National Library of Energy BETA

Sample records for walled pressure vessel

  1. LOW ALLOY STEELS FOR THICK WALL PRESSURE VESSELS Yearly Report for Period Oct. 1, 1976 to Sept. 30, 1977.

    E-Print Network [OSTI]

    Horn, R.M.

    2011-01-01

    FOR THICK WALL PRESSURE VESSELS R. M, Horn, E. R. Parker,FOR THICK WALL PRESSURE VESSELS Yearly Report f o r PeriodManufacture Pressure Vessel Fabrication Under ASME Code

  2. Dual shell pressure balanced vessel

    DOE Patents [OSTI]

    Fassbender, Alexander G. (West Richland, WA)

    1992-01-01

    A dual-wall pressure balanced vessel for processing high viscosity slurries at high temperatures and pressures having an outer pressure vessel and an inner vessel with an annular space between the vessels pressurized at a pressure slightly less than or equivalent to the pressure within the inner vessel.

  3. Development of a thin wall graphite/polyimide composite pressure vessel with a large aspect ratio

    SciTech Connect (OSTI)

    LaJeunesse, C.A.; Trinh, K.V.; Bartel, J.J.; Spingarn, J.R.

    1988-10-01

    A graphite/polyimide composite pressure vessel has been developed to contain corrosive gas mixtures up to 400 psig and 300/degree/F. The goal of this research project was to develop a lightweight, thin-walled, composite pressure vessel with an l/d aspect ratio of 42 capable of containing hydrogen fluoride (HF) and chlorine trifluoride (ClF/sub 3/). The vessel was to have a crown radius approaching infinity, a desired knuckle radius approaching zero, and a desired wall thickness of 0.023 in. In this paper the problems encountered and the iterative solutions in addition to the design, analysis, and fabrication of the vessel are presented. 3 refs., 14 figs., 2 tabs.

  4. LOW ALLOY STEELS FOR THICK WALL PRESSURE VESSELS Yearly Report for Period Oct. 1, 1976 to Sept. 30, 1977.

    E-Print Network [OSTI]

    Horn, R.M.

    2011-01-01

    Vessel Fabrication Under ASME Code Current Pressure Vessel Sc a t i o n under the ASME code current s t e e l s , and (VESSEL FABRICATION UNDER ASME CODE Interactions with Babcock

  5. Sapphire tube pressure vessel

    DOE Patents [OSTI]

    Outwater, John O. (Cambridge, MA)

    2000-01-01

    A pressure vessel is provided for observing corrosive fluids at high temperatures and pressures. A transparent Teflon bag contains the corrosive fluid and provides an inert barrier. The Teflon bag is placed within a sapphire tube, which forms a pressure boundary. The tube is received within a pipe including a viewing window. The combination of the Teflon bag, sapphire tube and pipe provides a strong and inert pressure vessel. In an alternative embodiment, tie rods connect together compression fittings at opposite ends of the sapphire tube.

  6. Reactor pressure vessel nozzle

    DOE Patents [OSTI]

    Challberg, Roy C. (Livermore, CA); Upton, Hubert A. (Morgan Hill, CA)

    1994-01-01

    A nozzle for joining a pool of water to a nuclear reactor pressure vessel includes a tubular body having a proximal end joinable to the pressure vessel and a distal end joinable in flow communication with the pool. The body includes a flow passage therethrough having in serial flow communication a first port at the distal end, a throat spaced axially from the first port, a conical channel extending axially from the throat, and a second port at the proximal end which is joinable in flow communication with the pressure vessel. The inner diameter of the flow passage decreases from the first port to the throat and then increases along the conical channel to the second port. In this way, the conical channel acts as a diverging channel or diffuser in the forward flow direction from the first port to the second port for recovering pressure due to the flow restriction provided by the throat. In the backflow direction from the second port to the first port, the conical channel is a converging channel and with the abrupt increase in flow area from the throat to the first port collectively increase resistance to flow therethrough.

  7. Reactor pressure vessel nozzle

    DOE Patents [OSTI]

    Challberg, R.C.; Upton, H.A.

    1994-10-04

    A nozzle for joining a pool of water to a nuclear reactor pressure vessel includes a tubular body having a proximal end joinable to the pressure vessel and a distal end joinable in flow communication with the pool. The body includes a flow passage therethrough having in serial flow communication a first port at the distal end, a throat spaced axially from the first port, a conical channel extending axially from the throat, and a second port at the proximal end which is joinable in flow communication with the pressure vessel. The inner diameter of the flow passage decreases from the first port to the throat and then increases along the conical channel to the second port. In this way, the conical channel acts as a diverging channel or diffuser in the forward flow direction from the first port to the second port for recovering pressure due to the flow restriction provided by the throat. In the backflow direction from the second port to the first port, the conical channel is a converging channel and with the abrupt increase in flow area from the throat to the first port collectively increase resistance to flow therethrough. 2 figs.

  8. High pressure storage vessel

    DOE Patents [OSTI]

    Liu, Qiang

    2013-08-27

    Disclosed herein is a composite pressure vessel with a liner having a polar boss and a blind boss a shell is formed around the liner via one or more filament wrappings continuously disposed around at least a substantial portion of the liner assembly combined the liner and filament wrapping have a support profile. To reduce susceptible to rupture a locally disposed filament fiber is added.

  9. Level indicator for pressure vessels

    DOE Patents [OSTI]

    Not Available

    1982-04-28

    A liquid-level monitor for tracking the level of a coal slurry in a high-pressure vessel including a toroidal-shaped float with magnetically permeable bands thereon disposed within the vessel, two pairs of magnetic-field generators and detectors disposed outside the vessel adjacent the top and bottom thereof and magnetically coupled to the magnetically permeable bands on the float, and signal-processing circuitry for combining signals from the top and bottom detectors for generating a monotonically increasing analog control signal which is a function of liquid level. The control signal may be utilized to operate high-pressure control valves associated with processes in which the high-pressure vessel is used.

  10. Reactor pressure vessel vented head

    DOE Patents [OSTI]

    Sawabe, J.K.

    1994-01-11

    A head for closing a nuclear reactor pressure vessel shell includes an arcuate dome having an integral head flange which includes a mating surface for sealingly mating with the shell upon assembly therewith. The head flange includes an internal passage extending therethrough with a first port being disposed on the head mating surface. A vent line includes a proximal end disposed in flow communication with the head internal passage, and a distal end disposed in flow communication with the inside of the dome for channeling a fluid therethrough. The vent line is fixedly joined to the dome and is carried therewith when the head is assembled to and disassembled from the shell. 6 figures.

  11. Lightweight bladder lined pressure vessels

    DOE Patents [OSTI]

    Mitlitsky, Fred (1125 Canton Ave., Livermore, CA 94550); Myers, Blake (4650 Almond Cir., Livermore, CA 94550); Magnotta, Frank (1206 Bacon Way, Lafayette, CA 94549)

    1998-01-01

    A lightweight, low permeability liner for graphite epoxy composite compressed gas storage vessels. The liner is composed of polymers that may or may not be coated with a thin layer of a low permeability material, such as silver, gold, or aluminum, deposited on a thin polymeric layer or substrate which is formed into a closed bladder using torispherical or near torispherical end caps, with or without bosses therein, about which a high strength to weight material, such as graphite epoxy composite shell, is formed to withstand the storage pressure forces. The polymeric substrate may be laminated on one or both sides with additional layers of polymeric film. The liner may be formed to a desired configuration using a dissolvable mandrel or by inflation techniques and the edges of the film seamed by heat sealing. The liner may be utilized in most any type of gas storage system, and is particularly applicable for hydrogen, gas mixtures, and oxygen used for vehicles, fuel cells or regenerative fuel cell applications, high altitude solar powered aircraft, hybrid energy storage/propulsion systems, and lunar/Mars space applications, and other applications requiring high cycle life.

  12. Lightweight bladder lined pressure vessels

    DOE Patents [OSTI]

    Mitlitsky, F.; Myers, B.; Magnotta, F.

    1998-08-25

    A lightweight, low permeability liner is described for graphite epoxy composite compressed gas storage vessels. The liner is composed of polymers that may or may not be coated with a thin layer of a low permeability material, such as silver, gold, or aluminum, deposited on a thin polymeric layer or substrate which is formed into a closed bladder using tori spherical or near tori spherical end caps, with or without bosses therein, about which a high strength to weight material, such as graphite epoxy composite shell, is formed to withstand the storage pressure forces. The polymeric substrate may be laminated on one or both sides with additional layers of polymeric film. The liner may be formed to a desired configuration using a dissolvable mandrel or by inflation techniques and the edges of the film sealed by heat sealing. The liner may be utilized in most any type of gas storage system, and is particularly applicable for hydrogen, gas mixtures, and oxygen used for vehicles, fuel cells or regenerative fuel cell applications, high altitude solar powered aircraft, hybrid energy storage/propulsion systems, and lunar/Mars space applications, and other applications requiring high cycle life. 19 figs.

  13. International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings Proceedings from the forum, which took place in...

  14. PURE NIOBIUM AS A PRESSURE VESSEL MATERIAL

    SciTech Connect (OSTI)

    Peterson, T. J.; Carter, H. F.; Foley, M. H.; Klebaner, A. L.; Nicol, T. H.; Page, T. M.; Theilacker, J. C.; Wands, R. H.; Wong-Squires, M. L.; Wu, G. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States)

    2010-04-09

    Physics laboratories around the world are developing niobium superconducting radio frequency (SRF) cavities for use in particle accelerators. These SRF cavities are typically cooled to low temperatures by direct contact with a liquid helium bath, resulting in at least part of the helium container being made from pure niobium. In the U.S., the Code of Federal Regulations allows national laboratories to follow national consensus pressure vessel rules or use of alternative rules which provide a level of safety greater than or equal to that afforded by ASME Boiler and Pressure Vessel Code. Thus, while used for its superconducting properties, niobium ends up also being treated as a material for pressure vessels. This report summarizes what we have learned about the use of niobium as a pressure vessel material, with a focus on issues for compliance with pressure vessel codes. We present results of a literature search for mechanical properties and tests results, as well as a review of ASME pressure vessel code requirements and issues.

  15. Cavity closure arrangement for high pressure vessels

    DOE Patents [OSTI]

    Amtmann, Hans H. (San Diego, CA)

    1981-01-01

    A closure arrangement for a pressure vessel such as the pressure vessel of a high temperature gas-cooled reactor wherein a liner is disposed within a cavity penetration in the reactor vessel and defines an access opening therein. A closure is adapted for sealing relation with an annular mounting flange formed on the penetration liner and has a plurality of radially movable locking blocks thereon having outer serrations adapted for releasable interlocking engagement with serrations formed internally of the upper end of the penetration liner so as to effect high strength closure hold-down. In one embodiment, ramping surfaces are formed on the locking block serrations to bias the closure into sealed relation with the mounting flange when the locking blocks are actuated to locking positions.

  16. Reactor pressure vessel with forged nozzles

    DOE Patents [OSTI]

    Desai, Dilip R. (Fremont, CA)

    1993-01-01

    Inlet nozzles for a gravity-driven cooling system (GDCS) are forged with a cylindrical reactor pressure vessel (RPV) section to which a support skirt for the RPV is attached. The forging provides enhanced RPV integrity around the nozzle and substantial reduction of in-service inspection costs by eliminating GDCS nozzle-to-RPV welds.

  17. (Irradiation embrittlement of reactor pressure vessels)

    SciTech Connect (OSTI)

    Corwin, W.R.

    1990-09-24

    The traveler served as a member of the two-man US Nuclear Regulatory Commission sponsored team who visited the Prometey Complex in Leningrad to assess the potential for expanded cooperative research concerning integrity of the primary pressure boundary in commercial light-water reactors. The emphasis was on irradiation embrittlement, structural analysis, and fracture mechanics research for reactor pressure vessels. At the irradiation seminar in Cologne, presentations were made by German, French, Finnish, Russian, and US delegations concerning many aspects of irradiation of pressure vessel steels. The traveler made presentations on mechanisms of irradiation embrittlement and on important aspects of the Heavy-Section Steel Irradiation Program results of irradiated fracture mechanics tests.

  18. Tailoring Topology Optimization to Composite Pressure Vessel Design with Simultaneous

    E-Print Network [OSTI]

    Paulino, Glaucio H.

    $160/ship Comparison of CNG and LNG (Liquefied Natural Gas) Introduction ­ CNG Pressure Vessels MM;Introduction ­ CNG Pressure Vessels Compressed Natural Gas (CNG) Pressure Vessels CNG Cargo Containment System upon the number of ships used for the transport of the gas. MMscf/d - million standard cubic feet per

  19. Cryogenic Pressure Vessel workshop, LLNL, February 15, 2011, p. 1 Cryogenic Pressure Vessels

    E-Print Network [OSTI]

    , February 15, 2011, p. 8 In both industrial and laboratory environments, low heat transfer requires : demonstration 2007-2009: compact vessels 2010: para-ortho H2 conversion 2011: LH2 pump #12;Cryogenic Pressure, February 15, 2011, p. 4 H2 Temperature H2 Pressure H2 massHeat input Drop in apparent heat flux due to para

  20. Jam proof closure assembly for lidded pressure vessels

    DOE Patents [OSTI]

    Cioletti, Olisse C. (Pittsburgh, PA)

    1992-01-01

    An expendable closure assembly is provided for use (in multiple units) with a lockable pressure vessel cover along its rim, such as of an autoclave. This assembly is suited to variable compressive contact and locking with the vessel lid sealing gasket. The closure assembly consists of a thick walled sleeve insert for retention in the under bores fabricated in the cover periphery and the sleeve is provided with internal threading only. A snap serves as a retainer on the underside of the sleeve, locking it into an under bore retention channel. Finally, a standard elongate externally threaded bolt is sized for mating cooperation with the so positioned sleeve, whereby the location of the bolt shaft in the cover bore hole determines its compressive contact on the underlying gasket.

  1. Stress analysis and evaluation of a rectangular pressure vessel...

    Office of Scientific and Technical Information (OSTI)

    States)) 42 ENGINEERING; 12 MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; PRESSURE VESSELS; STRESS ANALYSIS; RADIOACTIVE WASTE STORAGE;...

  2. Tokamak reactor first wall

    DOE Patents [OSTI]

    Creedon, R.L.; Levine, H.E.; Wong, C.; Battaglia, J.

    1984-11-20

    This invention relates to an improved first wall construction for a tokamak fusion reactor vessel, or other vessels subjected to similar pressure and thermal stresses.

  3. Lightweight cryogenic-compatible pressure vessels for vehicular fuel storage

    DOE Patents [OSTI]

    Aceves, Salvador; Berry, Gene; Weisberg, Andrew H.

    2004-03-23

    A lightweight, cryogenic-compatible pressure vessel for flexibly storing cryogenic liquid fuels or compressed gas fuels at cryogenic or ambient temperatures. The pressure vessel has an inner pressure container enclosing a fuel storage volume, an outer container surrounding the inner pressure container to form an evacuated space therebetween, and a thermal insulator surrounding the inner pressure container in the evacuated space to inhibit heat transfer. Additionally, vacuum loss from fuel permeation is substantially inhibited in the evacuated space by, for example, lining the container liner with a layer of fuel-impermeable material, capturing the permeated fuel in the evacuated space, or purging the permeated fuel from the evacuated space.

  4. Neutron shielding panels for reactor pressure vessels

    DOE Patents [OSTI]

    Singleton, Norman R. (Murrysville, PA)

    2011-11-22

    In a nuclear reactor neutron panels varying in thickness in the circumferential direction are disposed at spaced circumferential locations around the reactor core so that the greatest radial thickness is at the point of highest fluence with lesser thicknesses at adjacent locations where the fluence level is lower. The neutron panels are disposed between the core barrel and the interior of the reactor vessel to maintain radiation exposure to the vessel within acceptable limits.

  5. Pipeline and Pressure Vessel R&D under the Hydrogen Regional...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pipeline and Pressure Vessel R&D under the Hydrogen Regional Infrastructure Program In Pennsylvania Pipeline and Pressure Vessel R&D under the Hydrogen Regional Infrastructure...

  6. 2005 ASME Pressure Vessels and Piping Conference Denver, Colorado, USA

    E-Print Network [OSTI]

    Özer, Mutlu

    1 DRAFT 2005 ASME Pressure Vessels and Piping Conference Denver, Colorado, USA July 17-21, 2005 subjected to lateral earthquake loads. The results are verified with different codes (e.g. Eurocode8, API

  7. Report of the terawatt laser pressure vessel committee

    SciTech Connect (OSTI)

    Woodle, M.H.; Beauman, R.; Czajkowski, C.; Dickinson, T.; Lynch, D.; Pogorelsky, I.; Skjaritka, J.

    2000-09-25

    In 1995 the ATF project sent out an RFP for a CO2 Laser System having a TeraWatt output. Eight foreign and US firms responded. The Proposal Evaluation Panel on the second round selected Optoel, a Russian firm based in St. Petersburg, on the basis of the technical criteria and cost. Prior to the award, BNL representatives including the principal scientist, cognizant engineer and a QA representative visited the Optoel facilities to assess the company's capability to do the job. The contract required Optoel to provide a x-ray preionized high pressure amplifier that included: a high pressure cell, x-ray tube, internal optics and a HV pulse forming network for the main discharge and preionizer. The high-pressure cell consists of a stainless steel pressure vessel with various ports and windows that is filled with a gas mixture operating at 10 atmospheres. In accordance with BNL Standard ESH 1.4.1 ''Pressurized Systems For Experimental Use'', the pressure vessel design criteria is required to comply with the ASME Boiler and Pressure Vessel Code In 1996 a Preliminary Design Review was held at BNL. The vendor was requested to furnish drawings so that we could confirm that the design met the above criteria. The vendor furnished drawings did not have all dimensions necessary to completely analyze the cell. Never the less, we performed an analysis on as much of the vessel as we could with the available information. The calculations concluded that there were twelve areas of concern that had to be addressed to assure that the pressure vessel complied with the requirements of the ASME code. This information was forwarded to the vendor with the understanding that they would resolve these concerns as they continued with the vessel design and fabrication. The assembled amplifier pressure vessel was later hydro tested to 220 psi (15 Atm) as well as pneumatically to 181 psi (12.5 Atm) at the fabricator's Russian facility and was witnessed by a BNL engineer. The unit was shipped to the US and installed at the ATF. As part of the commissioning of the device the amplifier pressure vessel was disassembled several times at which time it became apparent that the vendor had not addressed 7 of the 12 issues previously identified. Closer examination of the vessel revealed some additional concerns including quality of workmanship. Although not required by the contract, the vendor furnished radiographs of a number of pressure vessel welds. A review of the Russian X-rays revealed radiographs of both poor and unreadable quality. However, a number of internal weld imperfections could be observed. All welds in question were excavated and then visually and dye penetrant inspected. These additional inspections confirmed that the weld techniques used to make some of these original welds were substandard. The applicable BNL standard, ESH 1.4.1, addresses the problem of pressure vessel non-compliance by having a committee appointed by the Department Chairman review the design and provide engineering solutions to assure equivalent safety. On January 24, 2000 Dr. M. Hart, the NSLS Chairman, appointed this committee with this charge. This report details the engineering investigations, deliberations, solutions and calculations which were developed by members of this committee to determine that with repairs, new components, appropriate NDE, and lowering the design pressure, the vessel can be considered safe to use.

  8. Macrosegregation and Microstructural Evolution in a Pressure-Vessel Steel

    E-Print Network [OSTI]

    Cambridge, University of

    for how the segregation might be minimised, and its detrimental effects suppressed by heat treatments. 1's knowledge) investigations have not been made into how macrosegregation in pressure-vessel steels can affect be prevented, and how its effects might be suppressed. 2. Experimental SA508 Grade 3 material was obtained from

  9. Proceeding of the International Conference & Exhibition on Pressure Vessels and Piping, "OPE 2006 CHENNAI",

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Proceeding of the International Conference & Exhibition on Pressure Vessels and Piping, "OPE 2006 on Pressure Vessels and Piping, "OPE 2006 ­ CHENNAI", 7-9, February 2006, Chennai, India B8-2 (Page 2

  10. Design Considerations For Blast Loads In Pressure Vessels.

    SciTech Connect (OSTI)

    Rodriguez, E. A. (Edward A.); Nickell, Robert E.; Pepin, J. E. (Jason E.)

    2007-01-01

    Los Alamos National Laboratory (LANL), under the auspices of the U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA), conducts confined detonation experiments utilizing large, spherical, steel pressure vessels to contain the reaction products and hazardous materials from high-explosive (HE) events. Structural design and analysis considerations include: (a) Blast loading phase (i.e., impulsive loading); (b) Dynamic structural response; (c) Fragment (i.e., shrapnel) generation and penetration; (d) Ductile and non-ductile fracture; and (e) Design Criteria to ASME Code Sec. VIII, Div. 3, Impulsively Loaded Vessels. These vessels are designed for one-time-use only, efficiently utilizing the significant plastic energy absorption capability of ductile vessel materials. Alternatively, vessels may be designed for multiple-detonation events, in which case the material response is restricted to elastic or near-elastic range. Code of Federal Regulations, Title 10 Part 50 provides requirements for commercial nuclear reactor licensing; specifically dealing with accidental combustible gases in containment structures that might cause extreme loadings. The design philosophy contained herein may be applied to extreme loading events postulated to occur in nuclear reactor and non-nuclear systems or containments.

  11. The coolability limits of a reactor pressure vessel lower head

    SciTech Connect (OSTI)

    Theofanous, T.G.; Syri, S. [Univ. of California, Santa Barbara, CA (United States)

    1995-09-01

    Configuration II of the ULPU experimental facility is described, and from a comprehensive set of experiments are provided. The facility affords full-scale simulations of the boiling crisis phenomenon on the hemispherical lower head of a reactor pressure vessel submerged in water, and heated internally. Whereas Configuration I experiments (published previously) established the lower limits of coolability under low submergence, pool-boiling conditions, with Configuration II we investigate coolability under conditions more appropriate to practical interest in severe accident management; that is, heat flux shapes (as functions of angular position) representative of a core melt contained by the lower head, full submergence of the reactor pressure vessel, and natural circulation. Critical heat fluxes as a function of the angular position on the lower head are reported and related the observed two-phase flow regimes.

  12. Lessons Learned From Developing Reactor Pressure Vessel Steel Embrittlement Database

    SciTech Connect (OSTI)

    Wang, Jy-An John

    2010-08-01

    Materials behaviors caused by neutron irradiation under fission and/or fusion environments can be little understood without practical examination. Easily accessible material information system with large material database using effective computers is necessary for design of nuclear materials and analyses or simulations of the phenomena. The developed Embrittlement Data Base (EDB) at ORNL is this comprehensive collection of data. EDB database contains power reactor pressure vessel surveillance data, the material test reactor data, foreign reactor data (through bilateral agreements authorized by NRC), and the fracture toughness data. The lessons learned from building EDB program and the associated database management activity regarding Material Database Design Methodology, Architecture and the Embedded QA Protocol are described in this report. The development of IAEA International Database on Reactor Pressure Vessel Materials (IDRPVM) and the comparison of EDB database and IAEA IDRPVM database are provided in the report. The recommended database QA protocol and database infrastructure are also stated in the report.

  13. Application of Negligible Creep Criteria to Candidate Materials for HTGR Pressure Vessels

    SciTech Connect (OSTI)

    Jetter, Robert I [Consultant; Sham, Sam [ORNL; Swindeman, Robert W [Consultant

    2011-01-01

    Two of the proposed High Temperature Gas Reactors (HTGRs) under consideration for a demonstration plant have the design object of avoiding creep effects in the reactor pressure vessel (RPV) during normal operation. This work addresses the criteria for negligible creep in Subsection NH, Division 1 of the ASME B&PV (Boiler and Pressure Vessel) Code, Section III, other international design codes and some currently suggested criteria modifications and their impact on permissible operating temperatures for various reactor pressure vessel materials. The goal of negligible creep could have different interpretations depending upon what failure modes are considered and associated criteria for avoiding the effects of creep. It is shown that for the materials of this study, consideration of localized damage due to cycling of peak stresses results in a lower temperature for negligible creep than consideration of the temperature at which the allowable stress is governed by creep properties. In assessing the effect of localized cyclic stresses it is also shown that consideration of cyclic softening is an important effect that results in a higher estimated temperature for the onset of significant creep effects than would be the case if the material were cyclically hardening. There are other considerations for the selection of vessel material besides avoiding creep effects. Of interest for this review are (1) the material s allowable stress level and impact on wall thickness (the goal being to minimize required wall thickness) and (2) ASME Code approval (inclusion as a permitted material in the relevant Section and Subsection of interest) to expedite regulatory review and approval. The application of negligible creep criteria to two of the candidate materials, SA533 and Mod 9Cr-1Mo (also referred to as Grade 91), and to a potential alternate, normalized and tempered 2 Cr-1Mo, is illustrated and the relative advantages and disadvantages of the materials are discussed.

  14. Proceedings of PVP2006-ICPVT-11 2006 ASME Pressure Vessels and Piping Division Conference

    E-Print Network [OSTI]

    Barr, Al

    - tions contained in NFPA 69 [11] which refers to the ASME Boiler and Pressure Vessel Code Section VIII- 1 Copyright c 2006 by ASME #12;vision within the ASME Boiler and Pressure Vessel or Piping CodesProceedings of PVP2006-ICPVT-11 2006 ASME Pressure Vessels and Piping Division Conference July 23

  15. Dual shell pressure balanced reactor vessel. Final project report

    SciTech Connect (OSTI)

    Robertus, R.J.; Fassbender, A.G.

    1994-10-01

    The Department of Energy`s Office of Energy Research (OER) has previously provided support for the development of several chemical processes, including supercritical water oxidation, liquefaction, and aqueous hazardous waste destruction, where chemical and phase transformations are conducted at high pressure and temperature. These and many other commercial processes require a pressure vessel capable of operating in a corrosive environment where safety and economy are important requirements. Pacific Northwest Laboratory (PNL) engineers have recently developed and patented (U.S. patent 5,167,930 December 1, 1992) a concept for a novel Dual Shell Pressure Balanced Vessel (DSPBV) which could solve a number of these problems. The technology could be immediately useful in continuing commercialization of an R&D 100 award-winning technology, Sludge-to-oil Reactor System (STORS), originally developed through funding by OER. Innotek Corporation is a small business that would be one logical end-user of the DSPBV reactor technology. Innotek is working with several major U.S. engineering firms to evaluate the potential of this technology in the disposal of wastes from sewage treatment plants. PNL entered into a CRADA with Innotek to build a bench-scale demonstration reactor and test the system to advance the economic feasibility of a variety of high pressure chemical processes. Hydrothermal processing of corrosive substances on a large scale can now be made significantly safer and more economical through use of the DSPBV. Hydrothermal chemical reactions such as wet-air oxidation and supercritical water oxidation occur in a highly corrosive environment inside a pressure vessel. Average corrosion rates from 23 to 80 miles per year have been reported by Rice (1994) and Latanision (1993).

  16. High pressure ejection of melt from a reactor pressure vessel. The discharge phase. Revision 7

    SciTech Connect (OSTI)

    Pilch, M.; Tarbell, W.M.

    1985-09-01

    Recent probabilistic risk-assessment studies identified potential accident sequences in which reactor vessel failure occurs while the primary system is at elevated pressure. The phenomenology of the discharge phase is reviewed here. We propose an improved model for hole ablation following vessel failure, and we compare the model with experiment data. Gas blowthrough is identified as a mechanism that allows steam to escape through the vessel breach before melt ejection is complete. Gas blowthrough leads to pneumatic atomization of the remaining melt before significant depressurization of the primary system occurs.

  17. Weld Repair of a Stamped Pressure Vessel in a Radiologically Controlled Zone

    SciTech Connect (OSTI)

    Cannell, Gary L.; Huth, Ralph J.; Hallum, Randall T.

    2013-08-26

    In September 2012 an ASME B&PVC Section VIII stamped pressure vessel located at the DOE Hanford Site Effluent Treatment Facility (ETF) developed a through-wall leak. The vessel, a steam/brine heat exchanger, operated in a radiologically controlled zone (by the CH2MHill PRC or CHPRC), had been in service for approximately 17 years. The heat exchanger is part of a single train evaporator process and its failure caused the entire system to be shut down, significantly impacting facility operations. This paper describes the activities associated with failure characterization, technical decision making/planning for repair by welding, logistical challenges associated with performing work in a radiologically controlled zone, performing the repair, and administrative considerations related to ASME code requirements.

  18. A Survey of Pressure Vessel Code Compliance for Superconducting RF Cryomodules

    SciTech Connect (OSTI)

    Peterson, Thomas; Klebaner, Arkadiy; Nicol, Tom; Theilacker, Jay; /Fermilab; Hayano, Hitoshi; Kako, Eiji; Nakai, Hirotaka; Yamamoto, Akira; /KEK, Tsukuba; Jensch, Kay; Matheisen, Axel; /DESY; Mammosser, John; /Jefferson Lab

    2011-06-07

    Superconducting radio frequency (SRF) cavities made from niobium and cooled with liquid helium are becoming key components of many particle accelerators. The helium vessels surrounding the RF cavities, portions of the niobium cavities themselves, and also possibly the vacuum vessels containing these assemblies, generally fall under the scope of local and national pressure vessel codes. In the U.S., Department of Energy rules require national laboratories to follow national consensus pressure vessel standards or to show ''a level of safety greater than or equal to'' that of the applicable standard. Thus, while used for its superconducting properties, niobium ends up being treated as a low-temperature pressure vessel material. Niobium material is not a code listed material and therefore requires the designer to understand the mechanical properties for material used in each pressure vessel fabrication; compliance with pressure vessel codes therefore becomes a problem. This report summarizes the approaches that various institutions have taken in order to bring superconducting RF cryomodules into compliance with pressure vessel codes. In Japan, Germany, and the U.S., institutions building superconducting RF cavities integrated in helium vessels or procuring them from vendors have had to deal with pressure vessel requirements being applied to SRF vessels, including the niobium and niobium-titanium components of the vessels. While niobium is not an approved pressure vessel material, data from tests of material samples provide information to set allowable stresses. By means of procedures which include adherence to code welding procedures, maintaining material and fabrication records, and detailed analyses of peak stresses in the vessels, or treatment of the vacuum vessel as the pressure boundary, research laboratories around the world have found methods to demonstrate and document a level of safety equivalent to the applicable pressure vessel codes.

  19. NEUTRON DAMAGE IN REACTOR PRESSURE-VESSEL STEEL EXAMINED WITH POSITRON ANNIHILATION LIFETIME SPECTROSCOPY

    E-Print Network [OSTI]

    Motta, Arthur T.

    annealing the samples at 280' C. INTRODUCTION Reactor pressure-vessel steel embrittlement is one ofthe mostNEUTRON DAMAGE IN REACTOR PRESSURE-VESSEL STEEL EXAMINED WITH POSITRON ANNIHILATION LIFETIME spectroscopy to study the development of damage and annealing behavior ofneutron-irradiated reactor pressure

  20. High-pressure Storage Vessels for Hydrogen, Natural Gas and Hydrogen-Natural Gas Blends

    Broader source: Energy.gov [DOE]

    These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 – 29, 2010, in Beijing, China.

  1. Low Temperature Irradiation Embrittlement of Reactor Pressure Vessel Steels

    SciTech Connect (OSTI)

    Wang, Jy-An John

    2015-08-01

    The embrittlement trend curve development project for HFIR reactor pressure vessel (RPV) steels was carried out with three major tasks. Which are (1) data collection to match that used in HFIR steel embrittlement trend published in 1994 Journal Nuclear Material by Remec et. al, (2) new embrittlement data of A212B steel that are not included in earlier HFIR RPV trend curve, and (3) the adjustment of nil-ductility-transition temperature (NDTT) shift data with the consideration of the irradiation temperature effect. An updated HFIR RPV steel embrittlement trend curve was developed, as described below. NDTT( C) = 23.85 log(x) + 203.3 log (x) + 434.7, with 2- uncertainty of 34.6 C, where parameter x is referred to total dpa. The developed update HFIR RPV embrittlement trend curve has higher embrittlement rate compared to that of the trend curve developed in 1994.

  2. The behavior of shallow flaws in reactor pressure vessels

    SciTech Connect (OSTI)

    Rolfe, S.T. (Kansas Univ., Lawrence, KS (United States))

    1991-11-01

    Both analytical and experimental studies have shown that the effect of crack length, a, on the elastic-plastic toughness of structural steels is significant. The objective of this report is to recommend those research investigations that are necessary to understand the phenomenon of shallow behavior as it affects fracture toughness so that the results can be used properly in the structural margin assessment of reactor pressure vessels (RPVs) with flaws. Preliminary test results of A 533 B steel show an elevated crack-tip-opening displacement (CTOD) toughness similar to that observed for structural steels tested at the University of Kansas. Thus, the inherent resistance to fracture initiation of A 533 B steel with shallow flaws appears to be higher than that used in the current American Society of Mechanical Engineers (ASME) design curves based on testing fracture mechanics specimens with deep flaws. If this higher toughness of laboratory specimens with shallow flaws can be transferred to a higher resistance to failure in RPV design or analysis, then the actual margin of safety in nuclear vessels with shallow flaws would be greater than is currently assumed on the basis of deep-flaw test results. This elevation in toughness and greater resistance to fracture would be a very desirable situation, particularly for the pressurized-thermal shock (PTS) analysis in which shallow flaws are assumed to exist. Before any advantage can be taken of this possible increase in initiation toughness, numerous factors must be analyzed to ensure the transferability of the data. This report reviews those factors and makes recommendations of studies that are needed to assess the transferability of shallow-flaw toughness test results to the structural margin assessment of RPV with shallow flaws. 14 refs., 8 figs.

  3. D-Zero Central Calorimeter Pressure Vessel and Vacuum Vessel Safety Notes

    SciTech Connect (OSTI)

    Rucinski, R.; Luther, R.; /Fermilab

    1990-10-25

    The relief valve and relief piping capacity was calculated to be 908 sefm air. This exceeds all relieving conditions. The vessel also has a rupture disc with a 2640 scfm air stamped capacity. In order to significantly decrease the amount of time required to fill the cryostats, it is desired to raise the setpoint of the 'operating' relief valve on the argon storage dewar to 20 psig from its existing 16 psig setting. This additional pressure increases the flow to the cryostats and will overwhelm the relief capacity if the temperature of the modules within these vessels is warm enough. Using some conservative assumptions and simple calculations within this note, the maximum average temperature that the modules within each cryostat can be at prior to filling from the storage dewar with liquid argon is at least 290 K. The average temperature of the module mass for any of the three cryostats can be as high as 290 K prior to filling that particular cryostat. This should not be confused with the average temperature of a single type or location which is useful in protecting the modules-not necessarily the vessel itself. A few modules of each type and at different elevations should be used in an average which would account for the different weights of each module. Note that at 290 K, the actual flow of argon through the relief valve and the rupture disk was under the maximum theoretical flows for each relief device. This means that the bulk temperature could actually have been raised to flow argon through the reliefs at their maximum capacity. Therefore, the temperature of 290 K is a conservative value for the calculated flow rate of 12.3 gpm. Safeguards in addition to and used in conjunction with operating procedures shall be implemented in such a way so that the above temperature limitation is not exceeded and such that it is exclusive of the programmable logic controller (PLC). One suggestion is using a toggle switch for each cryostat mounted in the PLC I/O box which would maintain control of the signals to open the cold fill valves of each cryostat. With the safeguards in place while carefully monitoring the temperatures during a cooldown cycle in each cryostat, the set pressure in the argon storage dewar can safely be increased to 20 psig.

  4. Protective interior wall and attach8ing means for a fusion reactor vacuum vessel

    DOE Patents [OSTI]

    Phelps, Richard D. (Greeley, CO); Upham, Gerald A. (Valley Center, CA); Anderson, Paul M. (San Diego, CA)

    1988-01-01

    An array of connected plates mounted on the inside wall of the vacuum vessel of a magnetic confinement reactor in order to provide a protective surface for energy deposition inside the vessel. All fasteners are concealed and protected beneath the plates, while the plates themselves share common mounting points. The entire array is installed with torqued nuts on threaded studs; provision also exists for thermal expansion by mounting each plate with two of its four mounts captured in an oversize grooved spool. A spool-washer mounting hardware allows one edge of a protective plate to be torqued while the other side remains loose, by simply inverting the spool-washer hardware.

  5. Creep of A508/533 Pressure Vessel Steel

    SciTech Connect (OSTI)

    Richard Wright

    2014-08-01

    ABSTRACT Evaluation of potential Reactor Pressure Vessel (RPV) steels has been carried out as part of the pre-conceptual Very High Temperature Reactor (VHTR) design studies. These design studies have generally focused on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Initially, three candidate materials were identified by this process: conventional light water reactor (LWR) RPV steels A508 and A533, 2¼Cr-1Mo in the annealed condition, and Grade 91 steel. The low strength of 2¼Cr-1Mo at elevated temperature has eliminated this steel from serious consideration as the VHTR RPV candidate material. Discussions with the very few vendors that can potentially produce large forgings for nuclear pressure vessels indicate a strong preference for conventional LWR steels. This preference is based in part on extensive experience with forging these steels for nuclear components. It is also based on the inability to cast large ingots of the Grade 91 steel due to segregation during ingot solidification, thus restricting the possible mass of forging components and increasing the amount of welding required for completion of the RPV. Grade 91 steel is also prone to weld cracking and must be post-weld heat treated to ensure adequate high-temperature strength. There are also questions about the ability to produce, and very importantly, verify the through thickness properties of thick sections of Grade 91 material. The availability of large components, ease of fabrication, and nuclear service experience with the A508 and A533 steels strongly favor their use in the RPV for the VHTR. Lowering the gas outlet temperature for the VHTR to 750°C from 950 to 1000°C, proposed in early concept studies, further strengthens the justification for this material selection. This steel is allowed in the ASME Boiler and Pressure Vessel Code for nuclear service up to 371°C (700°F); certain excursions above that temperature are allowed by Code Case N-499-2 (now incorporated as an appendix to Section III Division 5 of the Code). This Code Case was developed with a rather sparse data set and focused primarily on rolled plate material (A533 specification). Confirmatory tests of creep behavior of both A508 and A533 are described here that are designed to extend the database in order to build higher confidence in ensuring the structural integrity of the VHTR RPV during off-normal conditions. A number of creep-rupture tests were carried out at temperatures above the 371°C (700°F) Code limit; longer term tests designed to evaluate minimum creep behavior are ongoing. A limited amount of rupture testing was also carried out on welded material. All of the rupture data from the current experiments is compared to historical values from the testing carried out to develop Code Case N-499-2. It is shown that the A508/533 basemetal tested here fits well with the rupture behavior reported from the historical testing. The presence of weldments significantly reduces the time to rupture. The primary purpose of this report is to summarize and record the experimental results in a single document.

  6. A DISLOCATION-BASED CLEAVAGE INITIATION MODEL FOR PRESSURE VESSEL

    SciTech Connect (OSTI)

    Cochran, Kristine B; Erickson, Marjorie A; Williams, Paul T; Klasky, Hilda B; Bass, Bennett Richard

    2012-01-01

    Efforts are under way to develop a theoretical, multi-scale model for the prediction of fracture toughness of ferritic steels in the ductile-to-brittle transition temperature (DBTT) region that accounts for temperature, irradiation, strain rate, and material condition (chemistry and heat treatment) effects. This new model is intended to address difficulties associated with existing empirically-derived models of the DBTT region that cannot be extrapolated to conditions for which data are unavailable. Dislocation distribution equations, derived from the theories of Yokobori et al., are incorporated to account for the local stress state prior to and following initiation of a microcrack from a second-phase particle. The new model is the basis for the DISlocation-based FRACture (DISFRAC) computer code being developed at the Oak Ridge National Laboratory (ORNL). The purpose of this code is to permit fracture safety assessments of ferritic structures with only tensile properties required as input. The primary motivation for the code is to assist in the prediction of radiation effects on nuclear reactor pressure vessels, in parallel with the EURATOM PERFORM 60 project.

