Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wall material mass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Wall System Innovations: Familiar Materials, Better Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Wall System Innovation Vladimir Kochkin Joseph Wiehagen April 2013 Wall Innovation Metrics  High R (thermal and air barrier)  High Performance  Durable, structural  Build-able  Low transition risk to builders  50% Building America Goal  ≈ R25+ (CZ 4 and higher) 2 Background  Technologies for high-R walls have been proposed and used for over 25 years  But real market penetration is very low  Often the last EE measure implemented by builders (e.g. E*) 3 Background  High-R wall solutions have not achieved a broad level of standardization and commonality  A large set of methods and materials entered the market  Multiple and conflicting details  Wall characteristics are more critical = RISK 4 New Home Starts -

2

Experimental evaluation of phase change material building walls using small passive test boxes  

DOE Green Energy (OSTI)

Macroencapsulated PCM cemented within masonry building blocks can markedly increase the effectiveness of an equivalent volume of concrete for use as a mass wall for passive solar applications. Various hydrocarbons and hydrated salts were tested. The test procedure and results are presented and discussed. Of the PCM's tested, the most promising candidate material is calcium chloride hexahydrate. The best performing PCM blocks performed on a par with a massive masonry design. (WHK)

Collier, R.K.; Grimmer, D.P.

1979-01-11T23:59:59.000Z

3

Mold susceptibility of rapidly renewable materials used in wall construction  

E-Print Network (OSTI)

Since 1998, the United States Green Building Council, via the Leadership in Energy and Environmental Design (LEED) standards, has established the premiere set of guidelines for construction ethics from the standpoint of eco-friendliness and occupant safety and health in the U.S. and around the world. These guidelines are skyrocketing in use due in part to two reasons: increased awareness of a need for reducing, reusing, and recycling in order to save resources and natural areas for future generations; and, increased amount of time spent indoors in work places and homes. The LEED guidelines encourage sustainable and responsible use of land, water, energy, and materials, and promote a safe and healthy environment through use of innovative designs and technology. As part of the responsible use of materials, the LEED guidelines encourage the use of rapidly renewable materials such as cotton, straw, wool, and cork as insulation products. Although these products can be produced naturally and quickly from nature, they are also cellulose or carbohydrate based products. Cellulose and carbohydrate based materials are typically optimal food sources for mold in the presence of moisture, ironically destroying facilities and creating poor living and work environments. Samples of wool, cork, straw, and cotton--rapidly renewable materials used as exterior wall insulation products--were exposed to different moisture amounts in an encapsulated environment, representing the environment within a wall cavity when exposed to water from pipes, leaks, condensation and absorption, or from initial construction. The samples were monitored over time for mold growth. The data logged from the samples were analyzed to determine the degree of mold susceptibility of each material. In addition, samples with increased amounts of moisture were examined to determine increased promotion of mold growth. The results from this study showed that all of the above mentioned materials were highly susceptible to mold growth and that the moisture amount did not increase the rate of mold growth. Based on the data collected from this study, recommendations were made to review the current use of rapidly renewable and other cellulose and carbohydrate based materials in wall construction.

Cooper, Aaron McGill

2007-12-01T23:59:59.000Z

4

The Study on Thermal Performance and Applicability of Energy-saving Wall Materials in Hot Summer and Cold Winter Zones  

E-Print Network (OSTI)

The hot summer and cold winter zone is a transition zone between the cold zone and hot zone, sweltering in summer and chilly in winter, of which climate is worse. In recent years, with people's raised requirements on indoor living environments, the energy consumption of buildings in hot summer and cold winter zone has been greatly increased. However, the thermal performance of walls in this zone is worse, and thus a mass of energy is wasted. This paper thoroughly analyzes and compares some energy-saving wall materials and thermal insulation systems used in projects in general, according to the climate in the zone combined with the design standard for the walls of residential buildings in the hot summer and cold winter zone. The results indicate that reasonably selecting the applicable wall materials and thermal insulation systems according to the local energy consumption characteristics could optimize resource utilization and have a positive effect on energy efficiency.

Ren, W.; Lan, M.; Hao, Y.

2006-01-01T23:59:59.000Z

5

Plasma Facing Materials for the JET ITER-Like Wall  

Science Conference Proceedings (OSTI)

PFC and FW Materials Issues / Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology

C. Thomser; V. Bailescu; S. Brezinsek; J. W. Coenen; H. Greuner; T. Hirai; J. Linke; C. P. Lungu; H. Maier; G. Matthews; Ph. Mertens; R. Neu; V. Philipps; V. Riccardo; M. Rubel; C. Ruset; A. Schmidt; I. Uytdenhouwen; Jet Efda Contributors

6

Summary of SLAC'S SEY Measurement On Flat Accelerator Wall Materials  

E-Print Network (OSTI)

The electron cloud effect (ECE) causes beam instabilities in accelerator structures with intense positively charged bunched beams. Reduction of the secondary electron yield (SEY) of the beam pipe inner wall is effective in controlling cloud formation. We summarize SEY results obtained from flat TiN, TiZrV and Al surfaces carried out in a laboratory environment. SEY was measured after thermal conditioning, as well as after low energy, less than 300 eV, particle exposure.

F. Le Pimpec; R. E. Kirby; F. K. King; M. Pivi

2007-11-09T23:59:59.000Z

7

TURBULENT EXCHANGE OF MOMENTUM, MASS, AND HEAT BETWEEN FLUID STREAMS AND PIPE WALL  

SciTech Connect

S>A new correlation is presented to describe mass and heat transfer to a fluid in a fully developed turbulent flow in a pipe. The correlation differs from earlier empirical relations in that it is based on a theoretical continuous eddy-viscosity distribution from the wall to the center of the pipe. Transfer rates calculated from the new correlation are in excellent agree ment with experimental data on mass and heat transfer to fluid streams. (auth)

Wasan, D.T.; Wilke, C.R.

1963-03-01T23:59:59.000Z

8

Onset of dry-wall heat transfer in low-mass-flux spray cooling  

SciTech Connect

This paper reports on an experimental investigation that was performed to study a low-mass-flux, spray nucleate boiling phenomenon termed dry wall during which all the impinging liquid is immediately vaporized upon contact with the heated surface. Measurements of wall heat flux and spray coolant mass flux were performed together with a characterization of spray parameters (such as local droplet size and velocity), using a laser-based diagnostic technique. Two different atomizing nozzles were used, and the effect of liquid subcooling on the transition was also studied. The transition to the dry-wall heat transfer regime was found to correlate well with the average global concentration of the spray obtained by the ratio of the spray mass flux to the average global concentration of the spray obtained by the ratio of the spray mass flux to the average spray velocity. The experimental results showed that above a concentration of approximately 0.20 kg/m{sup 3}, no evidence was seen of transition to dry wall. This concentration corresponding to transition was found to be independent of the two different nozzle types used in this study.

Webb, B.W.; Queiroz, M.; Oliphant, K.N.; Bonin, M.P. (Brigham Young Univ., Provo, UT (US))

1992-01-01T23:59:59.000Z

9

Expert Meeting Report: Interior Insulation Retrofit of Mass Masonry Wall Assemblies  

Science Conference Proceedings (OSTI)

The Building Science Consortium held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011 at the Westford Regency Hotel in Westford, MA. This report outlines the extensive information that was presented on assessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce such risks.

Ueno, K.; Van Straaten, R.

2012-02-01T23:59:59.000Z

10

Fluorescent single walled nanotube/silica composite materials  

DOE Patents (OSTI)

Fluorescent composites of surfactant-wrapped single-walled carbon nanotubes (SWNTs) were prepared by exposing suspensions of surfactant-wrapped carbon nanotubes to tetramethylorthosilicate (TMOS) vapor. Sodium deoxycholate (DOC) and sodium dodecylsulphate (SDS) were the surfactants. No loss in emission intensity was observed when the suspension of DOC-wrapped SWNTs were exposed to the TMOS vapors, but about a 50% decrease in the emission signal was observed from the SDS-wrapped SWNTs nanotubes. The decrease in emission was minimal by buffering the SDS/SWNT suspension prior to forming the composite. Fluorescent xerogels were prepared by adding glycerol to the SWNT suspensions prior to TMOS vapor exposure, followed by drying the gels. Fluorescent aerogels were prepared by replacing water in the gels with methanol and then exposing them to supercritical fluid drying conditions. The aerogels can be used for gas sensing.

Dattelbaum, Andrew M.; Gupta, Gautam; Duque, Juan G.; Doorn, Stephen K.; Hamilton, Christopher E.; DeFriend Obrey, Kimberly A.

2013-03-12T23:59:59.000Z

11

Accuracy of EGSnrc calculations at {sup 60}Co energies for the response of ion chambers configured with various wall materials and cavity dimensions  

SciTech Connect

In this investigation, five experimental data sets are used to evaluate the ability of the EGSnrc Monte Carlo code to calculate the change in chamber response associated with changes in wall material and cavity dimension at {sup 60}Co energies. Calculations of the ratios of response per unit mass of air as a function of cavity volume for walls ranging from polystyrene to lead are generally within 1%-3% of experiments. A few exceptions, which are discussed, include 20%-30% discrepancies with experiments involving lead-walled chambers used by Attix et al. [J. Res. Natl. Bur. Stand. 60, 235-243 (1958)] and Cormack and Johns [Radiat. Res. 1, 133-157 (1954)], and 5% discrepancies for the graphite chamber of Attix et al. (relative to data for other wall materials). Simulations of the experiment by Whyte [Radiat. Res. 6, 371-379 (1957)], which varied cavity air pressure in a large cylindrical chamber, are generally within 0.5% (wall/electrode materials ranging from beryllium to copper). In all cases, the agreement between measurements and EGSnrc calculations is much better when the response as a function of cavity height or air pressure is considered for each wall material individually. High-precision measurements [Burns et al., Phys. Med. Biol. 52, 7125-7135 (2007)] of the response per unit mass as a function of cavity height for a graphite chamber are also accurately reproduced, and validate previous tests of the transport mechanics of EGSnrc. Based on the general agreement found in this work between corresponding experimental results and EGSnrc calculations it can be concluded that EGSnrc can reliably be used to calculate changes in response with changes in various wall materials and cavity dimensions at {sup 60}Co energies within a accuracy of a few percent or less.

La Russa, Daniel J.; Rogers, D. W. O. [Carleton Laboratory for Radiotherapy Physics, Ottawa Carleton Institute of Physics, Carleton University Campus, Ottawa, Ontario K1S 5B6 (Canada)

2008-12-15T23:59:59.000Z

12

Critical masses of highly enriched uranium diluted with matrix material.  

SciTech Connect

Radioactive waste containing fissile material is frequently encountered in decontamination and decommissioning activities. For the most part, this waste is placed in containers or drums and stored in storage facilities. The amount of fissile material in each drum is generally small because of criticality safety limits that have been calculated with computer transport codes such as MCNP,1 KENO,2 or ONEDANT.3 To the best of our knowledge, no experimental critical mass data are available to verify the accuracy of these calculations or any calculations for systems containing fissile material (U-235, Pu-239, U-233) in contact with matrix material such as Al2O3, CaO, SiO2, Al, MgO, etc. The experiments presented in this paper establish the critical masses of highly enriched uranium foils diluted to various X/235U ratios with polyethylene and SiO2, polyethylene and aluminum, polyethylene and MgO, polyethylene and Gd, polyethylene and Fe, and moderated and reflected with polyethylene. In addition, these critical mass experimental data will be used to validate cross section data.

Sanchez, R. G. (Rene G.); Loaiza, D. J. (David J.); Kimpland, R. H. (Robert H.)

2002-01-01T23:59:59.000Z

13

Expert Meeting Report: Interior Insulation Retrofit of Mass Masonry Wall Assemblies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interior Insulation Retrofit Interior Insulation Retrofit of Mass Masonry Wall Assemblies K. Ueno and R. Van Straaten Building Science Corporation (BSC) February 2012 ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring

14

Method of measuring material properties of rock in the wall of a borehole  

SciTech Connect

To measure the modulus of elasticity of the rock in the wall of a borehole, a plug is cut in the borehole wall. The plug, its base attached to the surrounding rock, acts as a short column in response to applied forces. A loading piston is applied to the top of the plug and compression of the plug is measured as load is increased. Measurement of piston load and plug longitudinal deformation are made to determine the elastic modulus of the plug material. Poisson's ratio can be determined by simultaneous measurements of longitudinal and lateral deformation of the plug in response to loading. To determine shear modulus, the top of the plug is twisted while measurements are taken of torsional deformation.

Overmier, D. K.

1985-04-16T23:59:59.000Z

15

Use of Phase Change Material in a Building Wall Assembly: A Case Study of Technical Potential in Two Climates  

SciTech Connect

Phase change material (PCM), placed in an exterior wall, alters the temperature profile within the wall and thus influences the heat transport through the wall. This may reduce the net energy transport through the wall via interactions with diurnal temperature swings in the external environment or reduce the electricity needed to meet the net load through the wall by shifting the time of the peak load to a time when the cooling system operates more efficiently. This study covers a broad range of parameters that can influence the effectiveness of such a merged thermal storage-thermal insulation system. These parameters included climate, PCM location within the wall, amount of PCM, midpoint of the PCM melting and freezing range relative to the indoor setpoint temperature, temperature range over which phase change occurs, and the wall orientation. Two climates are investigated using finite difference and optimization analyses: Phoenix and Baltimore, with two utility rate schedules. Although potential savings for a PCM with optimized properties were greater when the PCM was concentrated near the inside wall surface, other considerations described here lead to a recommendation for a full-thickness application. An examination of the temperature distribution within the walls also revealed the potential for this system to reduce the amount of energy transported through the wall framing. Finally, economic benefits can exceed energy savings when time-of-day utility rates are in effect, reflecting the value of peak load reductions for the utility grid.

Childs, Kenneth W [ORNL; Stovall, Therese K [ORNL

2012-01-01T23:59:59.000Z

16

Potential Energy Savings Due to Phase Change Material in a Building Wall Assembly: An Examination of Two Climates  

SciTech Connect

Phase change material (PCM), placed in an exterior wall, alters the temperature profile within the wall and thus influences the heat transport through the wall. This may reduce the net energy transport through the wall via interactions with diurnal temperature swings in the external environment or reduce the electricity needed to meet the net load through the wall by shifting the time of the peak load to a time when the cooling system operates more efficiently. This study covers a broad range of parameters that can influence the effectiveness of such a merged thermal storage-thermal insulation system. These parameters included climate, PCM location within the wall, amount of PCM, midpoint of the PCM melting and freezing range relative to the indoor setpoint temperature, temperature range over which phase change occurs, and the wall orientation. Two climates are investigated using finite difference and optimization analyses: Phoenix and Baltimore, with two utility rate schedules. Although potential savings for a PCM with optimized properties were greater when the PCM was concentrated near the inside wall surface, other considerations described here lead to a recommendation for a full-thickness application. An examination of the temperature distribution within the walls also revealed the potential for this system to reduce the amount of energy transported through the wall framing. Finally, economic benefits can exceed energy savings when time-of-day utility rates are in effect, reflecting the value of peak load reductions for the utility grid.

Childs, Kenneth W [ORNL; Stovall, Therese K [ORNL

2012-03-01T23:59:59.000Z

17

Critical masses of uranium diluted with matrix material  

SciTech Connect

Critical masses of square-prisms of highly enriched uranium diluted in various X/235U ratios with matrix material and polyethylene were measured. The Configuration cores were 22.86-cm and 45.72-cm square and were reflected with 8.1 3-cm and 10.1 6-cm thick side polyethylene reflectors, respectively. The configurations had 10.1 6-cm thick top and bottom polyethylene reflectors. For some configurations, the Rossi-a, which is an eigenvalue value characteristic for a particular configuration, was measured to establish a reactivity scale based on the degree of subcriticality . Finally, the critical mass experiments are compared with values calculated with MCNP and ENDF/B-VI cross-sections.

Sanchez, R. G. (Rene G.); Loaiza, D. J. (David J.); Kimpland, R. H. (Robert H.)

2002-01-01T23:59:59.000Z

18

System for studying a sample of material using a heavy ion induced mass spectrometer source  

DOE Patents (OSTI)

A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high (n,f) reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.

Fries, D.P.; Browning, J.F.

1998-07-21T23:59:59.000Z

19

System for studying a sample of material using a heavy ion induced mass spectrometer source  

DOE Patents (OSTI)

A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.

