is the appropriate "effective theory" for describing any fluid medium at sufficiently long length scales. This paper treats the vacuum as such a medium and derives the corresponding hydrodynamic equations. Unlike a normal medium the vacuum has no linear sound-wave regime; disturbances always "propagate" nonlinearly. For an "empty vacuum" the hydrodynamic equations are familiar ones (shallow water-wave equations) and they describe an experimentally observed phenomenon -- the spreading of a clump of zero-temperature atoms into empty space. The "Higgs vacuum" case is much stranger; pressure and energy density, and hence time and space, exchange roles. The speed of sound is formally infinite, rather than zero as in the empty vacuum. Higher-derivative corrections to the vacuum hydrodynamic equations are also considered. In the empty-vacuum case the corrections are of quantum origin and the post-hydrodynamic description corresponds to the Gross-Pitaevskii equation. I conjecture the form of the post-hydrodynamic corrections in the Higgs case. In the 1+1-dimensional case the equations possess remarkable `soliton' solutions and appear to constitute a new exactly integrable system.

  6. University of Michigan Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AG UMaAGUnitilMichigan Hydrodynamics Jump to:

  7. University of Minnesota Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AG UMaAGUnitilMichigan Hydrodynamics

  8. Unconventional Nuclear Warfare Defense (UNWD) containment and mitigation subtask.

    SciTech Connect (OSTI)

    Wente, William Baker

    2005-06-01T23:59:59.000Z

    The objective of this subtask of the Unconventional Nuclear Warfare Design project was to demonstrate mitigation technologies for radiological material dispersal and to assist planners with incorporation of the technologies into a concept of operations. The High Consequence Assessment and Technology department at Sandia National Laboratories (SNL) has studied aqueous foam's ability to mitigate the effects of an explosively disseminated radiological dispersal device (RDD). These benefits include particle capture of respirable radiological particles, attenuation of blast overpressure, and reduction of plume buoyancy. To better convey the aqueous foam attributes, SNL conducted a study using the Explosive Release Atmospheric Dispersion model, comparing the effects of a mitigated and unmitigated explosive RDD release. Results from this study compared health effects and land contamination between the two scenarios in terms of distances of effect, population exposure, and remediation costs. Incorporating aqueous foam technology, SNL created a conceptual design for a stationary containment area to be located at a facility entrance with equipment that could minimize the effects from the detonation of a vehicle transported RDD. The containment design was evaluated against several criteria, including mitigation ability (both respirable and large fragment particle capture as well as blast overpressure suppression), speed of implementation, cost, simplicity, and required space. A mock-up of the conceptual idea was constructed at SNL's 9920 explosive test site to demonstrate the containment design.

  9. Hydrodynamic instability in strong media

    SciTech Connect (OSTI)

    Bakhrakh, S.M.; Drennov, O.B.; Kovalev, N.P. [Russian Federal Nuclear Center (Russian Federation)] [and others

    1997-03-05T23:59:59.000Z

    This paper reviews the All Russian Scientific Research Institute of Experimental Physics open publications on hydrodynamic instability in strong media.

  10. Skew resisting hydrodynamic seal

    DOE Patents [OSTI]

    Conroy, William T. (Pearland, TX); Dietle, Lannie L. (Sugar Land, TX); Gobeli, Jeffrey D. (Houston, TX); Kalsi, Manmohan S. (Houston, TX)

    2001-01-01T23:59:59.000Z

    A novel hydrodynamically lubricated compression type rotary seal that is suitable for lubricant retention and environmental exclusion. Particularly, the seal geometry ensures constraint of a hydrodynamic seal in a manner preventing skew-induced wear and provides adequate room within the seal gland to accommodate thermal expansion. The seal accommodates large as-manufactured variations in the coefficient of thermal expansion of the sealing material, provides a relatively stiff integral spring effect to minimize pressure-induced shuttling of the seal within the gland, and also maintains interfacial contact pressure within the dynamic sealing interface in an optimum range for efficient hydrodynamic lubrication and environment exclusion. The seal geometry also provides for complete support about the circumference of the seal to receive environmental pressure, as compared the interrupted character of seal support set forth in U.S. Pat. Nos. 5,873,576 and 6,036,192 and provides a hydrodynamic seal which is suitable for use with non-Newtonian lubricants.

  11. Tissue-based water quality biosensors for detecting chemical warfare agents

    DOE Patents [OSTI]

    Greenbaum, Elias (Oak Ridge, TN); Sanders, Charlene A. (Knoxville, TN)

    2003-05-27T23:59:59.000Z

    A water quality sensor for detecting the presence of at least one chemical or biological warfare agent includes: a cell; apparatus for introducing water into the cell and discharging water from the cell adapted for analyzing photosynthetic activity of naturally occurring, free-living, indigenous photosynthetic organisms in water; a fluorometer for measuring photosynthetic activity of naturally occurring, free-living, indigenous photosynthetic organisms drawn into the cell; and an electronics package that analyzes raw data from the fluorometer and emits a signal indicating the presence of at least one chemical or biological warfare agent in the water.

  12. Simple Waves in Ideal Radiation Hydrodynamics

    E-Print Network [OSTI]

    Bryan M. Johnson

    2008-11-24T23:59:59.000Z

    In the dynamic diffusion limit of radiation hydrodynamics, advection dominates diffusion; the latter primarily affects small scales and has negligible impact on the large scale flow. The radiation can thus be accurately regarded as an ideal fluid, i.e., radiative diffusion can be neglected along with other forms of dissipation. This viewpoint is applied here to an analysis of simple waves in an ideal radiating fluid. It is shown that much of the hydrodynamic analysis carries over by simply replacing the material sound speed, pressure and index with the values appropriate for a radiating fluid. A complete analysis is performed for a centered rarefaction wave, and expressions are provided for the Riemann invariants and characteristic curves of the one-dimensional system of equations. The analytical solution is checked for consistency against a finite difference numerical integration, and the validity of neglecting the diffusion operator is demonstrated. An interesting physical result is that for a material component with a large number of internal degrees of freedom and an internal energy greater than that of the radiation, the sound speed increases as the fluid is rarefied. These solutions are an excellent test for radiation hydrodynamic codes operating in the dynamic diffusion regime. The general approach may be useful in the development of Godunov numerical schemes for radiation hydrodynamics.

  13. Load responsive hydrodynamic bearing

    DOE Patents [OSTI]

    Kalsi, Manmohan S. (Houston, TX); Somogyi, Dezso (Sugar Land, TX); Dietle, Lannie L. (Stafford, TX)

    2002-01-01T23:59:59.000Z

    A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.

  14. Effects on the Physical Environment (Hydrodynamics, Sediment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effects on the Physical Environment (Hydrodynamics, Sediment Transport, and Water Quality) Effects on the Physical Environment (Hydrodynamics, Sediment Transport, and Water...

  15. Historical background and some design desiderata for an electronic warfare training simulator

    E-Print Network [OSTI]

    Hutchens, Gary Claude

    1971-01-01T23:59:59.000Z

    to keep up with changes in aircraft configuration and instrmmntaticn. The Federal Aviation Agency (FAA) started certification of simulators so that for certain purposes simulator time could be substituted, hour- for-hour, for aircraft training timbre... to the National Aeronautics and Space Administration in Houston, Texas were made in the course of collecting the material for the histaries. The fourth section is a discussion of the present simulators used by the Air Force in training electric warfare...

  16. Delta Hydrodynamics and Water Salinity with Future Conditions

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    , Comparing Futures for the Sacramento-San Joaquin Delta, prepared by a team of researchers from the CenterDelta Hydrodynamics and Water Salinity with Future Conditions Technical Appendix C William E of California All rights reserved San Francisco, CA Short sections of text, not to exceed three paragraphs, may

  17. Hydrodynamics of Holographic Superconductors

    E-Print Network [OSTI]

    Irene Amado; Matthias Kaminski; Karl Landsteiner

    2009-06-17T23:59:59.000Z

    We study the poles of the retarded Green functions of a holographic superconductor. The model shows a second order phase transition where a charged scalar operator condenses and a U(1) symmetry is spontaneously broken. The poles of the holographic Green functions are the quasinormal modes in an AdS black hole background. We study the spectrum of quasinormal frequencies in the broken phase, where we establish the appearance of a massless or hydrodynamic mode at the critical temperature as expected for a second order phase transition. In the broken phase we find the pole representing second sound. We compute the speed of second sound and its attenuation length as function of the temperature. In addition we find a pseudo diffusion mode, whose frequencies are purely imaginary but with a non-zero gap at zero momentum. This gap goes to zero at the critical temperature. As a technical side result we explain how to calculate holographic Green functions and their quasinormal modes for a set of operators that mix under the RG flow.

  18. National Center for Digital Government Reflections on The Fog of (Cyber)War

    E-Print Network [OSTI]

    Schweik, Charles M.

    National Center for Digital Government Reflections on The Fog of (Cyber)War Diego. These assertions are: (a) Cyberspace is a new operational domain for waging war; (b) Cyber warfare can be as severe, it aims at reconnecting the idea of "fog of war" to its Clausewitzian roots, highlighting the importance

  19. Formation Interuniversitaire de Physique Hydrodynamics

    E-Print Network [OSTI]

    Balbus, Steven

    Formation Interuniversitaire de Physique Module : Hydrodynamics S. Balbus 1 #12;TO LEARN.8.3 Piston Driven into Gas Cylinder . . . . . . . . . . . . . 73 4.8.4 Driven Acoustic Modes . . . . . . . . . . . . . . . . 110 6.2.3 Inertial Drag of a Sphere by an Ideal Fluid . . . . . . . 113 6.3 Line Vortices and Flow

  20. DATA ASSIMILATION IN HYDRODYNAMIC MODELS

    E-Print Network [OSTI]

    modelling and Kalman filters. The thesis consists of a summary report and a collection of seven researchDATA ASSIMILATION IN HYDRODYNAMIC MODELS OF CONTINENTAL SHELF SEAS Jacob Viborg Tornfeldt Sørensen Informatics and Mathematical Modelling Technical University of Denmark Ph.D. Thesis No. 126 Kgs. Lyngby 2004

  1. Dynamical Spacetimes from Numerical Hydrodynamics

    E-Print Network [OSTI]

    Allan Adams; Nathan Benjamin; Arvin Moghaddam; Wojciech Musial

    2014-11-07T23:59:59.000Z

    We numerically construct dynamical asymptotically-AdS$_4$ metrics by evaluating the fluid/gravity metric on numerical solutions of dissipative hydrodynamics in (2+1) dimensions. The resulting numerical metrics satisfy Einstein's equations in (3+1) dimensions to high accuracy.

  2. Topological groundwater hydrodynamics Garrison Sposito

    E-Print Network [OSTI]

    Chen, Yiling

    Topological groundwater hydrodynamics Garrison Sposito Department of Civil and Environmental; received in revised form 10 November 2000; accepted 15 November 2000 Abstract Topological groundwater, the topological characteristics of groundwater ¯ows governed by the Darcy law are studied. It is demonstrated that

  3. Hydrodynamic Lyapunov Modes in Translation Invariant Systems

    E-Print Network [OSTI]

    Hydrodynamic Lyapunov Modes in Translation Invariant Systems Jean­Pierre Eckmann and Omri Gat De modes in the slowly growing part of the Lyapunov spectrum, which are analogous to the hydrodynamic modes)]. The hydrodynamic Lyapunov vectors loose the typical random structure and exhibit instead the structure of weakly

  4. Hydrodynamic Lyapunov Modes in Translation Invariant Systems

    E-Print Network [OSTI]

    Eckmann, Jean-Pierre

    Hydrodynamic Lyapunov Modes in Translation Invariant Systems Jean­Pierre Eckmann and Omri Gat De modes in the slowly growing part of the Lyapunov spectrum, which are analogous to the hydrodynamic modes)]. The hydrodynamic Lyapunov vectors loose the typical random structure and exhibit instead the structure of weakly

  5. Reevaluation of 1999 Health-Based Environmental Screening Levels (HBESLs) for Chemical Warfare Agents

    SciTech Connect (OSTI)

    Watson, Annetta Paule [ORNL; Dolislager, Fredrick G [ORNL

    2007-05-01T23:59:59.000Z

    This report evaluates whether new information and updated scientific models require that changes be made to previously published health-based environmental soil screening levels (HBESLs) and associated environmental fate/breakdown information for chemical warfare agents (USACHPPM 1999). Specifically, the present evaluation describes and compares changes that have been made since 1999 to U.S. Environmental Protection Agency (EPA) risk assessment models, EPA exposure assumptions, as well as to specific chemical warfare agent parameters (e.g., toxicity values). Comparison was made between screening value estimates recalculated with current assumptions and earlier health-based environmental screening levels presented in 1999. The chemical warfare agents evaluated include the G-series and VX nerve agents and the vesicants sulfur mustard (agent HD) and Lewisite (agent L). In addition, key degradation products of these agents were also evaluated. Study findings indicate that the combined effect of updates and/or changes to EPA risk models, EPA default exposure parameters, and certain chemical warfare agent toxicity criteria does not result in significant alteration to the USACHPPM (1999) health-based environmental screening level estimates for the G-series and VX nerve agents or the vesicant agents HD and L. Given that EPA's final position on separate Tier 1 screening levels for indoor and outdoor worker screening assessments has not yet been released as of May 2007, the study authors find that the 1999 screening level estimates (see Table ES.1) are still appropriate and protective for screening residential as well as nonresidential sites. As such, risk management decisions made on the basis of USACHPPM (1999) recommendations do not require reconsideration. While the 1999 HBESL values are appropriate for continued use as general screening criteria, the updated '2007' estimates (presented below) that follow the new EPA protocols currently under development are also protective. When EPA finalizes and documents a position on the matter of indoor and outdoor worker screening assessments, site-specific risk assessments should make use of modified models and criteria. Screening values such as those presented in this report may be used to assess soil or other porous media to determine whether chemical warfare agent contamination is present as part of initial site investigations (whether due to intentional or accidental releases) and to determine whether weather/decontamination has adequately mitigated the presence of agent residual to below levels of concern. However, despite the availability of scientifically supported health-based criteria, there are significant resources needs that should be considered during sample planning. In particular, few analytical laboratories are likely to be able to meet these screening levels. Analyses will take time and usually have limited confidence at these concentrations. Therefore, and particularly for the more volatile agents, soil/destructive samples of porous media should be limited and instead enhanced with headspace monitoring and presence-absence wipe sampling.

  6. Hydrodynamic Focusing Micropump Module with PDMS/Nickel Particle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergyCorrectiveHydrodynamic Focusing

  7. Hydrodynamic experiment provides key data for Stockpile Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen and Fuel Cell HydrogenHydrodynamic experiment

  8. Foundation of Hydrodynamics of Strongly Interacting Systems

    SciTech Connect (OSTI)

    Wong, Cheuk-Yin [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Hydrodynamics and quantum mechanics have many elements in common, as the density field and velocity fields are common variables that can be constructed in both descriptions. Starting with the Schroedinger equation and the Klein-Gordon for a single particle in hydrodynamical form, we examine the basic assumptions under which a quantum system of particles interacting through their mean fields can be described by hydrodynamics.

  9. Annual Report: Hydrodynamics and Radiative Hydrodynamics with Astrophysical Applications

    SciTech Connect (OSTI)

    R. Paul Drake

    2005-12-01T23:59:59.000Z

    We report the ongoing work of our group in hydrodynamics and radiative hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining high-quality scaling data using a backlit pinhole and obtaining the first (ever, anywhere) Thomson-scattering data from a radiative shock. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, obtaining the first (ever, anywhere) dual-axis radiographic data using backlit pinholes and ungated detectors. All these experiments have applications to astrophysics, discussed in the corresponding papers either in print or in preparation. We also have obtained preliminary radiographs of experimental targets using our x-ray source. The targets for the experiments have been assembled at Michigan, where we also prepare many of the simple components. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists.

  10. Dual Axis Radiographic Hydrodynamic Test Facility | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dual Axis Radiographic Hydrodynamic Test Facility | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  11. Hydrodynamic experiment conducted in Nevada | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Leda involve non-nuclear surrogate materials that mimic many of the properties of nuclear materials. Hydrodynamics refers to the physics involved when solids, under extreme...

  12. Ergoregion instability: The hydrodynamic vortex

    E-Print Network [OSTI]

    Leandro A. Oliveira; Vitor Cardoso; Luís C. B. Crispino

    2014-05-16T23:59:59.000Z

    Four-dimensional, asymptotically flat spacetimes with an ergoregion but no horizon have been shown to be linearly unstable against a superradiant-triggered mechanism. This result has wide implications in the search for astrophysically viable alternatives to black holes, but also in the understanding of black holes and Hawking evaporation. Here we investigate this instability in detail for a particular setup which can be realized in the laboratory: the {\\it hydrodynamic vortex}, an effective geometry for sound waves, with ergoregion and without an event horizon.

  13. Disruptive Innovation in Numerical Hydrodynamics

    SciTech Connect (OSTI)

    Waltz, Jacob I. [Los Alamos National Laboratory

    2012-09-06T23:59:59.000Z

    We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.

  14. Hydrodynamic forces on piggyback pipelines

    SciTech Connect (OSTI)

    Jakobsen, M.L.; Sayer, P. [Univ. of Strathclyde, Glasgow (United Kingdom)

    1995-12-31T23:59:59.000Z

    An increasing number of new offshore pipelines have been designed as bundles, mainly because of overall cost reductions. One popular way of combining two pipelines with different diameters is the piggyback configuration, with the smaller pipeline strapped on top of the main pipeline. The external hydrodynamic forces on this combination are at present very roughly estimated; pipeline engineers need more data to support their designs. This paper presents experimental results for the in-line hydrodynamic loading on three different piggyback set-ups. The models comprised a 0.4 m main pipeline, and three piggyback pipelines with diameters of 0.038 m, 0.059 m and 0.099 m. Each small pipeline was separately mounted to the main pipeline, with a gap equal to its own diameter. These model sizes lie approximately between half- and full-scale. Experiments were undertaken for K{sub C} between 5 and 42, and R{sub e} in the range 0.0 * 10{sup 4} to 8.5 * 10{sup 5}. The results based on Morison`s equation indicate that a simple addition of the separate forces acting on each cylinder underestimates the actual force by up to 35% at low K{sub C} (< {approximately} 10) and by as much as 100% in the drag-dominated regime (K{sub C} > {approximately} 20).

  15. Multifunctional ultra-high vacuum apparatus for studies of the interactions of chemical warfare agents on complex surfaces

    SciTech Connect (OSTI)

    Wilmsmeyer, Amanda R.; Morris, John R. [Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061 (United States)] [Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061 (United States); Gordon, Wesley O.; Mantooth, Brent A.; Lalain, Teri A. [Research and Technology Directorate, U.S. Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010 (United States)] [Research and Technology Directorate, U.S. Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010 (United States); Davis, Erin Durke [OptiMetrics, Inc., Abingdon, Maryland 21009 (United States)] [OptiMetrics, Inc., Abingdon, Maryland 21009 (United States)

    2014-01-15T23:59:59.000Z

    A fundamental understanding of the surface chemistry of chemical warfare agents is needed to fully predict the interaction of these toxic molecules with militarily relevant materials, catalysts, and environmental surfaces. For example, rules for predicting the surface chemistry of agents can be applied to the creation of next generation decontaminants, reactive coatings, and protective materials for the warfighter. Here, we describe a multifunctional ultra-high vacuum instrument for conducting comprehensive studies of the adsorption, desorption, and surface chemistry of chemical warfare agents on model and militarily relevant surfaces. The system applies reflection-absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and mass spectrometry to study adsorption and surface reactions of chemical warfare agents. Several novel components have been developed to address the unique safety and sample exposure challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science techniques may not necessarily translate directly to environmental processes, learning about the fundamental chemistry will begin to inform scientists about the critical aspects that impact real-world applications.

  16. Hydrodynamic Modeling and the QGP Shear Viscosity

    E-Print Network [OSTI]

    Huichao Song

    2012-07-10T23:59:59.000Z

    In this article, we will briefly review the recent progress on hydrodynamic modeling and the extraction of the quark-gluon plasma (QGP) specific shear viscosity with an emphasis on results obtained from the hybrid model VISHNU that couples viscous hydrodynamics for the macroscopic expansion of the QGP to the hadron cascade model for the microscopic evolution of the late hadronic stage.

  17. Causal dissipative hydrodynamics for heavy ion collisions

    E-Print Network [OSTI]

    Chaudhuri, A K

    2011-01-01T23:59:59.000Z

    We briefly discuss the recent developments in causal dissipative hydrodynamic for relativistic heavy ion collisions. Phenomenological estimate of QGP viscosity over entropy ratio from several experimental data, e.g. STAR's $\\phi$ meson data, centrality dependence of elliptic flow, universal scaling elliptic flow etc. are discussed. QGP viscosity, extracted from hydrodynamical model analysis can have very large systematic uncertainty due to uncertain initial conditions.

  18. Causal dissipative hydrodynamics for heavy ion collisions

    E-Print Network [OSTI]

    A. K. Chaudhuri

    2011-01-23T23:59:59.000Z

    We briefly discuss the recent developments in causal dissipative hydrodynamic for relativistic heavy ion collisions. Phenomenological estimate of QGP viscosity over entropy ratio from several experimental data, e.g. STAR's $\\phi$ meson data, centrality dependence of elliptic flow, universal scaling elliptic flow etc. are discussed. QGP viscosity, extracted from hydrodynamical model analysis can have very large systematic uncertainty due to uncertain initial conditions.

  19. Effects on the Physical Environment (Hydrodynamics, and Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Water Quality Food Web) Effects on the Physical Environment (Hydrodynamics, and Water Quality Food Web) Effects on the Physical Environment (Hydrodynamics, and Water Quality...

  20. A smoothed particle hydrodynamics model for reactive transport...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A smoothed particle hydrodynamics model for reactive transport and mineral precipitation in porous and fractured porous media. A smoothed particle hydrodynamics model for reactive...

  1. A multiblob approach to colloidal hydrodynamics with inherent lubrication

    E-Print Network [OSTI]

    Adolfo Vázquez-Quesada; Florencio Balboa Usabiaga; Rafael Delgado-Buscalioni

    2014-07-23T23:59:59.000Z

    This work presents an intermediate resolution model of the hydrodynamics of colloidal particles based on a mixed Eulerian-Lagrangian formulation. The particle is constructed with a small set of overlapping Peskin's Immersed Boundary kernels (blobs) which are held together by springs to build up a particle impenetrable core. Here, we used 12 blobs placed in the vertexes of an icosahedron with an extra one in its center. Although the particle surface is not explicitly resolved, we show that the short-distance hydrodynamic responses (flow profiles, translational and rotational mobilities, lubrication, etc) agree with spherical colloids and provide consistent effective radii. A remarkable property of the present multiblob model is that it naturally presents a "divergent" lubrication force at finite inter-particle distance. This permits to resolve the large viscosity increase at dense colloidal volume fractions. The intermediate resolution model is able to recover highly non-trivial (many-body) hydrodynamics using small particles whose radii are similar to the grid size $h$ (in the range $[1.6-3.2]\\,h$). Considering that the cost of the embedding fluid phase scales like the cube of the particle radius, this result brings about a significant computational speed-up. Our code Fluam works in Graphics Processor Units (GPU's) and uses Fast Fourier Transform for the Poisson solver, which further improves its efficiency.

  2. Hydrodynamic compressibility of high-strength ceramics

    SciTech Connect (OSTI)

    Grady, D.E.

    1993-08-01T23:59:59.000Z

    In this study we have developed the techniques to investigate the hydrodynamic response of high-strength ceramics by mixing these powders with copper powder, preparing compacts, and performing shock compression tests on these mixtures. Hydrodynamics properties of silicon carbide, titanium diboride, and boron carbide to 30 GPa were examined by this method, and hydrodynamic compression data for these ceramics have been determined. We have concluded, however, that the measurement method is sensitive to sample preparation and uncertainties in shock wave measurements. Application of the experimental technique is difficult and further efforts are needed.

  3. Solving the viscous hydrodynamics order by order

    E-Print Network [OSTI]

    Jian-Hua Gao; Shi Pu

    2014-09-02T23:59:59.000Z

    In this paper, we propose a method of solving the viscous hydrodynamics order by order in a derivative expansion. In such method, the zero order solution is just the one of the ideal hydrodynamics. All the other higher order corrections satisfy the same first-order partial differential equations but with different inhomogeneous terms. We therefore argue that our method could be easily extended to any orders. The problem of causality and stability will be released if the gradient expansion is guaranteed. This method might be of great help to both theoretical and numerical calculations of relativistic hydrodynamics.