  7. Advances in crack-arrest technology for reactor pressure vessels

    SciTech Connect (OSTI)

    Bass, B.R.; Pugh, C.E.

    1988-01-01

    The Heavy-Section Steel Technology (HSST) Program at the Oak Ridge National Laboratory (ORNL) under the sponsorship of the US Nuclear Regulatory Commission is continuing to improve the understanding of conditions that govern the initiation, rapid propagation, arrest, and ductile tearing of cracks in reactor pressure vessel (RPV) steels. This paper describes recent advances in a coordinated effort being conducted under the HSST Program by ORNL and several subcontracting groups to develop the crack-arrest data base and the analytical tools required to construct inelastic dynamic fracture models for RPV steels. Large-scale tests are being carried out to generate crack-arrest toughness data at temperatures approaching and above the onset of Charpy upper-shelf behavior. Small- and intermediate-size specimens subjected to static and dynamic loading are being developed and tested to provide additional fracture data for RPV steels. Viscoplastic effects are being included in dynamic fracture models and computer programs and their utility validated through analyses of data from carefully controlled experiments. Recent studies are described that examine convergence problems associated with energy-based fracture parameters in viscoplastic-dynamic fracture applications. Alternative techniques that have potential for achieving convergent solutions for fracture parameters in the context of viscoplastic-dynamic models are discussed. 46 refs., 15 figs., 3 tabs.

  8. ADDITIONAL STRESS AND FRACTURE MECHANICS ANALYSES OF PRESSURIZED WATER REACTOR PRESSURE VESSEL NOZZLES

    SciTech Connect (OSTI)

    Walter, Matthew; Yin, Shengjun; Stevens, Gary; Sommerville, Daniel; Palm, Nathan; Heinecke, Carol

    2012-01-01

    In past years, the authors have undertaken various studies of nozzles in both boiling water reactors (BWRs) and pressurized water reactors (PWRs) located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Those studies described stress and fracture mechanics analyses performed to assess various RPV nozzle geometries, which were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-life (EOL) to require evaluation of embrittlement as part of the RPV analyses associated with pressure-temperature (P-T) limits. In this paper, additional stress and fracture analyses are summarized that were performed for additional PWR nozzles with the following objectives: To expand the population of PWR nozzle configurations evaluated, which was limited in the previous work to just two nozzles (one inlet and one outlet nozzle). To model and understand differences in stress results obtained for an internal pressure load case using a two-dimensional (2-D) axi-symmetric finite element model (FEM) vs. a three-dimensional (3-D) FEM for these PWR nozzles. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated. To investigate the applicability of previously recommended linear elastic fracture mechanics (LEFM) hand solutions for calculating the Mode I stress intensity factor for a postulated nozzle corner crack for pressure loading for these PWR nozzles. These analyses were performed to further expand earlier work completed to support potential revision and refinement of Title 10 to the U.S. Code of Federal Regulations (CFR), Part 50, Appendix G, Fracture Toughness Requirements, and are intended to supplement similar evaluation of nozzles presented at the 2008, 2009, and 2011 Pressure Vessels and Piping (PVP) Conferences. This work is also relevant to the ongoing efforts of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (B&PV) Code, Section XI, Working Group on Operating Plant Criteria (WGOPC) efforts to incorporate nozzle fracture mechanics solutions into a revision to ASME B&PV Code, Section XI, Nonmandatory Appendix G.

  9. Stress-intensity-factor influence coefficients for semielliptical inner-surface flaws in clad pressure vessels

    SciTech Connect (OSTI)

    Keeney, J.A.; Bryson, J.W.

    1995-12-31

    A problem of particular interest in pressure vessel technology is the calculation of accurate stress-intensity factors for semielliptical surface cracks in cylinders. Computing costs for direct solution techniques can be prohibitive when applied to three-dimensional (3-D) geometries with time-varying boundary conditions such as those associated with pressurized thermal shock. An alternative superposition technique requires the calculation of a set of influence coefficients for a given 3-D crack model that can be superimposed to obtain mode-I stress-intensity factors. This paper presents stress-intensity-factor influence coefficients (SIFICs) for axially and circumferentially oriented finite-length semielliptical inner-surface flaws with aspect ratios (total crack length (2c) to crack depth (a)) of 2, 6, and 10 for clad cylinders having an internal radius to wall thickness (t) ratio of 10. SIFICs are computed for flaw depths in the range of 0.01 {le} a/t {le} 0.5 and two cladding thicknesses. The incorporate of this SIFIC data base in fracture mechanics codes will facilitate the generation of fracture mechanics solutions for a wide range of flaw geometries as may be required in structural integrity assessments of pressurized-water and boiling-water reactors.

  10. Forum Agenda: International Hydrogen Fuel and Pressure Vessel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons Learned for the Safe Deployment of Vehicles R&D of Large Stationary HydrogenCNGHCNG Storage Vessels...

  11. SPR salt wall leaching experiments in lab-scale vessel : data report.

    SciTech Connect (OSTI)

    Webb, Stephen Walter; O'Hern, Timothy John; Hartenberger, Joel David

    2010-10-01

    During cavern leaching in the Strategic Petroleum Reserve (SPR), injected raw water mixes with resident brine and eventually interacts with the cavern salt walls. This report provides a record of data acquired during a series of experiments designed to measure the leaching rate of salt walls in a labscale simulated cavern, as well as discussion of the data. These results should be of value to validate computational fluid dynamics (CFD) models used to simulate leaching applications. Three experiments were run in the transparent 89-cm (35-inch) ID diameter vessel previously used for several related projects. Diagnostics included tracking the salt wall dissolution rate using ultrasonics, an underwater camera to view pre-installed markers, and pre- and post-test weighing and measuring salt blocks that comprise the walls. In addition, profiles of the local brine/water conductivity and temperature were acquired at three locations by traversing conductivity probes to map out the mixing of injected raw water with the surrounding brine. The data are generally as expected, with stronger dissolution when the salt walls were exposed to water with lower salt saturation, and overall reasonable wall shape profiles. However, there are significant block-to-block variations, even between neighboring salt blocks, so the averaged data are considered more useful for model validation. The remedial leach tests clearly showed that less mixing and longer exposure time to unsaturated water led to higher levels of salt wall dissolution. The data for all three tests showed a dividing line between upper and lower regions, roughly above and below the fresh water injection point, with higher salt wall dissolution in all cases, and stronger (for remedial leach cases) or weaker (for standard leach configuration) concentration gradients above the dividing line.

  12. DEVELOPMENT OF ASME SECTION X CODE RULES FOR HIGH PRESSURE COMPOSITE HYDROGEN PRESSURE VESSELS WITH NON-LOAD SHARING LINERS

    SciTech Connect (OSTI)

    Rawls, G.; Newhouse, N.; Rana, M.; Shelley, B.; Gorman, M.

    2010-04-13

    The Boiler and Pressure Vessel Project Team on Hydrogen Tanks was formed in 2004 to develop Code rules to address the various needs that had been identified for the design and construction of up to 15000 psi hydrogen storage vessel. One of these needs was the development of Code rules for high pressure composite vessels with non-load sharing liners for stationary applications. In 2009, ASME approved new Appendix 8, for Section X Code which contains the rules for these vessels. These vessels are designated as Class III vessels with design pressure ranging from 20.7 MPa (3,000 ps)i to 103.4 MPa (15,000 psi) and maximum allowable outside liner diameter of 2.54 m (100 inches). The maximum design life of these vessels is limited to 20 years. Design, fabrication, and examination requirements have been specified, included Acoustic Emission testing at time of manufacture. The Code rules include the design qualification testing of prototype vessels. Qualification includes proof, expansion, burst, cyclic fatigue, creep, flaw, permeability, torque, penetration, and environmental testing.

  13. Southwest Research Institute (SwRI) designs, analyzes, and fabricates pressure vessels

    E-Print Network [OSTI]

    Chapman, Clark R.

    vessels using: n ASME B&PV Code, Section VIII, Division 1 n ASME B&PV Code, Section VIII, Division 2 n ASME B&PV Code, Section VIII, Division 3 n ASME Pressure Vessels for Human Occupancy n American Bureau for the Design, Fabrication, and Erection of Structural Steel for Buildings" n Fabrication n ASME B&PV Code

  14. Hydrogen degradation and microstructural effects of the near-threshold fatigue resistance of pressure vessel steels

    E-Print Network [OSTI]

    Fuquen-Molano, Rosendo

    1982-01-01

    Safety of pressure vessels for applications such as coal conversion reactors requires understanding of the mechanism of environmentally-induced crack propagation and the mechanism by which process-induced microstructures ...

  15. A wall-crawling robot for reactor vessel inspection in advanced reactors

    SciTech Connect (OSTI)

    Spelt, P.F.; Crane, C.; Feng, L.; Abidi, M.; Tosunoglu, S.

    1994-06-01

    A consortium of four universities and the Center for Engineering Systems Advanced Research of the Oak Ridge National Laboratory has designed a prototype wall-crawling robot to perform weld inspection in advanced nuclear reactors. Design efforts for the reactor vessel inspection robot (RVIR) concentrated on the Advanced Liquid Metal Reactor because it presents the most demanding environment in which such a robot must operate. The RVIR consists of a chassis containing two sets of suction cups that can alternately grasp the side of the vessel being inspected, providing both locomotion and steering functions. Sensors include three CCD cameras and a weld inspection device based on new shear-wave technology. The restrictions of the inspection environment presented major challenges to the team. These challenges were met in the prototype, which has been tested in a non-radiation, room-temperature mockup of the robot work environment and shown to perform as expected.

  16. Stress and Fracture Mechanics Analyses of Boiling Water Reactor and Pressurized Water Reactor Pressure Vessel Nozzles

    SciTech Connect (OSTI)

    Yin, Shengjun; Bass, Bennett Richard; Stevens, Gary; Kirk, Mark

    2011-01-01

    This paper describes stress analysis and fracture mechanics work performed to assess boiling water reactor (BWR) and pressurized water reactor (PWR) nozzles located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Various RPV nozzle geometries were investigated: 1. BWR recirculation outlet nozzle; 2. BWR core spray nozzle3 3. PWR inlet nozzle; ; 4. PWR outlet nozzle; and 5. BWR partial penetration instrument nozzle. The above nozzle designs were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-license (EOL) to require evaluation as part of establishing the allowed limits on heatup, cooldown, and hydrotest (leak test) conditions. These nozzles analyzed represent one each of the nozzle types potentially requiring evaluation. The purpose of the analyses performed on these nozzle designs was as follows: To model and understand differences in pressure and thermal stress results using a two-dimensional (2-D) axi-symmetric finite element model (FEM) versus a three-dimensional (3-D) FEM for all nozzle types. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated; To verify the accuracy of a selected linear elastic fracture mechanics (LEFM) hand solution for stress intensity factor for a postulated nozzle corner crack for both thermal and pressure loading for all nozzle types; To assess the significance of attached piping loads on the stresses in the nozzle corner region; and To assess the significance of applying pressure on the crack face with respect to the stress intensity factor for a postulated nozzle corner crack.

  17. Advanced Models of LWR Pressure Vessel Embrittlement for Low Flux-HighFluence Conditions

    SciTech Connect (OSTI)

    Odette, G. Robert; Yamamoto, Takuya

    2013-06-17

    Neutron embrittlement of reactor pressure vessels (RPVs) is an unresolved issue for light water reactor life extension, especially since transition temperature shifts (TTS) must be predicted for high 80-year fluence levels up to approximately 1,020 n/cm{sup 2}, far beyond the current surveillance database. Unfortunately, TTS may accelerate at high fluence, and may be further amplified by the formation of late blooming phases that result in severe embrittlement even in low-copper (Cu) steels. Embrittlement by this mechanism is a potentially significant degradation phenomenon that is not predicted by current regulatory models. This project will focus on accurately predicting transition temperature shifts at high fluence using advanced physically based, empirically validated and calibrated models. A major challenge is to develop models that can adjust test reactor data to account for flux effects. Since transition temperature shifts depend on synergistic combinations of many variables, flux-effects cannot be treated in isolation. The best current models systematically and significantly under-predict transition temperature at high fluence, although predominantly for irradiations at much higher flux than actual RPV service. This project will integrate surveillance, test reactor and mechanism data with advanced models to address a number of outstanding RPV embrittlement issues. The effort will include developing new databases and preliminary models of flux effects for irradiation conditions ranging from very low (e.g., boiling water reactor) to high (e.g., accelerated test reactor). The team will also develop a database and physical models to help predict the conditions for the formation of Mn-Ni-Si late blooming phases and to guide future efforts to fully resolve this issue. Researchers will carry out other tasks on a best-effort basis, including prediction of transition temperature shift attenuation through the vessel wall, remediation of embrittlement by annealing, and fracture toughness master curve issues.

  18. DOE H2 Program Annual Review, 5-20-2003 Insulated Pressure Vessels for

    E-Print Network [OSTI]

    range. J. We are generating tank performance data. K. Testing BOP components. L. Low venting losses) car, km 0 1 2 3 4 5 hydrogenlosses,kg low-pressure LH2 tank MLVSI insulated pressure vessel fueled with LH2 LH2 80 K CH2 1998: thermodynamic analysis 1999: cryogenic cycling 2001: DOT/ISO Tests 2003

  19. Reactor pressure vessel head vents and methods of using the same

    DOE Patents [OSTI]

    Gels, John L; Keck, David J; Deaver, Gerald A

    2014-10-28

    Internal head vents are usable in nuclear reactors and include piping inside of the reactor pressure vessel with a vent in the reactor upper head. Piping extends downward from the upper head and passes outside of the reactor to permit the gas to escape or be forcibly vented outside of the reactor without external piping on the upper head. The piping may include upper and lowers section that removably mate where the upper head joins to the reactor pressure vessel. The removable mating may include a compressible bellows and corresponding funnel. The piping is fabricated of nuclear-reactor-safe materials, including carbon steel, stainless steel, and/or a Ni--Cr--Fe alloy. Methods install an internal head vent in a nuclear reactor by securing piping to an internal surface of an upper head of the nuclear reactor and/or securing piping to an internal surface of a reactor pressure vessel.

  20. The influence of selected containment structures on debris dispersal and transport following high pressure melt ejection from the reactor vessel

    SciTech Connect (OSTI)

    Pilch, M.; Tarbell, W.W.; Brockmann, J.E.

    1988-09-01

    High pressure expulsion of molten core debris from the reactor pressure vessel may result in dispersal of the debris from the reactor cavity. In most plants, the cavity exits into the containment such that the debris impinges on structures. Retention of the debris on the structures may affect the further transport of the debris throughout the containment. Two tests were done with scaled structural shapes placed at the exit of 1:10 linear scale models of the Zion cavity. The results show that the debris does not adhere significantly to structures. The lack of retention is attributed to splashing from the surface and reentrainment in the gas flowing over the surface. These processes are shown to be applicable to reactor scale. A third experiment was done to simulate the annular gap between the reactor vessel and cavity wall. Debris collection showed that the fraction of debris exiting through the gap was greater than the gap-to-total flow area ratio. Film records indicate that dispersal was primarily by entrainment of the molten debris in the cavity. 29 refs., 36 figs., 11 tabs.

  1. Fast neutron fluence of yonggwang nuclear unit 1 reactor pressure vessel

    SciTech Connect (OSTI)

    Yoo, C.; Km, B.; Chang, K.; Leeand, S.; Park, J.

    2006-07-01

    The Code of Federal Regulations, Title 10, Part 50, Appendix H, requires that the neutron dosimetry be present to monitor the reactor vessel throughout plant life. The Ex-Vessel Neutron Dosimetry System has been installed for Yonggwang Nuclear Unit 1 after complete withdrawal of all six in-vessel surveillance capsules. This system has been installed in the reactor cavity annulus in order to measure the fast neutron spectrum coming out through the reactor pressure vessel. Cycle specific neutron transport calculations were performed to obtain the energy dependent neutron flux throughout the reactor geometry including dosimetry positions. Comparisons between calculations and measurements were performed for the reaction rates of each dosimetry sensors and results show good agreements. (authors)

  2. Interior Duct Wall Pressure Downstream of a Low-Speed Scott C. Morris

    E-Print Network [OSTI]

    Alonso, Juan J.

    Interior Duct Wall Pressure Downstream of a Low-Speed Rotor Scott C. Morris , David B. Stephens The region downstream of a ducted rotor has been experimentally investigated in terms of its wake characteristics and the duct wall pressure fluctuations. The motivation for the measurements was to document

  3. Cryogenic Pressure Vessels: Progress and Plans | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department of Energy Whole-Home Gas8of EnergyHydrogenPressure

  4. Walking and Climbing Service Robots for Safety Inspection of Nuclear Reactor Pressure Vessels

    E-Print Network [OSTI]

    Chen, Sheng

    Walking and Climbing Service Robots for Safety Inspection of Nuclear Reactor Pressure Vessels B of Electronics and Computer Science, University of Southampton, Southampton, UK Abstract: Nuclear reactor and the usefulness of these robots for improving safety inspection of nuclear reactors in general are discussed

  5. Brian Somerday, an SNL researcher, prepares to load a hydrogen pressure vessel into a laboratory furnace.

    E-Print Network [OSTI]

    include hydrogen production, fuel cells, thermophysical properties, hydrogen storage materials, and carbonI2CNER n Brian Somerday, an SNL researcher, prepares to load a hydrogen pressure vessel into a laboratory furnace. Unequivocally Sandia's strong research record and industrial experience on hydrogen

  6. Proceedings of PVP2006-ICPVT-11 2006 ASME Pressure Vessels and Piping Division Conference

    E-Print Network [OSTI]

    Proceedings of PVP2006-ICPVT-11 2006 ASME Pressure Vessels and Piping Division Conference July 23 response leading to large deformations. Some issues in measurement technique and validation testing are then presented. The importance of wave reflection from bends, valves and dead ends is discussed, as well

  7. A Multiscale Modeling Approach to Analyze Filament-Wound Composite Pressure Vessels

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Simmons, Kevin L.

    2013-07-22

    A multiscale modeling approach to analyze filament-wound composite pressure vessels is developed in this article. The approach, which extends the Nguyen et al. model [J. Comp. Mater. 43 (2009) 217] developed for discontinuous fiber composites to continuous fiber ones, spans three modeling scales. The microscale considers the unidirectional elastic fibers embedded in an elastic-plastic matrix obeying the Ramberg-Osgood relation and J2 deformation theory of plasticity. The mesoscale behavior representing the composite lamina is obtained through an incremental Mori-Tanaka type model and the Eshelby equivalent inclusion method [Proc. Roy. Soc. Lond. A241 (1957) 376]. The implementation of the micro-meso constitutive relations in the ABAQUS® finite element package (via user subroutines) allows the analysis of a filament-wound composite pressure vessel (macroscale) to be performed. Failure of the composite lamina is predicted by a criterion that accounts for the strengths of the fibers and of the matrix as well as of their interface. The developed approach is demonstrated in the analysis of a filament-wound pressure vessel to study the effect of the lamina thickness on the burst pressure. The predictions are favorably compared to the numerical and experimental results by Lifshitz and Dayan [Comp. Struct. 32 (1995) 313].

  8. Pressure vessel sliding support unit and system using the sliding support unit

    DOE Patents [OSTI]

    Breach, Michael R.; Keck, David J.; Deaver, Gerald A.

    2013-01-15

    Provided is a sliding support and a system using the sliding support unit. The sliding support unit may include a fulcrum capture configured to attach to a support flange, a fulcrum support configured to attach to the fulcrum capture, and a baseplate block configured to support the fulcrum support. The system using the sliding support unit may include a pressure vessel, a pedestal bracket, and a plurality of sliding support units.

  9. Wall-pressure and PIV analysis for microbubble drag reduction investigation 

    E-Print Network [OSTI]

    Dominguez Ontiveros, Elvis Efren

    2005-11-01

    friction reductions were observed when the microbubbles were injected. Several measurements of wall-pressure were taken at various Reynolds numbers that ranged from 300 up to 6154. No significant drag reduction was observed for flows in the laminar range...

  10. Inspection and recertification of gas filled composite pressure vessels using acoustic emission

    SciTech Connect (OSTI)

    Mitchell, J.R.; Temowchek, S.J. [Physical Acoustics Corp., Lawrenceville, NJ (United States)

    1998-12-31

    Corrosion resistance and light weight have made composite materials the best choice for many high pressure gas applications. However, progress has been hampered by the limitations of traditional NDT inspection methods and lack of understanding about failure mechanisms. One solution which has emerged is the use of Acoustic Emission to monitor the composite pressure vessel during periodic proof tests. The emission generated can be used to determine the existence of hidden mechanical defects and corrosion which may have significantly lowered the burst strength. A data base of over 4,000 NGV (natural gas vehicle) containers will be used to exemplify the usefulness of the method.

  11. Protective interior wall and attaching means for a fusion reactor vacuum vessel

    DOE Patents [OSTI]

    Phelps, R.D.; Upham, G.A.; Anderson, P.M.

    1985-03-01

    The wall basically consists of an array of small rectangular plates attached to the existing walls with threaded fasteners. The protective wall effectively conceals and protects all mounting hardware beneath the plate array, while providing a substantial surface area that will absorb plasma energy.

  12. Prestressed-concrete pressure vessels and their applicability to advanced-energy-system concepts

    SciTech Connect (OSTI)

    Naus, D.J

    1983-01-01

    Prestressed concrete pressure vessels (PCPVs) are, in essence, spaced steel structures since their strength is derived from a multitude of steel elements made up of deformed reinforcing bars and prestressing tendons which are present in sufficient quantities to carry tension loads imposed on the vessel. Other major components of a PCPV include the concrete, liner and cooling system, and insulation. PCPVs exhibit a number of advantages which make them ideally suited for application to advanced energy concepts: fabricability in virtually any size and shape using available technology, improved safety, reduced capital costs, and a history of proven performance. PCPVs have many applications to both nuclear- and non-nuclear-based energy systems concepts. Several of these concepts will be discussed as well as the research and development activities conducted at ORNL in support of PCPV development.

  13. D-Zero Central Calorimeter Technical Appendix to Cryogenic Pressure Vessels

    SciTech Connect (OSTI)

    Mulholland, G.T.; Rucinski, R.A.; /Fermilab

    1990-11-19

    DO (D Zero) is a large Liquid Argon (LAr) HEP Calorimeter designed to function in the laboratories P-Pbar collider at the DO section of the Tevatron accelerator. It contains 5,000 gls. of LAr in the CC cryostat, and 3,000 gls. in each of two, a north and south, EC cryostats. These low pressure vessels are filled with detector modules built of stainless steel, copper and depleted uranium. The LAr functions as the ionization medium, and the spatial and temporal of the collection of the charge of the electrons produced signals the passsage of charged particles. The collection of these charges in 4 pi is related to the energy of the particles, and their measurement is called calorimetry. The contained LAr (T=90K) is isolated from the ambient temperatures in specially designed, vacuum and superinsulated, vessels (cryostats) provided with liquid nitrogen, heat of vaporization, cooling.

  14. RADIATION DOSIMETRY OF THE PRESSURE VESSEL INTERNALS OF THE HIGH FLUX BEAM REACTOR.

    SciTech Connect (OSTI)

    HOLDEN,N.E.; RECINIELLO,R.N.; HU,J.P.; RORER,D.C.

    2002-08-18

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, both measurements and calculations of the decay gamma-ray dose rate have been performed for the reactor pressure vessel and vessel internal structures which included the upper and lower thermal shields, the transition plate, and the control rod blades. The measurements were made using Red Perspex{trademark} polymethyl methacrylate high-level film dosimeters, a Radcal ''peanut'' ion chamber, and Eberline's high-range ion chamber. To compare with measured gamma-ray dose rate, the Monte Carlo MCNP code and geometric progressive Microshield code were used to model the gamma transport and dose buildup.

  15. The criteria of fracture in the case of the leak of pressure vessels

    SciTech Connect (OSTI)

    Habil; Ziliukas, A.

    1997-04-01

    In order to forecast the break of the high pressure vessels and the network of pipes in a nuclear reactor, according to the concept of leak before break of pressure vessels, it is necessary to analyze the conditions of project, production, and mounting quality as well as of exploitation. It is also necessary to evaluate the process of break by the help of the fracture criteria. In the Ignalina Nuclear Power Plant of, in Lithuania, the most important objects of investigation are: the highest pressure pipes, made of Japanese steel 19MN5 and having an anticorrosive austenitic: coal inside, the pipes of distribution, which arc made of 08X1810T steel. The steel of the network of pipes has a quality of plasticity: therefore the only criteria of fragile is impossible to apply to. The process of break would be best described by the universal criteria of elastic - plastic fracture. For this purpose the author offers the criterion of the double parameter.

  16. Supplementary neutron-flux calculations for the ORNL Pool Critical Assembly Pressure Vessel Facility

    SciTech Connect (OSTI)

    Maudlin, P.J.; Maerker, R.E.

    1982-01-01

    A three-dimensional Monte Carlo calculation using the MORSE code was performed to validate a procedure previously adopted in the ORNL discrete ordinate analysis of measurements made in the ORNL Pool Critical Assembly Pressure Vessel Facility. The results of these flux calculations agree, within statistical undertainties of about 5%, with those obtained from a discrete ordinate analysis employing the same procedure. This study therefore concludes that the procedure for combining several one- and two-dimensional discrete ordinate calculations into a three-dimensional flux is sufficiently accurate that it does not account for the existing discrepancies observed between calculations and measurements in this facility.

  17. Review of the Palisades pressure vessel accumulated fluence estimate and of the least squares methodology employed

    SciTech Connect (OSTI)

    Griffin, P.J.

    1998-05-01

    This report provides a review of the Palisades submittal to the Nuclear Regulatory Commission requesting endorsement of their accumulated neutron fluence estimates based on a least squares adjustment methodology. This review highlights some minor issues in the applied methodology and provides some recommendations for future work. The overall conclusion is that the Palisades fluence estimation methodology provides a reasonable approach to a {open_quotes}best estimate{close_quotes} of the accumulated pressure vessel neutron fluence and is consistent with the state-of-the-art analysis as detailed in community consensus ASTM standards.

  18. Shape transition of unstrained flattest single-walled carbon nanotubes under pressure

    SciTech Connect (OSTI)

    Mu, Weihua, E-mail: whmu@mit.edu, E-mail: muwh@itp.ac.cn [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, The Chinese Academy of Sciences, P. O. Box 2735 Beijing 100190 (China); Kavli Institute for Theoretical Physics China, The Chinese Academy of Sciences, P. O. Box 2735 Beijing 100190 (China); Cao, Jianshu, E-mail: jianshu@mit.edu [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Singapore-MIT Alliance for Research and Technology (SMART), Singapore 138602 (Singapore); Ou-Yang, Zhong-can [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, The Chinese Academy of Sciences, P. O. Box 2735 Beijing 100190 (China); Kavli Institute for Theoretical Physics China, The Chinese Academy of Sciences, P. O. Box 2735 Beijing 100190 (China); Singapore-MIT Alliance for Research and Technology (SMART), Singapore 138602 (Singapore); Center for Advanced Study, Tsinghua University, Beijing 100084 (China)

    2014-01-28

    Single walled carbon nanotube's (SWCNT's) cross section can be flattened under hydrostatic pressure. One example is the cross section of a single walled carbon nanotube successively deforms from the original round shape to oval shape, then to peanut-like shape. At the transition point of reversible deformation between convex shape and concave shape, the side wall of nanotube is flattest. This flattest tube has many attractive properties. In the present work, an approximate approach is developed to determine the equilibrium shape of this unstrained flattest tube and the curvature distribution of this tube. Our results are in good agreement with recent numerical results, and can be applied to the study of pressure controlled electric properties of single walled carbon nanotubes. The present method can also be used to study other deformed inorganic and organic tube-like structures.

  19. High-R Walls for New Construction Structural Performance: Wind Pressure Testing

    SciTech Connect (OSTI)

    DeRenzis, A.; Kochkin, V.

    2013-01-01

    This technical report is focused primarily on laboratory testing that evaluates wind pressure performance characteristics for wall systems constructed with exterior insulating sheathing. This research and test activity will help to facilitate the ongoing use of non-structural sheathing options and provide a more in-depth understanding of how wall system layers perform in response to high wind perturbations normal to the surface.

  20. High-R Walls for New Construction Structural Performance. Wind Pressure Testing

    SciTech Connect (OSTI)

    DeRenzis, A.; Kochkin, V.

    2013-01-01

    This technical report is focused primarily on laboratory testing that evaluates wind pressure performance characteristics for wall systems constructed with exterior insulating sheathing. This research and test activity will help to facilitate the ongoing use of non-structural sheathing options and provide a more in-depth understanding of how wall system layers perform in response to high wind perturbations normal to the surface.

  1. Irradiation effects in low-alloy reactor pressure vessel steels (Heavy-Section Steel Technology Program Series 4 and 5)

    SciTech Connect (OSTI)

    Berggren, R.G.; McGowan, J.J.; Menke, B.H.; Nanstad, R.K.; Thoms, K.R.

    1984-01-01

    Multiple testing is done at two laboratories of typical nuclear pressure vessel materials (both irradiated and unirradiated) and statistical analyses of the test results. Multiple tests are conducted at each of several test temperatures for each material, standard deviations are determined, and results from the two laboratories are compared. The Fourth Heavy-Section Steel Technology (HSST) Irradiation Series, almost completed, was aimed at elastic-plastic and fully plastic fracture toughness of low-copper weldments (current practice welds). A typical nuclear pressure vessel plate steel was included for statistical purposes. The Fifth HSST Irradiation Series, now in progress, is aimed at determining the shape of the K/sub IR/ curve after significant radiation-induced shift of the transition temperatures. This series includes irradiated test specimens of thicknesses up to 100 mm and weldment compositions typical of early nuclear power reactor pressure vessel welds.

  2. Dynamic pressure and shear stress measurements on the stator wall of whirling annular seals 

    E-Print Network [OSTI]

    Winslow, Robert Bradley

    1994-01-01

    Dynamic pressure and shear stress measurements on the stator wall of whirling annular seals are presented. Two flow conditions (Re=12,000 & 24,000), two seal speeds (Ta=3,300 & 6,600) and three eccentricity ratios (0, 10, & 50% of the clearance...

  3. Experimental measurement of phase averaged wall-pressure distributions for a 25% eccentric whirling annular seal 

    E-Print Network [OSTI]

    Cusano, Domenic

    2006-08-16

    Instantaneous wall-pressure data were recorded for a 25% eccentric whirling annular seal for rotor speeds of 1800RPM and 3600RPM, axial Reynolds numbers of 24000 and 12000, and whirl ratios of 0.1-1.0 following the procedure ...

  4. Assemblies and methods for mitigating effects of reactor pressure vessel expansion

    DOE Patents [OSTI]

    Challberg, R.C.; Gou, P.F.; Chu, C.L.; Oliver, R.P.

    1999-07-27

    Support assemblies for allowing RPV radial expansion while simultaneously limiting horizontal, vertical, and azimuthal movement of the RPV within a nuclear reactor are described. In one embodiment, the support assembly includes a support block and a guide block. The support block includes a first portion and a second portion, and the first portion is rigidly coupled to the RPV adjacent the first portion. The guide block is rigidly coupled to a reactor pressure vessel support structure and includes a channel sized to receive the second portion of the support block. The second portion of the support block is positioned in the guide block channel to movably couple the guide block to the support block. 6 figs.

  5. Assemblies and methods for mitigating effects of reactor pressure vessel expansion

    DOE Patents [OSTI]

    Challberg, Roy C. (Livermore, CA); Gou, Perng-Fei (Saratoga, CA); Chu, Cherk Lam (San Jose, CA); Oliver, Robert P. (Topsham, ME)

    1999-01-01

    Support assemblies for allowing RPV radial expansion while simultaneously limiting horizontal, vertical, and azimuthal movement of the RPV within a nuclear reactor are described. In one embodiment, the support assembly includes a support block and a guide block. The support block includes a first portion and a second portion, and the first portion is rigidly coupled to the RPV adjacent the first portion. The guide block is rigidly coupled to a reactor pressure vessel support structure and includes a channel sized to receive the second portion of the support block. The second portion of the support block is positioned in the guide block channel to movably couple the guide block to the support block.

  6. The effect of an anisotropic pressure of thermal particles on resistive wall mode stability

    SciTech Connect (OSTI)

    Berkery, J. W. Sabbagh, S. A.; Betti, R.; Guazzotto, L.; Manickam, J.

    2014-11-15

    The effect of an anisotropic pressure of thermal particles on resistive wall mode stability in tokamak fusion plasmas is derived through kinetic theory and assessed through calculation with the MISK code [B. Hu et al., Phys. Plasmas 12, 0?57301 (2005)]. The fluid anisotropy is treated as a small perturbation on the plasma equilibrium and modeled with a bi-Maxwellian distribution function. A complete stability treatment without an assumption of high frequency mode rotation leads to anisotropic kinetic terms in the dispersion relation in addition to anisotropy corrections to the fluid terms. With the density and the average pressure kept constant, when thermal particles have a higher temperature perpendicular to the magnetic field than parallel, the fluid pressure-driven ballooning destabilization term is reduced. Additionally, the stabilizing kinetic effects of the trapped thermal ions can be enhanced. Together these two effects can lead to a modest increase in resistive wall mode stability.

  7. Experimental measurement and analysis of wall pressure distribution for a 50% eccentric whirling annular seal 

    E-Print Network [OSTI]

    Suryanarayanan, Arun

    2004-11-15

    ) ____________________________ Kenneth R. Hall (Member) ____________________________ Dennis O? Neal (Head of Department) August 2003 Major Subject: Mechanical Engineering iii ABSTRACT Experimental Measurement and Analysis of Wall Pressure Distribution for a 50% Eccentric Whirling... duration. The time I have spent with him has been more than a learning experience. I wish to thank Dr. David Rhode and Dr. Kenneth Hall for being on my committee. My thanks to Mr. Eddie Denk and his assistants for assisting me in assembling up the test set...

  8. Gas Pressure Effect on Density of Horizontally Aligned Single-Walled Carbon Nanotubes Grown on Crystal Quartz Substrates

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Gas Pressure Effect on Density of Horizontally Aligned Single-Walled Carbon Nanotubes Grown performance FETs. In this study, we examined the effect of gas pressures on the growth process of horizontally grown by alcohol CVD method[5] using ethanol as a carbon source gas at different gas pressures. SWCNTs

  9. Evolution of Nickel-Manganese-Silicon Dominated Phases in Highly Irradiated Reactor Pressure Vessel Steels

    SciTech Connect (OSTI)

    Peter B Wells; Yuan Wu; Tim Milot; G. Robert Odette; Takuya Yamamoto; Brandon Miller; James Cole

    2014-11-01

    Formation of a high density of Ni-Mn-Si nm-scale precipitates in irradiated reactor pressure vessel steels, both with and without Cu, could lead to severe embrittlement. Models long ago predicted that these precipitates, which are not treated in current embrittlement regulations, would emerge only at high fluence. However, the mechanisms and variables that control Ni-Mn- Si precipitate formation, and their detailed characteristics, have not been well understood. High flux irradiations of six steels with systematic variations in Cu and Ni were carried out at ˜ 295±5°C to high and very high neutron fluences of ˜ 1.3x1020 and 1.1x1021 n/cm2. Atom probe tomography (APT) shows that significant mole fractions of these precipitates form in the Cu bearing steels at ˜ 1.3x1020 n/cm2, while they are only beginning to develop in Cu-free steels. However, large mole fractions, far in excess of those found in previous studies, are observed at 1.1x1021 n/cm2 at all Cu levels. The precipitates diffract, and in one case are compositionally and structurally consistent with the Mn6Ni16Si7 G-phase. At the highest fluence, the large precipitate mole fractions primarily depend on the steel Ni content, rather than Cu, and lead to enormous strength increases up to about 700 MPa. The implications of these results to light water reactor life extension are discussed briefly.

  10. Wall pressure measurements of flooding in vertical countercurrent annular air–water flow

    SciTech Connect (OSTI)

    Choutapalli, I., Vierow, K.

    2010-01-01

    An experimental study of flooding in countercurrent air-water annular flow in a large diameter vertical tube using wall pressure measurements is described in this paper. Axial pressure profiles along the length of the test section were measured up to and after flooding using fast response pressure transducers for three representative liquid flow rates representing a wide range of liquid Reynolds numbers (ReL = 4?/?; ? is the liquid mass flow rate per unit perimeter; ? is the dynamic viscosity) from 3341 to 19,048. The results show that flooding in large diameter tubes cannot be initiated near the air outlet and is only initiated near the air inlet. Fourier analysis of the wall pressure measurements shows that up to the point of flooding, there is no dominant wave frequency but rather a band of frequencies encompassing both the low frequency and the broad band that are responsible for flooding. The data indicates that flooding in large diameter vertical tubes may be caused by the constructive superposition of a plurality of waves rather than the action of a single large-amplitude wave.

  11. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect (OSTI)

    J. K. Wright; R. N. Wright

    2008-04-01

    The U.S. Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic, or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development Program is responsible for performing research and development on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. Studies of potential Reactor Pressure Vessel (RPV) steels have been carried out as part of the pre-conceptual design studies. These design studies generally focus on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Three realistic candidate materials have been identified by this process: conventional light water reactor RPV steels A508/533, 2¼Cr-1Mo in the annealed condition, and modified 9Cr 1Mo ferritic martenistic steel. Based on superior strength and higher temperature limits, the modified 9Cr-1Mo steel has been identified by the majority of design engineers as the preferred choice for the RPV. All of the vendors have concluded, however, that with adequate engineered cooling of the vessel, the A508/533 steels are also acceptable.

  12. Radial pressure flange seal

    DOE Patents [OSTI]

    Batzer, Thomas H. (Livermore, CA); Call, Wayne R. (Tracy, CA)

    1989-01-01

    This invention provides an all metal seal for vacuum or pressure vessels or systems. This invention does not use gaskets. The invention uses a flange which fits into a matching groove. Fluid pressure is applied in a chamber in the flange causing at least one of the flange walls to radially press against a side of the groove creating the seal between the flange wall and the groove side.

  13. Radial pressure flange seal

    DOE Patents [OSTI]

    Batzer, T.H.; Call, W.R.

    1989-01-24

    This invention provides an all metal seal for vacuum or pressure vessels or systems. This invention does not use gaskets. The invention uses a flange which fits into a matching groove. Fluid pressure is applied in a chamber in the flange causing at least one of the flange walls to radially press against a side of the groove creating the seal between the flange wall and the groove side. 5 figs.

  14. Effect of dielectric wall temperature on plasma plume in an argon atmospheric pressure discharge

    SciTech Connect (OSTI)

    Song, Jian; Huo, Yuxin; Wang, Youyin; Yu, Daren, E-mail: yudaren@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Tang, Jingfeng; Wei, Liqiu [Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150001 (China)

    2014-10-15

    In this letter, the effect of the dielectric wall temperature on the length and volume of an atmospheric pressure plasma jet (APPJ) is investigated using a single-electrode configuration driven with an AC power supply. To distinguish the APPJ status from the argon flow rate, the three modes, laminar, transition, and turbulent, are separated. When the dielectric wall is heated, the APPJ length and volume are enhanced. Also, the transition regions remarkably expand over a large range of flow rates. The results indicate that different factors contribute to the expansion of the transition region. The increase in the radial and axial velocities is the main cause of the expansion of the transition region to the low-velocity region. The expansion to the high-velocity region is dominantly induced by a change in the viscosity.

  15. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    SciTech Connect (OSTI)

    Kausik, S. S.; Kakati, B.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782 402 (India)] [Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782 402 (India)

    2013-05-15

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10{sup ?4} millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (?pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  16. Evaluation on the Feasibility of Using Ultrasonic Testing of Reactor Pressure Vessel Welds for Assessing Flaw Density/Distribution per 10 CFR 50.61a, Alternate Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock

    SciTech Connect (OSTI)

    Sullivan, Edmund J.; Anderson, Michael T.

