Powered by Deep Web Technologies
Note: This page contains sample records for the topic "war coal ash" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Ashing properties of coal blends  

SciTech Connect (OSTI)

The fusion properties of sulfur materials present in coals were investigated. The treatment of the samples of eleven different coals is described. Thermal treatment of low temperature ashing (LTA) concentrates of eight of the coals was performed, and raw and wash ashing curves were examined to determine what quantitative correlations, if any, exist between ashing parameters and rank of coal. The actual form of the function which describes the ashing curve is derived.

Biggs, D.L.

1982-03-01T23:59:59.000Z

2

alkaline coal ash: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

3

Cast-Concrete Products Made with FBC Ash and Wet-Collected Coal-Ash  

E-Print Network [OSTI]

. DOI: 10.1061/ ASCE 0899-1561 2005 17:6 659 CE Database subject headings: Recycling; Ashes; Concrete et al. 1991 . Fluidized bed combustion FBC ash is the ash produced by an FBC boiler in which the coal

Wisconsin-Milwaukee, University of

4

IN HARM'S WAY: Lack Of Federal Coal Ash  

E-Print Network [OSTI]

IN HARM'S WAY: Lack Of Federal Coal Ash Regulations Endangers Americans And Their Environment 2010 Thirty-nine New Damage Cases of Contamination from Improperly Disposed Coal Combustion Waste, Editor and Contributing Author #12;IN HARM'S WAY: Lack of Federal Coal Ash Regulations Endangers

Short, Daniel

5

Data Summary Report for Hanford Site Coal Ash Characterization  

SciTech Connect (OSTI)

The purpose of this report is to present data and findings from sampling and analysis of five distinct areas of coal ash within the Hanford Site River Corridor

Sulloway, H. M.

2012-03-06T23:59:59.000Z

6

Arsenic remediation of drinking water using iron-oxide coated coal bottom ash  

E-Print Network [OSTI]

using Iron-oxide Coated Coal Ash. In Arsenic Contaminationwater using  iron?oxide coated coal bottom ash  Johanna L.  using iron-oxide coated coal bottom ash JOHANNA L. MATHIEU

MATHIEU, JOHANNA L.

2010-01-01T23:59:59.000Z

7

Coal Ash Corrosion Resistant Materials Testing Program  

SciTech Connect (OSTI)

The "Coal Ash Corrosion Resistant Materials Testing Program" is being conducted by The Babcock & Wilcox Company (B&W), the U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) at Reliant Energy?s Niles plant in Niles, Ohio to provide full-scale, in-situ testing of recently developed boiler superheater materials. Fireside corrosion is a key issue for improving efficiency of new coal fired power plants and improving service life in existing plants. In November 1998, B&W began development of a system to permit testing of advanced tube materials at metal temperatures typical of advanced supercritical steam temperatures (1100°F and higher) in a boiler exhibiting coal ash corrosive conditions. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. In the spring of 1999 a system consisting of three identical sections, each containing multiple segments of twelve different materials, was installed. The sections are cooled by reheat steam, and are located just above the furnace entrance in Niles? Unit #1, a 110 MWe unit firing high sulfur Ohio coal. In November 2001 the first section was removed for thorough metallurgical evaluation after 33 months of operation. The second and third sections remain in service and the second is expected to be removed in the fall of 2003; the last is tentatively planned for the fall of 2004. This paper describes the program; its importance; the design, fabrication, installation and operation of the test system; materials utilized; experience to date; and results of the evaluation of the first section.

McDonald, D.K.

2003-04-22T23:59:59.000Z

8

Respiratory and Reproductive Characteristics of Eastern Mosquitofish (Gambusia holbrooki) Inhabiting a Coal Ash Settling Basin  

E-Print Network [OSTI]

) Inhabiting a Coal Ash Settling Basin B. P. Staub, W. A. Hopkins, J. Novak, J. D. Congdon Savannah River 2002/Accepted: 29 March 2002 Abstract. Coal fly ash and effluent from coal ash settling basins viable populations in areas contaminated by coal ash. While eastern mosquitofish are present

Hopkins, William A.

9

Chemical composition and some trace element contents in coals and coal ash from Tamnava-Zapadno Polje Coal Field, Serbia  

SciTech Connect (OSTI)

The chemical compositions and trace element contents (Zn, Cu, Co, Cr, Ni, Pb, Cd, As, B, Hg, Sr, Se, Be, Ba, Mn, Th, V, U) in coal and coal ash samples from Tamnava-Zapadno Polje coal field in Serbia were studied. The coal from this field belongs to lignite. This high volatility coal has high moisture and low S contents, moderate ash yield, and high calorific value. The coal ash is abundant in alumosilicates. Many trace elements such as Ni > Cd > Cr > B > As > Cu > Co > Pb > V > Zn > Mn in the coal and Ni > Cr > As > B > Cu > Co = Pb > V > Zn > Mn in the coal ash are enriched in comparison with Clarke concentrations.

Vukasinovic-Pesic, V.; Rajakovic, L.J. [University of Montenegro, Podgorica (Montenegro)

2009-07-01T23:59:59.000Z

10

Coal Ash Corrosion Resistant Materials Testing  

SciTech Connect (OSTI)

In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that, due to excessive wastage, certain tube samples needed to be removed and replaced in order to ensure that Test Sections B and C would have a chance of remaining in the boiler for their intended exposure period. These suspect tube samples were replaced and the two remaining test sections were put back into service. The tube samples that were removed from Test Sections B and C were set aside for later analysis at the end of the planned exposure period. Test Sections B and C were again examined approximately six months later. At that time, measured wall thickness losses raised concerns about additional tube samples. These suspect samples were also removed, set aside for later analysis, and replaced. The test sections then went back into service until the end of the second exposure period, which was concluded in May 2003 when, due to evidence of excessive wastage, the valves were opened increasing cooling steam flow and thereby effectively stopping corrosion. In August 2003, Test Sections B and C were removed for closer examination. Section C had experienced about 42 months of service at the desired team temperature set point with 28.5 months at temperature at full temperature. Additional suspect samples were removed from Test Section B, then, it was re-installed into the boiler (at the location originally occupied by Section C), where it remained in service until the end of the program. Due to this removal history, the samples from Test Section B had a total service duration that varied from a minimum of 15.5 months (for samples that performed poorly) to 37 months for samples the survived for the full intended service exposure for Section B. The figure below shows a schematic of Test Section B and indicates the length of service exposure for different locations. This report provides the results of the evaluation of Test Section B, including the samples that remained in the Test Section for the full exposure period as well as those that were removed early. This report also is intended to compare and summarize the results for all three test sections. The analysis of T

D. K. McDonald; P. L. Daniel; D. J. DeVault

2007-12-31T23:59:59.000Z

11

COAL-FIRED UTILITY BOILERS: SOLVING ASH DEPOSITION PROBLEMS  

SciTech Connect (OSTI)

The accumulation of slagging and fouling ash deposits in utility boilers has been a source of aggravation for coal-fired boiler operators for over a century. Many new developments in analytical, modeling, and combustion testing methods in the past 20 years have made it possible to identify root causes of ash deposition. A concise and comprehensive guidelines document has been assembled for solving ash deposition as related to coal-fired utility boilers. While this report accurately captures the current state of knowledge in ash deposition, note that substantial research and development is under way to more completely understand and mitigate slagging and fouling. Thus, while comprehensive, this document carries the title ''interim,'' with the idea that future work will provide additional insight. Primary target audiences include utility operators and engineers who face plant inefficiencies and significant operational and maintenance costs that are associated with ash deposition problems. Pulverized and cyclone-fired coal boilers are addressed specifically, although many of the diagnostics and solutions apply to other boiler types. Logic diagrams, ash deposit types, and boiler symptoms of ash deposition are used to aid the user in identifying an ash deposition problem, diagnosing and verifying root causes, determining remedial measures to alleviate or eliminate the problem, and then monitoring the situation to verify that the problem has been solved. In addition to a step-by-step method for identifying and remediating ash deposition problems, this guideline document (Appendix A) provides descriptions of analytical techniques for diagnostic testing and gives extensive fundamental and practical literature references and addresses of organizations that can provide help in alleviating ash deposition problems.

Christopher J. Zygarlicke; Donald P. McCollor; Steven A. Benson; Jay R. Gunderson

2001-04-01T23:59:59.000Z

12

Comparative analysis of methods for determination of arsenic in coal and coal ash  

SciTech Connect (OSTI)

In this paper the comparative analysis of different methods for the preparation and analysis of arsenic content in coal and coal ash have been presented. The suggested method is coal digestion method, i.e., coal ash digestion using the mixture of acids: nitric and sulphuric in presence of vanadium-pentoxide as catalyzer. The comparative analysis of different recording techniques (AAS-GH, AAS-GF and ICP-AES) has also been presented. For arsenic recording the suggested technique is AAS-GF technique. The obtained results show that the method of high precision, high sensitivity and high reproductivity has been obtained.

Vukasinovic-Pesic, V.L.; Blagojevic, N.Z.; Rajakovic, L.V. [University of Montenegro, Podgorica (Montenegro)

2009-07-01T23:59:59.000Z

13

Coal-ash slag attack and corrosion of refractories  

SciTech Connect (OSTI)

The corrosion characteristics of a variety of fused-cast refractories in contact with various coal-ash slags were investigated. A fused-cast chrome-spinel refractory exhibited excellent corrosion resistance to both acidic and basic coal-ash slags at 1500/sup 0/C, even in the absence of water cooling. The slag-refractory interaction was limited to the formation of a stable band of recrystallized hercynitic spinel. Alumina-chromia refractories were superior to alumina and magnesia-chrome refractories when exposed to acidic slags.

Bonar, J.A. (Carborundum Co., Niagara Falls, NY); Kennedy, C.R.; Swaroop, R.B.

1980-04-01T23:59:59.000Z

14

Correlation relations between mineralogical components in ash from Kaa-Khem coals  

SciTech Connect (OSTI)

Regression analysis was used to study correlation relations between the mineral components of coals. Regularities in the variability of the concentrations of individual ash-forming elements with changing ash contents of coals and changing seam depth were found. The X-ray diffraction characteristics of coal ashes and the qualitative composition of their mineralogical components are presented.

N.N. Yanchat; L.Kh. Tas-ool [Russian Academy of Sciences, Kyzyl (Russia). Tuvinian Institute for Complex Exploration of Natural Resources

2008-08-15T23:59:59.000Z

15

Integrated production/use of ultra low-ash coal, premium liquids and clean char  

SciTech Connect (OSTI)

This integrated, multi-product approach for utilizing Illinois coal starts with the production of ultra low-ash coal and then converts it to high-vale, coal-derived, products. The ultra low-ash coal is produced by solubilizing coal in a phenolic solvent under ChemCoal{trademark} process conditions, separating the coal solution from insoluble ash, and then precipitating the clean coal by dilution of the solvent with methanol. Two major products, liquids and low-ash char, are then produced by mild gasification of the low-ash coal. The low ash-char is further upgraded to activated char, and/or an oxidized activated char which has catalytic properties. Characterization of products at each stage is part of this project.

Kruse, C.W.

1991-01-01T23:59:59.000Z

16

Ash reduction in clean coal spiral product circuits  

SciTech Connect (OSTI)

The article describes the Derrick Corporation's Stack Sizer{trademark} technology for high capacity fine wet cleaning with long-lasting high open-area urethane screen panels. After field trials, a Stack Sizer fitted with a 100-micron urethane panel is currently processing approximately 40 stph of clean coal spiral product having about 20% ash at McCoy-Elkhorn's Bevin Branch coal preparation plant in Kentucky, USA. Product yield is about 32.5 short tons per hour with 10% ash. The material is then fed to screen bowl centrifuges for further processing. At Blue Diamond Coal's Leatherwood preparation plant similar Stacker Sizers are achieving the same results. 2 figs., 3 tabs., 2 photo.

Brodzik, P.

2007-04-15T23:59:59.000Z

17

2007 world of coal ash conference proceedings  

SciTech Connect (OSTI)

The theme of the conference was science, applications and sustainability. Papers are presented under the following topics: aggregates/geotechnology; agriculture; ash facility; management; CCT products; cement and concrete; chemistry and mineralogy; emerging technology; environmental; LOI/beneficiation/handling; mercury; mining and regulations and standards. The poster papers are included as well.

NONE

2007-07-01T23:59:59.000Z

18

Ash level meter for a fixed-bed coal gasifier  

DOE Patents [OSTI]

An ash level meter for a fixed-bed coal gasifier is provided which utilizes the known ash level temperature profile to monitor the ash bed level. A bed stirrer which travels up and down through the extent of the bed ash level is modified by installing thermocouples to measure the bed temperature as the stirrer travels through the stirring cycle. The temperature measurement signals are transmitted to an electronic signal process system by an FM/FM telemetry system. The processing system uses the temperature signals together with an analog stirrer position signal, taken from a position transducer disposed to measure the stirrer position to compute the vertical location of the ash zone upper boundary. The circuit determines the fraction of each total stirrer cycle time the stirrer-derived bed temperature is below a selected set point, multiplies this fraction by the average stirrer signal level, multiplies this result by an appropriate constant and adds another constant such that a 1 to 5 volt signal from the processor corresponds to a 0 to 30 inch span of the ash upper boundary level. Three individual counters in the processor store clock counts that are representative of: (1) the time the stirrer temperature is below the set point (500.degree. F.), (2) the time duration of the corresponding stirrer travel cycle, and (3) the corresponding average stirrer vertical position. The inputs to all three counters are disconnected during any period that the stirrer is stopped, eliminating corruption of the measurement by stirrer stoppage.

Fasching, George E. (Morgantown, WV)

1984-01-01T23:59:59.000Z

19

Spectroscopic research on infrared emittance of coal ash deposits  

SciTech Connect (OSTI)

This paper deals with thermal radiation characteristics of ash deposits on a pulverized coal combustion boiler of an electric power plant. Normal emittance spectra in the near to medium infrared (2.5-25 {mu}m) region and total normal emittances were measured on four kinds of ground ash deposits. Measurements were conducted in the 570-1460 K temperature range which is common for boiler furnaces, by both heating and cooling the ash samples, with the aim to study the effect of their thermal history. Dependence of emittance on wavelength, temperature and chemical composition was studied, too. Samples were tested for transparency (opacity) to verify the accuracy of results. It was determined that the thicknesses used for the ash powders are opaque for infrared radiation for thicknesses in the order of a millimeter. Tests have shown that spectral emittance increases with an increase of wavelength with a characteristic pattern common for all samples. Spectral normal emittance increases strongly with temperature at shorter wavelengths and remains high and unchanged at longer ones. Emittance spectra are not very sensitive to chemical composition of ashes especially beyond {lambda} {approx} 5 {mu}m. With an increase of temperature, total emittance of the powdered sample decreases to a minimum value around 1200 K. Further temperature rise induces an increase of total emittance due to sintering in the ash. On cooling, the emittance increases monotonically following the hysteresis. Quantitative directions for evaluating thermal radiation characteristics of ash deposits for the merits of the safety design of boiler furnaces were proposed. That comprises correlating the experimentally obtained emittance spectra with curves of simple analytical form, i.e., a continuous function of minimum emittance vs. wavelength. The proposed method can be extended to other specimens from the same furnace and used to determine correlations for thermal calculation of old and design of new furnaces - with similar geometry and combusting similar coal. The method is potentially applicable to completely different boiler furnaces combusting different coal, and the authors recommend running the tests with new deposit samples. The data will then be applicable to the thermal design of a whole new class of furnaces, having similar geometry and combusting similar coal. This is expected to greatly enhance the accuracy and precision of thermal calculation as well as the efficiency of thermal design of steam boilers. (author)

Saljnikov, Aleksandar; Komatina, Mirko; Gojak, Milan [Department of Thermomechanics, Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Belgrade 35 (RS); Vucicevic, Biljana [Laboratory for Thermal Engineering, Institute of Nuclear Sciences VINCA, P.O. Box 522, Belgrade 11001 (RS); Goricanec, Darko [Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, Maribor 2000 (Slovenia); Stevanovic, Zoran [Faculty of Mining and Geology, University of Belgrade, Dusina 7, 11120 Belgrade 35 (RS)

2009-11-15T23:59:59.000Z

20

JV Task 6 - Coal Ash Resources Research Consortium Research  

SciTech Connect (OSTI)

The Coal Ash Resources Research Consortium{reg_sign} (CARRC{reg_sign}, pronounced 'cars') focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of coal combustion by-products (CCBs). CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCB utilization and ensuring its successful application. The U.S. Department of Energy is a partner in CARRC through the EERC Jointly Sponsored Research Program (JSRP), which provides matching funds for industrial member contributions and facilitates an increased level of effort in CARRC. CARRC tasks were designed to provide information on CCB performance, including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC technical research tasks are developed based on member input and prioritization. CARRC special projects are developed with members and nonmembers to provide similar information and to support activities, including the assembly and interpretation of data, support for standards development and technology transfer, and facilitating product development and testing. CARRC activities from 1998 to 2007 included a range of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCBs. CARRC topical reports were prepared on several completed tasks. Specific CARRC 1998B2007 accomplishments included: (1) Development of several ASTM International Standard Guides for CCB utilization applications. (2) Organization and presentation of training courses for CCB professionals and teachers. (3) Development of online resources including the Coal Ash Resource Center, Ash from Biomass in Coal (ABC) of cocombustion ash characteristics, and the Buyer's Guide to Coal-Ash Containing Products. In addition, development of expanded information on the environmental performance of CCBs in utilization settings included the following: (1) Development of information on physical properties and engineering performance for concrete, soil-ash blends, and other products. (2) Training of students through participation in CARRC research projects. (3) Participation in a variety of local, national, and international technical meetings, symposia, and conferences by presenting and publishing CCB-related papers.

Debra Pflughoeft-Hassett; Tera Buckley; Bruce Dockter; Kurt Eylands; David Hassett; Loreal Heebink; Erick Zacher

2008-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "war coal ash" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Volcanic ash in feed coal and its influence on coal combustion products  

SciTech Connect (OSTI)

The US Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana Utility to determine the physical and chemical properties of feed coal and coal combustion products (CCPs) from a coal-fired power plant. The plant utilizes a low-sulfur (.23--.47 weight percent S) coal from the Powder River Basin, Wyoming. Scanning Electron Microscope (SEM) and X-ray diffraction (XRD) analysis of feed coal samples identified two mineral suites. A primary suite (not authigenic) consisting of quartz (detrital and volcanic beta-form grains), biotite, and minor zircon and a secondary authigenic mineral suite containing calcite, alumino-phosphates (crandallite and gorceixite), kaolinite, quartz, anatase, barite, and pyrite. The authigenic minerals are attributed to air-fall and reworked volcanic ash that was deposited in peat-forming mires. The Powder River Basin feed coals contain higher amounts of Ba, Ca, Mg, Na, Sr, and P compared to other analyzed eastern coals. These elements are associated with alumino-phosphate, biotite, calcite, and clay minerals. The element associations are indicative of coal that incorporated volcanic ash during deposition. XRD analysis of CCPs revealed a predominance of glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals in the fly ash; and quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite in the bottom ash. Microprobe and SEM analysis of fly ash samples revealed quartz, zircon, monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, and rounded grains of wollastonite with periclase. The abundant Ca and Mg mineral phases in the fly ashes are related to the presence of carbonate, clay, and phosphate minerals in the feed coal. The Ca- and Mg-rich mineral phases in the CCPs can be attributed to volcanic minerals deposited in the peat-forming mire. Dissolution and alteration of these minerals occurred either in the peat-forming sate or during coalification/diagenesis contributing to the authigenic mineral suite. Additionally, detrital mineral input and epigenetic ground-water flow may have affected the geochemistry of the feed coal.

Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.; Brownfield, I.K.; Hower, J.C.; Stricker, G.D.; O'Connor, J.T.

2000-07-01T23:59:59.000Z

22

Ash transformations in the real-scale pulverized coal combustion of South African and Colombian coals  

SciTech Connect (OSTI)

In this work, the formation of ash particles in the combustion of South African Klein Kropie coal and a Colombian coal was studied by measuring the ash particle characteristics upstream of the electrostatic precipitator (ESP) at a 510 MW{sub e} pulverized coal fired power plant. The authors measured the ash particle mass size distributions in the size range 0.01--50 {micro}m using low-pressure impactors and precutter cyclones. Also, samples were collected for computer controlled scanning electron microscopy (CCSEM) with a cyclone with an aerodynamic cut-diameter of about 1 {micro}m. The cyclone-collected samples were analyzed with standard CCSEM procedure by depositing the particles on a filter, and by embedding the particles in epoxy hence acquiring the cross-section analysis of the sample. All major mineral classes in both coals were found to undergo extensive coalescence during combustion. Iron, calcium and magnesium rich particles resulting from the decomposition of pyrite, calcite and dolomite were found to coalesce with quartz and aluminosilicate particles. The size distributions of the fly ash determined with CCSEM and low-pressure impactor-cyclone sampler were found to be similar.

Lind, T.; Kauppinen, E.I.; Valmari, T. [VTT (Finland); Klippel, N. [ABB Corporate Research, Baden (Switzerland); Mauritzson, C. [ABB Flaekt Industri AB, Vaexjoe (Sweden)

1996-12-31T23:59:59.000Z

23

Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer  

SciTech Connect (OSTI)

In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na{sub 2}SiO{sub 3}) and 10 M sodium hydroxide (NaOH) solutions at mass ratio of Na{sub 2}SiO{sub 3}/NaOH of 1.5 and curing temperature of 65 deg. C for 48 h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0 MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

Chindaprasirt, Prinya [Department of Civil Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002 (Thailand); Rattanasak, Ubolluk, E-mail: ubolluk@buu.ac.t [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131 (Thailand)

2010-04-15T23:59:59.000Z

24

Soil stabilization and pavement recycling with self-cementing coal fly ash  

SciTech Connect (OSTI)

This manual provides design information for self-cementing coal fly ash as the sole stabilizing agent for a wide range of engineering applications. As in any process, the application of sound engineering practices, appropriate testing, and evaluation of fly ash quality and characteristics will lend themselves to successful projects using the guidelines in this manual. Topics discussed include: self-cementing coal fly ash characteristics; laboratory mix design; stabilization of clay soils; stabilisation of granular materials; construction considerations; high sulfate ash; environmental considerations for fly ash stabilization; design considerations; state specification/guidelines/standards; and a sample of a typical stabilization specification.

NONE

2008-01-15T23:59:59.000Z

25

Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Incinerator fly ash (IFA) is added to an alkali activated coal fly ash (CFA) matrix. Black-Right-Pointing-Pointer Means of stabilizing the incinerator ash for use in construction applications. Black-Right-Pointing-Pointer Concrete made from IFA, CFA and IFA-CFA mixes was chemically characterized. Black-Right-Pointing-Pointer Environmentally friendly solution to IFA disposal by reducing its toxicity levels. - Abstract: Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA's Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson's ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases even below the reporting limit. The leachable Chromium was reduced from 0.153 down to 0.0045 mg/L, Arsenic from 0.256 down to 0.132 mg/L, Selenium from 1.05 down to 0.29 mg/L, Silver from 0.011 down to .001 mg/L, Barium from 2.06 down to 0.314 mg/L and Mercury from 0.007 down to 0.001 mg/L. Although the leachable Cd exhibited an increase from 0.49 up to 0.805 mg/L and Pd from 0.002 up to 0.029 mg/L, these were well below the maximum limits of 1.00 and 5.00 mg/L, respectively.

Ivan Diaz-Loya, E. [Alternative Cementitious Binders Laboratory (ACBL), Department of Civil Engineering, Louisiana Tech University, Ruston, LA 71272 (United States); Allouche, Erez N., E-mail: allouche@latech.edu [Alternative Cementitious Binders Laboratory (ACBL), Department of Civil Engineering, Louisiana Tech University, Ruston, LA 71272 (United States); Eklund, Sven; Joshi, Anupam R. [Department of Chemistry, Louisiana Tech University, Ruston, LA 71272 (United States); Kupwade-Patil, Kunal [Alternative Cementitious Binders Laboratory (ACBL), Department of Civil Engineering, Louisiana Tech University, Ruston, LA 71272 (United States)

2012-08-15T23:59:59.000Z

26

JV Task 120 - Coal Ash Resources Research Consortium Research  

SciTech Connect (OSTI)

The Coal Ash Resources Research Consortium{reg_sign} (CARRC{reg_sign}, pronounced 'cars') is the core coal combustion product (CCP) research group at the Energy & Environmental Research Center (EERC). CARRC focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of CCPs. CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCP utilization and ensuring its successful application. The U.S. Department of Energy is a partner in CARRC through the EERC Jointly Sponsored Research Program, which provides matching funds for industrial member contributions and facilitates an increased level of effort in CARRC. CARRC tasks were designed to provide information on CCP performance, including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC technical research tasks are developed based on member input and prioritization. CARRC special projects are developed with members and nonmembers to provide similar information and to support activities, including the assembly and interpretation of data, support for standards development and technology transfer, and facilitating product development and testing. CARRC activities from 2007 to 2009 included a range of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCPs. The tasks were included in four categories: (1) Environmental Evaluations of CCPs; (2) Evaluation of Impacts on CCPs from Emission Controls; (3) Construction and Product-Related Activities; and (4) Technology Transfer and Maintenance Tasks. All tasks are designed to work toward achieving the CARRC overall goal and supporting objectives. The various tasks are coordinated in order to provide broad and useful technical data for CARRC members. Special projects provide an opportunity for non-CARRC members to sponsor specific research or technology transfer consistent with CARRC goals. This report covers CARRC activities from January 2007 through March 2009. These activities have been reported in CARRC Annual Reports and in member meetings over the past 2 years. CARRC continues to work with industry and various government agencies with its research, development, demonstration, and promotional activities nearing completion at the time of submission of this report. CARRC expects to continue its service to the coal ash industry in 2009 and beyond to work toward the common goal of advancing coal ash utilization by solving CCP-related technical issues and promoting the environmentally safe, technically sound, and economically viable management of these complex and changing materials.

Debra Pflughoeft-Hassett; Loreal Heebink; David Hassett; Bruce Dockter; Kurt Eylands; Tera Buckley; Erick Zacher

2009-03-28T23:59:59.000Z

27

TRACE METAL CONTENT OF COAL AND ASH AS DETERMINED USING SCANNINGELECTRON MICROSCOPYWITE  

E-Print Network [OSTI]

TRACE METAL CONTENT OF COAL AND ASH AS DETERMINED USING SCANNINGELECTRON MICROSCOPYWITE WAVELENGTH Grand Forks, ND 58202-9018 Keywords: scanning electron microscopy, trace metals, coal analysis ABSTRACT Scanningelectron microscopy with wavelength-dispersive spectrometry has been used to measure trace metals in coal

Laughlin, Robert B.

28

Coal deposit characterization by gamma-gamma density/percent dry ash relationships  

E-Print Network [OSTI]

Density/Ash Relationship . APPLICATION OF THE GAMMA-GAMMA DENSITY/PERCENT DRY ASH RELATIONSHIPS The Density/Ash Relationship of a South Texas Lignite Deposit Characterization of a South Texas Lignite Deposit CONCLUSIONS REFERENCES. 52 53 53 53... 58 64 67 6g 80 87 LIST OF TABLES TABLE I Coal Classification by Rank. 2 Common Minerals in Coal. 3 Results of Linear Regression Analyses for a South Texas Lignite Deposit. 4 Variability of Geophysica11y-Derived Percent Dry Ash Values...

Wright, David Scott

1984-01-01T23:59:59.000Z

29

Effects of pulverized coal fly-ash addition as a wet-end filler in papermaking  

SciTech Connect (OSTI)

This experimental study is based on the innovative idea of using pulverized coal fly ash as a wet-end filler in papermaking. This is the first evaluation of the possible use of fly ash in the paper industry. Coal-based thermal power plants throughout the world are generating fly ash as a solid waste product. The constituents of fly ash can be used effectively in papermaking. Fly ash has a wide variation in particle size, which ranges from a few micrometers to one hundred micrometers. Fly ash acts as an inert material in acidic, neutral, and alkaline papermaking processes. Its physical properties such as bulk density (800-980 kg/m{sup 3}), porosity (45%-57%), and surface area (0.138-2.3076 m{sup 2}/g) make it suitable for use as a paper filler. Fly ash obtained from thermal power plants using pulverized coal was fractionated by a vibratory-sieve stack. The fine fraction with a particle size below 38 micrometers was used to study its effect on the important mechanical-strength and optical properties of paper. The effects of fly-ash addition on these properties were compared with those of kaolin clay. Paper opacity was found to be much higher with fly ash as a filler, whereas brightness decreased as the filler percentage increased Mechanical strength properties of the paper samples with fly ash as filler were superior to those with kaolin clay.

Sinha, A.S.K. [SLIET, Longowal (India). Dept. of Chemical Technology

2008-09-15T23:59:59.000Z

30

2007 American Coal Ash Association membership directory as of June 21, 2007  

SciTech Connect (OSTI)

A listing of names, addresses, contact numbers and websites is given for 101 members of the American Coal Ash Association. Honorary members are also named. Included are power generation companies, combustion by-product manufacturers and university departments.

NONE

2007-07-01T23:59:59.000Z

31

Ash bed level control system for a fixed-bed coal gasifier  

DOE Patents [OSTI]

An ash level control system is provided which incorporates an ash level meter to automatically control the ash bed level of a coal gasifier at a selected level. The ash level signal from the ash level meter is updated during each cycle that a bed stirrer travels up and down through the extent of the ash bed level. The ash level signal is derived from temperature measurements made by thermocouples carried by the stirrer as it passes through the ash bed and into the fire zone immediately above the ash bed. The level signal is compared with selected threshold level signal to determine if the ash level is above or below the selected level once each stirrer cycle. A first counter is either incremented or decremented accordingly. The registered count of the first counter is preset in a down counter once each cycle and the preset count is counted down at a selected clock rate. A grate drive is activated to rotate a grate assembly supporting the ash bed for a period equal to the count down period to maintain the selected ash bed level. In order to avoid grate binding, the controller provides a short base operating duration time each stirrer cycle. If the ash bed level drops below a selected low level or exceeds a selected high level, means are provided to notify the operator.

Fasching, George E. (Morgantown, WV); Rotunda, John R. (Fairmont, WV)

1984-01-01T23:59:59.000Z

32

Surface studies of coal, oil, and coal-oil-mixture ash using auger electron spectroscopy and solvent leaching techniques  

SciTech Connect (OSTI)

Fly ash produced by the combustion of coal, oil, and a coal-oil mixture have been studied by Auger electron spectroscopy and solvent leaching techniques. The Auger data indicate that the surface concentration of the metal ions Na, Fe, Mg, Ni, V, and Al as well as S and C increases on going from coal to coal-oil mixture and oil ash. The relative surface enrichments of oil and coal-oil-mixture ash are consistent with a simple model of the ash-formation process, and the results confirm that several toxic metals are significantly enriched on the surface of the ash particles. The Auger data are compared to HCl and tris buffer leachate composition analyses, and in neither case does the leachate give an accurate representation of the surface composition. HCl apparently dissolves large oxide deposits and thus overestimates the surface concentrations of Fe, Al, and V. Conversely, several metallic ions are essentially insoluble in neutral aqueous solutions, so their surface concentration is underestimated by the tris leachate.

Stinespring, C.D.; Harris, W.R.; Cook, J.M.; Casleton, K.H.

1985-09-01T23:59:59.000Z

33

Effects of Sediment Containing Coal Ash from the Kingston Ash Release on Embryo-Larval Development in the Fathead Minnow, Pimephales promelas (Rafinesque, 1820)  

SciTech Connect (OSTI)

The largest environmental release of coal ash in U.S. history occurred in December 2008 with the failure of a retention structure at the Tennessee Valley Authority (TVA) Kingston Fossil Plant in East Tennessee. A byproduct of coal-burning power plants, coal ash is enriched in metals and metalloids such as selenium and arsenic with known toxicity to fish including embryonic and larval stages. The effects of contact exposure to sediments containing up to 78 % coal ash from the Kingston spill on the early development of fish embryos and larvae were examined in 7-day laboratory tests with the fathead minnow (Pimephales promelas). No significant effects were observed on hatching success, incidences of gross developmental abnormalities, or embryo-larval survival. Results suggest that direct exposures to sediment containing residual coal ash from the Kingston ash release may not present significant risks to fish eggs and larvae in waterways affected by the spill.

Greeley Jr, Mark Stephen [ORNL] [ORNL; Elmore, Logan R [ORNL] [ORNL; McCracken, Kitty [ORNL] [ORNL; Sherrard, Rick [Tennessee Valley Authority (TVA)] [Tennessee Valley Authority (TVA)

2014-01-01T23:59:59.000Z

34

Regeneratively cooled coal combustor/gasifier with integral dry ash removal  

DOE Patents [OSTI]

A coal combustor/gasifier is disclosed which produces a low or medium combustion gas fired furnances or boilers. Two concentric shells define a combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

Beaufrere, A.H.

1982-04-30T23:59:59.000Z

35

Zeolite formation from coal fly ash and its adsorption potential  

SciTech Connect (OSTI)

The possibility in converting coal fly ash (CFA) to zeolite was evaluated. CFA samples from the local power plant in Prachinburi province, Thailand, were collected during a 3-month time span to account for the inconsistency of the CFA quality, and it was evident that the deviation of the quality of the raw material did not have significant effects on the synthesis. The zeolite product was found to be type X. The most suitable weight ratio of sodium hydroxide (NaOH) to CFA was approximately 2.25, because this gave reasonably high zeolite yield with good cation exchange capacity (CEC). The silica (Si)-to-aluminum (Al) molar ratio of 4.06 yielded the highest crystallinity level for zeolite X at 79% with a CEC of 240 meq/100 g and a surface area of 325 m{sup 2}/g. Optimal crystallization temperature and time were 90{sup o}C and 4 hr, respectively, which gave the highest CEC of approximately 305 meq/100 g. Yields obtained from all experiments were in the range of 50-72%. 29 refs., 5 tabs., 7 figs.

Duangkamol Ruen-ngam; Doungmanee Rungsuk; Ronbanchob Apiratikul; Prasert Pavasant [Chulalongkorn University, Bangkok (Thailand). Department of Chemical Engineering

2009-10-15T23:59:59.000Z

36

Apparatus and method for direct measurement of coal ash sintering and fusion properties at elevated temperatures and pressures  

DOE Patents [OSTI]

A high-pressure microdilatometer is provided for measuring the sintering and fusion properties of various coal ashes under the influence of elevated pressures and temperatures in various atmospheres. Electrical resistivity measurements across a sample of coal ash provide a measurement of the onset of the sintering and fusion of the ash particulates while the contraction of the sample during sintering is measured with a linear variable displacement transducer for detecting the initiation of sintering. These measurements of sintering in coal ash at different pressures provide a mechanism by which deleterious problems due to the sintering and fusion of ash in various combustion systems can be minimized or obviated.

Khan, M. Rashid (Morgantown, WV)

1990-01-01T23:59:59.000Z

37

Iron distribution among phases in high- and low-sulfur coal fly ash  

SciTech Connect (OSTI)

Moessbauer spectroscopy, reflected-light optical microscopy, scanning-electron microscopy, wet chemical, and X-ray diffraction studies were conducted on six fly ash samples. The fly ashes, representing the combustion by-products of coals with total sulfur contents of less than 2% to greater than 4%, ranged from 17.6 to 32.0% Fe{sub 2}O{sub 3} by XRF analysis. Wet chemical analysis was used to determine the Fe{sup 3+}/{summation}Fe content of the ashes, which ranged from 72% to 83%. Optical analysis of the ashes indicated that the spinel, encompassing iron oxides of various compositions, ranges from 4.0 to 12.6% (vol.). Moessbauer analyses confirmed the presence of three Fe-bearing phases: magnetite, hematite (possibly of two different compositions), and glass. The variation in the Fe-oxidation state follows the variation in the sulfur, consequently pyrite, content of the feed coal.

Hower, J.C.; Graham, U.M.; Rathbone, R.F. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Dyar, M.D.; Taylor, M.E. [West Chester Univ., PA (United States). Dept. of Geology and Astronomy

1995-12-31T23:59:59.000Z

38

Trophic structure and metal bioaccumulation differences in multiple fish species exposed to coal ash-associated metals  

SciTech Connect (OSTI)

On December 22, 2008 a dike containing coal fly ash from the Tennessee Valley Authority Kingston Fossil Plant near Kingston Tennessee USA failed and resulted in the largest coal ash spill in U.S. history. Coal ash, the by-product of coal combustion, is known to contain multiple contaminants of concern, including arsenic and selenium. The purpose of this study was to investigate the bioaccumulation of arsenic and selenium and to identify possible differences in trophic dynamics in feral fish at various sites in the vicinity of the Kingston coal ash spill. Elevated levels of arsenic and selenium were observed in various tissues of largemouth bass, white crappie, bluegill and redear sunfish from sites associated with the Kingston coal ash spill. Highest concentrations of selenium were found in redear sunfish with liver concentrations as high as 24.83 mg/kg dry weight and ovary concentrations up to 10.40 mg/kg dry weight at coal ash-associated sites. To help explain the elevated selenium levels observed in redear sunfish, investigations into the gut pH and trophic dynamics of redear sunfish and bluegill were conducted which demonstrated a large difference in the gut physiology between these two species. Redear sunfish stomach and intestinal pH was found to be 1.1 and 0.16 pH units higher than in bluegill, respectively. In addition, fish from coal ash-associated sites showed enrichment of 15N & 13C compared to no ash sites, indicating differences in food web dynamics between sites. These results imply the incorporation of coal ash-associated compounds into local food webs and/or a shift in diet at ash sites compared to the no ash reference sites. Based on these results, further investigation into a broader food web at ash-associated sites is warranted.

Otter, Ryan [Middle Tennessee State University; Bailey, Frank [Middle Tennessee State University; Fortner, Allison M [ORNL; Adams, Marshall [ORNL

2012-01-01T23:59:59.000Z

39

Apparatus for mixing char-ash into coal stream  

DOE Patents [OSTI]

Apparatus for obtaining complete mixing of char with coal prior to the introduction of the mixture into the combustor (30) of a coal gasifier (10). The coal is carried in one air stream (22), and the char in another air stream (54), to a riffle plate arrangement (26), where the streams of solid are intimately mixed or blended.

Blaskowski, Henry J. (Avon, CT)

1982-03-16T23:59:59.000Z

40

pH-dependent leaching of dump coal ash - retrospective environmental analysis  

SciTech Connect (OSTI)

Trace and major elements in coal ash particles from dump of 'Nikola Tesla A' power plant in Obrenovac near Belgrade (Serbia) can cause pollution, due to leaching by atmospheric and surface waters. In order to assess this leaching potential, dump ash samples were subjected to extraction with solutions of decreasing pH values (8.50, 7.00, 5.50, and 4.00), imitating the reactions of the alkaline ash particles with the possible alkaline, neutral, and acidic (e.g., acid rain) waters. The most recently deposited ash represents the greatest environmental threat, while 'aged' ash, because of permanent leaching on the dump, was shown to have already lost this pollution potential. On the basis of the determined leachability, it was possible to perform an estimation of the acidity of the regional rainfalls in the last decades.

Popovic, A.; Djordjevic, D. [University of Belgrade, Belgrade (Serbia). Dept. of Chemistry

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "war coal ash" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Melting behavior of ashes from the co-combustion of coal and straw  

SciTech Connect (OSTI)

Straw may be used today as a substitute fuel to lower the greenhouse gas emissions from traditional coal-fired power plants and provide green-based electricity. It may also provide an alternative source of income to the local farmers helping the developed countries to support sustainable development. The use of straw as a co-firing feedstock in traditional coal-fired plants is associated with operational problems, such as deposition, agglomeration, and/or corrosion, mainly because of the higher amounts of alkali metals and chlorine in straw compared to coal. This may lead to unscheduled shutdowns and costly repairs, increasing the operational costs and the cost of the produced power. In this paper, the melting characteristics of several ash fractions sampled from different parts of a pilot-scale pulverized fuel (PF) boiler operating with different coal/straw mixtures is determined by measuring the ash viscosity using a high-temperature rotational viscometer. The produced data provide information on the melting of the ash material, its flow characteristics, and the rates of crystallization and recrystallization, as a function of the temperature. This information may be used to modify the temperature profile in the different parts of the boiler to reduce the deposition of the ash material. The results show that the straw in the co-combustion mixture changes the viscosity characteristics of the produced ash fractions. The viscosity of the different ash fractions is lowered, as the percentage of straw in the co-combustion mixture increases, and leads to higher stickiness of the produced ash particles at lower temperatures. 25 refs., 4 figs., 3 tabs.

S. Arvelakis; F.J. Frandsen [Technical University of Denmark (DTU), Lyngby (Denmark). CHEC Research Centre

2007-09-15T23:59:59.000Z

42

Integrated production/use of ultra low-ash coal, premium liquids and clean char. Technical report, September 1, 1991--November 30, 1991  

SciTech Connect (OSTI)

This integrated, multi-product approach for utilizing Illinois coal starts with the production of ultra low-ash coal and then converts it to high-vale, coal-derived, products. The ultra low-ash coal is produced by solubilizing coal in a phenolic solvent under ChemCoal{trademark} process conditions, separating the coal solution from insoluble ash, and then precipitating the clean coal by dilution of the solvent with methanol. Two major products, liquids and low-ash char, are then produced by mild gasification of the low-ash coal. The low ash-char is further upgraded to activated char, and/or an oxidized activated char which has catalytic properties. Characterization of products at each stage is part of this project.

Kruse, C.W.

1991-12-31T23:59:59.000Z

43

INCO-WBC-1-509173 Reintegration of coal ash disposal sites and mitigation of  

E-Print Network [OSTI]

, Alex Dellantonio HEIS Hydro-Engineering Institute Sarajevo, Bosnia and Herzegovina Tarik Kupusov, Hamid Luka, Bosnia and Herzegovina Mihajlo Markovic, Mladen Babic, Svetlana Lazic, Milan Sipka FAZ University in Bosnia and Herzegovina 38 5.2. The industry's impact on the local environment 39 5.3. Coal ash disposal

44

Mineral sequestration of CO2 by aqueous carbonation of1 coal combustion fly-ash2  

E-Print Network [OSTI]

1 Mineral sequestration of CO2 by aqueous carbonation of1 coal combustion fly-ash2 3 G. Montes that could possibly4 contribute to reducing carbon dioxide emissions is the in-situ mineral sequestration (long term5 geological storage) or the ex-situ mineral sequestration (controlled industrial reactors

Paris-Sud XI, Université de

45

Growth and elemental accumulation by canola on soil amended with coal fly ash  

SciTech Connect (OSTI)

To explore the agronomic potential of an Australian coal fly ash, we conducted two glasshouse experiments in which we measured chlorophyll fluorescence, CO{sub 2} assimilation (A), transpiration, stomatal conductance, biomass accumulation, seed yield, and elemental uptake for canola (Brassica napus) grown on soil amended with an alkaline fly ash. In Experiment 1, application of up to 25 Mg/ha of fly ash increased A and plant weight early in the season before flowering and seed yield by up to 21%. However, at larger rates of ash application A, plant growth, chlorophyll concentration, and yield were all reduced. Increases in early vigor and seed yield were associated with enhanced uptake of phosphorus (P) by the plants treated with fly ash. Fly ash application did not influence accumulation of B, Cu, Mo, or Zn in the stems at any stage of plant growth or in the seed at harvest, except Mo concentration, which was elevated in the seed. Accumulation of these elements was mostly in the leaves, where concentrations of Cu and Mo increased with any amount of ash applied while that of B occurred only with ash applied at 625 Mg/ha. In Experiment 2, fly ash applied at 500 Mg/ha and mixed into the whole 30 cm soil core was detrimental to growth and yield of canola, compared with restricting mixing to 5 or 15 cm depth. In contrast, application of ash at 250 Mg/ha with increasing depth of mixing increased A and seed yield. We concluded that fly ash applied at not more than 25 Mg/ha and mixed into the top 10 to 15 cm of soil is sufficient to obtain yield benefits.