Fries, David P. (St. Petersburg, FL); Browning, James F. (Palm Harbour, FL)

1998-01-01T23:59:59.000Z

20

Method for studying a sample of material using a heavy ion induced mass spectrometer source  

DOE Patents (OSTI)

A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.

Fries, David P. (St. Petersburg, FL); Browning, James F. (Palm Harbour, FL)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wall material mass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Method for studying a sample of material using a heavy ion induced mass spectrometer source  

DOE Patents (OSTI)

A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.

Fries, D.P.; Browning, J.F.

1999-02-16T23:59:59.000Z

22

Mass spectrometry of nuclear materials; Attention to detail  

SciTech Connect

Measurements of the {sup 235}U/{sup 238}U ratio in product-quality material have improved from uncertainties of 0.1 percent (rel) to 0.2 percent since the Manhattan Project. The hardware and procedural changes responsible for these measurement improvements are traced and discussed.

Shields, W.R

1989-11-01T23:59:59.000Z

23

Stress Corrosion Cracking of Candidate Structural Materials in Simulated First-Wall/Aqueous Coolant Environments  

Science Conference Proceedings (OSTI)

Material and Tritium / Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990)

M. R. Fox; A. B. Hull; T. F. Kassner

24

Verification and Validation of EnergyPlus Phase Change Material Model for Opaque Wall Assemblies  

Science Conference Proceedings (OSTI)

Phase change materials (PCMs) represent a technology that may reduce peak loads and HVAC energy consumption in buildings. A few building energy simulation programs have the capability to simulate PCMs, but their accuracy has not been completely tested. This study shows the procedure used to verify and validate the PCM model in EnergyPlus using a similar approach as dictated by ASHRAE Standard 140, which consists of analytical verification, comparative testing, and empirical validation. This process was valuable, as two bugs were identified and fixed in the PCM model, and version 7.1 of EnergyPlus will have a validated PCM model. Preliminary results using whole-building energy analysis show that careful analysis should be done when designing PCMs in homes, as their thermal performance depends on several variables such as PCM properties and location in the building envelope.

Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.

2012-08-01T23:59:59.000Z

25

TransWall  

Science Conference Proceedings (OSTI)

Nowadays, imagining modern buildings without glass is difficult, and glass walls can be found almost everywhere around us. Glass has been one of the most valued materials owing to its transparency. Glass walls' transparency in modern architecture involves ...

Heejeong Heo; Seungki Kim; Hyungkun Park; Jeeyong Chung; Geehyuk Lee; Woohun Lee

2013-07-01T23:59:59.000Z

26

Expert Meeting Report: Interior Insulation Retrofit of Mass Masonry Wall Assembliesessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce such risks.  

Energy.gov (U.S. Department of Energy (DOE))

The Building Science Consortium held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011 at the Westford Regency Hotel in Westford, MA. This report outlines the extensive information that was presented on ass

27

Task 6.7.3 - Interfacial Mass Transport Effects in Composite Materials  

DOE Green Energy (OSTI)

Advanced metal-matrix composites (MMCS) consisting of titanium-based alloys possess some unique mechanical, physical, and chemical characteristics that make them highly desirable for aircraft and gas turbine engines. Tailoring MMC properties is essential for advanced product design in materials processing. The main factors that affect materials processing and, further, the nature of a metal-ceramic interface, its structure, and morphological stability is liquid surface mass transport related to adhesional wetting physical effect) and reactive wetting (chemical effect). Surfaces and interfaces dominate many of the technologically important processes in composite materials such as liquid-solid sintering and joining. The objective of this work is threefold: 1) to get insight into the role of the nonstoichiometry of chemical composition in ceramic materials used as reinforcement components in MMC processing, 2) to extend previous energetic analysis of mass transport phenomena to wetting behavior between liquid metal and the quasi-solid like skin resulting from the presolidification of liquid on nonstoichiometric solids on a scale of interatomic distance, and 3) to provide experimental verification of our concept.

Jan W. Nowok

1998-02-01T23:59:59.000Z

28

Secondary Ionization Mass Spectrometric Analysis of Impurity Element Isotope Ratios in Nuclear Reactor Materials  

Science Conference Proceedings (OSTI)

Secondary ion mass spectrometry (SIMS) analysis has been used to measure isotope ratios of selected impurity elements in irradiated reactor materials. Samples of reactor materials such as graphite or aluminum alloys are obtained from fuel channels or supporting materials. During reactor operations and fuel burn up, some isotopic abundances change due to nuclear reactions and provide sensitive indicators of neutron fluence. The rate of change is related to cross section for a particular isotope. Different isotopes can be used as indicators of burn up during different stages in the reactor operating history. Isotope ratios of B are useful indicators for low burnup stages early in reactor operations, Ti isotope ratios are useful at later burn up stages, and Cl isotope ratios are useful in both early and later stages. Knowledge of the sample position within the reactor also yields information on the fluence shape or profile. In a sequence of samples from one reactor, 10B/11B ratios decreased from near natural values of 0.25 to blasting, plasma etching, and vacuum furnace treatment.

Gerlach, David C.; Cliff, John B.; Hurley, David E.; Reid, Bruce D.; Little, Winston W.; Meriwether, George H.; Wickham, Anthony J.; Simmons, Tere A.

2006-07-30T23:59:59.000Z

29

The temperature dependence of ultra-cold neutron wall losses in material bottles coated with deuterated polystryene  

Science Conference Proceedings (OSTI)

Ultra-cold neutrons (UCN) from the LANSCE super-thermal deuterium source were used to fill an acrylic bottle coated with deuterated polystyrene. The bottle was constructed to minimize losses through the filling valve. The storage time was extracted from a series of measurements where the number of neutrons was counted after they were held in the bottle for durations varying from 60-1200 s. The data were collected at temperatures of 18, 40, 65, 105, and 295 K. The data has been analyzed in terms of the ratio of the imaginary to real part of the wall potential. The analysis considers the velocity dependence of the probability per bounce of wall loss. The implication of these measurements for the SNS electric dipole moment search will be presented.

Cooper, Martiin D [Los Alamos National Laboratory; Bagdasarova, Yelena [Los Alamos National Laboratory; Clayton, Steven M [Los Alamos National Laboratory; Currie, Scott A [Los Alamos National Laboratory; Griffith, William C [Los Alamos National Laboratory; Ito, Takeyasu [Los Alamos National Laboratory; Makela, Mark F [Los Alamos National Laboratory; Morris, Cheistopher [Los Alamos National Laboratory; Rahaman, Mohamad S [Los Alamos National Laboratory; Ramsey, John C [Los Alamos National Laboratory; Saunders, Alexander [Los Alamos National Laboratory; Rios, Raymond [IDAHO STATE UNIV.

2011-01-18T23:59:59.000Z

30

M13 virus/single-walled carbon nanotubes as a materials platform for energy devices and biomedical applications  

E-Print Network (OSTI)

Making nanocomposites from combinations of materials each with their own unique functional advantage can often solve issues that cannot be addressed when utilizing only one type of materials. Therefore, controlling ...

Yi, Hyunjung

2011-01-01T23:59:59.000Z

31

A Comparative Heat Transfer Examination of Structural Insulated Panels (SIPs) With and Without Phase Change Materials (PCMs) Using a Dynamic Wall Simulator  

E-Print Network (OSTI)

The main focus of this paper was to present data to advance the design of a previously developed thermally-enhanced structural insulated panel (SIP) that had been outfitted with phase change materials (PCMs) (Medina et al., 2008). To advance the development of the previous design, which had only been evaluated under full weather conditions, a set of well-controlled laboratory experiments was carried out. For this, a dynamic wall simulator was built, where a range of important parameters was evaluated. This was done through a comparative heat transfer examination of SIPs, with and without PCMs; where parameters, such as, foam core material of the SIP and material of the PCM holding containers (i.e., encapsulating pipes) were evaluated. Instantaneous heat transfer rates measurements are presented. The two parameters considered (i.e., foam material and pipe material) were found to have first order effects on the performance of PCM-enhanced SIPs. The PCM outfitted SIPs reduced the peak heat fluxes when compared to their own kind, but without PCM. The results indicate that SIPs with molded expanded polystyrene (EPS) cores would benefit more from the PCM enhancement than SIPs with urethane cores. PVC pipes as holding containers for the PCMs did not prove as efficient as metal pipes.

Medina, M.; Zhu, D.

2008-12-01T23:59:59.000Z

32

Fluidized wall for protecting fusion chamber walls  

DOE Patents (OSTI)

Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithium-ceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

Maniscalco, James A. (Danville, CA); Meier, Wayne R. (Livermore, CA)

1982-01-01T23:59:59.000Z

33

Analysis of mass loss of a coal particle during the course of burning in a flow of inert material  

SciTech Connect

This paper is an attempt to explain the role of erosion during the process of coal combustion in a circulating fluidized bed. Different kinds of carbon deposits found in Poland, both bituminous as well as lignite with the particle of 10 mm in diameter were the subject of the research. According to many publications it is well known that erosion plays a significant role in coal combustion, by changing its mechanism as well as generating an additional mass loss of the mother particle. The purpose of this research was to determine the influence of an inert material on an erosive mass loss of a single coal particle burning in a two-phase flow. The determination of the influence of a coal type, the rate of flow of inert material and the temperature inside the furnace on the erosive mass loss of burning coal particle was also taken into consideration. The results obtained indicate that the velocity of the erosive mass loss depends on the chemical composition and petrographic structure of burning coal. The mechanical interaction of inert and burning coal particles leads to the shortening of the period of overall mass loss of the coal particle by even two times. The increase in the rate of flow of the inert material intensifies the generation of mass loss by up to 100%. The drop in temperature which slows down the combustion process, decreases the mass loss of the coal particle as the result of mechanical interaction of the inert material. As was observed, the process of percolation plays a significant role by weakening the surface of the burning coal. (author)

Pelka, Piotr [Czestochowa University of Technology, Department of Boilers and Thermodynamics, Armii Krajowej 19c, Czestochowa, Silesia 42-200 (Poland)

2009-08-15T23:59:59.000Z

34

Verification and Validation of EnergyPlus Conduction Finite Difference and Phase Change Material Models for Opaque Wall Assemblies  

SciTech Connect

Phase change materials (PCMs) represent a potential technology to reduce peak loads and HVAC energy consumption in buildings. There are few building energy simulation programs that have the capability to simulate PCM but their accuracy has not been completely tested. This report summarizes NREL efforts to develop diagnostic tests cases to obtain accurate energy simulations when PCMs are modeled in residential buildings.

Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.; Booten, C.

2012-07-01T23:59:59.000Z

35

Advanced Materials in MML  

Science Conference Proceedings (OSTI)

... Advanced Materials Characterization. Fusion Wall Development Research by Neutron Depth Profiling. < Previous 1 2 3 Next . ...

2012-06-12T23:59:59.000Z

36

Bumper wall for plasma device  

DOE Patents (OSTI)

Operation of a plasma device such as a reactor for controlled thermonuclear fusion is facilitated by an improved bumper wall enclosing the plasma to smooth the flow of energy from the plasma as the energy impinges upon the bumper wall. The bumper wall is flexible to withstand unequal and severe thermal shocks and it is readily replaced at less expense than the cost of replacing structural material in the first wall and blanket that surround it.

Coultas, Thomas A. (Hinsdale, IL)

1977-01-01T23:59:59.000Z

37

Verification of Uranium Mass and Enrichments of Highly Enriched Uranium (HEU) Using the Nuclear Materials Identification System (NMIS)  

SciTech Connect

This paper describes how the Nuclear Materials Identification System (NMIS), developed by the Oak Ridge National Laboratory (ORNL) and the Oak Ridge Y-12 Plant, was used to verify the mass and enrichment of hundreds of Highly Enriched Uranium (HEU) metal items in storage at the Y-12 Plant. The verifications had a relative spread of {+-}5% (3 sigma) with relative mean deviations from their declared values of +0.2% for mass and {minus}0.2% for enrichment. NMIS's capability to perform quantification of HEU enabled the Y-12 Plant to meet their nuclear material control and accountability (NMC and A) requirements. These verifications were performed in the storage vault in a very time and cost effective manner with as many as 55 verifications in one shift of operation.

Chiang, L.G.; Mattingly, J.K.; Ramsey, J.A.; Mihalczo, J.T.

2000-04-07T23:59:59.000Z

38

Design and Construction of a Guarded Hot Box Facility for Evaluating the Thermal Performance of Building Wall Materials  

E-Print Network (OSTI)

The focus of this study was to design and build a guarded hot box to test the R-Value of building materials. The Riverside Energy Efficiency Laboratory is looking to expand their testing capabilities by including this service. Eventually, the laboratory will become energy star certified. A guarded hot box facility consists of two boxes maintained at specific temperatures and a guard box around each one that is maintained at the same temperature as the box it surrounds. The ASTM C1363 standard was used as guide for the construction and testing of sample specimen. This standard called for an air velocity profile uniform within 10 percent of the average. Velocity tests were performed with various different configurations to give a uniform velocity. Although the velocity did not meet standards, the configuration chosen included a piece of 1/4" pegboard placed 2" away from the top and the bottom of the inner box. By using the known overall heat added and removed from the system, as well as all the heat losses the heat transferred through the specimen and its R-Value can be calculated. The uncertainty of the R-Value and the accuracy of the testing facility gave conflicting results. Future experiments will use improved testing methods that include differential thermocouples to obtain better uncertainty for the R-Value calculations.

Mero, Claire Renee

2012-05-01T23:59:59.000Z

39

Measurement and modeling of energetic material mass transfer to soil pore water :project CP-1227 FY03 annual technical report.  

Science Conference Proceedings (OSTI)

Military test and training ranges operate with live fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low order detonations also disperse solid phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g., weather and geostratigraphy) contribute to groundwater pollution impacts. This report documents interim results of experimental work evaluating mass transfer processes from solid phase energetics to soil pore water. The experimental work is used as a basis to formulate a mass transfer numerical model, which has been incorporated into the porous media simulation code T2TNT. This report documents the results of the Phase III experimental effort, which evaluated the impacts of surface deposits versus buried deposits, energetic material particle size, and low order detonation debris. Next year, the energetic material mass transfer model will be refined and a 2-d screening model will be developed for initial site-specific applications. A technology development roadmap was created to show how specific R&D efforts are linked to technology and products for key customers.

Phelan, James M.; Barnett, James L.; Kerr, Dayle R.

2004-01-01T23:59:59.000Z

40

Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials  

DOE Green Energy (OSTI)

Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternative assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.

Cha, Sangwon

2008-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "wall material mass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

BNL | Joseph S. Wall  

NLE Websites -- All DOE Office Websites (Extended Search)

Joseph S. Wall Joseph S. Wall Emeritus Research Interests Mass mapping of unstained biological molecules with the scanning transmission electron microscope (STEM), particularly assemblies of complexes from subunits of known size and shape. Examples include: Alzheimer's filaments, viral capsids, annelid hemoglobins, hemocyanins, proteases, chaperonins, microtubule proteins, prions and various nucleic acid-protein complexes. Another research area is instrument development involving design and construction of an instrument for low-temperture, energy loss spectroscopy, and elemental mapping at low dose. This is being used to map phosphorus in nucleic acid-protein complexes, phosphorylated proteins and phospholipid structures. He also is director of the Scanning Transmission Electron Microscope STEM

42

Materials Reliability Program: Testing and Evaluation of Reactor Pressure Vessel Steel Plate Heat JRQ to Assess Through-Wall Attenua tion of Radiation Embrittlement (MRP-243)  

Science Conference Proceedings (OSTI)

The change in neutron energy spectrum through the wall of a reactor pressure vessel (RPV) requires the use of an exposure parameter or metric for assessing radiation embrittlement. This report looks at experimental fracture toughness and Charpy V-notch (CVN) data generated in a special International Atomic Energy Agency (IAEA) experiment designed to simulate an RPV wall of 190 mm thickness. These experimental data are compared with the current exposure metric of displacements per atom (dpa) coupled with ...