    2014-06-10

    This technical letter report provides the status of an assessment undertaken by PNNL at the request of the NRC to verify the capability of periodic ASME-required volumetric examinations of reactor vessels to characterize the density and distribution of flaws of interest for applying §50.61a on a plant-by-plant basis. The PTS rule, described in the Code of Federal Regulations, Title 10, Section 50.61 (§50.61), "Fracture Toughness Requirements for Protection against Pressurized Thermal Shock Events," establishes screening criteria to ensure that the potential for a reactor vessel to fail due to a PTS event is deemed to be acceptably low. Recently, the NRC completed a research program that concluded that the risk of through-wall cracking due to a PTS event is much lower than previously estimated. The NRC subsequently developed and promulgated an alternate PTS rule, §50.61a, that can be implemented by PWR licensees. The §50.61a rule differs from §50.61 in that it requires licensees who choose to follow this alternate method to analyze the results from periodic volumetric examinations required by the ASME Code, Section XI, Rules for Inservice Inspection (ISI) of Nuclear Power Plants.

  17. Rigorous Simulation of Accidental Leaks from High-Pressure Storage Vessels 

    E-Print Network [OSTI]

    Alisha, -

    2014-07-07

    Several major industrial disasters involve accidental releases of hazardous chemicals from ruptured vessels or pipelines as consequence of equipment failures, maintenance errors, operational errors, cracks, corrosion, ruptures, or also by acts...

  18. TECHNICAL BASIS AND APPLICATION OF NEW RULES ON FRACTURE CONTROL OF HIGH PRESSURE HYDROGEN VESSEL IN ASME SECTION VIII, DIVISION 3 CODE

    SciTech Connect (OSTI)

    Rawls, G

    2007-04-30

    As a part of an ongoing activity to develop ASME Code rules for the hydrogen infrastructure, the ASME Boiler and Pressure Vessel Code Committee approved new fracture control rules for Section VIII, Division 3 vessels in 2006. These rules have been incorporated into new Article KD-10 in Division 3. The new rules require determining fatigue crack growth rate and fracture resistance properties of materials in high pressure hydrogen gas. Test methods have been specified to measure these fracture properties, which are required to be used in establishing the vessel fatigue life. An example has been given to demonstrate the application of these new rules.

  19. Prediction and Monitoring Systems of Creep-Fracture Behavior of 9Cr-1Mo Steels for Teactor Pressure Vessels

    SciTech Connect (OSTI)

    Potirniche, Gabriel; Barlow, Fred D.; Charit, Indrajit; Rink, Karl

    2013-11-26

    A recent workshop on next-generation nuclear plant (NGNP) topics underscored the need for research studies on the creep fracture behavior of two materials under consideration for reactor pressure vessel (RPV) applications: 9Cr-1Mo and SA-5XX steels. This research project will provide a fundamental understanding of creep fracture behavior of modified 9Cr-1Mo steel welds for through modeling and experimentation and will recommend a design for an RPV structural health monitoring system. Following are the specific objectives of this research project: • Characterize metallurgical degradation in welded modified 9Cr-1Mo steel resulting from aging processes and creep service conditions. • Perform creep tests and characterize the mechanisms of creep fracture process. • Quantify how the microstructure degradation controls the creep strength of welded steel specimens. • Perform finite element (FE) simulations using polycrystal plasticity to understand how grain texture affects the creep fracture properties of welds. • Develop a microstructure-based creep fracture model to estimate RPVs service life . • Manufacture small, prototypic, cylindrical pressure vessels, subject them to degradation by aging, and measure their leak rates. • Simulate damage evolution in creep specimens by FE analyses. • Develop a model that correlates gas leak rates from welded pressure vessels with the amount of microstructural damage. • Perform large-scale FE simulations with a realistic microstructure to evaluate RPV performance at elevated temperatures and creep strength. • Develop a fracture model for the structural integrity of RPVs subjected to creep loads. • Develop a plan for a non-destructive structural health monitoring technique and damage detection device for RPVs.

  20. Creep behavior of a nuclear pressure vessel under severe accident conditions

    SciTech Connect (OSTI)

    Beghini, M.; Bertini, L.; Vitale, E.

    1996-12-31

    The results of a study on the creep behavior of the vessel lower head under severe accident conditions are reported. An experimental program aimed at the evaluation of the creep properties of A533grB steel at high temperature (800--1,100 C) and under biaxial loading is summarized and the main results reported. A Finite Element simulation of the lower head under severe accident conditions allows to show the effect of the main parameters affecting the time to rupture.

  1. Effect of silicon on ultra-low temperature toughness of Nb–Ti microalloyed cryogenic pressure vessel steels

    SciTech Connect (OSTI)

    Qiu, J.A. [Hubei Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan 430081 (China); Wu, K.M., E-mail: wukaiming2000@yahoo.com [Hubei Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan 430081 (China); Li, J.H. [Hubei Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan 430081 (China); Research and Development Center of WISCO, Wuhan 430080 (China); Hodgson, P.D. [Hubei Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan 430081 (China); Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220 (Australia); Hou, T.P. [Hubei Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan 430081 (China); Ding, Q.F. [Research and Development Center of WISCO, Wuhan 430080 (China)

    2013-09-15

    The effect of Si on the ultra-low temperature toughness of Nb–Ti microalloyed cryogenic pressure vessel steels was investigated by electron back-scattered diffraction and transmission electron microscope with energy dispersive spectroscopy. Equiaxed ferrite and bainite were obtained in the tempered steels with small Si additions. Nanosized Nb–Ti carbides (< 10 nm) were formed in the steel containing 0.05% Si, whereas much coarser carbides (> 30 nm) were found in the steel containing 0.47% Si. The ultra-low temperature toughness of the Nb–Ti microalloyed cryogenic pressure vessel steel was remarkably enhanced by the reduction in the Si content, which was attributed to the pre-existing iron carbide formation before the precipitation of nanosized Nb–Ti carbides during tempering. - Highlights: • Nanosized Nb-Ti carbides formed in the tempered steel with smaller Si addition. • Coarser Nb-Ti carbides formed in the tempered steel with more Si addition. • Pre-existing cememtites provide nucleation sites for Nb-Ti carbide precipitation. • Ultra-low temperature toughness was remarkably enhanced by Si content reduction.

  2. Nuclear reactor construction with bottom supported reactor vessel

    DOE Patents [OSTI]

    Sharbaugh, John E. (Bullskin Township, Fayette County, PA)

    1987-01-01

    An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core within the pool. The reactor vessel has an open top end, a closed flat bottom end wall and a continuous cylindrical closed side wall interconnecting the top end and bottom end wall. The reactor also has a generally cylindrical concrete containment structure surrounding the reactor vessel and being formed by a cylindrical side wall spaced outwardly from the reactor vessel side wall and a flat base mat spaced below the reactor vessel bottom end wall. A central support pedestal is anchored to the containment structure base mat and extends upwardly therefrom to the reactor vessel and upwardly therefrom to the reactor core so as to support the bottom end wall of the reactor vessel and the lower end of the reactor core in spaced apart relationship above the containment structure base mat. Also, an annular reinforced support structure is disposed in the reactor vessel on the bottom end wall thereof and extends about the lower end of the core so as to support the periphery thereof. In addition, an annular support ring having a plurality of inward radially extending linear members is disposed between the containment structure base mat and the bottom end of the reactor vessel wall and is connected to and supports the reactor vessel at its bottom end on the containment structure base mat so as to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event. The reactor construction also includes a bed of insulating material in sand-like granular form, preferably being high density magnesium oxide particles, disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall on the containment structure base mat so as to insulate the reactor vessel bottom end wall from the containment structure base mat and allow the reactor vessel bottom end wall to freely expand as it heats up while providing continuous support thereof. Further, a deck is supported upon the side wall of the containment structure above the top open end of the reactor vessel, and a plurality of serially connected extendible and retractable annular bellows extend between the deck and the top open end of the reactor vessel and flexibly and sealably interconnect the reactor vessel at its top end to the deck. An annular guide ring is disposed on the containment structure and extends between its side wall and the top open end of the reactor vessel for providing lateral support of the reactor vessel top open end by limiting imposition of lateral loads on the annular bellows by the occurrence of a lateral seismic event.

  3. Potential high fluence response of pressure vessel internals constructed from austenitic stainless steels

    SciTech Connect (OSTI)

    Garner, F.A.; Greenwood, L.R. [Pacific Northwest Lab., Richland, WA (United States); Harrod, D.L. [Westinghouse Electric Corp., Pensacola, FL (United States)

    1993-08-01

    Many of the in-core components in pressurized water reactors are constructed of austenitic stainless steels. The potential behavior of these components can be predicted using data on similar steels irradiated at much higher displacement rates in liquid-metal reactors or water-cooled mixed-spectrum reactors. Consideration of the differences between the pressurized water environment and that of the other reactors leads to the conclusion that significant amounts of void swelling, irradiation creep, and embrittlement will occur in some components, and that the level of damage per atomic displacement may be larger in the pressurized water environment.

  4. Safety Evaluation Report: Development of Improved Composite Pressure Vessels for Hydrogen Storage, Lincoln Composites, Lincoln, NE, May 25, 2010

    SciTech Connect (OSTI)

    Fort, III, William C.; Kallman, Richard A.; Maes, Miguel; Skolnik, Edward G.; Weiner, Steven C.

    2010-12-22

    Lincoln Composites operates a facility for designing, testing, and manufacturing composite pressure vessels. Lincoln Composites also has a U.S. Department of Energy (DOE)-funded project to develop composite tanks for high-pressure hydrogen storage. The initial stage of this project involves testing the permeation of high-pressure hydrogen through polymer liners. The company recently moved and is constructing a dedicated research/testing laboratory at their new location. In the meantime, permeation tests are being performed in a corner of a large manufacturing facility. The safety review team visited the Lincoln Composites site on May 25, 2010. The project team presented an overview of the company and project and took the safety review team on a tour of the facility. The safety review team saw the entire process of winding a carbon fiber/resin tank on a liner, installing the boss and valves, and curing and painting the tank. The review team also saw the new laboratory that is being built for the DOE project and the temporary arrangement for the hydrogen permeation tests.

  5. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect (OSTI)

    J. K. Wright; R. N. Wright

    2010-07-01

    The U.S. Department of Energy (DOE) has selected the High-Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production, with an outlet gas temperature in the range of 750°C, and a design service life of 60 years. The reactor design will be a graphite-moderated, helium-cooled, prismatic, or pebble bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. This technology development plan details the additional research and development (R&D) required to design and license the NGNP RPV, assuming that A 508/A 533 is the material of construction. The majority of additional information that is required is related to long-term aging behavior at NGNP vessel temperatures, which are somewhat above those commonly encountered in the existing database from LWR experience. Additional data are also required for the anticipated NGNP environment. An assessment of required R&D for a Grade 91 vessel has been retained from the first revision of the R&D plan in Appendix B in somewhat less detail. Considerably more development is required for this steel compared to A 508/A 533 including additional irradiation testing for expected NGNP operating temperatures, high-temperature mechanical properties, and extensive studies of long-term microstructural stability.

  6. Experimental results of direct containment heating by high-pressure melt ejection into the Surtsey vessel: The DCH-3 and DCH-4 tests

    SciTech Connect (OSTI)

    Allen, M.D.; Pilch, M.; Brockmann, J.E.; Tarbell, W.W. (Sandia National Labs., Albuquerque, NM (United States)); Nichols, R.T. (Ktech Corp., Albuquerque, NM (United States)); Sweet, D.W. (AEA Technology, Winfrith (United Kingdom))

    1991-08-01

    Two experiments, DCH-3 and DCH-4, were performed at the Surtsey test facility to investigate phenomena associated with a high-pressure melt ejection (HPME) reactor accident sequence resulting in direct containment heating (DCH). These experiments were performed using the same experimental apparatus with identical initial conditions, except that the Surtsey test vessel contained air in DCH-3 and argon in DCH-4. Inerting the vessel with argon eliminated chemical reactions between metallic debris and oxygen. Thus, a comparison of the pressure response in DCH-3 and DCH-4 gave an indication of the DCH contribution due to metal/oxygen reactions. 44 refs., 110 figs., 43 tabs.

  7. Effects of Pore Distributions on Ductility of Thin-Walled High Pressure Die-Cast Magnesium

    SciTech Connect (OSTI)

    Choi, Kyoo Sil; Li, Dongsheng; Sun, Xin; Li, Mei; Allison, John

    2013-06-01

    In this paper, a microstructure-based three-dimensional (3D) finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die-cast (HPDC) Magnesium alloys on their ductility. For this purpose, the cross-sections of AM60 casting samples are first examined using optical microscope and X-ray tomography to obtain the general information on the pore distribution features. The experimentally observed pore distribution features are then used to generate a series of synthetic microstructure-based 3D finite element models with different pore volume fractions and pore distribution features. Shear and ductile damage models are adopted in the finite element analyses to induce the fracture by element removal, leading to the prediction of ductility. The results in this study show that the ductility monotonically decreases as the pore volume fraction increases and that the effect of ‘skin region’ on the ductility is noticeable under the condition of same local pore volume fraction in the center region of the sample and its existence can be beneficial for the improvement of ductility. The further synthetic microstructure-based 3D finite element analyses are planned to investigate the effects of pore size and pore size distribution.

  8. Behavior of core debris ejected from a pressurized vessel into scaled reactor cavities

    SciTech Connect (OSTI)

    Tarbell, W.W.; Pilch, M.; Brockmann, J.E.

    1984-01-01

    Results from four recent 1:10 scale experiments are presented along with analyses of the possible consequences for plant geometries. The tests cover a range in initial system pressure from 4 to 12 MPa, with either dry or water-filled cavities. Nearly all of the core debris is dispersed from the cavity with less than five percent (5%) of the original mass found adhered to the exposed cavity surfaces. Those tests involving water in the cavity show the water being expelled as a slug ahead of the dispersed melt. Models for the interaction of the ejected core debris with the containment atmosphere show that both thermal and chemical energy is liberated from the debris. The calculated pressurization from direct heating of the containment atmosphere can threaten even the most robust containments. Models and experiments are currently being devised to study the possible mitigating effects of the above-cavity structures.

  9. In-service Inspection Ultrasonic Testing of Reactor Pressure Vessel Welds for Assessing Flaw Density and Size Distribution per 10 CFR 50.61a, Alternate Fracture Toughness Requirements

    SciTech Connect (OSTI)

    Sullivan, Edmund J.; Anderson, Michael T.; Norris, Wallace

    2012-09-17

    Pressurized thermal shock (PTS) events are system transients in a pressurized water reactor (PWR) in which there is a rapid operating temperature cool-down that results in cold vessel temperatures with or without repressurization of the vessel. The rapid cooling of the inside surface of the reactor pressure vessel (RPV) causes thermal stresses that can combine with stresses caused by high pressure. The aggregate effect of these stresses is an increase in the potential for fracture if a pre-existing flaw is present in a material susceptible to brittle failure. The ferritic, low alloy steel of the reactor vessel beltline adjacent to the core, where neutron radiation gradually embrittles the material over the lifetime of the plant, can be susceptible to brittle fracture. The PTS rule, described in the Code of Federal Regulations, Title 10, Section 50.61 (§50.61), “Fracture Toughness Requirements for Protection against Pressurized Thermal Shock Events,” adopted on July 23, 1985, establishes screening criteria to ensure that the potential for a reactor vessel to fail due to a PTS event is deemed to be acceptably low. The U.S. Nuclear Regulatory Commission (NRC) completed a research program that concluded that the risk of through-wall cracking due to a PTS event is much lower than previously estimated. The NRC subsequently developed a rule, §50.61a, published on January 4, 2010, entitled “Alternate Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events” (75 FR 13). Use of the new rule by licensees is optional. The §50.61a rule differs from §50.61 in that it requires licensees who choose to follow this alternate method to analyze the results from periodic volumetric examinations required by the ASME Code, Section XI, Rules for Inservice Inspection (ISI) of Nuclear Power Plants. These analyses are intended to determine if the actual flaw density and size distribution in the licensee’s reactor vessel beltline welds are bounded by the flaw density and size distribution values used in the PTS technical basis. Under a contract with the NRC, Pacific Northwest National Laboratory (PNNL) has been working on a program to assess the ability of current inservice inspection (ISI)-ultrasonic testing (UT) techniques, as qualified through ASME Code, Appendix VIII, Supplements 4 and 6, to detect small fabrication or inservice-induced flaws located in RPV welds and adjacent base materials. As part of this effort, the investigators have pursued an evaluation, based on the available information, of the capability of UT to provide flaw density/distribution inputs for making RPV weld assessments in accordance with §50.61a. This paper presents the results of an evaluation of data from the 1993 Browns Ferry Nuclear Plant, Unit 3, Spirit of Appendix VIII reactor vessel examination, a comparison of the flaw density/distribution from this data with the distribution in §50.61a, possible reasons for differences, and plans and recommendations for further work in this area.

  10. Pressure and concentration dependences of the autoignition temperature for normal butane + air mixtures in a closed vessel

    SciTech Connect (OSTI)

    Chandraratna, M.R.; Griffiths, J.F. . School of Chemistry)

    1994-12-01

    The condition at which autoignition occurs in lean premixed n-butane + air mixtures over the composition range 0.2%--2.5% n-butane by volume (0.06 < [phi] < 0.66) were investigated experimentally. Total reactant pressure from 0.1 to 0.6 MPa (1--6 atm) were studied in a spherical, stainless-steel, closed vessel (0.5 dm[sup 3]). There is a critical transition from nonignition to ignition, at pressures above 0.1 MPa, as the mixture is enriched in the vicinity of 1% fuel vapor by volume. There is also a region of multiplicity, which exhibits three critical temperatures at a given composition. Chemical analyses show that partially oxygenated components,including many o-heterocyclic compounds, are important products of the lean combustion of butane at temperatures up to 800 K. The critical conditions for autoignition are discussed with regard to industrial ignition hazards, especially in the context of the autoignition temperature of alkanes given by ASTM or BS tests. The differences between the behavior of n-butane and the higher n-alkanes are explained. The experimental results are also used as a basis for testing a reduced kinetic model to represent the oxidation and autoignition of n-butane or other alkanes.

  11. Seismic Earth Pressures on Retaining Structures and Basement Walls in Cohesionless Soils

    E-Print Network [OSTI]

    Geraili Mikola, Roozbeh

    2012-01-01

    ? H) Normalized Dynamic Earth Pressure ( ? AE / ? H) Time(H=1 Time(sec) Figure A.64. Total earth pressure time series38 ii 3.7.3. Earth Pressure

  12. Enhancements of a Combustion Vessel to Determine Laminar Flame Speeds of Hydrocarbon Blends with Helium Dilution at Elevated Temperatures and Pressures 

    E-Print Network [OSTI]

    Plichta, Drew

    2013-04-03

    speeds were those of methane, ethane, and propane fuel blends, as well as pure methane, at an elevated pressure of 5 atm and temperatures of 298 and 473 K, using a constant-volume, cylindrical combustion vessel. The current Aramco mechanism developed...

  13. Seismic Earth Pressures on Retaining Structures and Basement Walls in Cohesionless Soils

    E-Print Network [OSTI]

    Geraili Mikola, Roozbeh

    2012-01-01

    50 4.4. Seismic Behavior of Retaining Wall-BackfillWhitman, R. V. (1999). “Seismic analysis and design of rigidBalkema, Rotterdam. Building Seismic Safety Council. (2010).

  14. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    Smith, Cyrus M [ORNL; Nanstad, Randy K [ORNL; Clayton, Dwight A [ORNL; Matlack, Katie [Georgia Institute of Technology; Ramuhalli, Pradeep [Pacific Northwest National Laboratory (PNNL); Light, Glenn [Southwest Research Institute, San Antonio

    2012-09-01

    The Department of Energy s (DOE) Light Water Reactor Sustainability (LWRS) Program is a five year effort which works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operations of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging Non-Destructive Evaluation (NDE) methods which support these objectives. DOE funded Research and Development (R&D) on emerging NDE techniques to support commercial nuclear reactor sustainability is expected to begin next year. This summer, the MAaD Pathway invited subject matter experts to participate in a series of workshops which developed the basis for the research plan of these DOE R&D NDE activities. This document presents the results of one of these workshops which are the DOE LWRS NDE R&D Roadmap for Reactor Pressure Vessels (RPV). These workshops made a substantial effort to coordinate the DOE NDE R&D with that already underway or planned by the Electric Power Research Institute (EPRI) and the Nuclear Regulatory Commission (NRC) through their representation at these workshops.

  15. LOW ALLOY STEELS FOR THICK WALL PRESSURE VESSELS Yearly Report for Period Oct. 1, 1976 to Sept. 30, 1977.

    E-Print Network [OSTI]

    Horn, R.M.

    2011-01-01

    the design properties needed f o r coal g a s i f i c a t imaterial properties that w i l l meet coal g a s i f i e r

  16. Specifications for the development of BUGLE-93: An ENDF/B-VI multigroup cross section library for LWR shielding and pressure vessel dosimetry

    SciTech Connect (OSTI)

    White, J.E.; Wright, R.Q.; Roussin, R.W.; Ingersoll, D.T.

    1992-11-01

    This report discusses specifications which have been developed for a new multigroup cross section library based on ENDF/B-VI data for light water reactor shielding and reactor pressure vessel dosimetry applications. The resulting broad-group library and an intermediate fine-group library are defined by the specifications provided in this report. Processing ENDF/B-VI into multigroup format for use in radiation transport codes will provide radiation shielding analysts with the most currently available nuclear data. it is expected that the general nature of the specifications will be useful in other applications such as reactor physics.

  17. Fundamental Study on the Effects of Irreversible Electroporation Pulses on Blood Vessels with Application to Medical Treatment

    E-Print Network [OSTI]

    Maor, Elad

    2009-01-01

    Remodeling of Blood Vessels,” Biomechanics: MechanicalDifferences in compensatory vessel enlargement, not intimalLuminal Narrowing After Deep Vessel Wall Injury : Insights

  18. Evidence for neutron irradiation-induced metallic precipitates in model alloys and pressure-vessel weld steel

    E-Print Network [OSTI]

    Motta, Arthur T.

    -vessel weld steel Stephen E. Cumblidge a , Arthur T. Motta a,*, Gary L. Catchen a , Gerhard Brauer b , Juurgen-irradiated model alloys (1 · 1023 n/m2 , E > 0:5 MeV) and 73W-weld steel (to 1.8 · 1023 n/m2 , E > 1 Me examined in the as-irradiated state and after post-irradiation isochronal anneals to temperature up to 600

  19. Comparison of MELCOR modeling techniques and effects of vessel water injection on a low-pressure, short-term, station blackout at the Grand Gulf Nuclear Station

    SciTech Connect (OSTI)

    Carbajo, J.J.

    1995-06-01

    A fully qualified, best-estimate MELCOR deck has been prepared for the Grand Gulf Nuclear Station and has been run using MELCOR 1.8.3 (1.8 PN) for a low-pressure, short-term, station blackout severe accident. The same severe accident sequence has been run with the same MELCOR version for the same plant using the deck prepared during the NUREG-1150 study. A third run was also completed with the best-estimate deck but without the Lower Plenum Debris Bed (BH) Package to model the lower plenum. The results from the three runs have been compared, and substantial differences have been found. The timing of important events is shorter, and the calculated source terms are in most cases larger for the NUREG-1150 deck results. However, some of the source terms calculated by the NUREG-1150 deck are not conservative when compared to the best-estimate deck results. These results identified some deficiencies in the NUREG-1150 model of the Grand Gulf Nuclear Station. Injection recovery sequences have also been simulated by injecting water into the vessel after core relocation started. This marks the first use of the new BH Package of MELCOR to investigate the effects of water addition to a lower plenum debris bed. The calculated results indicate that vessel failure can be prevented by injecting water at a sufficiently early stage. No pressure spikes in the vessel were predicted during the water injection. The MELCOR code has proven to be a useful tool for severe accident management strategies.

  20. Review of industry efforts to manage pressurized water reactor feedwater nozzle, piping, and feedring cracking and wall thinning

    SciTech Connect (OSTI)

    Shah, V.N.; Ware, A.G.; Porter, A.M.

    1997-03-01

    This report presents a review of nuclear industry efforts to manage thermal fatigue, flow-accelerated corrosion, and water hammer damage to pressurized water reactor (PWR) feedwater nozzles, piping, and feedrings. The review includes an evaluation of design modifications, operating procedure changes, augmented inspection and monitoring programs, and mitigation, repair and replacement activities. Four actions were taken: (a) review of field experience to identify trends of operating events, (b) review of technical literature, (c) visits to PWR plants and a PWR vendor, and (d) solicitation of information from 8 other countries. Assessment of field experience is that licensees have apparently taken sufficient action to minimize feedwater nozzle cracking caused by thermal fatigue and wall thinning of J-tubes and feedwater piping. Specific industry actions to minimize the wall-thinning in feedrings and thermal sleeves were not found, but visual inspection and necessary repairs are being performed. Assessment of field experience indicates that licensees have taken sufficient action to minimize steam generator water hammer in both top-feed and preheat steam generators. Industry efforts to minimize multiple check valve failures that have allowed backflow of steam from a steam generator and have played a major role in several steam generator water hammer events were not evaluated. A major finding of this review is that analysis, inspection, monitoring, mitigation, and replacement techniques have been developed for managing thermal fatigue and flow-accelerated corrosion damage to feedwater nozzles, piping, and feedrings. Adequate training and appropriate applications of these techniques would ensure effective management of this damage.

  1. Influence of long-term thermal aging on the microstructural evolution of nuclear reactor pressure vessel materials: An atom probe study

    SciTech Connect (OSTI)

    Pareige, P.; Russell, K.F.; Stoller, R.E.; Miller, M.K. [Oak Ridge National Lab., TN (United States)

    1998-03-01

    Atom probe field ion microscopy (APFIM) investigations of the microstructure of unaged (as-fabricated) and long-term thermally aged ({approximately} 100,000 h at 280 C) surveillance materials from commercial reactor pressure vessel steels were performed. This combination of materials and conditions permitted the investigation of potential thermal-aging effects. This microstructural study focused on the quantification of the compositions of the matrix and carbides. The APFIM results indicate that there was no significant microstructural evolution after a long-term thermal exposure in weld, plate, or forging materials. The matrix depletion of copper that was observed in weld materials was consistent with the copper concentration in the matrix after the stress-relief heat treatment. The compositions of cementite carbides aged for 100,000 h were compared with the Thermocalc{trademark} prediction. The APFIM comparisons of materials under these conditions are consistent with the measured change in mechanical properties such as the Charpy transition temperature.

  2. DESIGN OF A TOKAMAK FUSION REACTOR FIRST WALL ARMOR AGAINST NEUTRAL BEAM IMPINGEMENT

    E-Print Network [OSTI]

    Myers, Richard Allen

    2011-01-01

    exceed that of fusion power reactors for wall loadings up toplasma. The vessel wall temperatures in power reactors isfor· the first wall of fusion power reactors. However, for

  3. Predicting the Influence of Pore Characteristics on Ductility of Thin-Walled High Pressure Die Casting Magnesium

    SciTech Connect (OSTI)

    Sun, Xin; Choi, Kyoo Sil; Li, Dongsheng

    2013-06-10

    In this paper, a two-dimensional microstructure-based finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die casting Mg materials on their ductility. For this purpose, the cross-sections of AM50 and AM60 casting samples are first examined using optical microscope to obtain the overall information on the pore characteristics. The experimentally quantified pore characteristics are then used to generate a series of synthetic microstructures with different pore sizes, pore volume fractions and pore size distributions. Pores are explicitly represented in the synthetic microstructures and meshed out for the subsequent finite element analysis. In the finite element analysis, an intrinsic critical strain value is used for the Mg matrix material, beyond which work-hardening is no longer permissible. With no artificial failure criterion prescribed, ductility levels are predicted for the various microstructures in the form of strain localization. Mesh size effect study is also conducted, from which a mesh size dependent critical strain curve is determined. A concept of scalability of pore size effects is then presented and examined with the use of the mesh size dependent critical strain curve. The results in this study show that, for the regions with lower pore size and lower volume fraction, the ductility generally decreases as the pore size and pore volume fraction increase whereas, for the regions with larger pore size and larger pore volume fraction, other factors such as the mean distance between the pores begin to have some substantial influence on the ductility. The results also indicate that the pore size effects may be scalable for the models with good-representative pore shape and distribution with the use of the mesh size dependent critical strain curve.

  4. Leukocyte adhesion to the vascular endothelium (the layer of cells that lines the blood vessel walls) plays a central role in

    E-Print Network [OSTI]

    Tees, David F.J.

    Leukocyte adhesion to the vascular endothelium (the layer of cells that lines the blood vessel a cascade of adhesive events commonly referred to as initial tethering, rolling, firm adhesion, the other steps of the adhesion cascade involve molecular interactions between the leukocyte

  5. Effects of service exposure of 2{1/4}Cr pressure vessel steel in a heavy oil hydrocracker

    SciTech Connect (OSTI)

    Doucet, A.B. [Texaco Research and Development, Port Arthur, TX (United States)

    1995-12-31

    Test blocks of 2{1/4} Cr steel, removed after 5 and 9 years exposure to the process environment within a heavy oil hydrocracking reactor, were investigated for signs of aging in terms of degradation of mechanical properties, increased susceptibility to temper embrittlement and hydrogen attack. The test blocks were of thick section (21.6 cm) and were weld overlayed on all sides with 316 stainless steel. In addition, each test block contained a through thickness weld. The test blocks were placed in the reactor before start-up to provide long term exposure data for the hot wall exchangers associated with this reactor. Mechanical testing of base and weld metal revealed no signs of degradation of tensile properties as a result of service exposure. Impact testing did reveal slight levels of embrittlement, however, the impact properties are still well in excess of the specified minimum levels. Metallographic examination did uncover significant debonding of the overlay/base metal interface and shallow hydrogen induced cracking initiating at the interface and propagating into the base metal. Both the debonding and cracking are attributed to the test block configuration and are not related to high temperature hydrogen attack.

  6. Particle Imaging Velocimetry Technique Development for Laboratory Measurement of Fracture Flow Inside a Pressure Vessel Using Neutron Imaging

    SciTech Connect (OSTI)

    Polsky, Yarom; Bingham, Philip R; Bilheux, Hassina Z; Carmichael, Justin R

    2015-01-01

    This paper will describe recent progress made in developing neutron imaging based particle imaging velocimetry techniques for visualizing and quantifying flow structure through a high pressure flow cell with high temperature capability (up to 350 degrees C). This experimental capability has great potential for improving the understanding of flow through fractured systems in applications such as enhanced geothermal systems (EGS). For example, flow structure measurement can be used to develop and validate single phase flow models used for simulation, experimentally identify critical transition regions and their dependence on fracture features such as surface roughness, and study multiphase fluid behavior within fractured systems. The developed method involves the controlled injection of a high contrast fluid into a water flow stream to produce droplets that can be tracked using neutron radiography. A description of the experimental setup will be provided along with an overview of the algorithms used to automatically track droplets and relate them to the velocity gradient in the flow stream. Experimental results will be reported along with volume of fluids based simulation techniques used to model observed flow.

  7. Field data on testing of natural gas vehicle (NGV) containers using proposed ASTM standard test method for examination of gas-filled filament-wound pressure vessels using acoustic emission (ASTM-E070403-95/1)

    SciTech Connect (OSTI)

    Fultineer, R.D. Jr.; Mitchell, J.R.

    1999-07-01

    There are many composite wrapped pressure vessels in service. These containers are most widely used for gas storage in natural gas vehicles (NGV). A standard has been developed for the testing of these vessels by the subcommittee ASTM E07.04.03 Acoustic Emission (AE) applications. The AE test method is supported by both field test data and laboratory destructive testing. The test method describes a global volumetric testing technique which is offered as an alternative to the current practice of visual inspection.

  8. Alzheimer disease macrophages shuttle amyloid-beta from neurons to vessels, contributing to amyloid angiopathy

    E-Print Network [OSTI]

    2009-01-01

    myocytes of leptomeningeal vessels. Acta Neuropathol 87:233–amyloid in the cortical vessel wall in Alzheimer’s disease.beta from neurons to vessels, contributing to amyloid

  9. Development of automated welding process for field fabrication of thick walled pressure vessels. Technical progress report, second quarter, FY 1980, ending March 28, 1980

    SciTech Connect (OSTI)

    Schneider, U.A.

    1980-01-01

    Progress on a metallurgical contract is reported: (1) specifications of 2 1/4 chromium-1 molybdenum low alloy steel plate for a coal gasification project; (2) methods of welding and analyses of helium-argon mixtures for welding; and (3) tensile properties of welded joints. (LTN)

  10. Peristaltic Pumping of Blood Through Small Vessels of Varying Cross-section

    E-Print Network [OSTI]

    J. C. Misra; S. Maiti

    2012-01-30

    The paper is devoted to a study of the peristaltic motion of blood in the micro-circulatory system. The vessel is considered to be of varying cross-section. The progressive peristaltic waves are taken to be of sinusoidal nature. Blood is considered to be a Herschel-Bulkley fluid. Of particular concern here is to investigate the effects of amplitude ratio, mean pressure gradient, yield stress and the power law index on the velocity distribution, streamline pattern and wall shear stress. On the basis of the derived analytical expression, extensive numerical calculations have been made. The study reveals that velocity of blood and wall shear stress are appreciably affected due to the non-uniform geometry of blood vessels. They are also highly sensitive to the magnitude of the amplitude ratio and the value of the fluid index.

  11. Ultrasonic Digital Communication System for a Steel Wall Multipath Channel: Methods and Results

    SciTech Connect (OSTI)

    TL Murphy

    2006-02-16

    As of the development of this thesis, no commercially available products have been identified for the digital communication of instrumented data across a thick ({approx} 6 n.) steel wall using ultrasound. The specific goal of the current research is to investigate the application of methods for digital communication of instrumented data (i.e., temperature, voltage, etc.) across the wall of a steel pressure vessel. The acoustic transmission of data using ultrasonic transducers prevents the need to breach the wall of such a pressure vessel which could ultimately affect its safety or lifespan, or void the homogeneity of an experiment under test. Actual digital communication paradigms are introduced and implemented for the successful dissemination of data across such a wall utilizing solely an acoustic ultrasonic link. The first, dubbed the ''single-hop'' configuration, can communicate bursts of digital data one-way across the wall using the Differential Binary Phase-Shift Keying (DBPSK) modulation technique as fast as 500 bps. The second, dubbed the ''double-hop'' configuration, transmits a carrier into the vessel, modulates it, and retransmits it externally. Using a pulsed carrier with Pulse Amplitude Modulation (PAM), this technique can communicate digital data as fast as 500 bps. Using a CW carrier, Least Mean-Squared (LMS) adaptive interference suppression, and DBPSK, this method can communicate data as fast as 5 kbps. A third technique, dubbed the ''reflected-power'' configuration, communicates digital data by modulating a pulsed carrier by varying the acoustic impedance at the internal transducer-wall interface. The paradigms of the latter two configurations are believed to be unique. All modulation methods are based on the premise that the wall cannot be breached in any way and can therefore be viably implemented with power delivered wirelessly through the acoustic channel using ultrasound. Methods, results, and considerations for future research are discussed herein.

  12. Pressure surge attenuator

    DOE Patents [OSTI]

    Christie, Alan M. (Swissvale, PA); Snyder, Kurt I. (Murrysville, PA)

    1985-01-01

    A pressure surge attenuation system for pipes having a fluted region opposite crushable metal foam. As adapted for nuclear reactor vessels and heads, crushable metal foam is disposed to attenuate pressure surges.

  13. Neutron Assay System for Confinement Vessel Disposition

    SciTech Connect (OSTI)

    Frame, Katherine C. [Los Alamos National Laboratory; Bourne, Mark M. [Los Alamos National Laboratory; Crooks, William J. [Los Alamos National Laboratory; Evans, Louise [Los Alamos National Laboratory; Mayo, Douglas R. [Los Alamos National Laboratory; Miko, David K. [Los Alamos National Laboratory; Salazar, William R. [Los Alamos National Laboratory; Stange, Sy [Los Alamos National Laboratory; Valdez, Jose I. [Los Alamos National Laboratory; Vigil, Georgiana M. [Los Alamos National Laboratory

    2012-07-13

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1-inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the CVs. The Confinement Vessel Assay System (CVAS) was developed to measure the amount of special nuclear material (SNM) in CVs before and after cleanout. Prior to cleanout, the system will be used to perform a verification measurement of each vessel. After cleanout, the system will be used to perform safeguards-quality assays of {le}100-g {sup 239}Pu equivalent in a vessel for safeguards termination. The CVAS has been tested and calibrated in preparation for verification and safeguards measurements.

  14. Ion transport membrane module and vessel system

    DOE Patents [OSTI]

    Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

    2008-02-26

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  15. Ion transport membrane module and vessel system

    DOE Patents [OSTI]

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2007-02-20

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  16. Ion transport membrane module and vessel system

    DOE Patents [OSTI]

    Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); Van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

    2012-02-14

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  17. Neutrino Factory Mercury Vessel

    E-Print Network [OSTI]

    McDonald, Kirk

    Neutrino Factory Mercury Vessel: Initial Cooling Calculations V. Graves Target Studies Nov 15, 2012 vessel assumed to be cooled with Helium ­ Shielding vessel filled with tungsten beads ­ Mercury vessel;7 Managed by UT-Battelle for the U.S. Department of Energy Cooling Calculations 15 Nov 2012 Mercury Vessel

  18. Nuclear reactor vessel fuel thermal insulating barrier

    DOE Patents [OSTI]

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  19. Pressure suppression containment system

    DOE Patents [OSTI]

    Gluntz, Douglas M. (San Jose, CA); Townsend, Harold E. (San Jose, CA)

    1994-03-15

    A pressure suppression containment system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The wetwell pool includes a plenum for receiving the non-condensable gas carried with steam from the drywell following a loss-of coolant-accident (LOCA). The wetwell plenum is vented to a plenum above the GDCS pool following the LOCA for suppressing pressure rise within the containment vessel. A method of operation includes channeling steam released into the drywell following the LOCA into the wetwell pool for cooling along with the non-condensable gas carried therewith. The GDCS pool is then drained by gravity, and the wetwell plenum is vented into the GDCS plenum for channeling the non-condensable gas thereto.

  20. Pressure suppression containment system

    DOE Patents [OSTI]

    Gluntz, D.M.; Townsend, H.E.

    1994-03-15

    A pressure suppression containment system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The wetwell pool includes a plenum for receiving the non-condensable gas carried with steam from the drywell following a loss-of-coolant-accident (LOCA). The wetwell plenum is vented to a plenum above the GDCS pool following the LOCA for suppressing pressure rise within the containment vessel. A method of operation includes channeling steam released into the drywell following the LOCA into the wetwell pool for cooling along with the non-condensable gas carried therewith. The GDCS pool is then drained by gravity, and the wetwell plenum is vented into the GDCS plenum for channeling the non-condensable gas thereto. 6 figures.

  1. EDS V25 containment vessel explosive qualification test report.

    SciTech Connect (OSTI)

    Rudolphi, John Joseph

    2012-04-01

    The V25 containment vessel was procured by the Project Manager, Non-Stockpile Chemical Materiel (PMNSCM) as a replacement vessel for use on the P2 Explosive Destruction Systems. It is the first EDS vessel to be fabricated under Code Case 2564 of the ASME Boiler and Pressure Vessel Code, which provides rules for the design of impulsively loaded vessels. The explosive rating for the vessel based on the Code Case is nine (9) pounds TNT-equivalent for up to 637 detonations. This limit is an increase from the 4.8 pounds TNT-equivalency rating for previous vessels. This report describes the explosive qualification tests that were performed in the vessel as part of the process for qualifying the vessel for explosive use. The tests consisted of a 11.25 pound TNT equivalent bare charge detonation followed by a 9 pound TNT equivalent detonation.