Yunusa, I.A.M.; Manoharan, V.; DeSilva, D.L.; Eamus, D.; Murray, B.R.; Nissanka, S.P. [University of Technology Sydney, Sydney, NSW (Australia)

2008-05-15T23:59:59.000Z

46

Use of Ekibastuzsk coal ash as a filler for acid resistant plaster  

SciTech Connect (OSTI)

Acid resistant plasters are used extensively at thermal power plants for protection of gas conduits, ash traps with spouts and hydraulic valves, and the internal surfaces of smoke pump housings. The surface being protected is preliminarily cleaned and a No. 16-20 steel grid attached to the surface by electrial welding. In producing the acid resistant plaster, 14-17 parts by weight of sodium silicofluoride are added to 100 parts by weight of sodium water glass; the remainder consists of andesite or diabase meal to the required consistency. The water glass fulfills the role of a binder; the sodium silicofluoride accelerates solidification of the water glass and the andesite and diabase meal serve as fillers. We found, tested in the laboratory and used successfully (under experimental-industrial conditions) a substitute for andesite and diabase meal. This substitute was ash of Ekibastuzsk coal, which was not only comparable to the meal in regard to quality of the acid resistant plaster, but even exceeded andesite and diabase meal in regard to several qualitative indicators. At the present time, a formula is being developed for an acid resistant plaster produced on the basis of water glass, sodium silicofluoride and ash of Ekibastuzsk coal. In order to verify the possibility of using other ashes instead of andesite and diabase meal, we also tested, under laboratory conditions, acid resistant plasters using ash from thermal power plants (TPP's) also burning Karagandinsk, Kuuchekinsk, Kuznetsk and Kansko-Achinsk coals. In compositions produced with polymer binders, Kansko-Achinsk coal ash was one of the best fillers, providing the most favorable physico-mechanical properties of the composition.

Korsakov, F.F.; Isichenko, I.I.; Kabanov, G.A.

1981-01-01T23:59:59.000Z

47

Investigation of mechanisms of ash deposit formation from low-rank coal combustion: Final report  

SciTech Connect (OSTI)

This project was undertaken to determine the chemical behavior of alkali metal and other species implicated in the ash fouling which can occur during the combustion of low rank coals. The coal combustion was studied in unaugmented premixed pulverized coal flames. Vapor species were measured by molecular beam mass spectrometry. Temperatures were also measured, and time-resolved coal/ash particulate samples were collected and analyzed. A major part of the research on this project was devoted to: (1) the development and refinement of techniques for the MBMS analysis of trace quantities of unstable and reactive high temperature vapor species from the pulverized coal flames; and (2) the time-resolved sampling and collection of particulates. The equipment is now operating very satisfactorily. Inorganic species, some of which were present at parts-per-million levels, were quantitatively sampled and measured in the pulverized coal flames. Time-resolved particulate samples which were free of vapor deposited contaminants were collected without the use of an interfering substrate. Profiles of the alkali metal species in Beulah lignite and Decker subbituminous coal flames were obtained. It was found in both flames that sodium is volatilized as the atomic species early (milliseconds) in the combustion process. The gaseous Na reacts, also in milliseconds, to form an unknown species which is probably an oxide fume, but which is not NaOH or Na/sub 2/SO/sub 4/. This is probably the mechanism for the formation of the alkali ''fumes'' observed in other systems. Measurements were also made of a number of other gaseous species, and time-resolved coal/ash samples were obtained and analyzed. 27 refs., 23 figs., 8 tabs.

Greene, F.T.; O'Donnell, J.E.

1987-08-01T23:59:59.000Z

48

Regeneratively cooled coal combustor/gasifier with integral dry ash removal  

DOE Patents [OSTI]

A coal combustor/gasifier is disclosed which produces a low or medium combustion gas for further combustion in modified oil or gas fired furnaces or boilers. Two concentric shells define a combustion volume within the inner shell and a plenum between them through which combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

Beaufrere, Albert H. (Huntington, NY)

1983-10-04T23:59:59.000Z

49

Investigation of Fly Ash and Activated Carbon Obtained from Pulverized Coal Boilers  

SciTech Connect (OSTI)

One of the techniques for Hg capture in coal-fired boilers involves injection of activated carbon (AC) into the boiler downstream of the air preheater. Hg is adsorbed onto the AC particles and fly ash, which are then both removed in an electrostatic precipitator or baghouse. This project addressed the issues of Hg on activated carbon and on fly ash from a materials re-use point of view. It also addressed the possible connection between SCR reactors, fly ash properties and Hg capture. The project has determined the feasibility of separating AC from fly ash in a fluidized bed and of regenerating the separated AC by heating the AC to elevated temperatures in a fluidized bed. The temperatures needed to drive off the Hg from the ash in a fluidized bed have also been determined. Finally, samples of fly ash from power plants with SCR reactors for NO{sub x} control have been analyzed in an effort to determine the effects of SCR on the ash.

Edward K. Levy; Christopher Kiely; Zheng Yao

2006-08-31T23:59:59.000Z

50

Suppression of fine ash formation in pulverized coal flames. Final technical report, September 30, 1992--January 31, 1996  

SciTech Connect (OSTI)

Coal ash, and particularly fine fly ash, remain one of the principal practical and environmental problems in coal-based power generation. In particular, submicron aerosols are identified with direct inhalation risk. Submicron ash is thought to arise from mineral vaporization during char combustion, followed by nucleation, condensation and coagulation to yield an aerosol. While aerosols are predominantly made out of volatile alkali minerals, they also can include refractory oxides that are chemically reduced to more volatile forms within the char particle and vaporized. Most of the ash of size greater than 1 {mu}m is generated by agglomeration of mineral as the char particle bums out. These two principal mechanisms are thought to account for most of the ash generated in coal combustion. Previous research has shown that various forms of coal treatment can influence the yields of fine ash from combustion. The research reported here investigates various forms of treatment, including physical coal cleaning, aerodynamic sizing, degree of grinding, and combinations of these on both aerosol yields and on yields of fine residual ash (1-4 {mu}m). The work also includes results from the combustion of artificial chars that include individual mineral elements. This research shows that these various forms of coal treatment can significantly change ash characteristics. While none of the treatments affected the bulk of the residual ash size distribution significantly, the yield of the ash aerosol mode (d<0.5 {mu}m) and fine residual ash mode (1-4 {mu}m) are changed by the treatments.

Kramlich, J.C.; Chenevert, B.; Park, Jungsung; Hoffman, D.A.; Butcher, E.K.

1996-07-19T23:59:59.000Z

51

Viscosity Determination of Molten Ash from Low-Grade US Coals  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

In entrained slagging gasifiers, the fluidity of the molten ash is a critical factor for process control since it affects slag formation, the capture of inorganic constituents, refractory wear, and slag drainage along the gasification chamber walls. The use of western coal, or mixtures of eastern and western coals as gasifier feedstock, is likely to occur as western coals become available and technological issues that hinder their use are being resolved. In the present work, the viscosity of synthetic slags with ash chemistries simulating the western U.S. coals, was experimentally measured at a Po2?=?10- 8 atm in the temperature range of 1773–1573 K (1500–1300 °C) using a rotating-bob viscometer. Alumina spindles and containment crucibles of both alumina and zirconia were used. Crystallization studies of this slag using a confocal scanning laser microscope found that a (Mg,Fe)Al2O4-based spinel precipitated at temperatures below 1723 K (1450 °C), and this agreed with FactSage equilibrium phase prediction. The same spinels were observed in the post-viscometry experiment slags when ZrO2 crucibles were used and assumed to be in equilibrium with the slag at the higher temperatures. Zirconia dissolution resulted in a slight increase in the solid fraction present in slags at lower temperatures, compared to spinel fraction. Crystal precipitation changed the apparent activation energy and required a longer stabilization times for viscosity measurements. The viscosity results were used in predictive equations based on Veytsman and Einstein's models, with critical nucleation temperatures and the solid fraction calculated with FactSage. In the simulated eastern/western coal feedstock blends based on ash compositions, the fractions of the solid precipitates were also calculated using the thermodynamic program FactSage for each blend composition, and the plastic viscosity of each eastern/western coal slag blend was predicted using Veytsman's model and compared to available experimental data.

Zhu, Jingxi [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); URS Corp., Albany, OR (United States); Nakano, Jinichiro [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); URS Corp., Albany, OR (United States); Kaneko, Tetsuya Kenneth [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); Carnegie Mellon Univ., Pittsburgh, PA (United States); Mu, Haoyuan [Carnegie Mellon Univ., Pittsburgh, PA (United States); Bennett, James P. [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); Kwong, Kyei-Sing [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); Rozelle, Peter [US Dept. of Energy, Washington, DC (United States). Office of Clean Energy Systems; Sridhar, Seetharaman [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); Carnegie Mellon Univ., Pittsburgh, PA (United States)

2011-10-01T23:59:59.000Z

52

The effects of ash and maceral composition of Azdavay and Kurucasile (Turkey) coals on coking properties  

SciTech Connect (OSTI)

In this study, investigations were made as to the effect of the maceral compositions and mineral matter content of Azdavay and Kurucasile coals on the coking property. Chemical and maceral analyses and coking properties were determined for the products of the float-sink procedure. The coking properties were established on the basis of free swelling index and Ruhr dilatometer tests. Maceral analyses showed that as the ash content of a coal containing both high and medium volatile matter increases, its effective maceral proportion decreases, and the coking property is affected in an unfavorable way.

Toroglu, I. [Zonguldak Karaelmas University, Zonguldak (Turkey). Faculty of Engineering

2006-07-01T23:59:59.000Z

53

Photosynthetic pigment concentrations, gas exchange and vegetative growth for selected monocots and dicots treated with two contrasting coal fly ashes  

SciTech Connect (OSTI)

There is uncertainty as to the rates of coal fly ash needed for optimum physiological processes and growth. In the current study we tested the hyothesis that photosynthetic pigments concentrations and CO{sub 2} assimilation (A) are more sensitive than dry weights in plants grown on media amended with coal fly ash. We applied the Terrestrial Plant Growth Test (Guideline 208) protocols of the Organization for Economic Cooperation and Development (OECD) to monocots (barley (Hordeum vulgare) and ryegrass (Secale cereale)) and dicots (canola (Brasica napus), radish (Raphanus sativus), field peas (Pisum sativum), and lucerne (Medicago sativa)) on media amended with fly ashes derived from semi-bituminous (gray ash) or lignite (red ash) coals at rates of 0, 2.5, 5.0, 10, or 20 Mg ha(-1). The red ash had higher elemental concentrations and salinity than the gray ash. Fly ash addition had no significant effect on germination by any of the six species. At moderate rates ({<=}10 Mg ha{sup -1}) both ashes increased (P < 0.05) growth rates and concentrations of chlorophylls a and b, but reduced carotenoid concentrations. Addition of either ash increased A in radish and transpiration in barley. Growth rates and final dry weights were reduced for all of the six test species when addition rates exceeded 10 Mg ha{sup -1} for gray ash and 5 Mg ha{sup -1} for red ash. We concluded that plant dry weights, rather than pigment concentrations and/or instantaneous rates of photosynthesis, are more consistent for assessing subsequent growth in plants supplied with fly ash.

Yunusa, I.A.M.; Burchett, M.D.; Manoharan, V.; DeSilva, D.L.; Eamus, D.; Skilbeck, C.G. [University of Technology Sydney, Sydney, NSW (Australia). Dept. of Environmental Science

2009-07-15T23:59:59.000Z

54

Coal Fly Ash as a Source of Iron in Atmospheric Dust  

SciTech Connect (OSTI)

Anthropogenic coal fly ash aerosols may represent a significant source of bioavailable iron in the open ocean. Few measurements have been made to compare the solubility of atmospheric iron from anthropogenic aerosols and other sources. We report an investigation of the iron dissolution of three fly ash samples in acidic aqueous solutions and compare the solubilities with that of Arizona test dust, a reference material of mineral dust. The effects of pH, cloud processing, and solar irradiation on Fe solubility were explored. Similar to previously reported results on mineral dust, iron in aluminosilicate phases provide predominant dissolved iron compared with iron in oxides. Iron solubility of fly ash is higher than Arizona test dust, especially at the higher pH conditions investigated. Simulated atmospheric processing elevates iron solubility due to significant changes in the morphology aluminosilicate glass, a dominantly material in fly ash particle. Iron continuously releases into the aqueous solution as fly ash particles break up into smaller fragments. The assessment of dissolved atmospheric iron deposition fluxes, and their effect on the biogeochemistry at ocean surface should be constrained by taking into account the source, environment pH, Fe speciation, and solar radiation.

Chen, Haihan; Laskin, Alexander; Baltrusaitis, Jonas; Gorski, Christopher A.; Scherer, Michelle; Grassian, Vicki H.

2012-01-18T23:59:59.000Z

55

Production of cements from Illinois coal ash. Technical report, September 1, 1995--November 30, 1995  

SciTech Connect (OSTI)

The objective of this program is to convert Illinois coal combustion residues, such as fly ash, bottom ash, and boiler slag, into novel cementitious materials for use in the construction industry. Currently only about 30% of the 5 million tons of these coal combustion residues generated in Illinois each year are utilized, mainly as aggregate. These residues are composed largely Of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, MgO, and CaO, which are also the major components of cement. The process being developed in this program will use the residues directly in the manufacture of cement products. Therefore, a much larger amount of residues can be utilized. To achieve the above objective, in the first phase (current year) samples of coal combustion residues will be blended and mixed, as needed, with a lime or cement kiln dust (CKD) to adjust the CaO composition. Six mixtures will be melted in a laboratory-scale furnace at CTL. The resulting products will then be tested for cementitious properties. Two preliminary blends have been tested. One blend used fly ash with limestone, while the other used fly ash with CKD. Each blend was melted and then quenched, and the resulting product samples were ground to a specific surface area similar to portland cement. Cementitious properties of these product samples were evaluated by compression testing of 1-inch cube specimens. The specimens were formed out of cement paste where a certain percentage of the cement paste is displaced by one of the sample products. The specimens were cured for 24 hours at 55{degrees}C and 100% relative humidity. The specimens made with the product samples obtained 84 and 89% of the strength of a pure portland cement control cube. For comparison, similar (pozzolanic) materials in standard concrete practice are required to have a compressive strength of at least 75% of that of the control.

Wagner, J.C. [Institute of Gas Technology, Chicago, IL (United States); Bhatty, J.I.; Mishulovich, A. [Construction Technology Labs., Inc., Washington, DC (United States)

1995-12-31T23:59:59.000Z

56

Petrography and chemistry of sized fly ash from low-sulfur and high-sulfur coal sources  

SciTech Connect (OSTI)

Fly ash samples were collected in November and December, 1994, from two units representing high- and low-sulfur feed coals at a Kentucky power station. The ashes were wet screened at 100, 200, 325, and 500 mesh. The dried ({approximately}40 C) fractions were then weighed, split for petrographic and chemical analysis, mounted in epoxy and prepared as polished pellets, and analyzed for ash yield and carbon content. The November ashes had a similar size distribution in the +325 mesh fractions. The low-sulfur hot side and cool side ashes had a similar size distribution in the November ashes. In contrast, the December fly ashes showed the typical trend, the cool-side ash being finer (over 20% more ash in the {minus}500 mesh fraction) than the hot-side ash. Carbon tends to be relatively concentrated in the coarse fractions. The dominance of the {minus}325 mesh fractions in the overall size analysis implies, though, that carbon in the fine sizes is an important consideration in the utilization potential of the fly ash.

Hower, J.C. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Trimble, A.S. [Franklin County High School, Frankfort, KY (United States); Eble, C.F. [Kentucky Geological Survey, Lexington, KY (United States); Palmer, C. [Geological Survey, Reston, VA (United States)

1996-12-31T23:59:59.000Z

57

Viscosity Determination of Molten Ash from Low-Grade US Coals  

SciTech Connect (OSTI)

In entrained slagging gasifiers, the fluidity of the molten ash is a critical factor for process control since it affects slag formation, the capture of inorganic constituents, refractory wear, and slag drainage along the gasification chamber walls. The use of western coal, or mixtures of eastern and western coals as gasifier feedstock, is likely to occur as western coals become available and technological issues that hinder their use are being resolved. In the present work, the viscosity of synthetic slags with ash chemistries simulating the western U.S. coals, was experimentally measured at a Po2?=?10- 8 atm in the temperature range of 1773–1573 K (1500–1300 °C) using a rotating-bob viscometer. Alumina spindles and containment crucibles of both alumina and zirconia were used. Crystallization studies of this slag using a confocal scanning laser microscope found that a (Mg,Fe)Al2O4-based spinel precipitated at temperatures below 1723 K (1450 °C), and this agreed with FactSage equilibrium phase prediction. The same spinels were observed in the post-viscometry experiment slags when ZrO2 crucibles were used and assumed to be in equilibrium with the slag at the higher temperatures. Zirconia dissolution resulted in a slight increase in the solid fraction present in slags at lower temperatures, compared to spinel fraction. Crystal precipitation changed the apparent activation energy and required a longer stabilization times for viscosity measurements. The viscosity results were used in predictive equations based on Veytsman and Einstein's models, with critical nucleation temperatures and the solid fraction calculated with FactSage. In the simulated eastern/western coal feedstock blends based on ash compositions, the fractions of the solid precipitates were also calculated using the thermodynamic program FactSage for each blend composition, and the plastic viscosity of each eastern/western coal slag blend was predicted using Veytsman's model and compared to available experimental data.

Zhu, Jingxi [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); URS Corp., Albany, OR (United States); Nakano, Jinichiro [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); URS Corp., Albany, OR (United States); Kaneko, Tetsuya Kenneth [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); Carnegie Mellon Univ., Pittsburgh, PA (United States); Mu, Haoyuan [Carnegie Mellon Univ., Pittsburgh, PA (United States); Bennett, James P. [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); Kwong, Kyei-Sing [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); Rozelle, Peter [US Dept. of Energy, Washington, DC (United States). Office of Clean Energy Systems; Sridhar, Seetharaman [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); Carnegie Mellon Univ., Pittsburgh, PA (United States)

2011-10-01T23:59:59.000Z

58

Coal Fly Ash as a Source of Iron in Atmospheric Dust. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities ofCellulosic Feedstock - EnergyCoal Fly Ash as a

59

ash dispersion utilizing: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in the USA for all coal ashes was approximately 34% in the year products containing clean coal ash compared to conventional coal ash. Utilization of clean coal ash is much...

60

Production of cements from Illinois coal ash. Final technical report, September 1, 1995--August 31, 1996  

SciTech Connect (OSTI)

The objective of this program is to convert Illinois coal combustion residues, such as fly ash, bottom ash, and boiler slag, into novel cementitious materials for use in the construction industry. These residues are composed largely of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, MgO, and CaO, which are also the major components of cement. Since the residues are used as an integral component of the cement and not just as additives to concrete, larger amounts of the residues can be utilized. The process uses submerged combustion to melt blends of coal combustion residues with lime, clay, and/or sand. The submerged combustion melter utilizes natural gas-oxidant firing directly into a molten bath to provide efficient melting of mineral-like materials. Use of this melter for cement production has many advantages over rotary kilns including very little, if any, grinding of the feed material, very low emissions, and compact size. During the first year of the program, samples of coal combustion residues were blended and mixed, as needed; with lime, clay, and/or sand to adjust the composition. Six mixtures, three with fly ash and three with bottom ash, were melted in a laboratory-scale furnace. The resultant products were used in mortar cubes and bars which were subjected to ASTM standard tests of cementitious properties. In the hydraulic activity test, mortar cubes were found to have a strength comparable to standard mortar cements. In the compressive strength test, mortar cubes were found to have strengths that exceeded ASTM blended cement performance specifications. In the ASR expansion test, mortar bars were subjected to alkali-silica reaction-induced expansion, which is a problem for siliceous aggregate-based concretes that are exposed to moisture. The mortar bars made with the products inhibited 85 to 97% of this expansion. These results show that residue-based products have an excellent potential as ASR-preventing additions in concretes.

Wagner, J.C.; Bhatty, J.L.; Mishulovich, A.

1997-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "war coal ash" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Influence of coal ash and slag dumping on dump waste waters of the Kostolac power plants (Serbia)  

SciTech Connect (OSTI)

The content of selected trace and major elements in the river water used for transport, as well as in the subcategories of the waste waters (overflow and drainage) were analyzed in order to establish the influence of transport and dumping of coal ash and slag from the 'Kostolac A' and 'Kostolac B' power plants located 100 km from Belgrade (Serbia). It was found that during transport of coal ash and slag to the dump, the water used for transport becomes enriched with manganese, nickel, zinc, chromium, vanadium, titanium, cobalt, arsenic, aluminum, and silicon, while more calcium, iron, cadmium, and lead are adsorbed by the ash and slag than is released from them. There is also an equilibrium between the release and adsorption processes of copper and magnesium during transport. The vertical penetration of the water used for transport results in a release of calcium, magnesium, manganese, and cadmium to the environment, while iron, nickel, zinc, chromium, copper, lead, vanadium, titanium, cobalt, and arsenic are adsorbed by the fractions of coal ash and slag in the dump.

Popovic, A.; Djinovic, J. [University of Belgrade, Belgrade (Serbia)

2006-10-01T23:59:59.000Z

62

Suppression of fine ash formation in pulverized coal flames. Quarterly technical progress report No. 10, January 1, 1995--March 31, 1995  

SciTech Connect (OSTI)

The production of ash particles from coal combustion limits it`s use as a fuel. On mechanism by which small ash particles are formed is the generation of submicron aerosols through a vaporization/condensation mechanism. Previous work has shown that coal cleaning can lead to increased emissions of aerosols. This research will investigate the means or aerosol formation in coals and the effects that various methods of coal cleaning have on aerosol production, and whether or not cleaning can be performed in a manner that will not lend itself to aerosol formation.

Kramlich, J.C.; Chenevert, B.; Park, J.

1995-06-01T23:59:59.000Z

63

E-Print Network 3.0 - ash bottom ash Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: of bottom ash, 3 million tons of boiler slag, and 28 million tons of clean-coal ash materials) were produced... CONTAINING CLEAN-COAL ASH AND CLASS F FLY ASH By...

64

Recovery Act Workers Accomplish Cleanup of Second Cold War Coal Ash Basin |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 |Rebecca MatulkaDeliveryUpdated November 2011 |Department

65

Recovery Act Workers Accomplish Cleanup of Second Cold War Coal Ash Basin  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartment ofColumbusReport # INL/EXT-06-11478RailcarsJune 7, 2011

66

Characterization of fly ash from low-sulfur and high-sulfur coal sources: Partitioning of carbon and trace elements with particle size  

SciTech Connect (OSTI)

Fly ash samples were collected in November and December of 1994, from generating units at a Kentucky power station using high- and low-sulfur feed coals. The samples are part of a two-year study of the coal and coal combustion byproducts from the power station. The ashes were wet screened at 100, 200, 325, and 500 mesh (150, 75, 42, and 25 {micro}m, respectively). The size fractions were then dried, weighed, split for petrographic and chemical analysis, and analyzed for ash yield and carbon content. The low-sulfur heavy side and light side ashes each have a similar size distribution in the November samples. In contrast, the December fly ashes showed the trend observed in later months, the light-side ash being finer (over 20% more ash in the {minus}500 mesh [{minus}25 {micro}m] fraction) than the heavy-side ash. Carbon tended to be concentrated in the coarse fractions in the December samples. The dominance of the {minus}325 mesh ({minus}42 {micro}m) fractions in the overall size analysis implies, though, that carbon in the fine sizes may be an important consideration in the utilization of the fly ash. Element partitioning follows several patterns. Volatile elements, such as Zn and As, are enriched in the finer sizes, particularly in fly ashes collected at cooler, light-side electrostatic precipitator (ESP) temperatures. The latter trend is a function of precipitation at the cooler-ESP temperatures and of increasing concentration with the increased surface area of the finest fraction. Mercury concentrations are higher in high-carbon fly ashes, suggesting Hg adsorption on the fly ash carbon. Ni and Cr are associated, in part, with the spinel minerals in the fly ash.

Hower, J.C.; Trimble, A.S. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research]|[Franklin County High School, Frankfort, KY (United States); Eble, C.F. [Kentucky Geological survey, Lexington, KY (United States); Palmer, C.A.; Kolker, A. [Geological Survey, Reston, VA (United States)

1999-07-01T23:59:59.000Z

67

Arsenic remediation of drinking water using iron-oxide coated coal bottom ash  

SciTech Connect (OSTI)

We describe laboratory and field results of a novel arsenic removal adsorbent called 'Arsenic Removal Using Bottom Ash' (ARUBA). ARUBA is prepared by coating particles of coal bottom ash, a waste material from coal fired power plants, with iron (hydr)oxide. The coating process is simple and conducted at room temperature and atmospheric pressure. Material costs for ARUBA are estimated to be low (~;;$0.08 per kg) and arsenic remediation with ARUBA has the potential to be affordable to resource-constrained communities. ARUBA is used for removing arsenic via a dispersal-and-removal process, and we envision that ARUBA would be used in community-scale water treatment centers. We show that ARUBA is able to reduce arsenic concentrations in contaminated Bangladesh groundwater to below the Bangladesh standard of 50 ppb. Using the Langmuir isotherm (R2 = 0.77) ARUBA's adsorption capacity in treating real groundwater is 2.6x10-6 mol/g (0.20 mg/g). Time-to-90percent (defined as the time interval for ARUBA to remove 90percent of the total amount of arsenic that is removed at equilibrium) is less than one hour. Reaction rates (pseudo-second-order kinetic model, R2>_ 0.99) increase from 2.4x105 to 7.2x105 g mol-1 min-1 as the groundwater arsenic concentration decreases from 560 to 170 ppb. We show that ARUBA's arsenic adsorption density (AAD), defined as the milligrams of arsenic removed at equilibrium per gram of ARUBA added, is linearly dependent on the initial arsenic concentration of the groundwater sample, for initial arsenic concentrations of up to 1600 ppb and an ARUBA dose of 4.0 g/L. This makes it easy to determine the amount of ARUBA required to treat a groundwater source when its arsenic concentration is known and less than 1600 ppb. Storing contaminated groundwater for two to three days before treatment is seen to significantly increase ARUBA's AAD. ARUBA can be separated from treated water by coagulation and clarification, which is expected to be less expensive than filtration of micron-scale particles, further contributing to the affordability of a community-scale water treatment center.

MATHIEU, JOHANNA L.; GADGIL, ASHOK J.; ADDY, SUSAN E.A.; KOWOLIK, KRISTIN

2010-06-01T23:59:59.000Z

68

Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment  

SciTech Connect (OSTI)

The overall goal of this research in the area of ash transport was to advance the capability of making reliable engineering predictions of the dynamics and consequences of net deposit growth for surfaces exposed to the products of coal combustion. To accomplish this for a wide variety of combustor types, coal types, and operating conditions, this capability must be based on a quantitative understanding of each of the important mechanisms of mineral matter transport, as well as the nature of the interactions between these substances and the prevailing fireside'' surface of the deposit. This level of understanding and predictive capability could ultimately be translated into very significant cost reductions for coal-fired equipment design, development and operation.

Rosner, D.E.

1990-05-01T23:59:59.000Z

69

Discussion on 'characteristics of fly ashes from full-scale coal-fired power plants and their relationship to mercury adsorption' by Lu et al.  

SciTech Connect (OSTI)

Mercury capture by coal-combustion fly ash is a function of the amount of Hg in the feed coal, the amount of carbon in the fly ash, the type of carbon in the fly ash (including variables introduced by the rank of the feed coal), and the flue gas temperature at the point of ash collection. In their discussion of fly ash and Hg adsorption, Lu et al. (Energy Fuels 2007, 21, 2112-2120) had some fundamental flaws in their techniques, which, in turn, impact the validity of analyzed parameters. First, they used mechanical sieving to segregate fly ash size fractions. Mechanical sieving does not produce representative size fractions, particularly for the finest sizes. If the study samples were not obtained correctly, the subsequent analyses of fly ash carbon and Hg cannot accurately represent the size fractions. In the analysis of carbon forms, it is not possible to accurately determine the forms with scanning electron microscopy. The complexity of the whole particles is overlooked when just examining the outer particle surface. Examination of elements such as Hg, present in very trace quantities in most fly ashes, requires careful attention to the analytical techniques. 36 refs., 3 figs., 1 tab.

James C. Hower; Bruno Valentim; Irena J. Kostova; Kevin R. Henke [University of Kentucky Center for Applied Energy Research, Lexington, KY (United States)

2008-03-15T23:59:59.000Z

70

Coal fly ash interaction with environmental fluids: Geochemical and strontium isotope results from combined column and batch leaching experiments  

SciTech Connect (OSTI)

The major element and Sr isotope systematics and geochemistry of coal fly ash and its interactions with environmental waters were investigated using laboratory flow-through column leaching experiments (sodium carbonate, acetic acid, nitric acid) and sequential batch leaching experiments (water, acetic acid, hydrochloric acid). Column leaching of Class F fly ash samples shows rapid release of most major elements early in the leaching procedure, suggesting an association of these elements with soluble and surface bound phases. Delayed release of certain elements (e.g., Al, Fe, Si) signals gradual dissolution of more resistant silicate or glass phases as leaching continues. Strontium isotope results from both column and batch leaching experiments show a marked increase in {sup 87}Sr/{sup 86}Sr ratio with continued leaching, yielding a total range of values from 0.7107 to 0.7138. For comparison, the isotopic composition of fluid output from a fly ash impoundment in West Virginia falls in a narrow range around 0.7124. The experimental data suggest the presence of a more resistant, highly radiogenic silicate phase that survives the combustion process and is leached after the more soluble minerals are removed. Strontium isotopic homogenization of minerals in coal does not always occur during the combustion process, despite the high temperatures encountered in the boiler. Early-released Sr tends to be isotopically uniform; thus the Sr isotopic composition of fly ash could be distinguishable from other sources and is a useful tool for quantifying the possible contribution of fly ash leaching to the total dissolved load in natural surface and ground waters.

Brubaker, Tonya M.; Stewart, Brian W.; Capo, Rosemary C.; Schroeder, Karl T.; Chapman, Elizabeth C.; Spivak-Birndorf, Lev J.; Vesper, Dorothy J.; Cardone, Carol R.; Rohar, Paul C.

2013-05-01T23:59:59.000Z

71

E-Print Network 3.0 - ash technical progress Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and economic benefits. (1) Fly ash... of coal in conventional and or advanced clean coal technology combustors. These include fly ash, bottom... ash, boiler slag, and flue...

72

Naturally Occurring Radionuclides of Ash Produced by Coal Combustion. The Case of the Kardia Mine in Northern Greece  

SciTech Connect (OSTI)

West Macedonia Lignite Center (WMLC), located in Northwest Greece, releases into the atmosphere about 21,400 tons/year of fly ash through the stacks of four coal fired plants. The lignite ash contains naturally occurring radionuclides, which are deposited on the WMLC basin. This work investigates the natural radioactivity of twenty six ash samples, laboratory produced from combustion of lignite, which was sampled perpendicularly to the benches of the Kardia mine. The concentrations of radionuclides {sup 40}K, {sup 235}U, {sup 238}U, {sup 226}Ra, {sup 228}Ra and {sup 232}Th, were measured spectroscopically and found round one order of magnitude as high as those of lignite. Subsequently the Radionuclide Partitioning Coefficients of radionuclides were calculated and it was found that they are higher for {sup 232}Th, {sup 228}Ra and {sup 40}K, because the latter have closer affinity with the inorganic matrix of lignite. During combustion up to one third of the naturally occurring radioisotopes escape from the solid phase into the flue gases. With comparison to relative global data, the investigated ash has been found to have relatively high radioactivity, but the emissions of the WMLC radionuclides contribute only 0.03% to the mean annual absorbed dose.

Fotakis, M.; Tsikritzis, L.; Tzimkas, N.; Kolovos, N.; Tsikritzi, R. [Technological Educational Institute (TEI) of West Macedonia, Department of Pollution Control Technologies, Koila, Kozani, 50100 (Greece)

2008-08-07T23:59:59.000Z

73

Hg and Se capture and fly ash carbons from combustion of complex pulverized feed blends mainly of anthracitic coal rank in Spanish power plants  

SciTech Connect (OSTI)

In this work, the petrology and chemistry of fly ashes produced in a Spanish power plant from the combustion of complex pulverized feed blends made up of anthracitic/meta-anthracitic coals, petroleum, and natural coke are investigated. It was found that the behavior of fly ash carbons derived from anthracitic coals follows relatively similar patterns to those established for the carbons from the combustion of bituminous coals. Fly ashes were sampled in eight hoppers from two electrostatic precipitator (ESP) rows. The characterization of the raw ashes and their five sieved fractions (from {gt}150 to {lt}25 {mu}m) showed that glassy material, quartz, oxides, and spinels in different proportions are the main inorganic components. As for the organic fraction, the dominant fly ash carbons are anisotropic carbons, mainly unburned carbons derived from anthracitic vitrinite. The concentration of Se and Hg increased in ashes of the second ESP row, this increase being related to the higher proportion of anisotropic unburned carbons, particularly those largely derived from anthracitic vitrinite in the cooler ashes of the ESP (second row) and also related to the decrease in the flue gas temperature. This suggests that the flue gas temperature plays a major role in the concentration of mercury for similar ratios of unburned carbons. It was also found that Hg is highly concentrated in the medium-coarser fractions of the fly ashes ({gt} 45 {mu}m), there being a positive relationship between the amount of these carbons, which are apparently little modified during the combustion process, in the medium-coarse fractions of the ashes and the Hg retention. According to the results obtained, further research on this type of fly ash could be highly productive. 28 refs., 10 figs., 8 tabs.

I. Surez-Ruiz; J.C. Hower; G.A. Thomas [Instituto Nacional del Carbon (INCAR-CSIC), Oviedo (Spain)

2007-01-15T23:59:59.000Z

74

Sulfur and ash in Paleocene Wyodak-Anderson coal in the Powder River Basin, Wyoming and Montana: A fuel source beyond 2000  

SciTech Connect (OSTI)

When coal-fired power plants are required by the Environmental Protection Agency (EPA) to meet more stringent sulfur emission standards (0.6 pound per million Btu) after the year 2000, most of the clean and compliant coals will come from the Powder River Basin in Wyoming and Montana. In 1996 more than 300 million short toms of these clean and compliant coals were produced from the Paleocene Fort Union Formation in the northern Rocky Mountains and Great Plans region. This is more than 30% of the total US coal production of 1.03 billion short tons in 1996. Future demand for clean and compliant coals can probably be met through production of more F or Union coals in the region. It is projected by the Energy Information Agency (1996) that most of the low-sulfur and low-ash coals in the northern Rocky Mountains and Great Plains region will be produced from the Wyodak-Anderson coal bed/zone of the Paleocene Fort Union Formation in the Powder River Basin. To date, coal produced from the Wyodak-Anderson coal bed/zone, containing 0.5% sulfur, 1.2 lb SO{sub 2} per million btu, and 6% ash (mean values on an as-received basis) meet current EPA regulatory compliance. This coal bed/zone alone produced 262 million short toms of >26% of the total US coal production in 1996. Based on the current consumption rates of coal and a forecast by the EIA (1996), the Wyodak-Anderson coals are projected to produce an additional 153 million short tons a year by the year 2016. At this rate of production, high quality Wyodak-Anderson coals may be adequate to fill future energy needs.

Ellis, M.S.; Stricker, G.D.; Flores, R.M.; Bader, L.R.

1998-07-01T23:59:59.000Z

75

Sulfur and ash in paleocene Wyodak-Anderson coal in the Powder River Basin, Wyoming and Montana: A fuel source beyond 2000  

SciTech Connect (OSTI)

When coal-fired power plants are required by the Environmental Protection Agency (EPA) to meet more stringent sulfur emission standards (0.6 pound per million Btu) after the year 2000, most of the clean and compliant coals will come from the Powder River Basin in Wyoming and Montana. In 1996 more than 300 million short tons of these clean and compliant coals were produced from the Paleocene Fort Union Formation in the northern Rocky Mountains and Great Plains region. This is more than 30 percent of the total US coal production of 1.03 billion short tons in 1996. Future demand for clean and compliant coals can probably be met through production of more Fort Union coals in the region. It is projected by the Energy Information Agency (1996) that most of the low-sulfur and low-ash coals in the northern Rocky Mountains and Great Plains region will be produced from the Wyodak-Anderson coal bed/zone of the Paleocene Fort Union Formation in the Powder River Basin. To date, coal produced from the Wyodak-Anderson coal bed/zone, containing 0.5 percent sulfur, 1.2 lb SO{sub 2} per million btu, and 6 percent ash (mean values on an as-received basis) meet current EPA regulatory compliance. This coal bed/zone alone produced 262 million short tons or >26 percent of the total U.S. coal production in 1996. Based on the current consumption rates of coal and a forecast by the EIA (1996), the Wyodak-Anderson coals are projected to produce an additional 153 million short tons a year by the year 2016. At this rate of production, high quality Wyodak-Anderson coals may be adequate to fill our future energy needs.

Ellis, M.S.; Stricker, G.D.; Flores, R.M.; Bader, L.R. [Geological Survey, Denver, CO (United States)

1998-04-01T23:59:59.000Z

76

Integrated production/use of ultra low-ash coal, premium liquids and clean char. Final technical report, September 1, 1991--August 31, 1992  

SciTech Connect (OSTI)

The objective of this research is to invert the conventional scale of values for products of coal utilization processes by making coal chars (carbons) that, because of their unique properties, are the most valuable materials in the product slate. A unique type of coal-derived carbon studied in this project is oxidized activated coal char having both adsorptive and catalyst properties. Major program elements were (a) preparation and characterization of materials (b) characterization of carbons and catalyst testing (c) completion of diesel engine testing of low-ash coal and (d) initiation of a two-year adsorption study. Materials prepared were (a) two low-ash coal samples one via ChemCoal processing of IBC-109 and the other by acid dissolution of IBC-109`s mineral matter, (b) coal char (MG char), (c) activated low-ash carbon (AC), (d) oxidized activated carbon (OAC). Amoco continued its support with state-of-the art analytical capabilities and development of catalyst testing procedures. Diesel engine tests were made with low ash coal dispersed in diesel fuel at solid loadings of 20% and 35%. The slurry was successfully burned in cylinder 2 of a two-cylinder diesel engine, after modifications of the engine`s fuel injection system. The higher speed proved to be more favorable but the slurry burned with a slightly improved thermal and combustion efficiency at both speeds with respect to diesel fuel alone. Adsorption studies included preparation of seven base-line carbon samples and their characterization, including their N{sub 2} BET surface areas and apparent densities. Paranitrophenol (PNP) adsorption isotherms were determined for the six controls. Oxidation of carbon with nitric acid decreases activated carbon`s PNP adsorption capacity while air oxidation increases adsorption capacity.

Kruse, C.W.; Carlson, S.L. [Illinois State Geological Survey, Champaign, IL (United States); Snoeyink, V.L.; Feizoulof, C.; Assanis; Syrimis, M. [Illinois Univ., Urbana (United States); Fatemi, S.M. [Amoco, Naperville, IL (United States)

1992-12-31T23:59:59.000Z

77

Suppression of fine ash formation in pulverized coal flames. Quarterly technical progress report No. 4, July 1, 1993--September 30, 1993  

SciTech Connect (OSTI)

Laboratory work and studies of full-scale coal-fired boilers have identified two general mechanisms for ash production. The vast majority of the ash is formed from mineral matter that coalesces as the char burns, yielding particles that are normally larger than 0.5 {mu}m. The second major mechanism is the generation of a submicron aerosol through a vaporization/condensation mechanism. Previous work has shown that pulverized bituminous coals that were treated by coal cleaning (via froth flotation) or aerodynamic sizing exhibited altered aerosol emission characteristics. Specifically, the emissions of aerosol for the cleaned and sized coals increased by as much as one order of magnitude. The goals of the present progress are to: (1) perform measurements on carefully characterized coals to identify the means by which the coal treatment increases aerosol yields; (2) investigate means by which coal cleaning can be done in a way that will not increase aerosol yields; (3) identify whether this mechanism can be used to reduce aerosol yields from systems burning straight coal. This paper discusses model description and model formulation, and reports on the progress of furnace design and construction, and coal selection.

Kramlich, J.C.; Hoffman, D.A.; Butcher, E.K.

1993-10-29T23:59:59.000Z

78

Distribution of hazardous air pollutant trace elements, total sulfur, and ash in coals from five Tertiary basins in the Rocky Mountain Region  

SciTech Connect (OSTI)

Arithmetic mean values of the contents of hazardous air pollutant (HAP) trace elements named in the 1990 Clean Air Act Amendments (antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, selenium, and uranium), ash, and total sulfur were statistically compared on a whole-coal basis for Paleocene coals from five Tertiary basins in the Rocky Mountain Region. The study of proximate and elemental analyses indicate a relationship between trace element contents and paleogeography.

Ellis, M.S.; Stricker, G.D.; Flores, R.M. [Geological Survey, Denver, CO (United States)

1994-12-31T23:59:59.000Z

79

High ash non-coking coal preparation by tribo-electrostatic dry process.  

E-Print Network [OSTI]

??Coal is the single largest fossil fuel used world-wide and accounts for more than 60% of the total commercial energy consumed. Between 60 to 80%… (more)

Ranjan Dwari

2008-01-01T23:59:59.000Z

80

Relationship between selenium body burdens and tissue concentrations in fish exposed to coal ash at the Tennessee Valley Authority Kingston spill site  

SciTech Connect (OSTI)

In December 2008, 4.1 million m3 of coal ash were released into the Emory and Clinch Rivers by the Tennessee Valley Authority (TVA) Kingston Fossil Plant. Coal ash contains several contaminants, including the bioaccumulative metalloid selenium (Se). Because Se is predominantly accumulated in aquatic organisms through dietary, rather than aqueous exposure, tissue-based toxicity thresholds for Se are currently being considered. The proposed threshold concentrations range between 4-9 g/g Se (dry wt.) in whole body fish, with a proposed fillet threshold of 11.8 g/g. In the present study we examined the spatial and temporal trends in Se bioaccumulation and examined the relationship between the Se content in fillets and in whole bodies of fish collected around the Kingston spill site to determine whether Se bioaccumulation was a significant concern at the ash spill site. While Se concentrations in fish (whole bodies and fillets) were elevated at sampling locations affected by the Kingston ash spill relative to reference locations, concentrations do not appear to be above risk thresholds and have not been increasing over the five year period since the spill. Our results are not only relevant to guiding the human health and ecological risk assessments at the Kingston ash spill site, but because of current national discussions on appropriate guidelines for Se in fish as well for the disposal of coal combustion wastes, our results are also relevant to the general understanding of Se bioaccumulation in contaminated water bodies.

Mathews, Teresa J [ORNL; Fortner, Allison M [ORNL; Jett, Robert T [ORNL; Peterson, Mark J [ORNL; Carriker, Neil [Tennessee Valley Authority (TVA); Morris, Jesse G [ORNL; Gable, Jennifer [Environmental Standards, Inc.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "war coal ash" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Nitration of Benzo[a]pyrene Adsorbed on Coal Fly Ash Particles  

E-Print Network [OSTI]

Activation R O B E R T L . K R I S T O V I C H A N D P R A B I R K . D U T T A * Department of Chemistry fly ash, diesel and gasoline exhaust, and wood smoke (1-4). The potential carcinogenicity

Dutta, Prabir K.

82

Characterization of ash deposition and heat transfer behavior of coals during combustion in a pilot-scale facility and full-scale utility  

SciTech Connect (OSTI)

Experimental measurements as well as theoretical models were used to investigate the impact of mineral matter of three coals on ash deposition and heat transfer for pulverized coal fired boilers. The ash deposition experiments were conducted in a pulverized fuel combustion pilot-scale facility and a full-scale unit. A mathematical model with input from computer-controlled scanning electron microscopy analysis of coal minerals was used to predict the effect of ash deposition on heat transfer. The predicted deposit thickness and heat flux from the model are shown to be consistent with the measurements in the test facility. The model differentiates the coals according to the deposits they form and their effect on heat transfer. The heat transfer predictions in the full-scale unit were found to be most suitable for the water wall under the furnace nose. The study demonstrates that the measurements in a full-scale unit can differ significantly from those in pilot-scale furnaces due to soot-blowing operations. 9 refs., 12 figs., 3 tabs.