2008-12-23T23:59:59.000Z

43

Materials Reliability Program: Testing and Evaluation of Two Reactor Pressure Vessel Steels Irradiated to Assess Through-Wall Attenu ation of Radiation Embrittlement (MRP-203)  

Science Conference Proceedings (OSTI)

The change in neutron energy spectrum through the wall of a reactor pressure vessel (RPV) requires the use of an exposure parameter or metric for assessing radiation embrittlement. This report looks at experimental fracture toughness and Charpy V-notch data generated in a special International Atomic Energy Agency (IAEA) experiment designed to simulate an RPV wall of 180-mm thickness. These experimental data are compared with the current exposure metric of displacements per atom (dpa) coupled with an emb...

2006-10-04T23:59:59.000Z

44

Coal liquefaction process streams characterization and evaluation. Characterization of coal-derived materials by field desorption mass spectrometry, two-dimensional nuclear magnetic resonance, supercritical fluid extraction, and supercritical fluid chromatography/mass spectrometry  

SciTech Connect

Under contract from the DOE , and in association with CONSOL Inc., Battelle, Pacific Northwest Laboratory (PNL) evaluated four principal and several complementary techniques for the analysis of non-distillable direct coal liquefaction materials in support of process development. Field desorption mass spectrometry (FDMS) and nuclear magnetic resonance (NMR) spectroscopic methods were examined for potential usefulness as techniques to elucidate the chemical structure of residual (nondistillable) direct coal liquefaction derived materials. Supercritical fluid extraction (SFE) and supercritical fluid chromatography/mass spectrometry (SFC/MS) were evaluated for effectiveness in compound-class separation and identification of residual materials. Liquid chromatography (including microcolumn) separation techniques, gas chromatography/mass spectrometry (GC/MS), mass spectrometry/mass spectrometry (MS/MS), and GC/Fourier transform infrared (FTIR) spectroscopy methods were applied to supercritical fluid extracts. The full report authored by the PNL researchers is presented here. The following assessment briefly highlights the major findings of the project, and evaluates the potential of the methods for application to coal liquefaction materials. These results will be incorporated by CONSOL into a general overview of the application of novel analytical techniques to coal-derived materials at the conclusion of CONSOL`s contract.

Campbell, J.A.; Linehan, J.C.; Robins, W.H. [Battelle Pacific Northwest Lab., Richland, WA (United States)

1992-07-01T23:59:59.000Z

45

Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials and methods are available as supplementary materials on Science Online. 16. W. Benz, A. G. W. Cameron, H. J. Melosh, Icarus 81, 113 (1989). 17. S. L. Thompson, H. S. Lauson, Technical Rep. SC-RR-710714, Sandia Nat. Labs (1972). 18. H. J. Melosh, Meteorit. Planet. Sci. 42, 2079 (2007). 19. S. Ida, R. M. Canup, G. R. Stewart, Nature 389, 353 (1997). 20. E. Kokubo, J. Makino, S. Ida, Icarus 148, 419 (2000). 21. M. M. M. Meier, A. Reufer, W. Benz, R. Wieler, Annual Meeting of the Meteoritical Society LXXIV, abstr. 5039 (2011). 22. C. B. Agnor, R. M. Canup, H. F. Levison, Icarus 142, 219 (1999). 23. D. P. O'Brien, A. Morbidelli, H. F. Levison, Icarus 184, 39 (2006). 24. R. M. Canup, Science 307, 546 (2005). 25. J. J. Salmon, R. M. Canup, Lunar Planet. Sci. XLIII, 2540 (2012). Acknowledgments: SPH simulation data are contained in tables S2 to S5 of the supplementary materials. Financial support

46

Material  

DOE Green Energy (OSTI)

Li(Ni{sub 0.4}Co{sub 0.15}Al{sub 0.05}Mn{sub 0.4})O{sub 2} was investigated to understand the effect of replacement of the cobalt by aluminum on the structural and electrochemical properties. In situ X-ray absorption spectroscopy (XAS) was performed, utilizing a novel in situ electrochemical cell, specifically designed for long-term X-ray experiments. The cell was cycled at a moderate rate through a typical Li-ion battery operating voltage range. (1.0-4.7 V) XAS measurements were performed at different states of charge (SOC) during cycling, at the Ni, Co, and the Mn edges, revealing details about the response of the cathode to Li insertion and extraction processes. The extended X-ray absorption fine structure (EXAFS) region of the spectra revealed the changes of bond distance and coordination number of Ni, Co, and Mn absorbers as a function of the SOC of the material. The oxidation states of the transition metals in the system are Ni{sup 2+}, Co{sup 3+}, and Mn{sup 4+} in the as-made material (fully discharged), while during charging the Ni{sup 2+} is oxidized to Ni{sup 4+} through an intermediate stage of Ni{sup 3+}, Co{sup 3+} is oxidized toward Co{sup 4+}, and Mn was found to be electrochemically inactive and remained as Mn{sup 4+}. The EXAFS results during cycling show that the Ni-O changes the most, followed by Co-O, and Mn-O varies the least. These measurements on this cathode material confirmed that the material retains its symmetry and good structural short-range order leading to the superior cycling reported earlier.

Rumble, C.; Conry, T.E.; Doeff, Marca; Cairns, Elton J.; Penner-Hahn, James E.; Deb, Aniruddha

2010-06-14T23:59:59.000Z

47

First wall for polarized fusion reactors  

DOE Patents (OSTI)

A first-wall or first-wall coating for use in a fusion reactor having polarized fuel may be formed of a low-Z non-metallic material having slow spin relaxation, i.e., a depolarization rate greater than 1 sec/sup -1/. Materials having these properties include hydrogenated and deuterated amorphous semiconductors. A method for preventing the rapid depolarization of a polarized plasma in a fusion device may comprise the step of providing a first-wall or first-wall coating formed of a low-Z, non-metallic material having a depolarization rate greater than 1 sec/sup -1/.

Greenside, H.S.; Budny, R.V.; Post, D.E. Jr.

1985-01-29T23:59:59.000Z

48

Gas storage materials, including hydrogen storage materials  

DOE Patents (OSTI)

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2013-02-19T23:59:59.000Z

49

Seismic behavior of geogrid reinforced slag wall  

Science Conference Proceedings (OSTI)

Flexible retaining structures are known with their high performance under earthquake loads. In geogrid reinforced walls the performance of the fill material and the interface of the fill and geogrid controls the performance. Geosynthetic reinforced walls in seismic regions must be safe against not only static forces but also seismic forces. The objective of this study is to determine the behavior of a geogrid reinforced slag wall during earthquake by using shaking table experiments. This study is composed of three stages. In the first stage the physical properties of the material to be used were determined. In the second part, a case history involving the use of slag from steel industry in the construction of geogrid reinforced wall is presented. In the third stage, the results of shaking table tests conducted using model geogrid wall with slag are given. From the results, it is seen that slag can be used as fill material for geogrid reinforced walls subjected to earthquake loads.

Edincliler, Ayse [Bogazici University, Kandilli Observatory and Earthquake Research Institute, Department of Earthquake Engineering, Cengelkoey-Istanbul (Turkey); Baykal, Gokhan; Saygili, Altug [Bogazici University, Department of Civil Engineering, Bebek-Istanbul (Turkey)

2008-07-08T23:59:59.000Z

50

Wall conditions in ORMAK  

SciTech Connect

From surface effects in controlled thermonuclear fusion devices and reactors meeting; Argonne, Illnois, USA (10 Jan 1974). ORMAK is a diffuse toroidal pinch with typical plasma currents of 100 kA, electron temperatures of 800 eV, and ion temperatures of 300 eV. The walls of the plasma region are made of stainless steel coated with an intermediate layer of platinum 0.05 mu thick and an outer 1 to 2 mu layer of gold. Tests with an Ion Microprobe Mass Analyzer have shown that the platinum acts to decrease diffusion of impurities from the stalnless steel to the surface. Gold was chosen to inhibit the surface chemical adsorption of gases. Studies with a movable limiter indicate that electron energy is lost at the plasma edge mainly via line radiation and cooling on ions, while ions are lost from the plasma by charge exchange. Thus the walls are bombarded by energetic neutrals, line radiation and, in addition, bremsstrahlung x-rays. The flux of energetic neutrals is measured by a charge exchange analyzer. Wall bombardment by such neutrals should cause sputtering, and gold has been observed spectroscopically near the limiter, increasing with time during a shot, However, analysis of impurities coated on a window by the discharge indicated very little gold sputtering and re-deposition. To measure the sputterirg rate, a wall sample was coated with 105 A of radioactive gold and bombarded with neutrals from ORMAK during a day's run. No measurable sputtering was found within the counting statistics of the measurement, but surface carbon contamination of the sample prevented any final conclusions. (auth)

Colchin, R.J.; Berry, L.A.; Haste, G.R.; Kelley, G.G.; Lyon, J.F.; McNally, J.R.; Murakami, M.; Neidigh, R.V.; Simpkins, J.E.; Wing, W.R.

1972-01-01T23:59:59.000Z

51

Storage containers for radioactive material  

DOE Patents (OSTI)

A radioactive material storage system is claimed for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together. The plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage.

Groh, E.F.; Cassidy, D.A.; Dates, L.R.

1980-07-31T23:59:59.000Z

52

Thin Wall Cast Iron: Phase II  

DOE Green Energy (OSTI)

The development of thin-wall technology allows the designers of energy consuming equipment to select the most appropriate material based on cost/material properties considerations, and not solely on density. The technology developed in this research project will permit the designers working for the automotive industry to make a better informed choice between competing materials and thin wall cast iron, thus decreasing the overall cost of the automobile.

Doru M. Stefanescu

2005-07-21T23:59:59.000Z

53

First wall for polarized fusion reactors  

DOE Patents (OSTI)

Depolarization mechanisms arising from the recycling of the polarized fuel at the limiter and the first-wall of a fusion reactor are greater than those mechanisms in the plasma. Rapid depolarization of the plasma is prevented by providing a first-wall or first-wall coating formed of a low-Z, non-metallic material having a depolarization rate greater than 1 sec.sup.-1.

Greenside, Henry S. (Cranbury, NJ); Budny, Robert V. (Princeton, NJ); Post, Jr., Douglass E. (Buttonwood, CT)

1988-01-01T23:59:59.000Z

54

Fracture of welded aluminum thin-walled structures  

E-Print Network (OSTI)

A comprehensive methodology was developed in the thesis for damage prediction of welded aluminum thin-walled structures, which includes material modeling, calibration, numerical simulation and experimental verification. ...

Zheng, Li, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

55

RECOMMENDATIONS FOR ASSESSING THE UNCERTAINTY IN TANK 18-F WALL SAMPLES  

Science Conference Proceedings (OSTI)

Tank 18-F in the F-Area Tank Farm at the Savannah River Site (SRS) has had measurements taken from its inner vertical sides in order to determine the level of radionuclide and other analyte concentrations attached to the tank walls. In all, three samples have been obtained by drilling shallow holes into the carbon steel walls and consolidating the material. An Upper Wall Sample (Sample ID: Tk 18-1) was formed by combining two drill samples taken at a height of 17 ft above the tank floor, and a Lower Wall Sample (Sample ID: SPD4) was formed by combining two drill samples taken between 10 and 12 ft above the tank floor. A Scale Sample (Sample ID: Tk 18-2) was formed by combining 5 drill samples obtained between 6 and 7 ft above the tank floor. Photographs of the sampled material and a more detailed description of the samples and the concentration results are presented by Hay and others [2009]. The objective of this report is to determine a method and use it to place an upper confidence bound on the concentrations in the wall samples using only the currently available sample information. None of the three wall locations (tank heights) has been measured more than once. For radionuclides, only the variation among the concentrations per unit mass (g) of the wall samples, ignoring locations, or the variation among the concentrations of the floor samples are possibilities for establishing an upper confidence bound. The wall samples and floor samples were examined for comparability by (a) observing whether the wall sample concentrations fell inside the footprints created by prediction intervals for floor sample radionuclide concentrations and (b) whether the variation among the wall samples was approximately the same as the variation among floor samples. Most of the radionuclide concentrations satisfied (a) but the variation among radionuclide concentrations (b) was smaller for the floor samples. Consequently, upper 95% confidence bounds were established separately for radionuclide concentrations at each of the sampled tank heights using the conservatively estimated variation among the wall samples. A final step to convert concentrations by unit mass (g) to concentrations by sq ft was performed for the Upper Wall Sample and the Lower Wall Sample regions of the tank wall. The Upper Wall Sample and the Lower Wall Sample were not measured for elemental constituents. Consequently, the only possibility for establishing an upper bound for nonradionuclide concentrations for the Scale Sample was using the concentrations from floor samples. However, most non-radionuclide wall concentrations failed to fall within the footprint generated prediction intervals based on the non-radionuclide concentrations for the floor samples. The report concludes that there is no way to establish upper confidence bounds for elemental constituents attached to the inner liner of Tank 18-F based on currently available data.

Shine, G.

2010-10-26T23:59:59.000Z

56

Prismatic wall heater  

Science Conference Proceedings (OSTI)

A prismatic beam concentrator mounted at the top of two adjacent walls so as to receive a rectangular incipient beam of diffused sunlight and emit a vertical concentrated sheet beam through a cavity between the walls to a mirror which reflects the beam at right angles onto a radiant iron bar at the base of one wall, as a source of supplemental household heat.

Clegg, J. E.

1985-07-09T23:59:59.000Z

57

Wall System Innovations: Familiar Materials, Better Performance  

Energy.gov (U.S. Department of Energy (DOE))

This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado.

58

PHASE TRANSFORMATIONS, STABILITY AND MATERIALS INTERACTIONS  

E-Print Network (OSTI)

with the construction of fusion reactor f i r s t walls andbreeding materials in fusion reactors. Basic information on

Morris, Jr., J.W.

2010-01-01T23:59:59.000Z

59

Hot wire production of single-wall and multi-wall carbon nanotubes  

DOE Patents (OSTI)

Apparatus (210) for producing a multi-wall carbon nanotube (213) may comprise a process chamber (216), a furnace (217) operatively associated with the process chamber (216), and at least one filament (218) positioned within the process chamber (216). At least one power supply (220) operatively associated with the at least one filament (218) heats the at least one filament (218) to a process temperature. A gaseous carbon precursor material (214) operatively associated with the process chamber (216) provides carbon for forming the multi-wall carbon nanotube (213). A metal catalyst material (224) operatively associated with the process (216) catalyzes the formation of the multi-wall carbon nanotube (213).

Dillon, Anne C. (Boulder, CO); Mahan, Archie H. (Golden, CO); Alleman, Jeffrey L. (Lakewood, CO)

2010-10-26T23:59:59.000Z

60

Domain walls riding the wave.  

SciTech Connect

Recent years have witnessed a rapid proliferation of electronic gadgets around the world. These devices are used for both communication and entertainment, and it is a fact that they account for a growing portion of household energy consumption and overall world consumption of electricity. Increasing the energy efficiency of these devices could have a far greater and immediate impact than a gradual switch to renewable energy sources. The advances in the area of spintronics are therefore very important, as gadgets are mostly comprised of memory and logic elements. Recent developments in controlled manipulation of magnetic domains in ferromagnet nanostructures have opened opportunities for novel device architectures. This new class of memories and logic gates could soon power millions of consumer electronic devices. The attractiveness of using domain-wall motion in electronics is due to its inherent reliability (no mechanical moving parts), scalability (3D scalable architectures such as in racetrack memory), and nonvolatility (retains information in the absence of power). The remaining obstacles in widespread use of 'racetrack-type' elements are the speed and the energy dissipation during the manipulation of domain walls. In their recent contribution to Physical Review Letters, Oleg Tretiakov, Yang Liu, and Artem Abanov from Texas A&M University in College Station, provide a theoretical description of domain-wall motion in nanoscale ferromagnets due to the spin-polarized currents. They find exact conditions for time-dependent resonant domain-wall movement, which could speed up the motion of domain walls while minimizing Ohmic losses. Movement of domain walls in ferromagnetic nanowires can be achieved by application of external magnetic fields or by passing a spin-polarized current through the nanowire itself. On the other hand, the readout of the domain state is done by measuring the resistance of the wire. Therefore, passing current through the ferromagnetic wire is the preferred method, as it combines manipulation and readout of the domain-wall state. The electrons that take part in the process of readout and manipulation of the domain-wall structure in the nanowire do so through the so-called spin transfer torque: When spin-polarized electrons in the ferromagnet nanowire pass through the domain wall they experience a nonuniform magnetization, and they try to align their spins with the local magnetic moments. The force that the electrons experience has a reaction force counterpart that 'pushes' the local magnetic moments, resulting in movement of the domain wall in the direction of the electron flow through the spin-transfer torque. The forces between the electrons and the local magnetic moments in the ferromagnet also create additional electrical resistance for the electrons passing through the domain wall. By measuring resistance across a segment of the nanowire, one determines if a domain wall is present; i.e., one can read the stored information. The interaction of the spin-polarized electrons with the domain wall in the ferromagnetic nanowire is not very efficient. Even for materials achieving high polarization of the free electrons, it is very difficult to move the magnetic domain wall. Several factors contribute to this problem, with imperfections of the ferromagnetic nanowire that cause domain-wall pinning being the dominant one. Permalloy nanowires, one of the best candidates for domain-wall-based memory and logic devices, require current densities of the order of 10{sup 8} A/cm{sup 2} in order to move a domain wall from a pinning well. Considering that this current has to pass through a relatively long wire, it is not very difficult to imagine that most of the energy will go to Joule heating. The efficiency of the process - the ratio of the energy converted to domain-wall motion to the total energy consumed - is comparable to that of an incandescent light bulb converting electricity to light. A step towards more efficient domain-wall-based memory devices is the advance of using alternating currents or curren

Karapetrov, G.; Novosad, V.; Materials Science Division

2010-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "wall material mass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Tokamak reactor first wall  

DOE Patents (OSTI)

This invention relates to an improved first wall construction for a tokamak fusion reactor vessel, or other vessels subjected to similar pressure and thermal stresses.