  2. Neutrino Factory Target Vessel

    E-Print Network [OSTI]

    McDonald, Kirk

    Neutrino Factory Target Vessel Concept V. Graves Target Studies EVO April 11, 2012 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Target Vessel Concept 11 Apr 2012 Target Vessel;3 Managed by UT-Battelle for the U.S. Department of Energy Target Vessel Concept 11 Apr 2012 Starting Point

  3. Modeling the Thermal Mechanical Behavior of a 300 K Vacuum Vessel that is Cooled by Liquid Hydrogen in Film Boiling

    E-Print Network [OSTI]

    Yang, S.Q.; Green, M.A.; Lau, W.

    2004-01-01

    VESSEL THAT IS COOLED BY LIQUID HYDROGEN IN FILM BOILING S.window that is part of a 20-liter liquid hydrogen vessel.This rupture will spill liquid hydrogen onto the walls and

  4. Coal gasification vessel

    DOE Patents [OSTI]

    Loo, Billy W. (Oakland, CA)

    1982-01-01

    A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).

  5. Reactor Vessel and Reactor Vessel Internals Segmentation at Zion Nuclear Power Station - 13230

    SciTech Connect (OSTI)

    Cooke, Conrad; Spann, Holger

    2013-07-01

    Zion Nuclear Power Station (ZNPS) is a dual-unit Pressurized Water Reactor (PWR) nuclear power plant located on the Lake Michigan shoreline, in the city of Zion, Illinois approximately 64 km (40 miles) north of Chicago, Illinois and 67 km (42 miles) south of Milwaukee, Wisconsin. Each PWR is of the Westinghouse design and had a generation capacity of 1040 MW. Exelon Corporation operated both reactors with the first unit starting production of power in 1973 and the second unit coming on line in 1974. The operation of both reactors ceased in 1996/1997. In 2010 the Nuclear Regulatory Commission approved the transfer of Exelon Corporation's license to ZionSolutions, the Long Term Stewardship subsidiary of EnergySolutions responsible for the decommissioning of ZNPS. In October 2010, ZionSolutions awarded Siempelkamp Nuclear Services, Inc. (SNS) the contract to plan, segment, remove, and package both reactor vessels and their respective internals. This presentation discusses the tools employed by SNS to remove and segment the Reactor Vessel Internals (RVI) and Reactor Vessels (RV) and conveys the recent progress. SNS's mechanical segmentation tooling includes the C-HORCE (Circumferential Hydraulically Operated Cutting Equipment), BMT (Bolt Milling Tool), FaST (Former Attachment Severing Tool) and the VRS (Volume Reduction Station). Thermal segmentation of the reactor vessels will be accomplished using an Oxygen- Propane cutting system. The tools for internals segmentation were designed by SNS using their experience from other successful reactor and large component decommissioning and demolition (D and D) projects in the US. All of the designs allow for the mechanical segmentation of the internals remotely in the water-filled reactor cavities. The C-HORCE is designed to saw seven circumferential cuts through the Core Barrel and Thermal Shield walls with individual thicknesses up to 100 mm (4 inches). The BMT is designed to remove the bolts that fasten the Baffle Plates to the Baffle Former Plates. The FaST is designed to remove the Baffle Former Plates from the Core Barrel. The VRS further volume reduces segmented components using multiple configurations of the 38i and horizontal reciprocating saws. After the successful removal and volume reduction of the Internals, the RV will be segmented using a 'First in the US' thermal cutting process through a co-operative effort with Siempelkamp NIS Ingenieurgesellschaft mbH using their experience at the Stade NPP and Karlsruhe in Germany. SNS mobilized in the fall of 2011 to commence execution of the project in order to complete the RVI segmentation, removal and packaging activities for the first unit (Unit 2) by end of the 2012/beginning 2013 and then mobilize to the second unit, Unit 1. Parallel to the completion of the segmentation of the reactor vessel internals at Unit 1, SNS will segment the Unit 2 pressure vessel and at completion move to Unit 1. (authors)

  6. Ion transport membrane module and vessel system with directed internal gas flow

    DOE Patents [OSTI]

    Holmes, Michael Jerome (Thompson, ND); Ohrn, Theodore R. (Alliance, OH); Chen, Christopher Ming-Poh (Allentown, PA)

    2010-02-09

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

  7. Blood flow through axially symmetric sections of compliant vessels: new effective closed models

    E-Print Network [OSTI]

    Canic, Suncica

    Blood flow through axially symmetric sections of compliant vessels: new effective closed models S-Stokes) equations for blood flow in compliant vessels. Several "effec- tive" one-dimensional models have been used independent ring model) to model the vessel wall behavior. In this work we obtain an effective system

  8. A comparison of hydrogen vs. helium glow discharge effects on fusion device first-wall conditioning

    SciTech Connect (OSTI)

    Dylla, H.F.

    1989-09-01

    Hydrogen- and deuterium-fueled glow discharges are used for the initial conditioning of magnetic fusion device vacuum vessels following evacuation from atmospheric pressure. Hydrogenic glow discharge conditioning (GDC) significantly reduces the near-surface concentration of simple adsorbates, such as H/sub 2/O, CO, and CH/sub 4/, and lowers ion-induced desorption coefficients by typically three orders of magnitude. The time evolution of the residual gas production observed during hydrogen-glow discharge conditioning of the carbon first-wall structure of the TFTR device is similar to the time evolution observed during hydrogen GDC of the initial first-wall configuration in TFTR, which was primarily stainless steel. Recently, helium GDC has been investigated for several wall-conditioning tasks on a number of tokamaks including TFTR. Helium GDC shows negligible impurity removal with stainless steel walls. For impurity conditioning with carbon walls, helium GDC shows significant desorption of H/sub 2/O, CO, and CO/sub 2/; however, the total desorption yield is limited to the monolayer range. In addition, helium GDC can be used to displace hydrogen isotopes from the near-surface region of carbon first-walls in order to lower hydrogenic retention and recycling. 38 refs., 6 figs.

  9. Pressurized fluidized bed reactor

    DOE Patents [OSTI]

    Isaksson, J.

    1996-03-19

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  10. Pressurized fluidized bed reactor

    DOE Patents [OSTI]

    Isaksson, Juhani (Karhula, FI)

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  11. CC Pressure Test

    SciTech Connect (OSTI)

    Dixon, K.; /Fermilab

    1990-07-12

    The inner vessel heads including bypass and beam tubes had just been welded into place and dye penetrant checked. The vacuum heads were not on at this time but the vacuum shell was on covering the piping penetrating into the inner vessel. Signal boxes with all feed through boards, the instrumentation box, and high voltage boxes were all installed with their pump outs capped. All 1/4-inch instrumentation lines were terminated at their respective shutoff valves. All vacuum piping used for pumping down the inner vessel was isolated using o-ring sealed blind flanges. PV215A (VAT Series 12), the 4-inch VRC gate valve isolating the cyropump, and the rupture disk had to be removed and replaced with blind flanges before pressurizing due to their pressure limitations. Stresses in plates used as blind flanges were checked using Code calcualtions. Before the CC test, vacuum style blanks and clamps were hydrostatically pressure tested to 150% of the maximum test pressure, 60 psig. The Code inspector and Research Division Safety had all given their approval to the test pressure and procedure prior to filling the vessel with argon. The test was a major success. Based on the lack of any distinguishable pressure drop indicated on the pressure gages, the vessel appeared to be structurally sound throughout the duration of the test (approx. 3 hrs.). A major leak in the instrumentation tubing was discovered at half of the maximum test pressure and was quickly isolated by crimping and capping with a compression fitting. There were some slight deviations in the actual procedure used. The 44 psig relief valve located just outside the cleanroom had to be capped until the pressure in the vessel indicated 38 psi. This was to allow higher supply pressures and hence, higher flows through the pressurizing line. Also, in order to get pressure readings at the cryostat without exposing any personnel to the potentially dangerous stored energy near the maximum test pressure, a camera was installed at the top of the vessel to view the indicator mounted there. The monitor was viewed at the ante room adjacent to the cleanroom. The holding pressure of 32 psig (4/5 of the maximum test pressure) was only maintained for about 20 minutes instead of the half hour recommendation in the procedure. We felt that this was sufficient time to Snoop test and perform the pressure drop test. After the test was completed, the inspector for CBI Na-Con and the Research Divison Safety Officer signed all of required documentation.

  12. Neutrino Factory Target Vessel

    E-Print Network [OSTI]

    McDonald, Kirk

    Neutrino Factory Target Vessel Concept V. Graves Target Studies EVO May 1, 2012 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Target Vessel Concept 1 May 2012 Review ­ Two Target Vessel Ideas · Solid-Battelle for the U.S. Department of Energy Target Vessel Concept 1 May 2012 #12;4 Managed by UT-Battelle for the U

  13. Neutrino Factory Target Vessel

    E-Print Network [OSTI]

    McDonald, Kirk

    Neutrino Factory Target Vessel Concept Update V. Graves T. Lessard Target Studies EVO June 26, 2012 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Target Vessel Update 26 June 2012 of Energy Target Vessel Update 26 June 2012 Review - Mercury Module Extraction #12;4 Managed by UT

  14. Vacuum Vessel Remote Handling

    E-Print Network [OSTI]

    FIRE Vacuum Vessel and Remote Handling Overview B. Nelson, T. Burgess, T. Brown, H-M Fan, G. Jones #12;13 July 2002 Snowmass Review: FIRE Vacuum Vessel and Remote Handling 2 Presentation Outline · Vacuum Vessel - Design requirements - Design concept and features - Analysis to date - Status and summary

  15. Neutrino Factory Target Vessel

    E-Print Network [OSTI]

    McDonald, Kirk

    Neutrino Factory Target Vessel Concept Update V. Graves Target Studies EVO June 12, 2012 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Target Vessel Update 12 June 2012 Review ­ IPAC #12;3 Managed by UT-Battelle for the U.S. Department of Energy Target Vessel Update 12 June 2012 Inner

  16. Neutrino Factory Target Vessel

    E-Print Network [OSTI]

    McDonald, Kirk

    Neutrino Factory Target Vessel Concepts Updated 4/16/12 V. Graves Target Studies EVO April 11, 2012 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Target Vessel Concept 16 Apr 2012 Target Vessel Requirements · Accurate jet placement · Jet/beam dump pool · Double containment of mercury

  17. Confinement Vessel Assay System: Calibration and Certification Report

    SciTech Connect (OSTI)

    Frame, Katherine C. [Los Alamos National Laboratory; Bourne, Mark M. [Los Alamos National Laboratory; Crooks, William J. [Los Alamos National Laboratory; Evans, Louise [Los Alamos National Laboratory; Gomez, Cipriano [Retired CMR-OPS: OPERATIONS; Mayo, Douglas R. [Los Alamos National Laboratory; Miko, David K. [Los Alamos National Laboratory; Salazar, William R. [Los Alamos National Laboratory; Stange, Sy [Los Alamos National Laboratory; Vigil, Georgiana M. [Los Alamos National Laboratory

    2012-07-17

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1 to 2 inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. The Confinement Vessel Assay System (CVAS) was developed to measure the amount of SNM in CVs before and after cleanout. Prior to cleanout, the system will be used to perform a verification measurement of each vessel. After cleanout, the system will be used to perform safeguards-quality assays of {le} 100-g {sup 239}Pu equivalent in a vessel for safeguards termination. The system was calibrated in three different mass regions (low, medium, and high) to cover the entire plutonium mass range that will be assayed. The low mass calibration and medium mass calibration were verified for material positioned in the center of an empty vessel. The systematic uncertainty due to position bias was estimated using an MCNPX model to simulate the response of the system to material localized at various points along the inner surface of the vessel. The background component due to cosmic ray spallation was determined by performing measurements of an empty vessel and comparing to measurements in the same location with no vessel present. The CVAS has been tested and calibrated in preparation for verification and safeguards measurements of CVs before and after cleanout.

  18. Non-Newtonian characteristics of peristaltic flow of blood in micro-vessels

    E-Print Network [OSTI]

    S. Maiti; J. C. Misra

    2012-12-14

    Of concern in the paper is a generalized theoretical study of the non-Newtonian characteristics of peristaltic flow of blood through micro-vessels, e.g. arterioles. The vessel is considered to be of variable cross-section and blood to be a Herschel-Bulkley type of fluid. The progressive wave front of the peristaltic flow is supposed sinusoidal/straight section dominated (SSD) (expansion/contraction type); Reynolds number is considered to be small with reference to blood flow in the micro-circulatory system. The equations that govern the non-Newtonian peristaltic flow of blood are considered to be non-linear. The objective of the study has been to examine the effect of amplitude ratio, mean pressure gradient, yield stress and the power law index on the velocity distribution, wall shear stress, streamline pattern and trapping. It is observed that the numerical estimates for the aforesaid quantities in the case of peristaltic transport of the blood in a channel are much different from those for flow in an axisymmetric vessel of circular cross-section. The study further shows that peristaltic pumping, flow velocity and wall shear stress are significantly altered due to the non-uniformity of the cross-sectional radius of blood vessels of the micro-circulatory system. Moreover, the magnitude of the amplitude ratio and the value of the fluid index are important parameters that affect the flow behaviour. Novel features of SSD wave propagation that affect the flow behaviour of blood have also been discussed.

  19. NO FISHING REPORTING FORM Vessel ID. NO. Vessel Name

    E-Print Network [OSTI]

    NO FISHING REPORTING FORM Vessel ID. NO. Vessel Name: During the entire month of , year this vessel fishery if your vessel does not have a permit for it > Use Black Ink NMFS Use Only: Opened: Atlantic King Mackerel Spanish Mackerel Schedule # NO FISHING REPORTING FORM Vessel ID. NO. Vessel Name: During

  20. Pressurizer tank upper support

    DOE Patents [OSTI]

    Baker, Tod H. (O'Hara Township, Allegheny County, PA); Ott, Howard L. (Kiski Township, Armstrong County, PA)

    1994-01-01

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90.degree. intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure.

  1. Pressurizer tank upper support

    DOE Patents [OSTI]

    Baker, T.H.; Ott, H.L.

    1994-01-11

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90[degree] intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure. 10 figures.

  2. Pressure sensor for sealed containers

    DOE Patents [OSTI]

    Hodges, Franklin R. (Loudon, TN)

    2001-01-01

    A magnetic pressure sensor for sensing a pressure change inside a sealed container. The sensor includes a sealed deformable vessel having a first end attachable to an interior surface of the sealed container, and a second end. A magnet mounted to the vessel second end defining a distance away from the container surface provides an externally detectable magnetic field. A pressure change inside the sealed container causes deformation of the vessel changing the distance of the magnet away from the container surface, and thus the detectable intensity of the magnetic field.

  3. Pressure suppression system

    DOE Patents [OSTI]

    Gluntz, D.M.

    1994-10-04

    A pressure suppression system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and an enclosed gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The GDCS pool includes a plenum for receiving through an inlet the non-condensable gas carried with steam from the drywell following a loss-of-coolant accident (LOCA). A condenser is disposed in the GDCS plenum for condensing the steam channeled therein and to trap the non-condensable gas therein. A method of operation includes draining the GDCS pool following the LOCA and channeling steam released into the drywell following the LOCA into the GDCS plenum for cooling along with the non-condensable gas carried therewith for trapping the gas therein. 3 figs.

  4. Pressure suppression system

    DOE Patents [OSTI]

    Gluntz, Douglas M. (San Jose, CA)

    1994-01-01

    A pressure suppression system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and an enclosed gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The GDCS pool includes a plenum for receiving through an inlet the non-condensable gas carried with steam from the drywell following a loss-of-coolant accident (LOCA). A condenser is disposed in the GDCS plenum for condensing the steam channeled therein and to trap the non-condensable gas therein. A method of operation includes draining the GDCS pool following the LOCA and channeling steam released into the drywell following the LOCA into the GDCS plenum for cooling along with the non-condensable gas carried therewith for trapping the gas therein.

  5. Standard guide for mutual inductance bridge applications for wall thickness determinations in boiler tubing

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide describes a procedure for obtaining relative wall thickness indications in ferromagnetic and non-ferromagnetic steels using the mutual inductance bridge method. The procedure is intended for use with instruments capable of inducing two substantially identical magnetic fields and noting the change in inductance resulting from differing amounts of steel. It is used to distinguish acceptable wall thickness conditions from those which could place tubular vessels or piping at risk of bursting under high temperature and pressure conditions. 1.2 This guide is intended to satisfy two general needs for users of industrial Mutual Inductance Bridge (MIB) equipment: (1) the need for a tutorial guide addressing the general principles of Mutual Inductance Bridges as they apply to industrial piping; and (2) the need for a consistent set of MIB performance parameter definitions, including how these performance parameters relate to MIB system specifications. Potential users and buyers, as well as experienced M...

  6. Impacts of reducing shipboard NOx? and SOx? emissions on vessel performance

    E-Print Network [OSTI]

    Caputo, Ronald J., Jr. (Ronald Joseph)

    2010-01-01

    The international maritime community has been experiencing tremendous pressures from environmental organizations to reduce the emissions footprint of their vessels. In the last decade, air emissions, including nitrogen ...

  7. R&D of Large Stationary Hydrogen/CNG/HCNG Storage Vessels

    Broader source: Energy.gov [DOE]

    These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 – 29, 2010, in Beijing, China.

  8. Device for inspecting vessel surfaces

    DOE Patents [OSTI]

    Appel, D. Keith (Aiken, SC)

    1995-01-01

    A portable, remotely-controlled inspection crawler for use along the walls of tanks, vessels, piping and the like. The crawler can be configured to use a vacuum chamber for supporting itself on the inspected surface by suction or a plurality of magnetic wheels for moving the crawler along the inspected surface. The crawler is adapted to be equipped with an ultrasonic probe for mapping the structural integrity or other characteristics of the surface being inspected. Navigation of the crawler is achieved by triangulation techniques between a signal transmitter on the crawler and a pair of microphones attached to a fixed, remote location, such as the crawler's deployment unit. The necessary communications are established between the crawler and computers external to the inspection environment for position control and storage and/or monitoring of data acquisition.

  9. Using SA508/533 for the HTGR Vessel Material

    SciTech Connect (OSTI)

    Larry Demick

    2012-06-01

    This paper examines the influence of High Temperature Gas-cooled Reactor (HTGR) module power rating and normal operating temperatures on the use of SA508/533 material for the HTGR vessel system with emphasis on the calculated times at elevated temperatures approaching or exceeding ASME Code Service Limits (Levels B&C) to which the reactor pressure vessel could be exposed during postulated pressurized and depressurized conduction cooldown events over its design lifetime.

  10. Nuclear reactor having a polyhedral primary shield and removable vessel insulation

    DOE Patents [OSTI]

    Ekeroth, D.E.; Orr, R.

    1993-12-07

    A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel. 5 figures.

  11. Nuclear reactor having a polyhedral primary shield and removable vessel insulation

    DOE Patents [OSTI]

    Ekeroth, Douglas E. (Delmont, PA); Orr, Richard (Pittsburgh, PA)

    1993-01-01

    A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel.

  12. High pressure melt ejection

    SciTech Connect (OSTI)

    Tarbell, W.W.; Brockmann, J.E.; Pilch, M.

    1983-01-01

    Recent probabilistic risk assessments have identified the potential for reactor pressure vessel failure while the reactor coolant system is at elevated pressure. The analyses postulate that the blowdown of steam and hydrogen into the reactor cavity will cause the core material to be swept from the cavity region into the containment building. The High Pressure Melt Streaming (HIPS) program is an experimental study of the high pressure ejection of molten material and subsequent interactions within a concrete cavity. The program focuses on using prototypic system conditions and scaled models of reactor geometries to accurately simulate the ex-vessel processes during high-pressure accident sequences. Scaling analyses of the experiment show that the criteria established for core debris removal from the cavity are met or exceeded. Tests are performed at two scales, representing 1/10th and 1/20th linear reproductions of the Zion reactor plant. Results of the 1/20th scale tests are presented.

  13. Experiments on Corium Dispersion after Lower Head Failure at Moderate Pressure

    SciTech Connect (OSTI)

    BLANCHAT,THOMAS K.; GARGALLO,M.; JACOBS,G.; MEYER,L.; WILHELM,D.

    1999-09-21

    Concerning the mitigation of high pressure core melt scenarios, the design objective for future PWRS is to transfer high pressure core melt to low pressure core melt sequences, by means of pressure relief valves at the primary circuit, with such a discharge capacity to limit the pressure in the reactor coolant system to less than 20 bar. Studies have shown that in late in-vessel reflooding scenarios there may be a time window where the pressure is indeed in this range, at the moment of the reactor vessel rupture. It has to be verified that large quantities of corium released from the vessel after failure at pressures <20 bar cannot be carried out of the reactor pit, because the melt collecting and cooling concept of future PWRs would be rendered useless. Existing experiments investigated the melt dispersal phenomena in the context of the DCH resolution for existing power plants in the USA, most of them having cavities with large instrument tunnels leading into subcompartments. For such designs, breaches with small cross sections at high vessel failure pressures had been studied. However, some present and future European PWRs have an annular cavity design without a large pathway out of the cavity other than through the narrow annular gap between the RPV and the cavity wall. Therefore, an experimental program was launched, focusing on the annular cavity design and low pressure vessel failure. The first part of the program comprises two experiments which were performed with thermite melt steam and a prototypic atmosphere in the containment in a scale 1:10. The initial pressure in the RPV-model was 11 and 15 bars, and the breach was a hole at the center of the lower head with a scaled diameter of 100 cm and 40 cm, respectively. The main results were: 78% of melt mass were ejected out of the cavity with the large hole and 21% with the small hole; the maximum pressures in the model containment were 6 bar and 4 bar, respectively. In the second part of the experimental program a detailed investigation of geometry effects is being carried out. The test facility DISCO-C has been built for performing dispersion experiments with cold simulant materials in a 1/18 scale. The fluids are water or bismuth alloy instead of melt, and nitrogen or helium instead of steam.

  14. Modeling and Characterization of Lymphatic Vessels Using a Lumped Parameter Approach 

    E-Print Network [OSTI]

    Jamalian Ardakani, Seyedeh Samira 1987-

    2012-11-16

    of momentum, and vessel wall force balance were solved for each lymphangion computationally. Due to the lack of knowledge of the parameters describing the system in the literature, more accurate measurements of these parameters should be pursued to advance...

  15. OSS 19.4 Pressure Safety 3/27/95

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to evaluate the contractor's implementation of programs to ensure the integrity of pressure vessels and minimize risks from failure of vessels to the public...

  16. Near-wall serpentine cooled turbine airfoil

    DOE Patents [OSTI]

    Lee, Ching-Pang

    2014-10-28

    A serpentine coolant flow path is formed by inner walls in a cavity between pressure and suction side walls of a turbine airfoil, the cavity partitioned by one or more transverse partitions into a plurality of continuous serpentine cooling flow streams each having a respective coolant inlet.

  17. Subcritical transition to turbulence of a precessing flow in a cylindrical vessel

    E-Print Network [OSTI]

    Herault, Johann; Giesecke, Andre; Stefani, Frank

    2015-01-01

    The transition to turbulence in a precessing cylindrical vessel is experimentally investigated. Our measurements are performed for a { nearly-resonant} configuration with an initially laminar flow dominated by an inertial mode with azimuthal wave number $m=1$ superimposed on a solid body rotation. By increasing the precession ratio, we observe a transition from the laminar to a non-linear regime, which then breakdowns to turbulence for larger precession ratio. Our measurements show that the transition to turbulence is subcritical, with a discontinuity of the wall-pressure and the power consumption at the threshold $\\epsilon_{LT}$. The turbulence is self-sustained below this threshold, describing a bifurcation diagram with a hysteresis. In this range of the control parameters, the turbulent flows can suddenly collapse after a finite duration, leading to a definitive relaminarization of the flow. The average lifetime $\\langle \\tau \\rangle$ of the turbulence increases rapidly when $\\epsilon$ tends to $\\epsilon_{...

  18. Method and apparatus for determining pressure-induced frequency-shifts in shock-compressed materials

    DOE Patents [OSTI]

    Moore, D.S.; Schmidt, S.C.

    1983-12-16

    A method and an apparatus for conducting coherent anti-Stokes Raman scattering spectroscopy in shock-compressed materials are disclosed. The apparatus includes a sample vessel having an optically transparent wall and an opposing optically reflective wall. Two coherent laser beams, a pump beam and a broadband Stokes beam, are directed through the window and focused on a portion of the sample. In the preferred embodiment, a projectile is fired from a high-pressure gas gun to impact the outside of the reflective wall, generating a planar shock wave which travels through the sample toward the window. The pump and Stokes beams result in the emission from the shock-compressed sample of a coherent anti-Stokes beam, which is emitted toward the approaching reflective wall of the vessel and reflected back through the window. The anti-Stokes beam is folded into a spectrometer for frequency analysis. The results of such analysis are useful for determining chemical and physical phenomena which occur during the shock-compression of the sample.

  19. Method and apparatus for determining pressure-induced frequency-shifts in shock-compressed materials

    DOE Patents [OSTI]

    Moore, David S. (Los Alamos, NM); Schmidt, Stephen C. (Los Alamos, NM)

    1985-01-01

    A method and an apparatus for conducting coherent anti-Stokes Raman scattering spectroscopy in shock-compressed materials are disclosed. The apparatus includes a sample vessel having an optically transparent wall and an opposing optically reflective wall. Two coherent laser beams, a pump beam and a broadband Stokes beam, are directed through the window and focused on a portion of the sample. In the preferred embodiment, a projectile is fired from a high-pressure gas gun to impact the outside of the reflective wall, generating a planar shock wave which travels through the sample toward the window. The pump and Stokes beams result in the emission from the shock-compressed sample of a coherent anti-Stokes beam, which is emitted toward the approaching reflective wall of the vessel and reflected back through the window. The anti-Stokes beam is folded into a spectrometer for frequency analysis. The results of such analysis are useful for determining chemical and physical phenomena which occur during the shock-compression of the sample.

  20. Reactor vessel support system

    DOE Patents [OSTI]

    Golden, Martin P. (Trafford, PA); Holley, John C. (McKeesport, PA)

    1982-01-01

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  1. The Blue Wall

    E-Print Network [OSTI]

    Milano, Michael

    2015-01-01

    The  Blue  Wall   A  Documentary  Film  by     Michael  talking   about,  The  Blue  Wall.   Your  Honor,  as  the  

  2. A simplified model for red cell dynamics in small blood vessels

    E-Print Network [OSTI]

    Piero Olla

    1998-11-20

    A simple mechanism for the confinement of red cells in the middle of narrow blood vessels is proposed. In the presence of a quadratic shear, red cells deform in such a way to loose fore-aft symmetry and to achieve a fixed orientation with respect to the flow. This leads to a drift away from the vessel walls, when the vessel diameter goes below a critical value depending on the viscoelastic properties and the dimensions of the cell.

  3. High pressure liquid level monitor

    DOE Patents [OSTI]

    Bean, Vern E. (Frederick, MD); Long, Frederick G. (Ijamsville, MD)

    1984-01-01

    A liquid level monitor for tracking the level of a coal slurry in a high-pressure vessel including a toroidal-shaped float with magnetically permeable bands thereon disposed within the vessel, two pairs of magnetic field generators and detectors disposed outside the vessel adjacent the top and bottom thereof and magnetically coupled to the magnetically permeable bands on the float, and signal processing circuitry for combining signals from the top and bottom detectors for generating a monotonically increasing analog control signal which is a function of liquid level. The control signal may be utilized to operate high-pressure control valves associated with processes in which the high-pressure vessel is used.

  4. High pressure furnace

    DOE Patents [OSTI]

    Morris, D.E.

    1993-09-14

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

  5. High pressure furnace

    DOE Patents [OSTI]

    Morris, Donald E. (Kensington, CA)

    1993-01-01

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  6. Photoacoustic removal of occlusions from blood vessels

    DOE Patents [OSTI]

    Visuri, Steven R. (Livermore, CA); Da Silva, Luiz B. (Danville, CA); Celliers, Peter M. (Berkeley, CA); London, Richard A. (Orinda, CA); Maitland, IV, Duncan J. (Lafayette, CA); Esch, Victor C. (San Francisco, CA)

    2002-01-01

    Partial or total occlusions of fluid passages within the human body are removed by positioning an array of optical fibers in the passage and directing treatment radiation pulses along the fibers, one at a time, to generate a shock wave and hydrodynamics flows that strike and emulsify the occlusions. A preferred application is the removal of blood clots (thrombin and embolic) from small cerebral vessels to reverse the effects of an ischemic stroke. The operating parameters and techniques are chosen to minimize the amount of heating of the fragile cerebral vessel walls occurring during this photo acoustic treatment. One such technique is the optical monitoring of the existence of hydrodynamics flow generating vapor bubbles when they are expected to occur and stopping the heat generating pulses propagated along an optical fiber that is not generating such bubbles.

  7. Single module pressurized fuel cell turbine generator system

    DOE Patents [OSTI]

    George, Raymond A. (Pittsburgh, PA); Veyo, Stephen E. (Murrysville, PA); Dederer, Jeffrey T. (Valencia, PA)

    2001-01-01

    A pressurized fuel cell system (10), operates within a common pressure vessel (12) where the system contains fuel cells (22), a turbine (26) and a generator (98) where preferably, associated oxidant inlet valve (52), fuel inlet valve (56) and fuel cell exhaust valve (42) are outside the pressure vessel.

  8. CATCHER VESSEL DFL MANAGEMENT PROGRAM

    E-Print Network [OSTI]

    CATCHER VESSEL DFL GROUNDFISH TRAWL GEAR MANAGEMENT PROGRAM (Check if applicable and enter number) CDQ Exempted Research AIP No. VESSEL NAME OPERATOR NAME AND SIGNATURE Date (M - D - Y) ADF&G Vessel No Control No. 0648-0213 Expiration Date: 03/31/2018Revised: 05/12/2015 COPY DISTRIBUTION: WHITE Vessel Copy

  9. External pressure limitations for 0--15 psi storage tanks

    SciTech Connect (OSTI)

    Dib, M.W. [ICF Kaiser Hanford Co., Richland, WA (United States); Shrivastava, H.P. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-12-01

    Large cylindrical storage tanks are designed in accordance with design rules of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section 3, Subsection NC, Article NC-3900 or American Petroleum Institute (API) Standard 620. Both of these Codes have identical requirements. These Codes provide a limit on the partial vacuum in the gas or vapor space not to exceed 1 oz/in{sup 2} to ensure stability of cylindrical walls against collapse. This criterion seems to be too conservative for the underground double shell storage tanks to be built at Hanford for the Department of Energy. The analysis presented herein shows that the bottom plate of the Hanford tank is the most critical component when an empty tank is subjected to partial vacuum. However, the allowable external pressures for both cylindrical walls and the bottom plate are significantly higher than 1 oz/in{sup 2}. The allowable external pressure for the bottom plate is largely dependent upon the plate uplift considerations which in turns depends on the plate thickness. The large displacement non-linear elastic analyses and the eigenvalue buckling solutions indicate that considerable wrinkling can occur before a snap-through buckling failure occurs.

  10. Reactor vessel annealing system

    DOE Patents [OSTI]

    Miller, Phillip E. (Greensburg, PA); Katz, Leonoard R. (Pittsburgh, PA); Nath, Raymond J. (Murrysville, PA); Blaushild, Ronald M. (Export, PA); Tatch, Michael D. (Randolph, NJ); Kordalski, Frank J. (White Oak, PA); Wykstra, Donald T. (Pittsburgh, PA); Kavalkovich, William M. (Monroeville, PA)

    1991-01-01

    A system for annealing a vessel (14) in situ by heating the vessel (14) to a defined temperature, composed of: an electrically operated heater assembly (10) insertable into the vessel (14) for heating the vessel (14) to the defined temperature; temperature monitoring components positioned relative to the heater assembly (10) for monitoring the temperature of the vessel (14); a controllable electric power supply unit (32-60) for supplying electric power required by the heater assembly (10); a control unit (80-86) for controlling the power supplied by the power supply unit (32-60); a first vehicle (2) containing the power supply unit (32-60); a second vehicle (4) containing the control unit (80-86); power conductors (18,22) connectable between the power supply unit (32-60) and the heater unit (10) for delivering the power supplied by the power supply unit (32-60) to the heater assembly (10); signal conductors (20,24) connectable between the temperature monitoring components and the control unit (80-86) for delivering temperature indicating signals from the temperature monitoring components to the control unit (80-86); and control conductors (8) connectable between the control unit (80-86) and the power supply unit (32-60) for delivering to the power supply unit (32-60) control signals for controlling the level of power supplied by the power supply unit (32-60) to the heater assembly (10).

  11. Erosion/Corrosion-Induced Pipe Wall Thinning in U.S. Nuclear...

    Office of Scientific and Technical Information (OSTI)

    VIII, "Pressure Vessels" * Pumps, such as condensate and feedwater pumps, and steam turbines-manufacturer's standards * Valves-manufacturer's standards and ANSI Stan- dard...

  12. Bonfire Tests of High Pressure Hydrogen Storage Tanks

    Broader source: Energy.gov [DOE]

    These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 – 29, 2010, in Beijing, China.

  13. Field fabrication of heavy wall hydrocracking reactors made from advanced Cr-Mo steel

    SciTech Connect (OSTI)

    Flores, E.D. [Pemex, Huasteca (Mexico); Kao, T.; Tasker, K. [HRI, Inc., Princeton, NJ (United States); Festa, F.; Pietrantonio, V. [Snamprogetti, S. Donato Milanese (Italy); Inoue, S.; Iga, H.; Tahara, T. [Japan Steel Works, Ltd., Muroran (Japan)

    1996-12-01

    The manufacture of first commercial hydrocracking reactors made from 3Cr-Mo-1/4V-Ti-B steel was completed in August 1990. Since then, almost 30 units of heavy wall hydrocracking reactors made of the same material have been fabricated. These vessels have been applied to high temperature and high pressure operation of hydrocracking and hydrodesulfurization units. The characteristics of advanced Cr-Mo steel, such as higher resistance to hydrogen atmosphere, higher creep rupture strength and lower susceptibility to long term degradation were verified through enough experiences based on the latest technology of manufacturing and operation of the vessels. Based on these experiences the first field fabrication of the vessels made from 3Cr-1Mo-1/4V-Ti-b steel was started in April, 1995 and successfully completed in October, 1995, at job site in Pemex Tula Refinery, Mexico. This paper is prepared to present the highlights of manufacturing technology for field fabrication based on the actual experience.

  14. Confinement Vessel Assay System: Design and Implementation Report

    SciTech Connect (OSTI)

    Frame, Katherine C. [Los Alamos National Laboratory; Bourne, Mark M. [Los Alamos National Laboratory; Crooks, William J. [Los Alamos National Laboratory; Evans, Louise [Los Alamos National Laboratory; Mayo, Douglas R. [Los Alamos National Laboratory; Gomez, Cipriano D. [Retired CMR-OPS: OPERATIONS; Miko, David K. [Los Alamos National Laboratory; Salazar, William R. [Los Alamos National Laboratory; Stange, Sy [Los Alamos National Laboratory; Vigil, Georgiana M. [Los Alamos National Laboratory

    2012-07-18

    Los Alamos National Laboratory has a number of spherical confinement vessels remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1- to 2-inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. We have developed a neutron assay system for the purposes of Materials Control and Accountability (MC&A) measurements of the vessel prior to and after cleanout. We present our approach to confronting the challenges in designing, building, and testing such a system. The system was designed to meet a set of functional and operational requirements. A Monte Carlo model was developed to aid in optimizing the detector design as well as to predict the systematic uncertainty associated with confinement vessel measurements. Initial testing was performed to optimize and determine various measurement parameters, and then the system was characterized using {sup 252}Cf placed a various locations throughout the measurement system. Measurements were also performed with a {sup 252}Cf source placed inside of small steel and HDPE shells to study the effect of moderation. These measurements compare favorably with their MCNPX model equivalent, making us confident that we can rely on the Monte Carlo simulation to predict the systematic uncertainty due to variations in response to material that may be localized at different points within a vessel.

  15. LQG Dynamic Positioning for a Supply Vessel

    E-Print Network [OSTI]

    Hansen, Scott Ron

    8  2.1.   Vessel9  2.1.2.   3 DOF Marine Vessel Equations ofPositioning for a Supply Vessel A Thesis submitted in

  16. Radiant vessel auxiliary cooling system

    DOE Patents [OSTI]

    Germer, John H. (San Jose, CA)

    1987-01-01

    In a modular liquid-metal pool breeder reactor, a radiant vessel auxiliary cooling system is disclosed for removing the residual heat resulting from the shutdown of a reactor by a completely passive heat transfer system. A shell surrounds the reactor and containment vessel, separated from the containment vessel by an air passage. Natural circulation of air is provided by air vents at the lower and upper ends of the shell. Longitudinal, radial and inwardly extending fins extend from the shell into the air passage. The fins are heated by radiation from the containment vessel and convect the heat to the circulating air. Residual heat from the primary reactor vessel is transmitted from the reactor vessel through an inert gas plenum to a guard or containment vessel designed to contain any leaking coolant. The containment vessel is conventional and is surrounded by the shell.

  17. A biomedical engineering approach to investigating flow and wall shear stress in contracting lymphatics 

    E-Print Network [OSTI]

    Dixon, James Brandon

    2006-08-16

    contractions of the lymphatic wall. Individual units, known as lymphangion, are separated by valves that help prevent backflow when the vessel contracts, thus promoting flow through the lymphatic network. Lymphatic contractile activity is inhibited by flow...

  18. Fish Bulletin. Fishing Party Vessels

    E-Print Network [OSTI]

    State of California, Department of Fish and Game

    1990-01-01

    FISH BULLETIN: Fishing Party Vessels In the Text and Excelby the passenger carrying fishing industry (party boat). The

  19. CHARACTERIZATION OF RADIOACTIVITY IN THE REACTOR VESSEL OF THE HEAVY WATER COMPONENT TEST REACTOR

    SciTech Connect (OSTI)

    Vinson, Dennis

    2010-06-01

    The Heavy Water Component Test Reactor (HWCTR) facility is a pressurized heavy water reactor that was used to test candidate fuel designs for heavy water power reactors. The reactor operated at nominal power of 50 MW{sub th}. The reactor coolant loop operated at 1200 psig and 250 C. Two isolated test loop were designed into the reactor to provide special test conditions. Fig. 1 shows a cut-away view of the reactor. The two loops are contained in four inch diameter stainless steel piping. The HWCTR was operated for only a short duration, from March 1962 to December 1964 in order to test the viability of test fuel elements and other reactor components for use in a heavy water power reactor. The reactor achieved 13,882 MWd of total power while testing 36 different fuel assemblies. In the course of operation, HWCTR experienced the cladding failures of 10 separate test fuel assemblies. In each case, the cladding was breached with some release of fuel core material into the isolated test loop, causing fission product and actinide contamination in the main coolant loop and the liquid and boiling test loops. Despite the contribution of the contamination from the failed fuel, the primary source of radioactivity in the HWCTR vessel and internals is the activation products in the thermal shields, and to a lesser degree, activation products in the reactor vessel walls and liner. A detailed facility characterization report of the HWCTR facility was completed in 1996. Many of the inputs and assumptions in the 1996 characterization report were derived from the HWCTR decommissioning plan published in 1975. The current paper provides an updated assessment of the radioisotopic characteristics of the HWCTR vessel and internals to support decommissioning activities on the facility.