Sushil Gupta; Rajender Gupta; Gary Bryant; Terry Wall; Shinji Watanabe; Takashi Kiga; Kimihito Narukawa [University of New South Wales, Sydney, NSW (Australia). Centre for Sustainable Materials Research & Technology

2009-05-15T23:59:59.000Z

83

Suppression of fine ash formation in pulverized coal flames. Quarterly technical progress report No. 11, April 1, 1995--June 30, 1995  

SciTech Connect (OSTI)

Previous work has shown that pulverized bituminous coals that were treated by coal cleaning (via froth flotation) or aerodynamic sizing exhibited altered aerosol emission characteristics. Specifically, the emissions of aerosol for the cleaned and sized coals increased by as much as one order of magnitude. The goals of the present program are to: (1) perform measurements on carefully characterized coals to identify the means by which the coal treatment increases aerosol yields; (2) investigate means by which coal cleaning can be done in a way that will not increase aerosol yields; and (3) identify whether this mechanism can be used to reduce aerosol yields from systems burning straight coal. The current experimental series focuses on the use of artificial char to study sodium vaporization and aerosol formation associated with dispersed sodium and mineral inclusions. Artificial char has the advantage over natural coal in that the composition can be precisely controlled, such that the influences of specific mineral composition and content can be investigated. The study showed: the addition of calcite had no effect of the aerosol yield; increased amounts of pyrite did not lead to increased residual ash formation; in spite of the increase in mineral content, the yield of aerosol on the backup filter did not correlate with the amount of added minerals; and the general trend was for reduced aerosol yields as the amount of bentonite increased which suggested that the bentonite was effective at complexing sodium and reducing its overall vaporization.

Kramlich, J.C.; Chenevert, B.; Park, Jungsung

1995-08-02T23:59:59.000Z

84

Combustion with reduced carbon in the ash  

DOE Patents [OSTI]

Combustion of coal in which oxygen is injected into the coal as it emerges from burner produces ash having reduced amounts of carbon.

Kobayashi, Hisashi; Bool III, Lawrence E.

2005-12-27T23:59:59.000Z

85

apec coal flow: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

86

E-Print Network 3.0 - ash deposits part Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Reading Collection: Geosciences 24 Research Summary RECOAL: Reintegration of coal ash disposal sites and mitigation Summary: being used for coal ash deposits....

87

Coal Ash Behavior in Reducing Environments (CABRE) III Year 6 - Activity 1.10 - Development of a National Center for Hydrogen  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC) has been conducting research on gasification for six decades. One of the objectives of this gasification research has been to maximize carbon conversion and the water–gas shift process for optimal hydrogen production and syngas quality. This research focus and experience were a perfect fit for the National Center for Hydrogen Technology ® (NCHT®) Program at the EERC for improving all aspects of coal gasification, which ultimately aids in the production and purification of hydrogen. A consortia project was developed under the NCHT Program to develop an improved predictive model for ash formation and deposition under the project entitled “Coal Ash Behavior in Reducing Environments (CABRE) III: Development of the CABRE III Model.” The computer-based program is now applicable to the modeling of coal and ash behavior in both entrained-flow and fluidized-bed gasification systems to aid in overall gasification efficiency. This model represents a significant improvement over the CABRE II model and runs on a Microsoft Windows PC platform. The major achievements of the CABRE III model are partitioning of inorganic transformations between various phases for specific gas cleanup equipment; slag property predictions, including standard temperature–viscosity curves and slag flow and thickness; deposition rates in gasification cleanup equipment; provision for composition analysis for all input and output streams across all process equipment, including major elements and trace elements of interest; composition analysis of deposit streams for various deposit zones, including direct condensation on equipment surfaces (Zone A), homogeneous particulate deposition (Zone B), and entrained fly ash deposition (Zone C); and physical removal of ash in cyclones based on D50 cut points. Another new feature of the CABRE III model is a user-friendly interface and detailed reports that are easily exportable into Word documents, Excel spreadsheets, or as pdf files. The user interface provides stepwise guides with built-in checks for efficient entry of required input data on fuels of interest to allow a successful execution of the model. The model was developed with data from several fuels selected by the sponsors, including bituminous coal, subbituminous coal, lignite, and petroleum coke (petcoke). The data from these fuels were obtained using small pilot-scale entrained-flow and fluidized-bed gasifiers at the Energy & Environmental Research Center (EERC). The CABRE III model is expected to further advance the knowledge base for the NCHT® Program and, more importantly, allow for prediction of the slagging and fouling characteristics of fuels in reducing environments. The information obtained from this program will potentially also assist in maintaining prolonged gasifier operation free from failure or facilitate troubleshooting to minimize downtime in the event of a problem.

Stanislowski, Joshua; Azenkeng, Alexander; McCollor, Donald; Galbreath, Kevin; Jensen, Robert; Lahr, Brent

2012-03-31T23:59:59.000Z

88

E-Print Network 3.0 - ash blended cement Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CLSM mixture utilized... . CHARACTERIZATION AND APPLICATION OF CLASS F FLY ASH AND CLEAN-COAL ASH FOR CEMENT-BASED MATERIALS 2 The major... investigation. Two additional ash ......

89

Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment. Final technical report, September 1, 1986--April 30, 1990  

SciTech Connect (OSTI)

The overall goal of this research in the area of ash transport was to advance the capability of making reliable engineering predictions of the dynamics and consequences of net deposit growth for surfaces exposed to the products of coal combustion. To accomplish this for a wide variety of combustor types, coal types, and operating conditions, this capability must be based on a quantitative understanding of each of the important mechanisms of mineral matter transport, as well as the nature of the interactions between these substances and the prevailing ``fireside`` surface of the deposit. This level of understanding and predictive capability could ultimately be translated into very significant cost reductions for coal-fired equipment design, development and operation.

Rosner, D.E.

1990-05-01T23:59:59.000Z

90

Comparison of organic combustion products in fly ash collected by a venturi wet scrubber and an electrostatic precipitator at a coal-fired power station  

SciTech Connect (OSTI)

Organic compounds recovered from fly ash collected by an electrostatic precipitator (ESP) and a venturi wet scrubber (WS) at a coal-fired power station were analysed. Organic constituents in extracts of solid waste included large numbers of aliphatic and aromatic compounds. A series of normal C/sub 15/-C/sub 30/ paraffins was found in the aliphatic fractions. The aromatic compounds were of 1,2,3 and 4 rings. Polynuclear aromatic hydrocarbons containing more than 4 rings were shown to be poorly recovered. Comparison of organic constituents in extracts of fly ash from the WS and the ESP showed that ESP extracts contained more compounds in greater quantities. The types and quantities of organic compounds recovered are not expected to present any environmental hazard.

Harrison, F.L.

1985-02-01T23:59:59.000Z

91

Pilot Demonstration of Technology for the Production of High Value Materials from the Ultra-Fine (PM2.5) Fraction of Coal Combustion Ash  

SciTech Connect (OSTI)

The overall objective of this research was to determine the feasibility of recovering a very fine fraction of fly ash, that is 5 microns in diameter or less and examining the characteristics of these materials in new or at least less traditional applications. These applications included as a polymer filler or as a 'super' pozzolanic concrete additive. As part of the effort the ash from 6 power plants was investigated and characterized. This work included collection from ESP Hoppers and ponds. The ash was thoroughly characterized chemically and physically. Froth flotation was used to reduce the carbon and testing showed that flotation could effectively reduce carbon to acceptable levels (i.e. 0.5% LOI) for most of the substrates tested. in order to enable eventual use as fillers. Hydraulic classification was used in the separation of the fine ash from the coarse ash. Hydraulic classification requires the ash to be dispersed to be effective and a range of dispersants were tested for adsorption as well as sedimentation rate. A wide range of dosages were required (0.3 to 10 g/kg). In general the ponded ash required less dispersant. A model was developed for hydraulic classification. A pilot-scale hydraulic classifier was also designed and operated for the project. Product yields of up to 21% of feed solids were achieved with recoveries of <5 {micro}m particles as high as 64%. Mean particle sizes (D{sub 50}) of the ultra fine ash (UFA) products varied from 3.7 to 10 {micro}m. A patent was filed on the classifier design. A conceptual design of a Process Demonstration Unit (PDU) with a feed rate of 2 tons of raw ash feed per hour was also completed. Pozzolanic activity was determined for the UFA ashes in mortars. In general the overall strength index was excellent with values of 90% achieved in 3 days and {approx}100% in 7 days. Three types of thermoplastic polymers were evaluated with the UFA as a filler: high density polyethylene, thermoplastic elastomer and polyethylene terphthalate filled polymers were prepared and subjected to SEM analysis to verify that the UFA was well dispersed. The addition of fillers increased the modulus of the HDPE composite, but decreased both the offset yield stress and offset yield strain, showing that the fillers essentially made the composite stiffer but the transition to plastic deformation occurred earlier in filled HDPE as stress was applied. Similar results were obtained with TPE, however, the decrease in either stress or strain at offset yield were not as significant. Dynamic mechanical analyses (DMA) were also completed and showed that although there were some alterations in the properties of the HDPE and TPE, the alterations are small, and more importantly, transition temperatures are not altered. The UFA materials were also tested in expanded urethanes, were improvements were made in the composites strength and stiffness, particularly for lighter weight materials. The results of limited flammability and fire safety testing were encouraging. A flowsheet was developed to produce an Ultra-Fine Ash (UFA) product from reclaimed coal-fired utility pond ash. The flowsheet is for an entry level product development scenario and additional production can be accommodated by increasing operating hours and/or installing replicate circuits. Unit process design was based on experimental results obtained throughout the project and cost estimates were derived from single vendor quotes. The installation cost of this plant is estimated to be $2.1M.

T. L. Robl; J. G. Groppo; R. Rathbone; B. Marrs; R. Jewell

2008-07-18T23:59:59.000Z

92

advanced coal-combustion technology: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

93

advanced coal-combustion technologies: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

94

E-Print Network 3.0 - ash samples pressurized Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

group of seven fly ash samples, and have... of coal in conventional and or advanced clean coal technology combustors. These include fly ash, bottom... ash, boiler slag, and flue...

95

COMBUSTION OF COAL IN AN OPPOSED FLOW DIFFUSION BURNER  

E-Print Network [OSTI]

TABLE 1. Pittsburgh seam coal properties, Grosshandler (content of the Pittsburgh seam coal. As the ash layer beginsfrom Pittsburgh seam pulverized coal, screened through a 35

Chin, W.K.

2010-01-01T23:59:59.000Z

96

The chemical enhancement of the triboelectric separation of coal from pyrite and ash: A novel approach for electrostatic separation of mineral matter from coal. Final report  

SciTech Connect (OSTI)

Arthur D. Little, Inc., under contract to the US DOE Pittsburgh Energy Technology Center, has developed a triboelectric separation device for coal beneficiation, that employs an entrained-flow, rotating-cylinder concept. The described apparatus has been used to test the efficacy of chemical pretreatment and in-situ treatment of coal on separation efficiency. Coal particle entrainment is achieved with gaseous carbon dioxide and particle collection is accomplished by an electrostatic plate separator. The triboelectric separation device incorporates instrumentation for the direct measurement of charge in the dilute-phase particle stream. Some of the pretreatment materials investigated under this project to modify the surface charging characteristics of the coal included oleic acid, sodium oleate, quinoline and dicyclohexylamine. Ammonia and sulfur dioxide at a concentration up to 1000 ppM was used for in-situ treatment of the coal, with carbon dioxide as the carrier/inerting gas. Nitrogen was used earlier in the test program as the carrier/inerting gas for the coal, but a severe arcing problem was encountered in the electrostatic collector with nitrogen as the carrier gas. This problem did not occur when carbon dioxide was used. The report covers the chemical treatment employed, and summarizes and interprets the results achieved. In addition, an economic analysis of a full scale system based on this concept is presented.

Gustafson, R.M.; DiMare, S.; Sabatini, J.

1992-02-01T23:59:59.000Z

97

The chemical enhancement of the triboelectric separation of coal from pyrite and ash: A novel approach for electrostatic separation of mineral matter from coal  

SciTech Connect (OSTI)

Arthur D. Little, Inc., under contract to the US DOE Pittsburgh Energy Technology Center, has developed a triboelectric separation device for coal beneficiation, that employs an entrained-flow, rotating-cylinder concept. The described apparatus has been used to test the efficacy of chemical pretreatment and in-situ treatment of coal on separation efficiency. Coal particle entrainment is achieved with gaseous carbon dioxide and particle collection is accomplished by an electrostatic plate separator. The triboelectric separation device incorporates instrumentation for the direct measurement of charge in the dilute-phase particle stream. Some of the pretreatment materials investigated under this project to modify the surface charging characteristics of the coal included oleic acid, sodium oleate, quinoline and dicyclohexylamine. Ammonia and sulfur dioxide at a concentration up to 1000 ppM was used for in-situ treatment of the coal, with carbon dioxide as the carrier/inerting gas. Nitrogen was used earlier in the test program as the carrier/inerting gas for the coal, but a severe arcing problem was encountered in the electrostatic collector with nitrogen as the carrier gas. This problem did not occur when carbon dioxide was used. The report covers the chemical treatment employed, and summarizes and interprets the results achieved. In addition, an economic analysis of a full scale system based on this concept is presented.

Gustafson, R.M.; DiMare, S.; Sabatini, J.

1992-02-01T23:59:59.000Z

98

Civil War  

E-Print Network [OSTI]

World Bank 2008). Civil war incidence is drawn from theforthcoming. "Health and Civil War in Burundi." Journal ofMazurana. 2008. "Survey of War Affected Youth: Phase I & II

Blattman, Christopher; Miguel, Edward

2009-01-01T23:59:59.000Z

99

Sulfur and ash reduction potential and selected chemical and physical properties of United States coals. [Contains glossary  

SciTech Connect (OSTI)

This report presents the washability and comprehensive characterization results of 184 raw coal channel samples, including anthracite, bituminous and lignite coals, collected from the Central Region of the United States. This is the second of a three volume report on the coals of the United States. All the data are presented in six appendices. Statistical techniques and definitions are presented in Appendix A, and a glossary of terms is presented in Appendix B. The complete washability data and an in-depth characterization of each sample are presented alphabetically by state in Appendix C. In Appendix D, a statistical evaluation is given for the composited washability data, selected chemical and physical properties and washability data interpolated at various levels of Btu recovery. This presentation is shown by state, section, and region where four or more samples were collected. Appendix E presents coalbed codes and names for the Central Region coals. Graphical summations are presented by state, section and region showing the effects of crushing on impurity reductions, and the distribution of raw and clean coal samples meeting various levels of SO{sub 2} emissions. 35 figs., 5 tabs.

Cavallaro, J.A.; Deurbrouck, A.W.; Killmeyer, R.P.; Fuchs, W. (USDOE Pittsburgh Energy Technology Center, PA (USA). Coal Preparation Div.); Jacobsen, P.S. (Burns and Roe Services Corp., Pittsburgh, PA (USA))

1991-02-01T23:59:59.000Z

100

Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system. Quarterly progress report, April 1-June 30, 1982  

SciTech Connect (OSTI)

The overall objective of the Westinghouse coal gasification program is to demonstrate the viability of the Westinghouse pressurized, fluidized bed, gasification system for the production of medium-Btu fuel gas for syngas, electrical power generation, chemical feedstocks, or industrial fuels and to obtain performance and scaleup data for the process and hardware. Progress reports are presented for the following tasks: (1) operation and maintenance of the process development unit (PDU); (2) process analysis; (3) cold flow scaleup facility; (4) process and component engineering and design; and (5) laboratory support studies. Some of the highlights for this period are: TP-032-1, a single stage, oxygen-steam blown gasifier test was conducted in three operational phases from March 30, 1982 through May 2, 1982; TP-032-2 was conducted in two operational phases from May 20, 1982 through May 27, 1982; TP-032-1 and TP-032-2 successfully served as shakedown and demonstrations of the full cyclone cold wall; no visible deposits were found on the cold wall after processing highly fouling coals; samples of product gas produced during TP-032-1, were passed through four different scrubbing solutions and analyzed for 78 EPA primary organic pollutants, all of which were found to be below detection limits; TP-M004, a CO/sub 2/ tracer gas test, was initiated and completed; data analysis of test TP-M002-2 was completed and conclusions are summarized in this report; design, procurement and fabrication of the solids injection device were completed; laboratory studies involved gas-solids flow modeling and coal/ash behavior. 2 references, 11 figures, 39 tables.

None

1982-10-21T23:59:59.000Z

Note: This page contains sample records for the topic "war coal ash" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

E-Print Network 3.0 - ashe higher education Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

higher abrasion... Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik... -Strength Materials (CLSM); 232, Fly Ash and Natural...

102

E-Print Network 3.0 - ash ahto lobjakas Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utilization Summary: Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik... -Strength Materials (CLSM); 232, Fly Ash and Natural...

103

E-Print Network 3.0 - ash Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utilization Summary: Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik... -Strength Materials (CLSM); 232, Fly Ash and Natural...

104

E-Print Network 3.0 - ash paving demonstration Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AND DEMONSTRATION... Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik... -Strength Materials (CLSM); 232, Fly Ash and Natural...

105

E-Print Network 3.0 - ash based gepolymer Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utilization Summary: . CHARACTERIZATION AND APPLICATION OF CLASS F FLY ASH AND CLEAN-COAL ASH FOR CEMENT-BASED MATERIALS 2 The major... large amounts of conventional or...

106

E-Print Network 3.0 - ash penurunan kadar Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utilization Summary: Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik... -Strength Materials (CLSM); 232, Fly Ash and Natural...

107

E-Print Network 3.0 - ash quarterly technical Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utilization Summary: Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik... -Strength Materials (CLSM); 232, Fly Ash and Natural...

108

E-Print Network 3.0 - ashes Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utilization Summary: Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik... -Strength Materials (CLSM); 232, Fly Ash and Natural...

109

E-Print Network 3.0 - ash slag silica Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering ; Materials Science 91 By-Products Utilization Summary: pozzolans include coal fly ash, blast furnace slag, silica fume, and other combustion ashes. When...

110

E-Print Network 3.0 - ash deposition propensities Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ash, fouling, co-combustion 1... ;5 relative compositions of major ash species in coal, ... Source: Hawaii Natural Energy Institute Collection: Renewable Energy 51...

111

E-Print Network 3.0 - ash char deposits Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ash, fouling, co-combustion 1... ;5 relative compositions of major ash species in coal, ... Source: Hawaii Natural Energy Institute Collection: Renewable Energy 86...

112

E-Print Network 3.0 - ash intranasal instillation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik... -Strength Materials (CLSM); 232, Fly Ash and Natural Pozzolans...

113

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network [OSTI]

Synthetic Fuel from Coal," Federal Energy Administration,Chemical Refining of Coal," Battelle Energy Program Report,reserves coal characteristics energy content sulfur ash ni

Ferrell, G.C.

2010-01-01T23:59:59.000Z

114

argonne premium coals: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

composted manure LAPC, high ash raw manure HARM, and high ash partially composted manure HAPC) as well as blends of each biomass with Texas lignite coal (TXL). Activation...

115

airways obstruction coal: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

composted manure LAPC, high ash raw manure HARM, and high ash partially composted manure HAPC) as well as blends of each biomass with Texas lignite coal (TXL). Activation...

116

argonne premium coal: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

composted manure LAPC, high ash raw manure HARM, and high ash partially composted manure HAPC) as well as blends of each biomass with Texas lignite coal (TXL). Activation...

117

Remedial Investigation Report on Chestnut Ridge Operable Unit 2 (Filled Coal Ash Pond/Upper McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1. Main Text  

SciTech Connect (OSTI)

This document is a report on the remedial investigation (RI) of Chestnut Ridge Operable Unit (OU) 2 at the Oak Ridge Y-12 Plant. Chestnut Ridge OU 2 consists of Upper McCoy Branch (UMB), the Filled Coal Ash Pond (FCAP), and the area surrounding the Sluice Channel formerly associated with coal ash disposal in the FCAP. Chestnut Ridge OU 2 is located within the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation in Anderson County, Tennessee, approximately 24 miles west of Knoxville. The pond is an 8.5-acre area on the southern slope of Chestnut Ridge, 0.5 mile south of the main Y-12 Plant and geographically separated from the Y-12 Plant by Chestnut Ridge. The elevation of the FCAP is {approximately} 950 ft above mean sea level (msl), and it is relatively flat and largely vegetated. Two small ponds are usually present at the northeast and northwest comers of the FCAP. The Sluice Channel Area extends {approximately}1000 ft from the northern margin of the FCAP to the crest of Chestnut Ridge, which has an elevation of {approximately}1100 ft above msl. The Sluice Channel Area is largely vegetated also. McCoy Branch runs from the top of Chestnut Ridge across the FCAP into Rogers Quarry and out of the quarry where it runs a short distance into Milton Hill Lake at McCoy Embayment, termed UMB. The portion south of Rogers Quarry, within Chestnut Ridge OU 4, is termed Lower McCoy Branch. The DOE Oak Ridge Y-12 Plant disposed of coal ash from its steam plant operations as a slurry that was discharged into an ash retention impoundment; this impoundment is the FCAP. The FCAP was built in 1955 to serve as a settling basin after coal ash slurried over Chestnut Ridge from the Y-12 Plant. The FCAP was constructed by building an earthen dam across the northern tributary of McCoy Branch. The dam was designed to hold 20 years of Y-12 steam plant ash. By July 1967, ash had filled up the impoundment storage behind the dam to within 4 ft of the top.

Not Available

1994-08-01T23:59:59.000Z

118

Remedial investigation report on Chestnut Ridge Operable Unit 2 (filled coal ash pond/Upper McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2: Appendixes  

SciTech Connect (OSTI)

This report comprises appendices A--J which support the Y-12 Plant`s remedial action report involving Chestnut Ridge Operable Unit 2 (filled coal ash pond/Upper McCoy Branch). The appendices cover the following: Sampling fish from McCoy Branch; well and piezometer logs; ecological effects of contaminants in McCoy Branch 1989-1990; heavy metal bioaccumulation data; microbes in polluted sediments; and baseline human health risk assessment data.

Not Available

1994-08-01T23:59:59.000Z

119

Technology for the Recovery of Fuel and Adsorbent Carbons from Coal Burning Utility Ash Ponds and Landfills  

SciTech Connect (OSTI)

Several sampling techniques were evaluated to recover representative core samples from the ash ponds at Western Kentucky Energy's Coleman Station. The most successful was a combination of continuous-flight augers and specially designed soft-sediment sampling tubes driven by a Hammerhead drill mounted on an amphibious ARGO vehicle. A total of 51 core samples were recovered and analyzed in 3 ft sections and it was determined that there are 1,354,974 tons of ash in Pond C. Of the over 1.35M tons of ash present, 14% or 190K tons can be considered as coarse (+100 mesh). Pond C contains approximately 88K tons of carbon, nearly half of which is coarse and potentially recoverable with spiral concentration while the fine carbon (-100 mesh) is recoverable with froth flotation. There are 1.27M tons of carbon-free ash, 12% of which is coarse and potentially usable as block sand. Spiral concentration testing on bulk samples showed that product grade of 30 to 38% C (4200 to 5500 Btu/lb) was obtainable. When this product was cleaned again in an additional stage of spiral concentration, the product grade was improved to 7200 to 8200 Btu/lb with an accompanying 13 to 29% decrease in yield. Release analysis of hydraulically classified pond ash showed that froth flotation could provide froth products with as high a grade as 9000 Btu/lb with a yield of 5%. Increasing yield to 10% reduced froth grade to 7000 Btu/lb. Batch flotation provided froth grades as high as 6500 Btu/lb with yields of 7% with 1.5 lb/ton SPP and 1 lb/ton frother. Column flotation test results were similar to those achieved in batch flotation in terms of both grade and yield, however, carbon recoveries were lower (<70%). High airflow rate was required to achieve >50% carbon recovery and using wash water improved froth grade. Bottom ash samples were recovered from each of the units at Coleman Station. Characterization confirmed that sufficient quantity and quality of material is generated to produce a marketable lightweight aggregate and recover a high-grade fuel product. Spiral concentration provided acceptable grade lightweight aggregate with yields of only 10 to 20%. Incorporating a sieve bend into the process to recover coarse, porous ash particles from the outside race of the spirals increased aggregate yield to as high as 75%, however, the carbon content of the aggregate also increased. An opening size of 28 mesh on the sieve bend appeared to be sufficient. Lightweight concrete blocks (28 to 32 lbs) were produced from bottom ash and results show that acceptable strength could be attained with a cement/concrete ratio as low as 1/4. A mobile Proof-of-Concept (POC) field unit was designed and fabricated to meet the processing objectives of the project. The POC plant consisted of two trailer-mounted modules and was completely self sufficient with respect to power and water requirements. The POC unit was hauled to Coleman Station and operated at a feed rate of 2 tph. Results showed that the spirals operated similarly to previous pilot-scale operations and a 500 lb composite sample of coarse carbon was collected with a grade of 51.7% C or 7279 Btu/lb. Flotation results compared favorably with release analysis and 500 lbs of composite froth product was collected with a grade of 35% C or 4925 Btu/lb. The froth product was dewatered to 39% moisture with vacuum filtration. Pan pelletization and briquetting were evaluated as a means of minimizing handling concerns. Rotary pan pelletization produced uniform pellets with a compressive strength of 4 lbf without the use of any binder. Briquettes were produced by blending the coarse and fine carbon products at a ratio of 1:10, which is the proportion that the two products would be produced in a commercial operation. Using 3% lime as a binder produced the most desirable briquettes with respect to strength, attrition and drop testing. Additionally, the POC carbon products compared favorably with commercial activated carbon when used for removal of mercury from simulated flue gas. A business model was generated to summarize anti

J.G. Groppo; T.L. Robl

2005-09-30T23:59:59.000Z

120

Ash deposit workshop: Class outline  

SciTech Connect (OSTI)

Ash deposits formed from the combustion of coal and other fuels have plagued the steam production industry from the start. The ash fusion test has been around for over eighty years. As steam plant size increased, so have the problems associated with ash deposits. This workshop is designed to cover: (1) The basic types of deposits. (2) Causes of deposits. (3) Analytical procedures for resolving, or at least providing information about deposits and fuels, and (4) Deposit removal and reduction techniques.

Hatt, R. [Commercial Testing & Engineering Co., Lexington, KY (United States)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "war coal ash" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Low-rank coal oil agglomeration  

DOE Patents [OSTI]

A low-rank coal oil agglomeration process. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and usually coal derived.

Knudson, Curtis L. (Grand Forks, ND); Timpe, Ronald C. (Grand Forks, ND)

1991-01-01T23:59:59.000Z

122

Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment  

SciTech Connect (OSTI)

Our results on photophoresis reveal significant transport effects, mainly for particles which are carbonaceous (char-like, soot-like) rather than ash-like. Figure 2 shows the predicted dimensionless transport coefficient (proportional to the ordinary Stanton number for mass transfer) as a function of radiation/convective flux ratio and carbonaceous particle radius for laminar boundary layer flow past a wall cooled to 70% of the mainstream temperature, subjected to a radiative energy spectrum appropriate to a black-body source at ca. 1800K. One sees that large effects on the particle deposition rate are produced if the radiative flux is comparable to or exceeds the ordinary (Fourier) energy flux. We are now extending this work to include the effects of inevitable particle asymmetries, including agglomerate (shape) effects, and the role that energy transfer (eg. radiative cooling of larger particles in a population) might play in the coagulation dynamics and deposition dynamics of such aerosol populations.

Rosner, D.E.

1989-06-01T23:59:59.000Z

123

E-Print Network 3.0 - ash forming acid-resistant Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

European Summer Fly Ash Workshop," Warsaw, Poland, June 2005. Department... combustion of coal in conventional and advanced clean-coal technology combustors. These include fly...

124

E-Print Network 3.0 - ash sekitanbai wo Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-sulfurcoal combustionby-products generated by using both conventional and clean coal technologies. A clean coal ash Source: Wisconsin-Milwaukee, University of - Department...

125

E-Print Network 3.0 - ashes analisis espectroquimico Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-sulfurcoal combustionby-products generated by using both conventional and clean coal technologies. A clean coal ash Source: Wisconsin-Milwaukee, University of - Department...

126

E-Print Network 3.0 - ashes oral biotillgaenglighet Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-sulfurcoal combustionby-products generated by using both conventional and clean coal technologies. A clean coal ash Source: Wisconsin-Milwaukee, University of - Department...

127

E-Print Network 3.0 - ash projekt vaendoera Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

generated by using both conventional and clean coal technologies. A clean coal ash Source: Wisconsin-Milwaukee, University of - Department of Civil Engineering and...

128

E-Print Network 3.0 - ash silica fume Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

,and Bruce W. Ramme CBU-1996-08 REP-283 July 1996 Presented andPublished at the American Coal Ash Association... 's Twelfth International Coal Ash Use Symposium,Orlando,FL,January...

129

War casualties on the home front  

SciTech Connect (OSTI)

On May 12, 1942, at Christopher coal mine No. 3 in Osage, West Virginia, a continent away from the frontlines of World War II, Superintendent Ed O'Neil saw the mine ventilation fan suddenly run backwards, propelled by a strong gust of air that tore the belt off the huge blower. The second shift mantrip of 115 coal miners, traversing the drift mouth for the 3:00 p.m. shift, ground to an uneasy halt. The article recounts the tragic consequences of this incident. It also tells of other events affecting coal miners during World War I and World War II.

Brenda J. Flinn

2005-11-01T23:59:59.000Z

130

advanced pressurized coal: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion and Utilization Websites Summary: Kumfer, ACERF Manager Consortium for Clean Coal Utilization Fly ash utilization Be a resourceADVANCED COAL & ENERGY RESEARCH...

131

advanced direct coal: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion and Utilization Websites Summary: Kumfer, ACERF Manager Consortium for Clean Coal Utilization Fly ash utilization Be a resourceADVANCED COAL & ENERGY RESEARCH...

132

advanced physical coal: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion and Utilization Websites Summary: Kumfer, ACERF Manager Consortium for Clean Coal Utilization Fly ash utilization Be a resourceADVANCED COAL & ENERGY RESEARCH...

133

advanced fine coal: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion and Utilization Websites Summary: Kumfer, ACERF Manager Consortium for Clean Coal Utilization Fly ash utilization Be a resourceADVANCED COAL & ENERGY RESEARCH...

134

ash utilization symposium: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Websites Summary: Center for By-Products Utilization USE OF CLASS F FLY ASH AND CLEAN-COAL ASH BLENDS FOR CAST Report No.CBU-1996-07 July 1996 Presented and Published at the...

135

Direct utilization - recovery of minerals from coal fly ash. Fossil Energy Program. Technical progress report, 1 July 1984-30 September 1984 including summary of work for FY84  

SciTech Connect (OSTI)

The research discussed in this report deals with resource recovery from coal conversion solid wastes. Progress is reported on two methods (the HiChlor and Lime-Sinter processes) for extracting metal values from power plant fly ash. Preliminary work is also reported on a method of making cement from the residue of the lime-sinter process. In the HiChlor Process, metal oxides in the fly ash are converted to volatile chlorides by reaction with chlorine in the presence of a reductant. Several versions of this approach are being investigated. The Lime-Sinter Process utilizes a solid state reaction to selectively convert the alumina in fly ash to a soluble form. Fly ash is mixed with limestone and a suitable mineralizer (to reduce the temperature required for sintering and to enhance alumina recovery) and then sintered in a high temperature kiln. Alumina is recovered by leaching the resulting clinker. A complex relationship between the calcium, alumina, silica, and sulfur constituents in the feed mixture controls the formation and extraction of aluminate compounds. Alumina recovery levels are enhanced by promoting the formation of less-soluble calcium compounds and/or more-soluble aluminum compounds. A study is underway to determine the degree to which flue gas scrubber sludge can be used both as a limestone substitute and as a sulfur bearing mineralizer. Results show that 20 to 25% of the limestone can be provided by the scrubber sludges. 25 refs.,25 figs., 10 tabs.

Burnet, G.; Murtha, M.J.; Benson, J.D.

1985-03-01T23:59:59.000Z

136

Integrated coal cleaning, liquefaction, and gasification process  

DOE Patents [OSTI]

Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

Chervenak, Michael C. (Pennington, NJ)

1980-01-01T23:59:59.000Z

137

The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBTU/hour oil fired boiler to pulverized coal  

SciTech Connect (OSTI)

This work contains to the final report of the demonstration of an advanced cyclone coal combustor. Titles include: Chronological Description of the Clean Coal Project Tests,'' Statistical Analysis of Operating Data for the Coal Tech Combustor,'' Photographic History of the Project,'' Results of Slag Analysis by PA DER Module 1 Procedure,'' Properties of the Coals Limestone Used in the Test Effort,'' Results of the Solid Waste Sampling Performed on the Coal Tech Combustor by an Independent Contractor During the February 1990 Tests.'' (VC)

Zauderer, B.; Fleming, E.S.

1991-08-30T23:59:59.000Z

138

Petrographic characterization of economizer fly ash  

SciTech Connect (OSTI)

Policies for reducing NOx emissions have led power plants to restrict O{sub 2}, resulting in high-carbon fly ash production. Therefore, some potentially useful fly ash, such as the economizer fly ash, is discarded without a thorough knowledge of its composition. In order to characterize this type of fly ash, samples were collected from the economizer Portuguese power plant burning two low-sulfur bituminous coals. Characterization was also performed on economizer fly ash subsamples after wet sieving, density and magnetic separation. Analysis included atomic absorption spectroscopy, loss-on-ignition, scanning electron microscopy/energy-dispersive X-ray spectroscopy, optical microscopy, and micro-Raman spectroscopy.

Valentim, B.; Hower, J.C.; Soares, S.; Guedes, A.; Garcia, C.; Flores, D.; Oliveira, A. [University of Porto, Oporto (Portugal). Center of Geology

2009-11-15T23:59:59.000Z

139

Developing Engineered Fuel (Briquettes) Using Fly Ash from the Aquila Coal-Fired Power Plant in Canon City and Locally Available Biomass Waste  

SciTech Connect (OSTI)

The objective of this research is to explore the feasibility of producing engineered fuels from a combination of renewable and non renewable energy sources. The components are flyash (containing coal fines) and locally available biomass waste. The constraints were such that no other binder additives were to be added. Listed below are the main accomplishments of the project: (1) Determination of the carbon content of the flyash sample from the Aquila plant. It was found to be around 43%. (2) Experiments were carried out using a model which simulates the press process of a wood pellet machine, i.e. a bench press machine with a close chamber, to find out the ideal ratio of wood and fly ash to be mixed to get the desired briquette. The ideal ratio was found to have 60% wood and 40% flyash. (3) The moisture content required to produce the briquettes was found to be anything below 5.8%. (4) The most suitable pressure required to extract the lignin form the wood and cause the binding of the mixture was determined to be 3000psi. At this pressure, the briquettes withstood an average of 150psi on its lateral side. (5) An energy content analysis was performed and the BTU content was determined to be approximately 8912 BTU/lb. (6) The environmental analysis was carried out and no abnormalities were noted. (7) Industrial visits were made to pellet manufacturing plants to investigate the most suitable manufacturing process for the briquettes. (8) A simulation model of extrusion process was developed to explore the possibility of using a cattle feed plant operating on extrusion process to produce briquettes. (9) Attempt to produce 2 tons of briquettes was not successful. The research team conducted a trial production run at a Feed Mill in La Junta, CO to produce two (2) tons of briquettes using the extrusion process in place. The goal was to, immediately after producing the briquettes; send them through Aquila's current system to test the ability of the briquettes to flow through the system without requiring any equipment or process changes. (10) Although the above attempt failed, the plant is still interested in producing briquettes. (11) An economic analysis of investing in a production facility manufacturing such briquettes was conducted to determine the economic viability of the project. Such a project is estimated to have an internal rate of return of 14% and net present value of about $400,000. (12) An engineering independent study class (4 students) is now working on selecting a site near the power plant and determining the layout of the future plant that will produce briquettes.

H. Carrasco; H. Sarper

2006-06-30T23:59:59.000Z

140

Ash pelletization  

SciTech Connect (OSTI)

Ash pelletization is outlined under the following topics: projects with CSX involvement; US Generating (Cedar Bay), Jacksonville, FL; Hydra-Co (Salt City Project), Solvay, NY; Virginia Power, Yorktown Plant; US Generating; Indiantown, FL; Future Projects; Development of ash disposal site;s Reuse of ash product; and Utility Survey.

Woodall, M.

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "war coal ash" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ULTRA CLEAN COAL PRODUCTION USING DENSE MEDIUM SEPARATION FOR THE SILICON MARKET.  

E-Print Network [OSTI]

??The production of high quality silicon requires the use of ultraclean coal containing less than 1.5% ash. The magnetite used to clean the coal in… (more)

Amini, Seyed Hassan

2014-01-01T23:59:59.000Z

142

advanced multi-product coal: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion and Utilization Websites Summary: Kumfer, ACERF Manager Consortium for Clean Coal Utilization Fly ash utilization Be a resourceADVANCED COAL & ENERGY RESEARCH...

143

Cleanup Verification Package for the 126-F-1, 184-F Powerhouse Ash Pit  

SciTech Connect (OSTI)

This cleanup verification package documents completion of remedial action for the 126-F-1, 184-F Powerhouse Ash Pit. This waste site received coal ash from the 100-F Area coal-fired steam plant. Leakage of process effluent from the 116-F-14 , 107-F Retention Basins flowed south into the ash pit, contaminating the northern portion.

S. W. Clark and H. M Sulloway

2007-10-31T23:59:59.000Z

144

Cleanup Verification Package for the 126-F-1, 184-F Powerhouse Ash Pit  

SciTech Connect (OSTI)

This cleanup verification package documents completion of remedial action for the 126-F-1, 184-F Powerhouse Ash Pit. This waste site received coal ash from the 100-F Area coal-fired steam plant. Leakage of process effluent from the 116-F-14 , 107-F Retention Basins flowed south into the ash pit, contaminating the northern portion.

S. W. Clark and H. M. Sulloway

2007-09-26T23:59:59.000Z

145

The variability of fly ash and its effects on selected properties of fresh Portland cement/fly ash mortars  

E-Print Network [OSTI]

the needed quality control of concrete . Another source of concern results from the recent development of lignite and sub-bituminous coal as fuel sources. The ash produced from these coals is of a different chemical composition than traditional bituminous... 50 percent to greater than 200 percent of a control test. An exhaustive literature review has revealed neglig1ble information concerning the PAI of sub- b1tuminous and lignite ashes. Research is greatly needed to determine the ash properties...

McKerall, William Carlton

1980-01-01T23:59:59.000Z

146

National Coal Quality Inventory (NACQI)  

SciTech Connect (OSTI)

The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

Robert Finkelman

2005-09-30T23:59:59.000Z

147

LOW-COST, HIGH-PERFORMANCE MATERIALS USING ILLINOIS COAL COMBUSTION BY-PRODUCTS  

E-Print Network [OSTI]

conventional and clean coal technologies. This project was primarily directed toward developing concrete, mineralogical, and microstructural properties. A clean coal ash is defined as the ash derived from SO2 control technologies. Based on these properties, two sources of both conventional and clean coal ashes were selected

Wisconsin-Milwaukee, University of

148

Close Out Report for the Ash Pit Operable Unit I Area of Concern 2F  

E-Print Network [OSTI]

........................................................................4 3 ­ Clean fill staged prior to grading over the Ash Pit area.............................................................5 4 ­ Clean fill being graded at the Ash Pit I to the early 1950's. The Ash Pits were also used for disposal of coal ash from various buildings

149

Thomas Dixon's War Prayers  

E-Print Network [OSTI]

on pp. 236-37). New Perspectives on “The War-Prayer” Essayson “The War-Prayer” Thomas Dixon, Jr. , Dixon’s Sermons:New Perspectives on “The War-Prayer” Essays on “The War-

Capozzola, Christopher

2009-01-01T23:59:59.000Z

150

Investigation Of Synergistic NOx Reduction From Cofiring And Air Staged Combustion Of Coal And Low Ash Dairy Biomass In A 30 Kilowatt Low NOx Furnace  

E-Print Network [OSTI]

Alternate, cost effective disposal methods must be developed for reducing phosphorous and nitrogen loading from land application of animal waste. Cofiring coal with animal waste, termed dairy biomass (DB), is the proposed thermo-chemical method...

Lawrence, Benjamin Daniel

2013-08-01T23:59:59.000Z

151

Ultrasonic ash/pyrite liberation  

SciTech Connect (OSTI)

The objective of this project was to develop a coal preparation concept which employed ultrasonics to precondition coal prior to conventional or advanced physical beneficiation processes such that ash and pyrite separation were enhanced with improved combustible recovery. Research activities involved a series of experiments that subjected three different test coals, Illinois No. 6, Pittsburgh No. 8, and Upper Freeport, ground to three different size fractions (28 mesh [times] 0, 200 mesh [times] 0, and 325 mesh [times] 0), to a fixed (20 kHz) frequency ultrasonic signal prior to processing by conventional and microbubble flotation. The samples were also processed by conventional and microbubble flotation without ultrasonic pretreatment to establish baseline conditions. Product ash, sulfur and combustible recovery data were determined for both beneficiation processes.

Yungman, B.A.; Buban, K.S.; Stotts, W.F.

1990-06-01T23:59:59.000Z

152

Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment: Quarterly technical report, June 1, 1987-August 31, 1987  

SciTech Connect (OSTI)

Our emphasis in the present program is on experimentally validating and developing rational, theoretical methods of predicting the role of inertia and ash particle thermophoresis in determining net deposition rates. We also wish to quantify how simultaneous vapor deposition (e.g., alkali sulfate) can influence the sticking and erosion associated with impacting particles. 6 refs., 2 figs.

Rosner, D.E.

1987-09-01T23:59:59.000Z

153

On-site field tests for study of low-rank western coal fly ash. Technical summary report, field test No. 3. Big Brown Station electrostatic precipitator  

SciTech Connect (OSTI)

This report describes the results of field and laboratory studies of combined NH/sub 3/ and SO/sub 3/ conditioning at the Big Brown Station of Texas Utilities Generating Company. This unusual combination of conditioning agents is used routinely at the Big Brown Station in order to improve the performance of the cold-side electrostatic precipitators. The primary objectives of this field study were to evaluate the performance of one of the Big Brown precipitators, and to obtain data on the concentration, composition, and size distribution of the fly ash, as well as the composition of the flue gas and the overall and fractional collection efficiencies of the precipitator. The laboratory studies of the Big Brown fly ash were intended to further characterize the ash both physically and chemically, and to study the attenuation of the electrical resistivity of the ash associated with the surface film produced by the dual conditioning process and by the use of SO/sub 3/ conditioning alone. 6 references, 22 figures, 9 tables.

Dahlin, R. S.; Bickelhaupt, R. E.; Marchant, Jr., G. H.; Gooch, J. P.

1984-02-01T23:59:59.000Z

154

Pilot Demonstration of Technology for the Production of High Value Materials from the Ultra-Fine (PM 2.5) Fraction of Coal Combustion Ash  

SciTech Connect (OSTI)

Work on the project focused on the determination of the hydraulic classification characteristics of the Coleman and Mill Creek ashes. The work utilized the hydraulic classifier developed earlier in the project. Testing included total yield, recovery of <5 {micro}m ash diameter particles and LOI partitioning as functions of dispersant dosage and type, retention time and superficial velocity. Yields as high as 21% with recoveries of up to 2/3 of the <5 {micro}m ash fractions were achieved. Mean particle size (D{sub 50}) of varied from 3.7 to 10 {micro}m. The ashes were tested for there pozzolanic activity in mortars as measured by strength activity index using ASTM criteria. Additional testing included air entrainment reagent demand and water requirements. The classified products all performed well, demonstrating excellent early strength development in the mortars. Some increased air entrainment demand was noted. The conceptual design of a process demonstration unit PDU was also completed. A flexible, trailer-mounted field unit is envisioned.

T.L. Robl; J.G. Groppo; Robert Rathebone

2005-12-14T23:59:59.000Z

155

PILOT DEMONSTRATION OF TECHNOLOGY FOR THE PRODUCTION OF HIGH VALUE MATERIALS FROM THE ULTRA-FINE (PM 2.5) FRACTION OF COAL COMBUSTION ASH  

SciTech Connect (OSTI)

Broad range dispersants, including naphthalene sulfonate-formaldehyde condensates (NSF) and polycarboxylate based products, were tested on both wet and dry fly ash samples from the LG&E Energy Corp. plants in the study. Tests included both total adsorption and measurement of sedimentation rate via time density relationships. A wide range of dosages were required, ranging from 0.3 to 10 g/kg. In general the ponded ash required less dispersant. Leaching tests of 5% ash solutions by weight revealed a wide range of soluble salts to be present in the ash, and found a relationship between calcium ion concentration and dispersant dosage requirement. Other parameters measured included SO{sub 4}, Cl, F, NO{sub 3}, PO{sub 4}, Al, Ca, Mg, K, Na and alkalinity. An assessment was made of the available software to digitally model the overall process circuit. No prefabricated digital model was found for hydraulic classification or froth flotation. Work focused on building a model for hydraulic classification in an Excel spread sheet based on Stokes Law. A pilot plant scale hydraulic classifier was fabricated and operated. The performance of the hydraulic classifier was found to be forecastable within reasonable bounds, and work to improve both are ongoing.