Creedon, R.L.; Levine, H.E.; Wong, C.; Battaglia, J.

1984-11-20T23:59:59.000Z

62

Collector: storage wall systems  

SciTech Connect

Passive Trombe wall systems require massive masonry walls to minimize large temperature swings and movable night insulation to prevent excessive night heat losses. As a solar energy collection system, Trombe wall systems have low efficiencies because of the nature of the wall and, if auxiliary heat is needed, because of absorption of this heat. Separation of collector and storage functions markedly improves the efficiency. A simple fiberglass absorber can provide high efficiency while phase change storage provides a compact storage unit. The need for movable insulation is obviated.

Boardman, H.

1980-01-01T23:59:59.000Z

63

Walls and Windows  

SciTech Connect

Energy travels in and out of a building through the walls and windows by means of conduction, convection, and radiation. The walls and windows, complex systems in themselves, are part of the overall building system. A wall system is composed of multiple layers that work in concert to provide shelter from the exterior weather. Wall systems vary in the degree to which they provide thermal resistance, moisture resistance, durability, and thermal storage. High tech windows are now available that can resist radiation heat transfer while still providing light and visibility. The combination of walls and windows within the building system can be adapted to meet a wide range of environmental conditions, recognizing that the best building envelope system for one climate may not be the first choice for another location.

Stovall, Therese K [ORNL

2007-01-01T23:59:59.000Z

64

An Experimental Study of the Performance of PCM-Enhanced Cellulose Insulation Used in Residential Building Walls Exposed to Full Weather Conditions  

E-Print Network (OSTI)

Air conditioning energy consumption in summer represents a major concern in many areas with hot and humid climates. When incorporated into the walls of light-weight residential buildings, phase change materials (PCMs) can increase the effective thermal mass of the walls and shift part of the space cooling loads to off-peak hours. The thermal properties of pure phase change materials (PCMs) and those of the mixtures of PCMs with cellulose insulation were studied via differential scanning calorimeter (DSC) tests and mass change tests. To directly prove the concept that PCM-enhanced insulation can reduce the peak heat flux across walls as well as its potential to shift part of the space cooling loads to a later time of the day, the performance of PCM-enhanced cellulose insulation was studied using two small-scale testing houses exposed to full weather conditions during the summer seasons. The testing houses were air conditioned and independently metered. Both houses had identical thermal responses prior to any retrofits. Before the tests, the PCM enhanced insulation was blown into the wall cavities in one test house while plain cellulose insulation was installed in the other house for comparison purposes. Hourly heat fluxes and daily heat flow data for four walls are presented. Based on the results, important recommendations are provided for the optimal use of PCMs in insulation systems.

Fang, Y.; Medina, M.; Evers, A.

2008-12-01T23:59:59.000Z

65

Enhancement of wall jet transport properties  

DOE Patents (OSTI)

By enhancing the natural instabilities in the boundary layer and in the free shear layer of a wall jet, the boundary is minimized thereby increasing the transport of heat and mass. Enhancing the natural instabilities is accomplished by pulsing the flow of air that creates the wall jet. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct.

Claunch, Scott D. (Broomfield, CO); Farrington, Robert B. (Golden, CO)

1997-01-01T23:59:59.000Z

66

Membranes for nanometer-scale mass fast transport  

DOE Patents (OSTI)

Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

Bakajin, Olgica (San Leandro, CA); Holt, Jason (Berkeley, CA); Noy, Aleksandr (Belmont, CA); Park, Hyung Gyu (Oakland, CA)

2011-10-18T23:59:59.000Z

67

Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate  

E-Print Network (OSTI)

Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate David A. Scrymgeour and Venkatraman Gopalan Department of Materials Science, lithium niobate and lithium tantalate. The contributions to the domain- wall energy from polarization

Gopalan, Venkatraman

68

Thermal performance of concrete masonry unit wall systems  

Science Conference Proceedings (OSTI)

New materials, modern building wall technologies now available in the building marketplace, and unique, more accurate, methods of thermal analysis of wall systems create an opportunity to design and erect buildings where thermal envelopes that use masonry wall systems can be more efficient. Thermal performance of the six masonry wall systems is analyzed. Most existing masonry systems are modifications of technologies presented in this paper. Finite difference two-dimensional and three-dimensional computer modeling and unique methods of the clear wall and overall thermal analysis were used. In the design of thermally efficient masonry wall systems is t to know how effectively the insulation material is used and how the insulation shape and its location affect the wall thermal performance. Due to the incorrect shape of the insulation or structural components, hidden thermal shorts cause additional heat losses. In this study, the thermal analysis of the clear wall was enriched with the examination of the thermal properties of the wall details and the study of a quantity defined herein the Thermal Efficiency of the insulation material.

Kosny, J.

1995-12-31T23:59:59.000Z

69

Explicit finite element analysis of lightly reinforced masonry shear walls  

Science Conference Proceedings (OSTI)

Explicit finite element analysis (FEA) of masonry shear walls containing reinforcement at spacing between 800mm and 2000mm, referred to as wide spaced reinforced masonry (WSRM), are modelled using macroscopic material characteristics for the unreinforced ... Keywords: Characteristic length, Ductility, Explicit finite element method, Failure mode, Masonry shear walls: Reinforced masonry, Quasi-static modelling

M. Dhanasekar; W. Haider

2008-01-01T23:59:59.000Z

70

Thermal treatment wall  

DOE Patents (OSTI)

A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

Aines, Roger D. (Livermore, CA); Newmark, Robin L. (Livermore, CA); Knauss, Kevin G. (Livermore, CA)

2000-01-01T23:59:59.000Z

71

Thermal Performance of Uninsulated and Partially Filled Wall Cavities: Preprint  

SciTech Connect

Low-rise, wood-framed homes are the most common type of residential structures in the United States. Wood wall construction supports roofs efficiently and provides a stable frame for attaching interior and exterior wall coverings. Wall cavities are prevalent and increase thermal resistance, particularly when they are filled with insulating material. This paper describes detailed computational fluid dynamics modeling to evaluate the thermal performance of uninsulated or partially filled wall cavities and accounts for conduction through framing, convection, and radiation. Parameters are ambient outdoor temperature, cavity surface emissivity, cavity aspect ratio, and insulation height. Understanding the thermal performance of uninsulated or partially insulated wall cavities is essential for conserving energy in residential buildings. The results can serve as input for building energy simulation tools such as DOE2 and EnergyPlus for modeling the temperature dependent energy performance of new and older homes with uninsulated or partially insulated walls.

Ridouane, E. H.; Bianchi, M.

2011-08-01T23:59:59.000Z

72

SRNL POROUS WALL GLASS MICROSPHERES  

DOE Green Energy (OSTI)

The Savannah River National Laboratory (SRNL) has developed a new medium for storage of hydrogen and other gases. This involves fabrication of thin, Porous Walled, Hollow Glass Microspheres (PW-HGMs), with diameters generally in the range of 1 to several hundred microns. What is unique about the glass microballons is that porosity has been induced and controlled within the thin, one micron thick walls, on the scale of 10 to several thousand Angstroms. This porosity results in interesting properties including the ability to use these channels to fill the microballons with special absorbents and other materials, thus providing a contained environment even for reactive species. Gases can now enter the microspheres and be retained on the absorbents, resulting in solid-state and contained storage of even reactive species. Also, the porosity can be altered and controlled in various ways, and even used to filter mixed gas streams within a system. SRNL is involved in about a half dozen different programs involving these PW-HGMs and an overview of some of these activities and results emerging are presented.

Wicks, G; Leung Heung, L; Ray Schumacher, R

2008-04-15T23:59:59.000Z

73

Expert Meeting Report: Interior Insulation Retrofit of Mass Masonry...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Retrofit of Mass Masonry Wall Assembliesessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce such...

74

Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure  

DOE Patents (OSTI)

Methods for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physisorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics.

Sachtler, Wolfgang M. H. (Evanston, IL); Huang, Yin-Yan (Evanston, IL)

1998-01-01T23:59:59.000Z

75

Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure  

DOE Patents (OSTI)

Methods are disclosed for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physical sorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics. 17 figs.

Sachtler, W.M.H.; Huang, Y.Y.

1998-07-28T23:59:59.000Z

76

POROUS WALL, HOLLOW GLASS MICROSPHERES  

DOE Green Energy (OSTI)

Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to 'normal glasses of a 1 to 2 order of magnitude, which can result in unique properties in areas such as hydrogen storage, gas transport, gas separations and purifications, sensors, global warming applications, new drug delivery systems and so on. One of the most interesting porous glass products that SRNL has developed and patented is Porous Wall, Hollow Glass Microspheres (PW-HGMs) that are being studied for many different applications. The European Patent Office (EPO) just recently notified SRS that the continuation-in-part patent application for the PW-HGMs has been accepted. The original patent, which was granted by the EPO on June 2, 2010, was validated in France, Germany and the United Kingdom. The microspheres produced are generally in the range of 2 to 100 microns, with a 1 to 2 micron wall. What makes the SRNL microspheres unique from all others is that the team in Figure 1 has found a way to induce and control porosity through the thin walls on a scale of 100 to 3000 {angstrom}. This is what makes the SRNL HW-HGMs one-of-a-kind, and is responsible for many of their unique properties and potential for various applications, including those in tritium storage, gas separations, H-storage for vehicles, and even a variety of new medical applications in the areas of drug delivery and MRI contrast agents. SRNL Hollow Glass Microspheres, and subsequent, Porous Wall, Hollow Glass Microspheres are fabricated using a flame former apparatus. Figure 2 is a schematic of the apparatus.

Sexton, W.

2012-06-30T23:59:59.000Z

77

ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS  

Science Conference Proceedings (OSTI)

OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability.

WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

2002-04-01T23:59:59.000Z

78

Sustainable wall construction and exterior insulation retrofit technology process and structure  

DOE Patents (OSTI)

A low-cost process for exterior wall insulation retrofit, or new wall construction by stacking layers of fabric tube filled with insulating material against a wall and covering them with mesh and stucco provides a durable structure with good insulating value.

Vohra, Arun (Bethesda, MD)

2000-01-01T23:59:59.000Z

79

High-R Walls for Remodeling: Wall Cavity Moisture Monitoring  

Science Conference Proceedings (OSTI)

The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

Wiehagen, J.; Kochkin, V.

2012-12-01T23:59:59.000Z

80

Vector-field domain walls  

Science Conference Proceedings (OSTI)

We argue that spontaneous Lorentz violation may generally lead to metastable domain walls related to the simultaneous violation of some accompanying discrete symmetries. Remarkably, such domain-wall solutions exist for spacelike Lorentz violation and do not exist for the timelike violation. Because a preferred space direction is spontaneously induced, these domain walls have no planar symmetry and produce a peculiar static gravitational field at small distances, while their long-distance gravity appears the same as for regular scalar-field walls. Some possible applications of vector-field domain walls are briefly discussed.

Chkareuli, J. L. [E. Andronikashvili Institute of Physics, 0177 Tbilisi, Georgia (United States); I. Chavchavadze State University, 0162 Tbilisi (Georgia); Kobakhidze, Archil [E. Andronikashvili Institute of Physics, 0177 Tbilisi (Georgia); School of Physics, University of Melbourne, Victoria 3010 (Australia); Volkas, Raymond R. [School of Physics, University of Melbourne, Victoria 3010 (Australia)

2009-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "wall material mass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Very long single- and few-walled boron nitride nanotubes via the pressurized vapor/condenser method  

Science Conference Proceedings (OSTI)

Boron nitride nanotubes (BNNTs) are desired for their exceptional mechanical, electronic, thermal, structural, textural, optical, and quantum properties. A new method for producing long, small-diameter, single- and few-walled, boron nitride nanotubes (BNNTs) in macroscopic quantities is reported. The pressurized vapor/condenser (PVC) method produces, without catalysts, highly crystalline, very long, small-diameter, BNNTs. Palm-sized, cotton-like masses of BNNT raw material were grown by this technique and spun directly into centimeters-long yarn. Nanotube lengths were observed to be 100 times that of those grown by the most closely related method. Self-assembly and growth models for these long BNNTs are discussed.

Michael W. Smith, Kevin Jordan, Cheol Park, Jae-Woo Kim, Peter Lillehei, Roy Crooks, Joycelyn Harrison

2009-11-01T23:59:59.000Z

82

Effect of design parameter changes on the performance of thermal storage wall passive systems  

DOE Green Energy (OSTI)

Hour-by-hour computer simulations based on one year of solar radiation and temperature data are used to analyze annual energy savings in thermal storage wall passive designs, both Trombe wall and water wall cases. The calculations are rerun many times changing various parameters one at a time to assess the effect on performance. Parameters analyzed are: night insulation R-value, number of glazings, wall absorptance and emittance, thermal storage capacity, Trombe wall properties and vent area size, additional building mass, and temperature control set points. Calculations are done for eight cities.

McFarland, R.D.; Balcomb, J.D.

1979-01-01T23:59:59.000Z

83

Influence of Wetting and Mass Transfer Properties of Organic Chemical Mixtures in Vadose Zone Materials on Groundwater Contamination by Nonaqueous Phase Liquids  

Science Conference Proceedings (OSTI)

Previous studies have found that organic acids, organic bases, and detergent-like chemicals change surface wettability. The wastewater and NAPL mixtures discharged at the Hanford site contain such chemicals, and their proportions likely change over time due to reaction-facilitated aging. The specific objectives of this work were to (1) determine the effect of organic chemical mixtures on surface wettability, (2) determine the effect of organic chemical mixtures on CCl4 volatilization rates from NAPL, and (3) accurately determine the migration, entrapment, and volatilization of organic chemical mixtures. Five tasks were proposed to achieve the project objectives. These are to (1) prepare representative batches of fresh and aged NAPL-wastewater mixtures, (2) to measure interfacial tension, contact angle, and capillary pressure-saturation profiles for the same mixtures, (3) to measure interphase mass transfer rates for the same mixtures using micromodels, (4) to measure multiphase flow and interphase mass transfer in large flow cell experiments, all using the same mixtures, and (5) to modify the multiphase flow simulator STOMP in order to account for updated P-S and interphase mass transfer relationships, and to simulate the impact of CCl4 in the vadose zone on groundwater contamination. Results and findings from these tasks and summarized in the attached final report.