  20. DISRUPTION MITIGATION WITH HIGH-PRESSURE NOBLE GAS INJECTION

    SciTech Connect (OSTI)

    WHYTE, DG; JERNIGAN, TC; HUMPHREYS, DA; HYATT, AW; LASNIER, CJ; PARKS, PB; EVANS, TE; TAYLOR, PL; KELLMAN, AG; GRAY, DS; HOLLMANN, EM

    2002-10-01

    OAK A271 DISRUPTION MITIGATION WITH HIGH-PRESSURE NOBLE GAS INJECTION. High-pressure gas jets of neon and argon are used to mitigate the three principal damaging effects of tokamak disruptions: thermal loading of the divertor surfaces, vessel stress from poloidal halo currents and the buildup and loss of relativistic electrons to the wall. The gas jet penetrates as a neutral species through to the central plasma at its sonic velocity. The injected gas atoms increase up to 500 times the total electron inventory in the plasma volume, resulting in a relatively benign radiative dissipation of >95% of the plasma stored energy. The rapid cooling and the slow movement of the plasma to the wall reduce poloidal halo currents during the current decay. The thermally collapsed plasma is very cold ({approx} 1-2 eV) and the impurity charge distribution can include > 50% fraction neutral species. If a sufficient quantity of gas is injected, the neutrals inhibit runaway electrons. A physical model of radiative cooling is developed and validated against DIII-D experiments. The model shows that gas jet mitigation, including runaway suppression, extrapolates favorably to burning plasmas where disruption damage will be more severe. Initial results of real-time disruption detection triggering gas jet injection for mitigation are shown.

  1. CRAD, Pressurized Systems and Cryogens Assessment Plan

    Office of Energy Efficiency and Renewable Energy (EERE)

    Assure personnel health and safety through regularly scheduled inspections and maintenance on pressure vessels and equipment, compressed gases and gas cylinders, vacuum equipment and systems, hydraulics, and cryogenic materials and systems.

  2. Experimental Study on the Improved In-Vessel Corium Retention Concepts for the Severe Accident Management

    SciTech Connect (OSTI)

    Kang, K.H.; Park, R.J.; Koo, K.M.; Kim, S.B.; Kim, H.D. [Korea Atomic Energy Research Institute, 150, Dukjin-Dong, Yusong-Gu, Taejon 305-353 (Korea, Republic of)

    2002-07-01

    Feasibility experiments were performed for the assessment of improved In-Vessel Corium Retention (IVR) concepts using an internal engineered gap device and also a dual strategy of In/Ex-vessel cooling using the LAVA experimental facility. The internal engineered gap device made of carbon steel was installed inside the LAVA lower head vessel and it made a uniform gap with the vessel by 10 mm. In/Ex-vessel cooling in the dual strategy experiment was performed installing an external guide vessel outside the LAVA lower head vessel at a uniform gap of 25 mm. The LAVA lower head vessel was a hemispherical test vessel simulated with a 1/8 linear scale mock-up of the reactor vessel lower plenum with an inner diameter of 500 mm and thickness of 25 mm. In both of the tests, Al{sub 2}O{sub 3} melt was delivered into about 50 K subcooled water inside the lower head vessel under the elevated pressure. Temperatures of the internal engineered gap device and the lower head vessel were measured by K-type thermocouples embedded radially in the 3 mm depth of the lower head vessel outer surface and in the 4 mm depth of the internal engineered gap device, respectively. In the dual strategy experiment, the Ex-vessel cooling featured pool boiling in the gap between the lower head vessel and the external guide vessel. It could be found from the experimental results that the internal engineered gap device was intact and so the vessel experienced little thermal and mechanical attacks in the internal engineered gap device experiment. And also the vessel was effectively cooled via mutual boiling heat removal in- and ex-vessel in the dual strategy experiment. Compared with the previous LAVA experimental results performed for the investigation of the inherent in-vessel gap cooling, it could be confirmed that the Ex-vessel cooling measure was dominant over the In-vessel cooling measure in this study. It is concluded that the improved cooling measures using a internal engineered gap device and a dual strategy promote the cooling characteristics of the lower head vessel and so enhance the integrity of the vessel in the end. (authors)

  3. Wall surveyor project report

    SciTech Connect (OSTI)

    Mullenhoff, D.J.; Johnston, B.C.; Azevedo, S.G.

    1996-02-22

    A report is made on the demonstration of a first-generation Wall Surveyor that is capable of surveying the interior and thickness of a stone, brick, or cement wall. LLNL`s Micropower Impulse Radar is used, based on emitting and detecting very low amplitude and short microwave impulses (MIR rangefinder). Six test walls were used. While the demonstrator MIR Wall Surveyor is not fieldable yet, it has successfully scanned the test walls and produced real-time images identifying the walls. It is planned to optimize and package the evaluation wall surveyor into a hand held unit.

  4. Start-up control system and vessel for LMFBR

    DOE Patents [OSTI]

    Durrant, Oliver W. (Akron, OH); Kakarala, Chandrasekhara R. (Clinton, OH); Mandel, Sheldon W. (Galesburg, IL)

    1987-01-01

    A reflux condensing start-up system comprises a steam generator, a start-up vessel connected parallel to the steam generator, a main steam line connecting steam outlets of the steam generator and start-up vessel to a steam turbine, a condenser connected to an outlet of the turbine and a feedwater return line connected between the condenser and inlets of the steam generator and start-up vessel. The start-up vessel has one or more heaters at the bottom thereof for heating feedwater which is supplied over a start-up line to the start-up vessel. Steam is thus generated to pressurize the steam generator before the steam generator is supplied with a heat transfer medium, for example liquid sodium, in the case of a liquid metal fast breeder reactor. The start-up vessel includes upper and lower bulbs with a smaller diameter mid-section to act as water and steam reservoirs. The start-up vessel can thus be used not only in a start-up operation but as a mixing tank, a water storage tank and a level control at low loads for controlling feedwater flow.

  5. Start-up control system and vessel for LMFBR

    DOE Patents [OSTI]

    Durrant, Oliver W. (Akron, OH); Kakarala, Chandrasekhara R. (Clinton, OH); Mandel, Sheldon W. (Galesburg, IL)

    1987-01-01

    A reflux condensing start-up system includes a steam generator, a start-up vessel connected parallel to the steam generator, a main steam line connecting steam outlets of the steam generator and start-up vessel to a steam turbine, a condenser connected to an outlet of the turbine and a feedwater return line connected between the condenser and inlets of the steam generator and start-up vessel. The start-up vessel has one or more heaters at the bottom thereof for heating feedwater which is supplied over a start-up line to the start-up vessel. Steam is thus generated to pressurize the steam generator before the steam generator is supplied with a heat transfer medium, for example liquid sodium, in the case of a liquid metal fast breeder reactor. The start-up vessel includes upper and lower bulbs with a smaller diameter mid-section to act as water and steam reservoirs. The start-up vessel can thus be used not only in a start-up operation but as a mixing tank, a water storage tank and a level control at low loads for controlling feedwater flow.

  6. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner

    E-Print Network [OSTI]

    Chauhan, Vikash P.

    The blood vessels of cancerous tumours are leaky and poorly organized. This can increase the interstitial fluid pressure inside tumours and reduce blood supply to them, which impairs drug delivery. Anti-angiogenic ...

  7. High pressure xenon ionization detector

    DOE Patents [OSTI]

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  8. High pressure xenon ionization detector

    DOE Patents [OSTI]

    Markey, John K. (New Haven, CT)

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  9. Iranian Long Spouted Vessels of the Third and Second Millennium BCE: Contextualizing an Enigmatic Vessel 

    E-Print Network [OSTI]

    Cromartie, Amy

    2014-01-01

    Long Spouted Vessels of the Third and SecondContextualizing an Enigmatic Vessel Reflective Essay By Amylong spouted Iranian bronze vessel from the third millennium

  10. The Soft Wall Model of the Casimir Effect 

    E-Print Network [OSTI]

    Whisler, Colin M.

    2014-08-13

    In this paper, we examine the Casimir interaction between a scalar field and a boundary analogous to a conducting wall with some small but finite skin depth to electromagnetic radiation with the goal of calculating the energy density and pressure...

  11. Near wall cooling for a highly tapered turbine blade

    DOE Patents [OSTI]

    Liang, George (Palm City, FL)

    2011-03-08

    A turbine blade having a pressure sidewall and a suction sidewall connected at chordally spaced leading and trailing edges to define a cooling cavity. Pressure and suction side inner walls extend radially within the cooling cavity and define pressure and suction side near wall chambers. A plurality of mid-chord channels extend radially from a radially intermediate location on the blade to a tip passage at the blade tip for connecting the pressure side and suction side near wall chambers in fluid communication with the tip passage. In addition, radially extending leading edge and trailing edge flow channels are located adjacent to the leading and trailing edges, respectively, and cooling fluid flows in a triple-pass serpentine path as it flows through the leading edge flow channel, the near wall chambers and the trailing edge flow channel.

  12. Controlled Multistep Purification of Single-Walled Carbon Nanotubes

    E-Print Network [OSTI]

    Wikswo, John

    Controlled Multistep Purification of Single-Walled Carbon Nanotubes Ya-Qiong Xu,,§ Haiqing Peng materials from raw single-walled carbon nanotubes (SWNTs) produced in the HiPco (high-pressure CO) process at increasing temperatures. To avoid catalytic oxidation by iron oxide of carbon nanotubes, the exposed

  13. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Vessel Time Exposure Escort for all Focus Vessels on Haro Routes Draft #12;11/21/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 DEFINITION OF ASSUMED LOCATIONS FOR ADDED ESCORT VESSEL FOR HARO-BOUNDARY ROUTES (GREEN

  14. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Vessel Time Exposure-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 DEFINITION OF ASSUMED LOCATIONS FOR ADDED ESCORT VESSEL All FV - Vessel Time Exposure: 125% of Base Case VTE 23-24 22-23 21-22 20-21 19-20 18-19 17-18 16

  15. Device for automating in vitro characterization of lymphatic vessel function 

    E-Print Network [OSTI]

    Rajagopalan, Shruti

    2005-02-17

    the experimental set-up. Poutin Q VDA Poutin Q VDA Figure 10: The experimental set-up to characterize isolated bovine mesenteric lymphangions. This set-up was used to measure the diameter of the vessel using the Video Dimension Analyzer (VDA... the steady state error and then fine-tuning it. The output of the PI controller is a flow signal (Qs). The pump, connected via an RS232 port, matches this flow, Q, which affects the pressure, P, in the lymphatic vessel, via outflow resistance of the clamp...

  16. Fluidized wall for protecting fusion chamber walls

    DOE Patents [OSTI]

    Maniscalco, James A. (Danville, CA); Meier, Wayne R. (Livermore, CA)

    1982-01-01

    Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithium-ceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

  17. System for pressure modulation of turbine sidewall cavities

    DOE Patents [OSTI]

    Leone, Sal Albert (Scotia, NY); Book, Matthew David (Altamont, NY); Banares, Christopher R. (Schenectady, NY)

    2002-01-01

    A system and method are provided for controlling cooling air flow for pressure modulation of turbine components, such as the turbine outer sidewall cavities. The pressure at which cooling and purge air is supplied to the turbine outer side wall cavities is modulated, based on compressor discharge pressure (Pcd), thereby to generally maintain the back flow margin (BFM) so as to minimize excessive leakage and the consequent performance deterioration. In an exemplary embodiment, the air pressure within the third stage outer side wall cavity and the air pressure within the fourth stage outer side wall cavity are each controlled to a respective value that is a respective prescribed percentage of the concurrent compressor discharge pressure. The prescribed percentage may be determined from a ratio of the respective outer side wall pressure to compressor discharge pressure at Cold Day Turn Down (CDTD) required to provide a prescribed back flow margin.

  18. Method for pressure modulation of turbine sidewall cavities

    DOE Patents [OSTI]

    Leone, Sal Albert (Scotia, NY); Book, Matthew David (Altamont, NY); Banares, Christopher R. (Schenectady, NY)

    2002-01-01

    A method is provided for controlling cooling air flow for pressure modulation of turbine components, such as the turbine outer sidewall cavities. The pressure at which cooling and purge air is supplied to the turbine outer side wall cavities is modulated, based on compressor discharge pressure (Pcd), thereby to generally maintain the back flow margin (BFM) so as to minimize excessive leakage and the consequent performance deterioration. In an exemplary embodiment, the air pressure within the third stage outer side wall cavity and the air pressure within the fourth stage outer side wall cavity are each controlled to a respective value that is a respective prescribed percentage of the concurrent compressor discharge pressure. The prescribed percentage may be determined from a ratio of the respective outer side wall pressure to compressor discharge pressure at Cold Day Turn Down (CDTD) required to provide a prescribed back flow margin.

  19. Detailed Analysis of a Late-Phase Core-Melt Progression for the Evaluation of In-vessel Corium Retention

    SciTech Connect (OSTI)

    J. L. Rempe; R. J. Park; S. B. Kim; K. Y. Suh; F. B.Cheung

    2006-12-01

    Detailed analyses of a late-phase melt progression in the advanced power reactor (APR)1400 were completed to identify the melt and the thermal-hydraulic states of the in-vessel materials in the reactor vessel lower plenum at the time of reactor vessel failure to evaluate the candidate strategies for an in-vessel corium retention (IVR). Initiating events considered included high-pressure transients of a total loss of feed water (LOFW) and a station blackout (SBO) and low-pressure transients of a 0.0009-m2 small, 0.0093-m2 medium, and 0.0465-m2 large-break loss-of-coolant accident (LOCA) without safety injection. Best-estimate simulations for these low-probability events with conservative accident progression assumptions that lead to reactor vessel failure were performed by using the SCDAP/RELAP5/MOD3.3 computer code. The SCDAP/RELAP5/MOD3.3 results have shown that the pressurizer surge line failed before the reactor vessel failure, which results in a rapid decrease of the in-vessel pressure and a delay of the reactor vessel failure time of ~40 min in the high-pressure sequences of the total LOFW and the SBO transients. In all the sequences, ~80 to 90% of the core material was melted and relocated to the lower plenum of the reactor vessel at the time of reactor vessel failure. The maximum value of the volumetric heat source in the corium pool was estimated as 1.9 to 3.7 MW/m3. The corium temperature was ~2800 to 3400 K at the time of reactor vessel failure. The highest volumetric heat source sequence is predicted for the 0.0465-m2 large-break LOCA without safety injection in the APR1400, because this sequence leads to an early reactor vessel failure.

  20. Reactor vessel support system. [LMFBR

    DOE Patents [OSTI]

    Golden, M.P.; Holley, J.C.

    1980-05-09

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  1. CHF Enhancement by Vessel Coating for External Reactor Vessel Cooling

    SciTech Connect (OSTI)

    Yang, J.; Dizon, M.B.; Cheung, F.B. [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Rempe, J.L. [Idaho National Engineering and Environmental Laboratory, P.O. Box 1625, Idaho Falls, ID (United States); Suh, K.Y. [Department of Nuclear Engineering, Seoul National University, Seoul (Korea, Republic of); Kim, S.B. [Korea Atomic Energy Research Institute, P.O. Box 105, Yuseoung, Taejon (Korea, Republic of)

    2004-07-01

    In-vessel retention (IVR) is a key severe accident management (SAM) strategy that has been adopted by some operating nuclear power plants and advanced light water reactors (ALWRs). One viable means for IVR is the method of external reactor vessel cooling (ERVC) by flooding of the reactor cavity during a severe accident. As part of a joint Korean - United States International Nuclear Energy Research Initiative (K-INERI), an experimental study has been conducted to investigate the viability of using an appropriate vessel coating to enhance the critical heat flux (CHF) limits during ERVC. Toward this end, transient quenching and steady-state boiling experiments were performed in the SBLB (Sub-scale Boundary Layer Boiling) facility at Penn State using test vessels with micro-porous aluminum coatings. Local boiling curves and CHF limits were obtained in these experiments. When compared to the corresponding data without coatings, substantial enhancement in the local CHF limits for the case with surface coatings was observed. Results of the steady state boiling experiments showed that micro-porous aluminum coatings were very durable. Even after many cycles of steady state boiling, the vessel coatings remained rather intact, with no apparent changes in color or structure. Moreover, the heat transfer performance of the coatings was found to be highly desirable with an appreciable CHF enhancement in all locations on the vessel outer surface but with very little effect of aging. (authors)

  2. CHF Enhancement by Vessel Coating for External Reactor Vessel Cooling

    SciTech Connect (OSTI)

    Fan-Bill Cheung; Joy L. Rempe

    2004-06-01

    In-vessel retention (IVR) is a key severe accident management (SAM) strategy that has been adopted by some operating nuclear power plants and advanced light water reactors (ALWRs). One viable means for IVR is the method of external reactor vessel cooling (ERVC) by flooding of the reactor cavity during a severe accident. As part of a joint Korean – United States International Nuclear Energy Research Initiative (K-INERI), an experimental study has been conducted to investigate the viability of using an appropriate vessel coating to enhance the critical heat flux (CHF) limits during ERVC. Toward this end, transient quenching and steady-state boiling experiments were performed in the SBLB (Subscale Boundary Layer Boiling) facility at Penn State using test vessels with micro-porous aluminum coatings. Local boiling curves and CHF limits were obtained in these experiments. When compared to the corresponding data without coatings, substantial enhancement in the local CHF limits for the case with surface coatings was observed. Results of the steady state boiling experiments showed that micro-porous aluminum coatings were very durable. Even after many cycles of steady state boiling, the vessel coatings remained rather intact, with no apparent changes in color or structure. Moreover, the heat transfer performance of the coatings was found to be highly desirable with an appreciable CHF enhancement in all locations on the vessel outer surface but with very little effect of aging.

  3. Simulation of Molecular Signaling in Blood Vessels: Software Design and Application to Atherogenesis

    E-Print Network [OSTI]

    Luca Felicetti; Mauro Femminella; Gianluca Reali

    2013-06-01

    This paper presents a software platform, named BiNS2, able to simulate diffusion-based molecular communications with drift inside blood vessels. The contribution of the paper is twofold. First a detailed description of the simulator is given, under the software engineering point of view, by highlighting the innovations and optimizations introduced. Their introduction into the previous version of the BiNS simulator was needed to provide to functions for simulating molecular signaling and communication potentials inside bounded spaces. The second contribution consists of the analysis, carried out by using BiNS2, of a specific communication process happening inside blood vessels, the atherogenesis, which is the initial phase of the formation of atherosclerotic plaques, due to the abnormal signaling between platelets and endothelium. From a communication point of view, platelets act as mobile transmitters, endothelial cells are fixed receivers, sticky to the vessel walls, and the transmitted signal is made of bursts of molecules emitted by platelets. The simulator allows evaluating the channel latency and the footprint on the vessel wall of the transmitted signal as a function of the transmitter distance from the vessels wall, the signal strength, and the receiver sensitivity.

  4. Electrochemical assessment and service-life prediction of mechanically stabilized earth walls backfilled with crushed concrete and recycled asphalt pavement 

    E-Print Network [OSTI]

    Esfeller, Michael Watts, Jr.

    2009-06-02

    A Mechanically Stabilized Earth (MSE) wall is a vertical grade separation that uses earth reinforcement extending laterally from the wall to take advantage of earth pressure to reduce the required design strength of the ...

  5. Four-wall turbine airfoil with thermal strain control for reduced cycle fatigue

    DOE Patents [OSTI]

    Cambell, Christian X

    2013-09-17

    A turbine airfoil (20B) with a thermal expansion control mechanism that increases the airfoil camber (60, 61) under operational heating. The airfoil has four-wall geometry, including pressure side outer and inner walls (26, 28B), and suction side outer and inner walls (32, 34B). It has near-wall cooling channels (31F, 31A, 33F, 33A) between the outer and inner walls. A cooling fluid flow pattern (50C, 50W, 50H) in the airfoil causes the pressure side inner wall (28B) to increase in curvature under operational heating. The pressure side inner wall (28B) is thicker than walls (26, 34B) that oppose it in camber deformation, so it dominates them in collaboration with the suction side outer wall (32), and the airfoil camber increases. This reduces and relocates a maximum stress area (47) from the suction side outer wall (32) to the suction side inner wall (34B, 72) and the pressure side outer wall (26).

  6. Pressurized reactor system and a method of operating the same

    DOE Patents [OSTI]

    Isaksson, J.M.

    1996-06-18

    A method and apparatus are provided for operating a pressurized reactor system in order to precisely control the temperature within a pressure vessel in order to minimize condensation of corrosive materials from gases on the surfaces of the pressure vessel or contained circulating fluidized bed reactor, and to prevent the temperature of the components from reaching a detrimentally high level, while at the same time allowing quick heating of the pressure vessel interior volume during start-up. Super-atmospheric pressure gas is introduced from the first conduit into the fluidized bed reactor and heat derived reactions such as combustion and gasification are maintained in the reactor. Gas is exhausted from the reactor and pressure vessel through a second conduit. Gas is circulated from one part of the inside volume to another to control the temperature of the inside volume, such as by passing the gas through an exterior conduit which has a heat exchanger, control valve, blower and compressor associated therewith, or by causing natural convection flow of circulating gas within one or more generally vertically extending gas passages entirely within the pressure vessel (and containing heat exchangers, flow rate control valves, or the like therein). Preferably, inert gas is provided as a circulating gas, and the inert gas may also be used in emergency shut-down situations. In emergency shut-down reaction gas being supplied to the reactor is cut off, while inert gas from the interior gas volume of the pressure vessel is introduced into the reactor. 2 figs.

  7. Pressurized reactor system and a method of operating the same

    DOE Patents [OSTI]

    Isaksson, Juhani M. (Karhula, FI)

    1996-01-01

    A method and apparatus are provided for operating a pressurized reactor system in order to precisely control the temperature within a pressure vessel in order to minimize condensation of corrosive materials from gases on the surfaces of the pressure vessel or contained circulating fluidized bed reactor, and to prevent the temperature of the components from reaching a detrimentally high level, while at the same time allowing quick heating of the pressure vessel interior volume during start-up. Superatmospheric pressure gas is introduced from the first conduit into the fluidized bed reactor and heat derived reactions such as combustion and gassification are maintained in the reactor. Gas is exhausted from the reactor and pressure vessel through a second conduit. Gas is circulated from one part of the inside volume to another to control the temperature of the inside volume, such as by passing the gas through an exterior conduit which has a heat exchanger, control valve, blower and compressor associated therewith, or by causing natural convection flow of circulating gas within one or more generally vertically extending gas passages entirely within the pressure vessel (and containing heat exchangers, flow rate control valves, or the like therein). Preferably, inert gas is provided as a circulating gas, and the inert gas may also be used in emergency shut-down situations. In emergency shut-down reaction gas being supplied to the reactor is cut off, while inert gas from the interior gas volume of the pressure vessel is introduced into the reactor.

  8. ENSC 283: Center of Pressure and Hydrostatic Force on a submerged body School of Engineering Science

    E-Print Network [OSTI]

    Bahrami, Majid

    should be included. The water vessel is designed as a ring segment with constant cross-section. The top of water in the vessel. At a water level, , below the 100 mm mark, the height of the active surface changes in a way that only the moment due to hydrostatic pressure distribution on the vertical end of water vessel

  9. Digital material skins : for reversible reusable pressure vessels

    E-Print Network [OSTI]

    Hovsepian, Sarah

    2012-01-01

    Spacecraft missions have traditionally sacrificed fully functional hardware and entire vehicles to achieve mission objectives. Propellant tanks are typically jettisoned at different stages in a spacecraft mission and left ...

  10. International Hydrogen Fuel and Pressure Vessel Forum 2010 Beijing, China

    E-Print Network [OSTI]

    challenges in harmonizing test protocols and requirements for compressed natural gas (CNG), hydrogen, and CNG-up on technical topics and issues identified during a previous international workshop on hydrogen and CNG fuels information and data on testing and certification of storage tanks for compressed hydrogen, CNG, and HCNG

  11. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel...

    Broader source: Energy.gov (indexed) [DOE]

    These techniques may offer a method for nondestructive characterization of RPV steel which can then possibly be correlated to its fracture toughness. LWRS NDE RD...

  12. Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From: JuliaDepartment-8-2008 October5 ofCTIAR.

  13. International Hydrogen Fuel and Pressure Vessel Forum | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartment of EnergyDemonstrationDepartmentOil

  14. Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOE HDBK-1113-2008Broadband Plan

  15. Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOE HDBK-1113-2008Broadband PlanInitial Assessment of

  16. International Hydrogen Fuel and Pressure Vessel Forum - Presentations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S. Department of Energy |June 2015AmericanSupplyDepartment of

  17. International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S. Department of Energy |June 2015AmericanSupplyDepartment

  18. Forum Agenda: International Hydrogen Fuel and Pressure Vessel Forum |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescent LampFort Collins, Colorado on Track to NetDepartment

  19. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-A WholesaleRetrofitElectrical Equipment To BeDepartment ofand

  20. Lightweight cryogenic-compatible pressure vessels for vehicular fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H2015Tray and Enclosure |

  1. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Vessel Time Exposure GW-VCU Draft #12;11/21/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 RMM 1: Max. Speed of Container Vessels at 17 knots. RMM 2: Reduce Human Error incident on Oil Barges by 50% RMM 3: No Bunkering

  2. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Vessel Time Exposure Escort Cape Size Draft #12;11/21/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 DEFINITION OF ASSUMED LOCATIONS FOR ADDED ESCORT VESSEL FOR HARO-BOUNDARY ROUTES (GREEN) AND FOR ROSARIO ROUTES (ORANGE

  3. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Oil Time Exposure Dr & 6 RMM's Draft #12;11/21/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 RMM 1: Max. Speed-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 DEFINITION OF ASSUMED LOCATIONS FOR ADDED ESCORT VESSEL

  4. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding/23/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;T : GW - KM - DP & +VAR FV 3D Risk-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;12/23/2013 4 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT

  5. Corium Retention for High Power Reactors by An In-Vessel Core Catcher in Combination with External Reactor Vessel Cooling

    SciTech Connect (OSTI)

    Joy L. Rempe; D. L. Knudson; K. G. Condie; K. Y. Suh; F. -B. Cheung; S. -B. Kim

    2004-05-01

    If there were inadequate cooling during a reactor accident, a significant amount of core material could become molten and relocate to the lower head of the reactor vessel, as happened in the Three Mile Island Unit 2 (TMI-2) accident. If it is possible to ensure that the vessel lower head remains intact so that relocated core materials are retained within the vessel, the enhanced safety associated with these plants can reduce concerns about containment failure and associated risk. For example, the enhanced safety of the Westinghouse Advanced 600 MWe Pressurized Water Reactor (AP600), which relied upon External Reactor Vessel Cooling (ERVC) for in-vessel retention (IVR), resulted in the United States Nuclear Regulatory Commission (US NRC) approving the design without requiring certain conventional features common to existing Light Water Reactors (LWRs). Accordingly, IVR of core melt is a key severe accident management strategy adopted by some operating nuclear power plants and proposed for some advanced light water reactors. However, it is not clear that currently-proposed methods to achieve ERVC will provide sufficient heat removal for higher power reactors. A US–Korean International Nuclear Energy Research Initiative (INERI) project has been initiated in which the Idaho National Engineering and Environmental Laboratory (INEEL), Seoul National University (SNU), Pennsylvania State University (PSU), and the Korea Atomic Energy Research Institute (KAERI) will determine if IVR is feasible for reactors up to 1500 MWe. This paper summarizes results from the first year of this 3-year project.

  6. A Five-dimensional Visualization of the Pressure-induced Phase...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by changing the external pressure which can be well controlled using high-pressure vessels such as diamond anvil cells. Numerous studies on BiNiO3 have been carried out using...

  7. print_grid() add_vessel()

    E-Print Network [OSTI]

    Sharlin, Ehud

    grid.py print_grid() add_vessel() has_overlap() GRID_WIDTH GRID_HEIGHT NUM_VESSELS B VESSEL_NAMES[] VESSEL_SIZES[] human.py get_location() get_choice() grid_defend[] grid_attack[] import grid ai.py get, return false · add_vessel(grid, row, column, size, direction) ­ Check direction ­ Single for loop (size

  8. Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel

    DOE Patents [OSTI]

    Schreiber, Roger B. (Penn Twp., PA); Fero, Arnold H. (New Kensington, PA); Sejvar, James (Murrysville, PA)

    1997-01-01

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor.

  9. Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel

    DOE Patents [OSTI]

    Schreiber, R.B.; Fero, A.H.; Sejvar, J.

    1997-12-16

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor. 8 figs.

  10. The Borobudur Vessels in Context 

    E-Print Network [OSTI]

    Inglis, Douglas Andrew

    2014-07-28

    ). .................................................. 102 Fig. 39. Peterson’s reconstruction of I.b.86 (from Peterson 2006, 54, fig. 8.8). ............ 104 Fig. 40. Van Erp’s Photograph of I.b.86 (after Van Erp 1923, 18, afb. 6). .................... 104 Fig. 41: Sarimanok, built and sailed by Rob..., 28, afb. 10). ................................................... 113 Fig. 48. Vessel I.b.82 is a schematic view of a beached ship’s boat. The vessel is distinctly disproportionate to the figures (photograph after Anandajoti 2009d...

  11. Development of Larger Diameter High Pressure CNG Cylinder Manufactured by Piercing and Drawing for Natural Gas Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE)

    These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 – 29, 2010, in Beijing, China.

  12. DETERMINATION OF LIQUID FILM THICKNESS FOLLOWING DRAINING OF CONTACTORS, VESSELS, AND PIPES IN THE MCU PROCESS

    SciTech Connect (OSTI)

    Poirier, M; Fernando Fondeur, F; Samuel Fink, S

    2006-06-06

    The Department of Energy (DOE) identified the caustic side solvent extraction (CSSX) process as the preferred technology to remove cesium from radioactive waste solutions at the Savannah River Site (SRS). As a result, Washington Savannah River Company (WSRC) began designing and building a Modular CSSX Unit (MCU) in the SRS tank farm to process liquid waste for an interim period until the Salt Waste Processing Facility (SWPF) begins operations. Both the solvent and the strip effluent streams could contain high concentrations of cesium which must be removed from the contactors, process tanks, and piping prior to performing contactor maintenance. When these vessels are drained, thin films or drops will remain on the equipment walls. Following draining, the vessels will be flushed with water and drained to remove the flush water. The draining reduces the cesium concentration in the vessels by reducing the volume of cesium-containing material. The flushing, and subsequent draining, reduces the cesium in the vessels by diluting the cesium that remains in the film or drops on the vessel walls. MCU personnel requested that Savannah River National Laboratory (SRNL) researchers conduct a literature search to identify models to calculate the thickness of the liquid films remaining in the contactors, process tanks, and piping following draining of salt solution, solvent, and strip solution. The conclusions from this work are: (1) The predicted film thickness of the strip effluent is 0.010 mm on vertical walls, 0.57 mm on horizontal walls and 0.081 mm in horizontal pipes. (2) The predicted film thickness of the salt solution is 0.015 mm on vertical walls, 0.74 mm on horizontal walls, and 0.106 mm in horizontal pipes. (3) The predicted film thickness of the solvent is 0.022 mm on vertical walls, 0.91 mm on horizontal walls, and 0.13 mm in horizontal pipes. (4) The calculated film volume following draining is: (a) Salt solution receipt tank--1.6 gallons; (b) Salt solution feed tank--1.6 gallons; (c) Decontaminated salt solution hold tank--1.6 gallons; (d) Contactor drain tank--0.40 gallons; (e) Strip effluent hold tank--0.33 gallons; (f) Decontaminated salt solution decanter--0.37 gallons; (g) Strip effluent decanter--0.14 gallons; (h) Solvent hold tank--0.30 gallon; and (i) Corrugated piping between contactors--16-21 mL. (5) After the initial vessel draining, flushing the vessels with 100 gallons of water using a spray nozzle that produces complete vessel coverage and draining the flush water reduces the source term by the following amounts: (i) Salt solution receipt tank--63X; (ii) Salt solution feed tank--63X; (iii) Decontaminated salt solution hold tank--63X; (iv) Contactor drain tank--250X; (v) Strip effluent hold tank--300X; (vi) Decontaminated salt solution decanter--270X; (vii) Strip effluent decanter--710X; (viii) Solvent hold tank--330X. Understand that these estimates of film thickness are based on laboratory testing and fluid mechanics theory. The calculations assume drainage occurs by film flow. Much of the data used to develop the models came from tests with very ''clean'' fluids. Impurities in the fluids and contaminants on the vessels walls could increase liquid holdup. The application of film thickness models and source term reduction calculations should be considered along with operational conditions and H-Tank Farm/Liquid Waste operating experience. These calculations exclude the PVV/HVAC duct work and piping, as well as other areas that area outside the scope of this report.

  13. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    DOE Patents [OSTI]

    Zafred, P.R.; Dederer, J.T.; Gillett, J.E.; Basel, R.A.; Antenucci, A.B.

    1996-11-12

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas and pressurized fuel gas into modules containing fuel cells, where the modules are each enclosed by a module housing surrounded by an axially elongated pressure vessel, and where there is a purge gas volume between the module housing and pressure vessel; passing pressurized purge gas through the purge gas volume to dilute any unreacted fuel gas from the modules; and passing exhaust gas and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transportable when the pressure vessel is horizontally disposed, providing a low center of gravity. 11 figs.

  14. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    DOE Patents [OSTI]

    Zafred, Paolo R. (Pittsburgh, PA); Dederer, Jeffrey T. (Valencia, PA); Gillett, James E. (Greensburg, PA); Basel, Richard A. (Plub Borough, PA); Antenucci, Annette B. (Pittsburgh, PA)

    1996-01-01

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas, (O) and pressurized fuel gas, (F), into fuel cell modules, (10 and 12), containing fuel cells, where the modules are each enclosed by a module housing (18), surrounded by an axially elongated pressure vessel (64), where there is a purge gas volume, (62), between the module housing and pressure vessel; passing pressurized purge gas, (P), through the purge gas volume, (62), to dilute any unreacted fuel gas from the modules; and passing exhaust gas, (82), and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transpatable when the pressure vessel (64) is horizontally disposed, providing a low center of gravity.

  15. Pressure Safety Program Implementation at ORNL

    SciTech Connect (OSTI)

    Lower, Mark; Etheridge, Tom; Oland, C. Barry

    2013-01-01

    The Oak Ridge National Laboratory (ORNL) is a US Department of Energy (DOE) facility that is managed by UT-Battelle, LLC. In February 2006, DOE promulgated worker safety and health regulations to govern contractor activities at DOE sites. These regulations, which are provided in 10 CFR 851, Worker Safety and Health Program, establish requirements for worker safety and health program that reduce or prevent occupational injuries, illnesses, and accidental losses by providing DOE contractors and their workers with safe and healthful workplaces at DOE sites. The regulations state that contractors must achieve compliance no later than May 25, 2007. According to 10 CFR 851, Subpart C, Specific Program Requirements, contractors must have a structured approach to their worker safety and health programs that at a minimum includes provisions for pressure safety. In implementing the structured approach for pressure safety, contractors must establish safety policies and procedures to ensure that pressure systems are designed, fabricated, tested, inspected, maintained, repaired, and operated by trained, qualified personnel in accordance with applicable sound engineering principles. In addition, contractors must ensure that all pressure vessels, boilers, air receivers, and supporting piping systems conform to (1) applicable American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (2004) Sections I through XII, including applicable code cases; (2) applicable ASME B31 piping codes; and (3) the strictest applicable state and local codes. When national consensus codes are not applicable because of pressure range, vessel geometry, use of special materials, etc., contractors must implement measures to provide equivalent protection and ensure a level of safety greater than or equal to the level of protection afforded by the ASME or applicable state or local codes. This report documents the work performed to address legacy pressure vessel deficiencies and comply with pressure safety requirements in 10 CFR 851. It also describes actions taken to develop and implement ORNL’s Pressure Safety Program.

  16. CATCHER VESSEL INTERCOOPERATIVE FINAL REPORT

    E-Print Network [OSTI]

    2001 CATCHER VESSEL INTERCOOPERATIVE FINAL REPORT TO THE NORTH PACIFIC FISHERY MANAGEMENT COUNCIL. The Race for Fish 8 Graph 2.2a 1999 & 2001 Mothership Pollock Harvest 9 Graph 2.2b 1999 & 2001 Inshore - Coop Sideboard Caps, Transfers, and Directed Fishing Appendix IX - BBRKC Management Plan #12;3 Section

  17. COMMERCIAL FISHING VESSELS AND GEAR

    E-Print Network [OSTI]

    COMMERCIAL FISHING VESSELS AND GEAR I Mafine Biological Laboratory SEP 2 01957 WOODS HOLE, MASS. UNITED STATES DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE SERVICE CIRCULAR 48 #12;CONTENTS Page Tuna Clipper 3 Tuna Bait Fishing 4 Two-Pole Tuna Fishing 4 Halibut Schooner 5 Halibut Long- Line 6 Steel Cable

  18. Seismic Vessel Problem Gregory Gutin

    E-Print Network [OSTI]

    Gutin, Gregory

    Seismic Vessel Problem Gregory Gutin , Helmut Jakubowicz , Shuki Ronen and Alexei Zverovitch§ November 14, 2003 Abstract We introduce and study a new combinatorial optimization prob- lem, the Seismic computational experience with solving SVP instances drawn from industrial practice (geophysical seismic acquisi

  19. Liquid crystal bilayer wall

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    electron microscopy done on freeze fractured samples, as well as theoretical considerations. The pore tests show that the polymerization proceeds despite the mechanical failure. These findings suggest many to the shape of the reaction vessel. Because of these properties, we propose that the silica L3 could be used

  20. Analysis of In-Vessel Late Phase Melt Progression Using SCDAP/RELAP5/MOD3.3

    SciTech Connect (OSTI)

    Park, R.J.; Kim, S.B.; Kim, H.D. [Korea Atomic Energy Research Institute, Yuseong, P.O.Box 105, Daejeon, 305-600 (Korea, Republic of)

    2004-07-01

    High-pressure in-vessel melt progressions of the KSNP (Korean Standard Nuclear Power Plant) have been analyzed using the SCDAP/RELAP5/MOD3.3 computer code. The total loss of feed water (LOFW) to the steam generators with/without intentional RCS depressurization using the safety depressurization system (SDS) and the station blackout (SBO) have been simulated from transient initiation to reactor vessel failure. The SCDAP/RELAP5/MOD3.3 results have shown that the pressure boundary of the reactor coolant system did not fail before reactor vessel failure in the high-pressure sequences of the LOFW and the SBO transients of the KSNP. In all the high-pressure transients, approximately 20-30 % of the core material was melted and relocated to the lower plenum of the reactor vessel at the time of reactor vessel failure. Intentional RCS depressurization using the SDS for the total LOFW delays reactor vessel failure for approximately 5 hours by actuation of the safety injection tanks. At the time of reactor vessel failure, approximately 50-60 % of the fuel rod cladding was oxidized for the total LOFW and the SBO transients of the KSNP. (authors)

  1. Middle Bronze Age Ceramic Vessels from Kamid el-Loz

    E-Print Network [OSTI]

    Cantazariti, Antonietta

    2014-01-01

    and reconstruction of the ceramic vessel economic systemsmainly complete ceramic vessels and, more specifically,chemical composition of the vessel. This was particularly

  2. Vessel network detection using contour evolution and color components

    E-Print Network [OSTI]

    Ushizima, Daniela

    2013-01-01

    segmentation of retinal blood vessels and identification ofnormalization and local vessel detection. IEEE Trans MedLea. A review of 3d vessel lumen segmentation techniques:

  3. Identification of reactor vessel failures using spatiotemporal neural networks

    SciTech Connect (OSTI)

    Roh, C.H.; Chang, H.S.; Kim, H.G.; Chang, S.H. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of). Dept. of Nuclear Engineering

    1996-12-01

    Identification of vessel failures provides operators and technical support center personnel with important information to manage severe accidents in a nuclear power plant. It may be very difficult, however, for operators to identify a reactor vessel failure simply by watching temporal trends of some parameters because they have not experienced severe accidents. Therefore, the authors propose a methodology on the identification of pressurized water reactor (PWR) vessel failure for severe accident management using spatiotemporal neural network (STN). STN can deal directly with the spatial and temporal aspects of input signals and can well identify a time-varying problem. Target patterns of seven parameter signals were generated for training the network from the modular accident in nuclear power plants. They integrated MAAP code with STN in on-line system to mimic real accident situation in nuclear power plants. Using new pattern of signals that had never been used for training, the identification capability of STN was tested in a real-time manner. At the tests, STN developed in this study demonstrated acceptable performance in identifying the occurrence of a vessel failure. It is found that STN techniques can be extended to the identification of other key events such as onset of core uncovery, coremelt initiation, containment failure, etc.