T.L. Robl; K.R. Henke; J.G. Groppo

2004-09-01T23:59:59.000Z

156

Leaching and standing water characteristics of bottom ash and composted manure blends  

E-Print Network [OSTI]

Coal burning electrical generating facilities produce roughly 91 million metric tons of ash byproducts annually. Typically, this ash is retained at the power plant sites, adding to the cost of managing wastes at the plants. Another waste material...

Mathis, James Gregory

2001-01-01T23:59:59.000Z

157

E-Print Network 3.0 - ashing wet Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences and Ecology 4 By-Products Utilization Summary: A3, containing 20% clean coal ash and 5% wet collected Class F ash had compressive strengths... 0 Center for...

158

E-Print Network 3.0 - ash material analisis Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

was used in this work. An ASTM Class F fly ash... , and N3) were proportioned with clean coal fly ash containing 22% ... Source: Wisconsin-Milwaukee, University of - Department...

159

E-Print Network 3.0 - ashes total contents Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fly ash content for normal concrete... contained fly ash up to a maximum of 35% of clean-coal ... Source: Wisconsin-Milwaukee, University of - Department of Civil Engineering and...

160

E-Print Network 3.0 - alkali-activated fly ash Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering ; Materials Science 12 By-Products Utilization Summary: CONTAINING CLEAN-COAL ASH AND CLASS F FLY ASH By Tarun R. Naik, Rudolph N. Kraus, Rafat Siddique... of...

Note: This page contains sample records for the topic "war coal ash" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

E-Print Network 3.0 - activated fly ash Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering ; Materials Science 9 By-Products Utilization Summary: CONTAINING CLEAN-COAL ASH AND CLASS F FLY ASH By Tarun R. Naik, Rudolph N. Kraus, Rafat Siddique... of...

162

E-Print Network 3.0 - ashing dry Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shrinkage of Non-Air Entrained HRWRA Concrete -0.05% 0.00% 0.05% 0... NS3, 33% Clean Coal Ash, 5% Class F Fly Ash Fig. 15 - ... Source: Wisconsin-Milwaukee, University of -...

163

E-Print Network 3.0 - assess ash related Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

has been... Center for By-Products Utilization USE OF CLASS F FLY ASH AND CLEAN-COAL ASH BLENDS FOR CAST... Report No. CBU-1996-07 July 1996 Presented and Published at the...

164

War & Peace & War: Peter Turchin Mehran Salehi  

E-Print Network [OSTI]

War & Peace & War: Peter Turchin Mehran Salehi Life Cycles of Imperial Nations Ch. 10-12 10. The Matthew Principle 11. Wheels Within Wheels 12. War and Peace and Particles #12;"Why the rich get richer poor, middle class is slightly effected War #12;Ch. 11: Wheels within wheels - The Many Declines

White, Douglas R.

165

Scale-Up and Demonstration of Fly Ash Ozonation Technology  

SciTech Connect (OSTI)

The disposal of fly ash from the combustion of coal has become increasingly important. When the fly ash does not meet the required specification for the product or market intended, it is necessary to beneficiate it to achieve the desired quality. This project, conducted at PPL's Montour SES, is the first near full-scale ({approx}10 ton/day), demonstration of ash ozonation technology. Bituminous and sub bituminous ashes, including two ash samples that contained activated carbon, were treated during the project. Results from the tests were very promising. The ashes were successfully treated with ozone, yielding concrete-suitable ash quality. Preliminary process cost estimates indicate that capital and operating costs to treat unburned carbon are competitive with other commercial ash beneficiation technologies at a fraction of the cost of lost sales and/or ash disposal costs. This is the final technical report under DOE Cooperative Agreement No.: DE-FC26-03NT41730.

Rui Afonso; R. Hurt; I. Kulaots

2006-03-01T23:59:59.000Z

166

Elevated Trace Element Concentrations in Southern Toads, Bufo terrestris, Exposed to Coal Combustion Waste  

E-Print Network [OSTI]

Elevated Trace Element Concentrations in Southern Toads, Bufo terrestris, Exposed to Coal, and behavioral abnormalities in amphibians to coal combustion wastes (coal ash). Few studies, however, have determined trace element concentrations in amphibians exposed to coal ash. In the current study we compare

Hopkins, William A.

167

Chemical comminution of coal  

SciTech Connect (OSTI)

The objective of the present research is to study the chemical reactivity of a mixture of methyl alcohol and aqueous sodium hydroxide solution in the temperature range 298 to 363 K, and a caustic concentration of 0 to 10 wt. %, on an Iowa bituminous coal. The sample studied was collected from coal zone 4, equivalent to most historical references to Laddsdale coal. The coals in this zone are typical high-sulfur, high-ash middle Pennsylvania Cherokee group coals. The apparent rank is high-volatile C bituminous coal. The relatively high content of sulfur and 23 other elements in these coals is related to near neutral (6-8) pH conditions in the depositional and early diagenetic environments, and to postdepositional sphalerite/calcite/pyrite/kaolinite/barite mineralization.

Mamaghani, A.H.; Beddow, J.K.; Vetter, A.F.

1987-02-01T23:59:59.000Z

168

E-Print Network 3.0 - ash quality recycling Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utilization Summary: Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik... CANMET Conference on Quality of Concrete Structures and...

169

Coal-oil slurry preparation  

DOE Patents [OSTI]

A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

Tao, John C. (Perkiomenville, PA)

1983-01-01T23:59:59.000Z

170

Coal competition: prospects for the 1980s  

SciTech Connect (OSTI)

This report consists of 10 chapters which present an historical overview of coal and the part it has played as an energy source in the economic growth of the United States from prior to World War II through 1978. Chapter titles are: definition of coals, coal mining; types of coal mines; mining methods; mining work force; development of coal; mine ownership; production; consumption; prices; exports; and imports. (DMC)

Not Available

1981-03-01T23:59:59.000Z

171

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network [OSTI]

Pollutants in Coal- Fired Power Plants Emission Factors forPollutants in Coal-Fired Power Plants(a) Emissions Fly-ash(for a summary. "Emissions from Coal-Fired Power Plants: a

Ferrell, G.C.

2010-01-01T23:59:59.000Z

172

CORROSION OF Fe-10Al-Cr ALLOYS BY COAL CHAR  

E-Print Network [OSTI]

Potent.ials Encountered in Coal Conversion Systems", NASA TNof Illinois #6 ash and coal char. Figure 1. Cross sectionsof Fe-lOAl-Cr Alloys by Coal Char B. A. Gordon and V.

Gordon, B.A.

2011-01-01T23:59:59.000Z

173

Suppression of fine ash formation in pulverized coal flames. Quarterly technical progress report No. 2, January 1, 1993--March 31, 1993  

SciTech Connect (OSTI)

The second major ash producing mechanism is the generation of a submicron aerosol through a vaporization/condensation mechanism. When the ash size distribution is plotted in terms of number density, the submicron mode generally peaks at about 0. 1 {mu}m. When plotted in terms of mass, this mode is sometimes distinct from the residual ash mode, and sometimes merged into it. During diffusion-limited char combustion, the interior of the particle becomes hot and fuel-rich. The non-volatile oxides (e.g., Al{sub 2}O{sub 3}, SiO{sub 2}, MgO, CaO, Fe{sub 2}O{sub 3}) can be reduced to more volatile suboxides and elements, and partially vaporized. These reoxidize while passing through the boundary layer surrounding the char particle, thus becoming so highly supersaturated that rapid homogeneous nucleation occurs. This high nuclei concentration in the boundary layer promotes more extensive coagulation than would occur if the nuclei were uniformly distributed across the flow field. The vaporization can be accelerated by the overshoot of the char temperature beyond the local gas temperature. Although these particles represent a relatively small fraction of the mass, they can present a large fraction of the surface area. Thus, they are a preferred site for the condensation of the more volatile oxides later in the furnace. This leads to a layering effect in which the refractory oxides are concentrated at the particle core and the more volatile oxides resideat the surface. This also explains the enrichment of the aerosol by volatile oxides that has been noted in samples from practical furnaces. These volatile metal oxides include the majority of the toxic metal contaminants, e.g., mercury, arsenic, selenium and nickel. Risk assessment studies suggest that toxic metal emissions represent a significant portion of the health risk associated with combustion systems.

Kramlich, J.C.; Hoffman, D.A.; Butcher, E.K.

1993-04-29T23:59:59.000Z

174

Persistence of civil wars  

E-Print Network [OSTI]

A notable feature of post-World War II civil wars is their very long average duration. We provide a theory of the persistence of civil wars. The civilian government can successfully defeat rebellious factions only by ...

Acemoglu, Daron

175

Ethnic War, Holy War, War O' War: Does the Adjective Matter in Explaining Collective Political Violence?  

E-Print Network [OSTI]

how many separate “conflicts” or “wars” have there been in1978? On the meaning of “religious war,” see Konrad Repen, “What is a ‘Religious War? ’,” in Politics and Society in

Walker, Edward W.

2006-01-01T23:59:59.000Z

176

Political Bias and War  

E-Print Network [OSTI]

is the one who wants to go to war and i is the one who doesthe incentive of j to go to war if (15) holds. Thus, thepayments. We examine how war technology and relative wealth

Jackson, Matthew O.; Morelli, Massimo

2006-01-01T23:59:59.000Z

177

A Philosophy of War   

E-Print Network [OSTI]

This thesis examines in four parts a collection of philosophical arguments dealing with war. The conclusions drawn are that war is a definable and applicable concept, that above the level of biological reactions war is ...

Moseley, Darran A

178

The Evolution of War  

E-Print Network [OSTI]

Viking. Keeley, Lawrence. 1996. War Before Civilization. NewSocieties and the Origins of War. Ann Arbor: University ofPress. Morris: Evolution of War. Cliodynamics (2012) Vol. 3,

Morris, Ian

2012-01-01T23:59:59.000Z

179

Potential applications of microscopy for steam coal  

SciTech Connect (OSTI)

Optical microscopy has been an extremely useful tool for many industrial sectors in the past. This paper introduces some of the potential applications of using coal and fly ash carbon microscopy for the combustion process and steam coal industry. Coal and fly ash carbon microscopic classification criteria are described. Plant sample data are presented which demonstrate that these techniques can be useful for coal selection and for problem solving in the coal-fired power plant environment. Practical recommendations for further study are proposed.

DeVanney, K.F.; Clarkson, R.J.

1995-08-01T23:59:59.000Z

180

Low-rank coal oil agglomeration  

DOE Patents [OSTI]

A low-rank coal oil agglomeration process is described. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and is usually coal-derived.

Knudson, C.L.; Timpe, R.C.

1991-07-16T23:59:59.000Z

Note: This page contains sample records for the topic "war coal ash" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Eco-friendly fly ash utilization: potential for land application  

SciTech Connect (OSTI)

The increase in demand for power in domestic, agricultural, and industrial sectors has increased the pressure on coal combustion and aggravated the problem of fly ash generation/disposal. Consequently the research targeting effective utilization of fly ash has also gained momentum. Fly ash has proved to be an economical substitute for expensive adsorbents as well as a suitable raw material for brick manufacturing, zeolite synthesis, etc. Fly ash is a reservoir of essential minerals but is deficient in nitrogen and phosphorus. By amending fly ash with soil and/or various organic materials (sewage sludge, bioprocess materials) as well as microbial inoculants like mycorrhizae, enhanced plant growth can be realized. Based on the sound results of large scale studies, fly ash utilization has grown into prominent discipline supported by various internationally renowned organizations. This paper reviews attempts directed toward various utilization of fly ash, with an emphasis on land application of organic/microbial inoculants amended fly ash.

Malik, A.; Thapliyal, A. [Indian Institute of Technology Delhi, New Delhi (India)

2009-07-01T23:59:59.000Z

182

Flue gas desulfurization gypsum and fly ash  

SciTech Connect (OSTI)

The Cumberland Fossil Plant (CUF) is located in Stewart County, Tennessee, and began commercial operation in 1972. This is the Tennessee Valley Authority`s newest fossil (coal-burning) steam electric generating plant. Under current operating conditions, the plant burns approximately seven million tons of coal annually. By-products from the combustion of coal are fly ash, approximately 428,000 tons annually, and bottom ash, approximately 115,000 tons annually. Based on historical load and projected ash production rates, a study was initially undertaken to identify feasible alternatives for marketing, utilization and disposal of ash by-products. The preferred alternative to ensure that facilities are planned for all by-products which will potentially be generated at CUF is to plan facilities to handle wet FGD gypsum and dry fly ash. A number of different sites were evaluated for their suitability for development as FGD gypsum and ash storage facilities. LAW Engineering was contracted to conduct onsite explorations of sites to develop information on the general mature of subsurface soil, rock and groundwater conditions in the site areas. Surveys were also conducted on each site to assess the presence of endangered and threatened species, wetlands and floodplains, archaeological and cultural resources, prime farmland and other site characteristics which must be considered from an environmental perspective.

Not Available

1992-05-01T23:59:59.000Z

183

Coal surface control for advanced fine coal flotation  

SciTech Connect (OSTI)

The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. (California Univ., Berkeley, CA (United States)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (United States)); Hu, W.; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (United States)); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. (Praxis Engineers, Inc., Milpitas, CA (United States))

1992-03-01T23:59:59.000Z

184

Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment: Quarterly technical report, September 1, 1987-November 30, 1987  

SciTech Connect (OSTI)

DOE-PETC has initiated at the Yale HTCRE Laboratory a systematic three-year experimental and theoretical research program directed toward providing engineers with the data, methods, and rational correlations needed to dramatically improve the generality and accuracy of prediction of inorganic particle deposition rates under typical coal combustion conditions (i.e., those leading to the importance of thermophoretically-enhanced diffusion (submicron mode) and the inertially-enhanced ''impaction'' (supermicron mode)), often in the presence of simultaneous alkali salt vapor condensation. 9 refs., 1 fig.

Rosner, D.E.

1987-12-01T23:59:59.000Z

185

Screening technology reduces ash in spiral circuits  

SciTech Connect (OSTI)

In 2006, the James River Coal Co. selected the Stack Sizer to remove the minus 100 mesh high ash clay fraction from the clean coal spiral product circuits at the McCoy-Elkhorn Bevins Branch prep plant and at the Blue Diamond Leatherwood prep plant in Kentucky. The Stack Sizer is a multi-deck, high-frequency vibrating screen capable of separations as fine as 75 microns when fitted with Derrick Corp.'s patented high open area urethane screen panels. Full-scale lab tests and more than 10 months of continuous production have confirmed that the Stack Sizer fitted with Derrick 100 micron urethane screen panels consistently produces a clean coal fraction that ranges from 8 to 10% ash. Currently, each five-deck Stack Sizer operating at the Bevins Branch and Leatherwood prep plants is producing approximately 33 tons per hour of clean coal containing about 9% ash. This represents a clean coal yield of about 75% and an ash reduction of about 11% from the feed slurry. 3 figs. 2 tabs.

Brodzik, P. [Derrick Corp., Buffalo, NY (United States)

2007-05-15T23:59:59.000Z

186

Process for the recovery of alumina from fly ash  

DOE Patents [OSTI]

An improvement in the lime-sinter process for recovering alumina from pulverized coal fly ash is disclosed. The addition of from 2 to 10 weight percent carbon and sulfur to the fly ash-calcium carbonate mixture increase alumina recovery at lower sintering temperatures.

Murtha, M.J.

1983-08-09T23:59:59.000Z

187

Method of extracting coal from a coal refuse pile  

DOE Patents [OSTI]

A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

Yavorsky, Paul M. (Monongahela, PA)

1991-01-01T23:59:59.000Z

188

Research on thermophoretic and inertial aspects of ash particle: Deposition on heat exchanger surfaces in coal-fired equipment: Quarterly technical report, June 1, 1988--August 31, 1988  

SciTech Connect (OSTI)

DOE-PETC has initiated at the Yale HTCRE Laboratory a systematic three-year experimental and theoretical research program directed toward providing engineers with the data, methods, and rational correlations needed to improve the generality and accuracy of prediction of inorganic particle deposition rates under typical coal combustion conditions i.e., those leading to the importance of thermophoretically-enhanced diffusion (submicron mode) and the inertially-enhanced ''impaction'' (supermicron mode), often in the presence of simultaneous alkali salt vapor condensation. After a brief statement of objectives (Section 2) we outline our experimental and theoretical progress during this quarterly reporting period (Section 3), with our results summarized in the references documented in Section 5. Section 4 gives relevant administrative information (personnel, research plans). 15 refs., 3 figs.

Rosner, D.E.

1988-09-01T23:59:59.000Z

189

Pilot Demonstration of Technology fo the Production of High Value Materials from the Ultra-Fine (PM 2.5) Fraction of Coal Combustion Ash  

SciTech Connect (OSTI)

Work on the project primarily focused on the design and testing of different hydraulic classifier configurations. A four cell, open channel, cross flow classifier with and without weirs separating the cells was evaluated. Drawbacks to this configuration included thick sediment compression zones and relatively low throughput. The configuration was redesigned with inclined lamellae plates, to increase sedimentation area and decreased sediment compression zone thickness. This configuration resulted in greater throughput for any given product grade and enhanced product recovery. A digital model of a hydraulic classifier was also constructed based upon Stokes law and the configurations of the tests units. When calibrated with the size of the ash used in the tests, it produced a reasonable approximation of the size, yield and recovery of the actual product. The digital model will be useful to generate test data, at least on a relative basis, of conditions that are hard to generate in the laboratory or at larger scale. Test work on the dispersant adsorption capacity, settling tests and leaching test were also conducted on materials collected from the Coleman power station pond.

T.L. Robl; J.G. Groppo; K.R. Henke

2005-06-27T23:59:59.000Z

190

Low-rank coal research  

SciTech Connect (OSTI)

This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

Weber, G. F.; Laudal, D. L.

1989-01-01T23:59:59.000Z

191

Unraveling the Excess Air/Coal Fineness Enigma  

E-Print Network [OSTI]

In the use of powered coal as a boiler fuel, the factors involved in heat loss from unburnt carbon in the ash are but partially understood. More finely pulverized coal particles will result in lower carbon-in-ash losses. On the other hand, the finer...

Laspe, C. G.

1983-01-01T23:59:59.000Z

192

Moist caustic leaching of coal  

DOE Patents [OSTI]

A process for reducing the sulfur and ash content of coal. Particulate coal is introduced into a closed heated reaction chamber having an inert atmosphere to which is added 50 mole percent NaOH and 50 mole percent KOH moist caustic having a water content in the range of from about 15% by weight to about 35% by weight and in a caustic to coal weight ratio of about 5 to 1. The coal and moist caustic are kept at a temperature of about 300.degree. C. Then, water is added to the coal and caustic mixture to form an aqueous slurry, which is washed with water to remove caustic from the coal and to produce an aqueous caustic solution. Water is evaporated from the aqueous caustic solution until the water is in the range of from about 15% by weight to about 35% by weight and is reintroduced to the closed reaction chamber. Sufficient acid is added to the washed coal slurry to neutralize any remaining caustic present on the coal, which is thereafter dried to produce desulfurized coal having not less than about 90% by weight of the sulfur present in the coal feed removed and having an ash content of less than about 2% by weight.

Nowak, Michael A. (Elizabeth, PA)

1994-01-01T23:59:59.000Z

193

Fluorine in coal and coal by-products  

SciTech Connect (OSTI)

Fluorine occurs in awe amounts in most coals. It is typically associated with minerals of the apatite group, principally fluorapatite and clays, and with fluorite, tourmaline, topaz, amphiboles and micas. The average fluorine content of US coal is, according to the tabulation of Swanson, 74 {mu}g/g. In the United States, the lowest average fluorine concentration of 30 {mu}g/g is found in coals from Eastern Kentucky and the highest average value of 160 {mu}g/g is found in coals from Wyoming and New Mexico. The concentration range of fluorine in European coals is similar to that found in the US while the average fluorine content of Australian coals ranges from 15 to 500 {mu}g/g. We have determined the fluorine content in coal and fly ash standards by proton-induced gamma ray emission analysis (PIGE).

Robertson, J.D.; Wong, A.S.; Hower, J.C. [Univ. of Kentucky, Lexington, KY (United States)

1994-12-31T23:59:59.000Z

194

Hydrodesulfurization and hydrodenitrogenation catalysts obtained from coal mineral matter  

DOE Patents [OSTI]

A hydrotreating catalyst is prepared from coal mineral matter obtained by low temperature ashing coals of relatively low bassanite content by the steps of: (a) depositing on the low temperature ash 0.25-3 grams of an iron or nickel salt in water per gram of ash and drying a resulting slurry; (b) crushing and sizing a resulting solid; and (c) heating the thus-sized solid powder in hydrogen.

Liu, Kindtoken H. D. (Newark, DE); Hamrin, Jr., Charles E. (Lexington, KY)

1982-01-01T23:59:59.000Z

195

Market assessment of PFBC ash use  

SciTech Connect (OSTI)

Pressurized fluidized bed combustion (PFBC) of coal is undergoing demonstration in the United States, as well as throughout the world. American Electric Power`s (AEP`s) bubbling PFBC 70 MWe Tidd demonstration program in Ohio and pilot-scale development at Foster Wheeler Energia Oy 10 MWth circulating PFBC at Karhula, Finland, have demonstrated the advantages of PFBC technology. Further technology development in the US is planned with the deployment of the technology at the MacIntosh Clean Coal project in Lakeland, Florida. Development of uses for solid wastes from PFBC coal-fired power systems is being actively pursued as part of the demonstration of PFBC technologies. Ashes collected from Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, operating on (1) low sulfur subbituminous and (2) high sulfur bituminous coal; and ash from the AEP`s high-sulfur bituminous coal-fired bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing at Western Research Institute (WRI).

Bland, A. E.; Brown, T. H., Western Research Institute

1998-01-01T23:59:59.000Z

196

Conversion of Fly Ash into Mesoporous Aluminosilicate Hsiao-Lan Chang, Chang-Min Chun, Ilhan A. Aksay, and Wei-Heng Shih*,  

E-Print Network [OSTI]

and aluminum sources. Fly ash, which is a byproduct of coal burning, contains mostly aluminosilicates. Recently, several authors have studied the conversion of fly ash into zeolites.5-7 Shige- moto et al.8 increased the yield of zeolites by first fusing the fly ash with NaOH. The reaction of fly ash with NaOH produced

Aksay, Ilhan A.

197

Kinetics of beneficiated fly ash by carbon burnout  

SciTech Connect (OSTI)

The presence of carbon in fly ash requires an increase in the dosage of the air-entraining admixture for concrete mix, and may cause the admixture to lose efficiency. Specifying authorities for the concrete producers have set maximum allowable levels of residual carbon. These levels are the so called Loss On Ignition (LOI). The concrete producers` day-to-day purchasing decisions sets the LOI at 4%. The objective of the project is to investigate the kinetics of oxidation of residual carbon present in coal fly ash as a possible first step toward producing low-carbon fly ash from high-carbon, low quality fly ash.

Okoh, J.M.; Dodoo, J.N.D.; Diaz, A. [Univ. of Maryland Eastern Shore, Princess Anne, MD (United States). Dept. of Natural Sciences; Ferguson, W.; Udinskey, J.R. Jr.; Christiana, G.A. [Delmarva Power, Wilmington, DE (United States)

1997-12-31T23:59:59.000Z

198

Fly ash system technology improves opacity  

SciTech Connect (OSTI)

Unit 3 of the Dave Johnston Power Plant east of Glenrock, WY, USA had problems staying at or below the opacity limits set by the state. The unit makes use of a Lodge Cottrell precipitator. When the plant changed to burning Power River Basin coal, ash buildup became a significant issue as the fly ash control system was unable to properly evacuate hoppers on the unit. To overcome the problem, the PLC on the unit was replaced with a software optimization package called SmartAsh for the precipitator fly ash control system, at a cost of $500,000. After the upgrade, there have been no plugged hoppers and the opacity has been reduced from around 20% to 3-5%. 2 figs.

NONE

2007-06-15T23:59:59.000Z

199

Hydration and strength development of binder based on high-calcium oil shale fly ash  

SciTech Connect (OSTI)

The properties of high-calcium oil shale fly ash and low-calcium coal fly ash, which are produced in Israeli power stations, were investigated. High-calcium oil shale fly ash was found to contain a great amount of CaO{sub free} and SO{sub 3} in the form of lime and anhydrite. Mixtures of high-calcium oil shale fly ash and low-calcium coal fly ash, termed fly ash binder, were shown to cure and have improved strength. The influence of the composition and curing conditions on the compressive strength of fly ash binders was examined. The microstructure and the composition of fly ash binder after curing and long-term exposure in moist air, water and open air conditions were studied. It was determined that ettringite is the main variable in the strength and durability of cured systems. The positive effect of calcium silicate hydrates, CSH, which are formed by interaction of high-calcium oil shale fly ash and low-calcium coal fly ash components, on the carbonation and dehydration resistance of fly ash binder in open air is pronounced. It was concluded that high-calcium oil shale fly ash with high CaO{sub free} and SO{sub 3} content can be used as a binder for building products.

Freidin, C. [Ben-Gurion Univ. of the Negev, Sede-Boqer (Israel)] [Ben-Gurion Univ. of the Negev, Sede-Boqer (Israel)

1998-06-01T23:59:59.000Z

200

BA War & Society Module Information  

E-Print Network [OSTI]

BA War & Society Module Information 2014-2015 www.swansea.ac.uk/artsandhumanities Arts Studies BA War & Society BA War & Society The scope and scale of the BA (Hons) War and Society degree Theories of War 1 (compulsory) HUA102 War and Warfare in the Modern World (compulsory) HIH118 World History

Harman, Neal.A.

Note: This page contains sample records for the topic "war coal ash" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

11th International coal testing conference. Volume XI  

SciTech Connect (OSTI)

The proceedings of the 11th International Coal Conference held May 10-12, 1995 in Lexington, KY are presented. Fourteen papers were presented on various aspects of coal analysis and combustion, petrographic characterization of fly ash, trace elements in coal, microscopy of steam coals, fuel specifications, and HCl evolution during coal combustion. A separate abstract was prepared for each paper for inclusion in the Energy Science and Technology Database.

NONE

1995-08-01T23:59:59.000Z

202

COAL LOGISTICS. Tracking U.S. Coal Exports  

SciTech Connect (OSTI)

COAL LOGISTICS has the capability to track coal from a U. S. mine or mining area to a foreign consumer`s receiving dock. The system contains substantial quantities of information about the types of coal available in different U. S. coalfields, present and potential inland transportation routes to tidewater piers, and shipping routes to and port capabilities in Italy, Japan, South Korea, Taiwan, and Thailand. It is designed to facilitate comparisons of coal quality and price at several stages of the export process, including delivered prices at a wide range of destinations. COAL LOGISTICS can be used to examine coal quality within or between any of 18 U. S. coalfields, including three in Alaska, or to compare alternative routes and associated service prices between coal-producing regions and ports-of-exit. It may be used to explore the possibilities of different ship sizes, marine routes, and foreign receiving terminals for coal exports. The system contains three types of information: records of coal quality, domestic coal transportation options, and descriptions of marine shipment routes. COAL LOGISTICS contains over 3100 proximate analyses of U. S. steam coals, usually supplemented by data for ash softening temperature and Hardgrove grindability; over 1100 proximate analyses for coals with metallurgical potential, usually including free swelling index values; 87 domestic coal transportation options: rail, barge, truck, and multi-mode routes that connect 18 coal regions with 15 U. S. ports and two Canadian terminals; and data on 22 Italian receiving ports for thermal and metallurgical coal and 24 coal receiving ports along the Asian Pacific Rim. An auxiliary program, CLINDEX, is included which is used to index the database files.

Sall, G.W. [US Department of Energy, Office of Fossil Energy, Washington, DC (United States)

1988-06-28T23:59:59.000Z

203

Coal surface control for advanced fine coal flotation. Final report, October 1, 1988--March 31, 1992  

SciTech Connect (OSTI)

The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal`s emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. [California Univ., Berkeley, CA (United States); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. [Columbia Univ., New York, NY (United States); Hu, W.; Zou, Y.; Chen, W. [Utah Univ., Salt Lake City, UT (United States); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. [Praxis Engineers, Inc., Milpitas, CA (United States)

1992-03-01T23:59:59.000Z

204

Clean coal technology. Coal utilisation by-products  

SciTech Connect (OSTI)

The need to remove the bulk of ash contained in flue gas from coal-fired power plants coupled with increasingly strict environmental regulations in the USA result in increased generation of solid materials referred to as coal utilisation by-products, or CUBs. More than 40% of CUBs were sold or reused in the USA in 2004 compared to less than 25% in 1996. A goal of 50% utilization has been established for 2010. The American Coal Ash Association (ACCA) together with the US Department of Energy's Power Plant Improvement Initiative (PPPI) and Clean Coal Power Initiative (CCPI) sponsor a number of projects that promote CUB utilization. Several are mentioned in this report. Report sections are: Executive summary; Introduction; Where do CUBs come from?; Market analysis; DOE-sponsored CUB demonstrations; Examples of best-practice utilization of CUB materials; Factors limiting the use of CUBs; and Conclusions. 14 refs., 1 fig., 5 tabs., 14 photos.

NONE

2006-08-15T23:59:59.000Z

205

E-Print Network 3.0 - advanced coal combustor Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ash, boiler slag, and flue gas desulfurization (FGD) by-products from advanced clean coal technology... combustors. This paper briefly ... Source: Wisconsin-Milwaukee,...

206

Process for separating anthracite coal from impurities  

SciTech Connect (OSTI)

A process is described for separating a first mixture including previously mined anthracite coal, klinker-type cinder ash and other refuse consisting of: a. separating the first mixture to produce a refuse portion and a second mixture consisting of anthracite and klinker-type cinder ash, b. reducing the average particle size in the second mixture to a uniform size, c. subjecting the second mixture to a separating magnetic field to produce a klinker-type cinder ash portion and an anthracite coal portion.

Stiller, D.W.; Stiller, A.H.

1985-05-06T23:59:59.000Z

207

ORIGINAL PAPER Fireside Corrosion in Oxy-fuel Combustion of Coal  

E-Print Network [OSTI]

ORIGINAL PAPER Fireside Corrosion in Oxy-fuel Combustion of Coal Gordon R. Holcomb · Joseph Tylczak the nature of coal ash deposits. Wigley and Goh [1] reported that particles in oxy-fired deposits, compared

Laughlin, David E.

208

Process for removing pyritic sulfur from bituminous coals  

DOE Patents [OSTI]

A process is provided for removing pyritic sulfur and lowering ash content of bituminous coals by grinding the feed coal, subjecting it to micro-agglomeration with a bridging liquid containing heavy oil, separating the microagglomerates and separating them to a water wash to remove suspended pyritic sulfur. In one embodiment the coal is subjected to a second micro-agglomeration step.

Pawlak, Wanda (Edmonton, CA); Janiak, Jerzy S. (Edmonton, CA); Turak, Ali A. (Edmonton, CA); Ignasiak, Boleslaw L. (Edmonton, CA)

1990-01-01T23:59:59.000Z

209

Process for converting coal into liquid fuel and metallurgical coke  

DOE Patents [OSTI]

A method of recovering coal liquids and producing metallurgical coke utilizes low ash, low sulfur coal as a parent for a coal char formed by pyrolysis with a volatile content of less than 8%. The char is briquetted and heated in an inert gas over a prescribed heat history to yield a high strength briquette with less than 2% volatile content.

Wolfe, Richard A. (Abingdon, VA); Im, Chang J. (Abingdon, VA); Wright, Robert E. (Bristol, TN)

1994-01-01T23:59:59.000Z

210

Conventional coal preparation in the United States  

SciTech Connect (OSTI)

Processing of bituminous and anthracite coal is widely practiced in the United States and, as mentioned earlier, about 80 percent of the production of these coals is processed as clean coal in preparation plants. Subbituminous coal is not widely processed, primarily because these low rank raw coals are low in sulfur (0.5 to 1.0 percent) and relatively low in ash (8 to 15 percent). They are also relatively low in heat content due to their high inherent moisture. Lignite coals, to the best of the authors{close_quote} knowledge, are not presently being processed in Conventional Coal Preparation plants. This is due to their unstable nature and putting them in water in a coal preparation plant is likely to cause severe degradation in particle size and add to their already high inherent moisture content. The following are the benefits of clean coal processing: produces a uniform product which can be utilized more efficiently; produces a higher quality product which results in higher efficiency at the power station or the steel mill; reduces sulfur dioxide and other adverse stack emissions during coal firing which is a very important environmental consideration; reduces ash or slag handling costs by the user; reduces shipping costs; and reduces handling and storage costs. Processing any stable raw coal in a coal preparation plant will always produce a higher grade product which is a more efficient and a more environmentally acceptable fuel for use at power stations, steel mills, home heating or industrial boilers.

Beck, M.K.; Taylor, B.

1993-12-31T23:59:59.000Z

211

Coal Segregation Control for Meeting Homogeneity Z. Huang, R. Kumar J. Yingling, J. Sottile  

E-Print Network [OSTI]

Coal Segregation Control for Meeting Homogeneity Standards Z. Huang, R. Kumar J. Yingling, J were developed to control coal segre- gation to meet ash targets over large coal batches (e. g., a unit train of coal) while realizing high yields and economic savings. We have extended this work to address

Kumar, Ratnesh

212

Owl Feather War Bonnet  

Broader source: Energy.gov [DOE]

Presentation covers the Owl Feather War Bonnet and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

213

Ash & Pulverized Coal Deposition in Combustors & Gasifiers  

SciTech Connect (OSTI)

Further progress in achieving the objectives of the project was made in the period of October 1 to December 31, 1996. In particular, the sublayer model for evaluating the particle deposition in turbulent flows was extended to include the effect of particle rebound. A new more advance flow model for the near wall vortices is also used in these analysis. The computational model for simulating particle transport in turbulent flows was used to analyze the dispersion and deposition of particles in a recirculating flow region. The predictions of the particle resuspension model is compared with the experimental data. It is shown that when the effects of the near wall flow structure, as we as the surface roughness are included the model agrees with the available experimental data. Considerable progress was also made in the direct numerical simulation of particle removal process in turbulent gas flows. Experimental data for transport and deposition of glass fiber in the aerosol wind tunnel was also obtained.

Goodarz Ahmadi

1998-12-02T23:59:59.000Z

214

Coal Ash Contaminants in Wetlands | SREL Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof aChristinaCliff joinsClimate,InformationAssessing

215

E-Print Network 3.0 - ash cements stabilized Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science 6 By-Products Utilization Summary: OF WISCONSIN - MILWAUKEE 12;2 Use of Clean Coal Ash as Setting Time Regulator in Portland Cement by Zichao Wu... as setting time...

216

E-Print Network 3.0 - ash 25mi ja Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

coal-fired power plants that may be applied at WTE facilities combusting... proved solution for dry bottom ash collection and handling. Up to now the MAC system has been...

217

Preburn versus postburn mineralogical and geochemical characteristics of overburden and coal at the Hanna, Wyoming underground coal gasification site  

SciTech Connect (OSTI)

Hundreds of mineralogic and geochemical tests were done under US Department of Energy contracts on core samples taken from the Hanna underground coal gasification site. These tests included x-ray diffraction studies of minerals in coal ash, overburden rocks, and heat-altered rocks; x-ray fluorescence analyses of oxides in coal ash and heat-altered rocks; semi-quantitative spectrographic analyses of elements in coal, overburden, and heat-altered rocks; chemical analyses of elements and compounds in coal, overburden, and heat-altered rocks and ASTM proximate and ultimate analyses of coal and heat-altered coal. These data sets were grouped, averaged, and analyzed to provide preburn and postburn mineralogic and geochemical characteristics of rock units at the site. Where possible, the changes in characteristics from the preburn to the postburn state are related to underground coal gasification processes. 11 references, 13 figures, 8 tables.

Oliver, R.L.; Youngberg, A.D.

1983-12-01T23:59:59.000Z

218

Activation of fly ash  

DOE Patents [OSTI]

Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

Corbin, David R. (New Castle, DE); Velenyi, Louis J. (Lyndhurst, OH); Pepera, Marc A. (Northfield, OH); Dolhyj, Serge R. (Parma, OH)

1986-01-01T23:59:59.000Z

219

Activation of fly ash  

DOE Patents [OSTI]

Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

Corbin, D.R.; Velenyi, L.J.; Pepera, M.A.; Dolhyj, S.R.

1986-08-19T23:59:59.000Z

220

State Waste Discharge Permit application: 200-E Powerhouse Ash Pit  

SciTech Connect (OSTI)

As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department and Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 200-E Powerhouse Ash Pit. The 200-E Powerhouse Ash Waste Water discharges to the 200-E Powerhouse Ash Pit via dedicated pipelines. The 200-E Ash Waste Water is the only discharge to the 200-E Powerhouse Ash Pit. The 200-E Powerhouse is a steam generation facility consisting of a coal-handling and preparation section and boilers.

Atencio, B.P.

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "war coal ash" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

State Waste Discharge Permit application: 200-W Powerhouse Ash Pit  

SciTech Connect (OSTI)

As part of the Hanford Federal Facility Agreement and Consent Order negotiations; the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 200-W Powerhouse Ash Pit. The 200-W Powerhouse Ash Waste Water discharges to the 200-W Powerhouse Ash Pit via dedicated pipelines. The 200-W Powerhouse Ash Waste Water is the only discharge to the 200-W Powerhouse Ash Pit. The 200-W Powerhouse is a steam generation facility consisting of a coal-handling and preparation section and boilers.

Atencio, B.P.

1994-06-01T23:59:59.000Z

222

STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH  

SciTech Connect (OSTI)

The overall objective of the present project is to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific research issues to be addressed include: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity; and (3) the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. During this fourth project period we completed the characterization of ozone-treated carbon surfaces and wrote a comprehensive report on the mechanism through which ozone suppresses the adsorption of concrete surfactants.

Robert Hurt; Eric Suuberg; John Veranth; Xu Chen

2003-05-20T23:59:59.000Z

223

STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH  

SciTech Connect (OSTI)

The overall objective of the present project is to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific research issues to be addressed include: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity; and (3) the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. During this fourth project period we completed the characterization of ozone-treated carbon surfaces and wrote a comprehensive report on the mechanism through which ozone suppresses the adsorption of concrete surfactants.

Robert Hurt; Eric Suuberg; John Veranth; Xu Chen

2002-09-10T23:59:59.000Z

224

The foul side of 'clean coal'  

SciTech Connect (OSTI)

As power plants face new air pollution control, ash piles and their environmental threats are poised to grow. Recent studies have shown that carcinogens and other contaminants in piles of waste ash from coal-fired power plants can leach into water supplies at concentrations exceeding drinking water standards. Last year an ash dam broke at the 55-year old power plant in Kingston, TN, destroying homes and rising doubts about clean coal. Despite the huge amounts of ash generated in the USA (131 mtons per year) no federal regulations control the fate of ash from coal-fired plants. 56% of this is not used in products such as concrete. The EPA has found proof of water contamination from many operating ash sites which are wet impoundments, ponds or reservoirs of some sort. Several member of Congress have show support for new ash-handling requirements and an inventory of waste sites. Meanwhile, the Kingston disaster may well drive utilities to consider dry handling. 3 photos.

Johnson, J.

2009-02-15T23:59:59.000Z

225

Coal quality and estimated coal resources in the proposed Colville Mining District, central North Slope, Alaska  

SciTech Connect (OSTI)

The proposed Colville Mining District (CMD) encompasses 27,340 mi{sup 2} (70,800 km{sup 2}) in the central part of the North Slope. Known coal deposits within the proposed district range from Mississippian to Tertiary in age. Available information indicates that neither Mississippian and Tertiary coals in the CMD constitute a significant resource because they are excessively deep, thin, or high in ash content; however, considerable amount of low-sulfur Cretaceous coal is present. The paper briefly describes the geology and quality of these coal reserves. Difficult conditions will restrict mining of these coals in the near future.

Stricker, G.D. [Geological Survey, Denver, CO (United States); Clough, J.G. [Alaska Department of Natural Resources, Fairbanks, AK (United States). Division of Geological and Geophysical Surveys

1994-12-31T23:59:59.000Z

226

Studies on the production of ultra-clean coal by alkali-acid leaching of low-grade coals  

SciTech Connect (OSTI)

The use of low-grade coal in thermal power stations is leading to environmental pollution due to the generation of large amounts of fly ash, bottom ash, and CO{sub 2} besides other pollutants. It is therefore important to clean the coal before using it in thermal power stations, steel plants, or cement industries etc. Physical beneficiation of coal results in only limited cleaning of coal. The increasing environmental pollution problems from the use of coal have led to the development of clean coal technologies. In fact, the clean use of coal requires the cleaning of coal to ultra low ash contents, keeping environmental norms and problems in view and the ever-growing need to increase the efficiency of coal-based power generation. Therefore this requires the adaptation of chemical cleaning techniques for cleaning the coal to obtain ultra clean coal having ultra low ash contents. Presently the reaction conditions for chemical demineralization of low-grade coal using 20% aq NaOH treatment followed by 10% H{sub 2}SO{sub 4} leaching under reflux conditions have been optimized. In order to reduce the concentration of alkali and acid used in this process of chemical demineralization of low-grade coals, stepwise, i.e., three step process of chemical demineralization of coal using 1% or 5% aq NaOH treatment followed by 1% or 5% H{sub 2}SO{sub 4} leaching has been developed, which has shown good results in demineralization of low-grade coals. In order to conserve energy, the alkali-acid leaching of coal was also carried out at room temperature, which gave good results.

Nabeel, A.; Khan, T.A.; Sharma, D.K. [Jamia Millia Islamia, New Delhi (India). Dept. of Chemistry

2009-07-01T23:59:59.000Z

227

Characterization of the chemical variation of feed coal and coal combustion products from a power plant utilizing low sulfur Powder River Basin coal  

SciTech Connect (OSTI)

The US Geological Survey and the University of Kentucky Center for Applied Energy Research, in collaboration with an Indiana utility, are studying a coal-fired power plant burning Powder River Basin coal. This investigation involves a systematic study of the chemical and mineralogical characteristics of feed coal and coal combustion products (CCPs) from a 1,300-megawatt (MW) power unit. The main goal of this study is to characterize the temporal chemical variability of the feed coal, fly ash, and bottom ash by looking at the major-, minor-, and trace-element compositions and their associations with the feed coal mineralogy. Emphasis is also placed on the abundance and modes of occurrence of elements of potential environmental concern that may affect the utilization of these CCPs and coals.

Affolter, R.H.; Brownfield, M.E.; Cathcart, J.D.; Brownfield, I.K.

2000-07-01T23:59:59.000Z

228

Market Assessment and Technical Feasibility Study of Pressurized Fluidized Bed Combustion Ash Use  

SciTech Connect (OSTI)

Western Research Institute in conjunction with the Electric Power Research Institute, Foster Wheeler Energy International, Inc. and the U.S. Department of Energy Technology Center (METC), has undertaken a research and demonstration program designed to examine the market potential and the technical feasibility of ash use options for pressurized fluidized bed combustion (PFBC) ashes. The assessment is designed to address six applications, including: (1) structural fill, (2) road base construction, (3) supplementary cementing materials in portland cement, (4) synthetic aggregate, and (5) agricultural/soil amendment applications. Ash from low-sulfur subbituminous coal-fired Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, and ash from the high-sulfur bituminous coal-fired American Electric Power (AEP) bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing. This paper addresses the technical feasibility of ash use options for PFBC unit using low- sulfur coal and limestone sorbent (karhula ash) and high-sulfur coal and dolomite sorbents (AEP Tidd ash).

Bland, A.E.; Brown, T.H. [Western Research Inst., Laramie, WY (United States)

1996-12-31T23:59:59.000Z

229

FLY ASH GENERATION AND UTILIZATION -AN OVERVIEW* Tarun R. Naik, Ph.D., P.E.  