  4. Shear viscosity, cavitation and hydrodynamics at LHC

    E-Print Network [OSTI]

    Jitesh R. Bhatt; Hiranmaya Mishra; V. Sreekanth

    2011-09-28T23:59:59.000Z

    We study evolution of quark-gluon matter in the ultrarelativistic heavy-ion collisions within the frame work of relativistic second-order viscous hydrodynamics. In particular, by using the various prescriptions of a temperature-dependent shear viscosity to the entropy ratio, we show that the hydrodynamic description of the relativistic fluid become invalid due to the phenomenon of cavitation. For most of the initial conditions relevant for LHC, the cavitation sets in very early during the evolution of the hydrodynamics in time $\\lesssim 2 $fm/c. The cavitation in this case is entirely driven by the large values of shear viscosity. Moreover we also demonstrate that the conformal term used in equations of the relativistic dissipative hydrodynamic can influence the cavitation time.

  5. Thermo--hydrodynamics As a Field Theory

    E-Print Network [OSTI]

    Jacek Jezierski; Jerzy Kijowski

    2011-12-26T23:59:59.000Z

    The field theoretical description of thermo-hydrodynamics is given. It is based on the duality between the physical space--time and the "material space-time" which we construct here. The material space appearing in a natural way in the canonical formulation of the hydrodynamics is completed with a material time playing role of the field potential for temperature. Both Lagrangian and Hamiltonian formulations, the canonical structure, Poisson bracket, N\\"other theorem and conservation laws are discussed.

  6. Early hydrodynamic evolution of a stellar collision

    SciTech Connect (OSTI)

    Kushnir, Doron; Katz, Boaz [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)

    2014-04-20T23:59:59.000Z

    The early phase of the hydrodynamic evolution following the collision of two stars is analyzed. Two strong shocks propagate from the contact surface and move toward the center of each star at a velocity that is a small fraction of the velocity of the approaching stars. The shocked region near the contact surface has a planar symmetry and a uniform pressure. The density vanishes at the (Lagrangian) surface of contact, and the speed of sound diverges there. The temperature, however, reaches a finite value, since as the density vanishes, the finite pressure is radiation dominated. For carbon-oxygen white dwarf (CO WD) collisions, this temperature is too low for any appreciable nuclear burning shortly after the collision, which allows for a significant fraction of the mass to be highly compressed to the density required for efficient {sup 56}Ni production in the detonation wave that follows. This property is crucial for the viability of collisions of typical CO WD as progenitors of type Ia supernovae, since otherwise only massive (>0.9 M {sub ?}) CO WDs would have led to such explosions (as required by all other progenitor models). The divergence of the speed of sound limits numerical studies of stellar collisions, as it makes convergence tests exceedingly expensive unless dedicated schemes are used. We provide a new one-dimensional Lagrangian numerical scheme to achieve this. A self-similar planar solution is derived for zero-impact parameter collisions between two identical stars, under some simplifying assumptions (including a power-law density profile), which is the planar version of previous piston problems that were studied in cylindrical and spherical symmetries.

  7. Hydrodynamic simulations of self-phoretic microswimmers

    E-Print Network [OSTI]

    Mingcheng Yang; Adam Wysocki; Marisol Ripoll

    2014-03-04T23:59:59.000Z

    A mesoscopic hydrodynamic model to simulate synthetic self-propelled Janus particles which is thermophoretically or diffusiophoretically driven is here developed. We first propose a model for a passive colloidal sphere which reproduces the correct rotational dynamics together with strong phoretic effect. This colloid solution model employs a multiparticle collision dynamics description of the solvent, and combines potential interactions with the solvent, with stick boundary conditions. Asymmetric and specific colloidal surface is introduced to produce the properties of self-phoretic Janus particles. A comparative study of Janus and microdimer phoretic swimmers is performed in terms of their swimming velocities and induced flow behavior. Self-phoretic microdimers display long range hydrodynamic interactions and can be characterized as pullers or pushers. In contrast, Janus particles are characterized by short range hydrodynamic interactions and behave as neutral swimmers. Our model nicely mimics those recent experimental realization of the self-phoretic Janus particles.

  8. Ionizing Radiation in Smoothed Particle Hydrodynamics

    E-Print Network [OSTI]

    O. Kessel-Deynet; A. Burkert

    2000-02-11T23:59:59.000Z

    A new method for the inclusion of ionizing radiation from uniform radiation fields into 3D Smoothed Particle Hydrodynamics (SPHI) simulations is presented. We calculate the optical depth for the Lyman continuum radiation from the source towards the SPHI particles by ray-tracing integration. The time-dependent ionization rate equation is then solved locally for the particles within the ionizing radiation field. Using test calculations, we explore the numerical behaviour of the code with respect to the implementation of the time-dependent ionization rate equation. We also test the coupling of the heating caused by the ionization to the hydrodynamical part of the SPHI code.

  9. Bounce-free spherical hydrodynamic implosion

    SciTech Connect (OSTI)

    Kagan, Grigory; Tang Xianzhu; Hsu, Scott C.; Awe, Thomas J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2011-12-15T23:59:59.000Z

    In a bounce-free spherical hydrodynamic implosion, the post-stagnation hot core plasma does not expand against the imploding flow. Such an implosion scheme has the advantage of improving the dwell time of the burning fuel, resulting in a higher fusion burn-up fraction. The existence of bounce-free spherical implosions is demonstrated by explicitly constructing a family of self-similar solutions to the spherically symmetric ideal hydrodynamic equations. When applied to a specific example of plasma liner driven magneto-inertial fusion, the bounce-free solution is found to produce at least a factor of four improvement in dwell time and fusion energy gain.

  10. Dissipative hydrodynamics in 2+1 dimensions

    E-Print Network [OSTI]

    A. K. Chaudhuri

    2007-03-12T23:59:59.000Z

    In a first order theory of dissipative hydrodynamics, we have simulated hydrodynamic evolution of QGP fluid with dissipation due to shear viscosity only. Simulation confirms that compared to an ideal fluid, energy density or temperature of a viscous fluid evolve slowly. Transverse expansion is also more in viscous fluid. We also study the effect of viscosity on particle production. Particle production is enhanced, more at large $p_T$. The elliptic flow on the otherhand decreases and shows a tendency to saturate at large $p_T$.

  11. Parity Breaking Transport in Lifshitz Hydrodynamics

    E-Print Network [OSTI]

    Carlos Hoyos; Adiel Meyer; Yaron Oz

    2015-05-12T23:59:59.000Z

    We derive the constitutive relations of first order charged hydrodynamics for theories with Lifshitz scaling and broken parity in $2+1$ and $3+1$ spacetime dimensions. In addition to the anomalous (in $3+1$) or Hall (in $2+1$) transport of relativistic hydrodynamics, there is an additional non-dissipative transport allowed by the absence of boost invariance. We analyze the non-relativistic limit and use a phenomenological model of a strange metal to argue that these effects can be measured in principle by using electromagnetic fields with non-zero gradients.

  12. NOAA Fisheries Protocols For Hydro-dynamic Dredge Surveys

    E-Print Network [OSTI]

    NOAA Fisheries Protocols For Hydro-dynamic Dredge Surveys: Surf Clams and Ocean Quahogs December 19..................................................................................................................................... 1 NOAA Fisheries Hydro-dynamic Clam Dredge Survey Protocols........................................................................... 5 Clam Dredge Construction and Repair

  13. Stabilizing geometry for hydrodynamic rotary seals

    DOE Patents [OSTI]

    Dietle, Lannie L. (Houston, TX); Schroeder, John E. (Richmond, TX)

    2010-08-10T23:59:59.000Z

    A hydrodynamic sealing assembly including a first component having first and second walls and a peripheral wall defining a seal groove, a second component having a rotatable surface relative to said first component, and a hydrodynamic seal comprising a seal body of generally ring-shaped configuration having a circumference. The seal body includes hydrodynamic and static sealing lips each having a cross-sectional area that substantially vary in time with each other about the circumference. In an uninstalled condition, the seal body has a length defined between first and second seal body ends which varies in time with the hydrodynamic sealing lip cross-sectional area. The first and second ends generally face the first and second walls, respectively. In the uninstalled condition, the first end is angulated relative to the first wall and the second end is angulated relative to the second wall. The seal body has a twist-limiting surface adjacent the static sealing lip. In the uninstalled condition, the twist-limiting surface is angulated relative to the peripheral wall and varies along the circumference. A seal body discontinuity and a first component discontinuity mate to prevent rotation of the seal body relative to the first component.

  14. General Relativity as Geometro-Hydrodynamics

    E-Print Network [OSTI]

    B. L. Hu

    1996-07-29T23:59:59.000Z

    In the spirit of Sakharov's `metric elasticity' proposal, we draw a loose analogy between general relativity and the hydrodynamic state of a quantum gas. In the `top-down' approach, we examine the various conditions which underlie the transition from some candidate theory of quantum gravity to general relativity. Our emphasis here is more on the `bottom-up' approach, where one starts with the semiclassical theory of gravity and examines how it is modified by graviton and quantum field excitations near and above the Planck scale. We mention three aspects based on our recent findings: 1) Emergence of stochastic behavior of spacetime and matter fields depicted by an Einstein-Langevin equation. The backreaction of quantum fields on the classical background spacetime manifests as a fluctuation-dissipation relation. 2) Manifestation of stochastic behavior in effective theories below the threshold arising from excitations above. The implication for general relativity is that such Planckian effects, though exponentially suppressed, is in principle detectable at sub-Planckian energies. 3) Decoherence of correlation histories and quantum to classical transition. From Gell-Mann and Hartle's observation that the hydrodynamic variables which obey conservation laws are most readily decohered, one can, in the spirit of Wheeler, view the conserved Bianchi identity obeyed by the Einstein tensor as an indication that general relativity is a hydrodynamic theory of geometry. Many outstanding issues surrounding the transition to general relativity are of a nature similar to hydrodynamics and mesoscopic physics.

  15. Compressible fluid model for hydrodynamic lubrication cavitation

    E-Print Network [OSTI]

    Sart, Remi

    Compressible fluid model for hydrodynamic lubrication cavitation G. Bayada L. Chupin I.C.J. UMR.chupin@math.univ-bpclermont.fr Keywords: cavitation, compressible Reynolds equation Date: april 2013 Summary In this paper, it is shown how vaporous cavitation in lubricant films can be modelled in a physically justified manner through

  16. Oncology Center

    SciTech Connect (OSTI)

    Kraft, Andrew S.

    2009-09-21T23:59:59.000Z

    Efforts by the Hollings Cancer Center to earn a designation as a National Cancer Center are outlined.

  17. Pursuit and Synchronization in Hydrodynamic Dipoles

    E-Print Network [OSTI]

    Kanso, Eva

    2015-01-01T23:59:59.000Z

    We study theoretically the behavior of a class of hydrodynamic dipoles. This study is motivated by recent experiments on synthetic and biological swimmers in microfluidic \\textit{Hele-Shaw} type geometries. Under such confinement, a swimmer's hydrodynamic signature is that of a potential source dipole, and the long-range interactions among swimmers are obtained from the superposition of dipole singularities. Here, we recall the equations governing the positions and orientations of interacting asymmetric swimmers in doubly-periodic domains, and focus on the dynamics of swimmer pairs. We obtain two families of `relative equilibria'-type solutions that correspond to pursuit and synchronization of the two swimmers, respectively. Interestingly, the pursuit mode is stable for large tail swimmers whereas the synchronization mode is stable for large head swimmers. These results have profound implications on the collective behavior reported in several recent studies on populations of confined microswimmers.

  18. Use of remote sensing data to enhance the performance of a hydrodynamic simulation of a partially frozen power plant

    E-Print Network [OSTI]

    Salvaggio, Carl

    , USA b Savannah River National Laboratory, Aiken, South Carolina, USA c Rochester Institute. INTRODUCTION The ALGE code is a hydrodynamic model developed by Savannah River National Laboratory (SRNL of Technology, Center for Imaging Science, Digital Imaging and Remote Sensing Laboratory, Rochester, New York

  19. How Do I Know? A Guide to the Selection of Personal Protective Equipment for Use in Responding to A Release of Chemical Warfare Agents

    SciTech Connect (OSTI)

    Foust, C.B.

    1999-05-01T23:59:59.000Z

    An incident involving chemical warfare agents requires a unique hazardous materials (HAZMAT) response. As with an HAZMAT event, federal regulations prescribe that responders must be protected from exposure to the chemical agents. But unlike other HAZMAT events, special considerations govern selection of personal protective equipment (PPE). PPE includes all clothing, respirators and monitoring devices used to respond to a chemical release. PPE can differ depending on whether responders are military or civilian personnel.

  20. Consistent description of kinetics and hydrodynamics of dusty plasma

    SciTech Connect (OSTI)

    Markiv, B. [Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii St., 79011 Lviv (Ukraine)] [Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii St., 79011 Lviv (Ukraine); Tokarchuk, M. [Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii St., 79011 Lviv (Ukraine) [Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii St., 79011 Lviv (Ukraine); National University “Lviv Polytechnic,” 12 Bandera St., 79013 Lviv (Ukraine)

    2014-02-15T23:59:59.000Z

    A consistent statistical description of kinetics and hydrodynamics of dusty plasma is proposed based on the Zubarev nonequilibrium statistical operator method. For the case of partial dynamics, the nonequilibrium statistical operator and the generalized transport equations for a consistent description of kinetics of dust particles and hydrodynamics of electrons, ions, and neutral atoms are obtained. In the approximation of weakly nonequilibrium process, a spectrum of collective excitations of dusty plasma is investigated in the hydrodynamic limit.

  1. Smoothed Particle Hydrodynamics pore-scale simulations of unstable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    experiments using the Pair-Wise Force Smoothed Particle Hydrodynamics (PF-SPH) multiphase flow model. First, we derived analytical expressions relating parameters in the...

  2. Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie...

    Open Energy Info (EERE)

    Transport Modeling Approach Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie...

  3. axis radiographic hydrodynamic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For an "empty vacuum" the hydrodynamic equations are familiar ones (shallow water-wave equations) and they describe an experimentally observed phenomenon -- the...

  4. Universal holographic hydrodynamics at finite coupling

    E-Print Network [OSTI]

    Alex Buchel; Robert C. Myers; Miguel F. Paulos; Aninda Sinha

    2008-09-12T23:59:59.000Z

    We consider thermal plasmas in a large class of superconformal gauge theories described by a holographic dual geometry of the form $AdS_5\\times M_5$. In particular, we demonstrate that all of the thermodynamic properties and hydrodynamic transport parameters for a large class of superconformal gauge theories exhibit a certain universality to leading order in the inverse 't Hooft coupling and $1/N_c$. In particular, we show that independent of the compactification geometry, the leading corrections are derived from the same five-dimensional effective supergravity action supplemented by a term quartic in the five-dimensional Weyl tensor.

  5. Particle-Based Mesoscale Hydrodynamic Techniques

    E-Print Network [OSTI]

    Hiroshi Noguchi; Norio Kikuchi; Gerhard Gompper

    2006-10-31T23:59:59.000Z

    Dissipative particle dynamics (DPD) and multi-particle collision (MPC) dynamics are powerful tools to study mesoscale hydrodynamic phenomena accompanied by thermal fluctuations. To understand the advantages of these types of mesoscale simulation techniques in more detail, we propose new two methods, which are intermediate between DPD and MPC -- DPD with a multibody thermostat (DPD-MT), and MPC-Langevin dynamics (MPC-LD). The key features are applying a Langevin thermostat to the relative velocities of pairs of particles or multi-particle collisions, and whether or not to employ collision cells. The viscosity of MPC-LD is derived analytically, in very good agreement with the results of numerical simulations.

  6. Evaluation of Chemical Warfare Agent Percutaneous Vapor Toxicity: Derivation of Toxicity Guidelines for Assessing Chemical Protective Ensembles.

    SciTech Connect (OSTI)

    Watson, A.P.

    2003-07-24T23:59:59.000Z

    Percutaneous vapor toxicity guidelines are provided for assessment and selection of chemical protective ensembles (CPEs) to be used by civilian and military first responders operating in a chemical warfare agent vapor environment. The agents evaluated include the G-series and VX nerve agents, the vesicant sulfur mustard (agent HD) and, to a lesser extent, the vesicant Lewisite (agent L). The focus of this evaluation is percutaneous vapor permeation of CPEs and the resulting skin absorption, as inhalation and ocular exposures are assumed to be largely eliminated through use of SCBA and full-face protective masks. Selection of appropriately protective CPE designs and materials incorporates a variety of test parameters to ensure operability, practicality, and adequacy. One aspect of adequacy assessment should be based on systems tests, which focus on effective protection of the most vulnerable body regions (e.g., the groin area), as identified in this analysis. The toxicity range of agent-specific cumulative exposures (Cts) derived in this analysis can be used as decision guidelines for CPE acceptance, in conjunction with weighting consideration towards more susceptible body regions. This toxicity range is bounded by the percutaneous vapor estimated minimal effect (EME{sub pv}) Ct (as the lower end) and the 1% population threshold effect (ECt{sub 01}) estimate. Assumptions of exposure duration used in CPE certification should consider that each agent-specific percutaneous vapor cumulative exposure Ct for a given endpoint is a constant for exposure durations between 30 min and 2 hours.

  7. Hydrodynamic Tesla Wheel Flume for Model and Prototype Testing

    E-Print Network [OSTI]

    Wood, Stephen L.

    The Tesla turbine, U.S. Patent 1,061,206 -- May 6, 1913 was invented by Nikola Tesla as a means to extractHydrodynamic Tesla Wheel Flume for Model and Prototype Testing Spencer Jenkins, Chris Scott, Jacob Engineering department at Florida Institute of Technology (Florida Tech) has developed a Hydrodynamic Tesla

  8. TRANSONIC HYDRODYNAMIC ESCAPE OF HYDROGEN FROM EXTRASOLAR PLANETARY ATMOSPHERES

    E-Print Network [OSTI]

    De Sterck, Hans

    . The model uses a two-dimensional energy depo- sition calculation instead of the single-layer heating planets is investigated using the model. The importance of hydrogen hydrodynamic escape for the longTRANSONIC HYDRODYNAMIC ESCAPE OF HYDROGEN FROM EXTRASOLAR PLANETARY ATMOSPHERES Feng Tian,1, 2 Owen

  9. Green's functions and hydrodynamics for isotopic binary diffusion

    E-Print Network [OSTI]

    R. van Zon; E. G. D. Cohen

    2005-08-10T23:59:59.000Z

    We study classical binary fluid mixtures in which densities vary on very short time (ps) and length (nm) scales, such that hydrodynamics does not apply. In a pure fluid with a localized heat pulse the breakdown of hydrodynamics was overcome using Green's functions which connect the initial densities to those at later times. Numerically it appeared that for long times the results from the Green's functions would approach hydrodynamics. In this paper we extend the Green's functions theory to binary mixtures. For the case of isothermal isobaric mutual diffusion in isotopic binary mixtures and ideal binary mixtures, which is easier to handle than heat conduction yet still non-trivial, we show analytically that in the Green's function approach one recovers hydrodynamic behaviour at long time scales provided the system reaches local equilibrium at long times. This is a first step toward giving the Green's function theory a firmer basis because it can for this case be considered as an extension of hydrodynamics.

  10. Code Differentiation for Hydrodynamic Model Optimization

    SciTech Connect (OSTI)

    Henninger, R.J.; Maudlin, P.J.

    1999-06-27T23:59:59.000Z

    Use of a hydrodynamics code for experimental data fitting purposes (an optimization problem) requires information about how a computed result changes when the model parameters change. These so-called sensitivities provide the gradient that determines the search direction for modifying the parameters to find an optimal result. Here, the authors apply code-based automatic differentiation (AD) techniques applied in the forward and adjoint modes to two problems with 12 parameters to obtain these gradients and compare the computational efficiency and accuracy of the various methods. They fit the pressure trace from a one-dimensional flyer-plate experiment and examine the accuracy for a two-dimensional jet-formation problem. For the flyer-plate experiment, the adjoint mode requires similar or less computer time than the forward methods. Additional parameters will not change the adjoint mode run time appreciably, which is a distinct advantage for this method. Obtaining ''accurate'' sensitivities for the j et problem parameters remains problematic.

  11. An Owner's Guide to Smoothed Particle Hydrodynamics

    E-Print Network [OSTI]

    T. J. Martin; F. R. Pearce; P. A. Thomas

    1993-10-13T23:59:59.000Z

    We present a practical guide to Smoothed Particle Hydrodynamics (\\SPH) and its application to astrophysical problems. Although remarkably robust, \\SPH\\ must be used with care if the results are to be meaningful since the accuracy of \\SPH\\ is sensitive to the arrangement of the particles and the form of the smoothing kernel. In particular, the initial conditions for any \\SPH\\ simulation must consist of particles in dynamic equilibrium. We describe some of the numerical difficulties that may be encountered when using \\SPH, and how these may be overcome. Through our experience in using \\SPH\\ code to model convective stars, galaxy clusters and large scale structure problems we have developed many diagnostic tests. We give these here as an aid to rapid identification of errors, together with a list of basic prerequisites for the most efficient implementation of \\SPH.

  12. Flow stabilization with active hydrodynamic cloaks

    E-Print Network [OSTI]

    Urzhumov, Yaroslav A; 10.1103/PhysRevE.86.056313

    2012-01-01T23:59:59.000Z

    We demonstrate that fluid flow cloaking solutions based on active hydrodynamic metamaterials exist for two-dimensional flows past a cylinder in a wide range of Reynolds numbers, up to approximately 200. Within the framework of the classical Brinkman equation for homogenized porous flow, we demonstrate using two different methods that such cloaked flows can be dynamically stable for $Re$ in the range 5-119. The first, highly efficient, method is based on a linearization of the Brinkman-Navier-Stokes equation and finding the eigenfrequencies of the least stable eigen-perturbations; the second method is a direct, numerical integration in the time domain. We show that, by suppressing the Karman vortex street in the weekly turbulent wake, porous flow cloaks can raise the critical Reynolds number up to about 120, or five times greater than for a bare, uncloaked cylinder.

  13. Explosives Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering and Experiments (505) 667-6407 Email Center Associate Director Becky Olinger Global Security - Emerging Threats (505) 664-0540 Email Los Alamos Collaboration for...

  14. Hydrodynamic Testing Facilities Database | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms AHefei

  15. Sandia National Laboratories Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to:EnergysourceRamon, California:SandLaboratories

  16. Hydrodynamic Testing Facilities Database | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: EnergyHy9 CorporationHydra FuelLtdFacilities

  17. Colorado State University Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCityCoated ConductorsColonial Industria deof

  18. Cornell University Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentratingEnergyCoosa Valley Electric CoopCornell University

  19. Oregon State University Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympia GreenThe communityOrchid Bioenergy

  20. Pennsylvania State University Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis)Pearl

  1. Massachusetts Institute of Technology Hydrodynamics | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy Resources Jump to:Michigan: Energy

  2. University of Maine Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AG UMaAGUnitil EnergyBerkeleyUniversityMaine

  3. operations center

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby Dietrich57/%2A

  4. Help Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment ofHeat TransferStartupHe!Los Alamos

  5. Explosives Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecular Solids1spectroscopies |Explosives

  6. Second-Order Accurate Method for Solving Radiation-Hydrodynamics

    E-Print Network [OSTI]

    Edwards, Jarrod Douglas

    2013-11-12T23:59:59.000Z

    Second-order discretization for radiation-hydrodynamics is currently an area of great interest. Second-order methods used to solve the respective single-physics problems often differ fundamentally, making it difficult to combine them in a second...

  7. Characterizing Flow in Oil Reservoir Rock Using Smooth Particle Hydrodynamics

    E-Print Network [OSTI]

    Holmes, David W.

    In this paper, a 3D Smooth Particle Hydrodynamics (SPH) simulator for modeling grain scale fluid flow in porous rock is presented. The versatility of the SPH method has driven its use in increasingly complex areas of flow ...

  8. A GPU Accelerated Smoothed Particle Hydrodynamics Capability For Houdini

    E-Print Network [OSTI]

    Sanford, Mathew

    2012-10-19T23:59:59.000Z

    on the desired result. One common fluid simulation technique is the Smoothed Particle Hydrodynamics (SPH) method. This method is highly parellelizable. I have implemented a method to integrate a Graphics Processor Unit (GPU) accelerated SPH capability into the 3D...