  4. Heat transfer and friction in a square channel with one-wall or two-wall rib turbulators 

    E-Print Network [OSTI]

    Huang, Jie Joy

    1991-01-01

    of MASTER OF SCIENCE December 1991 Major Subject: Mechanical Engineering HEAT TRANSFER AND FRICTION IN A SQUARE CHANNEI WITH ONE-WAIL OR TWO-WALL RIB TURBULATORS A Thesis by JIE JOY HUANG Approved as to style snd content by: J. C. Han (Chair.... , Shanghai Institute of Mechanical Engineering Chair of Advisory Committee: Dr. J. C, Han This experimental program studies the effect of the wall heat flux ratio on the local heat transfer distributions and pressure drop in a square channel...

  5. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Vessel Time Exposure & No Bunkering Draft #12;Q: GW 487 3D Risk Profile All FV - Vessel Time Exposure: 113% of Base Case VTE 23-24 22-4 2-3 1-2 0-1 11/17/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;Q: GW 487 & NB

  6. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Vessel Time Exposure + Bunkering Draft #12;P: Base Case 3D Risk Profile All FV - Vessel Time Exposure: 100% of Base Case VTE 23-5 3-4 2-3 1-2 0-1 11/17/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;S: DP 415 3

  7. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Vessel Time Exposure & No Bunkering & Only Haro Draft #12;Q: GW 487 & NB 3D Risk Profile All FV - Vessel Time Exposure: 108% of Base-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 11/17/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12

  8. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Vessel Time Exposure & Additional Variability of Case T What-If Focus Vessel Arrivals Draft #12;T: GW - KM - DP 3D Risk Profile All FV - Vessel Time Exposure: 125% of Base Case VTE 23-24 22-23 21-22 20-21 19-20 18-19 17-18 16-17 15

  9. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Vessel Time Exposure + Cargo FV set at High December 2013 Draft #12;T: GW - KM - DP 3D Risk Profile All FV - Vessel Time-12 10-11 9-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 12/13/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT

  10. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Vessel Time Exposure + Bunkering Draft #12;P: Base Case 3D Risk Profile All FV - Vessel Time Exposure: 100% of Base Case VTE 23-5 3-4 2-3 1-2 0-1 11/17/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;R: KM 348 3

  11. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Vessel Time Exposure ­ DP & Tankers set Low #12;T: GW - KM - DP 3D Risk Profile All FV - Vessel Time Exposure: 125% of Base-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 12/23/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 #12;T

  12. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Vessel Time Exposure GW-VCU Draft #12;P: Base Case 3D Risk Profile All FV - Vessel Time Exposure: 100% of Base Case VTE 23-5 3-4 2-3 1-2 0-1 11/17/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;T: GW - KM

  13. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Vessel Time Exposure + Bunkering Draft #12;P: Base Case 3D Risk Profile All FV - Vessel Time Exposure: 100% of Base Case VTE 23-5 3-4 2-3 1-2 0-1 11/17/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;Q: GW 487 3

  14. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Vessel Time Exposure + Cargo FV set Low December 2013 Draft #12;T: GW - KM - DP 3D Risk Profile All FV - Vessel Time Exposure-11 9-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 12/23/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA

  15. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Vessel Time Exposure set at High December 2013 Draft #12;T: GW - KM - DP 3D Risk Profile All FV - Vessel Time Exposure: 125-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 12/13/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

  16. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Vessel Time Exposure and Cargo FV set at High Draft #12;P: Base Case 3D Risk Profile All FV - Vessel Time Exposure: 100% of Base-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 12/12/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12

  17. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Vessel Time Exposure Way ATB's Rosario #12;T: GW - KM - DP 3D Risk Profile All FV - Vessel Time Exposure: 125% of Base Case-7 5-6 4-5 3-4 2-3 1-2 0-1 11/20/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 #12;T: GW

  18. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Oil Time Exposure Dr-5 3-4 2-3 1-2 0-1 12/12/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;P: BC/12/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;12/12/2013 4 GW-VCU VESSEL TRAFFIC

  19. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Oil Time Exposure Dr-5 3-4 2-3 1-2 0-1 11/17/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;T: GW - KM GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;11/17/2013 4 GW-VCU VESSEL TRAFFIC RISK

  20. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Vessel Time Exposure TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;U : GW - KM - DP & VAR 3D Risk Profile All FV - Vessel Time-12 10-11 9-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 11/21/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT

  1. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Oil Time Exposure Dr-4 2-3 1-2 0-1 11/17/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;R: KM 348 3D-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;11/17/2013 4 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT

  2. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Oil Time Exposure Dr-4 2-3 1-2 0-1 11/17/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;S: DP 415 3D-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;11/17/2013 4 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT

  3. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Oil Time Exposure Dr-4 2-3 1-2 0-1 11/17/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;Q: GW 487 3D-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;11/17/2013 4 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT

  4. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Oil Time Exposure Dr-4 2-3 1-2 0-1 11/17/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;Q: GW 487 & NB GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;11/17/2013 4 GW-VCU VESSEL TRAFFIC RISK

  5. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Oil Time Exposure Dr-5 3-4 2-3 1-2 0-1 11/21/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;T: GW - KM/21/2013 4 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;11/21/2013 5 GW-VCU VESSEL TRAFFIC

  6. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Oil Time Exposure Dr-5 3-4 2-3 1-2 0-1 12/19/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;P: BC & LOW GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;12/19/2013 4 GW-VCU VESSEL TRAFFIC RISK

  7. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    ;12/19/2013 4 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION OIL LOSS - PCO Draft #12;12/19/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION OIL LOSS - PCO Draft #12VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Collision

  8. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    -VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION OIL LOSS - PCO Draft #12;11/17/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION OIL LOSS - PCO Draft #12;Q: GW 487 3D RiskVESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Collision

  9. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    ;11/17/2013 4 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL GROUNDING OIL LOSS - PGO Draft #12;11/17/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL GROUNDING OIL LOSS - PGO Draft #12VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding

  10. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    ;12/19/2013 4 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL GROUNDING OIL LOSS - PGO Draft #12;12/19/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL GROUNDING OIL LOSS - PGO Draft #12VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding

  11. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Oil Time Exposure Dr-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 OIL TIME EXPOSURE- OTE #12;12/23/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 OIL TIME EXPOSURE- OTE #12;T: GW - KM - DP 3D Risk Profile What-If FV - Oil

  12. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    ;11/17/2013 4 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION OIL LOSS - PCO Draft #12;11/17/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION OIL LOSS - PCO Draft #12VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Collision

  13. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Oil Time Exposure Dr;11/18/2013 4 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 OIL TIME EXPOSURE- OTE Draft #12;11/18/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 OIL TIME EXPOSURE- OTE Draft #12;DEFINITION OF 15 WATERWAY

  14. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    ;12/23/2013 4 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL GROUNDING OIL LOSS - PGO #12;12/23/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL GROUNDING OIL LOSS - PGO #12;T: GW) 2010 POTENTIAL GROUNDING OIL LOSS - PGO #12;12/23/2013 9 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA

  15. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    Draft #12;11/17/2013 4 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION OIL LOSS - PCO Draft #12;11/17/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION OIL-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION OIL LOSS - PCO Draft #12;11/17/2013 9 GW

  16. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    #12;12/23/2013 4 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION OIL LOSS - PCO #12;12/23/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION OIL LOSS - PCO TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION OIL LOSS - PCO #12;12/23/2013 9 GW-VCU VESSEL

  17. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    ;12/12/2013 4 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL GROUNDING OIL LOSS - PGO Draft #12;12/12/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL GROUNDING OIL LOSS - PGO Draft #12;P-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL GROUNDING OIL LOSS - PGO Draft #12;DEFINITION OF 15

  18. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    -VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL GROUNDING OIL LOSS - PGO Draft #12;12/19/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL GROUNDING OIL LOSS - PGO Draft #12;DEFINITION OF 15VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding

  19. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    -VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION OIL LOSS - PCO Draft #12;12/19/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION OIL LOSS - PCO Draft #12;DEFINITION OF 15VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Collision

  20. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    ;11/21/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION OIL LOSS - PCO Draft #12;11/21/2013 6 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION OIL LOSS - PCO Draft #12;T ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION OIL LOSS - PCO Draft #12;11/21/2013 10 GW-VCU VESSEL TRAFFIC RISK

  1. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    Draft #12;12/13/2013 4 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION OIL LOSS - PCO Draft #12;12/13/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION OIL;12/13/2013 8 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION OIL LOSS - PCO Draft #12

  2. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    ;11/17/2013 4 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION OIL LOSS - PCO Draft #12;11/17/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION OIL LOSS - PCO Draft #12;T-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION OIL LOSS - PCO Draft #12;DEFINITION OF 15

  3. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    #12;12/23/2013 4 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL GROUNDING OIL LOSS - PGO #12;12/23/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL GROUNDING OIL LOSS - PGO TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL GROUNDING OIL LOSS - PGO #12;12/23/2013 9 GW-VCU VESSEL

  4. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    -VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION OIL LOSS - PCO Draft #12;11/17/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION OIL LOSS - PCO Draft #12;R: KM 348 3D RiskVESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Collision

  5. Nonlinear Tracking Control of Underactuated Surface Vessel

    E-Print Network [OSTI]

    Guo, Yi

    Nonlinear Tracking Control of Underactuated Surface Vessel Wenjie Dong and Yi Guo Abstract-- We consider in this paper the tracking control problem of an underactuated surface vessel. Based that the proposed control laws are effective. I. INTRODUCTION Control of underactuated surface vessels has attracted

  6. Vessel segmentation for angiographic enhancement and analysis

    E-Print Network [OSTI]

    Lübeck, Universität zu

    Vessel segmentation for angiographic enhancement and analysis Alexandru Condurache1 , Til Aach1@isip.uni-luebeck.de Abstract. Angiography is a widely used method of vessel imaging for the diagnosis and treatment of pathological manifestations as well as for medical research. Vessel segmentation in angiograms is useful

  7. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Collision ASSESSMENT (VTRA) 2010 Draft #12;12/13/2013 4 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION OIL LOSS - PCO Draft #12;12/13/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL

  8. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Collision ­ KM ­ DP & 6 RMM's Draft #12;11/21/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 RMM 1: Max;11/21/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 DEFINITION OF ASSUMED LOCATIONS FOR ADDED ESCORT

  9. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Collision;11/22/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 DEFINITION OF ASSUMED LOCATIONS FOR ADDED ESCORT GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;T: GW - KM - DP & ER 3D Risk Profile All

  10. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Collision GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;T : GW - KM - DP & +VAR FV 3D Risk RISK ASSESSMENT (VTRA) 2010 12/23/2013 3 GW-VCU Draft #12;12/23/2013 4 GW-VCU VESSEL TRAFFIC RISK

  11. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding ­ KM ­ DP & 6 RMM's Draft #12;11/21/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 RMM 1: Max;11/21/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 DEFINITION OF ASSUMED LOCATIONS FOR ADDED ESCORT

  12. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;T : GW - KM - DP & +VAR FV 3D Risk ASSESSMENT (VTRA) 2010 12/23/2013 3 GW-VCU Draft #12;12/23/2013 4 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA

  13. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Collision T ­ GW ­ KM ­ DP & 6 RMM's Draft #12;11/21/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 RMM 1) Draft #12;11/21/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 DEFINITION OF ASSUMED LOCATIONS

  14. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Collision ASSESSMENT (VTRA) 2010 Draft #12;12/13/2013 4 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION FREQUENCY - PCF Draft #12;12/13/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL

  15. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Oil Time Exposure Dr-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 DEFINITION OF ASSUMED LOCATIONS FOR ADDED ESCORT VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;T: GW - KM - DP & ER 3D Risk Profile All FV - Oil Time

  16. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Collision TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;T : GW - KM - DP & High Tan + CFV 3D Risk Profile All FV-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;12/13/2013 4 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT

  17. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding T ­ GW ­ KM ­ DP & 6 RMM's Draft #12;11/21/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 RMM 1) Draft #12;11/21/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 DEFINITION OF ASSUMED LOCATIONS

  18. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Collision GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;U : GW - KM - DP & VAR 3D Risk Profile ASSESSMENT (VTRA) 2010 11/21/2013 3 GW-VCU Draft #12;11/21/2013 4 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA

  19. Amendment 80 vessel replacement 1 Implementation and of Amendment 80 Vessel Replacement Provisions

    E-Print Network [OSTI]

    Amendment 80 vessel replacement 1 Implementation and of Amendment 80 Vessel Replacement Provisions identified and limited the vessels that could be used to fish for certain species of BSAI groundfish in a particular sector of the groundfish fishery. The final rule included this vessel restriction based on NMFS

  20. Modelling of a coke oven heating wall M. Landreau, D. Isler, Centre de Pyrolyse de Marienau (CPM)

    E-Print Network [OSTI]

    Boyer, Edmond

    - 1 - Modelling of a coke oven heating wall M. Landreau, D. Isler, Centre de Pyrolyse de Marienau with thermomechanical modelling of a coke oven heating wall. The objective is to define the safe limits of coke oven of walls, roof and larry car, pre-stresses (anchoring system), lateral pressure due to coal pushing A 3D

  1. Thermal treatment wall

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Newmark, Robin L. (Livermore, CA); Knauss, Kevin G. (Livermore, CA)

    2000-01-01

    A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

  2. PRESSURIZED EQUIPMENT AND SYSTEMS Table Of Contents

    E-Print Network [OSTI]

    US Army Corps of Engineers

    and tests will be performed by personnel qualified in accordance with the ASME Code or the NBBI. 20.A.02 placed in service and after any repair or modification. b. Unless State or local codes specify more. Inspections of pressure vessels prior to being placed in service shall be in accordance with the ASME "Boiler

  3. Covering Walls With Fabrics. 

    E-Print Network [OSTI]

    Anonymous,

    1979-01-01

    , grasscloth and many other textures and weaves are available in this type of wall covering. When selecting fabrics to apply to interior walls, consider pattern, color, amount of shrink age and weight. Check to see if the design is printed with the grain... several times over a 12-inch length until fabric is cut through and can be pulled away easily (see Figure 5) . Figure 5 To cover raw edges at top or bottom when . there is no molding, attach an attractive gimp, flat braid or decorative molding...

  4. IDS120j WITHOUT RESISTIVE MAGNETS INTRODUCING A DOUBLE WALL Hg POOL VESSSELAND Be WINDOW.

    E-Print Network [OSTI]

    McDonald, Kirk

    IDS120j WITHOUT RESISTIVE MAGNETS INTRODUCING A DOUBLE WALL Hg POOL VESSSELAND Be WINDOW. SC#4 STUDIES FOR 20 cm GAPS SIZE FOR STST IN THE PLACE OF RESISTIVE MAGNETS AND REST OF VOLUME IN Hg POOL SHIELDING IN THE PLACE OF RESISTIVE MAGNETS AND IN THE REST OF VOLUME IN THE Hg POOL VESSEL

  5. CRACKING OF PRESTRESSED CONCRETE CONTAINMENTS DUE TO INTERNAL PRESSURE

    E-Print Network [OSTI]

    applied to a 1/14 scale test structure. Observed values agreed well with predicted values. #12;Mac of a containment vessel (wall segment tests) reported in this paper and Ref. 4 and 5, and a test of a 1/14 size reached, all cracks observed in the tests had formed. At greater strains certain existing cracks became

  6. In-Vessel Retention of Molten Core Debris in the Westinghouse AP1000 Advanced Passive PWR

    SciTech Connect (OSTI)

    Scobel, James H.; Conway, L.E. [Westinghouse Electric Company LLC, P.O. Box 355, Pittsburgh, PA 15230-0355 (United States); Theofanous, T.G. [Center for Risk Studies and Safety, University of California Santa Barbara (United States)

    2002-07-01

    In-vessel retention (IVR) of molten core debris via external reactor vessel cooling is the hallmark of the severe accident management strategies in the AP600 passive PWR. The vessel is submerged in water to cool its external surface via nucleate boiling heat transfer. An engineered flow path through the reactor vessel insulation provides cooling water to the vessel surface and vents steam to promote IVR. For the 600 MWe passive plant, the predicted heat load from molten debris to the lower head wall has a large margin to the critical heat flux on the external surface of the vessel, which is the upper limit of the cooling capability. Up-rating the power of the passive plant from 600 to 1000 MWe (AP1000) significantly increases the heat loading from the molten debris to the reactor vessel lower head in the postulated bounding severe accident sequence. To maintain a large margin to the coolability limit for the AP1000, design features and severe accident management (SAM) strategies to increase the critical heat flux on the external surface of the vessel wall need to be implemented. A test program at the ULPU facility at University of California Santa Barbara (UCSB) has been initiated to investigate design features and SAM strategies that can enhance the critical heat flux. Results from ULPU Configuration IV demonstrate that with small changes to the ex-vessel design and SAM strategies, the peak critical heat flux in the AP1000 can be increased at least 30% over the peak critical heat flux predicted for the AP600 configuration. The design and SAM strategy changes investigated in ULPU Configuration IV can be implemented in the AP1000 design and will allow the passive plant to maintain the margin to critical heat flux for IVR, even at the higher power level. Continued testing for IVR phenomena is being performed at UCSB to optimize the AP1000 design and to ensure that vessel failure in a severe accident is physically unreasonable. (authors)

  7. Moisture Research - Optimizing Wall Assemblies

    SciTech Connect (OSTI)

    Arena, Lois; Mantha, Pallavi

    2013-05-01

    In this project, the Consortium for Advanced Residential Buildings (CARB) team evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls. Wall assemblies evaluated included code minimum walls using spray foam insulation and fiberglass batts, high R-value walls at least 12 in. thick (R-40 and R-60 assemblies), and brick walls with interior insulation.

  8. Experimental Study on Flow Optimization in Upper Plenum of Reactor Vessel for a Compact Sodium-Cooled Fast Reactor

    SciTech Connect (OSTI)

    Kimura, Nobuyuki; Hayashi, Kenji; Kamide, Hideki; Itoh, Masami; Sekine, Tadashi

    2005-11-15

    An innovative sodium-cooled fast reactor has been investigated in a feasibility study of fast breeder reactor cycle systems in Japan. A compact reactor vessel and a column-type upper inner structure with a radial slit for an arm of a fuel-handling machine (FHM) are adopted. Dipped plates are set in the reactor vessel below the free surface to prevent gas entrainment. We performed a one-tenth-scaled model water experiment for the upper plenum of the reactor vessel. Gas entrainment was not observed in the experiment under the same velocity condition as the reactor. Three vortex cavitations were observed near the hot-leg inlet. A vertical rib on the reactor vessel wall was set to restrict the rotating flow near the hot leg. The vortex cavitation between the reactor vessel wall and the hot leg was suppressed by the rib under the same cavitation factor condition as in the reactor. The cylindrical plug was installed through the hole in the dipped plates for the FHM to reduce the flow toward the free surface. It was effective when the plug was submerged into the middle height in the upper plenum. This combination of two components had a possibility to optimize the flow in the compact reactor vessel.

  9. High-R Walls for Remodeling: Wall Cavity Moisture Monitoring

    SciTech Connect (OSTI)

    Wiehagen, J.; Kochkin, V.

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  10. High-R Walls for Remodeling. Wall Cavity Moisture Monitoring

    SciTech Connect (OSTI)

    Wiehagen, J.; Kochkin, V.

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  11. Tow Vessel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergy Facilities Biomass Facility Jump to:Tow Vessel Jump

  12. V1.6 Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels

    SciTech Connect (OSTI)

    Leavitt, Mark; Lam, Patrick; Nelson, Karl M.; johnson, Brice A.; Johnson, Kenneth I.; Alvine, Kyle J.; Ruiz, Antonio; Adams, Jesse

    2012-10-01

    The goal of this project is to develop an innovative manufacturing process for Type IV high-pressure hydrogen storage vessels, with the intent to significantly lower manufacturing costs. Part of the development is to integrate the features of high precision AFP and commercial FW. Evaluation of an alternative fiber to replace a portion of the baseline fiber will help to reduce costs further.

  13. Pressurized melt ejection into scaled reactor cavities

    SciTech Connect (OSTI)

    Tarbell, W.W.; Pilch, M.; Brockmann, J.E.; Ross, J.W.; Gilbert, D.W.

    1986-10-01

    This report describes four tests performed in the High-Pressure Melt Streaming Program (HIPS) using linear-scaled cavities of the Zion Nuclear Power Plant. These experiments were conducted to study the phenomena involved in high-pressure ejection of core debris into the cavity beneath the reactor pressure vessel. One-tenth and one-twentieth linear scale models of reactor cavities were constructed and instrumented. The first test used an apparatus constructed of alumina firebrick to minimize the potential interaction between the ejected melt and cavity material. The remaining three experiments used scaled representations of the Zion nuclear plant geometry, constructed of prototypic concrete composition.

  14. Pressure and Phase Equilibria in Interacting Active Brownian Spheres

    E-Print Network [OSTI]

    Solon, Alexandre P.

    We derive a microscopic expression for the mechanical pressure P in a system of spherical active Brownian particles at density ?. Our exact result relates P, defined as the force per unit area on a bounding wall, to bulk ...

  15. Dynamic water wave pressures on a recurved model seawall 

    E-Print Network [OSTI]

    Rismiller, Gregory Ross

    1989-01-01

    up the face of the wall, there is only tangential velocity around the curve. The velocity is so great, a suction forms causing the transducer diaphram to experience a negative pressure. 33 Comparison As presented in Chapter II...

  16. Upflow bioreactor with septum and pressure release mechanism

    DOE Patents [OSTI]

    Hansen, Conly L.; Hansen, Carl S.; Pack, Kevin; Milligan, John; Benefiel, Bradley C.; Tolman, C. Wayne; Tolman, Kenneth W.

    2010-04-20

    An upflow bioreactor includes a vessel having an inlet and an outlet configured for upflow operation. A septum is positioned within the vessel and defines a lower chamber and an upper chamber. The septum includes an aperture that provides fluid communication between the upper chamber and lower chamber. The bioreactor also includes means for releasing pressure buildup in the lower chamber. In one configuration, the septum includes a releasable portion having an open position and a closed position. The releasable portion is configured to move to the open position in response to pressure buildup in the lower chamber. In the open position fluid communication between the lower chamber and the upper chamber is increased. Alternatively the lower chamber can include a pressure release line that is selectively actuated by pressure buildup. The pressure release mechanism can prevent the bioreactor from plugging and/or prevent catastrophic damage to the bioreactor caused by high pressures.

  17. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    GROUNDING OIL LOSS - PGO Draft #12;11/22/2013 6 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL GROUNDING OIL LOSS - PGO Draft #12;11/22/2013 7 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 T: GW - KM;11/22/2013 9 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL GROUNDING OIL LOSS - PGO Draft #12

  18. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 12/12/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;12/12/2013 4 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL GROUNDING FREQUENCY

  19. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding-11 9-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 12/23/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 #12;12/23/2013 4 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL GROUNDING FREQUENCY

  20. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding-12 10-11 9-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 11/17/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;11/17/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Q: GW 487 & NB & OH

  1. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Collision: GW ­ KM ­ DP & +1 Escort Cape Size Draft #12;11/21/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA-12 10-11 9-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 11/21/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT

  2. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 11/17/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12-2 0-1 VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 11/17/2013 3 GW-VCU Draft #12;11/17/2013 4 GW

  3. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Collision TRAFFIC RISK ASSESSMENT (VTRA) 2010 DEFINITION OF ASSUMED LOCATIONS FOR ADDED ESCORT VESSEL FOR HARO-11 9-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 11/21/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA

  4. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Collision-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 11/17/2013 2 GW-VCU Draft #12-2 0-1 11/17/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;11/17/2013 4 GW

  5. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding TRAFFIC RISK ASSESSMENT (VTRA) 2010 DEFINITION OF ASSUMED LOCATIONS FOR ADDED ESCORT VESSEL FOR HARO-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 11/21/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12

  6. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Oil Time Exposure Dr-7 5-6 4-5 3-4 2-3 1-2 0-1 12/19/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;P-2 0-1 12/19/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;12/19/2013 4 GW

  7. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Collision-2 0-1 12/23/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;T : GW - KM - DP & +VAR-2 0-1 12/23/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;12/23/2013 4 GW

  8. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding-12 10-11 9-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 12/13/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;12/13/2013 4 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL GROUNDING

  9. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Oil Time Exposure Dr & +1 Escort Cape Size Draft #12;11/21/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 11/21/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

  10. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding ­ KM ­ DP & +1 Escort Cape Size Draft #12;11/21/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 11/21/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

  11. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding RISK ASSESSMENT (VTRA) 2010 DEFINITION OF ASSUMED LOCATIONS FOR ADDED ESCORT VESSEL FOR HARO-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 11/21/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12

  12. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Collision-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 11/17/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12-2 0-1 VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 11/17/2013 3 GW-VCU Draft #12;11/17/2013 4 GW

  13. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Oil Time Exposure Dr-7 5-6 4-5 3-4 2-3 1-2 0-1 11/17/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;P-2 0-1 11/17/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;11/17/2013 4 GW

  14. Lennard-Jones systems near solid walls: Computing interfacial free energies from molecular simulation methods

    E-Print Network [OSTI]

    Ronald Benjamin; Jürgen Horbach

    2013-06-03

    Different computational techniques in combination with molecular dynamics computer simulation are used to to determine the wall-liquid and the wall-crystal interfacial free energies of a modified Lennard-Jones (LJ) system in contact with a solid wall. Two different kinds of solid walls are considered: a flat structureless wall and a structured wall consisting of an ideal crystal with the particles rigidly attached to fcc lattice sites. Interfacial free energies are determined by a thermodynamic integration scheme, the anisotropy of the pressure tensor, the non-equilibrium work method based on Bennett acceptance criteria, and a method using Cahn's adsorption equations based on the interfacial thermodynamics of Gibbs. For the flat wall, interfacial free energies as a function of different densities of the LJ liquid and as a function of temperature along the coexistence curve are calculated. In case of a structured wall, the interaction strength between the wall and the LJ system and the lattice constant of the structured wall are varied. Using the values of the wall-liquid and wall-crystal interfacial energies along with the value for the crystal-liquid interfacial free energy determined previously for the same system by the "cleaving potential method", we obtain the contact angle as a function of various parameters; in particular the conditions are found under which partial wetting occurs.

  15. Virial pressure in systems of active Brownian particles

    E-Print Network [OSTI]

    Roland G. Winkler; Adam Wysocki; Gerhard Gompper

    2015-06-12

    The pressure of suspensions of self-propelled objects is studied theoretically and by simulation of spherical active Brownian particles (ABP). We show that for certain geometries, the mechanical pressure as force/area of a confined systems can equally be expressed by bulk properties, which implies the existence of an nonequilibrium equation of state. Exploiting the virial theorem, we derive expressions for the pressure of ABPs confined by solid walls or exposed to periodic boundary conditions. In both cases, the pressure comprises three contributions: the ideal-gas pressure due to white-noise random forces, an activity-induce pressure (swim pressure), which can be expressed in terms of a product of the bare and a mean effective propulsion velocity, and the contribution by interparticle forces. We find that the pressure of spherical ABPs in confined systems explicitly depends on the presence of the confining walls and the particle-wall interactions, which has no correspondence in systems with periodic boundary conditions. Our simulations of three-dimensional APBs in systems with periodic boundary conditions reveal a pressure-concentration dependence that becomes increasingly nonmonotonic with increasing activity. Above a critical activity and ABP concentration, a phase transition occurs, which is reflected in a rapid and steep change of the pressure. We present and discuss the pressure for various activities and analyse the contributions of the individual pressure components.

  16. FIRE Vacuum Vessel Design and Analysis

    E-Print Network [OSTI]

    quality vacuum - outgassing and leak rate of waste disposal #12;6 June 2001 FIRE Review: Vacuum Vessel Design 8 Vessel shell dimensions #12;6 June - Shielding water + steel with 60% packing factor - Volume of torus interior 35 m^3 - Surface Area of torus

  17. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL GROUNDING OIL LOSS - PGO Draft #12;11/17/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL GROUNDING OIL LOSS - PGO Draft #12;Q: GW 487 3D RiskVESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding

  18. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Oil Time Exposure Dr RISK ASSESSMENT (VTRA) 2010 Draft #12;P: BC & DH100 3D Risk Profile All FV - Oil Time Exposure: 100 Draft #12;11/18/2013 4 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 OIL TIME EXPOSURE- OTE Draft

  19. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL GROUNDING OIL LOSS - PGO Draft #12;11/17/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL GROUNDING OIL LOSS - PGO Draft #12;R: KM 348 3D RiskVESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding

  20. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Oil Time Exposure Dr TRAFFIC RISK ASSESSMENT (VTRA) 2010 OIL TIME EXPOSURE- OTE #12;12/23/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 OIL TIME EXPOSURE- OTE #12;T: GW - KM - DP 3D Risk Profile What-If FV - Oil Time

  1. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    -VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL GROUNDING OIL LOSS - PGO Draft #12;11/17/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL GROUNDING OIL LOSS - PGO Draft #12;T: GW - KM - DP 3 RISK ASSESSMENT (VTRA) 2010 POTENTIAL GROUNDING OIL LOSS - PGO Draft #12;DEFINITION OF 15 WATERWAY

  2. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Oil Time Exposure Dr TRAFFIC RISK ASSESSMENT (VTRA) 2010 OIL TIME EXPOSURE- OTE #12;11/20/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 OIL TIME EXPOSURE- OTE #12;T: GW - KM - DP 3D Risk Profile What-If FV - Oil Time

  3. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    ) 2010 POTENTIAL GROUNDING OIL LOSS - PGO Draft #12;11/21/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT GROUNDING OIL LOSS - PGO Draft #12;11/21/2013 9 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIALVESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding

  4. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Oil Time Exposure Dr ASSESSMENT (VTRA) 2010 Draft #12;P: BC & OB HE100 3D Risk Profile All FV - Oil Time Exposure: 100% of Base;11/19/2013 4 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 OIL TIME EXPOSURE- OTE Draft #12;11/19/2013 5 GW

  5. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    ;12/12/2013 4 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION OIL LOSS - PCO Draft #12;12/12/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION OIL LOSS - PCO Draft #12;P TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL COLLISION OIL LOSS - PCO Draft #12;DEFINITION OF 15 WATERWAY

  6. Foam vessel for cryogenic fluid storage

    DOE Patents [OSTI]

    Spear, Jonathan D (San Francisco, CA)

    2011-07-05

    Cryogenic storage and separator vessels made of polyolefin foams are disclosed, as are methods of storing and separating cryogenic fluids and fluid mixtures using these vessels. In one embodiment, the polyolefin foams may be cross-linked, closed-cell polyethylene foams with a density of from about 2 pounds per cubic foot to a density of about 4 pounds per cubic foot.

  7. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Collision;11/22/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 DEFINITION OF ASSUMED LOCATIONS FOR ADDED ESCORT RISK ASSESSMENT (VTRA) 2010 11/22/2013 3 GW-VCU Draft #12;T: GW - KM - DP & ER 3D Risk Profile All FV

  8. Saltstone Osmotic Pressure

    SciTech Connect (OSTI)

    Nichols, Ralph L.; Dixon, Kenneth L.

    2013-09-23

    Recent research into the moisture retention properties of saltstone suggest that osmotic pressure may play a potentially significant role in contaminant transport (Dixon et al., 2009 and Dixon, 2011). The Savannah River Remediation Closure and Disposal Assessments Group requested the Savannah River National Laboratory (SRNL) to conduct a literature search on osmotic potential as it relates to contaminant transport and to develop a conceptual model of saltstone that incorporates osmotic potential. This report presents the findings of the literature review and presents a conceptual model for saltstone that incorporates osmotic potential. The task was requested through Task Technical Request HLW-SSF-TTR-2013-0004. Simulated saltstone typically has very low permeability (Dixon et al. 2008) and pore water that contains a large concentration of dissolved salts (Flach and Smith 2013). Pore water in simulated saltstone has a high salt concentration relative to pore water in concrete and groundwater. This contrast in salt concentration can generate high osmotic pressures if simulated saltstone has the properties of a semipermeable membrane. Estimates of osmotic pressure using results from the analysis of pore water collected from simulated saltstone show that an osmotic pressure up to 2790 psig could be generated within the saltstone. Most semi-permeable materials are non-ideal and have an osmotic efficiency <1 and as a result actual osmotic pressures are less than theoretical pressures. Observations from laboratory tests of simulated saltstone indicate that it may exhibit the behavior of a semi-permeable membrane. After several weeks of back pressure saturation in a flexible wall permeameter (FWP) the membrane containing a simulated saltstone sample appeared to have bubbles underneath it. Upon removal from the FWP the specimen was examined and it was determined that the bubbles were due to liquid that had accumulated between the membrane and the sample. One possible explanation for the accumulation of solution between the membrane and sample is the development of osmotic pressure within the sample. Osmotic pressure will affect fluid flow and contaminant transport and may result in the changes to the internal structure of the semi-permeable material. B?nard et al. 2008 reported swelling of wet cured Portland cement mortars containing salts of NaNO{sub 3}, KNO{sub 3}, Na{sub 3}PO{sub 4}x12H {sub 2}O, and K{sub 3}PO{sub 4} when exposed to a dilute solution. Typically hydraulic head is considered the only driving force for groundwater in groundwater models. If a low permeability material containing a concentrated salt solution is present in the hydrogeologic sequence large osmotic pressures may develop and lead to misinterpretation of groundwater flow and solute transport. The osmotic pressure in the semi-permeable material can significantly impact groundwater flow in the vicinity of the semi-permeable material. One possible outcome is that groundwater will flow into the semi-permeable material resulting in hydrologic containment within the membrane. Additionally, hyperfiltration can occur within semi-permeable materials when water moves through a membrane into the more concentrated solution and dissolved constituents are retained in the lower concentration solution. Groundwater flow and transport equations that incorporate chemical gradients (osmosis) have been developed. These equations are referred to as coupled flow equations. Currently groundwater modeling to assess the performance of saltstone waste forms is conducted using the PORFLOW groundwater flow and transport model. PORFLOW does not include coupled flow from chemico-osmotic gradients and therefore numerical simulation of the effect of coupled flow on contaminant transport in and around saltstone cannot be assessed. Most natural semi-permeable membranes are non-ideal membranes and do not restrict all movement of solutes and as a result theoretical osmotic potential is not realized. Osmotic efficiency is a parameter in the coupled flow equation that accounts for the

  9. Thermal Analysis to Calculate the Vessel Temperature and Stress in Alcator C-Mod Due to the Divertor Upgrade

    SciTech Connect (OSTI)

    Han Zhang, Peter H. Titus, Robert Ellis, Soren Harrison and Rui Vieira

    2012-08-29

    Alcator C-Mod is planning an upgrade to its outer divertor. The upgrade is intended to correct the existing outer divertor alignment with the plasma, and to operate at elevated temperatures. Higher temperature operation will allow study of edge physics behavior at reactor relevant temperatures. The outer divertor and tiles will be capable of operating at 600oC. Longer pulse length, together with the plasma and RF heat of 9MW, and the inclusion of heater elements within the outer divertor produces radiative energy which makes the sustained operation much more difficult than before. An ANSYS model based on ref. 1 was built for the global thermal analysis of C-Mod. It models the radiative surfaces inside the vessel and between the components, and also includes plasma energy deposition. Different geometries have been simulated and compared. Results show that steady state operation with the divertor at 600oC is possible with no damage to major vessel internal components. The differential temperature between inner divertor structure, or "girdle" and inner vessel wall is ~70oC. This differential temperature is limited by the capacity of the studs that hold the inner divertor backing plates to the vessel wall. At a 70oC temperature differential the stress on the studs is within allowable limits. The thermal model was then used for a stress pass to quantify vessel shell stresses where thermal gradients are significant.

  10. Pressure Safety of JLAB 12GeV Upgrade Cryomodule

    SciTech Connect (OSTI)

    Cheng, Gary [JLAB; Wiseman, Mark A. [JLAB; Daly, Ed [JLAB

    2009-11-01

    This paper reviews pressure safety considerations, per the US Department of Energy (DOE) 10CFR851 Final Rule [1], which are being implemented during construction of the 100 Megavolt Cryomodule (C100 CM) for Jefferson Lab’s 12 GeV Upgrade Project. The C100 CM contains several essential subsystems that require pressure safety measures: piping in the supply and return end cans, piping in the thermal shield and the helium headers, the helium vessel assembly which includes high RRR niobium cavities, the end cans, and the vacuum vessel. Due to the vessel sizes and pressure ranges, applicable national consensus code rules are applied. When national consensus codes are not applicable, equivalent design and fabrication approaches are identified and implemented. Considerations for design, material qualification, fabrication, inspection and examination are summarized. In addition, JLAB’s methodologies for implementation of the 10 CFR 851 requirements are described.

  11. Detailed Analysis of In-Vessel Melt Progression in the Loss of Coolant Accident of OPR1000

    SciTech Connect (OSTI)

    Park, R.J.; Kim, S.B.; Kim, H.D. [Korea Atomic Energy Research Institute, 150 Dukjin-dong, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

    2006-07-01

    An in-vessel severe accident progression has been analyzed to generate the basic data for an evaluation of the in-vessel severe accident management strategies and to identify the thermal hydraulic condition of the reactor vessel and the damage state of the in-vessel materials at a reactor vessel failure by using the SCDAP/RELAP5/MOD3.3 computer code during the Loss Of Coolant Accident (LOCA) without the Safety Injection (SI) of the OPR (Optimized Pressurize Reactor) 1000. Best estimate calculation of the small break LOCAs of 1.35 inch and 2 inch, the medium break LOCAs of 3 inch and a 4.28 inch, and a large break LOCA of 9.8 inch without the SI have been performed from a transient initiation to a reactor vessel failure. The SCDAP/RELAP5/MOD3.3 results have shown that in all the transients, approximately 30-40 % of the core material was melted and relocated to the lower plenum of the reactor vessel at the time of a reactor vessel failure. In the small and large break LOCAs, the reactor vessel failed at an early time of approximately 70-110 minutes after the transients were initiated. Since the Safety Injection Tanks (SITs) were actuated effectively in the medium break LOCAs, the reactor vessel failed at a later time of approximately 200-400 minutes after the transients were initiated. At the time of a reactor vessel failure, approximately 45-55 % of the fuel rod cladding was oxidized in the small and medium break LOCAs. However, approximately 20 % of the fuel rod cladding was oxidized because of a coolant loss through the break in the large break LOCA of the OPR1000. (authors)

  12. Transient PVT measurements and model predictions for vessel heat transfer. Part II.

    SciTech Connect (OSTI)

    Felver, Todd G.; Paradiso, Nicholas Joseph; Winters, William S., Jr.; Evans, Gregory Herbert; Rice, Steven F.

    2010-07-01

    Part I of this report focused on the acquisition and presentation of transient PVT data sets that can be used to validate gas transfer models. Here in Part II we focus primarily on describing models and validating these models using the data sets. Our models are intended to describe the high speed transport of compressible gases in arbitrary arrangements of vessels, tubing, valving and flow branches. Our models fall into three categories: (1) network flow models in which flow paths are modeled as one-dimensional flow and vessels are modeled as single control volumes, (2) CFD (Computational Fluid Dynamics) models in which flow in and between vessels is modeled in three dimensions and (3) coupled network/CFD models in which vessels are modeled using CFD and flows between vessels are modeled using a network flow code. In our work we utilized NETFLOW as our network flow code and FUEGO for our CFD code. Since network flow models lack three-dimensional resolution, correlations for heat transfer and tube frictional pressure drop are required to resolve important physics not being captured by the model. Here we describe how vessel heat transfer correlations were improved using the data and present direct model-data comparisons for all tests documented in Part I. Our results show that our network flow models have been substantially improved. The CFD modeling presented here describes the complex nature of vessel heat transfer and for the first time demonstrates that flow and heat transfer in vessels can be modeled directly without the need for correlations.