E-Print Network [OSTI]

. The Class F fly ashes are normally generated due to combustion of anthracite or bituminous coal. The Class CFLY ASH GENERATION AND UTILIZATION - AN OVERVIEW* By Tarun R. Naik, Ph.D., P.E. Director, Center GENERATION AND UTILIZATION - AN OVERVIEW By Tarun R. Naik, and Shiw S. Singh ABSTRACT This chapter describes

Wisconsin-Milwaukee, University of

230

The Geometry Of War The Geometry Of War  

E-Print Network [OSTI]

The Geometry Of War 1 #12;The Geometry Of War GEM1518K Mathematics in Arts &Architecture Presenting : The Geometry Of War Prepared by: 1) Linda Tjoe Matriculation number: U017984E 2) Lince Salim Matriculation017997 2 #12;The Geometry Of War Contents Page(s) Introduction 1 1.1 Early Canon 2 1.2 The Triumph

Aslaksen, Helmer

231

France at War: Additions to the War Poster Collection  

E-Print Network [OSTI]

a collection of eighty-five French posters from the First and Second World Wars. These add to Yale's extensive War Poster Collection, which has over 500 French posters from World War I but very few from World War of formats, includ- ing books, maps and atlases, pamphlets, music, broad- First North American Contributor

232

Fly ash carbon passivation  

DOE Patents [OSTI]

A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

La Count, Robert B; Baltrus, John P; Kern, Douglas G

2013-05-14T23:59:59.000Z

233

Transformations of inorganic coal constituents in combustion systems  

SciTech Connect (OSTI)

The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon the size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles What determines their composition Whether or not particles deposit How combustion conditions, including reactor size, affect these processes remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.

Helble, J.J. (ed.); Srinivasachar, S.; Wilemski, G.; Boni, A.A. (PSI Technology Co., Andover, MA (United States)); Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M. (Massachusetts Inst. of Tech., Cambridge, MA (United States)); Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L. (Arizona Univ., Tucson, AZ (United States)); Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A. (Kentucky Univ., Lexingt

1992-11-01T23:59:59.000Z

234

High-sulfur coals in the eastern Kentucky coal field  

SciTech Connect (OSTI)

The Eastern Kentucky coal field is notable for relatively low-sulfur, [open quotes]compliance[close quotes] coals. Virtually all of the major coals in this area do have regions in which higher sulfur lithotypes are common, if not dominant, within the lithologic profile. Three Middle Pennsylvanian coals, each representing a major resource, exemplify this. The Clintwood coal bed is the stratigraphically lowest coal bed mined throughout the coal field. In Whitley County, the sulfur content increase from 0.6% at the base to nearly 12% in the top lithotype. Pyrite in the high-sulfur lithotype is a complex mixture of sub- to few-micron syngenetic forms and massive epigenetic growths. The stratigraphically higher Pond Creek coal bed is extensively mined in portions of the coal field. Although generally low in sulfur, in northern Pike and southern Martin counties the top one-third can have up to 6% sulfur. Uniformly low-sulfur profiles can occur within a few hundred meters of high-sulfur coal. Pyrite occurs as 10-50 [mu]m euhedra and coarser massive forms. In this case, sulfur distribution may have been controlled by sandstone channels in the overlying sediments. High-sulfur zones in the lower bench of the Fire Clay coal bed, the stratigraphically highest coal bed considered here, are more problematical. The lower bench, which is of highly variable thickness and quality, generally is overlain by a kaolinitic flint clay, the consequence of a volcanic ash fall into the peat swamp. In southern Perry and Letcher counties, a black, illite-chlorite clay directly overlies the lower bench. General lack of lateral continuity of lithotypes in the lower bench suggests that the precursor swamp consisted of discontinuous peat-forming environments that were spatially variable and regularly inundated by sediments. Some of the peat-forming areas may have been marshlike in character.

Hower, J.C.; Graham, U.M. (Univ. of Kentucky Center for Applied Energy Research, Lexington, KY (United States)); Eble, C.F. (Kentucky Geological Survey, Lexington, KY (United States))

1993-08-01T23:59:59.000Z

235

Coal combustion system  

DOE Patents [OSTI]

In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN); Tramm, Peter C. (Indianapolis, IN)

1988-01-01T23:59:59.000Z

236

Idaho Nuclear Technology and Engineering Center (INTEC) (formerly ICPP) ash reutilization study  

SciTech Connect (OSTI)

Since 1984, the coal-fired plant at the Idaho Nuclear Technology and Engineering Center (INTEC, formerly Idaho Chemical Processing Plant) has been generating fly ash at a rate of approximately 1,000 tons per year. This ash is hydrated and placed in an ash bury pit near the coal-fired plant. The existing ash bury pit will be full in less than 1 year at its present rate of use. A conceptual design to build a new ash bury pit was completed, and the new pit is estimated to cost $1.7 million. This report evaluates ash reutilization alternatives that propose to eliminate this waste stream and save the $1.7 million required to build a new pit. The alternatives include using ash for landfill day cover, concrete admixture, flowable fill, soil stabilization, waste remediation, and carbon recovery technology. Both physical and chemical testing, under the guidance of the American Society for Testing and Materials, have been performed on ash from the existing pit and from different steps within the facility`s processes. The test results have been evaluated, compared to commercial ash, and are discussed as they relate to reutilization alternatives. This study recommends that the ash be used in flowable fill concrete for Deactivation and Demolition work at the Idaho National Engineering and Environmental Laboratory.

Langenwalter, T.; Pettet, M.; Ochoa, R.; Jensen, S.

1998-05-01T23:59:59.000Z

237

Compositional characteristics of the Fire Clay coal bed in a portion of eastern Kentucky  

SciTech Connect (OSTI)

The Fire Clay (Hazard No. 4) coal bed (Middle Pennsylvanian Breathitt Formation) is one of the most extensively mined coal in eastern Kentucky. The coal is used for metallurgical and steam end uses and, with its low sulfur content, should continue to be a prime steam coal. This study focuses on the petrology, mineralogy, ash geochemistry, and palynology of the coal in an eight 7.5-min quadrangle area of Leslie, Perry, Knott, and Letcher counties.

Hower, J.C.; Andrews, W.M. Jr.; Rimmer, S.M. (Univ. of Kentucky, Lexington (United States)); Eble, C.F. (Kentucky Geological Survey, Lexington (United States))

1991-08-01T23:59:59.000Z

238

Influence of coal quality parameters on utilization of high-sulfur coals: Examples from Springfield (western Kentucky No. 9) coal bed  

SciTech Connect (OSTI)

The Springfield (Western Kentucky No. 9) coal bed is the most important energy resource in the Western Kentucky coalfield (Eastern Interior coalfield), accounting for over 30 million tons of annual production from remaining resources of over 9 billion tons. For many coal quality parameters, the quality of the coal bed is relatively consistent throughout the region. For example, the Springfield has about 80-85% vitrinite, 10% ash, and 3.5-4.5% total sulfur at most sites in the coalfield. However, coal quality variation is more than just the changes in ash and sulfur. As demonstrated by the Springfield coal bed, it is a complex interaction of related and unrelated variables many of which directly affect utilization of the coal. Significant, though generally predictable, changes are observed in other parameters. Comparison of data from the Millport (Muhlenberg and Hopkins Countries), Providence (Hopkins and Webster Counties), and Waverly (Union County) 7{1/2} Quadrangles illustrated such variations.

Griswold, T.B.; Hower, J.C.; Cobb, J.C. (Kentucky Energy Cabinet, Lexington (USA))

1989-08-01T23:59:59.000Z

239

Caloocan: The War-Prayer Answered  

E-Print Network [OSTI]

opposition to exploitative wars, now and in the future, willman in the back. New Perspectives on “The War-Prayer” Essayson “The War-Prayer” Treason. . .encouraging insurgents. . .

Brock, Darryl

2009-01-01T23:59:59.000Z

240

Anti-War Statements in 'the War-Prayer' and 'the Private History of a Campaign That Failed'  

E-Print Network [OSTI]

Penguin, 1994. Twain, Mark. “The War-Prayer. ” War-Prayer” Essayson “The War-Prayer” Anti-War Statements in “The War-Prayer”

Oran, Maggie

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "war coal ash" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Clean Coal Diesel Demonstration Project  

SciTech Connect (OSTI)

A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

Robert Wilson

2006-10-31T23:59:59.000Z

242

Pelletization of fine coals. Final report  

SciTech Connect (OSTI)

Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

Sastry, K.V.S.

1995-12-31T23:59:59.000Z

243

Ultrasonic ash/pyrite liberation. Final technical report  

SciTech Connect (OSTI)

The objective of this project was to develop a coal preparation concept which employed ultrasonics to precondition coal prior to conventional or advanced physical beneficiation processes such that ash and pyrite separation were enhanced with improved combustible recovery. Research activities involved a series of experiments that subjected three different test coals, Illinois No. 6, Pittsburgh No. 8, and Upper Freeport, ground to three different size fractions (28 mesh {times} 0, 200 mesh {times} 0, and 325 mesh {times} 0), to a fixed (20 kHz) frequency ultrasonic signal prior to processing by conventional and microbubble flotation. The samples were also processed by conventional and microbubble flotation without ultrasonic pretreatment to establish baseline conditions. Product ash, sulfur and combustible recovery data were determined for both beneficiation processes.

Yungman, B.A.; Buban, K.S.; Stotts, W.F.

1990-06-01T23:59:59.000Z

244

Intra- and inter-unit variation in fly ash petrography: Examples from a western Kentucky power station  

SciTech Connect (OSTI)

Fly ash was collected from eight mechanical and ten baghouse hoppers at each of twin 150-MW wall-fired units in a western Kentucky power station. The fuel burned at that time was a blend of low-sulfur, high volatile bituminous Central Appalachian coals. The baghouse ash showed less variation between units than the mechanical units. The coarser mechanical fly ash showed significant differences in the amount of total carbon and in the ratio of isotropic coke to both total carbons and total coke; the latter excluding inertinite and other unburned, uncoked coal. There was no significant variation in ratios of inorganic fly ash constituents. The inter-unit differences in the amount and forms of mechanical fly ash carbon appear to be related to differences in pulverizer efficiency, leading to greater amounts of coarse coal, therefore unburned carbon, in one of the units.

Hower, J.C.; Rathbone, R.F. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Goodman, J. [Prestonburg High School, KY (United States)

1998-12-31T23:59:59.000Z

245

EFFECTS OF FLY ASH ON MERCURY OXIDATION DURING POST COMBUSTION CONDITIONS  

SciTech Connect (OSTI)

Tests were performed in simulated flue gas streams using fly ash from the electrostatic precipitators of two full-scale utility boilers. One fly ash was from a Powder River Basin (PRB) coal, while the other was from Blacksville coal. Elemental Hg was injected upstream from samples of fly ash loaded onto filters housed in an oven at 120 or 180 C. Concentrations of oxidized and elemental Hg downstream from the filters were determined using the Ontario Hydro method. The gas stream composition and whether or not ash was present in the gas stream were the two most important variables affecting Hg oxidation. The presence of HCl, NO, NO{sub 2}, and SO{sub 2} were all important with respect to Hg oxidation, with NO{sub 2} and HCl being the most important. The presence of NO suppressed Hg oxidation in these tests. Although the two fly ashes were chemically and mineralogically diverse, there were generally no large differences in catalytic potential (for oxidizing Hg) between them. Similarly, no ash fraction appeared to be highly catalytic relative to other ash fractions. This includes fractions enriched in unburned carbon and fractions enriched in iron oxides. Although some differences of lesser magnitude were observed in the amount of oxidized Hg formed, levels of oxidized Hg generally tracked well with the surface areas of the different ashes and ash fractions. Therefore, although the Blacksville fly ash tended to show slightly more catalytic activity than the PRB fly ash, this could be due to the relatively high surface area of that ash. Similarly, for Blacksville fly ash, using nonmagnetic ash resulted in more Hg oxidation than using magnetic ash, but this again tracked well with the relative surface areas of the two ash fractions. Test results suggest that the gas matrix may be more important in Hg oxidation chemistry than the fly ash composition. Combustion tests were performed in which Blacksville and PRB fly ashes were injected into filtered (via a baghouse with Teflon bags) flue gas obtained while firing PRB coal in a 35 kW combustor. The Ontario Hydro method was used to determine the Hg speciation after fly ash injection. Wall effects in the combustor complicated interpretation of testing data, although a number of observations could still be made. The amount of Hg collected in the Ontario Hydro impingers was lower than anticipated, and is probably due to sorption of Hg by the fly ash. While firing PRB coal without any ash injection, the percent oxidized Hg in the gas stream was fairly high (average of 63%). The high levels of vapor phase oxidized Hg in these base line tests may be due to catalytic effects from the refractory materials in the combustor. When PRB fly ash was injected into a filtered PRB flue gas stream, the percentage of oxidized Hg in the gas stream decreased dramatically. Decreases in the percentage of oxidized Hg were also observed while injecting Blacksville fly ash, but to a lesser extent. Injecting whole Blacksville fly ash into the filtered PRB flue gas appeared to result in greater concentrations of oxidized Hg relative to the tests where whole PRB fly ash was injected. However, because the Blacksville fly ash has a relatively high surface area, this may be only a surface area effect.

Glenn A. Norton; Hongqun Yang; Robert C. Brown; Dennis L. Laudal; Grant E. Dunham; John Erjavec; Joseph M. Okoh

2002-01-31T23:59:59.000Z

246

Proceedings of the 7th international coal testing conference  

SciTech Connect (OSTI)

This book contains the proceedings of the 7th international coal testing conference. Topics covered include: a continuous program for sample system evaluation; coal ash analysis by inductively coupled plasma; bias testing of mechanical sampling systems; physical implementation; and statistical approaches to laboratory quality control.

Not Available

1989-01-01T23:59:59.000Z

247

Coal liquefaction with preasphaltene recycle  

DOE Patents [OSTI]

A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

Weimer, Robert F. (Allentown, PA); Miller, Robert N. (Allentown, PA)

1986-01-01T23:59:59.000Z

248

Coal waste seen as valuable resource Published: March. 29, 2011 at 8:09 PM  

E-Print Network [OSTI]

Coal waste seen as valuable resource Published: March. 29, 2011 at 8:09 PM ANAHEIM, Calif., March 29 (UPI) -- Fly ash, a byproduct of coal-burning electric power plants, could save billions. More than 450 coal-burning electric power plants in the United States produce about 130 million tons

Belogay, Eugene A.

249

Modeling the behavior of selenium in Pulverized-Coal Combustion systems  

SciTech Connect (OSTI)

The behavior of Se during coal combustion is different from other trace metals because of the high degree of vaporization and high vapor pressures of the oxide (SeO{sub 2}) in coal flue gas. In a coal-fired boiler, these gaseous oxides are absorbed on the fly ash surface in the convective section by a chemical reaction. The composition of the fly ash (and of the parent coal) as well as the time-temperature history in the boiler therefore influences the formation of selenium compounds on the surface of the fly ash. A model was created for interactions between selenium and fly ash post-combustion. The reaction mechanism assumed that iron reacts with selenium at temperatures above 1200 C and that calcium reacts with selenium at temperatures less than 800 C. The model also included competing reactions of SO{sub 2} with calcium and iron in the ash. Predicted selenium distributions in fly ash (concentration versus particle size) were compared against measurements from pilot-scale experiments for combustion of six coals, four bituminous and two low-rank coals. The model predicted the selenium distribution in the fly ash from the pilot-scale experiments reasonably well for six coals of different compositions. (author)

Senior, Constance; Otten, Brydger Van; Wendt, Jost O.L.; Sarofim, Adel [Reaction Engineering International, 77 W. 200 South, Salt Lake City, UT 84101 (United States)

2010-11-15T23:59:59.000Z

250

INVESTIGATION OF AMMONIA ADSORPTION ON FLY ASH DUE TO INSTALLATION OF SELECTIVE CATALYTIC REDUCTION SYSTEMS  

SciTech Connect (OSTI)

This report summarizes an investigation of the potential impacts associated with the utilization of selective catalytic reduction (SCR) systems at coal-fired power plants. The study was sponsored by the U.S. Department of Energy Emission Control By-Products Consortium, Dominion Generation, the University of Kentucky Center for Applied Energy Research and GAI Consultants, Inc. SCR systems are effective in reducing nitrogen oxides (NOx) emissions as required by the Clean Air Act (CAA) Amendments. However, there may be potential consequences associated with ammonia contamination of stack emissions and combustion by-products from these systems. Costs for air quality, landfill and pond environmental compliance may increase significantly and the marketability of ash may be seriously reduced, which, in turn, may also lead to increased disposal costs. The potential impacts to air, surface water, groundwater, ash disposal, ash utilization, health and safety, and environmental compliance can not be easily quantified based on the information presently available. The investigation included: (1) a review of information and data available from published and unpublished sources; (2) baseline ash characterization testing of ash samples produced from several central Appalachian high-volatile bituminous coals from plants that do not currently employ SCR systems in order to characterize the ash prior to ammonia exposure; (3) an investigation of ammonia release from fly ash, including leaching and thermal studies; and (4) an evaluation of the potential impacts on plant equipment, air quality, water quality, ash disposal operations, and ash marketing.

G.F. Brendel; J.E. Bonetti; R.F. Rathbone; R.N. Frey Jr.

2000-11-01T23:59:59.000Z

251

Gewaltiger war nur der Urknall  

E-Print Network [OSTI]

Gewaltiger war nur der Urknall Das soll der Auf- macher werden KONGRESSBERICHT 60 M A X P L A N C K tatsächlich einen Gammablitz. Allerdings war der nicht von der Erde gekommen, son- dern aus dem Weltraum. Es extraterrestrische Physik in Garching beteiligt waren, in eine Erdumlaufbahn brachte. Das Ergeb- nis war absolut

252

SECOND WORLD WAR THE UNIVERSITY  

E-Print Network [OSTI]

RECORD OF SERVICE SECOND WORLD WAR THE UNIVERSITY OF BRITISH COLUMBIA VANCOUVER #12;IN MEMORIAM #12$,T'r 113a,. #12;#12;RECORD OF SERVICE IN THE SECOND WORLD WAR THEUNIVERSITY OF BRITISHCOLUMBIA A Supplement to the University of British Columbia War Memorial Manuscript Record. Vancouver, Canada, 1955. #12;Printed

Handy, Todd C.

253

MARKET ASSESSMENT AND TECHNICAL FEASIBILITY STUDY OF PRESSURIZED FLUIDIZED BED COMBUSTION ASH USE  

SciTech Connect (OSTI)

Western Research Institute, in conjunction with the Electric Power Research Institute, Foster Wheeler International, Inc. and the US Department of Energy, has undertaken a research and demonstration program designed to examine the market potential and the technical feasibility of ash use options for PFBC ashes. Ashes from the Foster Wheeler Energia Oy pilot-scale circulating PFBC tests in Karhula, Finland, combusting (1) low-sulfur subbituminous and (2) high-sulfur bituminous coal, and ash from the AEP's high-sulfur bituminous coal-fired bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing at WR1. The technical feasibility study examined the use of PFBC ash in construction-related applications, including its use as a cementing material in concrete and use in cement manufacturing, fill and embankment materials, soil stabilization agent, and use in synthetic aggregate production. Testing was also conducted to determine the technical feasibility of PFBC ash as a soil amendment for acidic and sodic problem soils and spoils encountered in agricultural and reclamation applications. The results of the technical feasibility testing indicated the following conclusions. PFBC ash does not meet the chemical requirements as a pozzolan for cement replacement. However, it does appear that potential may exist for its use in cement production as a pozzolan and/or as a set retardant. PFBC ash shows relatively high strength development, low expansion, and low permeability properties that make its use in fills and embankments promising. Testing has also indicated that PFBC ash, when mixed with low amounts of lime, develops high strengths, suitable for soil stabilization applications and synthetic aggregate production. Synthetic aggregate produced from PFBC ash is capable of meeting ASTM/AASHTO specifications for many construction applications. The residual calcium carbonate and calcium sulfate in the PFE3C ash has been shown to be of value in making PFBC ash a suitable soil amendment for acidic and sodic problem soils and mine spoils. In conclusion, PFBC ash represents a viable material for use in currently established applications for conventional coal combustion ashes. As such, PFBC ash should be viewed as a valuable resource, and commercial opportunities for these materials should be explored for planned PFBC installations.

A.E. Bland; T.H. Brown

1997-04-01T23:59:59.000Z

254

Case study of the conversion of tangential- and wall-fired units to low-NO{sub x} combustion: Impact on fly ash quality  

SciTech Connect (OSTI)

Conversion of boilers to low-NO{sub x} combustion can influence fly ash quality in terms of the amount and forms of carbon, the overall fly ash fineness, and the relative amount of glass versus crystalline inorganic phases. All of these factors can influence the potential for a fly ash to be marketed for utilization. In this study, three coal-fired combustors, two tangentially fired and one wall-fired, all burning high-sulfur Illinois coal at the same power plant, were studied before and after conversion to low-NO{sub x} combustion. In all cases, the post-conversion fly ash was higher in carbon than the pre-conversion ash from the same unit. The fly ashes in at least two of the units would appear to have post-conversion ashes which still fall within the regional guidelines for the limit of carbon (or loss on ignition).

Hower, J.C.; Rathbone, R.F.; Robl, T.L.; Thomas, G.A. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research] [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Haeberlin, B.O. [LG and E Energy Corp., Louisville, KY (United States)] [LG and E Energy Corp., Louisville, KY (United States); Trimble, A.S. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research] [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; [Franklin County High School, Frankfort, KY (United States)

1998-07-01T23:59:59.000Z

255

Modeling the formation and size distribution of fly ash  

SciTech Connect (OSTI)

A set of mathematical models has been developed to predict the size distribution of fly ash particles formed in pulverized coal combustion. The large particle mode of the size distribution, typically centered about 10 to 20 ..mu..m, is predicted by a simple breakup model that is based on the complete coalescence of molten mineral inclusions within fragments of the devolatilized coal char. The ultrafine particle mode, that is typically centered about 0.1 to 0.2 ..mu..m, is modeled in terms of ash volatilization, nucleation, and coagulation. Silica and alumina are reduced to volatile suboxides through reactions at the char surface. The volatile suboxides are transported from the char surface where they are oxidized back to the stable oxides in the bulk gas, and then nucleated in accordance with homogeneous nucleation theory. The ultrafine nuclei coagulate in accordance with Brownian coagulation theory. The predicted particle size spectra have been compared to measured size distributions from a pilot-scale combustor and a full-scale utility boiler. Considering the disproportionate loss of coarse particles in the pilot-scale unit, the agreement between the predicted and measured size distributions was considered reasonably good. Both the predicted ultrafine and large particle modes agreed reasonably well with the measured particle size distribution for the full scale boiler. The validated computer models were used to study the effect of changes in the coal ash content, coal particle size, and the combustion flame temperature.

Dahlin, R.S.

1985-01-01T23:59:59.000Z

256

EFFECTS OF FLY ASH ON MERCURY OXIDATION DURING POST COMBUSTION CONDITIONS  

SciTech Connect (OSTI)

Tests were performed in simulated flue gas streams using two fly ash samples from the electrostatic precipitators of two full-scale utility boilers. One fly ash was derived from a Powder River Basin (PRB) coal, while the other was derived from Blacksville coal (Pittsburgh No. 8 seam). The tests were performed at temperatures of 120 and 180 C under different gas compositions using whole fly ash samples as well as magnetic and nonmagnetic concentrates from sized fly ash. Only the Blacksville ash contained magnetic phases. The whole and fractionated fly ash samples were analyzed for morphology, chemical composition, mineralogical composition, total organic carbon, porosity, and surface area. Mineralogically, the Blacksville ash was composed predominantly of magnetite, hematite, quartz, and mullite, while the PRB ash contained mostly quartz with lesser amounts of lime, periclase, and calcium aluminum oxide. The iron oxides in the Blacksville ash were concentrated almost entirely in the largest size fraction. As anticipated, there was not a clean separation of magnetic (Fe-rich) and nonmagnetic (aluminosilicate-rich) phases for the Blacksville ash. The Blacksville ash had a significantly higher surface area and a much higher unburned carbon content than the PRB ash. Elemental mercury (Hg) streams were injected into the simulated flue gas and passed over filters (housed in a convection oven) loaded with fly ash. Concentrations of total, oxidized, and elemental Hg downstream from the ash samples were determined by the Ontario Hydro Method. The gas stream composition and whether or not ash was present in the gas stream were the two most important variables. Based on the statistical analyses, the presence of HCl, NO, NO{sub 2}, and SO{sub 2} and all two-way gas interactions were significant. In addition, it appears that even four-factor interactions between those gases are significant. The HCl, NO{sub 2}, and SO{sub 2} were critical gases resulting in Hg oxidation, while the presence of NO appeared to suppress oxidation. The Blacksville fly ash tended to show slightly more catalytic activity than the PRB fly ash, but this could be largely due to the higher surface area of the Blacksville ash. Temperature was not a statistically important factor. The magnetic (Fe-rich) phases did not appear to be more catalytically active than the nonmagnetic phases, and unburned carbon did not appear to play a critical role in oxidation chemistry.

Unknown

2000-10-01T23:59:59.000Z

257

High-performance, high-volume fly ash concrete  

SciTech Connect (OSTI)

This booklet offers the construction professional an in-depth description of the use of high-volume fly ash in concrete. Emphasis is placed on the need for increased utilization of coal-fired power plant byproducts in lieu of Portland cement materials to eliminate increased CO{sub 2} emissions during the production of cement. Also addressed is the dramatic increase in concrete performance with the use of 50+ percent fly ash volume. The booklet contains numerous color and black and white photos, charts of test results, mixtures and comparisons, and several HVFA case studies.

NONE

2008-01-15T23:59:59.000Z

258

Deashing of coal liquids by sonically assisted filtration  

SciTech Connect (OSTI)

This project seeks to improve the effectiveness and reduce the cost of coal liquefaction by novel applications of sonic and ultrasonic energy. The specific purpose of this project is to develop and improve means for the economical removal of dispersed solid particles of ash, unreacted coal, and spent catalyst from direct and indirect coal liquefaction resids by using sonic or ultrasonic waves. Product streams containing solids are generated in both direct and indirect coal liquefaction processes. Direct coal liquefaction processes generate liquid products which contain solids including coal-originated mineral matter, unreacted coal, and spent dispersed catalyst. The removal of these solids from a product stream is one of the most difficult problems in direct coal liquefaction processes. On this report, results are discussed for sonically assisted crossflow filtration of V-1067 resid, diluted with No. 2 fuel oil, and sonically assisted batch filtrations of solids concentrates from continuous cross-flow filtration experiments.

Slomka, B.J.

1994-10-01T23:59:59.000Z

259

Petrographic and geochemical anatomy of lithotypes from the Blue Gem coal bed, Southeastern Kentucky  

SciTech Connect (OSTI)

The nature of the association of major, minor, and trace elements with coal has been the subject of intensive research by coal scientists (Swaine; and references cited therein). Density gradient centrifugation (DGC) offers a technique with which ultrafine coal particles can be partitioned into a density spectrum, portions of which represent nearly pure monomaceral concentrates. DGC has been typically conducted on demineralized coals assuring, particularly at lower specific gravities, that the resulting DGC fractions would have very low ash contents. In order to determine trends in elemental composition, particularly with a view towards maceral vs. mineral association, it is necessary to avoid demineralization. To this end the low-ash, low-sulfur Blue Gem coal bed (Middle Pennsylvanian Breathitt Formation) from Knox County, Kentucky, was selected for study. The objective of this study was to determine the petrography and chemistry, with particular emphasis on the ash geochemistry, of DGC separates of lithotypes of the Blue Gem coal bed.

Hower, J.C.; Taulbee, D.N.; Morrell, L.G. [Univ. of Kentucky, Lexington, KY (United States)] [and others

1994-12-31T23:59:59.000Z

260

Coal pump  

DOE Patents [OSTI]

A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "war coal ash" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Environmental data energy technology characterizations: coal  

SciTech Connect (OSTI)

This document describes the activities leading to the conversion of coal to electricity. Specifically, the activities consist of coal mining and beneficiation, coal transport, electric power generation, and power transmission. To enhance the usefulness of the material presented, resource requirements, energy products, and residuals for each activity area are normalized in terms of 10/sup 12/ Btus of energy produced. Thus, the total effect of producing electricity from coal can be determined by combining the residuals associated with the appropriate activity areas. Emissions from the coal cycle are highly dependent upon the type of coal consumed as well as the control technology assigned to the activity area. Each area is assumed to be equipped with currently available control technologies that meet environmental regulations. The conventional boiler, for example, has an electrostatic precipitator and a flue gas desulfurization scrubber. While this results in the removal of most of the particulate matter and sulfur dioxide in the flue gas stream, it creates other new environmental residuals -- solid waste, sludge, and ash. There are many different types of mined coal. For informational purposes, two types from two major producing regions, the East and the West, are characterized here. The eastern coal is typical of the Northern Appalachian coal district with a high sulfur and heat content. The western coal, from the Powder River Basin, has much less sulfur, but also has a substantially lower heating value.

Not Available

1980-04-01T23:59:59.000Z

262

Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment. Quarterly technical report No. 11, March 1, 1989--May 31, 1989  

SciTech Connect (OSTI)

Our results on photophoresis reveal significant transport effects, mainly for particles which are carbonaceous (char-like, soot-like) rather than ash-like. Figure 2 shows the predicted dimensionless transport coefficient (proportional to the ordinary Stanton number for mass transfer) as a function of radiation/convective flux ratio and carbonaceous particle radius for laminar boundary layer flow past a wall cooled to 70% of the mainstream temperature, subjected to a radiative energy spectrum appropriate to a black-body source at ca. 1800K. One sees that large effects on the particle deposition rate are produced if the radiative flux is comparable to or exceeds the ordinary (Fourier) energy flux. We are now extending this work to include the effects of inevitable particle asymmetries, including agglomerate (shape) effects, and the role that energy transfer (eg. radiative cooling of larger particles in a population) might play in the coagulation dynamics and deposition dynamics of such aerosol populations.

Rosner, D.E.

1989-06-01T23:59:59.000Z

263

Optimizing recovery using on-line ash analyzers or sorting for dollars  

SciTech Connect (OSTI)

The quest for profitability in the complex coal industry requires continual examination of common practices looking for better and more cost effective methods of performing these tasks. As the available coal reserves become more difficult to mine and the quality decreases, this examination process grows in importance. Over the past fifteen years, we have all seen major changes in the methods used to mine, clean and load coal in an attempt to increase the bottom line and proliferate a safer work place. The long wall mining method has greatly increased the profitably of the larger mines that have the reserves and the seams suitable for this method. Bigger and faster conveyor belts have increased loading capacities and decreased time spent performing the task. New technology in the cleaning and preparation of coal has also assisted in increasing yield and thus decreasing the final cost of a ton of coal. What about the smaller mines that do not have the mining conditions or reserves for a longwall or the monetary resources to upgrade belt lines and preparation plants, they to must remain profitable. The on-line ash analyzer is one answer that is not only for the smaller mines but can show quick and substantial returns for the larger operations. The on-line ash analyzer is a nuclear device that is mounted directly on the conveyor belt to produce an instantaneous ash analysis on the coal as it moves beneath the detector. The on-line ash analyzer is described.

Litz, P.

1995-08-01T23:59:59.000Z

264

Characterization of feed coal and coal combustion products from power plants in Indiana and Kentucky  

SciTech Connect (OSTI)

The US Geological Survey, Kentucky Geological Survey, and the University of Kentucky Center for Applied Energy Research are collaborating with Indiana and Kentucky utilities to determine the physical and chemical properties of feed coal and coal combustion products (CCP) from three coal-fired power plants. These three plants are designated as Units K1, K2, and I1 and burn high-, moderate-, and low-sulfur coals, respectively. Over 200 samples of feed coal and CCP were analyzed by various chemical and mineralogical methods to determine mode of occurrence and distribution of trace elements in the CCP. Generally, feed coals from all 3 Units contain mostly well-crystallized kaolinite and quartz. Comparatively, Unit K1 feed coals have higher amounts of carbonates, pyrite and sphalerite. Unit K2 feed coals contain higher kaolinite and illite/muscovite when compared to Unit K1 coals. Unit I1 feed coals contain beta-form quartz and alumino-phosphates with minor amounts of calcite, micas, anatase, and zircon when compared to K1 and K2 feed coals. Mineralogy of feed coals indicate that the coal sources for Units K1 and K2 are highly variable, with Unit K1 displaying the greatest mineralogic variability; Unit I1 feed coal however, displayed little mineralogic variation supporting a single source. Similarly, element contents of Units K1 and K2 feed coals show more variability than those of Unit I1. Fly ash samples from Units K1 and K2 consist mostly of glass, mullite, quartz, and spines group minerals. Minor amounts of illite/muscovite, sulfates, hematite, and corundum are also present. Spinel group minerals identified include magnetite, franklinite, magnesioferrite, trevorite, jacobisite, and zincochromite. Scanning Electron Microscope analysis reveals that most of the spinel minerals are dendritic intergrowths within aluminum silicate glass. Unit I1 fly ash samples contain glass, quartz, perovskite, lime, gehlenite, and apatite with minor amounts of periclase, anhydrite, carbonates, pyroxenes, and spinels. The abundant Ca mineral phases in the Unit I1 fly ashes are attributed to the presence of carbonate, clay and phosphate minerals in the coal.

Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.; O'Connor, J.T.; Brownfield, I.K.

1999-07-01T23:59:59.000Z

265

Development of a stack plume opacity index for subbituminous coal-fired utility boilers  

SciTech Connect (OSTI)

Powder River Basin subbituminous coals were burned using conventional and low-NO{sub x} combustion conditions in a drop-tube furnace equipped with a multicyclone ash collection device. Fine ash fractions (< 2 {micro}m in diameter) collected during the tests were analyzed using computer-controlled scanning electron microscopy (CCSEM). Advances in particulate sample preparation methods enabled the CCSEM analysis of individual ash particles with submicron diameters as small as 0.1 {micro}m. The fine ash samples produced from the conventional combustion of coal consisted of discrete spherical particles, whereas particle agglomerates were characteristic of the low-NO{sub x} ash samples. Particle-size distributions of the low-NO{sub x} fine ash fractions were coarser because of the agglomeration. Theoretical light-scattering calculations indicate that for a given coal, the ash produced in low-NO{sub x} conditions causes less opacity as compared to conventional combustion conditions. The following phases were abundant in the ashes: Ca aluminosilicate, Ca aluminate, aluminosilicate, silica, (Ca, Mg)O, CaSO{sub 4}, Na{sub 2} SO{sub 4}, and (Na, K)Cl. Primary mechanisms that produced the fine ash include the thermal metamorphism of small (0.1 to 5 {micro}m) mineral grains and the vaporization and subsequent condensation of organically bound Na, Mg, and Ca, Empirical equations for estimating the concentration of fine ash produced from burning subbituminous coals were formulated into an opacity index based on CCSEM coal mineral and fine ash analyses and on drop-tube furnace testing results. The effects of ash electrical resistivity on electrostatic precipitator collection efficiency are also considered in the index.

Galbreath, K.C.; Zygarlicke, C.J.; McCollor, D.P.; Toman, D.L. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center

1995-12-31T23:59:59.000Z

266

Fine Anthracite Coal Washing Using Spirals  

SciTech Connect (OSTI)

The spiral performed well in cleaning the coarse 8 x 16 mesh size fraction, as demonstrated by the Ep ranging from 0.091 to 0.177. This is in line with typical spiral performance. In addition, the presence of the coarser size fraction did not significantly affect spiral performance on the typical 16 x 100 mesh fraction, in which the Ep ranged from 0.144 to 0.250. Changes in solids concentration and flow rate did not show a clear correlation with spiral performance. However, for difficult-to-clean coals with high near-gravity material, such as this anthracite, a single-stage spiral cleaning such a wide size fraction may not be able to achieve the clean coal ash and yield specifications required. In the first place, while the performance of the spiral on the coarse 8 x 16 mesh fraction is good with regard to Ep, the cutpoints (SG50s) are high (1.87 to 1.92), which may result in a clean coal with a higher-than-desired ash content. And second, the combination of the spiral's higher overall cutpoint (1.80) with the high near-gravity anthracite results in significant misplaced material that increases the clean coal ash error. In a case such as this, one solution may be to reclean the clean coal and middlings from the first-stage spiral in a second stage spiral.

R.P. Killmeyer; P.H. Zandhuis; M.V. Ciocco; W. Weldon; T. West; D. Petrunak

2001-05-31T23:59:59.000Z

267

An efficient process for recovery of fine coal from tailings of coal washing plants  

SciTech Connect (OSTI)

Gravity concentration of hard lignites using conventional jigs and heavy media separation equipment is prone to produce coal-rich fine tailings. This study aims to establish a fine coal recovery process of very high efficiency at reasonable capital investment and operational costs. The technical feasibility to upgrade the properties of the predeslimed fine refuse of a lignite washing plant with 35.9% ash content was investigated by employing gravity separation methods. The laboratory tests carried out with the combination of shaking table and Mozley multi-gravity separator (MGS) revealed that the clean coal with 18% ash content on dry basis could be obtained with 58.9% clean coal recovery by the shaking table stage and 4.1% clean coal recovery by MGS stage, totaling to the sum of 63.0% clean coal recovery from a predeslimed feed. The combustible recovery and the organic efficiency of the shaking table + MGS combination were 79.5% and 95.5%, respectively. Based on the results of the study, a flow sheet of a high-efficiency fine coal recovery process was proposed, which is also applicable to the coal refuse pond slurry of a lignite washing plant.

Cicek, T.; Cocen, I.; Engin, V.T.; Cengizler, H. [Dokuz Eylul University, Izmir (Turkey). Dept. for Mining Engineering

2008-07-01T23:59:59.000Z

268

STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH  

SciTech Connect (OSTI)

The overall objective of the present project is to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific research issues to be addressed include: the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; the effect of various low-NOx firing modes on ash properties and adsorptivity; and the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. This first project period, experiments were carried out to better understand the fundamental nature of the ozonation effect on ash. Carbon surfaces were characterized by surfactant adsorption, and by X-ray Photoelectron Spectroscopy before and after oxidation, both by air at 440 C and by ozone at room temperature. The results strongly suggest that the beneficial effect of ozonation is in large part due to chemical modification of the carbon surfaces.

Robert Hurt; Eric Suuberg; John Veranth

2001-12-26T23:59:59.000Z

269

STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH  

SciTech Connect (OSTI)

The overall objective of the present project was to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific issues addressed included: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity based on pilot-plant studies; and (3) the kinetics and mechanism of ash ozonation. This laboratory data has provided scientific and engineering support and underpinning for parallel process development activities. The development work on the ash ozonation process has now transitioned into a scale-up and commercialization project involving a multi-industry team and scheduled to begin in 2004. This report describes and documents the laboratory and pilot-scale work in the above three areas done at Brown University and the University of Utah during this three-year project.

Robert Hurt; Eric Suuberg; John Veranth; Xu Chen; Indrek Kulaots

2004-02-13T23:59:59.000Z

270

Catalytic steam gasification reactivity of HyperCoals produced from different rank of coals at 600-775{degree}C  

SciTech Connect (OSTI)

HyperCoal is a clean coal with ash content <0.05 wt %. HyperCoals were prepared from a brown coal, a sub-bituminous coal, and a bituminous raw coal by solvent extraction method. Catalytic steam gasification of these HyperCoals was carried out with K{sub 2}CO{sub 3} at 775, 700, 650, and 600 {degree}C, and their rates were compared. HyperCoals produced from low-rank coals were more reactive than those produced from the high-rank coals. XRD measurements were carried out to understand the difference in gasification reactivity of HyperCoals. Arrhenius plot of ln (k) vs 1/T in the temperature range 600-825{degree}C was a curve rather than a straight line. The point of change was observed at 700{degree}C for HyperCoals from low-rank coals and at 775{degree}C for HyperCoals from high-rank coals. Using HyperCoal produced from low-rank coals as feedstock, steam gasification of coal may be possible at temperatures less than 650{degree}C. 22 refs., 6 figs., 2 tabs.

Atul Sharma; Ikuo Saito; Toshimasa Takanohashi [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan). Advanced Fuel Group, Energy Technology Research Institute

2008-11-15T23:59:59.000Z

271

Editors' Introduction: New Perspectives on 'The War-Prayer'  

E-Print Network [OSTI]

on the Philippine-American War, ed. Jim Zwick (Syracuse:Philippine-American War, and War: The Philippine-American War

Fishkin, Shelley Fisher; Tatsumi, Takayuki

2009-01-01T23:59:59.000Z

272

Power, policy and war : explaining the Iran-Iraq War.  

E-Print Network [OSTI]

??The failure of traditional analytical tools in successfully predicting the end of the Cold War has seen a series of competing methods seeking to explain… (more)

Donovan, Jerome Denis

2008-01-01T23:59:59.000Z

273

Petrography and chemistry of high-carbon fly ash from the Shawnee Power Station, Kentucky  

SciTech Connect (OSTI)

The Shawnee power station in western Kentucky consists of ten 150-MW units, eight of which burn low-sulfur (< 1 wt %) eastern Kentucky and central West Virginia coal. The other units burn medium- and high-sulfur (> 1 wt %) coal in an atmospheric fluidized-bed combustion unit and in a research unit. The eight low-sulfur coal units were sampled in a 1992 survey of Kentucky utilities. Little between-unit variation is seen in the ash-basis major oxide and minor element chemistry. The carbon content of the fly ashes varies from 5 to 25 wt %. Similarly, the isotropic and anisotropic coke in the fly ash varies from 6% to 42% (volume basis). Much of the anisotropic coke is a thin-walled macroporous variety, but there is a portion that is a thick-walled variety similar to a petroleum coke.

Hower, J.C.; Thomas, G.A.; Robertson, J.D.; Wong, A.S. [Univ. of Kentucky, Lexington, KY (United States); Clifford, D.S.; Eady, J.D. [Tennessee Valley Authority, Chattanooga, TN (United States)

1996-01-01T23:59:59.000Z

274

Petrography and chemistry of fly ash from the Shawnee Power Station, Kentucky  

SciTech Connect (OSTI)

The Shawnee Power Station in western Kentucky consists of ten 150 MW units, eight of which burn low-sulfur eastern Kentucky and central West Virginia coal. The other units bum medium and high-sulfur coal in an AFBC unit and in a research unit. The eight low-sulfur coal units were sampled in a 1992 survey of Kentucky utilities. Little between-unit variation is seen in the ash-basis major oxide and minor element chemistry. The carbon content of the fly ashes varies from 5 to 25%. Similarly, the isotropic and anisotropic coke in the fly ash varies from 6 to 42% (volume basis). Much of the anisotropic coke is a thin-walled macroporous variety but there is a portion which is a thick-walled variety similar to a petroleum coke.

Hower, J.C.; Thomas, G.A.; Wild, G.D. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Clifford, D.S.; Eady, J.D. [Tennessee Valley Authority, Chattanooga, TN (United States)

1994-12-31T23:59:59.000Z

275

COAL SLAGGING AND REACTIVITY TESTING  

SciTech Connect (OSTI)

Union Fenosa's La Robla I Power Station is a 270-MW Foster Wheeler arch-fired system. The unit is located at the mine that provides a portion of the semianthracitic coal. The remaining coals used are from South Africa, Russia, Australia, and China. The challenges at the La Robla I Station stem from the various fuels used, the characteristics of which differ from the design coal. The University of North Dakota Energy & Environmental Research Center (EERC) and the Lehigh University Energy Research Center (LUERC) undertook a program to assess problematic slagging and unburned carbon issues occurring at the plant. Full-scale combustion tests were performed under baseline conditions, with elevated oxygen level and with redistribution of air during a site visit at the plant. During these tests, operating information, observations and temperature measurements, and coal, slag deposit, and fly ash samples were obtained to assess slagging and unburned carbon. The slagging in almost all cases appeared due to elevated temperatures rather than fuel chemistry. The most severe slagging occurred when the temperature at the sampling port was in excess of 1500 C, with problematic slagging where first-observed temperatures exceeded 1350 C. The presence of anorthite crystals in the bulk of the deposits analyzed indicates that the temperatures were in excess of 1350 C, consistent with temperature measurements during the sampling period. Elevated temperatures and ''hot spots'' are probably the result of poor mill performance, and a poor distribution of the coal from the mills to the specific burners causes elevated temperatures in the regions where the slag samples were extracted. A contributing cause appeared to be poor combustion air mixing and heating, resulting in oxygen stratification and increased temperatures in certain areas. Air preheater plugging was observed and reduces the temperature of the air in the windbox, which leads to poor combustion conditions, resulting in unburned carbon as well as slagging. A second phase of the project involved advanced analysis of the baseline coal along with an Australian coal fired at the plant. These analysis results were used in equilibrium thermodynamic modeling along with a coal quality model developed by the EERC to assess slagging, fouling, and opacity for the coals. Bench-scale carbon conversion testing was performed in a drop-tube furnace to assess the reactivity of the coals. The Australian coal had a higher mineral content with significantly more clay minerals present than the baseline coal. The presence of these clay minerals, which tend to melt at relatively low temperatures, indicated a higher potential for problematic slagging than the baseline coal. However, the pyritic minerals, comprising over 25% of the baseline mineral content, may form sticky iron sulfides, leading to severe slagging in the burner region if local areas with reducing conditions exist. Modeling results indicated that neither would present significant fouling problems. The Australian coal was expected to show slagging behavior much more severe than the baseline coal except at very high furnace temperatures. However, the baseline coal was predicted to exhibit opacity problems, as well as have a higher potential for problematic calcium sulfate-based low-temperature fouling. The baseline coal had a somewhat higher reactivity than the Australian coal, which was consistent with both the lower average activation energy for the baseline coal and the greater carbon conversion at a given temperature and residence time. The activation energy of the baseline coal showed some effect of oxygen on the activation energy, with E{sub a} increasing at the lower oxygen concentration, but may be due to the scatter in the baseline coal kinetic values at the higher oxygen level tested.