  9. EIS-0228: Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impact of a proposal to construct and operate the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory (LANL)...

  10. The hydrodynamics of water-walking insects and spiders

    E-Print Network [OSTI]

    Hu, David L., 1979-

    2006-01-01T23:59:59.000Z

    We present a combined experimental and theoretical investigation of the numerous hydrodynamic propulsion mechanisms employed by water-walking arthropods (insects and spiders). In our experimental study, high speed ...

  11. Bulk viscosity and cavitation in boost-invariant hydrodynamic expansion

    E-Print Network [OSTI]

    Rajagopal, Krishna

    We solve second order relativistic hydrodynamics equations for a boost-invariant 1+1-dimensional expanding fluid with an equation of state taken from lattice calculations of the thermodynamics of strongly coupled quark-gluon ...

  12. Hydrodynamics and sediment transport in natural and beneficial use marshes

    E-Print Network [OSTI]

    Kushwaha, Vaishali

    2006-10-30T23:59:59.000Z

    or siltation. The research reported here applies an engineering approach to analysis of tidal creeks in natural and beneficial use marshes of Galveston Bay. The hydrodynamic numerical model, DYNLET, was used to assess circulation in marsh channels. A...

  13. Photoevaporation of protoplanetary discs I: hydrodynamic models

    E-Print Network [OSTI]

    R. D. Alexander; C. J. Clarke; J. E. Pringle

    2006-03-09T23:59:59.000Z

    In this paper we consider the effect of the direct ionizing stellar radiation field on the evolution of protoplanetary discs subject to photoevaporative winds. We suggest that models which combine viscous evolution with photoevaporation of the disc (e.g. Clarke, Gendrin & Sotomayor 2001) incorrectly neglect the direct field after the inner disc has drained, at late times in the evolution. We construct models of the photoevaporative wind produced by the direct field, first using simple analytic arguments and later using detailed numerical hydrodynamics. We find that the wind produced by the direct field at late times is much larger than has previously been assumed, and we show that the mass-loss rate scales as $R_{in}^{1/2}$ (where $R_{in}$ is the radius of the instantaneous inner disc edge). We suggest that this result has important consequences for theories of disc evolution, and go on to consider the effects of this result on disc evolution in detail in a companion paper (Alexander, Clarke & Pringle 2006b).

  14. An implicit Smooth Particle Hydrodynamic code

    SciTech Connect (OSTI)

    Charles E. Knapp

    2000-04-01T23:59:59.000Z

    An implicit version of the Smooth Particle Hydrodynamic (SPH) code SPHINX has been written and is working. In conjunction with the SPHINX code the new implicit code models fluids and solids under a wide range of conditions. SPH codes are Lagrangian, meshless and use particles to model the fluids and solids. The implicit code makes use of the Krylov iterative techniques for solving large linear-systems and a Newton-Raphson method for non-linear corrections. It uses numerical derivatives to construct the Jacobian matrix. It uses sparse techniques to save on memory storage and to reduce the amount of computation. It is believed that this is the first implicit SPH code to use Newton-Krylov techniques, and is also the first implicit SPH code to model solids. A description of SPH and the techniques used in the implicit code are presented. Then, the results of a number of tests cases are discussed, which include a shock tube problem, a Rayleigh-Taylor problem, a breaking dam problem, and a single jet of gas problem. The results are shown to be in very good agreement with analytic solutions, experimental results, and the explicit SPHINX code. In the case of the single jet of gas case it has been demonstrated that the implicit code can do a problem in much shorter time than the explicit code. The problem was, however, very unphysical, but it does demonstrate the potential of the implicit code. It is a first step toward a useful implicit SPH code.

  15. Energy Gradient Theory of Hydrodynamic Instability

    E-Print Network [OSTI]

    Hua-Shu Dou

    2005-01-29T23:59:59.000Z

    A new universal theory for flow instability and turbulent transition is proposed in this study. Flow instability and turbulence transition have been challenging subjects for fluid dynamics for a century. The critical condition of turbulent transition from theory and experiments differs largely from each other for Poiseuille flows. In this paper, a new mechanism of flow instability and turbulence transition is presented for parallel shear flows and the energy gradient theory of hydrodynamic instability is proposed. It is stated that the total energy gradient in the transverse direction and that in the streamwise direction of the main flow dominate the disturbance amplification or decay. A new dimensionless parameter K for characterizing flow instability is proposed for wall bounded shear flows, which is expressed as the ratio of the energy gradients in the two directions. It is thought that flow instability should first occur at the position of Kmax which may be the most dangerous position. This speculation is confirmed by Nishioka et al's experimental data. Comparison with experimental data for plane Poiseuille flow and pipe Poiseuille flow indicates that the proposed idea is really valid. It is found that the turbulence transition takes place at a critical value of Kmax of about 385 for both plane Poiseuille flow and pipe Poiseuille flow, below which no turbulence will occur regardless the disturbance. More studies show that the theory is also valid for plane Couette flows and Taylor-Couette flows between concentric rotating cylinders.

  16. Hamiltonian Hydrodynamics and Irrotational Binary Inspiral

    E-Print Network [OSTI]

    Charalampos M. Markakis

    2014-10-28T23:59:59.000Z

    Gravitational waves from neutron-star and black-hole binaries carry valuable information on their physical properties and probe physics inaccessible to the laboratory. Although development of black-hole gravitational-wave templates in the past decade has been revolutionary, the corresponding work for double neutron-star systems has lagged. Neutron stars can be well-modelled as simple barotropic fluids during the part of binary inspiral most relevant to gravitational wave astronomy, but the crucial geometric and mathematical consequences of this simplification have remained computationally unexploited. In particular, Carter and Lichnerowicz have described barotropic fluid motion via classical variational principles as conformally geodesic. Moreover, Kelvin's circulation theorem implies that initially irrotational flows remain irrotational. Applied to numerical relativity, these concepts lead to novel Hamiltonian or Hamilton-Jacobi schemes for evolving relativistic fluid flows. Hamiltonian methods can conserve not only flux, but also circulation and symplecticity, and moreover do not require addition of an artificial atmosphere typically required by standard conservative methods. These properties can allow production of high-precision gravitational waveforms at low computational cost. This canonical hydrodynamics approach is applicable to a wide class of problems involving theoretical or computational fluid dynamics.

  17. Vacuum energy: quantum hydrodynamics vs quantum gravity

    E-Print Network [OSTI]

    G. E. Volovik

    2005-09-09T23:59:59.000Z

    We compare quantum hydrodynamics and quantum gravity. They share many common features. In particular, both have quadratic divergences, and both lead to the problem of the vacuum energy, which in the quantum gravity transforms to the cosmological constant problem. We show that in quantum liquids the vacuum energy density is not determined by the quantum zero-point energy of the phonon modes. The energy density of the vacuum is much smaller and is determined by the classical macroscopic parameters of the liquid including the radius of the liquid droplet. In the same manner the cosmological constant is not determined by the zero-point energy of quantum fields. It is much smaller and is determined by the classical macroscopic parameters of the Universe dynamics: the Hubble radius, the Newton constant and the energy density of matter. The same may hold for the Higgs mass problem: the quadratically divergent quantum correction to the Higgs potential mass term is also cancelled by the microscopic (trans-Planckian) degrees of freedom due to thermodynamic stability of the whole quantum vacuum.

  18. Molecular quantum wakes in the hydrodynamic plasma waveguide in air

    SciTech Connect (OSTI)

    Wu Jian; Cai Hua; Zeng Heping [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China); Milchberg, H. M. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States)

    2010-10-15T23:59:59.000Z

    We demonstrate a modulated plasma guiding effect from the molecular alignment wakes in the hydrodynamic plasma waveguide. A properly time-delayed laser pulse can be spatially confined by the hydrodynamic expansion induced plasma waveguide of an advancing femtosecond laser pulse. The spatial confinement can be further strengthened or weakened by following the quantum wakes of the impulsively excited rotational wave packets of the molecules in the plasma waveguide.

  19. Dual Axis Radiographic Hydrodynamic Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date: Contact:DisclaimersMaterialsTechnologiesDARHT

  20. Annual Report 2006 for Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications

    SciTech Connect (OSTI)

    R. Paul Drake

    2007-04-05T23:59:59.000Z

    We report the ongoing work of our group in hydrodynamics and radiation hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining data using a backlit pinhole with a 100 ps backlighter and beginning to develop the ability to look into the shock tube with optical or x-ray diagnostics. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, using dual-axis radiographic data with backlit pinholes and ungated detectors to complete the data set for a Ph.D. student. We lead a team that is developing a proposal for experiments at the National Ignition Facility and are involved in experiments at NIKE and LIL. All these experiments have applications to astrophysics, discussed in the corresponding papers. We assemble the targets for the experiments at Michigan, where we also prepare many of the simple components. We also have several projects underway in our laboratory involving our x-ray source. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists.

  1. Hydrodynamic force characteristics in the splash zone

    SciTech Connect (OSTI)

    Daliri, M.R.; Haritos, N. [Univ. of Melbourne, Parkville, Victoria (Australia). Dept. of Civil and Environmental Engineering

    1996-12-31T23:59:59.000Z

    A comprehensive experimental study concerned with the hydrodynamic force characteristics of both rigid and compliant surface piercing cylinders, with a major focus on the local nature of these characteristics as realized in the splash zone and in the fully submerged zone immediately below this region, has been in progress at the University of Melbourne for the last three years. This paper concentrates on a portion of this study associated with uni-directional regular wave inputs with wave steepness (H/{lambda}) in the range 0.0005--0.1580 and Keulegan-Carpenter (KC) numbers in the range 2--15 which encompasses inertia force dominant (KC<5) to drag force significant conditions (5

  2. Dissipative hydrodynamics in 2+1 dimension

    E-Print Network [OSTI]

    A. K. Chaudhuri

    2006-05-25T23:59:59.000Z

    In 2+1 dimension, we have simulated the hydrodynamic evolution of QGP fluid with dissipation due to shear viscosity. Comparison of evolution of ideal and viscous fluid, both initialised under the same conditions e.g. same equilibration time, energy density and velocity profile, reveal that the dissipative fluid evolves slowly, cooling at a slower rate. Cooling get still slower for higher viscosity. The fluid velocities on the otherhand evolve faster in a dissipative fluid than in an ideal fluid. The transverse expansion is also enhanced in dissipative evolution. For the same decoupling temperature, freeze-out surface for a dissipative fluid is more extended than an ideal fluid. Dissipation produces entropy as a result of which particle production is increased. Particle production is increased due to (i) extension of the freeze-out surface and (ii) change of the equilibrium distribution function to a non-equilibrium one, the last effect being prominent at large transverse momentum. Compared to ideal fluid, transverse momentum distribution of pion production is considerably enhanced. Enhancement is more at high $p_T$ than at low $p_T$. Pion production also increases with viscosity, larger the viscosity, more is the pion production. Dissipation also modifies the elliptic flow. Elliptic flow is reduced in viscous dynamics. Also, contrary to ideal dynamics where elliptic flow continues to increase with transverse momentum, in viscous dynamics, elliptic flow tends to saturate at large transverse momentum. The analysis suggest that initial conditions of the hot, dense matter produced in Au+Au collisions at RHIC, as extracted from ideal fluid analysis can be changed significantly if the QGP fluid is viscous.

  3. COMPUTATIONAL SCIENCE CENTER

    SciTech Connect (OSTI)

    DAVENPORT, J.

    2006-11-01T23:59:59.000Z

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together researchers in these areas and to provide a focal point for the development of computational expertise at the Laboratory. These efforts will connect to and support the Department of Energy's long range plans to provide Leadership class computing to researchers throughout the Nation. Recruitment for six new positions at Stony Brook to strengthen its computational science programs is underway. We expect some of these to be held jointly with BNL.

  4. From Field Theory to the Hydrodynamics of Relativistic Superfluids

    E-Print Network [OSTI]

    Stetina, Stephan

    2015-01-01T23:59:59.000Z

    The hydrodynamic description of a superfluid is usually based on a two-fluid picture. In this thesis, basic properties of such a relativistic two-fluid system are derived from the underlying microscopic physics of a complex scalar quantum field theory. To obtain analytic results of all non-dissipative hydrodynamic quantities in terms of field theoretic variables, calculations are first carried out in a low-temperature and weak-coupling approximation. In a second step, the 2-particle-irreducible formalism is applied: This formalism allows for a numerical evaluation of the hydrodynamic parameters for all temperatures below the critical temperature. In addition, a system of two coupled superfluids is studied. As an application, the velocities of first and second sound in the presence of a superflow are calculated. The results show that first (second) sound evolves from a density (temperature) wave at low temperatures to a temperature (density) wave at high temperatures. This role reversal is investigated for ult...

  5. Conformational Manipulation of DNA in Nanochannels Using Hydrodynamics

    E-Print Network [OSTI]

    Qihao He; Hubert Ranchon; Pascal Carrivain; Yannick Viero; Joris Lacroix; Charline Blatché; Emmanuelle Daran; Jean-Marc Victor; Aurélien Bancaud

    2014-09-01T23:59:59.000Z

    The control over DNA elongation in nanofluidic devices holds great potential for large-scale genomic analysis. So far, the manipulation of DNA in nanochannels has been mostly carried out with electrophoresis and seldom with hydrodynamics, although the physics of soft matter in nanoscale flows has raised considerable interest over the past decade. In this report the migration of DNA is studied in nanochannels of lateral dimension spanning 100 to 500 nm using both actuation principles. We show that the relaxation kinetics are 3-fold slowed down and the extension increases up to 3-fold using hydrodynamics. We propose a model to account for the onset in elongation with the flow, which assumes that DNA response is determined by the shear-driven lift forces mediated by the proximity of the channels' walls. Overall, we suggest that hydrodynamic actuation allows for an improved manipulation of DNA in nanochannels.

  6. Non-decaying hydrodynamic interactions along narrow channels

    E-Print Network [OSTI]

    Misiunas, Karolis; Lauga, Eric; Lister, John R; Keyser, Ulrich F

    2015-01-01T23:59:59.000Z

    Particle-particle interactions are of paramount importance in every multi-body system as they determine the collective behaviour and coupling strength. Many well-known interactions like electro-static, van der Waals or screened Coulomb, decay exponentially or with negative powers of the particle spacing r. Similarly, hydrodynamic interactions between particles undergoing Brownian motion decay as 1/r in bulk, and are assumed to decay quickly in small channels. Such interactions are ubiquitous in biological and technological systems. Here we confine two particles undergoing Brownian motion in narrow, microfluidic channels and study their coupling through hydrodynamic interactions. Our experiments show that, in contrast to expectations from current theoretical understanding, the hydrodynamic particle-particle interactions are long-range and non-decaying in these channels. This new effect is of fundamental importance for the interpretation of experiments where dense mixtures of particles or molecules diffuse thro...

  7. Bulk Viscosity Effects in Event-by-Event Relativistic Hydrodynamics

    E-Print Network [OSTI]

    Jacquelyn Noronha-Hostler; Gabriel S. Denicol; Jorge Noronha; Rone P. G. Andrade; Frederique Grassi

    2013-05-10T23:59:59.000Z

    Bulk viscosity effects on the collective flow harmonics in heavy ion collisions are investigated, on an event by event basis, using a newly developed 2+1 Lagrangian hydrodynamic code named v-USPhydro which implements the Smoothed Particle Hydrodynamics (SPH) algorithm for viscous hydrodynamics. A new formula for the bulk viscous corrections present in the distribution function at freeze-out is derived starting from the Boltzmann equation for multi-hadron species. Bulk viscosity is shown to enhance the collective flow Fourier coefficients from $v_2(p_T)$ to $v_5(p_T)$ when $% p_{T}\\sim 1-3$ GeV even when the bulk viscosity to entropy density ratio, $% \\zeta/s$, is significantly smaller than $1/(4\\pi)$.

  8. Collective excitations of hydrodynamically coupled driven colloidal particles

    E-Print Network [OSTI]

    Harel Nagar; Yael Roichman

    2014-08-21T23:59:59.000Z

    Two colloidal particles, driven around an optical vortex trap, have been recently shown to pair due to an interplay between hydrodynamic interactions and the curved path they are forced to follow. We demonstrate here, that this pairing interaction can be tuned experimentally, and study its effect on the collective excitations of many particles driven around such an optical trap. We find that even though the system is overdamped, hydrodynamic interactions due to driving give rise to non-decaying excitations with characteristic dispersion relations. The collective excitations of the colloidal ring reflect fluctuations of particle pairs rather than those of single particles.

  9. Second order hydrodynamics for a special class of gravity duals

    SciTech Connect (OSTI)

    Springer, T. [School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2009-04-15T23:59:59.000Z

    The sound mode hydrodynamic dispersion relation is computed up to order q{sup 3} for a class of gravitational duals which includes both Schwarzschild AdS and Dp-brane metrics. The implications for second order transport coefficients are examined within the context of Israel-Stewart theory. These sound mode results are compared with previously known results for the shear mode. This comparison allows one to determine the third order hydrodynamic contributions to the shear mode for the class of metrics considered here.

  10. 3-D HYDRODYNAMIC MODELING IN A GEOSPATIAL FRAMEWORK

    SciTech Connect (OSTI)

    Bollinger, J; Alfred Garrett, A; Larry Koffman, L; David Hayes, D

    2006-08-24T23:59:59.000Z

    3-D hydrodynamic models are used by the Savannah River National Laboratory (SRNL) to simulate the transport of thermal and radionuclide discharges in coastal estuary systems. Development of such models requires accurate bathymetry, coastline, and boundary condition data in conjunction with the ability to rapidly discretize model domains and interpolate the required geospatial data onto the domain. To facilitate rapid and accurate hydrodynamic model development, SRNL has developed a pre- and post-processor application in a geospatial framework to automate the creation of models using existing data. This automated capability allows development of very detailed models to maximize exploitation of available surface water radionuclide sample data and thermal imagery.

  11. Hydrodynamic interactions in metal rod-like particle suspensions due to induced charge electroosmosis

    SciTech Connect (OSTI)

    Rose, K A; Hoffman, B; Saintillan, D; Shaqfeh, E G; Santiago, J G

    2008-05-05T23:59:59.000Z

    We present a theoretical and experimental study of the role of hydrodynamic interactions on the motion and dispersion of metal rod-like particles in the presence of an externally applied electric field. In these systems, the electric field polarizes the particles and induces an electroosmosis flow relative to the surface of each particle. The simulations include the effect of the gravitational body force, buoyancy, far-field hydrodynamic interactions, near-field lubrication forces, and electric field interactions. The particles in the simulations and experiments were observed to experience repeated pairing interactions in which they come together axially with their ends approaching each other, slide past one another until their centers approach, and then push apart. These interactions were confirmed in measurements of particle orientations and velocities, pair distribution functions, and net dispersion of the suspension. For large electric fields, the pair distribution functions show accumulation and depletion regions consistent with many pairing events. For particle concentrations of 1e8 particles/mL and higher, dispersion within the suspension dramatically increases with increased field strength.

  12. Hydrodynamic Shear Rate Regulates Melanoma-Leukocyte Aggregation, Melanoma Adhesion to the Endothelium, and Subsequent Extravasation

    E-Print Network [OSTI]

    Dong, Cheng

    Hydrodynamic Shear Rate Regulates Melanoma-Leukocyte Aggregation, Melanoma Adhesion that polymorphonuclear neutrophils (PMNs) may enhance melanoma adhesion to the endothelium (EC) and subsequent microenvironment within the microcirculation. In this study, effects of hydrodynamic flow on regulating melanoma

  13. Hydrodynamic Shear Rate Regulates Melanoma-Leukocyte Aggregation, Melanoma Adhesion to the Endothelium, and

    E-Print Network [OSTI]

    Simon, Scott I.

    Hydrodynamic Shear Rate Regulates Melanoma-Leukocyte Aggregation, Melanoma Adhesion that polymorphonuclear neutrophils (PMNs) may enhance melanoma adhesion to the endothelium (EC) and subsequent microenvironment within the microcirculation. In this study, effects of hydrodynamic flow on regulating melanoma

  14. Compatible, energy and symmetry preserving 2D Lagrangian hydrodynamics in rz-cylindrical coordinates

    SciTech Connect (OSTI)

    Shashkov, Mikhail [Los Alamos National Laboratory; Wendroff, Burton [Los Alamos National Laboratory; Burton, Donald [Los Alamos National Laboratory; Barlow, A [AWE; Hongbin, Guo [ASU

    2009-01-01T23:59:59.000Z

    We present a new discretization for 2D Lagrangian hydrodynamics in rz geometry (cylindrical coordinates) that is compatible, energy conserving and symmetry preserving. We describe discretization of the basic Lagrangian hydrodynamics equations.

  15. An impulse framework for hydrodynamic force analysis : fish propulsion, water entry of spheres, and marine propellers

    E-Print Network [OSTI]

    Epps, Brenden P

    2010-01-01T23:59:59.000Z

    This thesis presents an impulse framework for analyzing the hydrodynamic forces on bodies in flow. This general theoretical framework is widely applicable, and it is used to address the hydrodynamics of fish propulsion, ...

  16. LANSCE | Lujan Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    experimental package, must be borne by the user. Lujan Center Call for Proposals >> Lujan Neutron Scattering Center Logo Lujan Center Mission The Lujan Center delivers science by...

  17. A new shock-capturing numerical scheme for ideal hydrodynamics

    E-Print Network [OSTI]

    Zuzana Feckova; Boris Tomasik

    2015-01-07T23:59:59.000Z

    We present a new algorithm for solving ideal relativistic hydrodynamics based on Godunov method with an exact solution of Riemann problem for an arbitrary equation of state. Standard numerical tests are executed, such as the sound wave propagation and the shock tube problem. Low numerical viscosity and high precision are attained with proper discretization.

  18. Onset of superradiant instabilities in the hydrodynamic vortex model

    E-Print Network [OSTI]

    Shahar Hod

    2014-07-30T23:59:59.000Z

    The hydrodynamic vortex, an effective spacetime geometry for propagating sound waves, is studied analytically. In contrast with the familiar Kerr black-hole spacetime, the hydrodynamic vortex model is described by an effective acoustic geometry which has no horizons. However, this acoustic spacetime possesses an ergoregion, a property which it shares with the rotating Kerr spacetime. It has recently been shown numerically that this physical system is linearly unstable due to the superradiant scattering of sound waves in the ergoregion of the effective spacetime. In the present study we use analytical tools in order to explore the onset of these superradiant instabilities which characterize the effective spacetime geometry. In particular, we derive a simple analytical formula which describes the physical properties of the hydrodynamic vortex system in its critical (marginally-stable) state, the state which marks the boundary between stable and unstable fluid configurations. The analytically derived formula is shown to agree with the recently published numerical data for the hydrodynamic vortex system.

  19. A new shock-capturing numerical scheme for ideal hydrodynamics

    E-Print Network [OSTI]

    Feckova, Zuzana

    2015-01-01T23:59:59.000Z

    We present a new algorithm for solving ideal relativistic hydrodynamics based on Godunov method with an exact solution of Riemann problem for an arbitrary equation of state. Standard numerical tests are executed, such as the sound wave propagation and the shock tube problem. Low numerical viscosity and high precision are attained with proper discretization.

  20. New Formulation of Causal Dissipative Hydrodynamics: Shock wave propagation

    E-Print Network [OSTI]

    Ph. Mota; G. S. Denicol; T. Koide; T. Kodama

    2007-01-19T23:59:59.000Z

    The first 3D calculation of shock wave propagation in a homogeneous QGP has been performed within the new formulation of relativistic dissipative hydrodynamics which preserves the causality. We found that the relaxation time plays an important role and also affects the angle of Mach cone.

  1. Sedimentation, Pclet number, and hydrodynamic screening Kiley Benes,1

    E-Print Network [OSTI]

    Tong, Penger

    a is the sphere radius, is the solvent viscosity, g is the accel- eration of gravity, and is the particle. Two functional forms for the sedimentation velocity as a function of particle concen- tration velocity. He assumed i a low particle Reynolds number or the neglect of inertia , ii two- body hydrodynamic

  2. Hydrodynamic analysis of mooring lines based on optical tracking experiments

    E-Print Network [OSTI]

    Yang, Woo Seuk

    2009-05-15T23:59:59.000Z

    Hydrodynamic Force Coefficients.............................................................................11 1.2.2.1. Deterministic Approach .............................................12 1.2.2.2. Stochastic Approach... Page 2.6. Estimation of Force Transfer Coefficients ...........................................50 2.6.1. Fourier Analysis ......................................................................51 2.6.2. Least Square Minimization...