Charles J Werth; Albert J Valocchi, Hongkyu Yoon

2011-05-21T23:59:59.000Z

84

Engineering the fusion reactor first wall  

SciTech Connect

Recently the National Academy of Engineering published a set of Grand Challenges in Engineering in which the second item listed was entitled 'Provide energy from fusion'. Clearly a key component of this challenge is the science and technology associated with creating and maintaining burning plasmas. This is being vigorously addressed with both magnetic and inertial approaches with various experiments such as ITER and NIF. Considerably less attention is being given to another key component of this challenge, namely engineering the first wall that will contain the burning plasma. This is a daunting problem requiring technologies and materials that can not only survive, but also perform multiple essential functions in this extreme environment. These functions are (1) shield the remainder of the device from radiation. (2) convert of neutron energy to useful heat and (3) breed and extract tritium to maintain the reactor fuel supply. The first wall must not contaminate the plasma with impurities. It must be infused with cooling to maintain acceptable temperatures on plasma facing and structural components. It must not degrade. It must avoid excessive build-up of tritium on surfaces, and, if surface deposits do form, must be receptive to cleaning techniques. All these functions and constraints must be met while being subjected to nuclear and thermal radiation, particle bombardment, high magnetic fields, thermal cycling and occasional impingement of plasma on the surface. And, operating in a nuclear environment, the first wall must be fully maintainable by remotely-operated manipulators. Elements of the first wall challenge have been studied since the 1970' s both in the US and internationally. Considerable foundational work has been performed on plasma facing materials and breeding blanket/shield modules. Work has included neutronics, materials fabrication and joining, fluid flow, tritium breeding, tritium recovery and containment, energy conversion, materials damage and magnetohydrodynamics. While work to date has been quite valuable, no blanket concept has been built and operated in anything approaching a realistic fusion reactor environment. Rather, work has been limited to isolated experiments on first wall components and paper studies. The need now is to complete necessary R&D on first wall components, assemble components into a practical design, and test the first wall in a realistic fusion environment. Besides supporting work, major prototype experiments could be performed in non-nuclear experiments, as part of the ITER project and as part of the Component Test Facility. The latter is under active consideration and is a proposed machine which would use a driven plasma to expose an entire first wall to a fusion environment. Key US contributors to first wall research have been UCLA, UCSD, U of Wisconsin, LANL, ORNL, PNNL, Argonne and Idaho National Lab. Current efforts have been coordinated by UCLA. It is recognized that when this work progresses to a larger scale, leadership from a national laboratory will be required. LANL is well-prepared to provide such leadership.

Wurden, Glen [Los Alamos National Laboratory; Scott, Willms [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

85

Thick planar domain wall: its thin wall limit and dynamics  

E-Print Network (OSTI)

We consider a planar gravitating thick domain wall of the $\\lambda \\phi^4$ theory as a spacetime with finite thickness glued to two vacuum spacetimes on each side of it. Darmois junction conditions written on the boundaries of the thick wall with the embedding spacetimes reproduce the Israel junction condition across the wall in the limit of infinitesimal thickness. The thick planar domain wall located at a fixed position is then transformed to a new coordinate system in which its dynamics can be formulated. It is shown that the wall's core expands as if it were a thin wall. The thickness in the new coordinates is not constant anymore and its time dependence is given.

S. Ghassemi; S. Khakshournia; R. Mansouri

2006-09-28T23:59:59.000Z

86

Thermal control system and method for a passive solar storage wall  

DOE Patents (OSTI)

A system and method are provided for controlling the storing and release of thermal energy from a thermal storage wall wherein said wall is capable of storing thermal energy from insolation. The system and method includes a device such as a plurality of louvers spaced a predetermined distance from the thermal wall for regulating the release of thermal energy from the thermal wall. This regulating device is made from a material which is substantially transparent to the incoming solar radiation so that when it is in any operative position, the thermal storage wall substantially receives all of the impacting solar radiation. The material in the regulating device is further capable of being substantially opaque to thermal energy so that when the device is substantially closed, thermal release of energy from the storage wall is substantially minimized. An adjustment device is interconnected with the regulating mechanism for selectively opening and closing it in order to regulate the release of thermal energy from the wall.

Ortega, J.K.E.

1981-07-10T23:59:59.000Z

87

Oven wall panel construction  

DOE Patents (OSTI)

An oven roof or wall is formed from modular panels, each of which comprises an inner fabric and an outer fabric. Each such fabric is formed with an angle iron framework and somewhat resilient tie-bars or welded at their ends to flanges of the angle irons to maintain the inner and outer frameworks in spaced disposition while minimizing heat transfer by conduction and permitting some degree of relative movement on expansion and contraction of the module components. Suitable thermal insulation is provided within the module. Panels or skins are secured to the fabric frameworks and each such skin is secured to a framework and projects laterally so as slidingly to overlie the adjacent frame member of an adjacent panel in turn to permit relative movement during expansion and contraction.

Ellison, Kenneth (20 Avondale Cres., Markham, CA); Whike, Alan S. (R.R. #1, Caledon East, both of Ontario, CA)

1980-04-22T23:59:59.000Z

88

Critical review: Plasma-surface reactions and the spinning wall method  

Science Conference Proceedings (OSTI)

This article reviews methods for studying reactions of atoms and small molecules on substrates and chamber walls that are immersed in a plasma, a relatively unexplored, yet very important area of plasma science and technology. Emphasis is placed on the ''spinning wall'' technique. With this method, a cylindrical section of the wall of the plasma reactor is rotated, and the surface is periodically exposed to the plasma and then to a differentially pumped mass spectrometer, to an Auger electron spectrometer, and, optionally, to a beam of additional reactants or surface coatings. Reactants impinging on the surface can stick and react over time scales that are comparable to the substrate rotation period, which can be varied from {approx}0.5 to 40 ms. Langmuir-Hinshelwood reaction probabilities can be derived from a measurement of the absolute desorption product yields as a function of the substrate rotation frequency. Auger electron spectroscopy allows the plasma-immersed surface to be monitored during plasma operation. This measurement is critical, since wall ''conditioning'' in the plasma changes the reaction probabilities. Mass spectrometer cracking patterns are used to identify simple desorption products such as Cl{sub 2}, O{sub 2}, ClO, and ClO{sub 2}. Desorption products also produce a measurable pressure rise in the second differentially pumped chamber that can be used to obtain absolute desorption yields. The surface can also be coated with films that can be deposited by sputtering a target in the plasma or by evaporating material from a Knudsen cell in the differentially pumped wall chamber. Here, the authors review this new spinning wall technique in detail, describing both experimental issues and data analysis methods and interpretations. The authors have used the spinning wall method to study the recombination of Cl and O on plasma-conditioned anodized aluminum and stainless steel surfaces. In oxygen or chlorine plasmas, these surfaces become coated with a layer containing Si, Al, and O, due to slow erosion of the reactor materials, in addition to Cl in chlorine plasmas. Similar, low recombination probabilities were found for Cl and O on anodized Al versus stainless steel surfaces, consistent with the similar chemical composition of the layer that forms on these surfaces after long exposure to the plasma. In chlorine plasmas, weakly adsorbed Cl{sub 2} was found to inhibit Cl recombination, hence the Cl recombination probability decreases with increasing Cl{sub 2}-to-Cl number density ratios in the plasma. In mixed Cl{sub 2}/O{sub 2} plasmas, Cl and O recombine to form Cl{sub 2} and O{sub 2} with probabilities that are similar to those in pure chlorine or oxygen plasmas, but in addition, ClO and ClO{sub 2} form on the surface and desorb from the wall. These and other results, including the catalytic enhancement of O recombination by monolayer amounts of Cu, are reviewed.

Donnelly, V. M.; Guha, J.; Stafford, L. [Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204 (United States); Departement de Physique, Universite de Montreal, Montreal, Quebec H3C 3J7 (Canada)

2011-01-15T23:59:59.000Z

89

Hardfacing material  

SciTech Connect

A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

Branagan, Daniel J. (Iona, ID)

2012-01-17T23:59:59.000Z

90

Moisture Research - Optimizing Wall Assemblies  

SciTech Connect

The Consortium for Advanced Residential Buildings (CARB) evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls.

Arena, L.; Mantha, P.

2013-05-01T23:59:59.000Z

91

Method and apparatus for constructing an underground barrier wall structure  

SciTech Connect

A method and apparatus for constructing a underground barrier wall structure using a jet grout injector subassembly comprising a pair of primary nozzles and a plurality of secondary nozzles, the secondary nozzles having a smaller diameter than the primary nozzles, for injecting grout in directions other than the primary direction, which creates a barrier wall panel having a substantially uniform wall thickess. This invention addresses the problem of the weak "bow-tie" shape that is formed during conventional jet injection when using only a pair of primary nozzles. The improvement is accomplished by using at least four secondary nozzles, of smaller diameter, located on both sides of the primary nozzles. These additional secondary nozzles spray grout or permeable reactive materials in other directions optimized to fill in the thin regions of the bow-tie shape. The result is a panel with increased strength and substantially uniform wall thickness.

Dwyer, Brian P. (Albuquerque, NM); Stewart, Willis E. (W. Richland, WA); Dwyer, Stephen F. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

92

Interactions between Liquid-Wall Vapor and Edge Plasmas  

DOE Green Energy (OSTI)

The use of liquid walls for fusion reactors could help solve problems associated with material erosion from high plasma heat-loads and neutronic activation of structures. A key issue analyzed here is the influx of impurity ions to the core plasma from the vapor of liquid side-walls. Numerical 2D transport simulations are performed for a slab geometry which approximates the edge region of a reactor-size tokamak. Both lithium vapor (from Li or SnLi walls) and fluorine vapor (from Flibe walls) are considered for hydrogen edge-plasmas in the high- and low-recycling regimes. It is found that the minimum influx is from lithium with a low-recycling hydrogen plasma, and the maximum influx occurs for fluorine with a high-recycling hydrogen plasma.

Rognlien, T D; Rensink, M E

2000-05-25T23:59:59.000Z

93

Thermal Performance of Uninsulated and Partially Filled Wall Cavities  

SciTech Connect

Wall cavities are widely present in the construction of low rise homes since wood framing is the most common type of construction for residential buildings in the United States. The primary function of such wall construction is to provide a stable frame to which interior and exterior wall coverings can be attached and by which a roof can be supported. The existence of wall cavities increases the thermal resistance of the enclosure, particularly when they are filled with insulating material. Several design guides provide data for prediction of the thermal resistance of uninsulated wall cavities of varying internal geometries. However, U-value coefficients provided in these guides do not account for partially insulated cavities or for variations in aspect ratio. Whole building energy simulation tools, like DOE2 or Energy Plus, use simplified, 1-D characterization of building envelopes. For the most part, this characterization assumes a fixed thermal resistance over the range of temperatures experienced by the enclosure. In reality, the thermal resistance is dominated by convection and radiation and is a function of several parameters, including the temperatures and emissivities of the cavity surfaces and the aspect ratio of the cavity. This study describes detailed CFD modeling to evaluate the thermal performance of uninsulated or partially filled wall cavities accounting for conduction through framing, convection, and radiation. The resulting correlations can serve as input for DOE2 and Energy Plus modeling of older homes, where the walls are either uninsulated or partially insulated due to the settling of the insulating material. Parameters of the study are the ambient temperature outdoors, emissivity of the cavity surfaces, cavity aspect ratio, and height of the insulation level. The outcomes of this study provide: An understanding of the thermal performance of uninsulated or partially insulated wall cavities, which is an essential aspect of energy conservation in residential buildings. Accurate input for whole building simulations models like DOE2 and Energy Plus in various climate zones. Recommendations on retrofit measures.

Ridouane, E.H.; Bianchi, M. V. A.

2011-01-01T23:59:59.000Z

94

Methane storage in multi-walled carbon nanotubes at the quantity of 80 g  

SciTech Connect

Methane storage in multi-walled carbon nanotubes (MWNTs) is studied at ambient temperature and pressures of 0-10.5 MPa, with a quantity of 80 g samples that were synthesized by nano-agglomerate fluidized-bed reactors (NAFBR). The volume of methane released by MWNTs was measured by volumetric method. We study the effects of purification and the pretreatments on methane storage. Results show that mixed acid treatment, alkali treatment, and mechanical shearing can obviously enhance gas uptake while high-temperature treatment can only slightly reduce it. For properly pretreated samples, an optimal 11.7% of mass storage capacity was achieved at room temperature and the pressure of 10.5 MPa, indicating that CNTs is a potential material for methane uptake.

Wu Yulong [Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Wei Fei [Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)], E-mail: wf-dce@tsinghua.edu.cn; Luo Guohua; Ning Guoqing [Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Yang Mingde [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

2008-06-03T23:59:59.000Z

95

EERE Roofus' Solar and Efficient Home: Walls  

NLE Websites -- All DOE Office Websites (Extended Search)

Walls Insulation Windows Activities Printable Version Walls Illustration of Roofus, a golden retriever, sitting in front of a wall. On cold nights, you use a blanket to keep you...

96

Wall Insulation; BTS Technology Fact Sheet  

SciTech Connect

Properly sealed, moisture-protected, and insulated walls help increase comfort, reduce noise, and save on energy costs. This fact sheet addresses these topics plus advanced framing techniques, insulation types, wall sheathings, and steps for effective wall construction and insulation.

Southface Energy Institute; Tromly, K.

2000-11-07T23:59:59.000Z

97

Electronic multi-purpose material level sensor  

DOE Patents (OSTI)

The present electronic multi-purpose material level sensor is based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line that is partially immersed in a liquid, powder, or other substance such as grain in a silo. The time difference of the reflections at the start of the transmission line and the air/liquid interface are used to determine levels to better than 0.01 inch. The sensor is essentially independent of circuit element and temperature variations, and can be mass produced at an extremely low price. The transmission line may be a Goubau line, microstrip, coaxial cable, twin lead, CPS or CPW, and may typically be a strip placed along the inside wall of a tank. The reflected pulses also contain information about strata within the liquid such as sludge-build-up at the bottom of an oil tank.

McEwan, Thomas E. (Livermore, CA)

1997-01-01T23:59:59.000Z

98

Electronic multi-purpose material level sensor  

DOE Patents (OSTI)

The present electronic multi-purpose material level sensor is based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line that is partially immersed in a liquid, powder, or other substance such as grain in a silo. The time difference of the reflections at the start of the transmission line and the air/liquid interface are used to determine levels to better than 0.01 inch. The sensor is essentially independent of circuit element and temperature variations, and can be mass produced at an extremely low price. The transmission line may be a Goubau line, microstrip, coaxial cable, twin lead, CPS or CPW, and may typically be a strip placed along the inside wall of a tank. The reflected pulses also contain information about strata within the liquid such as sludge-build-up at the bottom of an oil tank. 9 figs.

McEwan, T.E.

1997-03-11T23:59:59.000Z

99

Negative mass  

E-Print Network (OSTI)

Some physical aspects of negative mass are examined. Several unusual properties, such as the ability of negative mass to penetrate any armor, are analyzed. Other surprising effects include the bizarre system of negative mass chasing positive pass, naked singularities and the violation of cosmic censorship, wormholes, and quantum mechanical results as well. In addition, a brief look into the implications for strings is given.

Richard T Hammond

2013-08-06T23:59:59.000Z

100

Security_Walls_VPP_Award  

NLE Websites -- All DOE Office Websites (Extended Search)

Security Force Recognized for Outstanding Safety CARLSBAD, N.M., May 10, 2013 - The U.S. Department of Energy (DOE) has awarded Security Walls, LLC, the Waste Isolation Pilot...

Note: This page contains sample records for the topic "wall material mass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The HPC Brick Wall  

DOE Green Energy (OSTI)

The eventual breakdown of Moores law, global warming and taxes seem to elicit much the same response: painful but inevitable. Future technologies promise solutions to keep life and progress as we know it continuing unchanged. New materials, manufacturing processes, more cores per chip, nanotechnology, quantum computing, optical computing all are lauded with promising new breakthroughs to sustain or exceed the performance increases projected by Moores Law. Similarly, carbon sequestration, more efficient cars, hydrogen, solar power, all promise solutions to human induced climate change. Sadly tax technology appears to be the exception, with no promising breakthroughs in the offing except perhaps greater efficiency in filing and auditing.

Farber, Rob

2007-05-01T23:59:59.000Z

102

Anchored nanostructure materials and method of fabrication  

Science Conference Proceedings (OSTI)

Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

2012-11-27T23:59:59.000Z

103

New Combined Laser Ablation Platform Determines Cell Wall Chemistry (Fact Sheet)  

DOE Green Energy (OSTI)

NREL has designed and developed a combined laser ablation/pulsed sample introduction/mass spectrometry platform that integrates pyrolysis and/or laser ablation with resonance-enhanced multiphoton ionization (REMPI) time-of-flight mass spectrometry. Using this apparatus, we can measure the cell wall chemical composition of untreated biomass materials. Understanding the chemical composition of untreated biomass is key to both the biochemical and thermochemical conversion of lignocellulosic biomass to biofuels. In the biochemical conversion process, the new technique provides a better understanding of the chemistry of lignin and will improve accessibility to plant sugars. In thermochemical conversion, the information provided by the new technique may help to reduce the formation of unwanted byproducts during gasification. NREL validated the ability of the system to detect pyrolysis products from plant materials using poplar, a potentially high-impact bioenergy feedstock. In the technique, biomass vapors are produced by laser ablation using the 3rd harmonic of an Nd:YAG laser (355 nm). The resulting vapors are entrained in a free jet expansion of helium, then skimmed and introduced into an ionization region. REMPI is used to ionize the vapors because it is highly sensitive for detecting lignin and aromatic metabolites. The laser ablation method was used to selectively volatilize specific plant tissues and detect lignin-based products from the vapors with enhanced sensitivity. This will allow the determination of lignin distribution in future biomass studies.