Donald P. McCollor; Kurt E. Eylands; Jason D. Laumb

2003-10-01T23:59:59.000Z

276

Kinetics of fly ash beneficiation by carbon burnout. [Quarterly report], October 1, 1995--January 30, 1996  

SciTech Connect (OSTI)

The objective is to investigate the kinetics of beneficiation of fly ash by carbon burnout. The three year project that was proposed is a joint venture between Delmarva Power, a power generating company on the eastern shore of Maryland, and the University of Maryland Eastern Shore. The studies have focused on the beneficiation of fly ash by carbon burnout. The increasing use of coal fly ash as pozzolanic material in Portland cement concrete means that there is the highest economic potential in marketability of large volumes of fly ash. For the concrete industry to consider large scale use the fly ash must be of the highest quality. This means that the residual carbon content of the fly ash must have an acceptable loss on ignition (LOI) value, usually between 7--2% residual carbon. The economic gains to be had from low-carbon ash is a fact that is generally accepted by the electricity generating companies. However, since the cost of producing low-carbon in large quantities, based on present technology, far outweighs any financial gains, no electrical power company using coal as its fuel at present considers the effort worthwhile. The concrete industry would use fly ash in cement concrete mix if it can be assured of its LOI value. At present no utility company would give such assurance. Hence with several million tons of fly ash produced by a single power plant per year all that can be done is to dump the fly ash in landfills. The kinetics of fly ash beneficiation have been investigated in the zone II kinetic regime, using a Cahn TG 121 microbalance in the temperature 550--750{degrees}C. The P{sub 02} and total surface area dependence of the reaction kinetics were determined using a vacuum accessory attached to the microbalance and a surface area analyzer (ASAP 2010), respectively.

Dodoo, J.N.; Okoh, J.M.; Yilmaz, E.

1996-09-01T23:59:59.000Z

277

X-ray Computed Tomography of coal: Final report  

SciTech Connect (OSTI)

X-ray Computed Tomography (CT) is a method of mapping with x-rays the internal structures of coal. The technique normally produces 2-D images of the internal structures of an object. These images can be recast to create pseudo 3-D representations. CT of coal has been explored for a variety of different applications to coal and coal processing technology. In a comparison of CT data with conventional coal analyses and petrography, CT was found to offer a good indication of the total ash content of the coal. The spatial distribution of the coal mineral matter as seen with CT has been suggested as an indicator of coal washability. Studies of gas flow through coal using xenon gas as a tracer have shown the extremely complicated nature of the modes of penetration of gas through coal, with significant differences in the rates at which the gas can pass along and across the bedding planes of coal. In a special furnace designed to allow CT images to be taken while the coal was being heated, the pyrolysis and gasification of coal have been studied. Gasification rates with steam and CO/sub 2/ for a range of coal ranks have been obtained, and the location of the gasification reactions within the piece of coal can be seen. Coal drying and the progress of the pyrolysis wave into coal have been examined when the coal was subjected to the kind of sudden temperature jump that it might experience in fixed bed gasifier applications. CT has also been used to examine stable flow structures within model fluidized beds and the accessibility of lump coal to microbial desulfurization. 53 refs., 242 figs., 26 tabs.

Maylotte, D.H.; Spiro, C.L.; Kosky, P.G.; Lamby, E.J.

1986-12-01T23:59:59.000Z

278

Apparatus for fixed bed coal gasification  

DOE Patents [OSTI]

An apparatus for fixed-bed coal gasification is described in which coal such as caking coal is continuously pyrolyzed with clump formation inhibited, by combining the coal with a combustible gas and an oxidant, and then continually feeding the pyrolyzed coal under pressure and elevated temperature into the gasification region of a pressure vessel. The materials in the pressure vessel are allowed to react with the gasifying agents in order to allow the carbon contents of the pyrolyzed coal to be completely oxidized. The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

Sadowski, Richard S. (Greenville, SC)

1992-01-01T23:59:59.000Z

279

EFFECTS OF FLY ASH ON MERCURY OXIDATION DURING POST COMBUSTION CONDITIONS  

SciTech Connect (OSTI)

Tests were performed in simulated flue gas streams using two fly ash samples from the electrostatic precipitators of two full-scale utility boilers. One fly ash was derived from a Powder River Basin (PRB) coal, while the other was derived from Blacksville coal (Pittsburgh No. 8 seam). The tests were performed at temperatures of 120 and 180 C under different gas compositions. Elemental mercury (Hg) streams were injected into the simulated flue gas and passed over filters (housed in a convection oven) loaded with fly ash. The Ontario Hydro method was used to determine the total amount of Hg passing through the filter as well as the percentages of elemental and oxidized Hg collected. Results indicated that substantial amounts of Hg oxidation did not occur with either fly ash, regardless of the temperature used for testing. When oxidation was observed, the magnitude of the oxidation was comparable between the two fly ashes. These results suggest that the gas matrix may be more important than the ash components with respect to the distribution of Hg species observed in gaseous effluents at coal-fired power plants.

Glenn A. Norton

1999-10-01T23:59:59.000Z

280

Effect of environment atmosphere on the sintering of Thai lignite fly ashes  

SciTech Connect (OSTI)

Sintering of ash particles, related to deposit formation in a pulverized coal-fired boiler, was investigated for two lignite fly ashes obtained from Mae Moh and Bangpudum coal seams. The tests involved measuring the compressive strength of cold sintered pellets at varying sintering temperature, both under oxidizing (air) and non-oxidizing atmospheres (CO{sub 2}). Under ambient air condition, Mae Moh fly ash which contained higher amount of glassy phase gave significantly higher sinter strength than Bangpudum fly ash. The role of glassy phase was confirmed by the lowering of sinter strength when HF-extracted fly ash was tested. Sintering under CO{sub 2} environment resulted in larger strength development than sintering in air. Under this non-oxidizing condition, the pellet color turned black, indicating that most of the iron was in the reduced state and could form additional low melting-point glassy phase, hence facilitated sintering rate. In addition, blending of the two ashes yielded intermediate maximum strength, under both air and CO{sub 2} environments. This observation substantiates the important role of glassy phase in the sintering process and indicates the possibility of lowering deposit strength by judicious mixing of different raw coal feeds.

Tangsathitkulchai, C.; Tangsathitkulchai, M. [Suranaree Univ. of Technology, Nakhon Ratchasima (Thailand)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "war coal ash" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

American prisoner of war policy and practice from the Revolutionary War to the War on Terror  

E-Print Network [OSTI]

by the Geneva Convention of 1929. This multinational agreement heavily modified international law regarding prisoners and the changes were reflected in some nations? treatment of 5 prisoners during World War II. The chapter also compares the treatment... system for prisoners of future conflicts.5 Immediately after the Vietnam War, A. J. Barker argued that modern war, involving the struggle for survival of competing ideologies, had complicated the problems of POWs and reduced the humanitarian component...

Springer, Paul Joseph

2006-08-16T23:59:59.000Z

282

Utilization FLY ASH INFORMATION FROM  

E-Print Network [OSTI]

, quarries, and pits (34%), 6% for temporary stockpile, and 7% landfilled. Fly Ash In Europe, the utilization

Wisconsin-Milwaukee, University of

283

Oxy-coal Combustion Studies  

SciTech Connect (OSTI)

The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol. To these ends, the project has focused on the following: â?¢ The development of reliable Large Eddy Simulations (LES) of oxy-coal flames using the Direct Quadrature Method of Moments (DQMOM) (Subtask 3.1). The simulations were validated for both non-reacting particle-laden jets and oxy-coal flames. â?¢ The modifications of an existing oxy-coal combustor to allow operation with high levels of input oxygen to enable in-situ laser diagnostic measurements as well as the development of strategies for directed oxygen injection (Subtask 3.2). Flame stability was quantified for various burner configurations. One configuration that was explored was to inject all the oxygen as a pure gas within an annular oxygen lance, with burner aerodynamics controlling the subsequent mixing. â?¢ The development of Particle Image Velocimetry (PIV) for identification of velocity fields in turbulent oxy-coal flames in order to provide high-fidelity data for the validation of oxy-coal simulation models (Subtask 3.3). Initial efforts utilized a laboratory diffusion flame, first using gas-fuel and later a pulverized-coal flame to ensure the methodology was properly implemented and that all necessary data and image-processing techniques were fully developed. Success at this stage of development led to application of the diagnostics in a large-scale oxy-fuel combustor (OFC). â?¢ The impact of oxy-coal-fired vs. air-fired environments on SO{sub x} (SO{sub 2}, SO{sub 3}) emissions during coal combustion in a pilot-scale circulating fluidized-bed (CFB) (Subtask 3.4). Profiles of species concentration and temperature were obtained for both conditions, and profiles of temperature over a wide range of O{sub 2} concentration were studied for oxy-firing conditions. The effect of limestone addition on SO{sub 2} and SO{sub 3} emissions were also examined for both air- and oxy- firing conditions. â?¢ The investigation of O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments on SO{sub 2 emissions during coal combustion in a bench-scale single-particle fluidized-bed reactor (Subtask 3.5). Moreover, the sulfation mechanisms of limestone in O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments were studied, and a generalized gassolid and diffusion-reaction single-particle model was developed to study the effect of major operating variables. â?¢ The investigation of the effect of oxy-coal combustion on ash formation, particle size distributions (PSD), and size-segregated elemental composition in a drop-tube furnace and the 100 kW OFC (Subtask 3.6). In particular, the effect of coal type and flue gas recycle (FGR, OFC only) was investigated.

J. Wendt; E. Eddings; J. Lighty; T. Ring; P. Smith; J. Thornock; Y. Jia, W. Morris; J. Pedel; D. Rezeai; L. Wang; J. Zhang; K. Kelly

2012-01-01T23:59:59.000Z

284

A Dynamic Theory of Resource Wars  

E-Print Network [OSTI]

We develop a dynamic theory of resource wars and study the conditions under which such wars can be prevented. Our focus is on the interaction between the scarcity of resources and the incentives for war in the presence of ...

Acemoglu, Daron

285

Sentimental Poetry of the American Civil War  

E-Print Network [OSTI]

Company, 1866. Devon, W. A. War Lyrics. New York: SinclairHickey, ed. Ballads of the War. New York: J. Robins, 1862.Eggleston, G. C, ed. American War Ballads and Lyrics. New

Trapp, Marjorie Jane

2010-01-01T23:59:59.000Z

286

Telling Absence: War Widows, Loss and Memory   

E-Print Network [OSTI]

This thesis concerns feminist sociological analysis of war loss and its consequences as experienced and told by Finnish Karelian war widows of World War 2. They lost their partners and had to leave their homes by force, ...

Loipponen, Jaana

2009-01-01T23:59:59.000Z

287

Transformations of inorganic coal constituents in combustion systems. Volume 1, sections 1--5: Final report  

SciTech Connect (OSTI)

The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon the size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles? What determines their composition? Whether or not particles deposit? How combustion conditions, including reactor size, affect these processes? remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.

Helble, J.J. [ed.; Srinivasachar, S.; Wilemski, G.; Boni, A.A. [PSI Technology Co., Andover, MA (United States); Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L. [Arizona Univ., Tucson, AZ (United States); Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A. [Kentucky Univ., Lexington, KY (United States)

1992-11-01T23:59:59.000Z

288

Emissions Resulting from the Full-Scale Cofiring of Pelletized Refuse-Derived Fuel and Coal  

E-Print Network [OSTI]

grab and fly ash) 8 (combustion MM5 chamber) 9 & 10 (flue gases) MM5 11 Continuous dRDF/coal blend Ultimate analysis Proximate analysis Heating value Bulk density 13 trace metals Organics (PCBs, polyaromatic hydrocarbons, dioxins, furans... Opacity Feedstock flow rate Steam flow rate, temperature, and pressure Ambient temperature Pollution control equipment temperature and pressure Gases (CO, CO 2 O 2 , NO SOx) x TABLE 4 EP Tozicity Test Analysis of Bottom Ash and Fly Ash...

Ohlsson, O. O.; Daugherty, K.; Venables, B.

289

The effect of low-NO{sub x} combustion on residual carbon in fly ash and its adsorption capacity for air entrainment admixtures in concrete  

SciTech Connect (OSTI)

Fly ash from pulverized coal combustion contains residual carbon that can adsorb the air-entraining admixtures (AEAs) added to control the air entrainment in concrete. This is a problem that has increased by the implementation of low-NO{sub x} combustion technologies. In this work, pulverized fuel has been combusted in an entrained flow reactor to test the impact of changes in operating conditions and fuel type on the AEA adsorption of ash and NO{sub x} formation. Increased oxidizing conditions, obtained by improved fuel-air mixing or higher excess air, decreased the AEA requirements of the produced ash by up to a factor of 25. This was due to a lower carbon content in the ash and a lower specific AEA adsorptivity of the carbon. The latter was suggested to be caused by changes in the adsorption properties of the unburned char and a decreased formation of soot, which was found to have a large AEA adsorption capacity based on measurements on a carbon black. The NO{sub x} formation increased by up to three times with more oxidizing conditions and thus, there was a trade-off between the AEA requirements of the ash and NO{sub x} formation. The type of fuel had high impact on the AEA adsorption behavior of the ash. Ashes produced from a Columbian and a Polish coal showed similar AEA requirements, but the specific AEA adsorptivity of the carbon in the Columbian coal ash was up to six times higher. The AEA requirements of a South African coal ash was unaffected by the applied operating conditions and showed up to 12 times higher AEA adsorption compared to the two other coal ashes. This may be caused by larger particles formed by agglomeration of the primary coal particles in the feeding phase or during the combustion process, which gave rise to increased formation of soot. (author)

Pedersen, K.H.; Jensen, A.D.; Dam-Johansen, K. [Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, DK-2800 Kgs. Lyngby (Denmark)

2010-02-15T23:59:59.000Z

290

Kinetics of fly ash beneficiation by carbon burnout. Quarterly report, January--March 1996  

SciTech Connect (OSTI)

The three year project that was proposed is a joint venture between Delmarva Power, a power generating company on the eastern shore of Maryland, and the University of Maryland Eastern Shore. The studies have focused on the benefication of fly ash by carbon burnout. The increasing use of coal fly ash as pozzolanic material in Portland cement concrete means that there is the highest economic potential in marketability of large volumes of fly ash. For the concrete industry to consider large scale use the fly ash must be of the highest quality. This means that the residual carbon content of the fly ash must have an acceptable loss on ignition (LOI) value, usually between 7-2% residual carbon. The economic gains to be had from low-carbon ash is a fact that is generally accepted by the electricity generating companies. However, since the cost of producing low-carbon in large quantities, based on present technology, far outweighs any financial gains, no electrical power company using coal as its fuel at present considers the effort worthwhile. The concrete industry would use fly ash in cement concrete mix if it can be assured of its LOI value. At present no utility company would give such assurance. Hence with several million tons of fly ash produced by a single power plant per year all that can be done is to dump the fly ash in landfills. The kinetics of fly ash benefication have been investigated in the zone II kinetic regime, using a Cahn TG 121 microbalance in the temperature 550-750{degrees}C. The P{sub O{sub 2}} and total surface area dependence of the reaction kinetics were determined using a vacuum accessory attached to the microbalance and a surface area analyzer (ASAP 2010), respectively. 16 refs., 7 figs., 3 tabs.

Dodoo, J.N.; Okoh, J.M.; Yilmaz, E.

1996-09-01T23:59:59.000Z

291

Release of Ammonium and Mercury from NOx Controlled Fly Ash  

SciTech Connect (OSTI)

One of the goals of the Department of Energy is to increase the reuse of coal utilization byproducts (CUB) to 50% by 2010. This will require both developing new markets and maintaining traditional ones such as the use of fly ash in concrete. However, the addition of pollution control devices can introduce side-effects that affect the marketability of the CUB. Such can be the case when NOx control is achieved using selective catalytic or non-catalytic reduction (SCR or SNCR). Depending on site-specific details, the ammonia slip can cause elevated levels of NH3 in the fly ash. Disposal of ammoniated fly ash can present environmental concerns related to the amount of ammonia that might be released, the amount of water that might become contaminated, and the extent to which metals might be mobilized by the presence of the ammonia. Ammonia retained in fly ash appears to be present as either an ammonium salt or as a chemisorbed species. Mercury in the leachates correlated to neither the amount of leachable ammonium nor to the total amount of Hg in the ash. The strongest correlation was between the decreases in the amount of Hg leached with increased LOI.

Schroeder, K.T.; Cardone, C.R.; Kim, A.G

2007-07-01T23:59:59.000Z

292

The relationship between coal quality and coal resource parameters of Powder River and Williston Basin coal, Wyoming, Montana, and North Dakota  

SciTech Connect (OSTI)

Clean, compliant coal from mines in the Northern Rocky Mountain and Great Plains region is utilized as fuel for coal-fired power plants in 26 states. More than 30 percent of the nation`s 1997 production was from Montana, North Dakota, and Wyoming. Production of clean, compliant coal from the region is estimated to increase to 415 million short tons by the year 2015. Studies in this region indicate a relationship between percent sulfur and ash and pounds of SO{sub 2} per million Btu and the resource parameters of coal thickness and overburden. The trends that the authors have observed indicate that both coal quality and the thickness of the coal and associated rocks are controlled by paleoenvironment and depositional setting.

Ellis, M.S.; Stricker, G.D.; Gunther, G.; Ochs, A.M.; Flores, R.M.

1998-12-31T23:59:59.000Z

293

Low-rank coal research under the UND/DOE cooperative agreement. Quarterly technical progress report, April 1983-June 1983  

SciTech Connect (OSTI)

Progress reports are presented for the following tasks: (1) gasification wastewater treatment and reuse; (2) fine coal cleaning; (3) coal-water slurry preparation; (4) low-rank coal liquefaction; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization; (8) combustion research and ash fowling; (9) fluidized-bed combustion of low-rank coals; (10) ash and slag characterization; (11) organic structure of coal; (12) distribution of inorganics in low-rank coals; (13) physical properties and moisture of low-rank coals; (14) supercritical solvent extraction; and (15) pyrolysis and devolatilization.

Wiltsee, Jr., G. A.

1983-01-01T23:59:59.000Z

294

Coal and Coal-Biomass to Liquids FAQs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities ofCellulosic Feedstock - EnergyCoal Fly Ash asCoaland

295

Coal extraction  

SciTech Connect (OSTI)

Coal is extracted using a mixed solvent which includes a substantially aromatic component and a substantially naphthenic component, at a temperature of 400/sup 0/ to 500/sup 0/C. Although neither component is an especially good solvent for coal by itself, the use of mixed solvent gives greater flexibility to the process and offers efficiency gains.

Clarke, J.W.; Kimber, G.M.; Rantell, T.D.; Snape, C.E.

1985-06-04T23:59:59.000Z

296

Influence of conversion to low NO{sub x} combustion on fly ash petrology and mineralogy: A case study  

SciTech Connect (OSTI)

The wall-fired 116 MW unit 2 at the John Sherman Cooper Station, Pulaski County, Kentucky, was converted to low-NO{sub x} combustion in the winter of 1993--1994. The fly ash from before and after conversion was studied in detail. The coal feed, which did not change significantly over the study, was from southeastern Kentucky and had an ash range of 10--12% and a sulfur range of 1.5--1.9%. The coal rank was high volatile bituminous A with a vitrinite reflectance (R{sub max}) of about 0.8%. The coal had about 17% by volume inertinite macerals (mineral-free basis). The fly ash carbon can be divided into three types: anisotropic coke, isotropic coke and inertinite. The post-conversion fly ash has nearly twice the amount of carbon as the pre-conversion ash and shows an increase in anisotropic coke. Mullite and quartz were observed petrographically to be more abundant in the post-conversion fly ash, although only the mullite increase was confirmed by XRD. The proportion of glass is slightly less in the post-conversion ash and is accompanied by one-third drop in the amount of cenospheres.

Robl, T.L.; Hower, J.C.; Graham, U.M.; Rathbone, R.F. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Medina, S.S. [East Kentucky Power Cooperative, Winchester, KY (United States)

1995-12-31T23:59:59.000Z

297

NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT  

SciTech Connect (OSTI)

This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined. Previous research results have demonstrated that the inhalation of coal/MSS ash particles cause an increase in lung permeability than coal ash particles alone. Elemental analysis of the coal/MSS ash particles showed that Zn was more abundant in these ash particles than the ash particles of coal ash alone.

Jost O.L. Wendt

2003-01-31T23:59:59.000Z

298

Combustor for fine particulate coal  

DOE Patents [OSTI]

A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

Carlson, L.W.

1988-01-26T23:59:59.000Z

299

Combustor for fine particulate coal  

DOE Patents [OSTI]

A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

Carlson, L.W.

1988-11-08T23:59:59.000Z

300

Combustor for fine particulate coal  

DOE Patents [OSTI]

A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover.

Carlson, Larry W. (Oswego, IL)

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "war coal ash" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Coal quality trends and distribution of Title III trace elements in Eastern Kentucky coals  

SciTech Connect (OSTI)

The quality characteristics of eastern Kentucky coal beds vary both spatially and stratigraphically. Average total sulfur contents are lowest, and calorific values highest, in the Big Sandy and Upper Cumberland Reserve Districts. Average coal thickness is greatest in these two districts as well. Conversely, the thinnest coal with the highest total sulfur content, and lowest calorific value, on average, occurs in the Princess and Southwest Reserve Districts. Several Title III trace elements, notably arsenic, cadmium, lead, mercury, and nickel, mirror this distribution (lower average concentrations in the Big Sandy and Upper Cumberland Districts, higher average concentrations in the Princess and Southwest Districts), probably because these elements are primarily associated with sulfide minerals in coal. Ash yields and total sulfur contents are observed to increase in a stratigraphically older to younger direction. Several Title III elements, notably cadmium, chromium, lead, and selenium follow this trend, with average concentrations being higher in younger coals. Average chlorine concentration shows a reciprocal distribution, being more abundant in older coals. Some elements, such as arsenic, manganese, mercury, cobalt, and, to a lesser extent, phosphorus show concentration spikes in coal beds directly above, or below, major marine zones. With a few exceptions, average Title III trace element concentrations for eastern Kentucky coals are comparable with element distributions in other Appalachian coal-producing states.

Eble, C.F. [Kentucky Geological Survey, Lexington, KY (United States); Hower, J.C. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

1995-12-31T23:59:59.000Z

302

Coal pulverizing systems for power generation  

SciTech Connect (OSTI)

The pulverized coal-fired boiler for power generation is a mature technology which requires the production of fine coal for combustion. The product material particle size is smaller than 250 microns and about 70 percent smaller than 75 microns. It is no coincidence that most of the new coal technologies for combustion or gasification require a product with a similar particle size distribution for complete reaction. This particle size distribution provides coal particles which can react with oxygen in the air at local velocities and resident times in the boiler furnace to result in almost complete combustion or gasification with 1 or 2 percent carbon loss in the resulting ash. Size reduction, while being one of the most common unit operations on material is also one of the least understood, requiring a high energy input. When pulverizing coal of the particle size required there is an added complication that the product may spontaneously ignite, particularly if the process passes through a stage when an explosive or at least highly combustible mixture of fine coal and air is present. The pulverized coal system covers that portion of the power station from coal bunkers to feeders, pulverizers and delivery system to the boiler burner or gasifier injection point. The transport medium has traditionally been air and in some cases inert gases. The system has usually been lean phase with air to coal ratios in excess of 1:4:1. More recently, a few systems have been dense phase with air to coal ratios of 1:30 up to 1:100. This has the distinct advantage of reduced transport pipe diameter. The key element in the system, the coal pulverizer, will be considered first.

Sligar, J.

1993-12-31T23:59:59.000Z

303

DETECTION OF EVENTS CAUSING PLUGGAGE OF A COAL-FIRED BOILER: A DATA MINING  

E-Print Network [OSTI]

DETECTION OF EVENTS CAUSING PLUGGAGE OF A COAL-FIRED BOILER: A DATA MINING APPROACH ANDREW KUSIAK to analyze events leading to plug- gage of a boiler. The proposed approach involves statistics, data. The proposed approach has been tested on a 750 MW commercial coal-fired boiler affected with an ash fouling

Kusiak, Andrew

304

Geochemistry of coal from Cretaceous Corwin and Chandler formations, National Petroleum Reserve in Alaska (NPRA)  

SciTech Connect (OSTI)

Ninety coal samples from these formations within NPRA were collected and analyzed in order to evaluate coal quality and elemental distribution. Their apparent rank ranges from lignite A in the northern part of NPRA to high-volatile AS bituminous coal in the southern part. Mean vitrinite reflectance values range from 0.65 to 0.74%. Some Corwin Formation coal samples west of NPRA have coking potential with free-swelling indexes between 3.0 and 5.0. Compared to other western United States Cretaceous coal, NPRA coal is significantly lower in ash, volatile matter, O, Si, Al, Ca, Fe, Ti, Cu, F, Li, Mn, Mo, Pb, Sb, Se, Th, and Zn. Statistical comparisons of element concentrations indicate that the mean content of Si, Al, K, Li, Sc, Y, and Yb increases as the mean ash content increases (correlation coefficient at least 0.7). Sulfur values are extremely low (0.1%), and elements that normally show positive correlation with sulfur, such as Fe, As, Cd, Co, Cu, Mo, Pb, and Zn, are also low. Therefore, coal from NPRA can be characterized by low ash and sulfur contents and low contents of elements of environmental concern, such as As, Be, Hg, Mo, Sb, and Se. The elements found to have positive correlations with ash content are probably present as aluminosilicate or stable oxide minerals. Variations in element content and quality of NPRA coal were probably influenced by the geochemical conditions that existed in the Corwin and Umiat delta systems.

Affolter, R.H.; Stricker, G.D.

1985-04-01T23:59:59.000Z

305

Low-rank coal research: Volume 2, Advanced research and technology development: Final report  

SciTech Connect (OSTI)

Volume II contains articles on advanced combustion phenomena, combustion inorganic transformation; coal/char reactivity; liquefaction reactivity of low-rank coals, gasification ash and slag characterization, and fine particulate emissions. These articles have been entered individually into EDB and ERA. (LTN)

Mann, M.D.; Swanson, M.L.; Benson, S.A.; Radonovich, L.; Steadman, E.N.; Sweeny, P.G.; McCollor, D.P.; Kleesattel, D.; Grow, D.; Falcone, S.K.

1987-04-01T23:59:59.000Z

306

Low-rank coal research. Quarterly report, January--March 1990  

SciTech Connect (OSTI)

This document contains several quarterly progress reports for low-rank coal research that was performed from January-March 1990. Reports in Control Technology and Coal Preparation Research are in Flue Gas Cleanup, Waste Management, and Regional Energy Policy Program for the Northern Great Plains. Reports in Advanced Research and Technology Development are presented in Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Reports in Combustion Research cover Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Coal Fuels, Diesel Utilization of Low-Rank Coals, and Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications. Liquefaction Research is reported in Low-Rank Coal Direct Liquefaction. Gasification Research progress is discussed for Production of Hydrogen and By-Products from Coal and for Chemistry of Sulfur Removal in Mild Gas.

Not Available

1990-08-01T23:59:59.000Z

307

Modeling Civil War Gerard Padr i Miquel  

E-Print Network [OSTI]

Modeling Civil War Gerard Padró i Miquel LSE March 2009 Padró i Miquel (LSE) Civil War March 2009 1 half of countries have experienced some episode of civil war since 1960 If one is willing to consider violent communal and ethnic conict it is even more prevalent Civil war has killed more than 16.2 million

Sadoulet, Elisabeth

308

HISTORY 483 THE FIRST WORLD WAR  

E-Print Network [OSTI]

HISTORY 483 THE FIRST WORLD WAR Summer 2012 Saturday 9:00 ­ 14:30 ST139 Instructor: Paul Ramsey By far the most significant event of the twentieth century the legacy of the First World War continues, military, social, and economic spheres of the war ­ and the concept of `total war'. Students

Habib, Ayman

309

Masters in War Studies Politics, Strategy & Operations  

E-Print Network [OSTI]

Masters in War Studies Politics, Strategy & Operations www.glasgow.ac.uk/warstudies #12;MLitt in War Studies The MLitt in War Studies aims to challenge, educate and engage students by exposing you to a wide range of different ideas about war in all its aspects. Core course: Theory & Reality in Western

Glasgow, University of

310

California bearing ratio behavior of soil-stabilized class F fly ash systems  

SciTech Connect (OSTI)

Fly ash is a finely divided mineral residue resulting from the combustion of coal in power plants that occupies large extents of land and also causes environmental problems. Hence, concerted attempts are being made to effectively use fly ash in an environmentally friendly way instead of dumping. Several studies have been carried out for its bulk utilization, such as its addition to improve the California bearing ratio (CBR) of soil in roads and embankments. But a thorough mixing of fly ash with soil may not be possible in the field. Hence a study has been carried out on the CBR behavior of black cotton soil and Raichur fly ash (which is class F) in layers and compared with the same in mixes. The results show that the CBR values of soil-fly ash mixes are better than layers, as expected. To improve the strength of layers, cement is used as an additive to fly ash. The results show that black cotton soil can be improved with stabilized fly ash, solving its strength problem as well as the disposal problem of fly ash.

Leelavathamma, B.; Mini, K.M.; Pandian, N.S. [Indian Institute for Science, Bangalore (India). Dept. for Civil Engineering

2005-11-01T23:59:59.000Z

311

Modeling volcanic ash dispersal  

ScienceCinema (OSTI)

Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

None

2011-10-06T23:59:59.000Z

312

Simultaneous upgrading of tar sand bitumen and coal by corefining  

SciTech Connect (OSTI)

A continuous process is described for simultaneously corefining a mixture of comminuted coal and tar sand bitumen to form a liquid refinery feed stock, having improved hydrocarbon content and viscosity and reduced organo-metallic and metal components, which process comprises: (a) combining bitumen substantially separated from tar sands with comminuted raw coal at a coal to liquid weight ratio of from about 1:2 to about 1 to 50 to form a slurry mixture; (b) subjecting the slurry mixture resulting from step (a) to hydrocracking conditions in the absence of added catalyst to produce off-gases and a mixture of co-refined bitumen and coal liquid and coal ash residues; and (c) recovering the corefined improve coal-bitumen liquid as a refinery feedstock.

Hsich, C.R.; Donaldson, W.I.

1988-08-16T23:59:59.000Z

313

The development of a slagging and fouling predictive methodology for large scale pulverised boilers fired with coal/biomass blends.  

E-Print Network [OSTI]

??This dissertation deals with the development of a co-firing advisory tool capable of predicting the effects of biomass co-firing with coal on the ash deposition… (more)

Plaza, Piotr

2013-01-01T23:59:59.000Z

314

The use of sulfer modified bottom ash (SMBA) as an aggregate in asphaltic mixtures  

E-Print Network [OSTI]

Of the 20 million tons of bottom ash and boiler slag generated annually in the United States less than 40 percent is used. The eastern half of Texas is served by 18 coal burning electric power generating plants which produce approximately 3...

Chimakurthy, Harshavardhan

1998-01-01T23:59:59.000Z

315

TRACE ELEMENTS LEACHING FROM ORGANIC SOILS STABILIZED WITH HIGH CARBON FLY ASH  

E-Print Network [OSTI]

53706 USA, chbenson@wisc.edu 3 Associate Professor, Department of Civil and Environmental Engineering INTRODUCTION Fly ash is a silt-size particulate collected by air pollution control systems at coal and transport of large volumes of soft soil and replacement with crushed rock from quarries. Eliminating removal

Aydilek, Ahmet

316

Sonic enhanced ash agglomeration and sulfur capture. Technical progress report, January 1995--March 1995  

SciTech Connect (OSTI)

This program is focused on the process for bimodal ash agglomeration and simultaneous sulfur capture for the development of coal fired combustion gas turbines. The process also accommodates injection of alkali gettering materials. During this period, further dismantling of the existing bimodal test unit was performed. The design of a revised process development unit and hot gas cleanup unit have been completed.

NONE

1995-07-01T23:59:59.000Z

317

Shetland and the Great War   

E-Print Network [OSTI]

The Great War was an enormous global cataclysm affecting the lives of all inhabitants of the combatant countries and many others. The effects were not uniform, however, and, by assessing the experience of the people of ...

Riddell, Linda Katherine

2012-11-30T23:59:59.000Z

318

Environmental consequences of nuclear war  

SciTech Connect (OSTI)

A regional war involving 100 Hiroshima-sized weapons would pose a worldwide threat due to ozone destruction and climate change. A superpower confrontation with a few thousand weapons would be catastrophic.

Toon, Owen B. [Department of Atmospheric and Oceanic Sciences, Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado (United States); Robock, Alan [Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey (United States); Turco, Richard P. [Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California (United States)

2014-05-09T23:59:59.000Z

319

Coal as a fuel: a user's viewpoint. [Bowling Green State University, Ohio  

SciTech Connect (OSTI)

The problems of a university heating plant burning 25,000 tons of coal per year are described. You cannot burn pulverized coal like the large electric utilities do, but have to use stoker-fed boilers. These have very specific requirements on the coal, so detailed specifications on the coal size, sulfur, volatile matter, ashes, moisture, etc. are required. There are several materials handling problems related to delivery of the coal, stockpiling, reclaiming, feeding, ash handling, etc. Truck delivery is relatively straightforward but expensive; rail delivery of one, or a few cars of coal, which is often frozen and hard to get out of the cars, presents several problems and is also somewhat expensive. (LTN)

Clodding, C.L.

1980-01-01T23:59:59.000Z

320

Coal industry annual 1994  

SciTech Connect (OSTI)

This report presents data on coal consumption, distribution, coal stocks, quality, prices, coal production information, and emissions for a wide audience.

NONE

1995-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "war coal ash" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

TOXIC SUBSTANCES FROM COAL COMBUSTION  

SciTech Connect (OSTI)

The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, the Lignite Research Council, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NO combustion systems, and new power generation x plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from 1 July 1998 through 30 September 1998. During this period distribution of all three Phase II coals was completed. Standard analyses for the whole coal samples were also completed. Mössbauer analysis of all project coals and fractions received to date has been completed in order to obtain details of the iron mineralogy. The analyses of arsenic XAFS data for two of the project coals and for some high arsenic coals have been completed. Duplicate splits of the Ohio 5,6,7 and North Dakota lignite samples were taken through all four steps of the selective leaching procedure. Leaching analysis of the Wyodak coal has recently commenced. Preparation of polished coal/epoxy pellets for probe/SEM studies is underway. Some exploratory mercury LIII XAFS work was carried out during August at the Advanced Photon Source (APS), the new synchrotron facility at Argonne National Laboratory, Chicago, IL. Further analysis of small-scale combustion experiments conducted at PSI in Phase I was completed this quarter. The results of these experiments for the first time suggest almost complete vaporization of certain trace elements (Se, Zn) from coal combustion in the flame zone, in accordance with theoretical equilibrium predictions. Other elements (As, Sb, Cr) appeared considerably less volatile and may react with constituents in the bulk ash at combustion temperatures. The combustion section of the University of Arizona's Downflow Combustor was completely rebuilt. The University of Utah worked on setting up EPA Method 26A to give the capability to measure chlorine in flue gas. The chlorine kinetic calculations performed as part of the Phase I program were found to have an error in the initial conditions. Therefore, the calculations were re-done this quarter with the correct starting conditions. Development of a quasi-empirical emissions model based on reported emissions of particulate matter from field measurements was continued this quarter. As a first step in developing the ToPEM, we developed a sub-model that calculates the evaporation of major elements (Na, K, Fe, Si, Al, Ca and Mg) from both inherent and extraneous minerals of coal. During this quarter, this sub-model was included into EMAF, which formed the ToPEM. Experimental data from the Phase I program were used to test and modify the sub-model and the ToPEM.

A KOLKER; AF SAROFIM; CL SENIOR; FE HUGGINS; GP HUFFMAN; I OLMEZ; J LIGHTY; JOL WENDT; JOSEPH J HELBLE; MR AMES; N YAP; R FINKELMAN; T PANAGIOTOU; W SEAMES

1998-12-08T23:59:59.000Z

322

POC-SCALE TESTING OF OIL AGGLOMERATION TECHNIQUES AND EQUIPMENT FOR FINE COAL PROCESSING  

SciTech Connect (OSTI)

This report covers the technical progress achieved from July 01, 1997 to September 30, 1997 on the POC-Scale Testing Agglomeration Techniques and Equipment for Fine Coal Processing project. Experimental procedures and test data for recovery of fine coal from coal fines streams generated at a commercial coal preparation plant are described. Two coal fines streams, namely Sieve Bend Effluent and Cyclone Overflow were investigated. The test results showed that ash was reduced by more than 50% at combustible matter recovery levels exceeding 95%.

NONE

1998-01-01T23:59:59.000Z

323

The environment of deposition of the Dalton Coal (Upper Pennsylvanian), Palo Pinto Co., TX.  

E-Print Network [OSTI]

, dried them in an oven, and picked the fossils out of the residue under a binocular scope. Or. Thomas Yancey assisted in the identification. Coal balls and concretions - Coal balls are thought to preserve the original texture, detrital mineral... kane content. Three of the samples were sent to Core Lab to determine the B. T. U. , ash, and sulfur content of the coal. I analyzed the remaining twenty- one samples with the use of the Oceanography department's Leco Combustion Furnace...

Lowenstein, Glenn Robert

1986-01-01T23:59:59.000Z

324

Futurist War Noises: Confronting and Coping with the First World War  

E-Print Network [OSTI]

Press, 1998. _____. “Violence, War, Revolution: Marinetti’sPerloff, Marjorie. “The Great War and the European Avant-Literature of the First World War, edited by V. Sherry, 141-

Daly, Selena

2013-01-01T23:59:59.000Z

325

Ash Chemistry in MSW Incineration Plants  

E-Print Network [OSTI]

Ash Chemistry in MSW Incineration Plants: Advanced Characterization and Thermodynamic to analyze MSW-derived ashes by use of CCSEM. Representative samples of 2nd -3rd pass and ESP/E-filter ashes

326

Fate of trace elements in UK coals during gasification processes  

SciTech Connect (OSTI)

Five UK coals were selected to cover the range of mineral matter and ash contents typically encountered in UK bituminous coals. Trace element analysis was performed on both the whole coals and size separated fractions using ICP analysis for 21 trace elements, including Be, Cr, Co, Ni, As, Cd, Sb, Hg, and Pb, elements deemed to be the most environmentally hazardous. Small quantities of each coal were gasified in a laboratory gasifier in an atmosphere of N{sub 2} containing 15% O{sub 2}. Samples of bed ash, cyclone ash, and a fine gas-filtered ash were collected and analyzed to determine the partition of the trace elements between the gasification products. Mass balance calculations showed that the recovery of the trace elements varied from 20 to 97%; the low recovery of some trace elements highlighting the difficulties of collecting representative samples from a laboratory system. A parallel study on samples taken from a pilot plant gasifier showed significantly higher recovery rates, indicating the value of larger scale trials.

Bushell, A.J.; Williamson, J. [Imperial College of Science, Technology and Medicine, London (United Kingdom)

1996-12-31T23:59:59.000Z

327

Kinetics of fly ash beneficiation by carbon burnout. Quarterly report, October 1996--December 1996  

SciTech Connect (OSTI)

The presence of carbon in fly ash requires an increase in the dosage of the air-entraining admixture for concrete mix, and may cause the admixture to lose efficiency. Specifying authorities for the concrete producers have set maximum allowable levels of residual carbon. These levels are the so called {open_quotes}Loss On Ignition{close_quotes} (LOI). The concrete producer`s day-to-day purchasing decisions sets the LOI at 4%. The objective of the project is to investigate the kinetics of oxidation of residual carbon present in coal fly ash as a possible first step toward producing low-carbon fly ash from high-carbon, low quality fly ash.

Dodoo, J.N.; Okoh, J.M.; Diaz, A. [and others

1997-06-01T23:59:59.000Z

328

Coal-bench architecture as a means of understanding regional changes in coal thickness and quality  

SciTech Connect (OSTI)

Analysis of the Fire Creek (Westphalian B), Pond Creek (lower Westphalian B), and Stockton (Westphalian B) coals, three of the most heavily mined coals in the Central Appalachian Basin, shows that all have a similar multiple-bench architecture of at least two benches split by a regional clastic parting or durain. Coal benches beneath regionally extensive partings are generally less continuous, thinner, more palynologically variable, higher in ash yield, and higher in sulfur content than coal benches above regional partings in all three coals. Where thick, benches above regional partings tend to exhibit temporal palynological changes from lycopod- to fern-dominant. Where inertinite-rich/fern-dominant benches are overlain by additional benches, the upper benches are limited in extent, variable in thickness, high in sulfur content and ash yield, and split away from the coal. The multiple-bench architecture exhibited by these coals is interpreted to represent a cyclic mire succession that was common in the Middle Pennsylvanian. Peats began as planar mires infilling an irregular topography during rising base level. When the topography was infilled, unconfined flooding was possible and resulted in widespread partings. Ponding above these clay-rich flood deposits led to re-establishment of new planar mires with greater continuity than the underlying mires. The extent of these mires provided buffers to clastic influx and, in many cases, allowed domed conditions to develop. Doming resulted in thick, high-quality coal benches. In some cases, a third stage of planar peats, with similar characteristics to the planar peats at the base of the beds, developed on the unevenly distributed clastics that buried underlying mires during continued base-level rise.

Greb, S.F.; Eble, C.F. [Kentucy Geological Survey, Lexington, KY (United States); Hower, J.C. [Center for Applied Research, Lexington, KY (United States)

1996-09-01T23:59:59.000Z

329

Trace elements in coal by glow discharge mass spectrometry  

SciTech Connect (OSTI)

A need and a demand exist for determining trace elements in coal and coal related by-products, especially those elements which may potentially be a health hazard. The provisions of the 1990 clean air act require that the EPA evaluate the emissions of electric utilities for trace elements and other potentially hazardous organic compounds. The coal fired electric utility industry supplies roughly 60% of the total generating capacity of 2,882,525 million kilowatt hours (nearly 3 trillion kilowatt hours) generated in the U.S. This is accomplished by 414 power plants scattered across the country that burned 813,508,000 short tons of coal in 1993. The relative volatility of some inorganic constituents in coal makes them more prone to be emitted to the atmosphere following combustion. The production of analytical data for trace elements is known to be a difficult task in coal and by-products of coal combustion (fly ash, bottom ash, gas streams, etc.), in terms of both sample collection and analytical determinations. There are several common analytical methods available to the analyst to determine trace elements in coal and coal by-products. In general analytical germs, the material to be analyzed can be totally solubilized (or extracted), or the elements analytes can be determined in the material as a solid. A relatively new elemental technique, Glow Discharge Mass Spectrometry (GDMS) can be used with solids as well. This new analytical technique had never before been applied directly to coal. The radio frequency-glow discharge quadropole mass spectrometer was used to analyze coal directly for the first time ever by rf-GDMS. The rf-GDMS technique is described.