  3. IDENTIFICATION OF UNDERWATER VEHICLE HYDRODYNAMIC COEFFICIENTS USING FREE

    E-Print Network [OSTI]

    Johansen, Tor Arne

    been an ever increasing num- ber of applications for unmanned underwater vehicles (UUV) in variousIDENTIFICATION OF UNDERWATER VEHICLE HYDRODYNAMIC COEFFICIENTS USING FREE DECAY TESTS Andrew Ross the potential accuracy of these new methods. Copyright c 2004 IFAC. Keywords: Low-speed underwater vehicles

  4. Hydrodynamic model for picosecond propagation of laser-created nanoplasmas

    E-Print Network [OSTI]

    Saxena, Vikrant; Ziaja, Beata; Santra, Robin

    2015-01-01T23:59:59.000Z

    The interaction of a free-electron-laser pulse with a moderate or large size cluster is known to create a quasi-neutral nanoplasma, which then expands on hydrodynamic timescale, i.e., $>1$ ps. To have a better understanding of ion and electron data from experiments derived from laser-irradiated clusters, one needs to simulate cluster dynamics on such long timescales for which the molecular dynamics approach becomes inefficient. We therefore propose a two-step Molecular Dynamics-Hydrodynamic scheme. In the first step we use molecular dynamics code to follow the dynamics of an irradiated cluster until all the photo-excitation and corresponding relaxation processes are finished and a nanoplasma, consisting of ground-state ions and thermalized electrons, is formed. In the second step we perform long-timescale propagation of this nanoplasma with a computationally efficient hydrodynamic approach. In the present paper we examine the feasibility of a hydrodynamic two-fluid approach to follow the expansion of spherica...

  5. Three-Dimensional Hydrodynamic Model for Prediction of Falling Cylinder Through Water Column

    E-Print Network [OSTI]

    Chu, Peter C.

    1 1 Three-Dimensional Hydrodynamic Model for Prediction of Falling Cylinder Through Water Column-coordinate), cylinder's main-axis following coordinate (M-coordinate), and hydrodynamic force following coordinate (F-coordinate system. The hydrodynamic forces (such as the drag and lift forces) and their moments are easily computed

  6. Averaged implicit hydrodynamic model of semiflexible filaments Preethi L. Chandran and Mohammad R. K. Mofrad*

    E-Print Network [OSTI]

    Mofrad, Mohammad R. K.

    , in order to better resolve the drag profiles along the filament. A large part of the hydrodynamic dragAveraged implicit hydrodynamic model of semiflexible filaments Preethi L. Chandran and Mohammad R 2009; published 26 March 2010 We introduce a method to incorporate hydrodynamic interaction in a model

  7. Tests of the hydrodynamic equivalence of direct-drive implosions with different D2 and 3

    E-Print Network [OSTI]

    Tests of the hydrodynamic equivalence of direct-drive implosions with different D2 and 3 He, D2 and 3 He gases are fully ionized, and hydrodynamically equivalent fuels with different ratios the materials are cho- sen to be as nearly hydrodynamically equivalent as possible. D and 3 He have the special

  8. Plasmon excitation in metal slab by fast point charge: The role of additional boundary conditions in quantum hydrodynamic model

    SciTech Connect (OSTI)

    Zhang, Ying-Ying [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); An, Sheng-Bai; Song, Yuan-Hong, E-mail: songyh@dlut.edu.cn; Wang, You-Nian [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Kang, Naijing [Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Miškovi?, Z. L., E-mail: zmiskovi@uwaterloo.ca [Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2014-10-15T23:59:59.000Z

    We study the wake effect in the induced potential and the stopping power due to plasmon excitation in a metal slab by a point charge moving inside the slab. Nonlocal effects in the response of the electron gas in the metal are described by a quantum hydrodynamic model, where the equation of electronic motion contains both a quantum pressure term and a gradient correction from the Bohm quantum potential, resulting in a fourth-order differential equation for the perturbed electron density. Thus, besides using the condition that the normal component of the electron velocity should vanish at the impenetrable boundary of the metal, a consistent inclusion of the gradient correction is shown to introduce two possibilities for an additional boundary condition for the perturbed electron density. We show that using two different sets of boundary conditions only gives rise to differences in the wake potential at large distances behind the charged particle. On the other hand, the gradient correction in the quantum hydrodynamic model is seen to cause a reduction in the depth of the potential well closest to the particle, and a reduction of its stopping power. Even for a particle moving in the center of the slab, we observe nonlocal effects in the induced potential and the stopping power due to reduction of the slab thickness, which arise from the gradient correction in the quantum hydrodynamic model.

  9. Chemical Hydrogen Storage Center Center of Excellence

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    Chemical Hydrogen Storage Center Center of Excellence for Chemical Hydrogen Storage William Tumas proprietary or confidential information #12;2 Chemical Hydrogen Storage Center Overview Project Start Date: FY Barriers Addressed #12;3 Chemical Hydrogen Storage Center Chemical Hydrogen Storage Center National

  10. Galaxies that Shine: radiation-hydrodynamical simulations of disk galaxies

    E-Print Network [OSTI]

    Rosdahl, Joakim; Teyssier, Romain; Agertz, Oscar

    2015-01-01T23:59:59.000Z

    Radiation feedback is typically implemented using subgrid recipes in hydrodynamical simulations of galaxies. Very little work has so far been performed using radiation-hydrodynamics (RHD), and there is no consensus on the importance of radiation feedback in galaxy evolution. We present RHD simulations of isolated galaxy disks of different masses with a resolution of 18 pc. Besides accounting for supernova feedback, our simulations are the first galaxy-scale simulations to include RHD treatments of photo-ionisation heating and radiation pressure, from both direct optical/UV radiation and multi-scattered, re-processed infrared (IR) radiation. Photo-heating smooths and thickens the disks and suppresses star formation about as much as the inclusion of ("thermal dump") supernova feedback does. These effects decrease with galaxy mass and are mainly due to the prevention of the formation of dense clouds, as opposed to their destruction. Radiation pressure, whether from direct or IR radiation, has little effect, but ...

  11. Numerical integration of thermal noise in relativistic hydrodynamics

    E-Print Network [OSTI]

    Clint Young

    2013-06-03T23:59:59.000Z

    Thermal fluctuations affect the dynamics of systems near critical points, the evolution of the early universe, and two-particle correlations in heavy-ion collisions. For the latter, numerical simulations of nearly-ideal, relativistic fluids are necessary. The correlation functions of noise in relativistic fluids are calculated, stochastic integration of the noise in 3+1-dimensional viscous hydrodynamics is implemented, and the effect of noise on observables in heavy-ion collisions is discussed. Thermal fluctuations will cause significant variance in the event-by-event distributions of integrated v2 while changing average values even when using the same initial conditions, suggesting that including thermal noise will lead to refitting of the hydrodynamical parameters with implications for understanding the physics of hot QCD.

  12. Enhanced Heat Flow in the Hydrodynamic Collisionless Regime

    SciTech Connect (OSTI)

    Meppelink, R.; Rooij, R. van; Vogels, J. M.; Straten, P. van der [Atom Optics and Ultrafast Dynamics, Utrecht University, P.O. Box 80000, 3508 TA Utrecht (Netherlands)

    2009-08-28T23:59:59.000Z

    We study the heat conduction of a cold, thermal cloud in a highly asymmetric trap. The cloud is axially hydrodynamic, but due to the asymmetric trap radially collisionless. By locally heating the cloud we excite a thermal dipole mode and measure its oscillation frequency and damping rate. We find an unexpectedly large heat conduction compared to the homogeneous case. The enhanced heat conduction in this regime is partially caused by atoms with a high angular momentum spiraling in trajectories around the core of the cloud. Since atoms in these trajectories are almost collisionless they strongly contribute to the heat transfer. We observe a second, oscillating hydrodynamic mode, which we identify as a standing wave sound mode.

  13. Hydrodynamic model of Fukushima-Daiichi NPP Industrial site flooding

    E-Print Network [OSTI]

    Vaschenko, V N; Gerasimenko, T V; Vachev, B

    2014-01-01T23:59:59.000Z

    While the Fukushima-Daiichi was designed and constructed the maximal tsunami height estimate was about 3 m based on analysis of statistical data including Chile earthquake in 1960. The NPP project industrial site height was 10 m. The further deterministic estimates TPCO-JSCE confirmed the impossibility of the industrial site flooding by a tsunami and therefore confirmed ecological safety of the NPP. However, as a result of beyond design earthquake of 11 March 2011 the tsunami height at the shore near the Fukushima-Daiichi NPP reached 15 m. This led to flooding and severe emergencies having catastrophic environmental consequences. This paper proposes hydrodynamic model of tsunami emerging and traveling based on conservative assumptions. The possibility of a tsunami wave reaching 15 m height at the Fukushima-Daiichi NPP shore was confirmed for deduced hydrodynamic resistance coefficient of 1.8. According to the model developed a possibility of flooding is determined not only by the industrial site height, magni...

  14. Hydrodynamic instabilities in beryllium targets for the National Ignition Facility

    SciTech Connect (OSTI)

    Yi, S. A., E-mail: austinyi@lanl.gov; Simakov, A. N.; Wilson, D. C.; Olson, R. E.; Kline, J. L.; Batha, S. H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Clark, D. S.; Hammel, B. A.; Milovich, J. L.; Salmonson, J. D.; Kozioziemski, B. J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-09-15T23:59:59.000Z

    Beryllium ablators offer higher ablation velocity, rate, and pressure than their carbon-based counterparts, with the potential to increase the probability of achieving ignition at the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We present here a detailed hydrodynamic stability analysis of low (NIF Revision 6.1) and high adiabat NIF beryllium target designs. Our targets are optimized to fully utilize the advantages of beryllium in order to suppress the growth of hydrodynamic instabilities. This results in an implosion that resists breakup of the capsule, and simultaneously minimizes the amount of ablator material mixed into the fuel. We quantify the improvement in stability of beryllium targets relative to plastic ones, and show that a low adiabat beryllium capsule can be at least as stable at the ablation front as a high adiabat plastic target.

  15. COSMOS: A Radiation-Chemo-Hydrodynamics Code for Astrophysical Problems

    E-Print Network [OSTI]

    Peter Anninos; P. Chris Fragile; Stephen D. Murray

    2003-03-10T23:59:59.000Z

    We have developed a new massively-parallel radiation-hydrodynamics code (Cosmos) for Newtonian and relativistic astrophysical problems that also includes radiative cooling, self-gravity, and non-equilibrium, multi-species chemistry. Several numerical methods are implemented for the hydrodynamics, including options for both internal and total energy conserving schemes. Radiation is treated using flux-limited diffusion. The chemistry incorporates 27 reactions, including both collisional and radiative processes for atomic hydrogen and helium gases, and molecular hydrogen chains. In this paper we discuss the equations and present results from test problems carried out to verify the robustness and accuracy of our code in the Newtonian regime. An earlier paper presented tests of the relativistic capabilities of Cosmos.

  16. COSMOS A Radiation-Chemo-Hydrodynamics Code for Astrophysical Problems

    E-Print Network [OSTI]

    Anninos, P; Murray, S D; Anninos, Peter; Murray, Stephen D.

    2003-01-01T23:59:59.000Z

    We have developed a new massively-parallel radiation-hydrodynamics code (Cosmos) for Newtonian and relativistic astrophysical problems that also includes radiative cooling, self-gravity, and non-equilibrium, multi-species chemistry. Several numerical methods are implemented for the hydrodynamics, including options for both internal and total energy conserving schemes. Radiation is treated using flux-limited diffusion. The chemistry incorporates 27 reactions, including both collisional and radiative processes for atomic hydrogen and helium gases, and molecular hydrogen chains. In this paper we discuss the equations and present results from test problems carried out to verify the robustness and accuracy of our code in the Newtonian regime. An earlier paper presented tests of the relativistic capabilities of Cosmos.

  17. Porous Superhydrophobic Membranes: Hydrodynamic Anomaly in Oscillating Flows

    E-Print Network [OSTI]

    Rajauria, Sukumar; Lawall, J; Yakhot, Victor; Ekinci, Kamil L

    2011-01-01T23:59:59.000Z

    We have fabricated and characterized a novel superhydrophobic system, a mesh-like porous superhydrophobic membrane with solid area fraction $\\Phi_s$, which can maintain intimate contact with outside air and water reservoirs simultaneously. Oscillatory hydrodynamic measurements on porous superhydrophobic membranes as a function of $\\Phi_s$ reveal surprising effects. The hydrodynamic mass oscillating in-phase with the membranes stays constant for $0.9\\le\\Phi_s\\le1$, but drops precipitously for $\\Phi_s < 0.9$. The viscous friction shows a similar drop after a slow initial decrease proportional to $\\Phi_s$. We attribute these effects to the percolation of a stable Knudsen layer of air at the interface.

  18. Porous Superhydrophobic Membranes: Hydrodynamic Anomaly in Oscillating Flows

    E-Print Network [OSTI]

    Sukumar Rajauria; O. Ozsun; J. Lawall; Victor Yakhot; Kamil L. Ekinci

    2011-08-05T23:59:59.000Z

    We have fabricated and characterized a novel superhydrophobic system, a mesh-like porous superhydrophobic membrane with solid area fraction $\\Phi_s$, which can maintain intimate contact with outside air and water reservoirs simultaneously. Oscillatory hydrodynamic measurements on porous superhydrophobic membranes as a function of $\\Phi_s$ reveal surprising effects. The hydrodynamic mass oscillating in-phase with the membranes stays constant for $0.9\\le\\Phi_s\\le1$, but drops precipitously for $\\Phi_s < 0.9$. The viscous friction shows a similar drop after a slow initial decrease proportional to $\\Phi_s$. We attribute these effects to the percolation of a stable Knudsen layer of air at the interface.

  19. Hydrodynamic analogy of production decline for Devonian shale wells

    SciTech Connect (OSTI)

    Pulle, C.V.

    1982-01-01T23:59:59.000Z

    Several studies on production decline curves have shown that an exponential or hyperbolic curve adequately fits production decline data for Devonian shale wells. Attempts to characterize the production decline based on open flows, rock pressures, and specific shale production mechanisms have also been made. This paper seeks to provide a genesis of the decline curves with the use of a simple hydrodynamic analogy. Some physical factors critical to well productivity are also examined. 4 refs.

  20. Skew and twist resistant hydrodynamic rotary shaft seal

    DOE Patents [OSTI]

    Dietle, Lannie (Sugar Land, TX); Kalsi, Manmohan Singh (Houston, TX)

    1999-01-01T23:59:59.000Z

    A hydrodynamically lubricated squeeze packing type rotary shaft seal suitable for lubricant retention and environmental exclusion which incorporates one or more resilient protuberances which and cooperate with the gland walls to hold the seal straight in its installation groove in unpressurized and low pressure lubricant retention applications thereby preventing skew-induced wear caused by impingement of abrasive contaminants present in the environment, and which also serve as radial bearings to prevent tipping of the seal within its installation gland.

  1. Skew and twist resistant hydrodynamic rotary shaft seal

    DOE Patents [OSTI]

    Dietle, L.; Kalsi, M.S.

    1999-02-23T23:59:59.000Z

    A hydrodynamically lubricated squeeze packing type rotary shaft seal suitable for lubricant retention and environmental exclusion which incorporates one or more resilient protuberances which cooperate with the gland walls to hold the seal straight in its installation groove in unpressurized and low pressure lubricant retention applications thereby preventing skew-induced wear caused by impingement of abrasive contaminants present in the environment, and which also serve as radial bearings to prevent tipping of the seal within its installation gland. 14 figs.

  2. Variational Principle of Hydrodynamics and Quantization by Stochastic Process

    E-Print Network [OSTI]

    T. Kodama; T. Koide

    2015-01-05T23:59:59.000Z

    The well-known hydrodynamical representation of the Schr\\"{o}dinger equation is reformulated by extending the idea of Nelson-Yasue's stochastic variational method. The fluid flow is composed by the two stochastic processes from the past and the future, which are unified naturally by the principle of maximum entropy. We show that this formulation is easily applicable to the quantization of scalar fields.

  3. Energy efficient data centers

    E-Print Network [OSTI]

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

    2004-01-01T23:59:59.000Z

    Report on Energy Efficient Data Centers - A Rocky MountainReport on Energy Efficient Data Centers - A Rocky MountainEnergy Efficient Data Centers Prepared by William Tschudi,

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels Promotion and Information The Center for Alternative Fuels (Center) promotes alternative fuels as viable energy sources in the state. The Center must assess the...

  5. From Field Theory to the Hydrodynamics of Relativistic Superfluids

    E-Print Network [OSTI]

    Stephan Stetina

    2015-01-31T23:59:59.000Z

    The hydrodynamic description of a superfluid is usually based on a two-fluid picture. In this thesis, basic properties of such a relativistic two-fluid system are derived from the underlying microscopic physics of a complex scalar quantum field theory. To obtain analytic results of all non-dissipative hydrodynamic quantities in terms of field theoretic variables, calculations are first carried out in a low-temperature and weak-coupling approximation. In a second step, the 2-particle-irreducible formalism is applied: This formalism allows for a numerical evaluation of the hydrodynamic parameters for all temperatures below the critical temperature. In addition, a system of two coupled superfluids is studied. As an application, the velocities of first and second sound in the presence of a superflow are calculated. The results show that first (second) sound evolves from a density (temperature) wave at low temperatures to a temperature (density) wave at high temperatures. This role reversal is investigated for ultra-relativistic and near-nonrelativistic systems for zero and nonzero superflow. The studies carried out in this thesis are of a very general nature as one does not have to specify the system for which the microscopic field theory is an effective description. As a particular example, superfluidity in dense quark and nuclear matter in compact stars are discussed.

  6. Formation of Nuclear Disks and Supermassive Black Hole Binaries in Multi-Scale Hydrodynamical Galaxy Mergers

    E-Print Network [OSTI]

    Lucio Mayer; Stelios Kazantzidis; Andres Escala

    2008-07-22T23:59:59.000Z

    (Abridged) We review the results of the first multi-scale, hydrodynamical simulations of mergers between galaxies with central supermassive black holes (SMBHs) to investigate the formation of SMBH binaries in galactic nuclei. We demonstrate that strong gas inflows produce nuclear disks at the centers of merger remnants whose properties depend sensitively on the details of gas thermodynamics. In numerical simulations with parsec-scale spatial resolution in the gas component and an effective equation of state appropriate for a starburst galaxy, we show that a SMBH binary forms very rapidly, less than a million years after the merger of the two galaxies. Binary formation is significantly suppressed in the presence of a strong heating source such as radiative feedback by the accreting SMBHs. We also present preliminary results of numerical simulations with ultra-high spatial resolution of 0.1 pc in the gas component. These simulations resolve the internal structure of the resulting nuclear disk down to parsec scales and demonstrate the formation of a central massive object (~ 10^8 Mo) by efficient angular momentum transport. This is the first time that a radial gas inflow is shown to extend to parsec scales as a result of the dynamics and hydrodynamics involved in a galaxy merger, and has important implications for the fueling of SMBHs. Due to the rapid formation of the central clump, the density of the nuclear disk decreases significantly in its outer region, reducing dramatically the effect of dynamical friction and leading to the stalling of the two SMBHs at a separation of ~1 pc. We discuss how the orbital decay of the black holes might continue in a more realistic model which incorporates star formation and the multi-phase nature of the ISM.

  7. Numerical Relativity in Spherical Polar Coordinates: Off-center Simulations

    E-Print Network [OSTI]

    Thomas W. Baumgarte; Pedro J. Montero; Ewald Müller

    2015-06-03T23:59:59.000Z

    We have recently presented a new approach for numerical relativity simulations in spherical polar coordinates, both for vacuum and for relativistic hydrodynamics. Our approach is based on a reference-metric formulation of the BSSN equations, a factoring of all tensor components, as well as a partially implicit Runge-Kutta method, and does not rely on a regularization of the equations, nor does it make any assumptions about the symmetry across the origin. In order to demonstrate this feature we present here several off-centered simulations, including simulations of single black holes and neutron stars whose center is placed away from the origin of the coordinate system, as well as the asymmetric head-on collision of two black holes. We also revisit our implementation of relativistic hydrodynamics and demonstrate that a reference-metric formulation of hydrodynamics together with a factoring of all tensor components avoids problems related to the coordinate singularities at the origin and on the axes. As a particularly demanding test we present results for a shock wave propagating through the origin of the spherical polar coordinate system.

  8. Agricultural Centers AGRICULTURAL CENTER PROGRAM OBJECTIVES

    E-Print Network [OSTI]

    Leistikow, Bruce N.

    Agricultural Centers AGRICULTURAL CENTER PROGRAM OBJECTIVES: Conduct research related to the prevention of occu- pational disease and injury of agricultural workers and their families. Develop, implement, and evaluate educational and outreach programs for promoting health and safety for agricultural

  9. Global existence and semiclassical limit for quantum hydrodynamic equations with viscosity and heat conduction

    E-Print Network [OSTI]

    Xueke Pu; Boling Guo

    2015-04-21T23:59:59.000Z

    The hydrodynamic equations with quantum effects are studied in this paper. First we establish the global existence of smooth solutions with small initial data and then in the second part, we establish the convergence of the solutions of the quantum hydrodynamic equations to those of the classical hydrodynamic equations. The energy equation is considered in this paper, which added new difficulties to the energy estimates, especially to the selection of the appropriate Sobolev spaces.

  10. Energy Center Center for Coal Technology Research

    E-Print Network [OSTI]

    Fernández-Juricic, Esteban

    Energy Center Center for Coal Technology Research http://www.purdue.edu/dp/energy/CCTR/ Consumption Production Gasification Power Plants Coking Liquid Fuels Environment Oxyfuels Byproducts Legislation, 500 Central Drive West Lafayette, IN 47907-2022 #12;INDIANA COAL REPORT 2009 Center for Coal

  11. Clinical Psychology Center Center Review Recommendation

    E-Print Network [OSTI]

    Vonessen, Nikolaus

    Clinical Psychology Center Center Review Recommendation B. Review and Approval Process 2 to address issues of common interest. The purpose of the Clinical Psychology Center (CPC) is to serve as the primary clinical training site for graduate students; to provide high quality, affordable mental health

  12. CENTER REPORT Center for Environmental Policy

    E-Print Network [OSTI]

    Slatton, Clint

    CENTER REPORT ~ Center for Environmental Policy Department of Environmental Engineering Sciences of the Department of Environmental Engineering Sciences, the Center for Environmental Policy (CEP), was created interdisciplinary graduate education, research, and advocacy in energy and environmental policy and is an outgrowth

  13. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DAN damage in rats

    SciTech Connect (OSTI)

    Wei, Min; Yamada, Takanori; Yamano, Shotaro; Kato, Minoru; Kakehashi, Anna; Fujioka, Masaki; Tago, Yoshiyuki; Kitano, Mistuaki; Wanibuchi, Hideki, E-mail: wani@med.osaka-cu.ac.jp

    2013-11-15T23:59:59.000Z

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies. - Highlights: • DPAA, an environmental neurotoxicant, promotes liver carcinogenesis in rats. • DPAA is an activator of AhR signaling pathway. • DPAA promoted oxidative DNA damage in rat livers. • AhR target gene CYP 1B1 might be involved in the metabolism of DPAA.

  14. RAM: a Relativistic Adaptive Mesh Refinement Hydrodynamics Code

    SciTech Connect (OSTI)

    Zhang, Wei-Qun; /KIPAC, Menlo Park; MacFadyen, Andrew I.; /Princeton, Inst. Advanced Study

    2005-06-06T23:59:59.000Z

    The authors have developed a new computer code, RAM, to solve the conservative equations of special relativistic hydrodynamics (SRHD) using adaptive mesh refinement (AMR) on parallel computers. They have implemented a characteristic-wise, finite difference, weighted essentially non-oscillatory (WENO) scheme using the full characteristic decomposition of the SRHD equations to achieve fifth-order accuracy in space. For time integration they use the method of lines with a third-order total variation diminishing (TVD) Runge-Kutta scheme. They have also implemented fourth and fifth order Runge-Kutta time integration schemes for comparison. The implementation of AMR and parallelization is based on the FLASH code. RAM is modular and includes the capability to easily swap hydrodynamics solvers, reconstruction methods and physics modules. In addition to WENO they have implemented a finite volume module with the piecewise parabolic method (PPM) for reconstruction and the modified Marquina approximate Riemann solver to work with TVD Runge-Kutta time integration. They examine the difficulty of accurately simulating shear flows in numerical relativistic hydrodynamics codes. They show that under-resolved simulations of simple test problems with transverse velocity components produce incorrect results and demonstrate the ability of RAM to correctly solve these problems. RAM has been tested in one, two and three dimensions and in Cartesian, cylindrical and spherical coordinates. they have demonstrated fifth-order accuracy for WENO in one and two dimensions and performed detailed comparison with other schemes for which they show significantly lower convergence rates. Extensive testing is presented demonstrating the ability of RAM to address challenging open questions in relativistic astrophysics.