  13. Domain walls in gapped graphene

    E-Print Network [OSTI]

    Semenoff, G W; Zhou, Fei

    2015-01-01

    The electronic properties of a particular class of domain walls in gapped graphene are investigated. We show that they can support mid-gap states which are localized in the vicinity of the domain wall and propagate along its length. With a finite density of domain walls, these states can alter the electronic properties of gapped graphene significantly. If the mid-gap band is partially filled,the domain wall can behave like a one-dimensional metal embedded in a semi-conductor, and could potentially be used as a single-channel quantum wire.

  14. Domain walls in gapped graphene

    E-Print Network [OSTI]

    G. W. Semenoff; V. Semenoff; Fei Zhou

    2008-05-31

    The electronic properties of a particular class of domain walls in gapped graphene are investigated. We show that they can support mid-gap states which are localized in the vicinity of the domain wall and propagate along its length. With a finite density of domain walls, these states can alter the electronic properties of gapped graphene significantly. If the mid-gap band is partially filled,the domain wall can behave like a one-dimensional metal embedded in a semi-conductor, and could potentially be used as a single-channel quantum wire.

  15. Liquid Walls Innovative Concepts for First Walls and Blankets

    E-Print Network [OSTI]

    California at Los Angeles, University of

    for an attractive fusion energy system 2. Lower the cost and time for R&D · APEX was initiated in November 1997Liquid Walls Innovative Concepts for First Walls and Blankets Mohamed Abdou Professor, Mechanical as part of the US Restructured Fusion Program Strategy to enhance innovation · Natural Questions

  16. Oven wall panel construction

    DOE Patents [OSTI]

    Ellison, Kenneth (20 Avondale Cres., Markham, CA); Whike, Alan S. (R.R. #1, Caledon East, both of Ontario, CA)

    1980-04-22

    An oven roof or wall is formed from modular panels, each of which comprises an inner fabric and an outer fabric. Each such fabric is formed with an angle iron framework and somewhat resilient tie-bars or welded at their ends to flanges of the angle irons to maintain the inner and outer frameworks in spaced disposition while minimizing heat transfer by conduction and permitting some degree of relative movement on expansion and contraction of the module components. Suitable thermal insulation is provided within the module. Panels or skins are secured to the fabric frameworks and each such skin is secured to a framework and projects laterally so as slidingly to overlie the adjacent frame member of an adjacent panel in turn to permit relative movement during expansion and contraction.

  17. Adaptive Wall Technology The five by six by twenty-five foot long

    E-Print Network [OSTI]

    be altered by electric- motor driven screw jacks. Static pressure measurements are made on the walls of the tunnel to determine pressure distribution for each model. These measurements are then used to compute exchanger is provided to maintain a constant air temperature in the wind tunnel circuit, and flow

  18. Automatic Lung Vessel Segmentation via Stacked Multiscale Feature Learning

    E-Print Network [OSTI]

    Toronto, University of

    Automatic Lung Vessel Segmentation via Stacked Multiscale Feature Learning Ryan Kiros, Karteek We introduce a representation learning approach to segmenting vessels in the lungs. Our algorithm

  19. Middle Bronze Age Ceramic Vessels from Kamid el-Loz

    E-Print Network [OSTI]

    Cantazariti, Antonietta

    2014-01-01

    and reconstruction of the ceramic vessel economic systemsis to investigate the ceramic economy of the site of Kamidstudied included mainly complete ceramic vessels and, more

  20. Pressure transducer

    DOE Patents [OSTI]

    Anderson, Thomas T. (Downers Grove, IL); Roop, Conard J. (Lockport, IL); Schmidt, Kenneth J. (Midlothian, IL); Gunchin, Elmer R. (Lockport, IL)

    1989-01-01

    A pressure transducer suitable for use in high temperature environments includes two pairs of induction coils, each pair being bifilarly wound together, and each pair of coils connected as opposite arms of a four arm circuit; an electrically conductive target moveably positioned between the coil pairs and connected to a diaphragm such that deflection of the diaphragm causes axial movement of the target and an unbalance in the bridge output.

  1. Thermal wake/vessel detection technique

    DOE Patents [OSTI]

    Roskovensky, John K. (Albuquerque, NM); Nandy, Prabal (Albuquerque, NM); Post, Brian N (Albuquerque, NM)

    2012-01-10

    A computer-automated method for detecting a vessel in water based on an image of a portion of Earth includes generating a thermal anomaly mask. The thermal anomaly mask flags each pixel of the image initially deemed to be a wake pixel based on a comparison of a thermal value of each pixel against other thermal values of other pixels localized about each pixel. Contiguous pixels flagged by the thermal anomaly mask are grouped into pixel clusters. A shape of each of the pixel clusters is analyzed to determine whether each of the pixel clusters represents a possible vessel detection event. The possible vessel detection events are represented visually within the image.

  2. Reactor vessel using metal oxide ceramic membranes

    DOE Patents [OSTI]

    Anderson, Marc A. (Madison, WI); Zeltner, Walter A. (Oregon, WI)

    1992-08-11

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane.

  3. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 11/17/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010-4 2-3 1-2 0-1 11/17/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;11/17/2013 4 GW

  4. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Collision-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 12/12/2013 2 GW-VCU Draft #12-4 2-3 1-2 0-1 12/12/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;12/12/2013 4 GW

  5. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding-12 10-11 9-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 12/13/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 12/13/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

  6. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Collision-11 9-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 11/20/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA-7 5-6 4-5 3-4 2-3 1-2 0-1 VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 11/20/2013 3 GW-VCU #12

  7. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding-11 9-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 12/13/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 12/13/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12

  8. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Oil Time Exposure Dr-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 12/12/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12-4 2-3 1-2 0-1 12/12/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;12/12/2013 4 GW

  9. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding-11 9-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 11/17/2013 2 GW-5 3-4 2-3 1-2 0-1 11/17/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12

  10. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 11/17/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010-5 3-4 2-3 1-2 0-1 11/17/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12

  11. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Oil Time Exposure Dr-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 12/13/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 12/13/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12

  12. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Oil Time Exposure Dr-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 12/13/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12-5 3-4 2-3 1-2 0-1 12/13/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12

  13. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding-12 10-11 9-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 11/20/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 11/20/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 #12

  14. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 12/19/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010-5 3-4 2-3 1-2 0-1 12/19/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12

  15. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Collision-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 12/23/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010-7 5-6 4-5 3-4 2-3 1-2 0-1 12/23/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 #12

  16. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 12/12/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010-5 3-4 2-3 1-2 0-1 12/12/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12

  17. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding-11 9-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 11/20/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA-7 5-6 4-5 3-4 2-3 1-2 0-1 VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 11/20/2013 3 GW-VCU #12

  18. Posterior Wall Capture and Femoral Artery Stenosis Following Use of StarClose Closing Device: Diagnosis and Therapy

    SciTech Connect (OSTI)

    Stefanczyk, Ludomir [Medical University of Lodz, First Department of Radiology and Diagnostic Imaging (Poland)] [Medical University of Lodz, First Department of Radiology and Diagnostic Imaging (Poland); Elgalal, Marcin T., E-mail: telgalal@yahoo.co.uk [Medical University of Lodz, Second Department of Radiology and Diagnostic Imaging (Poland); Szubert, Wojciech; Grzelak, Piotr [Medical University of Lodz, First Department of Radiology and Diagnostic Imaging (Poland)] [Medical University of Lodz, First Department of Radiology and Diagnostic Imaging (Poland); Szopinski, Piotr [Institute of Haematology and Transfusion Medicine, Department of Vascular Surgery (Poland)] [Institute of Haematology and Transfusion Medicine, Department of Vascular Surgery (Poland); Majos, Agata [Medical University of Lodz, Second Department of Radiology and Diagnostic Imaging (Poland)] [Medical University of Lodz, Second Department of Radiology and Diagnostic Imaging (Poland)

    2013-10-15

    A case of femoral artery obstruction following application of a StarClose type arterial puncture closing device (APCD) is presented. Ultrasonographic and angiographic imaging of this complication was obtained. The posterior wall of the vessel was accidentally caught in the anchoring element of the nitinol clip. This complication was successfully resolved by endovascular treatment and the implantation of a stent.

  19. Moisture Research - Optimizing Wall Assemblies

    SciTech Connect (OSTI)

    Arena, L.; Mantha, P.

    2013-05-01

    The Consortium for Advanced Residential Buildings (CARB) evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls.

  20. Future characteristics of Offshore Support Vessels

    E-Print Network [OSTI]

    Rose, Robin Sebastian Koske

    2011-01-01

    The objective of this thesis is to examine trends in Offshore Support Vessel (OSV) design and determine the future characteristics of OSVs based on industry insight and supply chain models. Specifically, this thesis focuses ...

  1. Advanced Pressure Boundary Materials

    SciTech Connect (OSTI)

    Santella, Michael L; Shingledecker, John P

    2007-01-01

    Increasing the operating temperatures of fossil power plants is fundamental to improving thermal efficiencies and reducing undesirable emissions such as CO{sub 2}. One group of alloys with the potential to satisfy the conditions required of higher operating temperatures is the advanced ferritic steels such as ASTM Grade 91, 9Cr-2W, and 12Cr-2W. These are Cr-Mo steels containing 9-12 wt% Cr that have martensitic microstructures. Research aimed at increasing the operating temperature limits of the 9-12 wt% Cr steels and optimizing them for specific power plant applications has been actively pursued since the 1970's. As with all of the high strength martensitic steels, specifying upper temperature limits for tempering the alloys and heat treating weldments is a critical issue. To support this aspect of development, thermodynamic analysis was used to estimate how this critical temperature, the A{sub 1} in steel terminology, varies with alloy composition. The results from the thermodynamic analysis were presented to the Strength of Weldments subgroup of the ASME Boiler & Pressure Vessel Code and are being considered in establishing maximum postweld heat treatment temperatures. Experiments are also being planned to verify predictions. This is part of a CRADA project being done with Alstom Power, Inc.

  2. Treating exhaust gas from a pressurized fluidized bed reaction system

    DOE Patents [OSTI]

    Isaksson, J.; Koskinen, J.

    1995-08-22

    Hot gases from a pressurized fluidized bed reactor system are purified. Under super atmospheric pressure conditions hot exhaust gases are passed through a particle separator, forming a filtrate cake on the surface of the separator, and a reducing agent--such as an NO{sub x} reducing agent (like ammonia)--is introduced into the exhaust gases just prior to or just after particle separation. The retention time of the introduced reducing agent is enhanced by providing a low gas velocity (e.g. about 1--20 cm/s) during passage of the gas through the filtrate cake while at super atmospheric pressure. Separation takes place within a distinct pressure vessel, the interior of which is at a pressure of about 2--100 bar, and introduction of reducing agent can take place at multiple locations (one associated with each filter element in the pressure vessel), or at one or more locations just prior to passage of clean gas out of the pressure vessel (typically passed to a turbine). 8 figs.

  3. Treating exhaust gas from a pressurized fluidized bed reaction system

    DOE Patents [OSTI]

    Isaksson, Juhani (Karhula, FI); Koskinen, Jari (Karhula, FI)

    1995-01-01

    Hot gases from a pressurized fluidized bed reactor system are purified. Under superatmospheric pressure conditions hot exhaust gases are passed through a particle separator, forming a flitrate cake on the surface of the separator, and a reducing agent--such as an NO.sub.x reducing agent (like ammonia), is introduced into the exhaust gases just prior to or just after particle separation. The retention time of the introduced reducing agent is enhanced by providing a low gas velocity (e.g. about 1-20 cm/s) during passage of the gas through the filtrate cake while at superatmospheric pressure. Separation takes place within a distinct pressure vessel the interior of which is at a pressure of about 2-100 bar, and-introduction of reducing agent can take place at multiple locations (one associated with each filter element in the pressure vessel), or at one or more locations just prior to passage of clean gas out of the pressure vessel (typically passed to a turbine).

  4. Transmittance of single wall carbon nanotubes

    SciTech Connect (OSTI)

    Holmes, W.; Hone, J.; Richards, P.L.; Zettl, A.

    2001-07-31

    The authors have measured the far infrared absorption of single wall carbon nanotube (SWNT) ropes at 1.5K and SWNT ropes in polyethylene (PE) over the range 1.5 < T < 300 K. A weak peak is observed at 28 cm{sup -1} at 1.5K for free standing SWNT samples. The frequency and temperature dependence of the peak is consistent with absorption by an E{sub 2g} symmetric, ''squash mode'', SWNT phonon, which is infrared active due to an adsorbate or disorder. The peak frequency for SWNT ropes in PE is at 40 cm{sup -1} and temperature dependent. They attribute the increase in the frequency of the peak for SWNT in PE to the effect of {approx} 0.2GPa of hydrostatic pressure exerted on the SWNT ropes due to the thermal contraction of PE when cooled to low temperatures. Using two independent methods, they estimate that the SWNT may radially buckle at this pressure. The buckling distortion may cause the pressure dependence of the peak frequency. They cannot rule out the possibility that the peak is an absorption onset from adsorbate modes extrinsic to the SWNT or from interband transitions at a small electronic band gap. An effective medium calculation of Drude metal grains in polyethylene gives a frequency dependence consistent with their data, but the model underestimates the strength of scattering by orders of magnitude.

  5. Annabella: a North American coasting vessel 

    E-Print Network [OSTI]

    Claesson, Stefan Hans

    1998-01-01

    schooner in 1841. 53 26 Map of southern New Jersey. 60 27 28 Section lines of the preserved remains of Annabella. . . . . Lines of a Milford, Delaware vessel. . . . . . . . . . . . . . . . . . . 66 FIGURE Page 29 A billet head of a 19th... enrolment records. . 54 Measurements of Milford, Delaware-built sloops in comparison to Annabella, 69 Timber dimensions required for construction of 100 ton vessel by American Shipmaster's Association in 1882 compared to timber dimensions of Annabella...

  6. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Oil Time Exposure Dr TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;T : GW - KM - DP & +VAR FV 3D Risk Profile All FV - Oil Time-12 10-11 9-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 12/23/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT

  7. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Oil Time Exposure Dr TRAFFIC RISK ASSESSMENT (VTRA) 2010 Draft #12;U : GW - KM - DP & VAR 3D Risk Profile All FV - Oil Time-12 10-11 9-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 11/21/2013 3 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT

  8. Building wall construction

    SciTech Connect (OSTI)

    Mulford, C.E.

    1987-04-21

    A building wall construction is described comprising, in combination: (a) an elongated top plate; (b) an elongated bottom plate extending in spaced, horizontal, parallel relation to the top plate; (c) elongated studs arranged in spaced, vertical, parallel relation and affixed at their upper and lower ends to the top and bottom plates, respectively; (d) each of the studs, top plates and bottom plates comprises a pair of spaced wooden members of equal length having a substantially rectangular groove centrally disposed in one face thereof extending for the entire length of the wooden members, and at least one web member of fire-rated gypsum board having opposite, marginal edge portions secured in the grooves; (e) sheathing layers affixed to both sides of the stud members and extending vertically between the bottom and top plates, and horizontally between the studs to enclose the space therebetween; and (f) at least one panel member of fire-rated gypsum board extending horizontally between each successive pair of studs parallel to and spaced from each of the sheathing layers, thus providing at least two, separated spaces between the sheathing layers.

  9. Near-infrared spectroscopy for the measurement of glucose in an integrated rotating wall vessel 

    E-Print Network [OSTI]

    Galvan, Mark

    1994-01-01

    culture media cannot fulfill these requirements. Therefore a near-infrared spectroscopy system is proposed that can potentially perform the required measurements on-line and without any interaction with the cell culture media. Two types of solutions...

  10. In-vessel melt retention as a severe accident management strategy for the Loviisa Nuclear Power Plant

    SciTech Connect (OSTI)

    Kymaelaeinen, O.; Tuomisto, H. [IVO International Ltd., Vantaa (Finland); Theofanous, T.G. [Univ. of California, Santa Barbara, CA (United States)

    1997-02-01

    The concept of lower head coolability and in-vessel retention of corium has been approved as a basic element of the severe accident management strategy for IVO`s Loviisa Plant (VVER-440) in Finland. The selected approach takes advantage of the unique features of the plant such as low power density, reactor pressure vessel without penetrations at the bottom and ice-condenser containment which ensures flooded cavity in all risk significant sequences. The thermal analyses, which are supported by experimental program, demonstrate that in Loviisa the molten corium on the lower head of the reactor vessel is coolable externally with wide margins. This paper summarizes the approach and the plant modifications being implemented. During the approval process some technical concerns were raised, particularly with regard to thermal loadings caused by contact of cool cavity water and hot corium with the reactor vessel. Resolution of these concerns is also discussed.

  11. Use of Polycarbonate Vacuum Vessels in High-Temperature Fusion-Plasma Research

    SciTech Connect (OSTI)

    B. Berlinger, A. Brooks, H. Feder, J. Gumbas, T. Franckowiak and S.A. Cohen

    2012-09-27

    Magnetic fusion energy (MFE) research requires ultrahigh-vacuum (UHV) conditions, primarily to reduce plasma contamination by impurities. For radiofrequency (RF)-heated plasmas, a great benefit may accrue from a non-conducting vacuum vessel, allowing external RF antennas which avoids the complications and cost of internal antennas and high-voltage high-current feedthroughs. In this paper we describe these and other criteria, e.g., safety, availability, design flexibility, structural integrity, access, outgassing, transparency, and fabrication techniques that led to the selection and use of 25.4-cm OD, 1.6-cm wall polycarbonate pipe as the main vacuum vessel for an MFE research device whose plasmas are expected to reach keV energies for durations exceeding 0.1 s

  12. In-Vessel Retention of Molten Corium: Lessons Learned and Outstanding Issues

    SciTech Connect (OSTI)

    J.L. Rempe; K.Y. Suh; F. B. Cheung; S. B. Kim

    2008-03-01

    In-vessel retention (IVR) of core melt is a key severe accident management strategy adopted by some operating nuclear power plants and proposed for some advanced light water reactors (ALWRs). If there were inadequate cooling during a reactor accident, a significant amount of core material could become molten and relocate to the lower head of the reactor vessel, as happened in the Three Mile Island Unit 2 (TMI-2) accident. If it is possible to ensure that the vessel head remains intact so that relocated core materials are retained within the vessel, the enhanced safety associated with these plants can reduce concerns about containment failure and associated risk. For example, the enhanced safety of the Advanced 600 MWe Pressurized Water Reactor (PWR) designed by Westinghouse (AP600), which relied upon External Reactor Vessel Cooling (ERVC) for IVR, resulted in the U.S. Nuclear Regulatory Commission (US NRC) approving the design without requiring certain conventional features common to existing Light Water Reactors (LWRs). However, it is not clear that the ERVC proposed for the AP600 could provide sufficient heat removal for higher-power reactors (up to 1500 MWe) without additional enhancements. This paper reviews efforts made and results reported regarding the enhancement of IVR in LWRs. Where appropriate, the paper identifies what additional data or analyses are needed to demonstrate that there is sufficient margin for successful IVR in high power thermal reactors.

  13. IDS120h GEOMETRY SHIELDING VESSELS: STAINLESS STEEL vs. TUNGSTEN

    E-Print Network [OSTI]

    McDonald, Kirk

    IDS120h GEOMETRY SHIELDING VESSELS: STAINLESS STEEL vs. TUNGSTEN SHIELDING MATERIAL: 60%WC+40%H2 O shielding vessels (STST OR W) Different cases of shielding material. >mars1510/MCNP >10-11 MeV NEUTRON ENERGY CUTOFF >SHIELDING:60%WC+40%H2 O (STST or W VESSELS), 80%WC+20%He, 80%W+20%He (W VESSELS) >4 MW

  14. Augmented Vessels for Pre-operative Preparation in Endovascular Treatments

    E-Print Network [OSTI]

    Chung, Albert C. S.

    Augmented Vessels for Pre-operative Preparation in Endovascular Treatments Wilbur C.K. Wong1 to construct imaginary disease-free vessel lumens, namely augmented vessels, and demarcate the abnormalities;Augmented Vessels for Pre-operative Preparation 603 Several researchers have suggested to detach a saccular

  15. Jet-wall interaction effects on diesel combustion and soot formation.

    SciTech Connect (OSTI)

    Pickett, Lyle M.; Lopez, J. Javier

    2004-09-01

    The effects of wall interaction on combustion and soot formation processes of a diesel fuel jet were investigated in an optically-accessible constant-volume combustion vessel at experimental conditions typical of a diesel engine. At identical ambient and injector conditions, soot processes were studied in free jets, plane wall jets, and 'confined' wall jets (a box-shaped geometry simulating secondary interaction with adjacent walls and jets in an engine). The investigation showed that soot levels are significantly lower in a plane wall jet compared to a free jet. At some operating conditions, sooting free jets become soot-free as plane wall jets. Possible mechanisms to explain the reduced or delayed soot formation upon wall interaction include an increased fuel-air mixing rate and a wall-jet-cooling effect. However, in a confined-jet configuration, there is an opposite trend in soot formation. Jet confinement causes combustion gases to be redirected towards the incoming jet, causing the lift-off length to shorten and soot to increase. This effect can be avoided by ending fuel injection prior to the time of significant interaction with redirected combustion gases. For a fixed confined-wall geometry, an increase in ambient gas density delays jet interaction, allowing longer injection durations with no increase in soot. Jet interaction with redirected combustion products may also be avoided using reduced ambient oxygen concentration because of an increased ignition delay. Although simplified geometries were employed, the identification of important mechanisms affecting soot formation after the time of wall interaction is expected to be useful for understanding these processes in more complex and realistic diesel engine geometries.

  16. Pressurized fluidized bed reactor and a method of operating the same

    DOE Patents [OSTI]

    Isaksson, J.

    1996-02-20

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  17. Pressurized fluidized bed reactor and a method of operating the same

    DOE Patents [OSTI]

    Isaksson, Juhani (Karhula, FI)

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  18. Probabilistic vessel axis tracing and its application to vessel segmentation with stream surfaces and minimum cost paths

    E-Print Network [OSTI]

    Chung, Albert C. S.

    Probabilistic vessel axis tracing and its application to vessel segmentation with stream surfaces May 2007 Available online 2 June 2007 Abstract We propose a novel framework to segment vessels on their cross-sections. It starts with a probabilistic vessel axis tracing in a gray-scale three

  19. Effective normal stress alteration due to pore pressure changes induced by dynamic slip

    E-Print Network [OSTI]

    Effective normal stress alteration due to pore pressure changes induced by dynamic slip propagation and permeabilities causes a change in pore pressure there. Because slip causes compression on one side of the fault wall and extension on the other, the pore pressure on the fault increases substantially when

  20. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition

    DOE Patents [OSTI]

    Grigorian, Leonid; Hornyak, Louis; Dillon, Anne C; Heben, Michael J

    2014-09-23

    The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.

  1. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition

    DOE Patents [OSTI]

    Grigorian, Leonid (Raymond, OH); Hornyak, Louis (Evergreen, CO); Dillon, Anne C (Boulder, CO); Heben, Michael J (Denver, CO)

    2008-10-07

    The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.

  2. Vessel with filter and method of use

    DOE Patents [OSTI]

    Morrell, Jonathan S.; Ripley, Edward B.; Cecala, David M.

    2008-01-29

    Chemical processing apparatuses which incorporate a process vessel, such as a crucible or retort, and which include a gas separation or filtration system. Various embodiments incorporate such features as loose filtration material, semi-rigid filtration material, and structured filtration material. The vessel may include material that is a microwave susceptor. Filtration media may be selected so that if it inadvertently mixes with the chemical process or the reaction products of such process, it would not adversely affect the results of the chemical process.

  3. Support pedestals for interconnecting a cover and nozzle band wall in a gas turbine nozzle segment

    DOE Patents [OSTI]

    Yu, Yufeng Phillip (Simpsonville, SC); Itzel, Gary Michael (Simpsonville, SC); Webbon, Waylon Willard (Greenville, SC); Bagepalli, Radhakrishna (Schenectady, NY); Burdgick, Steven Sebastian (Schenectady, NY); Kellock, Iain Robertson (Simpsonville, SC)

    2002-01-01

    A gas turbine nozzle segment has outer and inner band portions. Each band portion includes a nozzle wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through the apertures of the impingement plate to cool the nozzle wall. Structural pedestals interconnect the cover and nozzle wall and pass through holes in the impingement plate to reduce localized stress otherwise resulting from a difference in pressure within the chamber of the nozzle segment and the hot gas path and the fixed turbine casing surrounding the nozzle stage. The pedestals may be cast or welded to the cover and nozzle wall.

  4. Turbine airfoil with outer wall thickness indicators

    DOE Patents [OSTI]

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  5. Effective Supergravity for Supergravity Domain Walls

    E-Print Network [OSTI]

    M. Cvetic; N. D. Lambert

    2002-05-23

    We discuss the low energy effective action for the Bosonic and Fermionic zero-modes of a smooth BPS Randall-Sundrum domain wall, including the induced supergravity on the wall. The result is a pure supergravity in one lower dimension. In particular, and in contrast to non-gravitational domain walls or domain walls in a compact space, the zero-modes representing transverse fluctuations of domain wall have vanishing action.

  6. Green Wall Technologies Objective: Compile a comprehensive and up-to-date assessment of green wall

    E-Print Network [OSTI]

    Wolberg, George

    Green Wall Technologies Objective: Compile a comprehensive and up-to-date assessment of green wall technologies that can be used to jump-start design and engineering proposals for green walls in a variety of urban conditions. Background: Green walls--otherwise referred to as living walls or biowalls

  7. Universal fuel basket for use with an improved oxide reduction vessel and electrorefiner vessel

    DOE Patents [OSTI]

    Herrmann, Steven D. (Idaho Falls, ID); Mariani, Robert D. (Idaho Falls, ID)

    2002-01-01

    A basket, for use in the reduction of UO.sub.2 to uranium metal and in the electrorefining of uranium metal, having a continuous annulus between inner and outer perforated cylindrical walls, with a screen adjacent to each wall. A substantially solid bottom and top plate enclose the continuous annulus defining a fuel bed. A plurality of scrapers are mounted adjacent to the outer wall extending longitudinally thereof, and there is a mechanism enabling the basket to be transported remotely.

  8. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    ASSESSMENT (VTRA) 2010 11/18/2013 2 GW-VCU Draft #12;P: BC & DH100 3D Risk Profile All FV - Pot. Ground. Oil OIL LOSS - PGO Draft #12;11/18/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIALVESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding

  9. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    COLLISION OIL LOSS - PCO Draft #12;11/18/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIALVESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Collision Oil Loss Dr. J. Rene van Dorp and Dr. Jason R.W Merrick 11/18/2013 1 GW-VCU November 2013 CASE P: BASE

  10. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    ) 2010 Draft #12;11/18/2013 4 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIAL GROUNDING OILVESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding Oil Loss Dr. J. Rene van Dorp and Dr. Jason R.W Merrick 11/18/2013 1 GW-VCU November 2013 CASE P: BASE

  11. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    COLLISION OIL LOSS - PCO Draft #12;11/19/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIALVESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Collision Oil Loss Dr. J. Rene van Dorp and Dr. Jason R.W Merrick 11/19/2013 1 GW-VCU November 2013 CASE P: BASE

  12. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-Print Network [OSTI]

    van Dorp, Johan René

    OIL LOSS - PGO Draft #12;11/19/2013 5 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 POTENTIALVESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Potential Grounding Oil Loss Dr. J. Rene van Dorp and Dr. Jason R.W Merrick 11/19/2013 1 GW-VCU November 2013 CASE P: BASE

  13. Final Vitrification Melter And Vessels Evaluation Documentation

    Broader source: Energy.gov [DOE]

    DOE has prepared final evaluations and made waste incidental to reprocessing determinations for the vitrification melter and feed vessels (the concentrator feed makeup tank and the melter feed hold tank), used by DOE’s West Valley Demonstration Project as part of the process to vitrify waste from prior commercial reprocessing of spent nuclear fuel.

  14. Zone separator for multiple zone vessels

    DOE Patents [OSTI]

    Jones, John B. (Grand Junction, CO)

    1983-02-01

    A solids-gas contact vessel, having two vertically disposed distinct reaction zones, includes a dynamic seal passing solids from an upper to a lower zone and maintaining a gas seal against the transfer of the separate treating gases from one zone to the other, and including a stream of sealing fluid at the seal.

  15. Investigation of Cracked Lithium Hydride Reactor Vessels

    SciTech Connect (OSTI)

    bird, e.l.; mustaleski, t.m.

    1999-06-01

    Visual examination of lithium hydride reactor vessels revealed cracks that were adjacent to welds, most of which were circumferentially located in the bottom portion of the vessels. Sections were cut from the vessels containing these cracks and examined by use of the metallograph, scanning electron microscope, and microprobe to determine the cause of cracking. Most of the cracks originated on the outer surface just outside the weld fusion line in the base material and propagated along grain boundaries. Crack depths of those examined sections ranged from {approximately}300 to 500 {micro}m. Other cracks were reported to have reached a maximum depth of 1/8 in. The primary cause of cracking was the creation of high tensile stresses associated with the differences in the coefficients of thermal expansion between the filler metal and the base metal during operation of the vessel in a thermally cyclic environment. This failure mechanism could be described as creep-type fatigue, whereby crack propagation may have been aided by the presence of brittle chromium carbides along the grain boundaries, which indicates a slightly sensitized microstructure.

  16. Original Investigation Vessel Specific Coronary Artery

    E-Print Network [OSTI]

    van Vliet, Lucas J.

    Original Investigation Vessel Specific Coronary Artery Calcium Scoring: An Automatic System Rahil heart as well as per coronary artery on non-contrast-enhanced cardiac computed tomographic images and tested on 157 data sets. Statistical testing included determining Pearson's correlation coefficients

  17. Original Investigations Vessel Specific Coronary Artery

    E-Print Network [OSTI]

    van Vliet, Lucas J.

    Original Investigations Vessel Specific Coronary Artery Calcium Scoring: An Automatic System Rahil heart as well as per coronary artery on non-contrast-enhanced cardiac computed tomographic images and tested on 157 data sets. Statistical testing included determining Pearson's correlation coefficients

  18. THE WEST GERMAN RESEARCH VESSEL WALTHER HERWIG

    E-Print Network [OSTI]

    ....... .·. ... .. .........··...... 1 Lower deck aft........... ............... ............. ....... 1 Fish processing machinery and launched in 1963. The vessel was primarily designed as a stern trawler for use in high sea fisheries investigations with emphasis on mid- water and bottom trawling. Pertinent features of design, equipment

  19. Exploratory Dijkstra forest based automatic vessel segmentation

    E-Print Network [OSTI]

    Tomasi, Carlo

    , and follows vessel branching naturally and efficiently. To test our method, we constructed a retinal video code freely available online. © 2012 Optical Society of America OCIS codes: (100.0100) Image processing, "Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation

  20. Stability of winding cosmic wall lattices with X type junctions

    E-Print Network [OSTI]

    Brandon Carter

    2009-11-30

    This work confirms the stability of a class of domain wall lattice models that can produce accelerated cosmological expansion, with pressure to density ratio $w=-1/3$ at early times, and with $w=-2/3$ at late times when the lattice scale becomes large compared to the wall thickness. For walls of tension $T_{I}$, the relevant X type junctions could be unstable (for a sufficiently acute intersection angle $\\alpha$) against separation into a pair of Y type junctions joined by a compound wall, only if the tension $T_{II}$ of the latter were less than $2T_{I}$ (and for an approximately right-angled intersection if it were less that $\\sqrt{2} T_{I}$) which can not occur in the class considered here. In an extensive category of multicomponent scalar field models of forced harmonic (linear or non-linear) type it is shown how the relevant tension -- which is the same as the surface energy density $U$ of the wall -- can be calculated as the minimum (geodesic) distance between the relevant vacuum states as measured on the space of field values $\\Phi^i$ using a positive definite (Riemannian) energy metric $dU^2=\\tilde G_{ij} d\\Phi^i d\\Phi^j$ that is obtained from the usual kinetic metric (which is flat for a model with ordinary linear kinetic part) by application of a conformal factor proportional to the relevant potential function $V$. For suitably periodic potential functions there will be corresponding periodic configurations -- with parallel walls characterised by incrementation of a winding number -- in which the condition for stability of large scale bunching modes is shown to be satisfied automatically. It is suggested that such a configuration -- with a lattice lengthscale comparable to intergalactic separation distances -- might have been produced by a late stage of cosmological inflation.

  1. Thermal breaking systems for metal stud walls -- Can metal stud walls perform as well as wood stud walls

    SciTech Connect (OSTI)

    Kosny, J.; Christian, J.E.; Desjarlais, A.O. [Oak Ridge National Lab., TN (United States). Buildings Technology Center

    1997-12-31

    Metal stud wall systems for residential buildings are gaining in popularity. Strong thermal bridges caused by highly conductive metal studs degrade the thermal performance of such walls. Several wall configurations have been developed to improve their thermal performance. The authors tried to evaluate some of these wall systems. The thermal performance of metal stud walls is frequently compared with that of wood stud walls. A reduction of the in-cavity R-value caused by the wood studs is about 10% in wood stud walls. In metal stud walls, thermal bridges generated by the metal components reduce their thermal performance by up to 55%. Today, metal stud walls are believed to be considerably less thermally effective than similar systems made of wood because steel has much higher thermal conductivity than wood. Relatively high R-values may be achieved by installing insulating sheathing, which is now widely recommended as the remedy for weak thermal performance of metal stud walls. A series of promising metal stud wall configurations was analyzed. Some of these walls were designed and tested by the authors, some were tested in other laboratories, and some were developed and forgotten a long time ago. Several types of thermal breaking systems were used in these walls. Two- and three-dimensional finite-difference computer simulations were used to analyze 20 metal stud wall configurations. Also, a series of hot-box tests were conducted on several of these walls. Test results for 22 additional metal stud walls were analyzed. Most of these walls contained conventional metal studs. Commonly used fiberglass and EPS were used as insulation materials. The most promising metal stud wall configurations have reductions in the center-of-cavity R-values of less than 20%.

  2. Aerosol source term in high pressure melt ejection

    SciTech Connect (OSTI)

    Brockmann, J.E.; Tarbell, W.W.

    1984-11-01

    Pressurized ejection of melt from a reactor pressure vessel has been identified as an important element of a severe reactor accident. Copious aerosol production is observed when thermitically generated melts pressurized with nitrogen or carbon dioxide to 1.3 to 17 MPa are ejected into an air atmosphere. Aerosol particle size distributions measured in the tests have modes of about 0.5, 5, and > 10 ..mu..m. Mechanisms leading to formation of these multimodal size distributions are suggested. This aerosol is a potentially important fission product source term that has not been considered in previous severe accident analyses.

  3. Mast cells present protrusions into blood vessels upon tracheal allergen challenge in mice

    E-Print Network [OSTI]

    2015-01-01

    probe cutaneous blood vessels to capture immunoglobulin E.Protrusions into Blood Vessels upon Tracheal AllergenProtrusions into Blood Vessels upon Tracheal Allergen

  4. Extending vaterite microviscometry to ex vivo blood vessels by serial calibration

    E-Print Network [OSTI]

    Shreim, Samir G.; Steward, Earl; Botvinick, Elliot L.

    2011-01-01

    stresses doing in our blood vessels? ” Ann. Biomed. Eng. 19(to ex vivo blood vessels by serial calibration Samir G.implications in vessel mechanics and mechanotransduction.

  5. The "Empty Vessel" Physician: Physicians' Instrumentality Makes Them Seem Personally Empty

    E-Print Network [OSTI]

    Schroeder, J; Fishbach, A

    2015-01-01

    Article The ‘‘Empty Vessel’’ Physician: Physicians’emotionless ‘‘empty vessels’’: The higher is individuals’physicians as empty vessels for health care. Keywords

  6. Arborizing vessels under dermoscopy: A case of cellular neurothekeoma instead of basal cell carcinoma

    E-Print Network [OSTI]

    Aydingoz, Ikbal Esen; Mansur, Ayse Tulin; Dikicioglu-Cetin, Emel

    2013-01-01

    inspection disclosed prominent vessels. The background skinonly thick and arborizing vessels on the surface of theshowing arborizing vessels (Heine x10) Histopathology

  7. Cover Heated, Open Vessels, Energy Tips: STEAM, Steam Tip Sheet...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Cover Heated, Open Vessels Open vessels that contain heated liquids often have high heat loss due to surface evaporation. Both energy and liquid losses are reduced by covering...

  8. Study Reveals Challenges and Opportunities Related to Vessels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reveals Challenges and Opportunities Related to Vessels for U.S. Offshore Wind Study Reveals Challenges and Opportunities Related to Vessels for U.S. Offshore Wind October 1, 2013...

  9. aftercastle masted vessel with aftercastle is found on a Spanish

    E-Print Network [OSTI]

    masted vessel with aftercastle is found on a Spanish ations it would have any idea of crusader ships aces for the new tack as large as the crusader vessels (

  10. Steel-framed buildings: Impacts of wall detail configurations on the whole wall thermal performance

    SciTech Connect (OSTI)

    Kosny, J.; Desjarlais, A.O.; Christian, J.E.

    1998-06-01

    The main objective of this paper is the influence of architectural wall details on the whole wall thermal performance. Whole wall thermal performance analysis was performed for six light gage steel-framed wall systems (some with wood components). For each wall system, all wall details were simulated using calibrated 3-D finite difference computer modeling. The thermal performance of the six steel-framed wall systems included various system details and the whole wall system thermal performance for a typical single-story ranch house. Currently, predicted heat losses through building walls are typically based on measurements of the wall system clear wall area using test methods such as ASTM C 236 or are calculated by one of the procedures recommended in the ASHRAE Handbook of Fundamentals that often is carried out for the clear wall area exclusively. In this paper, clear wall area is defined as the part of the wall system that is free of thermal anomalies due to building envelope details or thermally unaffected by intersections with other surfaces of the building envelope. Clear wall experiments or calculations normally do not include the effects of building envelope details such as corners, window and door openings, and structural intersections with roofs, floors, ceilings, and other walls. In steel-framed wall systems, these details typically consist of much more structural components than the clear wall. For this situation, the thermal properties measured or calculated for the clear wall area do not adequately represent the total wall system thermal performance. Factors that would impact the ability of today`s standard practice to accurately predict the total wall system thermal performance are the accuracy of the calculation methods, the area of the total wall that is clear wall, and the quantity and thermal performance of the various wall system details.

  11. Fracture analysis of axially cracked pressure tube of pressurized heavy water reactor

    SciTech Connect (OSTI)

    Krishnan, S.; Bhasin, V.; Mahajan, S.C. [Bhabha Atomic Research Centre, Bombay (India)] [and others

    1997-04-01

    Three Dimensional (313) finite element elastic plastic fracture analysis was done for through wall axially cracked thin pressure tubes of 220 MWe Indian Pressurized Heavy Water Reactor. The analysis was done for Zr-2 and Zr-2.5Nb pressure tubes operating at 300{degrees}C and subjected to 9.5 Mpa internal pressure. Critical crack length was determined based on tearing instability concept. The analysis included the effect of crack face pressure due to the leaking fluid from tube. This effect was found to be significant for pressure tubes. The available formulae for calculating J (for axially cracked tubes) do not take into account the effect of crack face pressure. 3D finite element analysis also gives insight into variation of J across the thickness of pressure tube. It was observed that J is highest at the mid-surface of tube. The results have been presented in the form of across the thickness average J value and a peak factor on J. Peak factor on J is ratio of J at mid surface to average J value. Crack opening area for different cracked lengths was calculated from finite element results. The fracture assessment of pressure tubes was also done using Central Electricity Generating Board R-6 method. Ductile tearing was considered.