Jacobs, M.L.; Wilson, C.R.; Pestovich, J. Jr. [WAL Inc., Wheat Ridge, CO (United States)] [and others

1995-08-01T23:59:59.000Z

330

Advanced Coal Conversion Process Demonstration. Technical progress report, April 1, 1993--June 30, 1993  

SciTech Connect (OSTI)

This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from April 1, 1993, through June 30, 1993. The ACCP Demonstration Project is a US DOE Clean Coal Technology Project. This project demonstrates an advanced thermal coal drying process coupled with physical cleaning techniques that are designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel registered as the SynCoal{reg_sign} process. The coal is processed through three stages of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

Not Available

1994-03-01T23:59:59.000Z

331

Advanced Coal Conversion Process Demonstration. Technical progress report, July 1, 1993--September 30, 1993  

SciTech Connect (OSTI)

This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1993, through September 30, 1993. The ACCP Demonstration Project is a US DOE Clean Coal Technology Project. This project demonstrates an advanced thermal coal drying process coupled with physical cleaning techniques that are designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel registered as the SynCoal{reg_sign} process. The coal is processed through three stages of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

Not Available

1994-03-01T23:59:59.000Z

332

Advanced Coal Conversion Process Demonstration. Technical progress report, January 1, 1993--March 31, 1993  

SciTech Connect (OSTI)

This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1993, through May 31, 1993. The ACCP Demonstration Project is a US DOE Clean Coal Technology Project. This project demonstrates an advanced thermal coal drying process coupled with physical cleaning techniques that are designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel registered as the SynCoal{reg_sign} process. The coal is processed through three stages of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

Not Available

1994-03-01T23:59:59.000Z

333

Investigation of mineral transformation and ash deposition during staged combustion. Final report, October 1, 1993--September 30, 1997  

SciTech Connect (OSTI)

The purpose of this report is to document a recently completed four-year study to examine the impact of low-NOx firing technologies on ash formation and deposition while firing pulverized coal. Low-NOx burners and staged combustion inhibit NOx formation by restricting the amount of oxygen available to form a fuel-rich zone in which nitrogen compounds are reduced to molecular nitrogen (N{sub 2}) rather than oxidized. Additional oxygen is provided downstream for complete combustion. Consequently, coal and mineral particles encounter different temperatures and oxygen concentrations when they are burned under low-NOx firing conditions than they do in conventionally-fired units. Two coals with distinctly different inorganic contents and ash characteristics were fired in a pilot-scale laboratory combustor under both conventional and staged combustion conditions. Ash and deposit samples were collected at various locations in the reactor and analyzed in order to assess the influence of staged combustion. This report is organized as follows. First, a background section provides the foundation needed in order to understand the motivation for and the results of the experimental program. The next section presents a description of the experimental apparatus and procedures, including the development the analytical methods critical to the study. Results of the analyses of coal, ash and deposit samples are then presented and discussed for each of the two coals. Finally, the report ends with a short summary and statement of conclusions.

Harb, J.N.

1997-12-31T23:59:59.000Z

334

Design and fabrication of advanced materials from Illinois coal wastes. Quarterly report, 1 December 1994--28 February 1995  

SciTech Connect (OSTI)

The main goal of this project is to develop a bench-scale procedure to design and fabricate advanced brake and structural composite materials from Illinois coal combustion residues. During the first two quarters of the project, the thrust of the work directed towards characterizing the various coal combustion residues and FGD residue, i.e., scrubber sludge. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), differential thermal analysis (DTA), and transmission-Fourier transform infrared (FTIR) were conducted on PCC fly ash (Baldwin), FBC fly ash (ADK unit l-6), FBC fly ash (S.I. coal), FBC spent bed ash (ADM, unit l-6), bottom ash, and scrubber sludge (CWLP) residues to characterize their geometrical shapes, mineral phases, and thermal stability. Our spectroscopic results indicate that the scrubber sludge is mainly composed of a gypsum-like phase whose lattice structure is different from the lattice structure of conventional gypsum, and sludge does not contain hannebachite (CaSO{sub 3}.0.5H{sub 2}O) phase. Our attempts to fabricate brake frictional shoes, in the form of 1.25 inch disks, from PCC fly ash, FBC spent bed ash, scrubber sludge, coal char, iron particles, and coal tar were successful. Based on the experience gained and microscopic analyses, we have now upscaled our procedures to fabricate 2.5 inch diameter disk,- from coal combustion residues. This has been achieved. The SEM and Young`s modulus analyses of brake composites fabricated at 400 psi < Pressure < 2200 psi suggest pressure has a strong influence on the particle packing and the filling of interstices in our composites. Also, these results along with mechanical behavior of the fabricated disks lead us to believe that the combination of surface altered PCC fly ash and scrubber sludge particles, together ed ash particles are ideal for our composite materials.

Malhotra, V.M.; Wright, M.A. [Southern Illinois Univ., Carbondale, IL (United States)

1995-12-31T23:59:59.000Z

335

Relationship of fly ash composition, refractive index, and density to in-stack opacity. Final report, June 1981-May 1982  

SciTech Connect (OSTI)

The report gives results of an investigation of the refractive index, density, and composition of fly ash from coal-fired boilers, aimed at determining: (1) the interrelationship of refractive index and composition, and (2) the significance of ash properties on in-stack plume opacity. A survey was made of 14 ash samples representing a wide range of coals. Light absorption was measured using the Integrating Plate Method, which compares light absorption through a clean filter to that through a filter with a single layer of aerosol. Only absorption is measured, while scattered light is integrated equally for both cases. This technique requires fine particles (volume absorbers) for easy interpretation of results. The technique was calibrated using an aerosol, methylene blue, with known absorption characteristics. The real part of the refractive index was measured by an oil immersion technique. The real refractive index and density were found to be highly correlated with composition with a multilinear regression equation. The absorbing refractive index was well correlated with ash carbon content. The modeling of in-stack opacity showed a weak dependence on ash optical properties for the range of ashes studied. The effect of the real part of the refractive index on opacity tends to be counterbalanced by particle density effects. Furthermore, most fly ash absorbs relatively little light.

Cowen, S.J.; Ensor, D.S.

1985-02-01T23:59:59.000Z

336

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

Pollutants Associated With Coal Combustion. • E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal • . . . . Coal Desulfurization

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

337

Process for fixed bed coal gasification  

DOE Patents [OSTI]

The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

Sadowski, Richard S. (Greenville, SC)

1992-01-01T23:59:59.000Z

338

Evaluating the Effects of the Kingston Fly Ash Release on Fish Reproduction: Spring 2009 - 2010 Studies  

SciTech Connect (OSTI)

On December 22, 2008, a dike containing fly ash and bottom ash at the Tennessee Valley Authority's (TVA) Kingston Fossil Plant in East Tennessee failed and released a large quantity of ash into the adjacent Emory River. Ash deposits from the spill extended 4 miles upstream of the facility to Emory River mile 6 and downstream to Tennessee River mile 564 ({approx}8.5 miles downstream of the confluence of the Emory River with the Clinch River, and {approx}4 miles downstream of the confluence of the Clinch River with the Tennessee River). A byproduct of coal combustion, fly ash contains a variety of metals and other elements which, at sufficient concentrations and in specific forms, can be harmful to biological systems. The ecological effects of fly ash contamination on exposed fish populations depend on the magnitude and duration of exposure, with the most significant risk considered to come from elevated levels of certain metals in the ash, particularly selenium, on fish reproduction and fish early life stages (Lemly 1993; Besser and others 1996). The ovaries of adult female fish in a lake contaminated by coal ash were reported to have an increased frequency of atretic oocytes (dead or damaged immature eggs) and reductions in the overall numbers of developing oocytes (Sorensen 1988) associated with elevated body burdens of selenium. Larval fish exposed to selenium through maternal transfer of contaminants to developing eggs in either contaminated bodies of water (Lemly 1999) or in experimental laboratory exposures (Woock and others 1987, Jezierska and others 2009) have significantly increased incidences of developmental abnormalities. Contact of fertilized eggs and developing embryos to ash in water and sediments may also pose an additional risk to the early life stages of exposed fish populations through direct uptake of metals and other ash constituents (Jezierska and others 2009). The establishment and maintenance of fish populations is intimately associated with the ability of individuals within a population to reproduce. Reproduction is thus generally considered to be the most critical life function affected by environmental contamination. From a regulatory perspective, the issue of potential contaminant-related effects on fish reproduction from the Kingston fly ash spill has particular significance because the growth and propagation of fish and other aquatic life is a specific classified use of the affected river systems. To address the potential effects of fly ash from the Kingston spill on the reproductive health of exposed fish populations, ORNL has undertaken a series of studies in collaboration with TVA that include: (1) a combined field study of metal bioaccumulation in ovaries and other fish tissues (Adams and others 2012) and the reproductive condition of sentinel fish species in reaches of the Emory and Clinch Rivers affected by the fly ash spill (the current report); (2) laboratory tests of the potential toxicity of fly ash from the spill area on fish embryonic and larval development (Greeley and others 2012); (3) additional laboratory experimentation focused on the potential effects of long-term exposures to fly ash on fish survival and reproductive competence (unpublished); and (4) a combined field and laboratory study examining the in vitro developmental success of embryos and larvae obtained from fish exposed in vivo for over two years to fly ash in the Emory and Clinch Rivers (unpublished). The current report focuses on the reproductive condition of adult female fish in reaches of the Emory and Clinch Rivers influenced by the fly ash spill at the beginning of the spring 2009 breeding season - the first breeding season immediately following the fly ash release - and during the subsequent spring 2010 breeding season. Data generated from this and related reproductive/early life stage studies provide direct input to ecological risk assessment efforts and complement and support other phases of the overall biomonitoring program associated with the fly ash spill.

Greeley Jr, Mark Stephen [ORNL; Adams, Marshall [ORNL; McCracken, Kitty [ORNL

2012-05-01T23:59:59.000Z

339

Introduction of clean coal technology in Japan  

SciTech Connect (OSTI)

Coal is an abundant resource, found throughout the world, and inexpensive and constant in price. For this reason, coal is expected to play a role as one of the energy supply sources in the world. The most critical issues to promote utilization of coal are to decrease the environmental load. In this report, the history, outline and recent developments of the clean coal technology in Japan, mainly the thermal power generation technology are discussed. As recent topics, here outlined first is the technology against global warming such as the improvement of steam condition for steam turbines, improvement of power generation efficiency by introducing combined generation, carbon neutral combined combustion of biomass, and carbon dioxide capture and storage (CCS) technology. Also introduced are outlines of Japanese superiority in application technology against NOx and SO{sub 2} which create acid rain, development status of the technical improvement in the handling method for coal which is a rather difficult solid-state resource, and utilization of coal ash.

Takashi Kiga [Japan Coal Energy Center (JCOAL), Tokyo (Japan). R and D Department

2008-01-15T23:59:59.000Z

340

Development of a Coal Quality Expert  

SciTech Connect (OSTI)

ABB Power Plant Laboratories Combustion Engineering, Inc., (ABB CE) and CQ Inc. completed a broad, comprehensive program to demonstrate the economic and environmental benefits of using higher quality U.S. coals for electrical power generation and developed state-of-the-art user-friendly software--Coal Quality Expert (CQE)-to reliably predict/estimate these benefits in a consistent manner. The program was an essential extension and integration of R and D projects performed in the past under U.S. DOE and EPRI sponsorship and it expanded the available database of coal quality and power plant performance information. This software will permit utilities to purchase the lowest cost clean coals tailored to their specific requirements. Based on common interest and mutual benefit, the subject program was cosponsored by the U.S. DOE, EPRI, and eight U.S. coal-burning utilities. In addition to cosponsoring this program, EPN contributed its background research, data, and computer models, and managed some other supporting contracts under the terms of a project agreement established between CQ Inc. and EPRI. The essential work of the proposed project was performed under separate contracts to CQ Inc. by Electric Power Technologies (El?'T), Black and Veatch (B and V), ABB Combustion Engineering, Babcock and Wilcox (B and W), and Decision Focus, Inc. Although a significant quantity of the coals tied in the United States are now cleaned to some degree before firing, for many of these coals the residual sulfur content requires users to install expensive sulfur removal systems and the residual ash causes boilers to operate inefficiently and to require frequent maintenance. Disposal of the large quantities of slag and ash at utility plant sites can also be problematic and expensive. Improved and advanced coal cleaning processes can reduce the sulfur content of many coals to levels conforming to environmental standards without requiring post-combustion desulfurization systems. Also, some coals may be beneficiated or blended to a quality level where significantly less costly desulfurization systems are needed. Coal cleaning processes may also be used to remove the precursors of other troublesome emissions that can be identified now or in the future. An added benefit of coal cleaning and blending is the reduction in concentrations of mineral impurities in the fuel leading to improved performance and operation of the'' boiler in which it is fired. The ash removed during the pre-combustion cleaning process can be more easily and safely disposed of at the mine than at the utility plant after combustion. EPRI's Coal Quality Impact Model (CQIM) has shown that improved fuel quality can result in savings in unit capital and operating costs. This project produced new and improved software to select coal types and specifications resulting in the best quality and lowest cost fuel to meet specific environmental requirements.

None

1998-06-20T23:59:59.000Z

Note: This page contains sample records for the topic "war coal ash" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

It was 1986, during the Cold War...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

was 1986, during the Cold War, and I had finished my session at a large conference focused on topics related to nuclear war. It was lunchtime. I walked into the lunchroom. I...

342

Advanced progress concepts for direct coal liquefaction  

SciTech Connect (OSTI)

Given the low cost of petroleum crude, direct coal liquefaction is still not an economically viable process. The DOE objectives are to further reduce the cost of coal liquefaction to a more competitive level. In this project the primary focus is on the use of low-rank coal feedstocks. A particular strength is the use of process-derived liquids rather than model compound solvents. The original concepts are illustrated in Figure 1, where they are shown on a schematic of the Wilsonville pilot plant operation. Wilsonville operating data have been used to define a base case scenario using run {number_sign}263J, and Wilsonville process materials have been used in experimental work. The CAER has investigated: low severity CO pretreatment of coal for oxygen rejection, increasing coal reactivity and mg inhibiting the propensity for regressive reactions; the application of more active. Low-cost Fe and Mo dispersed catalysts; and the possible use of fluid coking for solids rejection and to generate an overhead product for recycle. CONSOL has investigated: oil agglomeration for coal ash rejection, for the possible rejection of ash in the recycled resid, and for catalyst addition and recovery; and distillate dewaxing to remove naphthenes and paraffins, and to generate an improved quality feed for recycle distillate hydrogenation. At Sandia, research has been concerned with the production of active hydrogen donor distillate solvent fractions produced by the hydrogenation of dewaxed distillates and by fluid coking via low severity reaction with H{sub 2}/CO/H{sub 2}O mixtures using hydrous metal oxide and other catalysts.

Anderson, R.; Derbyshire, F.; Givens, E. [Univ. of Kentucky Center for Applied Energy Research, Lexington, KY (United States)] [and others

1995-09-01T23:59:59.000Z

343

The impact of conversion to low-NO{sub x} burners on ash characteristics  

SciTech Connect (OSTI)

A research initiative focusing on the changes in coal-combustion byproducts that result from the conversion of coal-fired boilers to low-NO{sub x} burners has been implemented at the Center for Applied Energy Research (CAER). This paper presents selected results from the first such study, the conversion of East Kentucky Power`s 116 MW, wall-fired unit {number_sign}1 at the John Sherman Cooper Station in Pulaski County, Kentucky. Samples of the coal feedstock and fly ash recovered in several downstream collection vessels were collected prior to and following conversion and extensively analyzed. The results presented in this report include total carbon, petrography, mineralogy, particle size, and leaching characteristics. The major changes noted in the fly-ash properties include an increase in carbon content, a slight increase in particle size, and a decrease in glassy components in the ash following conversion. Those changes induced by the conversion to low-NO{sub x} burners are evaluated in terms of the potential impact on the marketability of the fly ash.

Robi, T.L.; Hower, J.C.; Graham, U.M.; Groppo, J.G.; Rathbone, R.F.; Taulbee, D.N. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Medina, S.S. [East Kentucky Power Cooperative, Winchester, KY (United States)

1995-12-31T23:59:59.000Z

344

UWM-CBU Concrete Materials Technology Series Program No. 71 Workshop on GREEN CONSTRUCTION MATERIALS USING COAL-COMBUSTION PRODUCTS  

E-Print Network [OSTI]

: Classification (Class F, Class C, Class N, and SDA & Clean-Coal Ash); Chemical Composition; PhysicalUWM-CBU Concrete Materials Technology Series Program No. 71 Workshop on GREEN CONSTRUCTION MATERIALS USING COAL-COMBUSTION PRODUCTS Center for By-Products Utilization NONPROFIT ORGANIZATION 3200

Saldin, Dilano

345

Engineering Development of Advanced Physical Fine Coal Cleaing for Premium Fuel Applications  

SciTech Connect (OSTI)

The ash in six common bituminous coals, Taggart, Winifrede, Elkhorn No. 3, Indiana VII, Sunnyside and Hiawatha, could be liberated by fine grinding to allow preparation of clean coal meeting premium fuel specifications (< 1- 2 lb/ MBtu ash and <0.6 lb/ MBtu sulfur) by laboratory and bench- scale column flotation or selective agglomeration. Over 2,100 tons of coal were cleaned in the PDU at feed rates between 2,500 and 6,000 lb/ h by Microcel? column flotation and by selective agglomeration using recycled heptane as the bridging liquid. Parametric testing of each process and 72- hr productions runs were completed on each of the three test coals. The following results were achieved after optimization of the operating parameters: The primary objective was to develop the design base for commercial fine coal cleaning facilities for producing ultra- clean coals which can be converted into coal-water slurry premium fuel. The coal cleaning technologies to be developed were advanced column flotation and selective agglomeration, and the goal was to produce fuel meeting the following specifications -- Less than 2 pounds of ash per million Btu (860 grams per gigajoule) and

Frank J. Smit; Gene L. Schields; Mehesh C. Jha; Nick Moro

1997-09-26T23:59:59.000Z

346

Recovery and utilization of waste liquids in ultra-clean coal preparation by chemical leaching  

SciTech Connect (OSTI)

Coal with ash lower than 1%, being called an ultra-clean coal, has many potential applications, such as a substitute for diesel fuel, production of carbon electrodes, superior activated carbon and other chemical materials. It is difficult to reduce coal ash to such a level by conventional coal preparation technology. By means of chemical leaching with the proper concentration of alkali and acid solutions, any coal can be deeply deashed to 1% ash level. However, the cost of chemical methods is higher than that of physical ones, additionally, the waste liquids would give rise to environmental pollution if used on a large scale. If the waste liquids from chemical preparation of ultra-clean coal can be recovered and utilized, so as to produce salable by-products, the cost of chemical leaching will be reduced. This processing will also solve the pollution problem of these waste liquids. This paper describes recovery and utilization methods for these liquids used in chemical leaching, including the recoveries of alkali, silica, sodium-salt and aluminium-salt. A preliminary estimate was made regarding its economic benefits. It shows that this research solves the two problems in the chemical preparation of ultra-clean coal. One is the high-cost and the other is environmental pollution. This research demonstrates good potential for the production of ultra-clean coal on an industrial scale.

Xu Zesheng; Shi Zhimin; Yang Qiaowen; Wang Xinguo [China Univ. of Mining and Technology, Beijing (China). Beijing Graduate School

1997-12-31T23:59:59.000Z

347

Coal preparation: The essential clean coal technology  

SciTech Connect (OSTI)

This chapter is a brief introduction to a broad topic which has many highly specialized areas. The aim is to summarize the essential elements of coal preparation and illustrate its important role in facilitating the clean use of coal. Conventional coal preparation is the essential first step in ensuring the economic and environmentally acceptable use of coal. The aim of coal preparation is to produce saleable products of consistent, specified quality which satisfy customer requirements while optimizing the utilization of the coal resource. Coal preparation covers all aspects of preparing coal for the market. It includes size reduction, blending and homogenization and, most importantly, the process of physical beneficiation or washing, which involves separation of undesirable mineral matter from the coal substance itself. Coal preparation can be performed at different levels of sophistication and cost. The degree of coal preparation required is decided by considering the quality of the raw coal, transport costs and, in particular, the coal quality specified by the consumer. However, the cost of coal beneficiation rises rapidly with the complexity of the process and some coal is lost with the waste matter because of process inefficiencies, therefore each situation requires individual study to determine the optimum coal preparation strategy. The necessary expertise is available within APEC countries such as Australia. Coals destined for iron making are almost always highly beneficiated. Physical beneficiation is mostly confined to the higher rank, hard coals, but all other aspects of coal preparation can be applied to subbituminous and lignitic coals to improve their utilization. Also, there are some interesting developments aimed specifically at reducing the water content of lower rank coals.

Cain, D.

1993-12-31T23:59:59.000Z

348

"War and Peace: July 1914 and the  

E-Print Network [OSTI]

"War and Peace: July 1914 and the Conference that never was" Department of History Chester New Hall against the war. He was assassinated on 31 July, 1914 by a French nationalist. Represented by Dr. Jennifer-known pacifist during the First World War, which led to him losing his position at the university. Prior

Hitchcock, Adam P.

349

An All Women's Response to War  

E-Print Network [OSTI]

An All Women’s Response to War I n t e r n a t i o n a l W oan All Women’s Response to the War to take place on March 8,the loudest. The continuous war and aggression in Iraq are

Dean, Rebecca

2008-01-01T23:59:59.000Z

350

Secret War, Secret Science Brad Osgood  

E-Print Network [OSTI]

Secret War, Secret Science Brad Osgood Stanford University #12;Tehran meeting November 28th -- December 1st 1943 "In war-time, truth is so precious that she should always be attended by a bodyguard. David Kahn, The Codebreakers #12;The early events · Britain's first offensive action of the war

Osgood, Brad

351

Method for desulfurization of coal  

DOE Patents [OSTI]

A process and apparatus for desulfurizing coal which removes sulfur in the inorganic and organic form by preferentially heating the inorganic iron sulfides in coal in a flowing gas to convert some of the inorganic iron sulfides from a pyrite form FeS.sub.2 to a troilite FeS form or a pyrrhotite form Fe.sub.1-x S and release some of the sulfur as a gaseous compound. The troilite and pyrrhotite forms are convenient catalyst for removing the organic sulfur in the next step, which is to react the coal with chemical agents such as alcohol, thus removing the organic sulfur as a liquid or a gas such as H.sub.2 S. The remaining inorganic sulfur is left in the predominantly higher magnetic form of pyrrhotite and is then removed by magnetic separation techniques. Optionally, an organic flocculant may be added after the organic sulfur has been removed and before magnetic separation. The flocculant attaches non-pyrite minerals with the pyrrhotite for removal by magnetic separation to reduce the ash-forming contents.

Kelland, David R. (Lexington, MA)

1987-01-01T23:59:59.000Z

352

Method for desulfurization of coal  

DOE Patents [OSTI]

A process and apparatus are disclosed for desulfurizing coal which removes sulfur in the inorganic and organic form by preferentially heating the inorganic iron sulfides in coal in a flowing gas to convert some of the inorganic iron sulfides from a pyrite form FeS[sub 2] to a troilite FeS form or a pyrrhotite form Fe[sub 1[minus]x]S and release some of the sulfur as a gaseous compound. The troilite and pyrrhotite forms are convenient catalyst for removing the organic sulfur in the next step, which is to react the coal with chemical agents such as alcohol, thus removing the organic sulfur as a liquid or a gas such as H[sub 2]S. The remaining inorganic sulfur is left in the predominantly higher magnetic form of pyrrhotite and is then removed by magnetic separation techniques. Optionally, an organic flocculant may be added after the organic sulfur has been removed and before magnetic separation. The flocculant attaches non-pyrite minerals with the pyrrhotite for removal by magnetic separation to reduce the ash-forming contents. 2 figs.

Kelland, D.R.

1987-07-07T23:59:59.000Z

353

Recovery Act Workers Complete Environmental Cleanup of Coal Ash Basin  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 |Rebecca MatulkaDeliveryUpdated November 2011

354

Recovery Act Workers Complete Environmental Cleanup of Coal Ash Basin |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment ofList?Department09Jersey ForDakotaWisconsin

355

Multi-gravity separator: an alternate gravity concentrator to process coal fines  

SciTech Connect (OSTI)

The multi-gravity separator (MGS) is a novel piece of equipment for the separation of fine and ultra-fine minerals. However, the published literature does not demonstrate its use in the separation of coal fines. Therefore, an attempt was made to study the effects of different process variables on the performance of an MGS for the beneficiation of coal fines. The results obtained from this study revealed that among the parameters studied, drum rotation and feed solids concentration play dominating roles in controlling the yield and ash content of the clean coal. Mathematical modeling equations that correlate the variables studied and the yield and ash contents of the clean coal were developed to predict the performance of an MGS under different operating and design conditions. The entire exercise revealed that the MGS could produce a clean coal with an ash content of 14.67% and a yield of 71.23% from a feed coal having an ash content of 24.61 %.

Majumder, A.K.; Bhoi, K.S.; Barnwal, J.P. [Regional Research Laboratories, Bhopal (India)

2007-08-15T23:59:59.000Z

356

Mining conditions and deposition in the Amburgy (Westphalian B) coal, Breathitt Group, central Appalachian basin  

SciTech Connect (OSTI)

Carbonate concretions called clay balls are rare in the Central Appalachian Basin, but were found in the Amburgy coal overlain by the Kendrick Shale Member. In the study area, the Amburgy coal is 0.7 to 0.9 meters thick, moderate to high in sulfur content, moderate to high in ash yield, and mostly bright clarain, except at the top near the area of coal balls, where durain of limited extent occurs. The coal is co-dominated by lycopod and cordaites; tree spores, with subordinate Calamites. The local durain layer is dominated by Densosporites, produced by the shrubby lycopod Ompbalophloios. Coal balls were encountered where the durain is immediately overlain by a coquinoid hash of broken and whole marine fossils, along a trend of coal thinning. The coal balls contain permineralized cordaites, lycopods, calamites, and ferns. The Amburgy coal accumulated as a succession of planar mires. Local splits in the seam are common, indicating contemporaneous clastic influx. The abundance of Cordaites may indicate brackish mire waters related to a coastal position and initial eustatic rise of the marginal Kendrick seas. Near the end of the Amburgy mires, the high ash-Omphalopbloios association is interpreted as a local area that was being drowned by the Kendrick transgression. Ravinement within this local embayment, rapid inundation by marine waters, and concentration of carbonate-bearing waters within transgressive scours may have contributed to the formation of coal balls and pyritic concretions in the upper part of the coal bed.

Greb, S.F.; Eble, C.F. [Kentucky Geological Survey, Lexington, KY (United States); Hower, J.C. [Center for Applied Research, Lexington, KY (United States); Phillips, T.L. [Univ. of illinois, Urbana, IL (United States)

1996-09-01T23:59:59.000Z

357

Coal combustion science. Quarterly progress report, April 1993--June 1993  

SciTech Connect (OSTI)

This document is a quarterly status report of the Coal Combustion Science Project that is being conducted at the Combustion Research Facility, Sandia National Laboratories. The information reported is for Apr-Jun 1993. The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the PETC Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. The objective of the kinetics and mechanisms of pulverized coal char combustion task is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. Work is being done in four areas: kinetics of heterogeneous fuel particle populations; char combustion kinetics at high carbon conversion; the role of particle structure and the char formation process in combustion and; unification of the Sandia char combustion data base. This data base on the high temperature reactivities of chars from strategic US coals will permit identification of important fuel-specific trends and development of predictive capabilities for advanced coal combustion systems. The objective of the fate of inorganic material during coal combustion task is the establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of inorganic material during coal combustion as a function of coal type, particle size and temperature, the initial forms and distribution of inorganic species in the unreacted coal, and the local gas temperature and composition. In addition, optical diagnostic capabilities are being developed for in situ, real-time detection of inorganic vapor species and surface species during ash deposition. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

Hardesty, D.R. [ed.

1994-05-01T23:59:59.000Z

358

Coal industry annual 1997  

SciTech Connect (OSTI)

Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

NONE

1998-12-01T23:59:59.000Z

359

Coal Combustion Products Extension Program  

SciTech Connect (OSTI)

This final project report presents the activities and accomplishments of the ''Coal Combustion Products Extension Program'' conducted at The Ohio State University from August 1, 2000 to June 30, 2005 to advance the beneficial uses of coal combustion products (CCPs) in highway and construction, mine reclamation, agricultural, and manufacturing sectors. The objective of this technology transfer/research program at The Ohio State University was to promote the increased use of Ohio CCPs (fly ash, FGD material, bottom ash, and boiler slag) in applications that are technically sound, environmentally benign, and commercially competitive. The project objective was accomplished by housing the CCP Extension Program within The Ohio State University College of Engineering with support from the university Extension Service and The Ohio State University Research Foundation. Dr. Tarunjit S. Butalia, an internationally reputed CCP expert and registered professional engineer, was the program coordinator. The program coordinator acted as liaison among CCP stakeholders in the state, produced information sheets, provided expertise in the field to those who desired it, sponsored and co-sponsored seminars, meetings, and speaking at these events, and generally worked to promote knowledge about the productive and proper application of CCPs as useful raw materials. The major accomplishments of the program were: (1) Increase in FGD material utilization rate from 8% in 1997 to more than 20% in 2005, and an increase in overall CCP utilization rate of 21% in 1997 to just under 30% in 2005 for the State of Ohio. (2) Recognition as a ''voice of trust'' among Ohio and national CCP stakeholders (particularly regulatory agencies). (3) Establishment of a national and international reputation, especially for the use of FGD materials and fly ash in construction applications. It is recommended that to increase Ohio's CCP utilization rate from 30% in 2005 to 40% by 2010, the CCP Extension Program be expanded at OSU, with support from state and federal agencies, utilities, trade groups, and the university, to focus on the following four specific areas of promise: (a) Expanding use in proven areas (such as use of fly ash in concrete); (b) Removing or reducing regulatory and perceptual barriers to use (by working in collaboration with regulatory agencies); (c) Developing new or under-used large-volume market applications (such as structural fills); and (d) Placing greater emphasis on FGD byproducts utilization.

Tarunjit S. Butalia; William E. Wolfe

2006-01-11T23:59:59.000Z

360

Coal Industry Annual 1995  

SciTech Connect (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

NONE

1996-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "war coal ash" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Coal industry annual 1996  

SciTech Connect (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

NONE

1997-11-01T23:59:59.000Z

362

HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT  

SciTech Connect (OSTI)

As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical reaction mechanism for the NBFZ tests.

Stefano Orsino

2005-03-30T23:59:59.000Z

363

Microbial solubilization of coal  

DOE Patents [OSTI]

The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

Strandberg, G.W.; Lewis, S.N.

1988-01-21T23:59:59.000Z

364

Task 3.15 -- Impacts of low-NOx combustion on fly ash and slagging. Semi-annual report, July 1--December 31, 1996  

SciTech Connect (OSTI)

With the advent of the Clean Air Act Amendments of 1990, the coal-fired power industry began a more accelerated move toward using low-NOx burner (LNB) technologies to reduce NOx emissions. Most LNBs incorporate less oxygen with the coal initially, creating a cooler and somewhat substoichiometric initial combustion zone, with additional oxygen added further on in the combustion process to complete char combustion. Another method used to achieve lower NOx emissions is to fire the coal substoichiometrically and add additional air through overfire air ports. Both of these methods create certain impacts on fireside performance that are different from conventional high-excess-air firing arrangements. Some of the impacts that have been noticed by the utility industry are higher levels of unburned carbon in the fly ash and bottom ash, increased boiler tube corrosion, higher particulate loadings on control devices, and changes in slagging in the main furnace. Work on the fundamental mechanisms of entrained ash and ash deposit formation during low-NOx combustion has been sparse. This project by the Energy and Environmental Research Center (EERC) focuses on the issues of entrained ash formation and slagging for low-NOx combustion systems in general. Time-resolved combustion tests under conventional and low-NOx conditions have been conducted to note particle-size formation and slagging deposition. The results from this work are yielding an increased understanding of the mechanisms of ash formation during low-NOx combustion along with methods for enhancing heat transfer and fly ash collectability. Specific objectives of this research project include (1) determining whether initial char and ash generated under low-NOx conditions have greater tendencies for slagging than conventionally generated ash and (2) determining the differences, if any, between particle size and composition for entrained ash generated under low-NOx and conventional combustion conditions.

Zygarlicke, C.J.; McCollor, D.P.

1997-08-01T23:59:59.000Z

365

Solvent refined coal (SRC) process. Annual technical progress report, January 1979-December 1979  

SciTech Connect (OSTI)

This report discusses the effects on SRC yields of seven process variables (reactor temperature, SRT, hydrogen partial pressure, recycle ash and coal concentrations, gas velocity and coal type) predicted by second-order regression models developed from a data base containing pilot plant data with both Kentucky and Powhatan coals. The only effect of coal type in the model is a shift in each yield by a constant factor. Although some differences were found between the models developed from the Kentucky data base (1) (which we call Kentucky models) and the pooled coal models, the general conclusions of the previous report are confirmed by the new models and the assumption of similar behavior of the two coals appears to be justified. In some respects the dependence of the yields (MAF coal basis) on variables such as pressure and temperature are clearer than in the previous models. The principal trends which emerge are discussed.

Not Available

1980-11-01T23:59:59.000Z

366

Petrographic characterization of Kentucky coals. Quarterly progress report, March-May 1983  

SciTech Connect (OSTI)

This project consists of three specific areas of coal petrology: spectral fluorescence of liptinite macerals; properties of semi-inert macerals; and size/form/microlithotype association of pyrite/marcasite. Techniques developed in the first three areas were used in additional research on Mannington and Dunbar coals in western Kentucky and the Alma coal zone in eastern Kentucky. Some of the findings are: percent variations (pseudovitrinite-vitrinite/vitrinite X100) indicate greater dispersions in Vicker's microhardness values, MH(v), of vitrinite and pseudovitrinite from eastern Kentucky coals than those of western Kentucky coals; reflectance data confirm a previously suspected rank increase from eastern Knott and Magoffin Counties to eastern Pike County; microhardness investigation of Upper Elkhorn 2 coal in eastern Kentucky indicates that pseudovitrinite is consistently harder than vitrinite; and of the western coals studied, Dunbar and Lead Creek, there appears to be some correlations between vitrinite, ash, sulfur, and thickness. 6 tables.

Hower, J.C.; Ferm, J.C.; Cobb, J.C.; Trinkle, E.J.; Frankie, K.A.; Poe, S.H.; Baynard, D.N.; Graese, A.M.; Raione, R.P.

1983-01-01T23:59:59.000Z

367

Chemical Imaging Analysis of Environmental Particles Using the Focused Ion Beam/Scanning Electron Microscopy Technique: Microanalysis Insights into Atmospheric Chemistry of Fly Ash  

SciTech Connect (OSTI)

Airborne fly ash from coal combustion may represent a source of bioavailable iron (Fe) in the open ocean. However, few studies have been made focusing on Fe speciation and distribution in coal fly ash. In this study, chemical imaging of fly ash has been performed using a dual-beam FIB/SEM (focused ion beam/scanning electron microscope) system for a better understanding of how simulated atmospheric processing modify the morphology, chemical compositions and element distributions of individual particles. A novel approach has been applied for cross-sectioning of fly ash specimen with a FIB in order to explore element distribution within the interior of individual particles. Our results indicate that simulated atmospheric processing causes disintegration of aluminosilicate glass, a dominant material in fly ash particles. Aluminosilicate-phase Fe in the inner core of fly ash particles is more easily mobilized compared with oxide-phase Fe present as surface aggregates on fly ash spheres. Fe release behavior depends strongly on Fe speciation in aerosol particles. The approach for preparation of cross-sectioned specimen described here opens new opportunities for particle microanalysis, particular with respect to inorganic refractive materials like fly ash and mineral dust.

Chen, Haihan; Grassian, Vicki H.; Saraf, Laxmikant V.; Laskin, Alexander

2013-01-21T23:59:59.000Z

368

Clean coal  

SciTech Connect (OSTI)

The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

Liang-Shih Fan; Fanxing Li [Ohio State University, OH (United States). Dept. of Chemical and Biomolecular Engineering

2006-07-15T23:59:59.000Z

369

Evaluation of fly ash-surfaced pens as a control for fugitive dust emissions from beef cattle feedyards  

E-Print Network [OSTI]

of pens was surfaced with fly ash from a coal-fired power plant, while the other set, surfaced with caliche, served as a control. Five sampling trips were completed for a total of 492 TSP samples and 288 PM10 samples. Results indicate that statistically...

Kantor, Theodore Lee

1995-01-01T23:59:59.000Z

370

Quaternary Science Reviews 26 (2007) 26312643 Charcoal and fly-ash particles from Lake Lucerne sediments (Central  

E-Print Network [OSTI]

Quaternary Science Reviews 26 (2007) 2631­2643 Charcoal and fly-ash particles from Lake Lucerne emitted in the area of Lake Lucerne (Central Europe) throughout the last 7200 years. Charcoal navigation on Lake Lucerne. The successive burning of wood (after AD 1838), coal (after AD 1862), and diesel

Gilli, Adrian

371

Long duration ash probe  

DOE Patents [OSTI]

A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during soot blowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon. 8 figs.

Hurley, J.P.; McCollor, D.P.; Selle, S.J.

1994-07-26T23:59:59.000Z

372

Long duration ash probe  

DOE Patents [OSTI]

A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during sootblowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon.

Hurley, John P. (Grand Forks, ND); McCollor, Don P. (Grand Forks, ND); Selle, Stanley J. (Grand Forks, MN)

1994-01-01T23:59:59.000Z

373

Bioaccumulation Studies Associated with the Kingston Fly Ash Spill, Spring 2009 - Fall 2010  

SciTech Connect (OSTI)

In December 2008, an ash dike at the Tennessee Valley Authority (TVA) Kingston Fossil Plant ruptured, releasing over one billion gallons of coal fly ash into the Emory and Clinch Rivers. Coal fly ash may contain several contaminants of concern, but of these selenium (Se) and arsenic (As) have been highlighted because of their toxicity and tendency to bioaccumulate in aquatic food chains. To assess the potential impact of the spilled fly ash on humans and the environment, a comprehensive biological and environmental monitoring program was established, for which resident aquatic organisms (among other sample media) are collected to determine contaminant exposure and evaluate the risk to humans and wildlife. Studies on bioaccumulation and fish health are major components of the TVA Biological Monitoring Program for the Kingston fly ash project. These studies were initiated in early Spring 2009 for the purposes of: (1) documenting the levels of fly ash-associated metals in various tissues of representative sentinel fish species in the area of the fly ash spill, (2) determining if exposure to fly ash-associated metals causes short, intermediate, or long-term health effects on these sentinel fish species, (3) assessing if there are causal relationships between exposure (to metals) and effects on fish, (4) evaluating, along with information regarding other ecological and physicochemical studies, the nature and route of contaminant transfer though food chains into higher level consumers, (5) providing important information for the Ecological Risk Assessment (ERA) for the Kingston fly ash project, and (6) serving as an important technology transfer or model study focused on how to best evaluate the environmental effects of fly ash, not only at the Kingston site, but also at sites on other aquatic systems where coal-fired generating stations are located. This report summarizes the bioaccumulation results from the first two years of study after the fly ash spill, including four seasonal collections: Spring 2009, Fall 2009, Spring 2010, and Fall 2010. Both the Spring and Fall studies have focused on 3-4 sentinel fish species that represent different feeding habits, behaviors, and home ranges. In addition to bioaccumulation studies, the Spring investigations also included evaluation of fish health and reproductive integrity on the same fish used for bioaccumulation. Two associated reports present the fish health (Adams et al 2012) and reproductive studies (Greeley et al 2012) conducted in 2009 and 2010. The fish health study conducted in conjunction with the bioaccumulation and reproductive study is critical for assessing and evaluating possible causal relationships between contaminant exposure (bioaccumulation) and the response of fish to exposure as reflected by the various measurements of fish health. This report emphasizes evaluation of arsenic and selenium bioaccumulation in fish and consists of four related studies (Sections 2-5) including, (1) bioaccumulation in liver and ovaries, (2) bioaccumulation in whole body gizzard shad (Dorosoma cepedianum), (3) bioaccumulation in muscle tissue or fillets, and (4) a reconstruction analysis which establishes the relationship between selenium in muscle tissue and that of the whole body of bluegill (Lepomis machrochirus). Metals other than arsenic and selenium are evaluated separately in Section 6. This report focuses on selenium and arsenic for the following reasons: (1) based on baseline studies conducted in early 2009 in the Emory and Clinch River, only two potentially fly-ash related metals, selenium and arsenic, appeared to be elevated above background or reference levels, (2) selenium and arsenic are two of the metals in coal ash that are known to bioaccumulate and cause toxicity in wildlife, and (3) based on bioaccumulation studies of bluegill and carp (Cyprinus carpio) in the Stilling Pond during Spring 2009, which would represent a worst case situation for metal bioaccumulation, selenium and arsenic were the only two metals consistently elevated above background levels in fish. E

Adams, Marshall [ORNL; Brandt, Craig C [ORNL; Fortner, Allison M [ORNL

2012-05-01T23:59:59.000Z

374

Petrographic characterization of Kentucky coals. Final report. Part II. Depositional settings of the coal bearing, upper Tradewater Formation in western Kentucky with emphasis on the Mannington (No. 4) coal zone  

SciTech Connect (OSTI)

Depositional settings were determined in the coal bearing, Middle Pennsylvanian, upper Tradewater Formation in western Kentucky with emphasis on the Mannington (No. 4) coal zone. The coals have been analyzed for maceral contents, lithotypes, dry sulfur/ash percentages, vitrinite reflectance values, pyrite/marcasite contents, and associated lithologies at different vertical and lateral scales. This study concludes that: (1) the thin coarsening - or fining upward sequences, under the Mannington (No. 4) coal zone are possibly shallow bayfill and channel-fill deposits that provided an environment that has slight differences in topography, (2) rapid vertical and lateral change in total vitrinite, dry sulfur/ash percentages and lithotypes at different scales in the Mannington (No. 4) coal zone are indicative of wideranging Eh and pH values and possibly result from slight changes in paleotopography, and (3) the Davis (No. 6) coal was deposited after a period of thick coarsening - or fining upward sequences, possibly providing a relatively flat-stable surface for peat development. The consistent total vitrinite, dry sulfur/ash values, and thickness trends indicate a more restricted environment (pH and Eh) in the Davis (No. 6) swamp. 41 references, 25 figures, 3 tables.

Baynard, D.N.; Hower, J.C.

1983-01-01T23:59:59.000Z

375

Coal industry annual 1993  

SciTech Connect (OSTI)

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

376

Coal liquefaction and hydrogenation  

DOE Patents [OSTI]

Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

Schindler, Harvey D. (Fair Lawn, NJ); Chen, James M. (Edison, NJ)

1985-01-01T23:59:59.000Z

377

Coal combustion science: Task 1, Coal char combustion: Task 2, Fate of mineral matter. Quarterly progress report, July--September 1993  

SciTech Connect (OSTI)

Progress reports are presented for the following tasks: (1) kinetics and mechanisms of pulverized coal char combustion and (2) fate of inorganic material during coal combustion. The objective of Task 1 is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. In Sandia`s Coal Combustion Laboratory (CCL), optical techniques are used to obtain high-resolution images of individual burning coal char particles and to measure, in situ, their temperatures, sizes, and velocities. Detailed models of combustion transport processes are then used to determine kinetic parameters describing the combustion behavior as a function of coal type and combustion environment. Partially reacted char particles are also sampled and characterized with advanced materials diagnostics to understand the critical physical and chemical transformations that influence reaction rates and burnout times. The ultimate goal of the task is the establishment of a data base of the high temperature reactivities of chars from strategic US coals, from which important trends may be identified and predictive capabilities developed. The overall objectives for task 2 are: (1) to complete experimental and theoretical investigation of ash release mechanisms; (2) to complete experimental work on char fragmentation; (3) to establish the extent of coal (as opposed to char) fragmentation as a function of coal type and particle size; (4) to develop diagnostic capabilities for in situ, real-time, qualitative indications of surface species composition during ash deposition, with work continuing into FY94; (5) to develop diagnostic capabilities for in situ, real-time qualitative detection of inorganic vapor concentrations; and (6) to conduct a literature survey on the current state of understanding of ash deposition, with work continuing into FY94.

Hardesty, D.R. [ed.; Hurt, R.H.; Davis, K.A.; Baxter, L.L.

1994-07-01T23:59:59.000Z

378

488-D Ash Basin Vegetative Cover Treatibility Study  

SciTech Connect (OSTI)

The 488-D Ash Basin is an unlined containment basin that received ash and coal reject material from the operation of a powerhouse at the USDOE's Savannah River Site, SC. They pyretic nature of the coal rejects has resulted in the formation of acidic drainage (AD), which has contributed to groundwater deterioration and threatens biota in down gradient wetlands. Establishment of a vegetative cover was examined as a remedial alternative for reducing AD generation within this system by enhanced utilization of rainwater and subsequent non-point source water pollution control. The low nutrient content, high acidity, and high salinity of the basin material, however, was deleterious to plant survivability. As such, studies to identify suitable plant species and potential adaptations, and pretreatment techniques in the form of amendments, tilling, and/or chemical stabilization were needed. A randomized block design consisting of three subsurface treatments (blocks) and five duplicated surface amendments (treatments) was developed. One hundred inoculated pine trees were planted on each plot. Herbaceous species were also planted on half of the plots in duplicated 1-m2 beds. After two growing seasons, deep ripping, subsurface amendments and surface covers were shown to be essential for the successful establishment of vegetation on the basin. This is the final report of the study.