  15. Hydrodynamic and Ecological Assessment of Nearshore Restoration: A Modeling Study

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Sobocinski, Kathryn L.; Heatwole, Danelle W.; Khangaonkar, Tarang; Thom, Ronald M.; Fuller, Roger

    2010-04-10T23:59:59.000Z

    Along the Pacific Northwest coast, much of the estuarine habitat has been diked over the last century for agricultural land use, residential and commercial development, and transportation corridors. As a result, many of the ecological processes and functions have been disrupted. To protect coastal habitats that are vital to aquatic species, many restoration projects are currently underway to restore the estuarine and coastal ecosystems through dike breaches, setbacks, and removals. Information on physical processes and hydrodynamic conditions are critical for the assessment of the success of restoration actions. Restoration of a 160- acre property at the mouth of the Stillaguamish River in Puget Sound has been proposed. The goal is to restore native tidal habitats and estuary-scale ecological processes by removing the dike. In this study, a three-dimensional hydrodynamic model was developed for the Stillaguamish River estuary to simulate estuarine processes. The model was calibrated to observed tide, current, and salinity data for existing conditions and applied to simulate the hydrodynamic responses to two restoration alternatives. Responses were evaluated at the scale of the restoration footprint. Model data was combined with biophysical data to predict habitat responses at the site. Results showed that the proposed dike removal would result in desired tidal flushing and conditions that would support four habitat types on the restoration footprint. At the estuary scale, restoration would substantially increase the proportion of area flushed with freshwater (< 5 ppt) at flood tide. Potential implications of predicted changes in salinity and flow dynamics are discussed relative to the distribution of tidal marsh habitat.

  16. A Moving Frame Algorithm for High Mach Number Hydrodynamics

    E-Print Network [OSTI]

    Hy Trac; Ue-Li Pen

    2003-09-24T23:59:59.000Z

    We present a new approach to Eulerian computational fluid dynamics that is designed to work at high Mach numbers encountered in astrophysical hydrodynamic simulations. The Eulerian fluid conservation equations are solved in an adaptive frame moving with the fluid where Mach numbers are minimized. The moving frame approach uses a velocity decomposition technique to define local kinetic variables while storing the bulk kinetic components in a smoothed background velocity field that is associated with the grid velocity. Gravitationally induced accelerations are added to the grid, thereby minimizing the spurious heating problem encountered in cold gas flows. Separately tracking local and bulk flow components allows thermodynamic variables to be accurately calculated in both subsonic and supersonic regions. A main feature of the algorithm, that is not possible in previous Eulerian implementations, is the ability to resolve shocks and prevent spurious heating where both the preshock and postshock Mach numbers are high. The hybrid algorithm combines the high resolution shock capturing ability of the second-order accurate Eulerian TVD scheme with a low-diffusion Lagrangian advection scheme. We have implemented a cosmological code where the hydrodynamic evolution of the baryons is captured using the moving frame algorithm while the gravitational evolution of the collisionless dark matter is tracked using a particle-mesh N-body algorithm. The MACH code is highly suited for simulating the evolution of the IGM where accurate thermodynamic evolution is needed for studies of the Lyman alpha forest, the Sunyaev-Zeldovich effect, and the X-ray background. Hydrodynamic and cosmological tests are described and results presented. The current code is fast, memory-friendly, and parallelized for shared-memory machines.

  17. Chemo -- Dynamical evolution of disk galaxies, smoothed particles hydrodynamics approach

    E-Print Network [OSTI]

    Peter Berczik

    1998-10-20T23:59:59.000Z

    A new Chemo -- Dynamical Smoothed Particle Hydrodynamic (CD -- SPH) code is presented. The disk galaxy is described as a multi -- fragmented gas and star system, embedded into the cold dark matter halo. The star formation (SF) process, SNII, SNIa and PN events as well as chemical enrichment of gas have been considered within the framework of standard SPH model. Using this model we try to describe the dynamical and chemical evolution of triaxial disk -- like galaxies. It is found that such approach provides a realistic description of the process of formation, chemical and dynamical evolution of disk galaxies over the cosmological timescale.

  18. SPLASH: An interactive visualisation tool for Smoothed Particle Hydrodynamics simulations

    E-Print Network [OSTI]

    Daniel J. Price

    2007-09-06T23:59:59.000Z

    This paper presents SPLASH, a publicly available interactive visualisation tool for Smoothed Particle Hydrodynamics (SPH) simulations. Visualisation of SPH data is more complicated than for grid-based codes because the data is defined on a set of irregular points and therefore requires a mapping procedure to a two dimensional pixel array. This means that, in practise, many authors simply produce particle plots which offer a rather crude representation of the simulation output. Here we describe the techniques and algorithms which are utilised in SPLASH in order to provide the user with a fast, interactive and meaningful visualisation of one, two and three dimensional SPH results.

  19. Role of Brownian Motion Hydrodynamics on Nanofluid Thermal Conductivity

    SciTech Connect (OSTI)

    W Evans, J Fish, P Keblinski

    2005-11-14T23:59:59.000Z

    We use a simple kinetic theory based analysis of heat flow in fluid suspensions of solid nanoparticles (nanofluids) to demonstrate that the hydrodynamics effects associated with Brownian motion have a minor effect on the thermal conductivity of the nanofluid. Our conjecture is supported by the results of molecular dynamics simulations of heat flow in a model nanofluid with well-dispersed particles. Our findings are consistent with the predictions of the effective medium theory as well as with recent experimental results on well dispersed metal nanoparticle suspensions.

  20. Hydrodynamic Modes of a holographic $p-$ wave superfluid

    E-Print Network [OSTI]

    Raul E. Arias; Ignacio Salazar Landea

    2014-11-04T23:59:59.000Z

    In this work we analyze the hydrodynamics of a $p-$ wave superfluid on its strongly coupled regime by considering its holographic description. We obtain the poles of the retarded Green function through the computation of the quasi-normal modes of the dual AdS black hole background finding diffusive, pseudo-diffusive and sound modes. For the sound modes we compute the speed of sound and its attenuation as function of the temperature. For the diffusive and pseudo-diffusive modes we find that they acquire a non-zero real part at certain finite momentum.

  1. Electron magneto-hydrodynamic waves bounded by magnetic bubble

    SciTech Connect (OSTI)

    Anitha, V. P.; Sharma, D.; Banerjee, S. P.; Mattoo, S. K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2012-08-15T23:59:59.000Z

    The propagation of electron magneto-hydrodynamic (EMHD) waves is studied experimentally in a 3-dimensional region of low magnetic field surrounded by stronger magnetic field at its boundaries. We report observations where bounded left hand polarized Helicon like EMHD waves are excited, localized in the region of low magnetic field due to the boundary effects generated by growing strengths of the ambient magnetic field rather than a conducting or dielectric material boundary. An analytical model is developed to include the effects of radially nonuniform magnetic field in the wave propagation. The bounded solutions are compared with the experimentally obtained radial wave magnetic field profiles explaining the observed localized propagation of waves.

  2. Skew And Twist Resistant Hydrodynamic Rotary Shaft Seal

    DOE Patents [OSTI]

    Dietle, Lannie (Sugar Land, TX); Kalsi, Manmohan Singh (Houston, TX)

    2000-03-14T23:59:59.000Z

    A hydrodynamically lubricated squeeze packing type rotary shaft seal suitable for lubricant retention and environmental exclusion which incorporates one or more resilient protuberances which and cooperate with the gland walls to hold the seal straight in its installation groove in unpressurized and low pressure lubricant retention applications thereby preventing skew-induced wear caused by impingement of abrasive contaminants present in the environment, and which also serve as radial bearings to prevent tipping of the seal within its installation gland. Compared to prior art, this invention provides a dramatic reduction of seal and shaft wear in abrasive environments and provides a significant increase in seal life.

  3. Dancing Volvox: Hydrodynamic Bound States of Swimming Algae

    E-Print Network [OSTI]

    Knut Drescher; Kyriacos C. Leptos; Idan Tuval; Takuji Ishikawa; Timothy J. Pedley; Raymond E. Goldstein

    2009-01-14T23:59:59.000Z

    The spherical alga Volvox swims by means of flagella on thousands of surface somatic cells. This geometry and its large size make it a model organism for studying the fluid dynamics of multicellularity. Remarkably, when two nearby Volvox swim close to a solid surface, they attract one another and can form stable bound states in which they "waltz" or "minuet" around each other. A surface-mediated hydrodynamic attraction combined with lubrication forces between spinning, bottom-heavy Volvox explains the formation, stability and dynamics of the bound states. These phenomena are suggested to underlie observed clustering of Volvox at surfaces.

  4. Semiclassical hydrodynamics of a quantum Kane model for semiconductors

    E-Print Network [OSTI]

    Luigi Barletti; Giovanni Borgioli; Giovanni Frosali

    2014-02-17T23:59:59.000Z

    In this paper we derive a semiclassical hydrodynamic system for electron densities and currents in the two energy bands of a semiconductor. We use the semiclassical Wigner equation with a k.p Hamiltonian and a BGK dissipative term to construct the first two moment equations. The closure of the moment system is obtained using the Maximum Entropy Principle, by minimizing a Gibbs free-energy functional under suitable constraints. We prove that the constraint equations can be uniquely solved, i.e. that the local equilibrium state can be parametrized by the density and velocity field. Some BGK-like models are proposed to mimic the quantum interband migration.

  5. Updated 11-12 Victor S. Gavin

    E-Print Network [OSTI]

    ). PEO LMW executes the Navy's acquisition programs for Mine Warfare, Unmanned Maritime Vehicles held positions as the Systems Engineer with the Naval Underwater Warfare Center, as an on

  6. Development of a Hydrodynamic and Transport model of Bellingham Bay in Support of Nearshore Habitat Restoration

    SciTech Connect (OSTI)

    Wang, Taiping; Yang, Zhaoqing; Khangaonkar, Tarang

    2010-04-22T23:59:59.000Z

    In this study, a hydrodynamic model based on the unstructured-grid finite volume coastal ocean model (FVCOM) was developed for Bellingham Bay, Washington. The model simulates water surface elevation, velocity, temperature, and salinity in a three-dimensional domain that covers the entire Bellingham Bay and adjacent water bodies, including Lummi Bay, Samish Bay, Padilla Bay, and Rosario Strait. The model was developed using Pacific Northwest National Laboratory’s high-resolution Puget Sound and Northwest Straits circulation and transport model. A sub-model grid for Bellingham Bay and adjacent coastal waters was extracted from the Puget Sound model and refined in Bellingham Bay using bathymetric light detection and ranging (LIDAR) and river channel cross-section data. The model uses tides, river inflows, and meteorological inputs to predict water surface elevations, currents, salinity, and temperature. A tidal open boundary condition was specified using standard National Oceanic and Atmospheric Administration (NOAA) predictions. Temperature and salinity open boundary conditions were specified based on observed data. Meteorological forcing (wind, solar radiation, and net surface heat flux) was obtained from NOAA real observations and National Center for Environmental Prediction North American Regional Analysis outputs. The model was run in parallel with 48 cores using a time step of 2.5 seconds. It took 18 hours of cpu time to complete 26 days of simulation. The model was calibrated with oceanographic field data for the period of 6/1/2009 to 6/26/2009. These data were collected specifically for the purpose of model development and calibration. They include time series of water-surface elevation, currents, temperature, and salinity as well as temperature and salinity profiles during instrument deployment and retrieval. Comparisons between model predictions and field observations show an overall reasonable agreement in both temporal and spatial scales. Comparisons of root mean square error values for surface elevation, velocity, temperature, and salinity time series are 0.11 m, 0.10 m/s, 1.28oC, and 1.91 ppt, respectively. The model was able to reproduce the salinity and temperature stratifications inside Bellingham Bay. Wetting and drying processes in tidal flats in Bellingham Bay, Samish Bay, and Padilla Bay were also successfully simulated. Both model results and observed data indicated that water surface elevations inside Bellingham Bay are highly correlated to tides. Circulation inside the bay is weak and complex and is affected by various forcing mechanisms, including tides, winds, freshwater inflows, and other local forcing factors. The Bellingham Bay model solution was successfully linked to the NOAA oil spill trajectory simulation model “General NOAA Operational Modeling Environment (GNOME).” Overall, the Bellingham Bay model has been calibrated reasonably well and can be used to provide detailed hydrodynamic information in the bay and adjacent water bodies. While there is room for further improvement with more available data, the calibrated hydrodynamic model provides useful hydrodynamic information in Bellingham Bay and can be used to support sediment transport and water quality modeling as well as assist in the design of nearshore restoration scenarios.

  7. Video Center Administrator Guide

    E-Print Network [OSTI]

    Eisen, Michael

    LifeSize® Video Center Administrator Guide March 2011 LifeSize Video Center 2200 #12;LifeSize Video Center Adminstrator Guide 2 Administering LifeSize Video Center LifeSize Video Center is a network server that stores and streams video sent by LifeSize video communications systems enabled for recording. It can also

  8. Simulation Supported Decision Making

    E-Print Network [OSTI]

    611) ­ SSBN Acquisition (Booz, Allen & Hamilton - 3 yrs) ­ Presently with Navy Surface Warfare Center

  9. Numerical Simulation of the Hydrodynamical Combustion to Strange Quark Matter

    E-Print Network [OSTI]

    Brian Niebergal; Rachid Ouyed; Prashanth Jaikumar

    2010-08-27T23:59:59.000Z

    We present results from a numerical solution to the burning of neutron matter inside a cold neutron star into stable (u,d,s) quark matter. Our method solves hydrodynamical flow equations in 1D with neutrino emission from weak equilibrating reactions, and strange quark diffusion across the burning front. We also include entropy change due to heat released in forming the stable quark phase. Our numerical results suggest burning front laminar speeds of 0.002-0.04 times the speed of light, much faster than previous estimates derived using only a reactive-diffusive description. Analytic solutions to hydrodynamical jump conditions with a temperature dependent equation of state agree very well with our numerical findings for fluid velocities. The most important effect of neutrino cooling is that the conversion front stalls at lower density (below approximately 2 times saturation density). In a 2-dimensional setting, such rapid speeds and neutrino cooling may allow for a flame wrinkle instability to develop, possibly leading to detonation.

  10. Hydrodynamics of rapidly rotating superfluid neutron stars with mutual friction

    E-Print Network [OSTI]

    A. Passamonti; N. Andersson

    2010-04-26T23:59:59.000Z

    We study time evolutions of superfluid neutron stars, focussing on the nature of the oscillation spectrum, the effect of mutual friction force on the oscillations and the hydrodynamical spin-up phase of pulsar glitches. We linearise the dynamical equations of a Newtonian two-fluid model for rapidly rotating backgrounds. In the axisymmetric equilibrium configurations, the two fluid components corotate and are in beta-equilibrium. We use analytical equations of state that generate stratified and non-stratified stellar models, which enable us to study the coupling between the dynamical degrees of freedom of the system. By means of time evolutions of the linearised dynamical equations, we determine the spectrum of axisymmetric and non-axisymmetric oscillation modes, accounting for the contribution of the gravitational potential perturbations, i.e. without adopting the Cowling approximation. We study the mutual friction damping of the superfluid oscillations and consider the effects of the non-dissipative part of the mutual friction force on the mode frequencies. We also provide technical details and relevant tests for the hydrodynamical model of pulsar glitches discussed by Sidery, Passamonti and Andersson (2010). In particular, we describe the method used to generate the initial data that mimic the pre-glitch state, and derive the equations that are used to extract the gravitational-wave signal.

  11. Hydrodynamic model for electron-hole plasma in graphene

    E-Print Network [OSTI]

    D. Svintsov; V. Vyurkov; S. Yurchenko; T. Otsuji; V. Ryzhii

    2012-01-03T23:59:59.000Z

    We propose a hydrodynamic model describing steady-state and dynamic electron and hole transport properties of graphene structures which accounts for the features of the electron and hole spectra. It is intended for electron-hole plasma in graphene characterized by high rate of intercarrier scattering compared to external scattering (on phonons and impurities), i.e., for intrinsic or optically pumped (bipolar plasma), and gated graphene (virtually monopolar plasma). We demonstrate that the effect of strong interaction of electrons and holes on their transport can be treated as a viscous friction between the electron and hole components. We apply the developed model for the calculations of the graphene dc conductivity, in particular, the effect of mutual drag of electrons and holes is described. The spectra and damping of collective excitations in graphene in the bipolar and monopolar limits are found. It is shown that at high gate voltages and, hence, at high electron and low hole densities (or vice-versa), the excitations are associated with the self-consistent electric field and the hydrodynamic pressure (plasma waves). In intrinsic and optically pumped graphene, the waves constitute quasineutral perturbations of the electron and hole densities (electron-hole sound waves) with the velocity being dependent only on the fundamental graphene constants.

  12. Hydrodynamic Simulation of Supernova Remnants Including Efficient Particle Acceleration

    E-Print Network [OSTI]

    Donald C. Ellison; Anne Decourchelle; Jean Ballet

    2003-08-19T23:59:59.000Z

    A number of supernova remnants (SNRs) show nonthermal X-rays assumed to be synchrotron emission from shock accelerated TeV electrons. The existence of these TeV electrons strongly suggests that the shocks in SNRs are sources of galactic cosmic rays (CRs). In addition, there is convincing evidence from broad-band studies of individual SNRs and elsewhere that the particle acceleration process in SNRs can be efficient and nonlinear. If SNR shocks are efficient particle accelerators, the production of CRs impacts the thermal properties of the shock heated, X-ray emitting gas and the SNR evolution. We report on a technique that couples nonlinear diffusive shock acceleration, including the backreaction of the accelerated particles on the structure of the forward and reverse shocks, with a hydrodynamic simulation of SNR evolution. Compared to models which ignore CRs, the most important hydrodynamical effects of placing a significant fraction of shock energy into CRs are larger shock compression ratios and lower temperatures in the shocked gas. We compare our results, which use an approximate description of the acceleration process, with a more complete model where the full CR transport equations are solved (i.e., Berezhko et al., 2002), and find excellent agreement for the CR spectrum summed over the SNR lifetime and the evolving shock compression ratio. The importance of the coupling between particle acceleration and SNR dynamics for the interpretation of broad-band continuum and thermal X-ray observations is discussed.

  13. Hydrodynamic and hydromagnetic energy spectra from large eddy simulations

    E-Print Network [OSTI]

    N. E. L. Haugen; A. Brandenburg

    2006-06-29T23:59:59.000Z

    Direct and large eddy simulations of hydrodynamic and hydromagnetic turbulence have been performed in an attempt to isolate artifacts from real and possibly asymptotic features in the energy spectra. It is shown that in a hydrodynamic turbulence simulation with a Smagorinsky subgrid scale model using 512^3 meshpoints two important features of the 4096^3 simulation on the Earth simulator (Kaneda et al. 2003, Phys. Fluids 15, L21) are reproduced: a k^{-0.1} correction to the inertial range with a k^{-5/3} Kolmogorov slope and the form of the bottleneck just before the dissipative subrange. Furthermore, it is shown that, while a Smagorinsky-type model for the induction equation causes an artificial and unacceptable reduction in the dynamo efficiency, hyper-resistivity yields good agreement with direct simulations. In the large-scale part of the inertial range, an excess of the spectral magnetic energy over the spectral kinetic energy is confirmed. However, a trend towards spectral equipartition at smaller scales in the inertial range can be identified. With magnetic fields, no explicit bottleneck effect is seen.

  14. The dynamics of polymers in solution with hydrodynamic memory

    E-Print Network [OSTI]

    V. Lisy; J. Tothova; B. Brutovsky; A. V Zatovsky

    2005-09-15T23:59:59.000Z

    The theory of the dynamics of polymers in solution is developed coming from the hydrodynamic theory of the Brownian motion (BM) and the Rouse-Zimm (RZ) model. It is shown that the time correlation functions describing the polymer motion essentially differ from those in the previous RZ models based on the Einstein theory of BM. The MSD of the polymer coil is at short times proportional to t^2 (instead of t). At long times it contains additional (to the Einstein term) contributions, the leading of which is ~ t^{1/2}. The relaxation of the internal normal modes of the polymer differs from the traditional exponential decay. This is displayed in the tails of their correlation functions, the longest-lived being ~ t^{-3/2} in the Rouse limit and t^{-5/2} in the Zimm case when the hydrodynamic interaction is strong. It is discussed that the found peculiarities, in particular a slower diffusion of the coil, should be observable in dynamic scattering experiments. The dynamic structure factor and the first cumulant of the polymer coil are calculated. The theory is extended to the situation when the dynamics of the studied polymer is influenced by the presence of other polymers in dilute solution.

  15. Dynamic mesoscale model of dipolar fluids via fluctuating hydrodynamics

    SciTech Connect (OSTI)

    Persson, Rasmus A. X.; Chu, Jhih-Wei, E-mail: jwchu@nctu.edu.tw [Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Voulgarakis, Nikolaos K. [Department of Mathematics, Washington State University, Richland, Washington 99372 (United States)

    2014-11-07T23:59:59.000Z

    Fluctuating hydrodynamics (FHD) is a general framework of mesoscopic modeling and simulation based on conservational laws and constitutive equations of linear and nonlinear responses. However, explicit representation of electrical forces in FHD has yet to appear. In this work, we devised an Ansatz for the dynamics of dipole moment densities that is linked with the Poisson equation of the electrical potential ? in coupling to the other equations of FHD. The resulting ?-FHD equations then serve as a platform for integrating the essential forces, including electrostatics in addition to hydrodynamics, pressure-volume equation of state, surface tension, and solvent-particle interactions that govern the emergent behaviors of molecular systems at an intermediate scale. This unique merit of ?-FHD is illustrated by showing that the water dielectric function and ion hydration free energies in homogeneous and heterogenous systems can be captured accurately via the mesoscopic simulation. Furthermore, we show that the field variables of ?-FHD can be mapped from the trajectory of an all-atom molecular dynamics simulation such that model development and parametrization can be based on the information obtained at a finer-grained scale. With the aforementioned multiscale capabilities and a spatial resolution as high as 5 Å, the ?-FHD equations represent a useful semi-explicit solvent model for the modeling and simulation of complex systems, such as biomolecular machines and nanofluidics.

  16. Bulk Viscosity and Cavitation in Boost-Invariant Hydrodynamic Expansion

    E-Print Network [OSTI]

    Krishna Rajagopal; Nilesh Tripuraneni

    2010-02-16T23:59:59.000Z

    We solve second order relativistic hydrodynamics equations for a boost-invariant 1+1-dimensional expanding fluid with an equation of state taken from lattice calculations of the thermodynamics of strongly coupled quark-gluon plasma. We investigate the dependence of the energy density as a function of proper time on the values of the shear viscosity, the bulk viscosity, and second order coefficients, confirming that large changes in the values of the latter have negligible effects. Varying the shear viscosity between zero and a few times s/(4 pi), with s the entropy density, has significant effects, as expected based on other studies. Introducing a nonzero bulk viscosity also has significant effects. In fact, if the bulk viscosity peaks near the crossover temperature Tc to the degree indicated by recent lattice calculations in QCD without quarks, it can make the fluid cavitate -- falling apart into droplets. It is interesting to see a hydrodynamic calculation predicting its own breakdown, via cavitation, at the temperatures where hadronization is thought to occur in ultrarelativistic heavy ion collisions.