Not Available

2011-09-01T23:59:59.000Z

104

Scanning Probe Techniques for Functional Materials: Optical Near ...  

Science Conference Proceedings (OSTI)

Antenna-enhanced Optoelectronics of Carbon Nanotubes: Achim Hartschuh1 ... Single-walled carbon nanotubes are remarkable quasi-1D materials that can be ...

105

Vehicle Technologies Office: Lightweight Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Lightweight Materials Lightweight Material Mass Reduction Magnesium 30-70% Carbon fiber composites 50-70% Aluminum and Al matrix composites 30-60% Titanium 40-55% Glass fiber...

106

Mass Measurements  

Science Conference Proceedings (OSTI)

... NIST maintains the national standard for mass in the form of the prototype kilogram (K20) and provides services to support the parts of the national ...

2013-06-28T23:59:59.000Z

107

fehlende Masse  

NLE Websites -- All DOE Office Websites (Extended Search)

beim radioaktiven Zerfall mit der fehlenden Masse?" Zur Erinnerung: wenn Uran in Thorium und ein alpha Teilchen zerfllt, dann gehen 0.0046 u (Masseneinheiten) der...

108

Method and apparatus for de-watering biomass materials in a compression drying process  

DOE Patents (OSTI)

A method and apparatus for more effectively squeezing moisture from wood chips and/or other "green" biomass materials. A press comprising a generally closed chamber having a laterally movable base at the lower end thereof, and a piston or ram conforming in shape to the cross-section of the chamber is adapted to periodically receive a charge of biomass material to be dehydrated. The ram is forced against the biomass material with suffcient force to compress the biomass and to crush the matrix in which moisture is contained within the material with the face of the ram being configured to cause a preferential flow of moisture from the center of the mass outwardly to the grooved walls of the chamber. Thus, the moisture is effectively squeezed from the biomass and flows through the grooves formed in the walls of the chamber to a collecting receptacle and is not drawn back into the mass by capillary action when the force is removed from the ram.

Haygreen, John G. (Roseville, MN)

1986-01-01T23:59:59.000Z

109

Glazing and the Trombe wall  

DOE Green Energy (OSTI)

Single, double and triple glazing are examined for use in passive solar Trombe walls and south facing windows. Net gains and losses are calculated employing regional weather data and annual contribution to heating load reduction is evaluated. The study concentrates on the reflectivity of each glass pane, including the dependence of reflectivity on the angle of incidence of the radiation, and resulting heat gains and losses. This facet of passive design heretofore has been inadequately treated as is shown to be significant. The marginal value of each additional pane is investigated with regard to heat gain, energy savings and total costs. Additionally, attention is given to the effects of Trombe wall energy storage.

Pouder, R W; Leigh, R W

1978-01-01T23:59:59.000Z

110

Fusion materials modeling: Challenges and opportunities  

E-Print Network (OSTI)

The plasma facing components, first wall, and blanket systems of future tokamak-based fusion power plants arguably represent the single greatest materials engineering challenge of all time. Indeed, the United States National ...

Wirth, B. D.

111

Insulation Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Materials Insulation Materials Insulation Materials May 30, 2012 - 10:08am Addthis Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Rigid foam board adds R-value to this wall in a Florida home. | Photo courtesy of FSEC/IBACOS. Rigid foam board adds R-value to this wall in a Florida home. | Photo

112

Insulation Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Materials Insulation Materials May 30, 2012 - 10:08am Addthis Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Rigid foam board adds R-value to this wall in a Florida home. | Photo courtesy of FSEC/IBACOS. Rigid foam board adds R-value to this wall in a Florida home. | Photo

113

Experimental study of a fiber absorber-suppressor modified Trombe wall  

DOE Green Energy (OSTI)

An experimental study has been conducted to ascertain the effects of introducing fiber bed absorbers on Trombe wall passive solar collectors. Two identical, Trombe wall passive solar units were constructed that incorporate the basic components of masonry collector-storage walls: glazings, masonry and thermal insulation. Both units were extensively instrumented with thermocouples and heat flux transducers. Ambient temperature, relative humidity, wind speed and insolation are also measured. In the first part of the study the two Trombe wall units were tested with a single glass cover. The thermal performance of both units was found to be virtually identical. In the second part of the study a single cover Trombe wall unit was compared with a double cover unit and the latter was found to have higher air gap and masonry wall temperatures and heat fluxes. In the final phase of the experiment, an absorbing, scattering and emitting fiberglass-like material was placed in the air gap of the single gazed wall. Tests were conducted to compare the solar-thermal performance, heat loss and gain characteristics between the units with and without the fiber absorber-suppressor. This experiment showed that the fiber bed served to decouple the wall at night from its exterior environment and to reduce the heat losses. The modified Trombe wall with the fiber absorber-suppressor out-performed the double glazed Trombe wall system by approximately ten percent gain in useable thermal energy. Also, the fiber bed eliminates one glazing thereby reducing system cost as well.

Choudhury, D; Birkebak, R C

1982-12-01T23:59:59.000Z

114

Materials Science  

Science Conference Proceedings (OSTI)

Materials Science. Summary: ... Description: Group focus in materials science (inkjet metrology, micro-macro, advanced characterizations). ...

2012-10-02T23:59:59.000Z

115

Devices with extended area structures for mass transfer processing of fluids  

DOE Patents (OSTI)

A microchannel device includes several mass transfer microchannels to receive a fluid media for processing at least one heat transfer microchannel in fluid communication with a heat transfer fluid defined by a thermally conductive wall, and at several thermally conductive fins each connected to the wall and extending therefrom to separate the mass transfer microchannels from one another. In one form, the device may optionally include another heat transfer microchannel and corresponding wall that is positioned opposite the first wall and has the fins and the mass transfer microchannels extending therebetween.

TeGrotenhuis, Ward E. (Kennewick, WA); Wegeng, Robert S. (Richland, WA); Whyatt, Greg A. (West Richland, WA); King, David L. (Richland, WA); Brooks, Kriston P. (Kennewick, WA); Stenkamp, Victoria S. (Richland, WA)

2009-04-21T23:59:59.000Z

116

Steel-framed buildings: Impacts of wall detail configurations on the whole wall thermal performance  

SciTech Connect

The main objective of this paper is the influence of architectural wall details on the whole wall thermal performance. Whole wall thermal performance analysis was performed for six light gage steel-framed wall systems (some with wood components). For each wall system, all wall details were simulated using calibrated 3-D finite difference computer modeling. The thermal performance of the six steel-framed wall systems included various system details and the whole wall system thermal performance for a typical single-story ranch house. Currently, predicted heat losses through building walls are typically based on measurements of the wall system clear wall area using test methods such as ASTM C 236 or are calculated by one of the procedures recommended in the ASHRAE Handbook of Fundamentals that often is carried out for the clear wall area exclusively. In this paper, clear wall area is defined as the part of the wall system that is free of thermal anomalies due to building envelope details or thermally unaffected by intersections with other surfaces of the building envelope. Clear wall experiments or calculations normally do not include the effects of building envelope details such as corners, window and door openings, and structural intersections with roofs, floors, ceilings, and other walls. In steel-framed wall systems, these details typically consist of much more structural components than the clear wall. For this situation, the thermal properties measured or calculated for the clear wall area do not adequately represent the total wall system thermal performance. Factors that would impact the ability of today`s standard practice to accurately predict the total wall system thermal performance are the accuracy of the calculation methods, the area of the total wall that is clear wall, and the quantity and thermal performance of the various wall system details.

Kosny, J.; Desjarlais, A.O.; Christian, J.E.

1998-06-01T23:59:59.000Z

117

Interactions of chlorine plasmas with silicon chloride-coated reactor walls during and after silicon etching  

SciTech Connect

The interplay between chlorine inductively coupled plasmas (ICP) and reactor walls coated with silicon etching products has been studied in situ by Auger electron spectroscopy and line-of-sight mass spectrometry using the spinning wall method. A bare silicon wafer mounted on a radio frequency powered electrode (-108 V dc self-bias) was etched in a 13.56 MHz, 400 W ICP. Etching products, along with some oxygen due to erosion of the discharge tube, deposit a Si-oxychloride layer on the plasma reactor walls, including the rotating substrate surface. Without Si-substrate bias, the layer that was previously deposited on the walls with Si-substrate bias reacts with Cl-atoms in the chlorine plasma, forming products that desorb, fragment in the plasma, stick on the spinning wall and sometimes react, and then desorb and are detected by the mass spectrometer. In addition to mass-to-charge (m/e) signals at 63, 98, 133, and 168, corresponding to SiCl{sub x} (x = 1 - 4), many Si-oxychloride fragments with m/e = 107, 177, 196, 212, 231, 247, 275, 291, 294, 307, 329, 345, 361, and 392 were also observed from what appear to be major products desorbing from the spinning wall. It is shown that the evolution of etching products is a complex 'recycling' process in which these species deposit and desorb from the walls many times, and repeatedly fragment in the plasma before being detected by the mass spectrometer. SiCl{sub 3} sticks on the walls and appears to desorb for at least milliseconds after exposure to the chlorine plasma. Notably absent are signals at m/e = 70 and 72, indicating little or no Langmuir-Hinshelwood recombination of Cl on this surface, in contrast to previous studies done in the absence of Si etching.

Khare, Rohit; Srivastava, Ashutosh; Donnelly, Vincent M. [Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204 (United States)

2012-09-15T23:59:59.000Z

118

Six Thousand Electrochemical Cycles of Double-Walled Silicon Nanotube Anodes for Lithium Ion Batteries  

DOE Green Energy (OSTI)

Despite remarkable progress, lithium ion batteries still need higher energy density and better cycle life for consumer electronics, electric drive vehicles and large-scale renewable energy storage applications. Silicon has recently been explored as a promising anode material for high energy batteries; however, attaining long cycle life remains a significant challenge due to materials pulverization during cycling and an unstable solid-electrolyte interphase. Here, we report double-walled silicon nanotube electrodes that can cycle over 6000 times while retaining more than 85% of the initial capacity. This excellent performance is due to the unique double-walled structure in which the outer silicon oxide wall confines the inner silicon wall to expand only inward during lithiation, resulting in a stable solid-electrolyte interphase. This structural concept is general and could be extended to other battery materials that undergo large volume changes.

Wu, H

2011-08-18T23:59:59.000Z

119

Water Wall Turbine | Open Energy Information  

Open Energy Info (EERE)

Wall Turbine Jump to: navigation, search Name Water Wall Turbine Sector Marine and Hydrokinetic Website http:www.wwturbine.com Region Canada LinkedIn Connections CrunchBase...

120

Single event mass spectrometry  

DOE Patents (OSTI)

A means and method for single event time of flight mass spectrometry for analysis of specimen materials. The method of the invention includes pulsing an ion source imposing at least one pulsed ion onto the specimen to produce a corresponding emission of at least one electrically charged particle. The emitted particle is then dissociated into a charged ion component and an uncharged neutral component. The ion and neutral components are then detected. The time of flight of the components are recorded and can be used to analyze the predecessor of the components, and therefore the specimen material. When more than one ion particle is emitted from the specimen per single ion impact, the single event time of flight mass spectrometer described here furnis This invention was made with Government support under Contract No. W-7405-ENG82 awarded by the Department of Energy. The Government has certain rights in the invention.

Conzemius, Robert J. (Ames, IA)

1990-01-16T23:59:59.000Z

Note: This page contains sample records for the topic "wall material mass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Through the wall solar cooker  

SciTech Connect

This patent describes a solar appliance for extending from the interior of a kitchen through an exterior wall of the building and beyond a predetermined distance in a cantilever manner to receive and concentrate in the appliance outside of the building, solar radiation rays for cooking purposes comprising: a housing, the housing being mounted to extend from a kitchen through an external wall of a building and beyond in a cantilever manner and forming a closed oven, the oven comprising a bottom, glass top, a pair of sides and a first end positioned with access from within the kitchen and comprising an oven door, a first reflective panel member mounted above, juxtapositioned to one edge of the glass top for positioning against the outer surface of the external wall and extending laterally therefrom for receiving and directing solar rays impinging thereon through the glass top and into the oven, and a second double-sided reflective panel mounted above and juxtapositioned to the glass top and extending substantially perpendicular to the first reflective panel for receiving solar rays impinging on either side thereof, and directing the solar rays into the oven.

Kerr, B.P.

1987-04-07T23:59:59.000Z

122

Tube wall thickness measurement apparatus  

DOE Patents (OSTI)

An apparatus for measuring the thickness of a tube's wall for the tube's entire length and circumference by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.

Lagasse, Paul R. (Santa Fe, NM)

1987-01-01T23:59:59.000Z

123

Tube wall thickness measurement apparatus  

DOE Patents (OSTI)

An apparatus for measuring the thickness of a tube's wall for the tube's entire length and radius by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.

Lagasse, P.R.

1985-06-21T23:59:59.000Z

124

ENCAPSULATION OF PALLADIUM IN POROUS WALL HOLLOW GLASS MICROSPHERES  

DOE Green Energy (OSTI)

A new encapsulation method was investigated in an attempt to develop an improved palladium packing material for hydrogen isotope separation. Porous wall hollow glass microspheres (PWHGMs) were produced by using a flame former, heat treating and acid leaching. The PWHGMs were then filled with palladium salt using a soak-and-dry process. The palladium salt was reduced at high temperature to leave palladium inside the microspheres.

Heung, L; George Wicks, G; Ray Schumacher, R

2008-04-09T23:59:59.000Z

125

Thermal balance of a wall with PCM-enhanced thermal insulation  

Science Conference Proceedings (OSTI)

ABSTRACT: PCM insulation mixtures function as lightweight thermal mass components. It is expected that these types of dynamic insulation systems will contribute to the objective of reducing energy use in buildings. In this paper, dynamic thermal properties of a material in which phase hange occurs are analyzed, using the temperature-dependent specific heat model. Integral formula for the total heat flow in finite time interval, across the surface of a slab of the phase change material, was derived. Simulations have been performed to analyze heat transfer through a light-weight wall assembly with PCM-enhanced insulation, in different external climate thermal conditions. Results of simulations indicate that for cyclic processes, the effect of PCM in an insulation layer results rather in time shifting of the heat flux extreme values than in reduction of the total heat flow. The heat gains maxima, resulting in high cooling loads, are shifted in time by about two hours and reduced about 15% to 30% for not very high external sol-air temperatures.

Kosny, Jan [ORNL; Kossecka, Elizabeth [Institute of Fundamental Technological Research, Polish Academy of Sciences; Williams, Teresa [ORNL

2010-01-01T23:59:59.000Z

126

Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Availability Technology Express Licensing Active Terahertz Metamaterial Devices Express Licensing Anion-Conducting Polymer, Composition, And...

127

Materials Characterization | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization Nuclear Forensics Scanning Probes Related Research Materials Theory and Simulation Energy Frontier Research Centers Advanced Materials Home | Science &...

128

PROCESS OF FORMING POWDERED MATERIAL  

DOE Patents (OSTI)

A process of forming high-density compacts of a powdered ceramic material is described by agglomerating the powdered ceramic material with a heat- decompossble binder, adding a heat-decompossble lubricant to the agglomerated material, placing a quantity of the material into a die cavity, pressing the material to form a compact, pretreating the compacts in a nonoxidizing atmosphere to remove the binder and lubricant, and sintering the compacts. When this process is used for making nuclear reactor fuel elements, the ceramic material is an oxide powder of a fissionsble material and after forming, the compacts are placed in a cladding tube which is closed at its ends by vapor tight end caps, so that the sintered compacts are held in close contact with each other and with the interior wall of the cladding tube.