Barton, Christopher; Marx, Don; Blake, John; Adriano, Domy; Koo, Bon-Jun; Czapka, Stephen

2003-01-01T23:59:59.000Z

379

Design and fabrication of advanced materials from Illinois coal wastes. [Quarterly] technical report, September 1--November 30, 1994  

SciTech Connect (OSTI)

The main goal of this project is to develop a bench-scale procedure to design and fabricate advanced brake and structural composite materials from Illinois coal combustion residues. During the first quarter of the project, the thrust of the work was directed towards setting up the experimental facilities and undertaking preliminary tests to gauge the ability of coal tar derived binder in fabricating the brake skeletons. In addition systematic scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and differential thermal analysis (DTA) were conducted on PCC fly ash (Baldwin), fly ash (ADM), FBC fly ash, FBC spent bed bottom ash, bottom ash (ADM), and scrubber sludge residues to characterize their geometrical shape and thermal stability. The PCC fly ash particles being highly spherical in shape and thermally inert up to 1100{degrees}C will make an excellent raw material for our composites. This is born out by fabricating brake skeletons from PCC fly ash colloids. Unlike the PCC fly ash and FBC fly ash, the scrubber sludge particles are not suitable hosts for our brake lining materials because of a whisker-like particle structure. Six different compositions of various combustion residues were tested in the fabrication of brake skeletons, and our tar derived binder shows great promise in the fabrication of composite materials.

Malhotra, V.M.; Wright, M.A. [Southern Illinois Univ., Carbondale, IL (United States)

1994-12-31T23:59:59.000Z

380

Coal combustion science  

SciTech Connect (OSTI)

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 91 refs., 40 figs., 9 tabs.

Hardesty, D.R. (ed.); Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

1990-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "war coal ash" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Deashing of coal liquids by sonically assisted filtration  

SciTech Connect (OSTI)

This project seeks to improve the effectiveness and reduce the cost of coal liquefaction by novel applications of sonic and ultrasonic energy. The specific purpose of this project is to develop and improve means for the economical removal of dispersed solid particles of ash, unreacted coal, and spent catalyst from direct and indirect coal liquefaction resids by using sonic or ultrasonic waves. Product streams containing solids are generated in both direct and indirect coal liquefaction processes. Direct coal liquefaction processes generate liquid products which contain solids including coal-originated mineral matter, unreacted coal, and spent dispersed catalyst. The removal of these solids from a product stream is one of the most difficult problems in direct coal liquefaction processes. Crossflow filtration is suitable for continuous flow operation and, when coupled with a sonic or ultrasonic field, may constitute a solution to operational problems of solids separation in coal liquefaction. However, for the efficient and trouble-free operation of crossflow filters the problems arising from dealing with highly viscous coal liquefaction resids need to be avoided. Either crossflow filters suitable for work at elevated temperatures at reduced resid viscosity should be used or the coal liquefaction process network should be modified to allow for dilution of resids using a distillate fraction, e.g., naphtha, diesel oil, etc., to reduce the viscosity of resids. As perhaps even a more practical alternative, field-assisted crossflow filtration of the reactor`s effluent stream prior to the distillation step should be considered. Such an approach will circumvent the more difficult separation of fine and ultrafine solids from highly viscous coal liquefaction resids.

Slomka, B.J. [Ames Laboratory, IA (United States)

1994-12-31T23:59:59.000Z

382

Fundamental study of ash formation and deposition: Effect of reducing stoichiometry. Quarterly report No. 3, October 1, 1993--December 31, 1993  

SciTech Connect (OSTI)

The technical objectives of this project are: (a) to identify the partitioning of inorganic coal constituents among vapor, submicron fume, and fly ash products generated during the combustion of pulverized coal under a variety of combustion conditions. Fuel lean and fuel rich combustion conditions will be considered. (b) To identify and quantify the fundamental processes by which the transformations of minerals and organically-associated inorganic species occurs. Emphasis will be placed on identifying any changes that occur as a result of combustion under substoichiometric combustion conditions. (c) To incorporate the effects of combustion stoichiometry into an Engineering Model for Ash Formation based upon the understanding developed in (a) and (b). When completed, this model will predict the particle size and chemical composition distributions of ash formed during the combustion of pulverized coal under a broad range of conditions.

Helble, J.J.; Bool, L.E. [PSI PowerServe, Andover, MA (United States); Sarofim, A.F.; Zeng, T. [Massachusetts Institute of Technology, Cambridge, MA (United States); Peterson, T.W.; Gallien, D. [Arizona Univ., Tucson, AZ (United States); Huffman, G.P.; Huggins, F.E.; Shah, N. [Kentucky Univ., Lexington, KY (United States)

1994-03-01T23:59:59.000Z

383

Coal Mining (Iowa)  

Broader source: Energy.gov [DOE]

These sections describe procedures for coal exploration and extraction, as well as permitting requirements relating to surface and underground coal mining. These sections also address land...

384

Particulate control for low rank coals  

SciTech Connect (OSTI)

The power generating system in Victoria currently comprises a total capacity of 6650 MW. Eighty percent of this capacity consists of base load stations in the Latrobe Valley using brown coal. The Latrobe Valley brown coals have unique characteristics with high moisture content ranging from 58 percent to 70 percent and an ash content which is relatively low but very variable in nature. These and other factors associated with the coal have caused special problems in handling and combustion of the coal and the de-dusting of the boiler flue gases. In recent years, this has been the basis for the design parameters adopted for all the plants in the system. With respect to flue gas de-dusting, the SECV has carried out extensive laboratory studies to characterize the different ashes obtained from the Latrobe Valley brown coals, including precipitability and aerodynamic tests. It also carried out full-scale tests on operating plants and pilot tests have been conducted on inertial collectors, precipitators and bag filters. The Environmental Protection Authority of Victoria has established a particulate emission level of 0.150 grams/m{sup 3} n.t.p. dry for recent Latrobe Valley boilers. However, the mandated emission level takes into account wide variations in operating conditions, and the plants normally achieve much lower emission levels. The Latrobe Valley plants presently in operation include Yallourn W (2x350 MW + 2x375 MW), Morwell (170 MW total and briquette factory), Hazelwood (8x200 MW) and Loy Yang (4x500 MW). The Yalloum W boilers are supplied with coal from the Yalloum Open Cut, the Morwell and Hazelwood boilers from the Morwell Open Cut and Loy Yang boilers from the Loy Yang Open Cut. All boilers are pulverized coal fired (PCF) and incorporate special firing equipment to enable the as-mined wet coal to be fired directly into the furnaces. All boilers are fitted with electrostatic precipitators. The locations of the stations and open cuts are shown.

Touzel, R.McD.

1993-12-31T23:59:59.000Z

385

Effect of Coal Properties and Operation Conditions on Flow Behavior of Coal Slag in Entrained Flow Gasifiers: A Brief Review  

SciTech Connect (OSTI)

Integrated gasification combined cycle (IGCC) is a potentially promising clean technology with an inherent advantage of low emissions, since the process removes contaminants before combustion instead of from flue gas after combustion, as in a conventional coal steam plant. In addition, IGCC has potential for cost-effective carbon dioxide capture. Availability and high capital costs are the main challenges to making IGCC technology more competitive and fully commercial. Experiences from demonstrated IGCC plants show that, in the gasification system, low availability is largely due to slag buildup in the gasifier and fouling in the syngas cooler downstream of the gasification system. In the entrained flow gasifiers used in IGCC plants, the majority of mineral matter transforms to liquid slag on the wall of the gasifier and flows out the bottom. However, a small fraction of the mineral matter (as fly ash) is entrained with the raw syngas out of the gasifier to downstream processing. This molten/sticky fly ash could cause fouling of the syngas cooler. Therefore, it is preferable to minimize the quantity of fly ash and maximize slag. In addition, the hot raw syngas is cooled to convert any entrained molten fly slag to hardened solid fly ash prior to entering the syngas cooler. To improve gasification availability through better design and operation of the gasification process, better understanding of slag behavior and characteristics of the slagging process are needed. Slagging behavior is affected by char/ash properties, gas compositions in the gasifier, the gasifier wall structure, fluid dynamics, and plant operating conditions (mainly temperature and oxygen/carbon ratio). The viscosity of the slag is used to characterize the behavior of the slag flow and is the dominating factor to determine the probability that ash particles will stick. Slag viscosity strongly depends on the temperature and chemical composition of the slag. Because coal has varying ash content and composition, different operating conditions are required to maintain the slag flow and limit problems downstream. This report briefly introduces the IGCC process, the gasification process, and the main types and operating conditions of entrained flow gasifiers used in IGCC plants. This report also discusses the effects of coal ash and slag properties on slag flow and its qualities required for the entrained flow gasifier. Finally this report will identify the key operating conditions affecting slag flow behaviors, including temperature, oxygen/coal ratio, and flux agents.

Wang,Ping; Massoudi, Mehrdad

2011-01-01T23:59:59.000Z

386

Coal combustion science quarterly progress report, October--December 1992. Task 1, Coal char combustion [and] Task 2, Fate of mineral matter  

SciTech Connect (OSTI)

In the Coal Combustion Laboratory (CCL) this quarter, controlled laboratory experiments were carried out to better understand the late stages of coal combustion and its relation to unburned carbon levels in fly ash. Optical in situ measurements were made during char combustion at high carbon conversions and the optical data were related to particle morphologies revealed by optical microscopy on samples extracted under the same conditions. Results of this work are reported in detail below. In the data presented below, we compare the fraction of alkali metal loss to that of the alkaline earth metals as a function of coal rank to draw conclusions about the mechanism of release for the latter. Figure 2.1 illustrates the fractional release of the major alkali and alkaline earth metals (Na, K, Ca, Mg) as a function of coal rank for a series of coals and for several coal blends. All data are derived from combustion experiments in Sandia`s Multifuel Combustor (MFC) and represent the average of three to eight experiments under conditions where the mass loss on a dry, ash-free (daf) basis exceeds 95 %. There are no missing data in the figure. The several coals with no indicated result exhibited no mass loss of the alkali or alkaline earth metals in our experiments. There is a clear rank dependence indicated by the data in Fig. 2.1, reflecting the mode of occurrence of the material in the coal.

Hardesty, D.R. [ed.] [Sandia National Labs., Livermore, CA (United States); Hurt, R.H.; Baxter, L.L. [Sandia National Labs., Albuquerque, NM (United States)

1993-06-01T23:59:59.000Z

387

Coal upgrading program for Usti nad Labem, Czech Republic: Task 8.3. Topical report, October 1994--August 1995  

SciTech Connect (OSTI)

Coal has been a major energy source in the Czech Republic given its large coal reserves, especially brown coal and lignite (almost 4000 million metric tons) and smaller reserves of hard, mainly bituminous, coal (over 800 million tons). Political changes since 1989 have led to the reassessment of the role of coal in the future economy as increasing environmental regulations affect the use of the high-sulfur and high-ash brown coal and lignite as well as the high-ash hard coal. Already, the production of brown coal has declined from 87 million metric tons per year in 1989 to 67 million metric tons in 1993 and is projected to decrease further to 50 million metric tons per year of brown coal by the year 2000. As a means of effectively utilizing its indigenous coal resources, the Czech Republic is upgrading various technologies, and these are available at different stages of development, demonstration, and commercialization. The purpose of this review is to provide a database of information on applicable technologies that reduce the impact of gaseous (SO{sub 2}, NO{sub x}, volatile organic compounds) and particulate emissions from the combustion of coal in district and residential heating systems.

Young, B.C.; Musich, M.A.

1995-10-01T23:59:59.000Z

388

Advanced coal technologies in Czech heat and power systems  

SciTech Connect (OSTI)

Coal is the only domestic source of fossil fuel in the Czech Republic. The coal reserves are substantial and their share in total energy use is about 60%. Presently necessary steps in making coal utilisation more friendly towards the environment have been taken and fairly well established, and an interest to develop and build advanced coal units has been observed. One IGCC system has been put into operation, and circa 10 AFBC units are in operation or under construction. Preparatory steps have been taken in building an advanced combustion unit fuelled by pulverised coal and retrofit action is taking place in many heating plants. An actual experience has shown two basic problems: (1) Different characteristic of domestic lignite, especially high content of ash, cause problems applying well-tried foreign technologies and apparently a more focused attention shall have to be paid to the quality of coal combusted. (2) Low prices of lignite (regarding energy, lignite is four times cheaper then coal) do not oblige to increase efficiency of the standing equipment applying advanced technologies. It will be of high interest to observe the effect of the effort of the European Union to establish a kind of carbon tax. It could dramatically change the existing scene in clean coal power generation by the logical pressure to increase the efficiency of energy transformation. In like manner the gradual liberalisation of energy prices might have similar consequences and it is a warranted expectation that, up to now not the best, energy balance will improve in near future.

Noskievic, P.; Ochodek, T. [VSB-Technical Univ., Ostrava (Czechoslovakia)

1998-04-01T23:59:59.000Z

389

TOXIC SUBSTANCES FROM COAL COMBUSTION-A COMPREHENSIVE ASSESSMENT  

SciTech Connect (OSTI)

The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the National Energy Technology Laboratory (NETL), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). The work discussed in this report covers the Phase II program. Five coals were studied (three in Phase I and two new ones in Phase II). In this work UK has used XAFS and Moessbauer spectroscopies to characterize elements in project coals. For coals, the principal use was to supply direct information about certain hazardous and other key elements (iron) to complement the more complete indirect investigation of elemental modes of occurrence being carried out by colleagues at USGS. Iterative selective leaching using ammonium acetate, HCl, HF, and HNO3, used in conjunction with mineral identification/quantification, and microanalysis of individual mineral grains, has allowed USGS to delineate modes of occurrence for 44 elements. The Phase II coals show rank-dependent systematic differences in trace-element modes of occurrence. The work at UU focused on the behavior of trace metals in the combustion zone by studying vaporization from single coal particles. The coals were burned at 1700 K under a series of fuel-rich and oxygen-rich conditions. The data collected in this study will be applied to a model that accounts for the full equilibrium between carbon monoxide and carbon dioxide. The model also considers many other reactions taking place in the combustion zone, and involves the diffusion of gases into the particle and combustion products away from the particle. A comprehensive study has been conducted at UA to investigate the post-combustion partitioning of trace elements during large-scale combustion of pulverized coal combustion. For many coals, there are three distinct particle regions developed by three separate mechanisms: (1) a submicron fume, (2) a micron-sized fragmentation region, and (3) a bulk (>3 {micro}m) fly ash region. The controlling partitioning mechanisms for trace elements may be different in each of the three particle regions. A substantial majority of semi-volatile trace elements (e.g., As, Se, Sb, Cd, Zn, Pb) volatilize during combustion. The most common partitioning mechanism for semi-volatile elements is reaction with active fly ash surface sites. Experiments conducted under this program at UC focused on measuring mercury oxidation under cooling rates representative of the convective section of a coal-fired boiler to determine the extent of homogeneous mercury oxidation under these conditions. In fixed bed studies at EERC, five different test series were planned to evaluate the effects of temperature, mercury concentration, mercury species, stoichiometric ratio of combustion air, and ash source. Ash samples generated at UA and collected from full-scale power plants were evaluated. Extensive work was carried out at UK during this program to develop new methods for identification of mercury species in fly ash and sorbents. We demonstrated the usefulness of XAFS spectroscopy for the speciation of mercury captured on low-temperature sorbents from combustion flue gases and dev

C.L. Senior; F. Huggins; G.P. Huffman; N. Shah; N. Yap; J.O.L. Wendt; W. Seames; M.R. Ames; A.F. Sarofim; S. Swenson; J.S. Lighty; A. Kolker; R. Finkelman; C.A. Palmer; S.J. Mroczkowski; J.J. Helble; R. Mamani-Paco; R. Sterling; G. Dunham; S. Miller

2001-06-30T23:59:59.000Z

390

Method of burning lightly loaded coal-water slurries  

DOE Patents [OSTI]

In a preferred arrangement of the method of the invention, a lightly loaded coal-water slurry, containing in the range of approximately 40% to 52% + 2% by weight coal, is atomized to strip water from coal particles in the mixture. Primary combustor air is forced around the atomized spray in a combustion chamber of a combustor to swirl the air in a helical path through the combustion chamber. A flame is established within the combustion chamber to ignite the stripped coal particles, and flame temperature regulating means are provided for maintaining the flame temperature within a desired predetermined range of temperatures that is effective to produce dry, essentially slag-free ash from the combustion process.

Krishna, C.R.

1984-07-27T23:59:59.000Z

391

Coalbed methane production enhancement by underground coal gasification  

SciTech Connect (OSTI)

The sub-surface of the Netherlands is generally underlain by coal-bearing Carboniferous strata at greater depths (at many places over 1,500 m). These coal seams are generally thinner than 3 meter, occur in groups (5--15) within several hundred meters and are often fairly continuous over many square kilometers. In many cases they have endured complex burial history, influencing their methane saturation. In certain particular geological settings, a high, maximum coalbed methane saturation, may be expected. Carboniferous/Permian coals in the Tianjin-region (China) show many similarities concerning geological settings, rank and composition. Economical coalbed methane production at greater depths is often obstructed by the (very) low permeabilities of the coal seams as with increasing depth the deformation of the coal reduces both its macro-porosity (the cleat system) and microporosity. Experiments in abandoned underground mines, as well as after underground coal gasification tests indicate ways to improve the prospects for coalbed methane production in originally tight coal reservoirs. High permeability areas can be created by the application of underground coal gasification of one of the coal seams of a multi-seam cycle with some 200 meter of coal bearing strata. The gasification of one of the coal seams transforms that seam over a certain area into a highly permeable bed, consisting of coal residues, ash and (thermally altered) roof rubble. Additionally, roof collapse and subsidence will destabilize the overburden. In conjunction this will permit a better coalbed methane production from the remaining surrounding parts of the coal seams. Moreover, the effects of subsidence will influence the stress patterns around the gasified seam and this improves the permeability over certain distances in the coal seams above and below. In this paper the effects of the combined underground coal gasification and coalbed methane production technique are regarded for a single injection well. Known geotechnical aspects are combined with results from laboratory experiments on compaction of thermally treated rubble. An axi-symmetric numerical model is used to determine the effects induced by the gasified coal seam. The calculation includes the rubble formation, rubble compaction and induced stress effects in the overlying strata. Subsequently the stress effects are related to changes in coal permeability, based on experimental results of McKee et al.

Hettema, M.H.H.; Wolf, K.H.A.A.; Neumann, B.V.

1997-12-31T23:59:59.000Z

392

Transformations of inorganic coal constituents in combustion systems  

SciTech Connect (OSTI)

The technical objectives of this project are: (a) To (1) define the partitioning of inorganic constituents associated with raw coal particles among products (including vapors, aerosols, and residual char/ash particles) formed under conditions representative of pulverized coal flames as a function of the specific (intrinsic and extrinsic) characteristics of the raw coal and the environment in which the transformations occur; and (2) to characterize the resultant spectrum of products in detail; (b) To elucidate and quantify the fundamental processes (involving basic principles of physics, chemistry, thermodynamics) by which transformations of the inorganic constituents occur; and (c) To develop, based on the information required in a. and b. above, a tractable process model capable of predicting the significant features of the transformation process, most importantly, the distribution and nature of products. This report represents work accomplished in the tenth quarter of performance on the contract. The authors specifically highlight work accomplished: at the California Institute of Technology (CalTech) on developing and constructing a thermophoretic sampling probe, for submicron fume particle sampling; at MIT on (1) completion of the baseline ash particle size distribution measurements for seven program coals (five US and two Australian), and (2) analysis of the fragmentation model results in terms of a closed-form solution for a simplified case; at the University of Arizona, on obtaining detailed ash particle and submicron fume chemistry for four program coals; and at PSI Technology Company (PSIT) on concluding data analysis and describing mineral interaction trends observed during combustion of two program coals. Individual progress reports have been indexed separately for inclusion on the data base.

Boni, A.A.; Helble, J.J.; Srinivasachar, S. (PSI Technology Co., Andover, MA (USA)); Flagan, R.C. (California Inst. of Tech., Pasadena, CA (USA)); Huffman, G.P.; Huggins, F.E. (Kentucky Univ., Lexington, KY (USA)); Peterson, T.W.; Wendt, J.O.L. (Arizona Univ., Tucson, AZ (USA)); Sarofim, A.F. (Massachusetts Inst. of Tech., Cambridge, MA (USA))

1989-05-01T23:59:59.000Z

393

Coal Gasification and Transportation Fuels Magazine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities ofCellulosic Feedstock - EnergyCoal Fly Ash as

394

CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES  

SciTech Connect (OSTI)

The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

2001-12-01T23:59:59.000Z

395

Fort Union coals of the northern Rockies and Great Plains: A linchpin toward a new approach to national coal resource assessment  

SciTech Connect (OSTI)

The U.S. Geological Survey recently initiated a 5-year program to assess the Nation`s coal resources, which emphasizes a new approach relating coal quantity and quality. One assessment region includes the northern Rocky Mountains and Great Plains of Wyoming, Montana, and North Dakota, which contains a vast expanse of Paleocene Fort Union coal-bearing rocks that yielded about 30% (>299 million short tons) of the total coal produced (1.03 billion short tons) in the U.S. for 1994. Production is from 14 coal beds/zones (Wyodak-Anderson, Anderson-Dietz, Rosebud, Beulah-Zap, Hagel, Harmon, Ferris Nos. 23, 24, 25, 31, 38, 39, Hanna No. 80, and Deadman seams) mined in the Hanna, Green River, Powder River, and Williston Basins. About 254 million short tons produced from 25 mines are from the Wyodak-Anderson, Anderson-Dietz, and Rosebud coal beds/zones in the Powder River Basin (PRB). These coals are considered as clean and low contaminant compliance coals containing less sulfur and ash (arithmetic mean for sulfur is 0.58% and ash is 7%, as-received basis) than coals produced from other regions in the conterminous U.S. Preliminary elemental analysis of coal samples from the PRB for those hazardous air pollutants (HAPs) named in the Amendments to the 1990 Clean Air Act (including Sb, As, Be, Cd, Cr, Co, Pb, Mn, Hg, Ni, Se, and U), indicates that PRB coals are lower in HAPs contents than other coals from within the region and also other regions in the U.S. Arithmetic means of HAPs contents of these coals are: Sb=0.35, As=3.4, Be=0.6, Cd=0.08, Cr=6.1, Co=1.6, Pb=3.6, Mn=23.5, Hg=0.09, Ni=4.6, Se=0.9, and U=1.1 (in ppm, as-received, and on a whole-coal basis). These coal-quality parameters will be used to delineate coal quantity of the 14 Fort Union coal beds/zones defined in the resource assessment for expanded utilization of coals into the next several decades as controlled by present and future environmental constraints.

Flores, R.M.; Stricker, G.D. [Geological Survey, Denver, CO (United States)

1996-06-01T23:59:59.000Z

396

Enhanced Combustion Low NOx Pulverized Coal Burner  

SciTech Connect (OSTI)

For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was predicted to be the most challenging of the three coals, with the Western bituminous coal predicted to beh

David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

2007-06-30T23:59:59.000Z

397

Coal systems analysis  

SciTech Connect (OSTI)

This collection of papers provides an introduction to the concept of coal systems analysis and contains examples of how coal systems analysis can be used to understand, characterize, and evaluate coal and coal gas resources. Chapter are: Coal systems analysis: A new approach to the understanding of coal formation, coal quality and environmental considerations, and coal as a source rock for hydrocarbons by Peter D. Warwick. Appalachian coal assessment: Defining the coal systems of the Appalachian Basin by Robert C. Milici. Subtle structural influences on coal thickness and distribution: Examples from the Lower Broas-Stockton coal (Middle Pennsylvanian), Eastern Kentucky Coal Field, USA by Stephen F. Greb, Cortland F. Eble, and J.C. Hower. Palynology in coal systems analysis The key to floras, climate, and stratigraphy of coal-forming environments by Douglas J. Nichols. A comparison of late Paleocene and late Eocene lignite depositional systems using palynology, upper Wilcox and upper Jackson Groups, east-central Texas by Jennifer M.K. O'Keefe, Recep H. Sancay, Anne L. Raymond, and Thomas E. Yancey. New insights on the hydrocarbon system of the Fruitland Formation coal beds, northern San Juan Basin, Colorado and New Mexico, USA by W.C. Riese, William L. Pelzmann, and Glen T. Snyder.

Warwick, P.D. (ed.)

2005-07-01T23:59:59.000Z

398

Integrated coal preparation and CWF processing plant: Conceptual design and costing  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), Pittsburgh Energy Technology Center, a study was conducted to provide DOE with a reliable, documented estimate of the cost of producing coal-water fuel (CWF). The approach to the project was to specify a plant capacity and location, identify and analyze a suitable coal, and develop a conceptual design for an integrated coal preparation and CWF processing plant. Using this information, a definitive costing study was then conducted, on the basis of which an economic and sensitivity analysis was performed utilizing a financial evaluation model to determine a price for CWF in 1992. The design output of the integrated plant is 200 tons of coal (dry basis) per hour. Operating at a capacity factor of 83 percent, the baseline design yields approximately 1.5 million tons per year of coal on a dry basis. This is approximately equivalent to the fuel required to continuously generate 500 MW of electric power. The CWF produced by the plant is intended as a replacement for heavy oil or gas in electric utility and large industrial boilers. The particle size distribution, particularly the top size, and the ash content of the coal in the CWF are specified at significantly lower levels than is commonly found in typical pulverized coal grinds. The particle top size is 125 microns (vs typically 300m[mu] for pulverized coal) and the coal ash content is 3.8 percent. The lower top size is intended to promote complete carbon burnout at less derating in boilers that are not designed for coal firing. The reduced mineral matter content will produce ash of very fine particle size during combustion, which leads to less impaction and reduced fouling of tubes in convective passages.

McHale, E.T.; Paul, A.D.; Bartis, J.T. (Science Applications International Corp., McLean, VA (United States)); Korkmaz, M. (Roberts and Schaefer Co., Salt Lake City, UT (United States))

1992-12-01T23:59:59.000Z

399

Integrated coal preparation and CWF processing plant: Conceptual design and costing. Final technical report  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), Pittsburgh Energy Technology Center, a study was conducted to provide DOE with a reliable, documented estimate of the cost of producing coal-water fuel (CWF). The approach to the project was to specify a plant capacity and location, identify and analyze a suitable coal, and develop a conceptual design for an integrated coal preparation and CWF processing plant. Using this information, a definitive costing study was then conducted, on the basis of which an economic and sensitivity analysis was performed utilizing a financial evaluation model to determine a price for CWF in 1992. The design output of the integrated plant is 200 tons of coal (dry basis) per hour. Operating at a capacity factor of 83 percent, the baseline design yields approximately 1.5 million tons per year of coal on a dry basis. This is approximately equivalent to the fuel required to continuously generate 500 MW of electric power. The CWF produced by the plant is intended as a replacement for heavy oil or gas in electric utility and large industrial boilers. The particle size distribution, particularly the top size, and the ash content of the coal in the CWF are specified at significantly lower levels than is commonly found in typical pulverized coal grinds. The particle top size is 125 microns (vs typically 300m{mu} for pulverized coal) and the coal ash content is 3.8 percent. The lower top size is intended to promote complete carbon burnout at less derating in boilers that are not designed for coal firing. The reduced mineral matter content will produce ash of very fine particle size during combustion, which leads to less impaction and reduced fouling of tubes in convective passages.

McHale, E.T.; Paul, A.D.; Bartis, J.T. [Science Applications International Corp., McLean, VA (United States); Korkmaz, M. [Roberts and Schaefer Co., Salt Lake City, UT (United States)

1992-12-01T23:59:59.000Z

400

Development of Continuous Solvent Extraction Processes for Coal Derived Carbon Products  

SciTech Connect (OSTI)

This DOE NETL-sponsored effort seeks to develop continuous processes for producing carbon products from solvent-extracted coal. A key process step is removal of solids from liquefied coal. Three different processes were compared: gravity separation, centrifugation using a decanter-type Sharples Pennwalt centrifuge, and a Spinner-II centrifuge. The data suggest that extracts can be cleaned to as low as 0.5% ash level and probably lower using a combination of these techniques.

Elliot B. Kennel

2006-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "war coal ash" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Coal Gasification and Transportation Fuels Magazine | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities ofCellulosic Feedstock - EnergyCoal Fly Ash asCoal

402

Advanced Characterisation of Municipal Solid Waste Ashes  

E-Print Network [OSTI]

Advanced Characterisation of Municipal Solid Waste Ashes Preparatory thesis Randi Skytte Pedersen is to investigate Municipal Solid Waste (MSW) ashes with respect to particle sizes, structures and composition with characterisation of Municipal Solid Waste (MSW) ashes from the Danish power plant M°abjergværket, Holstebro. MSW

403

COFIRING BIOMASS WITH LIGNITE COAL  

SciTech Connect (OSTI)

The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

Darren D. Schmidt

2002-01-01T23:59:59.000Z

404

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

transportation component of coal price should also increase;investment. Coal costs and prices are functions of a numberto forecast coal demand, supply, and prices from now to

McCollum, David L

2007-01-01T23:59:59.000Z

405

Civil War Unplugged | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheckInnovation, Clean Energy,Department toCivil War

406

Use of the GranuFlow Process in Coal Preparation Plants to Improve Energy Recovery and Reduce Coal Processing Wastes  

SciTech Connect (OSTI)

With the increasing use of screen-bowl centrifuges in today's fine coal cleaning circuits, a significant amount of low-ash, high-Btu coal can be lost during the dewatering step due to the difficulty in capturing coal of this size consist (< 100 mesh or 0.15mm). The GranuFlow{trademark} technology, developed and patented by an in-house research group at DOE-NETL, involves the addition of an emulsified mixture of high-molecular-weight hydrocarbons to a slurry of finesized coal before cleaning and/or mechanical dewatering. The binder selectively agglomerates the coal, but not the clays or other mineral matter. In practice, the binder is applied so as to contact the finest possible size fraction first (for example, froth flotation product) as agglomeration of this fraction produces the best result for a given concentration of binder. Increasing the size consist of the fine-sized coal stream reduces the loss of coal solids to the waste effluent streams from the screen bowl centrifuge circuit. In addition, the agglomerated coal dewaters better and is less dusty. The binder can also serve as a flotation conditioner and may provide freeze protection. The overall objective of the project is to generate all necessary information and data required to commercialize the GranuFlow{trademark} Technology. The technology was evaluated under full-scale operating conditions at three commercial coal preparation plants to determine operating performance and economics. The handling, storage, and combustion properties of the coal produced by this process were compared to untreated coal during a power plant combustion test.

Glenn A. Shirey; David J. Akers

2005-12-31T23:59:59.000Z

407

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect (OSTI)

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. The Hydrotreatment Facility is being prepared for trials with coal liquids. Raw coal tar distillate trials have been carried out by heating coal tar in the holding tank in the Hydrotreatment Facility. The liquids are centrifuged to warm the system up in preparation for the coal liquids. The coal tar distillate is then recycled to keep the centrifuge hot. In this way, the product has been distilled such that a softening point of approximately 110 C is reached. Then an ash test is conducted.

Elliot B. Kennel; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2005-07-13T23:59:59.000Z

408

Profiteering on the Iran-Iraq war  

SciTech Connect (OSTI)

The military gear delivered from the US in the Iran-contra affair represents only a minor portion of arms sales to the combatants in the Iraq-Iran war. That war has now lasted more than six years and has deeply influenced the international arms market. Occurring during a period when other demand for arms has been relatively low, the war has nourished new suppliers and has revived both the legal and illegal private arms market. The erratic behavior of the USSR and the US, until recently by far the most important arms suppliers to the Third World, has pushed Iran and Iraq toward more commercially oriented sources, including many in the Third World. Both countries have had ample supplies of weapons during the war, and these weapons have served their purpose. Mainly because of its duration, the war already ranks third among post-World War II wars - after the Vietnam war and the Biafra war - in battlefield victims, with 300,000-500,000 casualties. The economic cost has risen to nearly $500 billion in weapons, destruction, and lost income. While it is hard to see anything but losers on the battlefield, the arms traffickers are profiting. Total Iranian arms imports since August 1980 have been higher than $10 billion, while Iraq has imported more than $30 billion worth. It is difficult to know whether making arms more difficult to obtain would have stopped the war, but judging from other recent wars, such as those between India and Pakistan, between Uganda and Tanzania, and in the Middle East, it seems likely that hostilities could have been stopped long ago. 12 references.

Brzoska, M.

1987-06-01T23:59:59.000Z

409

17.423 Causes and Prevention of War, Spring 2001  

E-Print Network [OSTI]

Examines the causes of war, with a focus on practical measures to prevent and control war. Topics covered include: causes and consequences of national misperception; military strategy and policy as cause of war; US foreign ...

Van Evera, Stephen

410

17.42 Causes and Prevention of War, Spring 2005  

E-Print Network [OSTI]

The causes and prevention of interstate war are the central topics of this course. The course goal is to discover and assess the means to prevent or control war. Hence we focus on manipulable or controllable war-causes. ...

Van Evera, Stephen

411

U.S. Naval war College Application | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

College Application U.S. Naval war College Application U.S. Naval War College Civilian Student Application. Naval War College Application More Documents & Publications DOE F 471.1...

412

Mutual Optimism as a Rationalist Cause of War  

E-Print Network [OSTI]

Geoffrey. 1988. The Causes of War. 3rd ed. New York: FreeExplanations for War. ” In- ternational Organization 49(2007. “Mutual Optimism and War. ” American Journal of

Slantchev, Branislav L

2011-01-01T23:59:59.000Z

413

Gesturing beyond the Frame: Transnational Trauma and US War Fiction  

E-Print Network [OSTI]

of Civilians in America’s Wars (New York: Oxford UniversityButler, Judith. Frames of War: When Is Life Grievable? NewRacial Melancholy in Vietnam War Representation. ” Arizona

Lahti, Ruth A. H.

2012-01-01T23:59:59.000Z

414

The Armed Peace: A Punctuated Equilibrium Theory of War  

E-Print Network [OSTI]

Explanations for War. ” In- ternational Organization 49 (D. 2004. “Why Do Some Civil Wars Last So Much Longer ThanAhmer Tarar. 2005. “War and Incom- g plete Information. ”

Slantchev, Branislav L

2007-01-01T23:59:59.000Z

415

America's Other Half: Slum Journalism and the War of 1898  

E-Print Network [OSTI]

McClure, 1898.    ———.  The War Dispatches of Stephen Richard Harding.  Cuba in War Time.  Lincoln: University of The Spanish?Cuban?American War and the Birth of American 

Leary, John Patrick

2009-01-01T23:59:59.000Z

416

'the War-Prayer' in U. S. Popular Culture  

E-Print Network [OSTI]

Resources for Times of War or National Crisis. ” 31 Jan.Resonate Still with Iraq War. ” St. Louis Post-Dispatch 132005: B1. Pyle, David. “Why a War-Prayer? ” 11 July 2004. 26

Han, John J.

2009-01-01T23:59:59.000Z

417

War Games: Simulating Collins’ Theory of Battle Victory  

E-Print Network [OSTI]

Friction and Future War. Washington D.C. : Institute forRunning During the Civil War. Columbia, SC: University ofBattle Tactics of the Civil War. New Haven: Yale University

Fletcher, Jesse B; Apkarian, Jacob; Roberts, Anthony; Lawrence, Kirk; Chase-Dunn, Christopher; Hanneman, Robert A

2011-01-01T23:59:59.000Z

418

Mechanism of surface enrichment and adhesion of coal combustion particulates  

SciTech Connect (OSTI)

Following is an updated list of accomplishments: Design of an experimental set up and development of experimental techniques for study of the adsorption and desorption of alkali on coal ash and potential additive particles. Development of techniques for quantitative and qualitative characterization of alkali distribution in small additive particles using Scanning Auger Spectroscopy. Completion of a set of adsorption experiments for measuring the rate, capacity and adsorption characteristics of alkali adsorption on bauxite, silica, lime and kaolin. Design and set up of a micro-fluidized bed for study of the agglomeration kinetics and characteristics of ash and additive particles. Completion of the first set of experiments on dependence of agglomeration characteristics on the alkali content of typical ash and potential additive particle.

Shadman, F.; Peterson, T.W.; Wendt, J.O.L.; Punjak, W.A.; Rizeq, G.

1987-01-01T23:59:59.000Z

419

COAL DESULFURIZATION PRIOR TO COMBUSTION  

E-Print Network [OSTI]

90e COAL DESULFURIZATION PRIOR TO COMBUSTION J. Wrathall, T.of coal during combustion. The process involves the additionCOAL DESULFURIZATION PRIOR TO COMBUSTION Lawrence Berkeley

Wrathall, J.

2013-01-01T23:59:59.000Z

420

Coal data: A reference  

SciTech Connect (OSTI)

This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

Not Available

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "war coal ash" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Low-rank coal study : national needs for resource development. Volume 2. Resource characterization  

SciTech Connect (OSTI)

Comprehensive data are presented on the quantity, quality, and distribution of low-rank coal (subbituminous and lignite) deposits in the United States. The major lignite-bearing areas are the Fort Union Region and the Gulf Lignite Region, with the predominant strippable reserves being in the states of North Dakota, Montana, and Texas. The largest subbituminous coal deposits are in the Powder River Region of Montana and Wyoming, The San Juan Basin of New Mexico, and in Northern Alaska. For each of the low-rank coal-bearing regions, descriptions are provided of the geology; strippable reserves; active and planned mines; classification of identified resources by depth, seam thickness, sulfur content, and ash content; overburden characteristics; aquifers; and coal properties and characteristics. Low-rank coals are distinguished from bituminous coals by unique chemical and physical properties that affect their behavior in extraction, utilization, or conversion processes. The most characteristic properties of the organic fraction of low-rank coals are the high inherent moisture and oxygen contents, and the correspondingly low heating value. Mineral matter (ash) contents and compositions of all coals are highly variable; however, low-rank coals tend to have a higher proportion of the alkali components CaO, MgO, and Na/sub 2/O. About 90% of the reserve base of US low-rank coal has less than one percent sulfur. Water resources in the major low-rank coal-bearing regions tend to have highly seasonal availabilities. Some areas appear to have ample water resources to support major new coal projects; in other areas such as Texas, water supplies may be constraining factor on development.

Not Available

1980-11-01T23:59:59.000Z

422

Upgrading of low-rank coals for conventional and advanced combustion systems  

SciTech Connect (OSTI)

Low-rank coals, subbituminous, lignitic, and brown coals, have a ubiquitous presence in the world, being found in all continents. Close to half of the world`s estimated coal resources are low- rank coals. Many countries have no alternative economic source of energy. In the lower 48 states of the United States, there are 220 billion tons of economically recoverable reserves of lignite and subbituminous coal. Add to this quantity 5 trillion tons of predominantly subbituminous coal in Alaska, and the combined amount represents the largest supply of the lowest-cost fuels available for generating electric power in the United States. However, to use these coals cost-effectively and in an environmentally acceptable way, it is imperative that their properties and combustion/gasification behavior be well understood. The Energy and Environmental Research Center (EERC) takes a cradle-to-grave approach (i.e., mining, precleaning, combustion/gasification, postcleaning, and reuse and disposal of residues) for all aspects of coal processing and utilization. The environmental impact of these activities must be matched with the appropriate technologies. Experience over many years has shown that variations in coal and ash properties have a critical impact on design, reliability and efficiency of operation, and environmental compliance when low-rank coals are burned in conventional systems. This chapter reviews the significant technical issues of beneficiation, which includes reduction in moisture as well as ash (including sulfur), in relation to low-rank coal properties and their impact on conventional and advanced power systems. Finally, the development and utilization of low-rank coal resources are briefly discussed in view of policy, economic, and strategic issues.

Young, B.C.; Musich, M.A.; Jones, M.L.

1993-12-31T23:59:59.000Z

423

Advanced Coal Conversion Process Demonstration Project. Quarterly technical progress report, January 1, 1994--March 31, 1994  

SciTech Connect (OSTI)

This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1994, through March 31, 1994. This project demonstrates an advanced, thermal, coal drying process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal processing, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. Rosebud SynCoal Partnership`s ACCP Demonstration Facility entered Phase III, Demonstration Operation, in April 1992 and operated in an extended startup mode through August 10, 1993, when the facility became commercial. Rosebud SynCoal Partnership instituted an aggressive program to overcome startup obstacles and now focuses on supplying product coal to customers. Significant accomplishments in the history of the SynCoal{reg_sign} process development are shown in Appendix A.

NONE

1996-02-01T23:59:59.000Z

424

Advanced Coal Conversion Process Demonstration Project. Technical progress report, January 1, 1993--December 31, 1993  

SciTech Connect (OSTI)

This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1993, through December 31, 1993. This project demonstrates an advanced, thermal, coal drying process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low- rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal processing, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. Rosebud SynCoal Partnership`s ACCP Demonstration Facility entered Phase III, Demonstration Operation, in April 1992 and operated in an extended startup mode through August 10, 1993, when the facility became commercial. Rosebud SynCoal Partnership instituted an aggressive program to overcome startup obstacles and now focuses on supplying product coal to customers. Significant accomplishments in the history of the SynCoal{reg_sign} process development are shown in Appendix A.

NONE

1995-02-01T23:59:59.000Z

425

Engineering development of advanced physical fine coal cleaning for premium fuel applications  

SciTech Connect (OSTI)

The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction and operation of 2 t/hr process development unit (PDU). This report represents the findings of the PDU Advanced Column Flotation Testing and Evaluation phase of the program and includes a discussion of the design and construction of the PDU. Three compliance steam coals, Taggart, Indiana VII and Hiawatha, were processed in the PDU to determine performance and design parameters for commercial production of premium fuel by advanced flotation. Consistent, reliable performance of the PDU was demonstrated by 72-hr production runs on each of the test coals. Its capacity generally was limited by the dewatering capacity of the clean coal filters during the production runs rather than by the flotation capacity of the Microcel column. The residual concentrations of As, Pb, and Cl were reduced by at least 25% on a heating value basis from their concentrations in the test coals. The reduction in the concentrations of Be, Cd, Cr, Co, Mn, Hg, Ni and Se varied from coal to coal but the concentrations of most were greatly reduced from the concentrations in the ROM parent coals. The ash fusion temperatures of the Taggart and Indiana VII coals, and to a much lesser extent the Hiawatha coal, were decreased by the cleaning.

Shields, G.L.; Smit, F.J.; Jha, M.C.

1997-08-28T23:59:59.000Z

426

Price war with migrating customers Patrick Maille  

E-Print Network [OSTI]

Price war with migrating customers Patrick Maill´e TELECOM Bretagne 2, rue de la Ch^ataigneraie CS customers churn between providers due to better prices, better reputation or better services. We propose in this paper to study the price war between two providers in the case where users' decisions are modeled

Paris-Sud XI, Université de

427

If Only This War Would End : : German Soldiers in the Last Year of the First World War  

E-Print Network [OSTI]

164. Ziemann, Benjamin. War Experiences in Rural Germany.Herwig, The First World War: Germany and Austria-Hungary,256. Herwig, The First World War, 256. MKB, Stein, 21 Jan.

Zroka, Ryan Edward

2013-01-01T23:59:59.000Z

428

Blood and Ink: Russian and Soviet Jewish Chroniclers of Catastrophe from World War I to World War II  

E-Print Network [OSTI]

1989. ----------. A Writer at War: A Soviet Journalist withof Settlement During World War I. Ed. and trans. JoachimThe Jews in the Eastern War Zone. New York: The American

Zavadivker, Polly

2013-01-01T23:59:59.000Z

429

Blood and Ink: Russian and Soviet Jewish Chroniclers of Catastrophe from World War I to World War II  

E-Print Network [OSTI]

war: War and Peace, and Sebastopol Stories, a series ofduring the siege of Sebastopol during the Crimean War. 46 In93; cited from idem. , The Sebastopol Sketches, trans. David

Zavadivker, Polly

2013-01-01T23:59:59.000Z