  17. Georgia Geriatric Education Center

    E-Print Network [OSTI]

    Arnold, Jonathan

    Georgia Geriatric Education Center © Photography courtesy of the U.S. Administration on Aging. Georgia Geriatric Education Center Latestresourcesandtrainingforbestpracticesingerontologyandgeriatrics. The Georgia Geriatric Education Center (GGEC) is a statewide effort designed to help you access the latest

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onConversions toE15Hybrid andBiofuel

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onConversionsAlternativeE85 Fueling

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStation LocationsGeneseeValleyPerformanceGrants The

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStation LocationsGeneseeValleyPerformanceGrants

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStation LocationsGeneseeValleyPerformanceGrantsCompressed

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStation

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse Gas (GHG) Emissions Study In October

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse Gas (GHG) Emissions Study In

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse Gas (GHG) Emissions Study

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse Gas (GHG) Emissions StudyPolicies for

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse Gas (GHG) Emissions

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse Gas (GHG) EmissionsHigh Occupancy

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse Gas (GHG) EmissionsHigh Occupancyand

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse Gas (GHG) EmissionsHigh

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse Gas (GHG) EmissionsHighAdvanced Vehicle

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse Gas (GHG) EmissionsHighAdvanced

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse Gas (GHG) EmissionsHighAdvancedPlug-In

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse Gas (GHG)

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNew England MEDIA

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNew England MEDIAZero

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNew England MEDIAZeroFuel

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNew EnglandState

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNew

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNewState Agency Electric

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNewState Agency

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNewState AgencyAlternative

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNewState

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNewStateMandatory Electric

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNewStateMandatory

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNewStateMandatoryVoluntary

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid and Zero Emission Truck and Bus

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid and Zero Emission Truck and

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid and Zero Emission Truck andZero

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid and Zero Emission Truck

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid and Zero Emission

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid and Zero EmissionZero Emission

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid and Zero

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid and ZeroResidential Electric

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid and ZeroResidential ElectricVehicle

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid and ZeroResidential

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid and ZeroResidentialEmployer

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid and ZeroResidentialEmployerPlug-In

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid and

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternative Fuel Vehicle (AFV)

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternative Fuel Vehicle

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternative Fuel VehicleTax

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternative Fuel

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternative FuelClean Vehicle

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternative FuelClean

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternative FuelCleanAlternative

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternative

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternativeLow Emissions School

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternativeLow Emissions

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternativeLow

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternativeLowAlternative Fuel

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid andAlternativeLowAlternative

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybrid

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel Fuel Blend Tax Exemption The

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel Fuel Blend Tax Exemption

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel Fuel Blend Tax Exemptionand

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel Fuel Blend Tax

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel Fuel Blend TaxHeavy-Duty

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel Fuel Blend

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel Fuel BlendNeighborhood

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel Fuel BlendNeighborhoodNatural

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel Fuel

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel FuelAlternative Fuel and

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel FuelAlternative Fuel

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel FuelAlternative FuelProvision

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel FuelAlternative

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel FuelAlternativeFleet Vehicle

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel FuelAlternativeFleet

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDieselEmissions Reductions Grants

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDieselEmissions Reductions

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDieselEmissions ReductionsLow

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDieselEmissions

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDieselEmissionsLADWP The Los Angeles

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDieselEmissionsLADWP The Los

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDieselEmissionsLADWP The

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDieselEmissionsLADWP TheFuel

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDieselEmissionsLADWP TheFuelBiofuels

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDieselEmissionsLADWP

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDieselEmissionsLADWPBiodiesel

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicle equipped with a fully

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicle equipped with a

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicle equipped with aBond

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicle equipped with

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicle equipped

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicle equippedTax Exemption

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicle equippedTax

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicle equippedTaxAlternative

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicle

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicleIdle Reduction

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicleIdle ReductionEthanol

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicleIdle

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicleIdleAlternative Fuel

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicleIdleAlternative

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A vehicleIdleAlternativeVehicle

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption A

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption AFuel-Efficient Tire Program

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption AFuel-Efficient Tire

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption AFuel-Efficient TireFleet Grants

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption AFuel-Efficient TireFleet

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption AFuel-Efficient

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption AFuel-EfficientFuel-Efficient

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption AFuel-EfficientFuel-Efficientand

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight Exemption

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight ExemptionInfrastructure Evaluation The

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight ExemptionInfrastructure Evaluation

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight ExemptionInfrastructure EvaluationPlug-In

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight ExemptionInfrastructure

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight ExemptionInfrastructureNatural Gas Rate

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight ExemptionInfrastructureNatural Gas

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight ExemptionInfrastructureNatural

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight ExemptionInfrastructureNaturalHeavy-Duty

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction Weight

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP The Los Angeles Department

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP The Los Angeles

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP The Los AngelesHigh

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP The Los AngelesHighand

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP The Los

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP The LosAlternative

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP The LosAlternativeIdle

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP The

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP TheCommercial Vehicle Idle

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP TheCommercial Vehicle

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP TheCommercial

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP TheCommercialHeavy-Duty

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWPPublic Utility Definition A

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWPPublic Utility Definition

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWPPublic Utility

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWPPublic UtilityIdle Reduction

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWPPublic UtilityIdle

  15. Data Center Energy Efficiency

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) supports data center efficiency initiatives by encouraging Federal agencies to adopt best practices and construct energy-efficient data centers.

  16. Biofuels Information Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Information Center BETO 2015 Peer Review Kristi Moriarty March 24, 2015 2 Goal Statement * The purpose of the Biofuels Information Center (BIC) task is to increase...

  17. Electron Microscopy Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Microscopy Center Argonne Home > EMC > EMC Home Electron Microscopy Center Web Site has moved This page has moved to http:www.anl.govcnmgroupelectron-microscopy-cente...

  18. Danforth Center Tour | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OFSupplemental TechnologySummary of

  19. RESEARCH CENTERS National Security Education Center

    E-Print Network [OSTI]

    ) Leader Dan Thoma Program Administrator Debbie Wilke Institute for Multiscale Materials Studies (UCSB Security Center Leader Tom Terwilliger Program Administrator Josephine Olivas Information Science

  20. Center Organization | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess StoriesFebruaryMetal nanoparticlesCenter Organization People

  1. THERMO-HYDRODYNAMICS OF DEVELOPING FLOW IN A RECTANGULAR MINI-CHANNEL ARRAY Gaurav Agarwal

    E-Print Network [OSTI]

    Khandekar, Sameer

    THERMO-HYDRODYNAMICS OF DEVELOPING FLOW IN A RECTANGULAR MINI-CHANNEL ARRAY Gaurav Agarwal Dept of Technology Kanpur Kanpur (UP) 208016, India samkhan@iitk.ac.in ABSTRACT Thermo-hydrodynamic performance on developing flows. Thus, the study reveals that conventional theory, which predicts thermo

  2. Coupling upland watershed and downstream waterbody hydrodynamic and water quality models

    E-Print Network [OSTI]

    . Such models lack the capacity to simulate the hydrodynamics and water quality processes of larger waterCoupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins B. Debele & R. Srinivasan

  3. An Investigation on the Hydrodynamics and Sediment Dynamics on an Intertidal Mudflat in

    E-Print Network [OSTI]

    Talke, Stefan

    An Investigation on the Hydrodynamics and Sediment Dynamics on an Intertidal Mudflat in Central San on the Hydrodynamics and Sediment Dynamics on an Intertidal Mudflat in Central San Francisco Bay Copyright 2005 on an Intertidal Mudflat in Central San Francisco Bay by Stefan Andreas Talke Doctor of Philosophy in Engineering

  4. Role of Brownian motion hydrodynamics on nanofluid thermal conductivity William Evans

    E-Print Network [OSTI]

    Fish, Jacob

    Role of Brownian motion hydrodynamics on nanofluid thermal conductivity William Evans Lockheed of solid nanoparticles nanofluids to demonstrate that the hydrodynamics effects associated with Brownian motion have only a minor effect on the thermal conductivity of the nanofluid. This analysis is supported

  5. The pre-merger impact velocity of the binary cluster A1750 from X-ray, lensing, and hydrodynamical simulations

    SciTech Connect (OSTI)

    Molnar, Sandor M. [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China); Chiu, I-Non Tim [Department of Physics, Ludwig-Maximilians University, Scheinerstr 1, D-81679 Munich (Germany); Broadhurst, Tom [Department of Theoretical Physics, University of the Basque Country, E-48080 Bilbao (Spain); Stadel, Joachim G., E-mail: sandor@phys.ntu.edu.tw [Institute for Theoretical Physics, University of Zurich, 8057 Zurich (Switzerland)

    2013-12-10T23:59:59.000Z

    Since the discovery of the 'Bullet Cluster', several similar cases have been uncovered that suggest relative velocities well beyond the tail of high speed collisions predicted by the concordance ?CDM model. However, quantifying such post-merger events with hydrodynamical models requires a wide coverage of possible initial conditions. Here, we show that it is simpler to interpret pre-merger cases, such as A1750, where the gas between the colliding clusters is modestly affected, so that the initial conditions are clear. We analyze publicly available Chandra data confirming a significant increase in the projected X-ray temperature between the two cluster centers in A1750 consistent with our expectations for a merging cluster. We model this system with a self-consistent hydrodynamical simulation of dark matter and gas using the FLASH code. Our simulations reproduce well the X-ray data and the measured redshift difference between the two clusters in the phase before the first core passage viewed at an intermediate projection angle. The deprojected initial relative velocity derived using our model is 1460 km s{sup –1}, which is considerably higher than the predicted mean impact velocity for simulated massive haloes derived by recent ?CDM cosmological simulations, but is within the allowed range. Our simulations demonstrate that such systems can be identified using a multi-wavelength approach and numerical simulations, for which the statistical distribution of relative impact velocities may provide a definitive examination of a broad range of dark matter scenarios.

  6. Reliability-Centered Maintenance

    Broader source: Energy.gov [DOE]

    Reliability-centered maintenance leverages the same practices and technologies of predictive maintenance.

  7. & Education CenterOregon

    E-Print Network [OSTI]

    Caughman, John

    Fourth Ave Building Art Building Science & Education CenterOregon Sustainability Center (planned Hall Lincoln Hall School of Business 5th Ave Cinema East Hall University Technology Services Honors Stratford Building Parkway Science Building 1 Helen Gordon Child Center Science Research & Teaching Center

  8. A Module for Radiation Hydrodynamic Calculations With ZEUS-2D Using Flux-Limited Diffusion

    E-Print Network [OSTI]

    N. J. Turner; J. M. Stone

    2001-02-08T23:59:59.000Z

    A module for the ZEUS-2D code is described which may be used to solve the equations of radiation hydrodynamics to order unity in v/c, in the flux-limited diffusion (FLD) approximation. In this approximation, the tensor Eddington factor f which closes the radiation moment equations is chosen to be an empirical function of radiation energy density. This is easier to implement and faster than full-transport techniques, in which f is computed by solving the transfer equation. However, FLD is less accurate when the flux has a component perpendicular to the gradient in radiation energy density, and in optically thin regions when the radiation field depends strongly on angle. The material component of the fluid is here assumed to be in local thermodynamic equilibrium. The energy equations are operator-split, with transport terms, radiation diffusion term, and other source terms evolved separately. Transport terms are applied using the same consistent transport algorithm as in ZEUS-2D. The radiation diffusion term is updated using an alternating-direction implicit method with convergence checking. Remaining source terms are advanced together implicitly using numerical root-finding. However when absorption opacity is zero, accuracy is improved by treating compression and expansion source terms using time-centered differencing. Results are discussed for test problems including radiation-damped linear waves, radiation fronts propagating in optically-thin media, subcritical and supercritical radiating shocks, and an optically-thick shock in which radiation dominates downstream pressure.

  9. Hydro-dynamical models for the chaotic dripping faucet

    E-Print Network [OSTI]

    P. Coullet; L. Mahadevan; C. S. Riera

    2004-08-20T23:59:59.000Z

    We give a hydrodynamical explanation for the chaotic behaviour of a dripping faucet using the results of the stability analysis of a static pendant drop and a proper orthogonal decomposition (POD) of the complete dynamics. We find that the only relevant modes are the two classical normal forms associated with a Saddle-Node-Andronov bifurcation and a Shilnikov homoclinic bifurcation. This allows us to construct a hierarchy of reduced order models including maps and ordinary differential equations which are able to qualitatively explain prior experiments and numerical simulations of the governing partial differential equations and provide an explanation for the complexity in dripping. We also provide a new mechanical analogue for the dripping faucet and a simple rationale for the transition from dripping to jetting modes in the flow from a faucet.

  10. A Co-moving Coordinate System for Relativistic Hydrodynamics

    E-Print Network [OSTI]

    Scott Pratt

    2006-12-03T23:59:59.000Z

    The equations of relativistic hydrodynamics are transformed so that steps forward in time preserves local simultaneity. In these variables, the space-time coordinates of neighboring points on the mesh are simultaneous according to co-moving observers. Aside from the time step varying as a function of the location on the mesh, the local velocity gradient and the local density then evolve according to non-relativistic equations of motion. Analytic solutions are found for two one-dimensional cases with constant speed of sound. One solution has a Gaussian density profile when mapped into the new coordinates. That solution is analyzed for the effects of longitudinal acceleration in relativistic heavy ion collisions at RHIC, especially in regards to two-particle correlation measurements of the longitudinal size.

  11. Black brane entropy and hydrodynamics: The boost-invariant case

    SciTech Connect (OSTI)

    Booth, Ivan; Heller, Michal P.; Spalinski, Michal [Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1C 5S7 (Canada); Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Cracow (Poland); Soltan Institute for Nuclear Studies, 00-681 Warsaw (Poland) and Physics Department, University of Bialystok, 15-424 Bialystok (Poland)

    2009-12-15T23:59:59.000Z

    The framework of slowly evolving horizons is generalized to the case of black branes in asymptotically anti-de Sitter spaces in arbitrary dimensions. The results are used to analyze the behavior of both event and apparent horizons in the gravity dual to boost-invariant flow. These considerations are motivated by the fact that at second order in the gradient expansion the hydrodynamic entropy current in the dual Yang-Mills theory appears to contain an ambiguity. This ambiguity, in the case of boost-invariant flow, is linked with a similar freedom on the gravity side. This leads to a phenomenological definition of the entropy of black branes. Some insights on fluid/gravity duality and the definition of entropy in a time-dependent setting are elucidated.

  12. Absolute Lineshifts - A new diagnostic for stellar hydrodynamics

    E-Print Network [OSTI]

    Dainis Dravins

    2003-02-28T23:59:59.000Z

    For hydrodynamic model atmospheres, absolute lineshifts are becoming an observable diagnostic tool beyond the classical ones of line-strength, -width, -shape, and -asymmetry. This is the wavelength displacement of different types of spectral lines away from the positions naively expected from the Doppler shift caused by stellar radial motion. Caused mainly by correlated velocity and brightness patterns in granular convection, such absolute lineshifts could in the past be studied only for the Sun (since the relative Sun-Earth motion, and the ensuing Doppler shift is known). For other stars, this is now becoming possible thanks to three separate developments: (a) Astrometric determination of stellar radial motion; (b) High-resolution spectrometers with accurate wavelength calibration, and (c) Accurate laboratory wavelengths for several atomic species. Absolute lineshifts offer a tool to segregate various 2- and 3-dimensional models, and to identify non-LTE effects in line formation.

  13. Absolute Lineshifts - A new diagnostic for stellar hydrodynamics

    E-Print Network [OSTI]

    Dravins, D

    2003-01-01T23:59:59.000Z

    For hydrodynamic model atmospheres, absolute lineshifts are becoming an observable diagnostic tool beyond the classical ones of line-strength, -width, -shape, and -asymmetry. This is the wavelength displacement of different types of spectral lines away from the positions naively expected from the Doppler shift caused by stellar radial motion. Caused mainly by correlated velocity and brightness patterns in granular convection, such absolute lineshifts could in the past be studied only for the Sun (since the relative Sun-Earth motion, and the ensuing Doppler shift is known). For other stars, this is now becoming possible thanks to three separate developments: (a) Astrometric determination of stellar radial motion; (b) High-resolution spectrometers with accurate wavelength calibration, and (c) Accurate laboratory wavelengths for several atomic species. Absolute lineshifts offer a tool to segregate various 2- and 3-dimensional models, and to identify non-LTE effects in line formation.

  14. Hydrodynamic transport coefficients in relativistic scalar field theory

    SciTech Connect (OSTI)

    Jeon, S. [Department of Physics FM-15, University of Washington, Seattle, Washington 98195 (United States)] [Department of Physics FM-15, University of Washington, Seattle, Washington 98195 (United States)

    1995-09-15T23:59:59.000Z

    Hydrodynamic transport coefficients may be evaluated from first principals in a weakly coupled scalar field theory at an arbitrary temperature. In a theory with cubic and quartic interactions, the infinite class of diagrams which contributes to the leading weak coupling behavior is identified and summed. The resulting expression may be reduced to a single linear integral equation, which is shown to be identical to the corresponding result obtained from a linearized Boltzmann equation describing effective thermal excitations with temperature-dependent masses and scattering amplitudes. The effective Boltzmann equation is valid even at very high temperature where the thermal lifetime and mean free path are short compared to the Compton wavelength of the fundamental particles. Numerical results for the shear and the bulk viscosities are presented.

  15. Effects on the Physical Environment (Hydrodynamics, and Water Quality Food

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6: RecordJune-YearEffect ofof Energy Effects

  16. Hydrodynamic forces on smooth inclined cylinder in oscillatory flow

    SciTech Connect (OSTI)

    Kang, H.G. [Dalian Univ. of Technology (China)

    1993-12-31T23:59:59.000Z

    The hydrodynamic forces on a smooth inclined circular cylinder exposed to oscillating flow were experimentally investigated at Reynolds number (Re) in the range 40,000--200,000 and Keulegan-Capenter number (Kc) in the interval from 5--40. In the test, Re number and Kc number were varied systematically. The inertia force coefficient (C{sub M}) and the drag force coefficient (C{sub D}) in Morison equation were determined form the measured loads and the water particle kinematics. This analysis uses a modified form of Morison equation since it uses the normal velocity and acceleration. Thus, the applicability of the Cross Flow Principle was assumed. This principle, simply stated, is as follows: the force acting in the direction normal to the axis of a cylinder placed at some oblique angle to the direction of flow is expressed in terms of the normal component of flow only, and the axial component is disregarded. Both total in-line force coefficient (C{sub F}) and transverse force (lift) coefficient (C{sub L}) were analyzed in terms of their maximum and root mean square values. All the in-line and lift force coefficient were given as a functions of Re and Kc number. From this research, it can be seen that the Cross-Flow Principle does not always work well. It seems valid for the total in-line force at high Re and large Kc number; the C{sub M} for {alpha} = 45{degree} is larger and the C{sub D} for {alpha} = 45{degree} is smaller than that for {alpha} = 90{degree} and Re {ge} 80,000. The hydrodynamic force coefficients C{sub D} and C{sub M} for the inclined cylinder are only the functions of oblique angle ({alpha}) and Kc number, but not of the Re number.

  17. Impact of hydrodynamics on coal liquefaction. Final technical report

    SciTech Connect (OSTI)

    Kang, D.; Ying, D.H.S.; Givens, E.N.

    1983-09-01T23:59:59.000Z

    We have attempted to determine the hydrodynamic effects of various reactor configurations on coal liquefaction, to help select the optimal reactor configuration and to provide additional understanding of coal liquefaction reaction kinetics, which cannot be definitively determined by a CSTR alone. Only a qualitative understanding of the fluid dynamic effects on product yields has been perceived by operating various sizes of open-column tubular reactors, because the fluid-dynamic characteristics of these reactors were not clearly understood and could not be varied significantly. Indirect studies, by cold-flow simulation, have been of little help in defining the fluid dynamic impact on coal liquefaction. Comparison of actual coal liquefaction data from both the plug-flow reactor and the CSTR showed that the plug-flow configuration had various advantages. Reactor yields improved significantly, especially the primary product conversions. At 840/sup 0/F and residence times of 29 and 40 min, coal and preasphaltene conversions were enhanced approximately 6 and 10%, respectively. At these conditions, the plug-flow reactor also yielded about 10% more oils than the CSTR with significant increase in hydrogen utilization. Also, this study provided an opportunity to examine the soundness of APCI/ICRC's sequential kinetic model, by interfacing the plug-flow and CSTR yield data. Transforming CSTR yields to plug-flow data showed that product yields deviated considerably from the measured plug-flow data, suggesting the need to improve the existing reaction model. Having both CSTR and plug-flow reactor data bases is important for developing a sound coal reaction model and for determining hydrodynamic effects on coal liquefaction in a direct way. The results will lead to an optimized reactor configuration as well as optimized operation. 5 references, 23 figures, 20 tables.

  18. Center for Advanced Photophysics | About The Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteriesmetal-organic frameworks |A photo

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onConversions toE15 andTaxAnnual ElectricNaturalPropane

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onConversions toE15Hybrid andBiofuelElectric Vehicle

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onConversions toE15Hybrid andBiofuelElectric

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onConversions toE15Hybrid andBiofuelElectricClean

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onConversionsAlternativeE85 FuelingProhibition of the Sale

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNew EnglandStateState Agency

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNew EnglandStateStateNatural

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouseHybridDiesel Fuel Blend TaxHeavy-DutyIdle

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate - LADWP The Los AngelesHighand Fuel

  8. Economic targeting in modern warfare

    SciTech Connect (OSTI)

    Lambeth, B.S.; Lewis, K.N.

    1982-07-01T23:59:59.000Z

    Nuclear weapons and strategies for their use play a variety of roles in the defense and foreign policies of the United States and Soviet Union. Accordingly, both nations buy forces and prepare war plans for many purposes. Although it is perhaps the least likely contingency for which either country prepares, the scenario in which both sides launch more or less all-out attacks against their opponent's economic or urban-industrial target system often dominates public consideration of strategic policy issues. These kinds of strikes, generically termed countervalue attacks, are usually assumed to throw many thousands of nuclear weapons against cities and isolated facilities in order to destroy the adversary nation as an organized, functioning, and economically viable entity.

  9. PNNL: News Center - Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center News Center Home News Releases 50th Anniversary Features Social Media Directory PNNL Leadership Our Experts Subscribe to E-Mail News Service RSS News Feeds Search News...

  10. INTERNATIONAL PACIFIC RESEARCH CENTER

    E-Print Network [OSTI]

    Wang, Yuqing

    INTERNATIONAL PACIFIC RESEARCH CENTER APRIL 2004­MARCH 2005 REPORT SCHOOL OF OCEAN AND EARTH RESEARCH HIGHLIGHTS Indo-Pacific Ocean Climate Pacific Research Center Design by: Susan Yamamoto Printed by: Hagadone Printing Company Photo: Waikiki

  11. CLINICAL & TRANSLATIONAL SCIENCE CENTER

    E-Print Network [OSTI]

    Carmichael, Owen

    UC DAVIS CLINICAL & TRANSLATIONAL SCIENCE CENTER CLINICAL & TRANSLATIONAL SCIENCE CENTER InspectionsInspections Clinical Research CoordinatorClinical Research Coordinator Training ProgramTraining Program Kitty LombardoKitty Lombardo Administrative DirectorAdministrative Director Clinical

  12. About Cost Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the university, fee-for-service contracts, as well as establishing CAMD as a cost center. We know that our users are reluctant to see CAMD become a cost center, however...

  13. Northwest Regional Technology Center

    E-Print Network [OSTI]

    Northwest Regional Technology Center for Homeland Security The Northwest Regional Technology Center and deployment of technologies that are effective homeland security solutions for the region, and accelerate technology transfer to the national user community. Foster a collaborative spirit across agencies

  14. LANSCE | Lujan Center | Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    use of add here name of specific Lujan instruments at the Lujan Center at Los Alamos Neutron Science Center. Los Alamos National Laboratory is operated by Los Alamos National...

  15. Category:Hydrodynamic Testing Facility Type | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?sourcehelp is welcomed.This

  16. Property:Hydrodynamic Testing Facility Type | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDate Jump to:Property EditType" Showing 25

  17. Effects on the Physical Environment (Hydrodynamics, Sediment Transport, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board ContributionsreductionRefineriesDepartment of EnergyWater

  18. Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansasAshford,Asotin County,

  19. University of New Hampshire Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AG UMaAGUnitilMichigan Jump to: navigation,

  20. Non-Relativistic Parity-Violating Hydrodynamics in Two Spatial Dimensions

    E-Print Network [OSTI]

    Matthias Kaminski; Sergej Moroz

    2014-04-01T23:59:59.000Z

    We construct the non-relativistic parity-violating hydrodynamic description of a two-dimensional dissipative, normal fluid in presence of small U(1) background fields and vorticity. This is achieved by taking the non-relativistic limit of the recently developed relativistic hydrodynamics in 2+1 dimensions. We identify and interpret the resulting parity-violating contributions to the non-relativistic constitutive relations, which include the Hall current flowing perpendicular to the temperature gradient, the Hall viscosity and the Leduc-Righi energy current. Also a comparison of our findings is made with the non-relativistic parity-violating hydrodynamics obtained from a light-cone dimensional reduction.