Glatter, J.; Schaner, B.E.

1961-07-14T23:59:59.000Z

129

First Wall and Operational Diagnostics  

SciTech Connect

In this chapter we review numerous diagnostics capable of measurements at or near the first wall, many of which contribute information useful for safe operation of a tokamak. There are sections discussing infrared cameras, visible and VUV cameras, pressure gauges and RGAs, Langmuir probes, thermocouples, and erosion and deposition measurements by insertable probes and quartz microbalance. Also discussed are dust measurements by electrostatic detectors, laser scattering, visible and IR cameras, and manual collection of samples after machine opening. In each case the diagnostic is discussed with a view toward application to a burning plasma machine such as ITER.

Lasnier, C; Allen, S; Boedo, J; Groth, M; Brooks, N; McLean, A; LaBombard, B; Sharpe, J; Skinner, C; Whyte, D; Rudakov, D; West, W; Wong, C

2006-06-19T23:59:59.000Z

130

Heat-sound insulating wall  

SciTech Connect

The wall comprises a closed acoustic box-structure which is defined by a slightly ribbed sheet and a flat sheet. The boxstructure has lateral ribs which extend beyond the sheet. A panel of high-density mineral wool which is of small thickness is enclosed inside the box-structure. A heat insulator covers the box-structure and the ribs of the box-structure and is protected by an outer trough which has ribs or corrugations perpendicular to the ribs of the box-structure.

Ovaert, F.; Reneault, P.

1980-10-21T23:59:59.000Z

131

Domain Wall QCD with Near-Physical Pions  

E-Print Network (OSTI)

We present physical results for a variety of light hadronic quantities obtained via a combined analysis of three 2+1 flavour domain wall fermion ensemble sets. For two of our ensemble sets we used the Iwasaki gauge action with beta=2.13 (a^-1=1.75(4) GeV) and beta=2.25 (a^-1=2.31(4) GeV) and lattice sizes of 24^3 x 64 and 32^3 x 64 respectively, with unitary pion masses in the range 293(5)-417(10) MeV. The extent L_s for the 5^th dimension of the domain wall fermion formulation is L_s=16 in these ensembles. In this analysis we include a third ensemble set that makes use of the novel Iwasaki+DSDR (Dislocation Suppressing Determinant Ratio) gauge action at beta = 1.75 (a^-1=1.37(1) GeV) with a lattice size of 32^3 x 64 and L_s=32 to reach down to partially-quenched pion masses as low as 143(1) MeV and a unitary pion mass of 171(1) MeV, while retaining good chiral symmetry and topological tunneling. We demonstrate a significant improvement in our control over the chiral extrapolation, resulting in much improved ...

Arthur, R; Boyle, P A; Christ, N H; Garron, N; Hudspith, R J; Izubuchi, T; Jung, C; Kelly, C; Lytle, A T; Mawhinney, R D; Murphy, D; Ohta, S; Sachrajda, C T; Soni, A; Zanotti, J M

2012-01-01T23:59:59.000Z

132

Exterior Insulation Finish System (EIFS) Walls ORNL provides the tools to enable industry to engineer durable, moisture-tolerant  

E-Print Network (OSTI)

the insulating value of walls and the energy efficiency of buildings. The EIFS concept came to America fromExterior Insulation Finish System (EIFS) Walls ORNL provides the tools to enable industry for building materials. EIFS's are among the most cost-effective building technologies for improving

Oak Ridge National Laboratory

133

Mass Finishing  

Science Conference Proceedings (OSTI)

Table 8 Operating conditions for mass finishing...Brass screw-machine parts Aluminum oxide or granite 6.4-19 0.25-0.75 [MathExpression] -6 Light matte or bright Light cutting (a) Brass stampings or screws (b) Limestone 3.2-13 0.13-0.50 2-6 Bright (a) Submerged tumbling is used for fragile and precision parts. (b) Screw-machine parts...

134

Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Materials Science Materials Science1354608000000Materials ScienceSome of these resources are LANL-only and will require Remote Access./No/Questions? 667-5809library@lanl.gov Materials Science Some of these resources are LANL-only and will require Remote Access. Key Resources Data Sources Reference Organizations Journals Key Resources CINDAS Materials Property Databases video icon Thermophysical Properties of Matter Database (TPMD) Aerospace Structural Metals Database (ASMD) Damage Tolerant Design Handbook (DTDH) Microelectronics Packaging Materials Database (MPMD) Structural Alloys Handbook (SAH) Proquest Technology Collection Includes the Materials Science collection MRS Online Proceedings Library Papers presented at meetings of the Materials Research Society Data Sources

135

Compositional characterization and imaging of "Wall-bound" acylesters of Populus trichocarpa Reveal Differential Accumulation of acyl Molecules in Normal and Reactive Woods  

SciTech Connect

Acylesterification is one of the common modifications of cell wall non-cellulosic polysaccharides and/or lignin primarily in monocot plants. We analyzed the cell-wall acylesters of black cottonwood (Populus trichocarpa Torr. & Gray) with liquid chromatography-mass spectrometry (LC-MS), Fourier transform-infrared (FT-IR) microspectroscopy, and synchrotron infrared (IR) imaging facility. The results revealed that the cell wall of dicotyledonous poplar, as the walls of many monocot grasses, contains a considerable amount of acylesters, primarily acetyl and p-hydroxycinnamoyl molecules. The 'wall-bound' acetate and phenolics display a distinct tissue specific-, bending stress responsible- and developmental-accumulation pattern. The 'wall-bound' p-coumarate predominantly accumulated in young leaves and decreased in mature leaves, whereas acetate and ferulate mostly amassed in the cell wall of stems. Along the development of stem, the level of the 'wall-bound' ferulate gradually increased, while the basal level of p-coumarate further decreased. Induction of tension wood decreased the accumulation of the 'wall-bound' phenolics while the level of acetate remained constant. Synchrotron IR-mediated chemical compositional imaging revealed a close spatial distribution of acylesters with cell wall polysaccharides in poplar stem. These results indicate that different 'wall-bound' acylesters play distinct roles in poplar cell wall structural construction and/or metabolism of cell wall matrix components.

Guo, J.; Park, S; Yu, X; Liu, C

2008-01-01T23:59:59.000Z

136

Thermal control system and method for a passive solar storage wall  

DOE Patents (OSTI)

The invention provides a system and method for controlling the storing and elease of thermal energy from a thermal storage wall wherein said wall is capable of storing thermal energy from insolation of solar radiation. The system and method includes a device such as a plurality of louvers spaced a predetermined distance from the thermal wall for regulating the release of thermal energy from the thermal wall. This regulating device is made from a material which is substantially transparent to the incoming solar radiation so that when it is in any operative position, the thermal storage wall substantially receives all of the impacting solar radiation. The material in the regulating device is further capable of being substantially opaque to thermal energy so that when the device is substantially closed, thermal release of energy from the storage wall is substantially minimized. An adjustment device is interconnected with the regulating mechanism for selectively opening and closing it in order to regulate the release of thermal energy from the wall.

Ortega, Joseph K. E. (Westminister, CO)

1984-01-01T23:59:59.000Z

137

Material containment enclosure  

DOE Patents (OSTI)

An isolation enclosure and a group of isolation enclosures was designed which is useful when a relatively large containment area is required. The enclosure is in the form of a ring having a section removed so that a technician may enter the center area of the ring. in a preferred embodiment, an access zone is located in the transparent wall of the enclosure and extends around the inner perimeter of the ring so that a technician can insert his hands into the enclosure to reach any point within. The inventive enclosures provide more containment area per unit area of floor space than conventional material isolation enclosures.

Carlson, D.O.

1991-04-01T23:59:59.000Z

138

Revisit of interfacial free energy of the hard sphere system near hard wall  

E-Print Network (OSTI)

We propose a simple Monte Carlo method to calculate the interfacial free energy between the substrate and the material. Using this method we investigate the interfacial free energys of the hard sphere fluid and solid phases near a smooth hard wall. According to the obtained interfacial free energys of the coexisting fluid and solid phases and the Young equation we are able to determine the contact angle with high accuracy, cos$\\theta$ = 1:010(31), which indicates that a smooth hard wall can be wetted completely by the hard sphere crystal at the interface between the wall and the hard sphere fluid.

Mingcheng Yang; Hongru Ma

2008-06-23T23:59:59.000Z

139

Three-Dimensional Numerical Evaluation of Thermal Performance of Uninsulated Wall Assemblies: Preprint  

SciTech Connect

This study describes a detailed three-dimensional computational fluid dynamics modeling to evaluate the thermal performance of uninsulated wall assemblies accounting for conduction through framing, convection, and radiation. The model allows for material properties variations with temperature. Parameters that were varied in the study include ambient outdoor temperature and cavity surface emissivity. Understanding the thermal performance of uninsulated wall cavities is essential for accurate prediction of energy use in residential buildings. The results can serve as input for building energy simulation tools for modeling the temperature dependent energy performance of homes with uninsulated walls.

Ridouane, E. H.; Bianchi, M.

2011-11-01T23:59:59.000Z

140

Electrochemical assessment and service-life prediction of mechanically stabilized earth walls backfilled with crushed concrete and recycled asphalt pavement  

E-Print Network (OSTI)

A Mechanically Stabilized Earth (MSE) wall is a vertical grade separation that uses earth reinforcement extending laterally from the wall to take advantage of earth pressure to reduce the required design strength of the wall. MSE wall systems are often prefabricated to reduce construction time, thus improving constructability when compared with conventionally cast-in-place reinforced wall systems. However, there is a lack of knowledge for predicting the service-life of MSE retaining wall systems when recycled backfill materials such as Recycled Asphalt Pavement (RAP) and Crushed Concrete (CC) are used instead of Conventional Fill Material (CFM). The specific knowledge missing is how these recycled materials, when used as backfill in MSE wall systems, affects the corrosion rate of the reinforcing strips. This work addresses this knowledge gap by providing recommendations for MSE wall systems backfilled with CC or RAP, and provides a guide to predict the service-life based on corrosion rate test data obtained from embedding steel and galvanized-steel earth reinforcing strips embedded in MSE wall systems backfilled with CC, RAP, and CFM. Experimental data from samples emulating MSE wall systems with steel and galvanized-steel reinforcing strips embedded in CC and RAP were compared to samples with strips embedded in CFM. The results of the testing provide data and methodologies that may, depending on the environmental exposure conditions, justify the use of RAP and CC for the construction of MSE walls. If these backfill materials are obtained from the construction site, this could provide a significant cost savings during construction.

Esfeller, Michael Watts, Jr.

2006-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "wall material mass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Reactor Materials  

Energy.gov (U.S. Department of Energy (DOE))

The reactor materials crosscut effort will enable the development of innovative and revolutionary materials and provide broad-based, modern materials science that will benefit all four DOE-NE...

142

Materials - Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Assessment The staff of the Energy Systems Division has a long history of technical and economic analysis of the production and recycling of materials for transportation...

143

Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science science-innovationassetsimagesicon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos...

144

Quantum Fusion of Domain Walls with Fluxes  

E-Print Network (OSTI)

We study how fluxes on the domain wall world volume modify quantum fusion of two distant parallel domain walls into a composite wall. The elementary wall fluxes can be separated into parallel and antiparallel components. The parallel component affects neither the binding energy nor the process of quantum merger. The antiparallel fluxes, instead, increase the binding energy and, against naive expectations, suppress quantum fusion. In the small flux limit we explicitly find the bounce solution and the fusion rate as a function of the flux. We argue that at large (antiparallel) fluxes there exists a critical value of the flux (versus the difference in the wall tensions), which switches off quantum fusion altogether. This phenomenon of flux-related wall stabilization is rather peculiar: it is unrelated to any conserved quantity. Our consideration of the flux-related all stabilization is based on substantiated arguments that fall short of complete proof.

S. Bolognesi; M. Shifman; M. B. Voloshin

2009-07-20T23:59:59.000Z

145

Sources of variability and uncertainty in LCA of single wall carbon nanotubes for Li-ion batteries in electric vehicles  

Science Conference Proceedings (OSTI)

Production alternatives for single-walled carbon nanotubes (SWCNT) such as chemical vapor deposition, laser, arc and flame, vary widely in material and energy yields, catalyst requirements and product characteristics. The overall environmental profile ...

Thomas P. Seager; Ryne P. Raffaelle; Brian J. Landi

2008-05-01T23:59:59.000Z

146

Electronic detection of molecules on the exterior and molecular transport through the interior of single walled carbon nanotubes  

E-Print Network (OSTI)

Single walled carbon nanotubes (SWNT) are unique materials with high surface to volume ratio and all atoms residing on the surface. Due to their tubular shape both exterior and interior of the SWNT are available for ...

Lee, Chang Young

2010-01-01T23:59:59.000Z

147

Fueling Infrastructure Polymer Materials Compatibility to Ethanol...  

Open Energy Info (EERE)

Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended Gasoline These data files contain volume, mass, and hardness changes of elastomers and plastics...

148

Textural break foundation wall construction modules  

SciTech Connect

Below-grade, textural-break foundation wall structures are provided for inhibiting diffusion and advection of liquids and gases into and out from a surrounding hydrogeologic environment. The foundation wall structure includes a foundation wall having an interior and exterior surface and a porous medium disposed around a portion of the exterior surface. The structure further includes a modular barrier disposed around a portion of the porous medium. The modular barrier is substantially removable from the hydrogeologic environment.

Phillips, Steven J. (Kennewick, WA)

1990-01-01T23:59:59.000Z

149

Panelized wall system with foam core insulation  

DOE Patents (OSTI)

A wall system includes a plurality of wall members, the wall members having a first metal panel, a second metal panel, and an insulating core between the first panel and the second panel. At least one of the first panel and the second panel include ridge portions. The insulating core can be a foam, such as a polyurethane foam. The foam can include at least one opacifier to improve the k-factor of the foam.

Kosny, Jan (Oak Ridge, TN); Gaskin, Sally (Houston, TX)

2009-10-20T23:59:59.000Z

150

Seismic Response of Reinforced Concrete Walls Project  

Science Conference Proceedings (OSTI)

... data verification and development of improved models; and (2) investigation of global wall bucking in the 2010 Chile earthquake designed using ...

2012-01-20T23:59:59.000Z

151

Engineering secondary cell wall deposition in plants  

loop, biofuels, cell wall, lignin, sacchari?cation, synthetic biology. Summary ... target speci?c cell types such as ?bre and pith cells. It is well

152

A particle numerical model for wall film dynamics in port-injected engines  

DOE Green Energy (OSTI)

To help predict hydrocarbon emissions during cold-start conditions the authors are developing a numerical model for the dynamics and vaporization of the liquid wall films formed in port-injected spark-ignition engines and incorporating this model in the KIVA-3 code for complex geometries. This paper summarizes the current status of the project and presents illustrative example calculations. The dynamics of the wall film is influenced by interactions with the impinging spray, the wall, and the gas flow near the wall. The spray influences the film through mass, tangential momentum, and energy addition. The wall affects the film through the no-slip boundary condition and heat transfer. The gas alters film dynamics through tangential stresses and heat and mass transfer in the gas boundary layers above the films. New wall functions are given to predict transport in the boundary layers above the vaporizing films. It is assumed the films are sufficiently thin that film flow is laminar and that liquid inertial forces are negligible. Because liquid Prandtl numbers are typically about then, unsteady heating of the film should be important and is accounted for by the model. The thin film approximation breaks down near sharp corners, where an inertial separation criterion is used. A particle numerical method is used for the wall film. This has the advantages of compatibility with the KIVA-3 spray model and of very accurate calculation of convective transport of the film. The authors have incorporated the wall film model into KIVA-3, and the resulting combined model can be used to simulate the coupled port and cylinder flows in modern spark-ignition engines. They give examples by comparing computed fuel distributions with closed- and open-valve injection during the intake and compression strokes of a generic two-valve engine.

O`Rourke, P.J.; Amsden, A.A.

1996-09-01T23:59:59.000Z

153

Thermoelectric Materials  

Science Conference Proceedings (OSTI)

Thermoelectric materials can generate electricity or provide cooling by converting thermal gradients to electricity or electricity to thermal gradients. More efficient thermoelectric materials would make feasible the widespread use of thermoelectric converters in mundane applications. This report summarizes the state-of-the-art of thermoelectric materials including currently available materials and applications, new developments, and future prospects.