  12. Shear wall ultimate drift limits

    SciTech Connect (OSTI)

    Duffey, T.A.; Goldman, A.; Farrar, C.R.

    1994-04-01

    Drift limits for reinforced-concrete shear walls are investigated by reviewing the open literature for appropriate experimental data. Drift values at ultimate are determined for walls with aspect ratios ranging up to a maximum of 3.53 and undergoing different types of lateral loading (cyclic static, monotonic static, and dynamic). Based on the geometry of actual nuclear power plant structures exclusive of containments and concerns regarding their response during seismic (i.e.,cyclic) loading, data are obtained from pertinent references for which the wall aspect ratio is less than or equal to approximately 1, and for which testing is cyclic in nature (typically displacement controlled). In particular, lateral deflections at ultimate load, and at points in the softening region beyond ultimate for which the load has dropped to 90, 80, 70, 60, and 50 percent of its ultimate value, are obtained and converted to drift information. The statistical nature of the data is also investigated. These data are shown to be lognormally distributed, and an analysis of variance is performed. The use of statistics to estimate Probability of Failure for a shear wall structure is illustrated.

  13. Method and apparatus for coupling seismic sensors to a borehole wall

    DOE Patents [OSTI]

    West, Phillip B.

    2005-03-15

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  14. Osmotic pressure of matter and vacuum energy

    E-Print Network [OSTI]

    G. E. Volovik

    2009-10-04

    The walls of the box which contains matter represent a membrane that allows the relativistic quantum vacuum to pass but not matter. That is why the pressure of matter in the box may be considered as the analog of the osmotic pressure. However, we demonstrate that the osmotic pressure of matter is modified due to interaction of matter with vacuum. This interaction induces the nonzero negative vacuum pressure inside the box, as a result the measured osmotic pressure becomes smaller than the matter pressure. As distinct from the Casimir effect, this induced vacuum pressure is the bulk effect and does not depend on the size of the box. This effect dominates in the thermodynamic limit of the infinite volume of the box. Analog of this effect has been observed in the dilute solution of 3He in liquid 4He, where the superfluid 4He plays the role of the non-relativistic quantum vacuum, and 3He atoms play the role of matter.

  15. Pressure is not a state function for generic active fluids

    E-Print Network [OSTI]

    A. P. Solon; Y. Fily; A. Baskaran; M. E. Cates; Y. Kafri; M. Kardar; J. Tailleur

    2015-12-16

    Pressure is the mechanical force per unit area that a confined system exerts on its container. In thermal equilibrium, it depends only on bulk properties (density, temperature, etc.) through an equation of state. Here we show that in a wide class of active systems the pressure depends on the precise interactions between the active particles and the confining walls. In general, therefore, active fluids have no equation of state, their mechanical pressures exhibit anomalous properties that defy the familiar thermodynamic reasoning that holds in equilibrium. The pressure remains a function of state, however, in some specific and well-studied active models that tacitly restrict the character of the particle-wall and/or particle-particle interactions.

  16. Large Blood Vessels 1.1 Introduction --The Cardiovascular System

    E-Print Network [OSTI]

    Luo, Xiaoyu

    Chapter 1 Large Blood Vessels 1.1 Introduction -- The Cardiovascular System The heart is a pump vessels, the capillaries, in which the main ex- change processes between the blood and tissues take place- sue, collagen, with a few muscle cells. 3 #12;4 CHAPTER 1. LARGE BLOOD VESSELS Figure 1.1: Structure

  17. FEDERAL PERMIT APPLICATION FOR VESSELS FISHING FOR WRECKFISH

    E-Print Network [OSTI]

    1 FEDERAL PERMIT APPLICATION FOR VESSELS FISHING FOR WRECKFISH OFF THE SOUTH ATLANTIC STATES OMB can you bring to the dock when full? USCG DOCUMENTED VESSELS ONLY Gross Tons Net Tons Hull Material) United States Coast Guard (USCG) Certificate of Documentation or a copy of the State Vessel Registration

  18. Image Segmentation Methods for Detecting Blood Vessels in Angiography

    E-Print Network [OSTI]

    Chung, Albert C. S.

    Image Segmentation Methods for Detecting Blood Vessels in Angiography Albert C. S. Chung Lo Kwee-assisted detection and segmentation of blood vessels in angiography are crucial for endovascular treat- ments--Segmentation of Blood Vessels, Feature Detection, Statistical Segmentation, Active Contour Model, Angiography I

  19. Modeling Torsion of Blood Vessels in Surgical Simulation and Planning

    E-Print Network [OSTI]

    Leow, Wee Kheng

    Modeling Torsion of Blood Vessels in Surgical Simulation and Planning Hao LI a,1 , Wee Kheng LEOW a hybrid approach for modeling torsion of blood vessels that undergo deformation and joining. The proposed model takes 3D mesh of the blood vessel as input. It first fits a generalized cylinder to extract

  20. Cross Section of Coils & Shielding Vessels; Stresses & Deformations Preliminary Results

    E-Print Network [OSTI]

    McDonald, Kirk

    Cross Section of Coils & Shielding Vessels; Stresses & Deformations Preliminary Results Bob Weggel 7/5--7/26/2011 The inner radius of the bore tube of the inner shielding vessel (longitudinal axis compressed) of inner and outer shielding vessels of design "Shields50mm.mph", including

  1. IDS120h GEOMETRY WITH SHIELDING VESSELS ENERGY FLOW ANALYSIS

    E-Print Network [OSTI]

    McDonald, Kirk

    IDS120h GEOMETRY WITH SHIELDING VESSELS ENERGY FLOW ANALYSIS SHIELDING MATERIAL: 60% W + 40% He vs SHIELDING Nicholas Souchlas, PBL (10/18/2011) 1 #12;IDS120h with shielding vessels. # Different cases ENERGY CUTOFF >SHIELDING: 60% W + 40% He , 80% W + 20% He, 88% W + 12% He ( WITH W VESSELS) >4 MW proton

  2. Vessel tractography using an intensity based tensor model

    E-Print Network [OSTI]

    Yanikoglu, Berrin

    Vessel tractography using an intensity based tensor model Suheyla Cetin1 , Gozde Unal1 , Ali Demir1 method, which is based on an intensity-based tensor that fits to a vessel. Our model is initialized with a single seed point and it is ca- pable of capturing whole vessel tree by an automatic branch detection

  3. A new closing method for wall flow diesel particulate filters

    SciTech Connect (OSTI)

    Stobbe, P.; Petersen, H.G.; Sorenson, S.C.; Hoej, J.W.

    1996-09-01

    A new method has been developed to close the ends of a wall flow filter used for removing particulate matter from diesel engine exhaust. In this method, the ends of the honeycomb structure are capped by deforming and closing the ends of the channel walls between the extrusion and firing stages of production. The method increases the amount of filtration area per filter volume for a given cell geometry compared to the traditional plugging method, since the entire length of the honeycomb channels is used for filtration purposes. In addition, use of the capping method has a beneficial effect on the pressure loss characteristics of a filter with a given filtration area. These benefits are illustrated through experimental results.

  4. Pressurizer with a mechanically attached surge nozzle thermal sleeve

    DOE Patents [OSTI]

    Wepfer, Robert M

    2014-03-25

    A thermal sleeve is mechanically attached to the bore of a surge nozzle of a pressurizer for the primary circuit of a pressurized water reactor steam generating system. The thermal sleeve is attached with a series of keys and slots which maintain the thermal sleeve centered in the nozzle while permitting thermal growth and restricting flow between the sleeve and the interior wall of the nozzle.

  5. Experimental assessment of air permeability in a concrete shear wall subjected to simulated seismic loading

    SciTech Connect (OSTI)

    Girrens, S.P.; Farrar, C.R.

    1991-07-01

    A safety concern for the proposed Special Nuclear Materials Laboratory (SNML) facility at the Los Alamos National Laboratory was air leakage from the facility if it were to experience a design basis earthquake event. To address this concern, a study was initiated to estimate air leakage, driven by wind-generated pressure gradients, from a seismically damaged concrete structure. This report describes a prototype experiment developed and performed to measure the air permeability in a reinforced concrete shear wall, both before and after simulated seismic loading. A shear wall test structure was fabricated with standard 4000-psi concrete mix. Static load-cycle testing was used to simulate earthquake loading. Permeability measurements were made by pressurizing one side of the shear wall above atmospheric conditions and recording the transient pressure decay. As long as the structure exhibited linear load displacement response, no variation in the air permeability was detected. However, experimental results indicate that the air permeability in the shear wall increased by a factor of 40 after the wall had been damaged (cracked). 17 figs., 8 tabs.

  6. Role of ex-vessel interactions in determining the severe reactor-accident source term for fission products. [PWR; BWR

    SciTech Connect (OSTI)

    Powers, D.A.; Brockmann, J.E.; Bradley, D.R.; Tarbell, W.W.

    1983-01-01

    The role fission-product release and aerosol generation outside the primary system can have in determining the severe reactor-accident source term is reviewed. Recent analytical and experimental studies of major causes of ex-vessel fission product release and aerosol generation are described. The ejection of molten-core debris from a pressurized-reactor vessel is shown to be a potentially large source of aerosols that has not been recognized in past severe-accident evaluations. A mechanistic model of fission-product release during core-debris interactions with concrete is discussed. Calculations with this model are compared to correlations of experimental data and previous estimates of ex-vessel fission-product release. Predictions with the mechanistic model agree quite well with the data correlations but do not agree at all well with estimates made in the past.

  7. Method for reducing pressure drop through filters, and filter exhibiting reduced pressure drop

    DOE Patents [OSTI]

    Sappok, Alexander; Wong, Victor

    2014-11-18

    Methods for generating and applying coatings to filters with porous material in order to reduce large pressure drop increases as material accumulates in a filter, as well as the filter exhibiting reduced and/or more uniform pressure drop. The filter can be a diesel particulate trap for removing particulate matter such as soot from the exhaust of a diesel engine. Porous material such as ash is loaded on the surface of the substrate or filter walls, such as by coating, depositing, distributing or layering the porous material along the channel walls of the filter in an amount effective for minimizing or preventing depth filtration during use of the filter. Efficient filtration at acceptable flow rates is achieved.

  8. Promising Technology: Cool Paints for Exterior Walls

    Broader source: Energy.gov [DOE]

    Cool Paints increase the solar reflectance of exterior walls. By reflecting more sunlight, the wall surface maintains a cooler temperature. This decrease in temperature leads to less heat transfer through the walls into the building. During the cooling season, the addition of cool paints can decrease the cooling load of the building.

  9. Preliminary development of an integrated approach to the evaluation of pressurized thermal shock as applied to the Oconee Unit 1 Nuclear Power Plant

    SciTech Connect (OSTI)

    Burns, T J; Cheverton, R D; Flanagan, G F; White, J D; Ball, D G; Lamonica, L B; Olson, R

    1986-05-01

    An evaluation of the risk to the Oconee-1 nuclear plant due to pressurized thermal shock (PTS) has been Completed by Oak Ridge National Laboratory (ORNL). This evaluaion was part of a Nuclear Regulatory Commission (NRC) program designed to study the PTS risk to three nuclear plants: Oconee-1, a Babcock and Wilco reactor plant owned and operated by Duke Power Company; Calvert Cliffs-1, a Combustion Engineering reactor plant owned and operated by Baltimore Gas and Electric company; and H.B. Robinson-2, a Westinghouse reactor plant owned and operated by Carolina Power and Light Company. Studies of Calvert Cliffs-1 and H.B. Robinson-2 are still underway. The specific objectives of the Oconee-1 study were to: (1) provide a best estimate of the probability of a through-the-wall crack (TWC) occurring in the reactor pressure vessel as a result of PTS; (2) determine dominant accident sequences, plant features, operator and control actions and uncertainty in the PTS risk; and (3) evaluate effectiveness of potential corrective measures.

  10. High Temperature Electrolysis Pressurized Experiment Design, Operation, and Results

    SciTech Connect (OSTI)

    J.E. O'Brien; X. Zhang; G.K. Housley; K. DeWall; L. Moore-McAteer

    2012-09-01

    A new facility has been developed at the Idaho National Laboratory for pressurized testing of solid oxide electrolysis stacks. Pressurized operation is envisioned for large-scale hydrogen production plants, yielding higher overall efficiencies when the hydrogen product is to be delivered at elevated pressure for tank storage or pipelines. Pressurized operation also supports higher mass flow rates of the process gases with smaller components. The test stand can accommodate planar cells with dimensions up to 8.5 cm x 8.5 cm and stacks of up to 25 cells. It is also suitable for testing other cell and stack geometries including tubular cells. The pressure boundary for these tests is a water-cooled spool-piece pressure vessel designed for operation up to 5 MPa. Pressurized operation of a ten-cell internally manifolded solid oxide electrolysis stack has been successfully demonstrated up 1.5 MPa. The stack is internally manifolded and operates in cross-flow with an inverted-U flow pattern. Feed-throughs for gas inlets/outlets, power, and instrumentation are all located in the bottom flange. The entire spool piece, with the exception of the bottom flange, can be lifted to allow access to the internal furnace and test fixture. Lifting is accomplished with a motorized threaded drive mechanism attached to a rigid structural frame. Stack mechanical compression is accomplished using springs that are located inside of the pressure boundary, but outside of the hot zone. Initial stack heatup and performance characterization occurs at ambient pressure followed by lowering and sealing of the pressure vessel and subsequent pressurization. Pressure equalization between the anode and cathode sides of the cells and the stack surroundings is ensured by combining all of the process gases downstream of the stack. Steady pressure is maintained by means of a backpressure regulator and a digital pressure controller. A full description of the pressurized test apparatus is provided in this report. Results of initial testing showed the expected increase in open-cell voltage associated with elevated pressure. However, stack performance in terms of area-specific resistance was enhanced at elevated pressure due to better gas diffusion through the porous electrodes of the cells. Some issues such as cracked cells and seals were encountered during testing. Full resolution of these issues will require additional testing to identify the optimum test configurations and protocols.

  11. Gas-lubricated seal for sealing between a piston and a cylinder wall

    DOE Patents [OSTI]

    Hoult, D.P.

    1985-09-10

    A piston-cylinder seal uses gas for a lubricant and has a runner supported on a gapless structure and placed in the space between the piston and the cylinder wall. The runner is deformed elastically under the influence of the operating pressures to follow and compensate for variations in the piston-cylinder fit and maintain a seal. 4 figs.

  12. Gas-lubricated seal for sealing between a piston and a cylinder wall

    DOE Patents [OSTI]

    Hoult, David P. (Box 89, Wellesley, MA 02181)

    1985-01-01

    A piston-cylinder seal uses gas for a lubricant and has a runner supported on a gapless structure and placed in the space between the piston and the cylinder wall. The runner is deformed elastically under the influence of the operating pressures to follow and compensate for variations in the piston-cylinder fit and maintain a seal.

  13. Streaming current and wall dissolution over 48 h in silica nanochannels Mathias Bkbo Andersen a,

    E-Print Network [OSTI]

    , and the chemical reactions in the bulk electrolyte and at the solid­liquid interface. We extend this model to two induced by a pressure-driven flow in long, straight, electrolyte-filled nanochannels. The theoretical work the electrolyte composition using KCl and borate salts, and the wall coating using 3

  14. Influence of wall thickness on the stability of the resistive wall mode in tokamak Richard Fitzpatrick

    E-Print Network [OSTI]

    Fitzpatrick, Richard

    Influence of wall thickness on the stability of the resistive wall mode in tokamak plasmas Richard.1063/1.2446041 Nonlinear evolution of resistive wall mode in a cylindrical tokamak with poloidal rotation Phys. Plasmas 13); 10.1063/1.1943347 Control of resistive wall modes in a cylindrical tokamak with radial and poloidal

  15. Effect of temperature and pressure on the dynamics of nanoconfined propane

    SciTech Connect (OSTI)

    Gautam, Siddharth Liu, Tingting Welch, Susan; Cole, David; Rother, Gernot; Jalarvo, Niina; Mamontov, Eugene

    2014-04-24

    We report the effect of temperature and pressure on the dynamical properties of propane confined in nanoporous silica aerogel studied using quasielastic neutron scattering (QENS). Our results demonstrate that the effect of a change in the pressure dominates over the effect of temperature variation on the dynamics of propane nano-confined in silica aerogel. At low pressures, most of the propane molecules are strongly bound to the pore walls, only a small fraction is mobile. As the pressure is increased, the fraction of mobile molecules increases. A change in the mechanism of motion, from continuous diffusion at low pressures to jump diffusion at higher pressures has also been observed.

  16. Factors affecting coking pressures in tall coke ovens

    SciTech Connect (OSTI)

    Grimley, J.J.; Radley, C.E. [British Steel plc, Scunthorpe (United Kingdom). Scunthorpe Works

    1995-12-01

    The detrimental effects of excessive coking pressures, resulting in the permanent deformation of coke oven walls, have been recognized for many years. Considerable research has been undertaken worldwide in attempts to define the limits within which a plant may safely operate and to quantify the factors which influence these pressures. Few full scale techniques are available for assessing the potential of a coal blend for causing wall damage. Inference of dangerous swelling pressures may be made however by the measurement of the peak gas pressure which is generated as the plastic layers meet and coalesce at the center of the oven. This pressure is referred to in this report as the carbonizing pressure. At the Dawes Lane cokemaking plant of British Steel`s Scunthorpe Works, a large database has been compiled over several years from the regulator measurement of this pressure. This data has been statistically analyzed to provide a mathematical model for predicting the carbonizing pressure from the properties of the component coals, the results of this analysis are presented in this report.

  17. Generic BWR-4 degraded core in-vessel study. Status report

    SciTech Connect (OSTI)

    Not Available

    1984-11-01

    Original intent of this project was to produce a phenomenological study of the in-vessel degradation which occurs during the TQUX and TQUV sequences for a generic BWR-4 from the initiation of the FSAR Chapter 15 operational transient through core debris bed formation to the failure of the primary pressure boundary. Bounding calculations were to be performed for the two high pressure and low pressure non-LOCA scenarios to assess the uncertainties in the current state of knowledge regarding the source terms for containment integrity studies. Source terms as such were defined in terms of hydrogen generation, unreacted metal, and coolant inventroy, and in terms of the form, sequencing and mode of dispersal through the primary vessel boundary. Fission product release was not to be considered as part of this study. Premature termination of the project, however, led to the dicontinuation of work on an as is basis. Work on the in-core phase from the point of scram to core debris bed formation was largely completed. A preliminary scoping calculation on the debris bed phase had been initiated. This report documents the status of the study at termination.

  18. Analyses of High Pressure Molten Debris Dispersion for a Typical PWR Plant

    SciTech Connect (OSTI)

    Osamu KAawabata; Mitsuhiro Kajimoto [Japan Nuclear Energy Safety Organization (Japan)

    2006-07-01

    In such severe core damage accident, as small LOCAs with no ECCS injection or station blackout, in which the primary reactor system remains pressurized during core melt down, certain modes of vessel failure would lead to a high pressure ejection of molten core material. In case of a local failure of the lower head, the molten materials would initially be ejected into the cavity beneath the pressure vessel may subsequently be swept out from the cavity to the containment atmosphere and it might cause the early containment failure by direct contact of containment steel liner with core debris. When the contribution of a high-pressure scenario in a core damage frequency increases, early conditional containment failure probability may become large. In the present study, the verification analysis of PHOENICS code and the combining analysis with MELCOR and PHOENICS codes were performed to examine the debris dispersion behavior during high pressure melt ejection. The PHOENICS code which can treat thermal hydraulic phenomena, was applied to the verification analysis for melt dispersion experiments conducted by the Purdue university in the United States. A low pressure melt dispersion experiment at initial pressure 1.4 MPas used metal woods as a molten material was simulated. The analytical results with molten debris dispersion mostly from the model reactor cavity compartment showed an agreement with the experimental result, but the analysis result of a volumetric median diameter of the airborne debris droplets was estimated about 1.5 times of the experimental result. The injection rates of molten debris and steam after reactor vessel failure for a typical PWR plant were analyzed using the MELCOR code. In addition, PHOENICS was applied to a 3D analysis for debris dispersion with low primary pressure at the reactor vessel failure. The analysis result showed that almost all the molten debris were dispersed from the reactor vessel cavity compartment by about 45 seconds after the start of steam release. (authors)

  19. Comparison of high pressure transient PVT measurements and model predictions. Part I.

    SciTech Connect (OSTI)

    Felver, Todd G.; Paradiso, Nicholas Joseph; Evans, Gregory Herbert; Rice, Steven F.; Winters, William Stanley, Jr.

    2010-07-01

    A series of experiments consisting of vessel-to-vessel transfers of pressurized gas using Transient PVT methodology have been conducted to provide a data set for optimizing heat transfer correlations in high pressure flow systems. In rapid expansions such as these, the heat transfer conditions are neither adiabatic nor isothermal. Compressible flow tools exist, such as NETFLOW that can accurately calculate the pressure and other dynamical mechanical properties of such a system as a function of time. However to properly evaluate the mass that has transferred as a function of time these computational tools rely on heat transfer correlations that must be confirmed experimentally. In this work new data sets using helium gas are used to evaluate the accuracy of these correlations for receiver vessel sizes ranging from 0.090 L to 13 L and initial supply pressures ranging from 2 MPa to 40 MPa. The comparisons show that the correlations developed in the 1980s from sparse data sets perform well for the supply vessels but are not accurate for the receivers, particularly at early time during the transfers. This report focuses on the experiments used to obtain high quality data sets that can be used to validate computational models. Part II of this report discusses how these data were used to gain insight into the physics of gas transfer and to improve vessel heat transfer correlations. Network flow modeling and CFD modeling is also discussed.

  20. Potential for AP600 in-vessel retention through ex-vessel flooding

    SciTech Connect (OSTI)

    Rempe, J.L.; Knudson, D.L.; Allison, C.M.; Thinnes, G.L.; Atwood, C.L.

    1997-12-01

    External reactor vessel cooling (ERVC) is a new severe accident management strategy that involves flooding the reactor cavity to submerge the reactor vessel in an attempt to cool core debris that has relocated to the vessel lower head. Advanced and existing light water reactors (LWRs) are considering ERVC as an accident management strategy for in-vessel retention (IVR) of relocated debris. In the probabilistic risk assessment (PRA) for the AP600 design, Westinghouse credits ERVC for preventing vessel failure during postulated severe accidents with successful reactor coolant system (RCS) depressurization and reactor cavity flooding. To support the Westinghouse position on IVR, DOE contracted the University of California--Santa Barbara (UCSB) to produce the peer-reviewed report. To assist in the NRC`s evaluation of IVR of core melt by ex-vessel flooding of the AP6OO, the Idaho National Engineering and Environmental Laboratory (INEEL) was tasked to perform: An in-depth critical review of the UCSB study and the model that UCSB used to assess ERVC effectiveness; An in-depth review of the UCSB study peer review comments and of UCSB`s resolution method to identify areas where technical concerns weren`t addressed; and An independent analysis effort to investigate the impact of residual concerns on the margins to failure and conclusions presented in the UCSB study. This report summarizes results from these tasks. As discussed in Sections 1.1 and 1.2, INEEL`s review of the UCSB study and peer reviewer comments suggested that additional analysis was needed to assess: (1) the integral impact of peer reviewer-suggested changes to input assumptions and uncertainties and (2) the challenge present by other credible debris configurations. Section 1.3 summarized the corresponding analysis approach developed by INEEL. The remainder of this report provides more detailed descriptions of analysis methodology, input assumptions, and results.

  1. Mechanism of bubble detachment from vibrating walls

    SciTech Connect (OSTI)

    Kim, Dongjun; Park, Jun Kwon Kang, Kwan Hyoung; Kang, In Seok

    2013-11-15

    We discovered a previously unobserved mechanism by which air bubbles detach from vibrating walls in glasses containing water. Chaotic oscillation and subsequent water jets appeared when a wall vibrated at greater than a critical level. Wave forms were developed at water-air interface of the bubble by the wall vibration, and water jets were formed when sufficiently grown wave-curvatures were collapsing. Droplets were pinched off from the tip of jets and fell to the surface of the glass. When the solid-air interface at the bubble-wall attachment point was completely covered with water, the bubble detached from the wall. The water jets were mainly generated by subharmonic waves and were generated most vigorously when the wall vibrated at the volume resonant frequency of the bubble. Bubbles of specific size can be removed by adjusting the frequency of the wall's vibration.

  2. Method for forming a bladder for fluid storage vessels

    DOE Patents [OSTI]

    Mitlitsky, Fred (Livermore, CA); Myers, Blake (Livermore, CA); Magnotta, Frank (Lafayette, CA)

    2000-01-01

    A lightweight, low permeability liner for graphite epoxy composite compressed gas storage vessels. The liner is composed of polymers that may or may not be coated with a thin layer of a low permeability material, such as silver, gold, or aluminum, deposited on a thin polymeric layer or substrate which is formed into a closed bladder using torispherical or near torispherical end caps, with or without bosses therein, about which a high strength to weight material, such as graphite epoxy composite shell, is formed to withstand the storage pressure forces. The polymeric substrate may be laminated on one or both sides with additional layers of polymeric film. The liner may be formed to a desired configuration using a dissolvable mandrel or by inflation techniques and the edges of the film seamed by heat sealing. The liner may be utilized in most any type of gas storage system, and is particularly applicable for hydrogen, gas mixtures, and oxygen used for vehicles, fuel cells or regenerative fuel cell applications, high altitude solar powered aircraft, hybrid energy storage/propulsion systems, and lunar/Mars space applications, and other applications requiring high cycle life.

  3. High-pressure microhydraulic actuator

    DOE Patents [OSTI]

    Mosier, Bruce P. (San Francisco, CA) [San Francisco, CA; Crocker, Robert W. (Fremont, CA) [Fremont, CA; Patel, Kamlesh D. (Dublin, CA) [Dublin, CA

    2008-06-10

    Electrokinetic ("EK") pumps convert electric to mechanical work when an electric field exerts a body force on ions in the Debye layer of a fluid in a packed bed, which then viscously drags the fluid. Porous silica and polymer monoliths (2.5-mm O.D., and 6-mm to 10-mm length) having a narrow pore size distribution have been developed that are capable of large pressure gradients (250-500 psi/mm) when large electric fields (1000-1500 V/cm) are applied. Flowrates up to 200 .mu.L/min and delivery pressures up to 1200 psi have been demonstrated. Forces up to 5 lb-force at 0.5 mm/s (12 mW) have been demonstrated with a battery-powered DC-DC converter. Hydraulic power of 17 mW (900 psi@ 180 uL/min) has been demonstrated with wall-powered high voltage supplies. The force and stroke delivered by an actuator utilizing an EK pump are shown to exceed the output of solenoids, stepper motors, and DC motors of similar size, despite the low thermodynamic efficiency.

  4. Pressure Relief Devices for High-Pressure Gaseous Storage Systems: Applicability to Hydrogen Technology

    SciTech Connect (OSTI)

    Kostival, A.; Rivkin, C.; Buttner, W.; Burgess, R.

    2013-11-01

    Pressure relief devices (PRDs) are viewed as essential safety measures for high-pressure gas storage and distribution systems. These devices are used to prevent the over-pressurization of gas storage vessels and distribution equipment, except in the application of certain toxic gases. PRDs play a critical role in the implementation of most high-pressure gas storage systems and anyone working with these devices should understand their function so they can be designed, installed, and maintained properly to prevent any potentially dangerous or fatal incidents. As such, the intention of this report is to introduce the reader to the function of the common types of PRDs currently used in industry. Since high-pressure hydrogen gas storage systems are being developed to support the growing hydrogen energy infrastructure, several recent failure incidents, specifically involving hydrogen, will be examined to demonstrate the results and possible mechanisms of a device failure. The applicable codes and standards, developed to minimize the risk of failure for PRDs, will also be reviewed. Finally, because PRDs are a critical component for the development of a successful hydrogen energy infrastructure, important considerations for pressure relief devices applied in a hydrogen gas environment will be explored.

  5. Perceptual Affordances of Wall-Sized Displays for

    E-Print Network [OSTI]

    Isenberg, Petra

    .g., HCI)]: Miscellaneous. Introduction Wall-sized displays (PowerWalls) engulf viewers in very large high

  6. PressurePressure Indiana Coal Characteristics

    E-Print Network [OSTI]

    Fernández-Juricic, Esteban

    TimeTime PressurePressure · Indiana Coal Characteristics · Indiana Coals for Coke · Coal Indiana Total Consumption Electricity 59,664 Coke 4,716 Industrial 3,493 Major Coal- red power plantsTransportation in Indiana · Coal Slurry Ponds Evaluation · Site Selection for Coal Gasification · Coal-To-Liquids Study, CTL

  7. Dye laser amplifier including a dye cell contained within a support vessel

    DOE Patents [OSTI]

    Davin, James (Gilroy, CA)

    1992-01-01

    A large (high flow rate) dye laser amplifier in which a continous replenished supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a flow rate of greater than 30 gallons/minute at a static pressure greater than 150 pounds/square inch and a specifically designed support vessel for containing the dye cell.

  8. Characterizing the Hydrodynamics of Bubbling Fluidized Beds with Multivariate Pressure Measurements

    E-Print Network [OSTI]

    Tennessee, University of

    Characterizing the Hydrodynamics of Bubbling Fluidized Beds with Multivariate Pressure Measurements mounted on the walls of a bubbling fluidized bed. Our objective was to identify multivariate dynamic of bubbling fluidized beds with multivariate pressure measurements. 2000 AIChE Annual Meeting (Los Angeles

  9. POROUS WALL, HOLLOW GLASS MICROSPHERES

    SciTech Connect (OSTI)

    Sexton, W.

    2012-06-30

    Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to 'normal glasses of a 1 to 2 order of magnitude, which can result in unique properties in areas such as hydrogen storage, gas transport, gas separations and purifications, sensors, global warming applications, new drug delivery systems and so on. One of the most interesting porous glass products that SRNL has developed and patented is Porous Wall, Hollow Glass Microspheres (PW-HGMs) that are being studied for many different applications. The European Patent Office (EPO) just recently notified SRS that the continuation-in-part patent application for the PW-HGMs has been accepted. The original patent, which was granted by the EPO on June 2, 2010, was validated in France, Germany and the United Kingdom. The microspheres produced are generally in the range of 2 to 100 microns, with a 1 to 2 micron wall. What makes the SRNL microspheres unique from all others is that the team in Figure 1 has found a way to induce and control porosity through the thin walls on a scale of 100 to 3000 {angstrom}. This is what makes the SRNL HW-HGMs one-of-a-kind, and is responsible for many of their unique properties and potential for various applications, including those in tritium storage, gas separations, H-storage for vehicles, and even a variety of new medical applications in the areas of drug delivery and MRI contrast agents. SRNL Hollow Glass Microspheres, and subsequent, Porous Wall, Hollow Glass Microspheres are fabricated using a flame former apparatus. Figure 2 is a schematic of the apparatus.

  10. Comparative Study of High Triangularity H-mode Plasma Performance in JET with Be/W Wall and CFC Wall

    E-Print Network [OSTI]

    Comparative Study of High Triangularity H-mode Plasma Performance in JET with Be/W Wall and CFC Wall

  11. NREL: Energy Analysis - Anna Wall

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:NewsWebmasterWorking With UsAnna Wall Photo of

  12. Measurement of earth pressures on concrete box culverts under highway embankments

    SciTech Connect (OSTI)

    Yang, M.Z.; Drumm, E.C.; Bennett, R.M.; Mauldon, M.

    1999-07-01

    To obtain a better understanding of the stresses acting on cast-in-place concrete box culverts, and to investigate the conditions which resulted in a culvert failure under about 12 meters of backfill, two sections of a new culvert were instrumented. The measured earth pressure distribution was found to depend upon the height of the embankment over the culvert. For low embankment heights (less than one-half the culvert width), the average measured vertical earth pressures, weighted by tributary length, were about 30% greater than the recommended AASHTO pressures. The measured lateral pressures were slightly greater than the AASHTO pressures. As the embankment height increased, the measured weighted average vertical stress exceeded the AASHTO pressures by about 20%. Lateral pressures which exceeded the vertical pressures were recorded at the bottom of the culvert walls, and small lateral pressures were recorded on the upper locations of the wall. The high lateral pressures at the base of the wall are consistent with the results from finite element analyses with high density (modulus) backfill material placed around the culvert.

  13. Pressurized solid oxide fuel cell integral air accumular containment

    DOE Patents [OSTI]

    Gillett, James E.; Zafred, Paolo R.; Basel, Richard A.

    2004-02-10

    A fuel cell generator apparatus contains at least one fuel cell subassembly module in a module housing, where the housing is surrounded by a pressure vessel such that there is an air accumulator space, where the apparatus is associated with an air compressor of a turbine/generator/air compressor system, where pressurized air from the compressor passes into the space and occupies the space and then flows to the fuel cells in the subassembly module, where the air accumulation space provides an accumulator to control any unreacted fuel gas that might flow from the module.

  14. Design and fabrication of a MEMS-array pressure sensor system for passive underwater navigation inspired by the lateral line

    E-Print Network [OSTI]

    Hou, Stephen Ming-Chang, 1981-

    2012-01-01

    An object within a fluid flow generates local pressure variations that are unique and characteristic to the object's shape and size. For example, a three-dimensional object or a wall-like obstacle obstructs flow and creates ...

  15. ITER's Tokamak Cooling Water System and the the Use of ASME Codes to Comply with French Regulations of Nuclear Pressure Equipment

    SciTech Connect (OSTI)

    Berry, Jan [ORNL] [ORNL; Ferrada, Juan J [ORNL] [ORNL; Curd, Warren [ITER Organization, Saint Paul Lez Durance, France] [ITER Organization, Saint Paul Lez Durance, France; Dell Orco, Dr. Giovanni [ITER Organization, Saint Paul Lez Durance, France] [ITER Organization, Saint Paul Lez Durance, France; Barabash, Vladimir [ITER Organization, Saint Paul Lez Durance, France] [ITER Organization, Saint Paul Lez Durance, France; Kim, Seokho H [ORNL] [ORNL

    2011-01-01

    During inductive plasma operation of ITER, fusion power will reach 500 MW with an energy multiplication factor of 10. The heat will be transferred by the Tokamak Cooling Water System (TCWS) to the environment using the secondary cooling system. Plasma operations are inherently safe even under the most severe postulated accident condition a large, in-vessel break that results in a loss-of-coolant accident. A functioning cooling water system is not required to ensure safe shutdown. Even though ITER is inherently safe, TCWS equipment (e.g., heat exchangers, piping, pressurizers) are classified as safety important components. This is because the water is predicted to contain low-levels of radionuclides (e.g., activated corrosion products, tritium) with activity levels high enough to require the design of components to be in accordance with French regulations for nuclear pressure equipment, i.e., the French Order dated 12 December 2005 (ESPN). ESPN has extended the practical application of the methodology established by the Pressure Equipment Directive (97/23/EC) to nuclear pressure equipment, under French Decree 99-1046 dated 13 December 1999, and Order dated 21 December 1999 (ESP). ASME codes and supplementary analyses (e.g., Failure Modes and Effects Analysis) will be used to demonstrate that the TCWS equipment meets these essential safety requirements. TCWS is being designed to provide not only cooling, with a capacity of approximately 1 GW energy removal, but also elevated temperature baking of first-wall/blanket, vacuum vessel, and divertor. Additional TCWS functions include chemical control of water, draining and drying for maintenance, and facilitation of leak detection/localization. The TCWS interfaces with the majority of ITER systems, including the secondary cooling system. U.S. ITER is responsible for design, engineering, and procurement of the TCWS with industry support from an Engineering Services Organization (ESO) (AREVA Federal Services, with support from Northrop Grumman, and OneCIS). ITER International Organization (ITER-IO) is responsible for design oversight and equipment installation in Cadarache, France. TCWS equipment will be fabricated using ASME design codes with quality assurance and oversight by an Agreed Notified Body (approved by the French regulator) that will ensure regulatory compliance. This paper describes the TCWS design and how U.S. ITER and fabricators will use ASME codes to comply with EU Directives and French Orders and Decrees.

  16. A Xenon Condenser with a Remote Liquid Storage Vessel

    E-Print Network [OSTI]

    S. Slutsky; Y. -R. Yen; H. Breuer; A. Dobi; C. Hall; T. Langford; D. S. Leonard; L. J. Kaufman; V. Strickland; N. Voskanian

    2009-07-25

    We describe the design and operation of a system for xenon liquefaction in which the condenser is separated from the liquid storage vessel. The condenser is cooled by a pulse tube cryocooler, while the vessel is cooled only by the liquid xenon itself. This arrangement facilitates liquid particle detector research by allowing easy access to the upper and lower flanges of the vessel. We find that an external xenon gas pump is useful for increasing the rate at which cooling power is delivered to the vessel, and we present measurements of the power and efficiency of the apparatus.

  17. Webinar: Material Characterization of Storage Vessels for Fuel Cell Forklifts

    Broader source: Energy.gov [DOE]

    Video recording of the webinar titled, Material Characterization of Storage Vessels for Fuel Cell Forklifts, originally presented on August 14, 2012.

  18. Method and device for supporting blood vessels during anastomosis

    DOE Patents [OSTI]

    Doss, J.D.

    1985-05-20

    A device and method for preventing first and second severed blood vessels from collapsing during attachment to each other. The device comprises a dissolvable non-toxic stent that is sufficiently rigid to prevent the blood vessels from collapsing during anastomosis. The stent can be hollow or have passages to permit blood flow before it dissolves. A single stent can be inserted with an end in each of the two blood vessels or separate stents can be inserted into each blood vessel. The stent may include a therapeutically effective amount of a drug which is slowly released into the blood stream as the stent dissolves. 12 figs.

  19. Wall current probe: A non-invasive in situ plasma diagnostic for space and time resolved current density distribution measurement

    SciTech Connect (OSTI)

    Baude, R.; Gaboriau, F.; Hagelaar, G. J. M. [Université de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d’énergie), 118 route de Narbonne, F-31062 Toulouse Cedex 9, France and CNRS, LAPLACE, F-31062, Toulouse (France)] [Université de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d’énergie), 118 route de Narbonne, F-31062 Toulouse Cedex 9, France and CNRS, LAPLACE, F-31062, Toulouse (France)

    2013-08-15

    In the context of low temperature plasma research, we propose a wall current probe to determine the local charged particle fluxes flowing to the chamber walls. This non-intrusive planar probe consists of an array of electrode elements which can be individually biased and for which the current can be measured separately. We detail the probe properties and present the ability of the diagnostic to be used as a space and time resolved measurement of the ion and electron current density at the chamber walls. This diagnostic will be relevant to study the electron transport in magnetized low-pressure plasmas.

  20. SRNL POROUS WALL GLASS MICROSPHERES

    SciTech Connect (OSTI)

    Wicks, G; Leung Heung, L; Ray Schumacher, R

    2008-04-15

    The Savannah River National Laboratory (SRNL) has developed a new medium for storage of hydrogen and other gases. This involves fabrication of thin, Porous Walled, Hollow Glass Microspheres (PW-HGMs), with diameters generally in the range of 1 to several hundred microns. What is unique about the glass microballons is that porosity has been induced and controlled within the thin, one micron thick walls, on the scale of 10 to several thousand Angstroms. This porosity results in interesting properties including the ability to use these channels to fill the microballons with special absorbents and other materials, thus providing a contained environment even for reactive species. Gases can now enter the microspheres and be retained on the absorbents, resulting in solid-state and contained storage of even reactive species. Also, the porosity can be altered and controlled in various ways, and even used to filter mixed gas streams within a system. SRNL is involved in about a half dozen different programs involving these PW-HGMs and an overview of some of these activities and results emerging are presented.