  1. Effect of Second-Order Hydrodynamics on a Floating Offshore Wind Turbine

    SciTech Connect (OSTI)

    Roald, L.; Jonkman, J.; Robertson, A.

    2014-05-01T23:59:59.000Z

    The design of offshore floating wind turbines uses design codes that can simulate the entire coupled system behavior. At the present, most codes include only first-order hydrodynamics, which induce forces and motions varying with the same frequency as the incident waves. Effects due to second- and higher-order hydrodynamics are often ignored in the offshore industry, because the forces induced typically are smaller than the first-order forces. In this report, first- and second-order hydrodynamic analysis used in the offshore oil and gas industry is applied to two different wind turbine concepts--a spar and a tension leg platform.

  2. Introduction and guide to LLNL's relativistic 3-D nuclear hydrodynamics code

    SciTech Connect (OSTI)

    Zingman, J.A.; McAbee, T.L.; Alonso, C.T.; Wilson, J.R.

    1987-11-01T23:59:59.000Z

    We have constructed a relativistic hydrodynamic model to investigate Bevalac and higher energy, heavy-ion collisions. The basis of the model is a finite-difference solution to covariant hydrodynamics, which will be described in the rest of this paper. This paper also contains: a brief review of the equations and numerical methods we have employed in the solution to the hydrodynamic equations, a detailed description of several of the most important subroutines, and a numerical test on the code. 30 refs., 8 figs., 1 tab.

  3. Nuclear Reaction Data Centers

    SciTech Connect (OSTI)

    McLane, V.; Nordborg, C.; Lemmel, H.D.; Manokhin, V.N.

    1988-01-01T23:59:59.000Z

    The cooperating Nuclear Reaction Data Centers are involved in the compilation and exchange of nuclear reaction data for incident neutrons, charged particles and photons. Individual centers may also have services in other areas, e.g., evaluated data, nuclear structure and decay data, reactor physics, nuclear safety; some of this information may also be exchanged between interested centers. 20 refs., 1 tab.

  4. Louisiana Transportation Research Center

    E-Print Network [OSTI]

    Harms, Kyle E.

    Louisiana Transportation Research Center LTRC www.ltrc.lsu.edu 2012-13 ANNUALREPORT #12;The Louisiana Transportation Research Center (LTRC) is a research, technology transfer, and training center administered jointly by the Louisiana Department of Transportation and Development (DOTD) and Louisiana State

  5. Service Center Evaluation Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus Group HSS/Union Work GroupService Center

  6. Challenges in Simulation of Aerodynamics, Hydrodynamics, and Mooring-Line Dynamics of Floating Offshore Wind Turbines

    SciTech Connect (OSTI)

    Matha, D.; Schlipf, M.; Cordle, A.; Pereira, R.; Jonkman, J.

    2011-10-01T23:59:59.000Z

    This paper presents the current major modeling challenges for floating offshore wind turbine design tools and describes aerodynamic and hydrodynamic effects due to rotor and platform motions and usage of non-slender support structures.

  7. Design of the All-Electric Ship: Focus on Integrated Power System Coupled to Hydrodynamics

    E-Print Network [OSTI]

    Prempraneerach, P.

    2008-01-01T23:59:59.000Z

    We present a detailed model of the integrated power system coupled to hydrodynamics that allows us to study global sensitivities in the All-Electric Ship. A novel element of our formulation is the stochastic modeling of ...

  8. A model for analyzing the effects of hydrodynamic forces on cell adhesion in a perfused bioreactor

    E-Print Network [OSTI]

    Owens, Bryan D

    2007-01-01T23:59:59.000Z

    In bioreactor culture systems that aim to provide a convective flux to address mass transport limitations of oxygen and other nutrients, large hydrodynamic forces and shear stress can potentially serve as a negative signals ...

  9. Simulation and Optimization of DPP Hydrodynamics and Radiation Transport for EUV Lithography Devices

    E-Print Network [OSTI]

    Harilal, S. S.

    be used to study the hydrodynamics and radiation in two-gas mixtures of dense plasma focus (DPF) and z the HEIGHTS- EUV package are schematically shown in Figure 1: a) A dense plasma focus device, b) A hollow

  10. Scattering and nonlinear bound states of hydrodynamically coupled particles in a narrow channel

    E-Print Network [OSTI]

    Doyle, Patrick S.

    We model a pair of hydrodynamically interacting particles confined in a channel with thin rectangular cross section. We find that the particles have a finite region of attraction, which arises from the screening of dipolar ...

  11. Volumetric analysis of fish swimming hydrodynamics using synthetic aperture particle image velocimetry

    E-Print Network [OSTI]

    Mendelson, Leah Rose

    2013-01-01T23:59:59.000Z

    Abstract This thesis details the implementation of a three-dimensional PIV system to study the hydrodynamics of freely swimming Giant Danio (Danio aequipinnatus). Volumetric particle fields are reconstructed using synthetic ...

  12. Measurements and Linear Wave Theory Based Simulations of Vegetated Wave Hydrodynamics for Practical Applications

    E-Print Network [OSTI]

    Anderson, Mary Elizabeth

    2011-10-21T23:59:59.000Z

    nor implemented in current hydrodynamic models. A series of laboratory experiments were conducted at the Haynes Coastal Engineering Laboratory and in a two-dimensional flume at Texas A and M University to investigate the influence of relative...

  13. The role of hydrodynamic interactions in the dynamics and viscoelasticity of actin networks

    E-Print Network [OSTI]

    Karimi, Reza, Ph. D. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Actin, the primary component of the cytoskeleton, is the most studied semi-flexible filament, yet its dynamics remains elusive. We show that hydrodynamic interactions (HIs) significantly alter the time scale of actin ...

  14. Measurements of static loading characteristics of a Flexurepivot Tilt Pad Hydrodynamic Bearing

    E-Print Network [OSTI]

    Walton, Nicholas Van Edward

    1995-01-01T23:59:59.000Z

    An experimental investigation examining the static loading characteristics of a four-pad, KMC FLEXUREPIVOT Tilt Pad Hydrodynamic Bearing is presented. Tests are conducted on the TRACE Fluid Film Bearing Element Test Rig for journal speeds ranging...

  15. CFD study of hydrodynamic signal perception by fish using the lateral line system

    E-Print Network [OSTI]

    Rapo, Mark Andrew

    2009-01-01T23:59:59.000Z

    The lateral line system on fish has been found to aid in schooling behavior, courtship communication, active and passive hydrodynamic imaging, and prey detection. The most widely used artificial prey stimulus has been the ...

  16. A Smoothed Particle Hydrodynamics-Based Fluid Model With a Spatially...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Smoothed Particle Hydrodynamics-Based Fluid Model With a Spatially Dependent Viscosity Authors: Martys, N.S., George, W.L., Chun, B., Lootens, D. A smoothed particle...

  17. Experimental hydrodynamics of spherical projectiles impacting on a free surface using high speed imaging techniques

    E-Print Network [OSTI]

    Laverty, Stephen Michael

    2005-01-01T23:59:59.000Z

    This thesis looks at the hydrodynamics of spherical projectiles impacting the free surface using a unique experimental WebLab facility. Experiments were performed to determine the force impact coefficients of spheres and ...

  18. A Model for the Dynamic User-Equilibrium Problem Using a Hydrodynamic Theory Approach

    E-Print Network [OSTI]

    Perakis, Georgia

    In this paper we study the dynamic user-equilibrium problem. The development of Intelligent Vehicle Highway Systems (IVHS) has made this problem very popular in the recent years. In this paper we take a hydrodynamic theory ...

  19. The hydrodynamic stability of crossflow vortices in the Bdewadt boundary layer

    E-Print Network [OSTI]

    The hydrodynamic stability of crossflow vortices in the Bödewadt boundary layer N. A. Culverhouse the critical Reynolds number. extends the laminar flow region. decreasing the magnitude of the crossflow

  20. Hydrodynamics and heat transfer during flow boiling instabilities in a single microchannel

    E-Print Network [OSTI]

    Aussillous, Pascale

    Hydrodynamics and heat transfer during flow boiling instabilities in a single microchannel July 2008 Keywords: Boiling Microchannels Visualisation Flow boiling instabilities Heat transfer a b intensification heat removal. Flow boiling heat transfer in microchannel geometry and the associated flow

  1. Energy Conversion Efficiency of Nanofluidic Batteries: Hydrodynamic Slip and Access Resistance

    E-Print Network [OSTI]

    Chang, Hsueh-Chia

    Energy Conversion Efficiency of Nanofluidic Batteries: Hydrodynamic Slip and Access Resistance Yu channels. INTRODUCTION Nanofluidic batteries are interesting energy generation systems for converting with this nanofluidic battery system has gained considerable attention. One of the challenges for the nanofluidic

  2. Physico-chemical hydrodynamics of droplets on textured surfaces with engineered micro/nanostructures

    E-Print Network [OSTI]

    Park, Kyoo Chul

    2013-01-01T23:59:59.000Z

    Understanding physico-chemical hydrodynamics of droplets on textured surfaces is of fundamental and practical significance for designing a diverse range of engineered surfaces such as low-reflective, self-cleaning or ...

  3. On the hydrodynamics of the matter reinserted within superstellar clusters

    E-Print Network [OSTI]

    Tenorio-Tagle, G; Palous, S S J; Tenorio-Tagle, Guillermo; Wunsch, Richard; Palous, Sergiy Silich & Jan

    2006-01-01T23:59:59.000Z

    We present semi-analytical and numerical models, accounting for the impact of radiative cooling on the hydrodynamics of the matter reinserted as strong stellar winds and supernovae within the volume occupied by young, massive and compact superstellar clusters. First of all we corroborate the location of the threshold line in the mechanical energy input rate vs the cluster size plane, found by Silich et al. (2004). Such a line separates clusters able to drive a quasi-adiabatic or a strongly radiative wind from clusters in which catastrophic cooling occurs within the star cluster volume. Then we show that the latter, clusters above the threshold line, undergo a bimodal behavior in which the central densest zones cool rapidly and accumulate the injected matter to eventually feed further generations of star formation, while the outer zones are still able to drive a stationary wind. The results are presented into a series of universal dimensionless diagrams from which one can infer: the size of the two zones, the ...

  4. IUTAM symposium on hydrodynamic diffusion of suspended particles

    SciTech Connect (OSTI)

    Davis, R.H. [ed.

    1995-12-31T23:59:59.000Z

    Hydrodynamic diffusion refers to the fluctuating motion of nonBrownian particles (or droplets or bubbles) which occurs in a dispersion due to multiparticle interactions. For example, in a concentrated sheared suspension, particles do not move along streamlines but instead exhibit fluctuating motions as they tumble around each other. This leads to a net migration of particles down gradients in particle concentration and in shear rate, due to the higher frequency of encounters of a test particle with other particles on the side of the test particle which has higher concentration or shear rate. As another example, suspended particles subject to sedimentation, centrifugation, or fluidization, do not generally move relative to the fluid with a constant velocity, but instead experience diffusion-like fluctuations in velocity due to interactions with neighboring particles and the resulting variation in the microstructure or configuration of the suspended particles. In flowing granular materials, the particles interact through direct collisions or contacts (rather than through the surrounding fluid); these collisions also cause the particles to undergo fluctuating motions characteristic of diffusion processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  5. Low Mach Number Fluctuating Hydrodynamics of Diffusively Mixing Fluids

    E-Print Network [OSTI]

    A. Donev; A. J. Nonaka; Y. Sun; T. G. Fai; A. L. Garcia; J. B. Bell

    2014-04-29T23:59:59.000Z

    We formulate low Mach number fluctuating hydrodynamic equations appropriate for modeling diffusive mixing in isothermal mixtures of fluids with different density and transport coefficients. These equations eliminate the fluctuations in pressure associated with the propagation of sound waves by replacing the equation of state with a local thermodynamic constraint. We demonstrate that the low Mach number model preserves the spatio-temporal spectrum of the slower diffusive fluctuations. We develop a strictly conservative finite-volume spatial discretization of the low Mach number fluctuating equations in both two and three dimensions and construct several explicit Runge-Kutta temporal integrators that strictly maintain the equation of state constraint. The resulting spatio-temporal discretization is second-order accurate deterministically and maintains fluctuation-dissipation balance in the linearized stochastic equations. We apply our algorithms to model the development of giant concentration fluctuations in the presence of concentration gradients, and investigate the validity of common simplifications such as neglecting the spatial non-homogeneity of density and transport properties. We perform simulations of diffusive mixing of two fluids of different densities in two dimensions and compare the results of low Mach number continuum simulations to hard-disk molecular dynamics simulations. Excellent agreement is observed between the particle and continuum simulations of giant fluctuations during time-dependent diffusive mixing.

  6. Simulating Magnetized Laboratory Plasmas with Smoothed Particle Hydrodynamics

    SciTech Connect (OSTI)

    Johnson, J N

    2009-07-02T23:59:59.000Z

    The creation of plasmas in the laboratory continues to generate excitement in the physics community. Despite the best efforts of the intrepid plasma diagnostics community, the dynamics of these plasmas remains a difficult challenge to both the theorist and the experimentalist. This dissertation describes the simulation of strongly magnetized laboratory plasmas with Smoothed Particle Hydrodynamics (SPH), a method born of astrophysics but gaining broad support in the engineering community. We describe the mathematical formulation that best characterizes a strongly magnetized plasma under our circumstances of interest, and we review the SPH method and its application to astrophysical plasmas based on research by Phillips [1], Buerve [2], and Price and Monaghan [3]. Some modifications and extensions to this method are necessary to simulate terrestrial plasmas, such as a treatment of magnetic diffusion based on work by Brookshaw [4] and by Atluri [5]; we describe these changes as we turn our attention toward laboratory experiments. Test problems that verify the method are provided throughout the discussion. Finally, we apply our method to the compression of a magnetized plasma performed by the Compact Toroid Injection eXperiment (CTIX) [6] and show that the experimental results support our computed predictions.

  7. Cosmological Simulations of Galaxy Formation Including Hydrodynamics (hyper-abridged)

    E-Print Network [OSTI]

    F J Summers

    1994-06-02T23:59:59.000Z

    The formation of galaxies in hierarchical cosmogonies is studied using high resolution N-body plus SPH hydrodynamics simulations. The collapse of structure is followed self-consistently from Mpc scale filamentary structures to kpc scale galactic objects. The characteristics and formation processes of the galaxy like objects are studied in detail, along with the aggregation into a poor cluster. Related studies consider the effects of modelling star formation, the reliability of tracing galaxies in simulations, and tests of SPH methods. This submission serves first to notify that the full text and figures of my thesis are available in compressed PostScript form via anonymous ftp from astro.princeton.edu in the directory /summers/thesis (122 files, 19 MB compressed, 65 MB uncompressed). See the README file first. Second, this submission contains the title page, abstract, table of contents, introductory chapter, summary chapter, and references for my thesis. Those who are curious about the work may scan these pages to identify which chapters may be interesting to get via ftp.

  8. Design of an electromagnetic accelerator for turbulent hydrodynamic mix studies

    SciTech Connect (OSTI)

    Susoeff, A.R.; Hawke, R.S.; Morrison, J.J.; Dimonte, G.; Remington, B.A.

    1993-12-08T23:59:59.000Z

    An electromagnetic accelerator in the form of a linear electric motor (LEM) has been designed to achieve controlled acceleration profiles of a carriage containing hydrodynamically unstable fluids for the investigation of the development of turbulent mix. The Rayleigh- Taylor instability is investigated by accelerating two dissimilar density fluids using the LEM to achieve a wide variety of acceleration and deceleration profiles. The acceleration profiles are achieved by independent control of rail and augmentation currents. A variety of acceleration-time profiles are possible including: (1) constant, (2) impulsive and (3) shaped. The LEM and support structure are a robust design in order to withstand high loads with deflections and to mitigate operational vibration. Vibration of the carriage during acceleration could create artifacts in the data which would interfere with the intended study of the Rayleigh-Taylor instability. The design allows clear access for diagnostic techniques such as laser induced fluorescence radiography, shadowgraphs and particle imaging velocimetry. Electromagnetic modeling codes were used to optimize the rail and augmentation coil positions within the support structure framework. Results of contemporary studies for non-arcing sliding contact of solid armatures are used for the design of the driving armature and the dynamic electromagnetic braking system. A 0. 6MJ electrolytic capacitor bank is used for energy storage to drive the LEM. This report will discuss a LEM design which will accelerate masses of up to 3kg to a maximum of about 3000g{sub o}, where g{sub o} is accelerated due to gravity.

  9. MODEST: modeling stellar evolution and (hydro)dynamics

    E-Print Network [OSTI]

    Piet Hut

    2003-09-15T23:59:59.000Z

    Simulations of dense stellar systems currently face two major hurdles, one astrophysical and one computational. The astrophysical problem lies in the fact that several major stages in binary evolution, such as common envelope evolution, are still poorly understood. The best we can do in these cases is to parametrize our ignorance, in a way that is reminiscent of the introduction of a mixing length to describe convection in a single star, or an alpha parameter in modeling an accretion disk. The hope is that by modeling a whole star cluster in great detail, and comparing the results to the wealth of observational data currently available, we will be able to constrain the parameters that capture the unknown physics. The computational problem is one of composition: while we have accurate computer codes for modeling stellar dynamics, stellar hydrodynamics, and stellar evolution, we currently have no good way to put all this knowledge together in a single software environment. A year ago, a loosely-knit organization was founded to address these problems, MODEST for MOdeling DEnse STellar systems, with nine working groups and a series of meetings that are held every half year. This report reviews the first year of this initiative. Much more detail can be found on the MODEST web site http://www.manybody.org/modest.html .

  10. Driven cavity flow: from molecular dynamics to continuum hydrodynamics

    E-Print Network [OSTI]

    Tiezheng Qian; Xiao-Ping Wang

    2004-03-06T23:59:59.000Z

    Molecular dynamics (MD) simulations have been carried out to investigate the slip of fluid in the lid driven cavity flow where the no-slip boundary condition causes unphysical stress divergence. The MD results not only show the existence of fluid slip but also verify the validity of the Navier slip boundary condition. To better understand the fluid slip in this problem, a continuum hydrodynamic model has been formulated based upon the MD verification of the Navier boundary condition and the Newtonian stress. Our model has no adjustable parameter because all the material parameters (density, viscosity, and slip length) are directly determined from MD simulations. Steady-state velocity fields from continuum calculations are in quantitative agreement with those from MD simulations, from the molecular-scale structure to the global flow. The main discovery is as follows. In the immediate vicinity of the corners where moving and fixed solid surfaces intersect, there is a core partial-slip region where the slippage is large at the moving solid surface and decays away from the intersection quickly. In particular, the structure of this core region is nearly independent of the system size. On the other hand, for sufficiently large system, an additional partial-slip region appears where the slippage varies as $1/r$ with $r$ denoting the distance from the corner along the moving solid surface. The existence of this wide power-law region is in accordance with the asymptotic $1/r$ variation of stress and the Navier boundary condition.

  11. Onset and cessation of motion in hydrodynamically sheared granular beds

    E-Print Network [OSTI]

    Abram H. Clark; Mark D. Shattuck; Nicholas T. Ouellette; Corey S. O'Hern

    2015-04-14T23:59:59.000Z

    To clarify the grain-scale mechanisms that control the onset and cessation of sediment transport, we performed molecular dynamics simulations of granular beds driven by a model hydrodynamic shear flow. We find a critical value for the Shields number (the nondimensional shear stress at the top of the granular bed) that separates flowing and static states, with a bed flow rate that is discontinuous at the critical value. The transition times between flowing and static states diverge as the system approaches the critical Shields number from above and below. Additionally we find that, for finite systems, the onset of flow occurs stochastically at supercritical Shields numbers. We show that the statistics of the Shields number at failure obey Weibullian weakest-link statistics, and that the onset of flow is caused by local grain rearrangements that give rise to additional rearrangements and then to continuous flow. Thus, the onset of motion is governed by the packing structure of the granular bed, even deep beneath the surface. Since the fluid dynamics is strongly coupled to the settling process and thus to the bed structure, this also suggests a strong feedback between the fluid dynamics and granular physics in bed mobilization.

  12. Hybrid magneto-hydrodynamic simulation of a driven FRC

    SciTech Connect (OSTI)

    Rahman, H. U., E-mail: hrahman@trialphaenergy.com; Wessel, F. J.; Binderbauer, M. W.; Qerushi, A.; Rostoker, N. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States)] [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States); Conti, F. [Physics Department “E. Fermi,” University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy) [Physics Department “E. Fermi,” University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Plasma Diagnostics and Technologies Ltd., Via Giuntini 63, 56023 Navacchio (PI) (Italy); Ney, P. [Mount San Jacinto College, Menifee, California 92584 (United States)] [Mount San Jacinto College, Menifee, California 92584 (United States)

    2014-03-15T23:59:59.000Z

    We simulate a field-reversed configuration (FRC), produced by an “inductively driven” FRC experiment; comprised of a central-flux coil and exterior-limiter coil. To account for the plasma kinetic behavior, a standard 2-dimensional magneto-hydrodynamic code is modified to preserve the azimuthal, two-fluid behavior. Simulations are run for the FRC's full-time history, sufficient to include: acceleration, formation, current neutralization, compression, and decay. At start-up, a net ion current develops that modifies the applied-magnetic field forming closed-field lines and a region of null-magnetic field (i.e., a FRC). After closed-field lines form, ion-electron drag increases the electron current, canceling a portion of the ion current. The equilibrium is lost as the total current eventually dissipates. The time evolution and magnitudes of the computed current, ion-rotation velocity, and plasma temperature agree with the experiments, as do the rigid-rotor-like, radial-profiles for the density and axial-magnetic field [cf. Conti et al. Phys. Plasmas 21, 022511 (2014)].

  13. Radiation Hydrodynamical Evolution of Primordial H II Regions

    E-Print Network [OSTI]

    Daniel Whalen; Tom Abel; Michael L. Norman

    2004-03-02T23:59:59.000Z

    We simulate the ionization environment of z ~ 20 luminous objects formed within the framework of the current CDM cosmology and compute their UV escape fraction. These objects are likely single very massive stars that are copious UV emitters. We present analytical estimates as well as one--dimensional radiation hydrodynamical calculations of the evolution of these first HII regions in the universe. The initially D--type ionization front evolves to become R--type within $\\lesssim 10^5$ yrs at a distance $\\sim1$ pc. This ionization front then completely overruns the halo, accelerating an expanding shell of gas outward to velocities in excess of 30 km s$^{-1}$, about ten times the escape velocity of the confining dark matter halo. We find that the evolution of the HII region depends only weakly on the assumed stellar ionizing luminosities. Consequently, most of the gas surrounding the first stars will leave the dark halo whether or not the stars produce supernovae. If they form the first massive seed black holes these are unlikely to accrete within a Hubble time after they formed until they are incorporated into larger dark matter halos that contain more gas. Because these I--fronts exit the halo on timescales much shorter than the stars' main sequence lifetimes their host halos have UV escape fractions of $\\gtrsim 0.95$, fixing an important parameter for theoretical studies of cosmological hydrogen reionization.

  14. Hydrodynamical Simulations of Nuclear Rings in Barred Galaxies

    E-Print Network [OSTI]

    Li, Zhi; Kim, Woong-Tae

    2015-01-01T23:59:59.000Z

    Dust lanes, nuclear rings, and nuclear spirals are typical gas structures in the inner region of barred galaxies Their shapes and properties are linked to the physical parameters of the host galaxy. We use high-resolution hydrodynamical simulations to study 2D gas flows in simple barred galaxy models. The nuclear rings formed in our simulations can be divided into two groups: one group is nearly round and the other is highly elongated. We find that roundish rings may not form when the bar pattern speed is too high or the bulge central density is too low. We also study the periodic orbits in our galaxy models, and find that the concept of inner Lindblad resonance (ILR) may be generalized by the extent of $x_2$ orbits. All roundish nuclear rings in our simulations settle in the range of $x_2$ orbits (or ILRs). However, knowing the resonances is insufficient to pin down the exact location of these nuclear rings. We suggest that the backbone of round nuclear rings is the $x_2$ orbital family, i.e. round nuclear r...

  15. Hydrodynamical model for $J/?$ suppression and elliptic flow

    E-Print Network [OSTI]

    A. K. Chaudhuri

    2009-10-06T23:59:59.000Z

    In a hydrodynamic model, we have studied $J/\\psi$ suppression and elliptic flow in Au+Au collisions at RHIC energy $\\sqrt{s}$=200 GeV. At the initial time, $J/\\psi$'s are randomly distributed in the fluid. As the fluid evolve in time, the free streaming $J/\\psi$'s are dissolved if the local fluid temperature exceeds a melting temperature $T_{J/\\psi}$. Sequential melting of charmonium states ($\\chi_c$, $\\psi\\prime$ and $J/\\psi$), with melting temperatures $T_{\\chi_c}=T_{\\psi\\prime} \\approx 1.2T_c$, $T_{J/\\psi} \\approx2T_c$ and feed-down fraction $F\\approx 0.3$, is consistent with the PHENIX data on $J/\\psi$ suppression and near zero elliptic flow for $J/\\psi$'s. It is also shown that the model will require substantial regeneration of charmoniums, if the charmonium states dissolve at temperature close to the critical temperature, $T_{\\chi_c}=T_{\\psi\\prime} \\leq T_c$, $T_{J/\\psi}\\approx1.2T_c$. The regenerated charmoniums will have positive elliptic flow.

  16. The chemical enrichment of the ICM from hydrodynamical simulations

    E-Print Network [OSTI]

    S. Borgani; D. Fabjan; L. Tornatore; S. Schindler; K. Dolag; A. Diaferio

    2008-01-07T23:59:59.000Z

    The study of the metal enrichment of the intra-cluster and inter-galactic media (ICM and IGM) represents a direct means to reconstruct the past history of star formation, the role of feedback processes and the gas-dynamical processes which determine the evolution of the cosmic baryons. In this paper we review the approaches that have been followed so far to model the enrichment of the ICM in a cosmological context. While our presentation will be focused on the role played by hydrodynamical simulations, we will also discuss other approaches based on semi-analytical models of galaxy formation, also critically discussing pros and cons of the different methods. We will first review the concept of the model of chemical evolution to be implemented in any chemo-dynamical description. We will emphasise how the predictions of this model critically depend on the choice of the stellar initial mass function, on the stellar life-times and on the stellar yields. We will then overview the comparisons presented so far between X-ray observations of the ICM enrichment and model predictions. We will show how the most recent chemo-dynamical models are able to capture the basic features of the observed metal content of the ICM and its evolution. We will conclude by highlighting the open questions in this study and the direction of improvements for cosmological chemo-dynamical models of the next generation.

  17. Hydrodynamic flow in Lower Cretaceous Muddy Sandstones, Rozet Field, Powder River Basin, Wyoming

    E-Print Network [OSTI]

    Smith, David Arthur

    1984-01-01T23:59:59.000Z

    /km) across the field yields a hydrodynamic oil column of 420 ft (128 m). Capillary pressure differences due to permeability changes account for a oil column of 72 ft (42 m). The combined capillary and hydrodynamic oil columns of 492 ft (150 m) compares... and other Muddy Formation oil fields. Contour interval 1000 ft (305 m). . . Regional east-west cross section showing variable sandstone development in the Muddy interval from Kitty to Rozet Fields. . . . . . . . . Diagrammatic environments the northern...

  18. Hydrodynamics of the Mission Canyon Formation in the Billings Nose area, North Dakota

    E-Print Network [OSTI]

    Mitsdarffer, Alan Ray

    1985-01-01T23:59:59.000Z

    and associated highlands of central Montana (Fish and Kinard, 1959). Hydrodynamic flow was considered as a possible cause for the observed tilted oil-water contact for the Nottingham field in Saskatchewan, but the direction of tilt was opposite to flow... conditions with low gradients similiar to that depicted by the regional map. The present hydrodynamic conditions result from the recent invasion of the field area by the fresher ~ster lens. The oil accumulation will eventually be flushed from the area...

  19. Hydrodynamics of bubble columns with application to Fischer-Tropsch synthesis

    E-Print Network [OSTI]

    Raphael, Matheo Lue

    1988-01-01T23:59:59.000Z

    HYDRODYNAMICS OF BUBBLE COLUMNS AYITH APPLICATION TO FISCHER-TROPSCH SYNTHESIS A Thesis by- MATHEO LUE RAPHAEL Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE May 1988 Major Subject: Chemical Engineering HYDRODYNAMICS OF BUBBLE COLUMNS WITH APPLICATION TO FISCHER-TROPSCH SYNTHESIS A Thesis by iAIATHEO LUE RAPHAEL Approved as to style and content by: D. B. Bukur Chairman of Com 'ttee) M. T. za...

  20. Depositional environment and hydrodynamic flow in Lower Cretaceous J Sandstone, Lonetree field, Denver basin, Colorado

    E-Print Network [OSTI]

    Bicknell, James Scott

    1985-01-01T23:59:59.000Z

    DEPOSITIONAL ENVIRONMENT AND HYDRODYNAMIC FLOW IN LOWER CRETACEOUS J SANDSTONE, LONETREE FIELD, DENVER BASIN, COLORADO A Thesis by JAMES SCOTT BICKNELL Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE December 1985 Major Subject: Geology DEPOSITIONAL ENVIRONMENT AND HYDRODYNAMIC FLOW IN LOWER CRETACEOUS J SANDSTONE, LONETREE FIELD, DENVER BASIN, COLORADO A Thesis by JAMES SCOTT BICKNELL Approved...

  1. Dual Axis Radiographic Hydrodynamic Test Facility | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office ofDepartment of EnergyAdministrationSecurity

  2. AECU-4439 PHYSICS AND MATHEMATICS HYDRODYNAMIC ASPECTS OF BOILING HEAT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See the EnergyTAMANG, APIL. AProvenanceGte d N19^ U N

  3. DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4Customer-Comments Sign InFuture scientistsDANCEDARHT:

  4. Hydrodynamic and numerical modeling of a spherical homogeneous.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen and Fuel Cell Hydrogen

  5. Los Alamos conducts important hydrodynamic experiment in Nevada

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is YourAwardspublic EnvironmentalCatalyst couldComputerLANL

  6. Annual Adaptive Management Report for Compensatory Mitigation at Keyport Lagoon: Mitigation of Pier B Development at the Bremerton Naval Facilities - Compensatory Mitigation at Keyport Lagoon - Naval Underwater Warfare Center Division - Keyport, Washington

    SciTech Connect (OSTI)

    Vavrinec, John; Borde, Amy B.; Woodruff, Dana L.; Brandenberger, Jill M.; Thom, Ronald M.; Wright, Cynthia L.; Cullinan, Valerie I.

    2012-06-01T23:59:59.000Z

    Unites States Navy capital improvement projects are designed to modernize and improve mission capacity. Such capital improvement projects often result in unavoidable environmental impacts by increasing over-water structures, which results in a loss of subtidal habitat within industrial areas of Navy bases. In the Pacific Northwest, compensatory mitigation often targets alleviating impacts to Endangered Species Act-listed salmon species. The complexity of restoring large systems requires limited resources to target successful and more coordinated mitigation efforts to address habitat loss and improvements in water quality that will clearly contribute to an improvement at the site scale and can then be linked to a cumulative net ecosystem improvement.

  7. Relativistic Guiding Center Equations

    SciTech Connect (OSTI)

    White, R. B. [PPPL; Gobbin, M. [Euratom-ENEA Association

    2014-10-01T23:59:59.000Z

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  8. Neutron Science Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at3,Neutron Scattering

  9. ARM - News Center Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowbandheat fluxChinaNews : AMF Deployment, Shouxian,

  10. PNNL: News Center - Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomass and4/26/11:Tel.:162 Prepared

  11. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP)

  12. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP)Massachusetts Plug-In

  13. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP)Massachusetts

  14. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP)MassachusettsExperimental Vehicle Definition

  15. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP)MassachusettsExperimental Vehicle

  16. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.

  17. Hydrodynamical simulation of detonations in superbursts. I. The hydrodynamical algorithm and some preliminary one-dimensional results

    E-Print Network [OSTI]

    C. Noel; Y. Busegnies; M. V. Papalexandris; V. Deledicque; A. El Messoudi

    2007-05-18T23:59:59.000Z

    Aims. This work presents a new hydrodynamical algorithm to study astrophysical detonations. A prime motivation of this development is the description of a carbon detonation in conditions relevant to superbursts, which are thought to result from the propagation of a detonation front around the surface of a neutron star in the carbon layer underlying the atmosphere. Methods. The algorithm we have developed is a finite-volume method inspired by the original MUSCL scheme of van Leer (1979). The algorithm is of second-order in the smooth part of the flow and avoids dimensional splitting. It is applied to some test cases, and the time-dependent results are compared to the corresponding steady state solution. Results. Our algorithm proves to be robust to test cases, and is considered to be reliably applicable to astrophysical detonations. The preliminary one-dimensional calculations we have performed demonstrate that the carbon detonation at the surface of a neutron star is a multiscale phenomenon. The length scale of liberation of energy is $10^6$ times smaller than the total reaction length. We show that a multi-resolution approach can be used to solve all the reaction lengths. This result will be very useful in future multi-dimensional simulations. We present also thermodynamical and composition profiles after the passage of a detonation in a pure carbon or mixed carbon-iron layer, in thermodynamical conditions relevant to superbursts in pure helium accretor systems.

  18. Center of Innovation- Energy

    Broader source: Energy.gov [DOE]

    Jill Stuckey, Director, Center fof Innovation - Energy, presents on Georgia's workforce development opportunities for the Biomass/Clean Cities States Webinar.

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    the Connecticut Center for Advanced Technology, developed the Connecticut Hydrogen and Fuel Cell Deployment Transportation Strategy: 2011-2050. The strategy includes a plan to...

  20. Data Center Cooling

    SciTech Connect (OSTI)

    Rutberg, Michael; Cooperman, Alissa; Bouza, Antonio

    2013-10-31T23:59:59.000Z

    The article discusses available technologies for reducing energy use for cooling data center facilities. This article addresses the energy savings and market potential of these strategies as well.

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Transportation Technology Investment Funding The Commonwealth Energy Fund (CEF), administered through the Center for Innovative Technology, provides early-stage investment...

  2. UNCLASSIFIHED DEFENSE DOCUMENTATION CENTER

    E-Print Network [OSTI]

    Block, Marco

    UNCLASSIFIHED AD 463473 DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TECHNICAL INFORMATION .... John Barton Head OR Analysis Group R. H. Krolick Manager Applied Science Laboratory Prepared for the .J

  3. ENERGY RESOURCES CENTER

    E-Print Network [OSTI]

    Sternberg, Virginia

    2012-01-01T23:59:59.000Z

    Information Network on Energy (WINE) is a group of peopleWINE has provided the Center with the names of people to contact for energy

  4. Lujan Neutron Scattering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center August 27, 2012-The Laboratory is investigating the inadvertent...

  5. Biofuels Information Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt% moisture,Biofuels

  6. Building America Solution Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronic Heating inOctober 2011 | DepartmentSolution

  7. First National Technology Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy June 6-7, 2013 MeetingEA #February 2,

  8. NREL: Education Center - Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee theOilNREL in the CommunityEducation

  9. Center for Integrated Nanotechnologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA SeriesNanocrystalNewsMPA-CINT Center for

  10. NREL: Education Center - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NRELChemicalIndustryIssuePhotoEducation Center

  11. ARM - External Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYouQuality ProgramgovExternal Data Center

  12. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About BecomeTechnologies | Blandine Allocation ManagementCenter

  13. Game Center | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding OpportunityF G FGalactic ScaleGame Center

  14. Density Power Spectrum of Compressible Hydrodynamic Turbulent Flows

    E-Print Network [OSTI]

    Jongsoo Kim; Dongsu Ryu

    2005-07-26T23:59:59.000Z

    Turbulent flows are ubiquitous in astrophysical environments, and understanding density structures and their statistics in turbulent media is of great importance in astrophysics. In this paper, we study the density power spectra, $P_{\\rho}$, of transonic and supersonic turbulent flows through one and three-dimensional simulations of driven, isothermal hydrodynamic turbulence with root-mean-square Mach number in the range of $1 \\la M_{\\rm rms} \\la 10$. From one-dimensional experiments we find that the slope of the density power spectra becomes gradually shallower as the rms Mach number increases. It is because the density distribution transforms from the profile with {\\it discontinuities} having $P_{\\rho} \\propto k^{-2}$ for $M_{\\rm rms} \\sim 1$ to the profile with {\\it peaks} having $P_{\\rho} \\propto k^0$ for $M_{\\rm rms} \\gg 1$. We also find that the same trend is carried to three-dimension; that is, the density power spectrum flattens as the Mach number increases. But the density power spectrum of the flow with $M_{\\rm rms} \\sim 1$ has the Kolmogorov slope. The flattening is the consequence of the dominant density structures of {\\it filaments} and {\\it sheets}. Observations have claimed different slopes of density power spectra for electron density and cold H I gas in the interstellar medium. We argue that while the Kolmogorov spectrum for electron density reflects the {\\it transonic} turbulence of $M_{\\rm rms} \\sim 1$ in the warm ionized medium, the shallower spectrum of cold H I gas reflects the {\\it supersonic} turbulence of $M_{\\rm rms} \\sim$ a few in the cold neutral medium.

  15. Preparing for an explosion: Hydrodynamic instabilities and turbulence in presupernovae

    SciTech Connect (OSTI)

    Smith, Nathan; Arnett, W. David, E-mail: nathans@as.arizona.edu, E-mail: darnett@as.arizona.edu [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)

    2014-04-20T23:59:59.000Z

    Both observations and numerical simulations are discordant with predictions of conventional stellar evolution codes for the latest stages of a massive star's life before core collapse. The most dramatic example of this disconnect is in the eruptive mass loss occurring in the decade preceding Type IIn supernovae. We outline the key empirical evidence that indicates severe pre-supernova instability in massive stars, and we suggest that the chief reason that these outbursts are absent in stellar evolution models may lie in the treatment of turbulent convection in these codes. The mixing length theory that is used ignores (1) finite amplitude fluctuations in velocity and temperature and (2) their nonlinear interaction with nuclear burning. Including these fluctuations is likely to give rise to hydrodynamic instabilities in the latest burning sequences, which prompts us to discuss a number of far-reaching implications for the fates of massive stars. In particular, we explore connections to enhanced pre-supernova mass loss, unsteady nuclear burning and consequent eruptions, swelling of the stellar radius that may trigger violent interactions with a companion star, and potential modifications to the core structure that could dramatically alter calculations of the core-collapse explosion mechanism itself. These modifications may also impact detailed nucleosynthesis and measured isotopic anomalies in meteorites, as well as the interpretation of young core-collapse supernova remnants. Understanding these critical instabilities in the final stages of evolution may make possible the development of an early warning system for impending core collapse, if we can identify their asteroseismological or eruptive signatures.

  16. Arrillaga Sports Center Addition,

    E-Print Network [OSTI]

    Bogyo, Matthew

    Center Roble Gym Tresidder Union Dinkelspiel AuditoriumFaculty Club Kingscote Gardens Braun Music Center 530 Peterson (550) 610 570 560 CERAS Meyer Library School of Education Fire Truck Hse. Clock Tower Commons Encina Hall Bing Wing Herbert Hoover Mem. Bldg. Lou Henry Hoover Bldg. Hoover Tower Cummings Art

  17. International Pacific Research Center

    E-Print Network [OSTI]

    Wang, Yuqing

    International Pacific Research Center APRIL 2007­MARCH 2008 REPORT School of Ocean and Earth Center i Foreword ii iv Indo-Pacific Ocean Climate 1 Regional-Ocean Influences 13 Asian by the following broad research themes and goals of the IPRC Science Plan. Indo-Pacific Ocean Climate

  18. INTERNATIONAL PACIFIC RESEARCH CENTER

    E-Print Network [OSTI]

    Wang, Yuqing

    INTERNATIONAL PACIFIC RESEARCH CENTER APRIL 2005­MARCH 2006 REPORT SCHOOL OF OCEAN AND EARTH Center 1 The Year's Highlights 3 Indo-Pacific Ocean Climate 4 Regional-Ocean Influences 10 Asian Ocean Climate: To understand climate variations in the Pacific and Indian oceans on interannual

  19. INTERNATIONAL PACIFIC RESEARCH CENTER

    E-Print Network [OSTI]

    Wang, Yuqing

    INTERNATIONAL PACIFIC RESEARCH CENTER Annual Report April 2006 ­ March 2007 School of Ocean Research Center 1 2 The Year's Highlights 3 Research Accomplishments Indo-Pacific Ocean Climate 4 Regional-Ocean Ocean Climate: To understand climate variations in the Pacific and Indian oceans on inter- annual

  20. Northwestern University Transportation Center

    E-Print Network [OSTI]

    Bustamante, Fabián E.

    Northwestern University Transportation Center 2011 Business Advisory Committee NUTC #12;#12;I have the pleasure of presenting our Business Advisory Committee members--a distinguished group of transportation industry lead- ers who have partnered with the Transportation Center in advancing the state of knowledge

  1. LANSCE | Lujan Center | Data Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lujan Center Data Management Lujan Neutron Scattering Center Logo The Lujan Center within LANSCE utilizes a pulsed source and has a complement of 15 instruments. It maintains a...

  2. Effects of Second-Order Hydrodynamics on a Semisubmersible Floating Offshore Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Bayati, I.; Jonkman, J.; Robertson, A.; Platt, A.

    2014-07-01T23:59:59.000Z

    The objective of this paper is to assess the second-order hydrodynamic effects on a semisubmersible floating offshore wind turbine. Second-order hydrodynamics induce loads and motions at the sum- and difference-frequencies of the incident waves. These effects have often been ignored in offshore wind analysis, under the assumption that they are significantly smaller than first-order effects. The sum- and difference-frequency loads can, however, excite eigenfrequencies of the system, leading to large oscillations that strain the mooring system or vibrations that cause fatigue damage to the structure. Observations of supposed second-order responses in wave-tank tests performed by the DeepCwind consortium at the MARIN offshore basin suggest that these effects might be more important than originally expected. These observations inspired interest in investigating how second-order excitation affects floating offshore wind turbines and whether second-order hydrodynamics should be included in offshore wind simulation tools like FAST in the future. In this work, the effects of second-order hydrodynamics on a floating semisubmersible offshore wind turbine are investigated. Because FAST is currently unable to account for second-order effects, a method to assess these effects was applied in which linearized properties of the floating wind system derived from FAST (including the 6x6 mass and stiffness matrices) are used by WAMIT to solve the first- and second-order hydrodynamics problems in the frequency domain. The method has been applied to the OC4-DeepCwind semisubmersible platform, supporting the NREL 5-MW baseline wind turbine. The loads and response of the system due to the second-order hydrodynamics are analysed and compared to first-order hydrodynamic loads and induced motions in the frequency domain. Further, the second-order loads and induced response data are compared to the loads and motions induced by aerodynamic loading as solved by FAST.

  3. CenterPoint The Center for Academic Enrichment & Outreach Newsletter

    E-Print Network [OSTI]

    Hemmers, Oliver

    CenterPoint March 2010 The Center for Academic Enrichment & Outreach Newsletter ONLINE ARTICLES and outreach and the executive director for The Center for Academic Enrichment and Outreach (The Center

  4. CenterPoint The Center for Academic Enrichment & Outreach Newsletter

    E-Print Network [OSTI]

    Hemmers, Oliver

    CenterPoint April 2011 The Center for Academic Enrichment & Outreach Newsletter ONLINE ARTICLES's Center for Academic Enrichment and Outreach (The Center) and funded by competitive grants from the U

  5. Energy efficient data centers

    SciTech Connect (OSTI)

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

    2004-03-30T23:59:59.000Z

    Data Center facilities, prevalent in many industries and institutions are essential to California's economy. Energy intensive data centers are crucial to California's industries, and many other institutions (such as universities) in the state, and they play an important role in the constantly evolving communications industry. To better understand the impact of the energy requirements and energy efficiency improvement potential in these facilities, the California Energy Commission's PIER Industrial Program initiated this project with two primary focus areas: First, to characterize current data center electricity use; and secondly, to develop a research ''roadmap'' defining and prioritizing possible future public interest research and deployment efforts that would improve energy efficiency. Although there are many opinions concerning the energy intensity of data centers and the aggregate effect on California's electrical power systems, there is very little publicly available information. Through this project, actual energy consumption at its end use was measured in a number of data centers. This benchmark data was documented in case study reports, along with site-specific energy efficiency recommendations. Additionally, other data center energy benchmarks were obtained through synergistic projects, prior PG&E studies, and industry contacts. In total, energy benchmarks for sixteen data centers were obtained. For this project, a broad definition of ''data center'' was adopted which included internet hosting, corporate, institutional, governmental, educational and other miscellaneous data centers. Typically these facilities require specialized infrastructure to provide high quality power and cooling for IT equipment. All of these data center types were considered in the development of an estimate of the total power consumption in California. Finally, a research ''roadmap'' was developed through extensive participation with data center professionals, examination of case study findings, and participation in data center industry meetings and workshops. Industry partners enthusiastically provided valuable insight into current practice, and helped to identify areas where additional public interest research could lead to significant efficiency improvement. This helped to define and prioritize the research agenda. The interaction involved industry representatives with expertise in all aspects of data center facilities, including specialized facility infrastructure systems and computing equipment. In addition to the input obtained through industry workshops, LBNL's participation in a three-day, comprehensive design ''charrette'' hosted by the Rocky Mountain Institute (RMI) yielded a number of innovative ideas for future research.

  6. Valley Forge Corporate Center

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartment ofPrivilegesUnauthorizedVIAThisValerie Jarrett55

  7. Valley Forge Corporate Center

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartment ofPrivilegesUnauthorizedVIAThisValerie Jarrett55

  8. NREL: Education Center - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | NationalWebmaster To contact theStudentWebmaster

  9. Center for Nonlinear Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamos Laboratory NastasiPAST EVENTS7Summer Newsletter

  10. Centers | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamos Laboratory NastasiPAST EVENTS7SummerResearch

  11. DOE New Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePART I SECTIONPlasma Physics Lab 1,Physicsis

  12. Integrated Support Center Jobs

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,ofOpportunitieshighlights/ Theisc/about/jobs/ Below is

  13. Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory

  14. Jefferson Lab Visitor's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLab To ReceiveUser

  15. Virtual Community Reception Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1 - USAFofEmail Mr.Virginia

  16. Strategic Center for Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900Steep SlopeStochastic WeeklyStores Catalog TheaSVOCoal

  17. PNNL: News Center - Experts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomass and4/26/11:Tel.:162 PreparedExpert Showcase Welcome to the

  18. Call center construction underway

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r8.05 Calendar YearAward |P.O. Box 2078

  19. Theory Center | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program The NIF andPoints ofProject HomeThe

  20. WIPP - Joint Information Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEureka Analytics andWFRNewsWind MapsWIPP The

  1. WIPP Information Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEureka AnalyticsLargeHome Page Search Enter

  2. National Fertilizer Development Center

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 August 2008REGULATORY,.COMMISSION; I.-'h-L

  3. ARM - News Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Become a User Recovery ActgovMeasurementsARMMission

  4. ASU EFRC - Center researchers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Become agovEducationWelcome to Study Hall

  5. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About BecomeTechnologies | Blandine Allocation

  6. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About BecomeTechnologies | Blandine AllocationSearch Printable

  7. CNEEC - Center Goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries BatteriesCAES HomeMaterialsComputationalGoals

  8. Center for Inverse Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteriesmetal-organic frameworks EFRC 1001 wordInverse

  9. Center for Nonlinear Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms AboutRESEARCH CAPABILITIES The CNMS provides users

  10. Regional Test Centers (RTCs)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead5"Redline"Method over thehas

  11. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO S o'ware aPowering

  12. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO S o'ware aPoweringTools

  13. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO S o'ware

  14. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO S o'wareElectric Vehicle

  15. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO S o'wareElectric

  16. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO S o'wareElectricVehicle (NGV)

  17. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO S o'wareElectricVehicle

  18. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO S o'wareElectricVehicleMotor

  19. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO S

  20. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO SState Highway Electric