2000-01-14T23:59:59.000Z

154

Argonne CNM News: Study of Ferroelectric Domain Walls Offers a New  

NLE Websites -- All DOE Office Websites (Extended Search)

Study of Ferroelectric Domain Walls Offers a New Nanoscale Conduction Path Study of Ferroelectric Domain Walls Offers a New Nanoscale Conduction Path Scanning tunneling microscopy tips SPM images of the (110) surface of cleaved h-HoMnO3. (top) PFM image showing in-plane ferroelectric domains (oriented vertically, red arrows). (bottom) cAFM image showing enhanced conduction along tail-to-tail domain walls; images are 4 microns per side. Facility users from Rutgers University together with the Center for Nanoscale Materials' Electronic & Magnetic Materials & Devices Group have identified two-dimensional sheets of charge formed at the boundaries of ferroelectric domains in a multiferroic material. These two-dimensional charged sheets are not pinned by unstable defects, chemical dopants, or structural interface, but are formed naturally as the inevitable

155

External Insulation of Masonry Walls and Wood Framed Walls  

Science Conference Proceedings (OSTI)

The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1" to 1 1/2"), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

Baker, P.

2013-01-01T23:59:59.000Z

156

BronWall: a software system for volumetric quantification of the bronchial wall remodeling in MDCT  

Science Conference Proceedings (OSTI)

This paper develops an original volumetric quantification approach of the bronchial wall remodeling, based on MDCT acquisitions prior/post-medication delivery. The methodology is implemented as a software system -BronWall- integrating 3D segmentation, ... Keywords: 3D image processing, 3D segmentation, bronchial reactivity, software system, volumetric quantification, wall remodeling

A. Saragaglia; C. Fetita; F. Preteux

2006-07-01T23:59:59.000Z

157

New Corrosion Resistance Bar in Sandwich Wall  

Science Conference Proceedings (OSTI)

Sandwich masonry wall is an energy-saving composite wall with good mechanical properties and durability. But the adhesion strength to its tie bar affects its permanence. In order to simple the traditional production processes, a new method was proposed. ... Keywords: energy-saving, durability, steel bar, insulation

Li Yancang; Ge Xiaohua; Wang Fengxin

2010-03-01T23:59:59.000Z

158

Fire performance of single leaf masonry walls  

Science Conference Proceedings (OSTI)

A finite element model called MasSET has been developed which is capable of predicting the structural behaviour of single leaf masonry walls subject to elevated temperatures. The analysis models a slice through the wall as a column strip in plane stress, ... Keywords: boundary conditions, eccentricity, finite element model, masonry in fire, slenderness ratio

A. Nadjai; M. O'Gara; F. Ali

2001-09-01T23:59:59.000Z

159

Compact Dielectric Wall Accelerator Development For Intensity Modulated Proton Therapy And Homeland Security Applications  

Science Conference Proceedings (OSTI)

Compact dielectric wall (DWA) accelerator technology is being developed at the Lawrence Livermore National Laboratory. The DWA accelerator uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. Its high electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The DWA concept can be applied to accelerate charge particle beams with any charge to mass ratio and energy. Based on the DWA system, a novel compact proton therapy accelerator is being developed. This proton therapy system will produce individual pulses that can be varied in intensity, energy and spot width. The system will be capable of being sited in a conventional linac vault and provide intensity modulated rotational therapy. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, SiC photoconductive switches and compact proton sources. Applications of the DWA accelerator to problems in homeland security will also be discussed.

Chen, Y -; Caporaso, G J; Guethlein, G; Sampayan, S; Akana, G; Anaya, R; Blackfield, D; Cook, E; Falabella, S; Gower, E; Harris, J; Hawkins, S; Hickman, B; Holmes, C; Horner, A; Nelson, S; Paul, A; Pearson, D; Poole, B; Richardson, R; Sanders, D; Stanley, J; Sullivan, J; Wang, L; Watson, J; Weir, J

2009-06-17T23:59:59.000Z

160

2003 Plant Cell Walls Gordon Conference  

DOE Green Energy (OSTI)

This conference will address recent progress in many aspects of cell wall biology. Molecular, genetic, and genomic approaches are yielding major advances in our understanding of the composition, synthesis, and architecture of plant cell walls and their dynamics during growth, and are identifying the genes that encode the machinery needed to make their biogenesis possible. This meeting will bring together international scientists from academia, industry and government labs to share the latest breakthroughs and perspectives on polysaccharide biosynthesis, wood formation, wall modification, expansion and interaction with other organisms, and genomic & evolutionary analyses of wall-related genes, as well as to discuss recent ''nanotechnological'' advances that take wall analysis to the level of a single cell.

Daniel J. Cosgrove

2004-09-21T23:59:59.000Z

Note: This page contains sample records for the topic "wall material mass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Seismic Vulnerability and Performance Level of confined brick walls  

Science Conference Proceedings (OSTI)

There has been an increase on the interest of Engineers and designers to use designing methods based on displacement and behavior (designing based on performance) Regarding to the importance of resisting structure design against dynamic loads such as earthquake, and inability to design according to prediction of nonlinear behavior element caused by nonlinear properties of constructional material.Economically speaking, easy carrying out and accessibility of masonry material have caused an enormous increase in masonry structures in villages, towns and cities. On the other hand, there is a necessity to study behavior and Seismic Vulnerability in these kinds of structures since Iran is located on the earthquake belt of Alpide.Different reasons such as environmental, economic, social, cultural and accessible constructional material have caused different kinds of constructional structures.In this study, some tied walls have been modeled with software and with relevant accelerator suitable with geology conditions under dynamic analysis to research on the Seismic Vulnerability and performance level of confined brick walls. Results from this analysis seem to be satisfactory after comparison of them with the values in Code ATC40, FEMA and standard 2800 of Iran.

Ghalehnovi, M.; Rahdar, H. A. [University of Sistan and Baluchestan, Zahedan (Iran, Islamic Republic of)

2008-07-08T23:59:59.000Z

162

The logic behind thick, liquid-walled, fusion concepts  

Science Conference Proceedings (OSTI)

It may be possible to surround the region where fusion reactions are taking place with a neutronically thick liquid blanket which has penetrations that allow only a few tenths of a percent of the neutrons to leak out. Even these neutrons can be attenuated by adding an accurately placed liquid or solid near the target to shadow-shield the beam ports from line-of-sight neutrons. The logic of such designs are discussed and their evolution is described with examples applied to both magnetic and inertial fusion (HYLIFE-II). These designs with liquid protection are self healing when exposed to pulsed loading and have a number of advantages-over the usual designs with solid first walls. For example, the liquid-protected solid components will last the life of the plant, and therefore the capacity factor is estimated to be approximately 10% higher than for the non-liquid-walled blankets, because no blanket replacement shutdowns are required. The component replacement, operations, and maintenance costs might be half the usual value because no blanket change-out costs or accompanying facilities are required. These combined savings might lower the cost of electricity by 20%. Nuclear-grade construction should not be needed, largely because the liquid attenuates neutrons and results in less activation of materials. Upon decommissioning, the reactor materials should qualify for disposal by shallow burial even when constructed of ordinary 304 stainless steel. The need for a high-intensity 14-MeV neutron test facility to develop first-wall materials is avoided or greatly reduced, saving billions of development dollars. Flowing molten Li, the molten salt Flibe (Li{sub 2}BeF{sub 4}), and molten Li{sub l7}Pb{sub 83} have been considered. An advantage of molten salt is that it will not burn and has a low tritium solubility and therefore low tritium inventory.

Moir, R.W.

1994-04-15T23:59:59.000Z

163

B-meson decay constants with domain-wall light quarks and nonperturbatively tuned relativistic b-quarks  

E-Print Network (OSTI)

We report on our progress to obtain the decay constants f_B and f_Bs from lattice-QCD simulations on the RBC-UKQCD Collaborations 2+1 flavor domain-wall Iwasaki lattices. Using domain-wall light quarks and relativistic b-quarks we analyze data with several partially quenched light-quark masses at two lattice spacings of a approx 0.11 fm and a approx 0.08 fm.

Oliver Witzel

2013-11-01T23:59:59.000Z

164

Magnetocaloric Materials  

Science Conference Proceedings (OSTI)

Magnetic Materials for Energy Applications IV: Magnetocaloric Materials ... due to cost-effectiveness as well as superior magneto-thermal characteristics. ... metals and p-block elements can be explored in a time- and energy-saving manner.

165

Materials Science  

Science Conference Proceedings (OSTI)

Materials Science. Summary: Key metrologies/systems: In situ spectroscopic ellipsometry, linear and non-linear spectroscopies ...

2012-10-02T23:59:59.000Z

166

Training Materials  

Science Conference Proceedings (OSTI)

Training Materials. NIST Handbook 44 Self-Study Course. ... Chapter 3 Organization and Format of NIST Handbook 44 DOC. ...

2011-08-10T23:59:59.000Z

167

Material matting  

Science Conference Proceedings (OSTI)

Despite the widespread use of measured real-world materials, intuitive tools for editing measured reflectance datasets are still lacking. We present a solution inspired by natural image matting and texture synthesis to the material matting problem, ... Keywords: appearance models, material separation, matting, spatially-varying BRDFs, texture synthesis

Daniel Lepage; Jason Lawrence

2011-12-01T23:59:59.000Z

168

Materializing energy  

Science Conference Proceedings (OSTI)

Motivated and informed by perspectives on sustainability and design, this paper draws on a diverse body of scholarly works related to energy and materiality to articulate a perspective on energy-as-materiality and propose a design approach of ... Keywords: design, design theory, energy, materiality, sustainability

James Pierce; Eric Paulos

2010-08-01T23:59:59.000Z

169

Residential Utility Core Wall System - ResCore  

SciTech Connect

This paper describes activities associated with the RESidential utility CORE wall system (ResCore) developed by students and faculty in the Department of Industrial Design at Auburn University between 1996 and 1998. These activities analyize three operational prototype units installed in Habitat for Humanity Houses. The paper contains two Parts: 1) analysis of the three operational prototype units, 2) exploration of alternative design solutions. ResCore is a manufactured construction component designed to expedite home building by decreasing the need for skilled labor at the work site. The unit concentrates untility elements into a wall unit(s), which is shipped to the construction site and installed in minimum time. The ResCore unit is intended to be built off-site in a manufacturing environment where the impact of vagaries of weather and work-crew coordination and scheduling are minimized. The controlled environment of the factory enhances efficient production of building components through material and labor throughput controls, enabling the production of components at a substantially reduced per-unit cost. The ResCore unit when compared to traditional "stick-built" utility wall components is in may ways analogous to the factory built roof truss compared to on-site "stick-Built" roof framing.

Boyd, G.; Lundell, C.; Wendt, R.

1999-06-01T23:59:59.000Z

170

Investigating physical properties of novel carbon-based materials  

E-Print Network (OSTI)

In this thesis, we present the results of studies of physical properties in three classes of novel carbon-based materials: carbon aerogels, single-walled carbon nanotubes, and high thermal conductivity graphitic foams. The ...

Demir, Nasser Soliman, 1982-

2004-01-01T23:59:59.000Z

171

Radiological Issues for the Thin Liquid Walls of ARIES-IFE Study  

SciTech Connect

Heavy ion beam driven inertial fusion energy (IFE) power plants employ liquid wall materials to protect the structure against the energetic x-rays, ions, and debris emitted from the target following each shot. The objective of this assessment is to identify the radiological issues of the candidate liquid wall materials (Pb, LiPb, Sn, and Flibe) using the ARIES-IFE radiation chamber environment. The issues to be addressed include the radioactivity level and liquid waste minimization for waste management. Specifically, the liquids are evaluated with regard to the Class C limitation for waste disposal, a top-level requirement for all ARIES power plant designs. Two extreme cases were analyzed; the worst case is separation of the liquid wall material (highest radiation exposure) and the breeder (lowest radiation exposure), and the best case is the mixing of the two liquid streams. Both tangential and porous wall injection schemes were examined. Pb and LiPb are more radioactive than Sn and Flibe. For the liquid breeder system, the porous wall injection scheme with mixed liquid flows results in the lowest waste disposal rating and smallest waste stream achieved in our study.

El-Guebaly, L. [University of Wisconsin-Madison (United States); Wilson, P. [University of Wisconsin-Madison (United States); Henderson, D. [University of Wisconsin-Madison (United States); Waganer, L. [Boeing Company (United States); Raffray, R. [University of California-San Diego (United States)

2003-09-15T23:59:59.000Z

172

Materials Education Community  

Science Conference Proceedings (OSTI)

Digital Resource Center Home. Materials Education. Materials Education. Established Materials Technologies. Magnesium Superalloys. Emerging Materials...

173

Emerging Materials Technologies  

Science Conference Proceedings (OSTI)

Digital Resource Center Home. Materials Education. Materials Education. Established Materials Technologies. Magnesium Superalloys. Emerging Materials...

174

Established Materials Technologies  

Science Conference Proceedings (OSTI)

Digital Resource Center Home. Materials Education. Materials Education. Established Materials Technologies. Magnesium Superalloys. Emerging Materials...

175

Physiochemical characteristics of controlled low strength materials influencing the electrochemical performance and service life of metallic materials  

E-Print Network (OSTI)

Controlled Low Strength Materials (CLSM) are cementitious self-compacting materials, comprised of low cement content, supplementary cementing materials, fine aggregates, and water. CLSM is typically used as an alternative to conventional compacted granular backfill in applications, such as pavement bases, erosion control, bridge abutments, retaining walls, bedding and backfilling of pipelines. This dissertation presents the findings of an extensive study carried out to determine the corrosivity of CLSM on ductile iron and galvanized steel pipelines. The study was performed in two phases and evaluated more than 40 different CLSM mixture proportions for their corrosivity. An extensive literature survey was performed on corrosion of metals in soils and corrosion of reinforcement in concrete environments to determine possible influential factors. These factors were used as explanatory variables with multiple levels to identify the statistically significant factors. Empirical models were developed for percent mass loss of metals embedded in CLSM and exposed to different environments. The first and only service life models for ductile iron and galvanized steel pipes embedded in CLSM mixtures were developed. Models indicated that properly designed CLSM mixtures can provide an equal or longer service life for completely embedded ductile iron pipes. However, the service life of galvanized pipes embedded in CLSM should not be expected to be more than the service life provided by corrosive soils.

Halmen, Ceki

2005-12-01T23:59:59.000Z

176

Polymer and carbon nanotube materials for chemical sensors and organic electronics  

E-Print Network (OSTI)

This thesis details the development of new materials for high-performance chemical sensing as well as organic electronic applications. In Chapter 2, we develop a chemiresistive material based on single-walled carbon nanotubes ...

Wang, Fei, Ph. D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

177

Stained glass : an investigation into the design potentials of an architectural material  

E-Print Network (OSTI)

Colored glass is a building material usually associated with churches or days of bygone glory. Yet the material would apparently have much to offer in window openings, curtain walls, even as structural block in the creating ...

Ransom, Shirley Anne

1986-01-01T23:59:59.000Z

178

Bio-Synthetic Wall Systems Visualization  

NLE Websites -- All DOE Office Websites (Extended Search)

Bio-Synthetic Wall Systems Visualization Speaker(s): Maria-Paz Gutierrez Date: December 16, 2008 - 10:00am Location: 90-3075 Seminar HostPoint of Contact: Michael Donn...

179

SO(10) domain-wall brane models  

E-Print Network (OSTI)

We construct domain-wall brane models based on the grand-unification group SO(10), generalising the SU(5) model of Davies, George and Volkas. Motivated by the Dvali-Shifman proposal for the dynamical localisation of gauge bosons, the SO(10) symmetry is spontaneously broken inside the wall. We present two scenarios: in the first, the unbroken subgroup inside the wall is SU(5) x U(1)X, and in the second it is the left-right symmetry group SU(3) x SU(2)L x SU(2)R x U(1)B-L. In both cases we demonstrate that the phenomenologically-correct fermion zero modes can be localised to the wall, and we briefly discuss how the symmetry-breaking dynamics may be extended to induce breaking to the standard model group with subsequent electroweak breaking. Dynamically localised gravity is realised through the type 2 Randall-Sundrum mechanism.

Jayne E. Thompson; Raymond R. Volkas

2009-08-28T23:59:59.000Z

180

Building Technologies Office: Highly Energy Efficient Wall Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

Highly Energy Efficient Wall Systems Research Project to someone by E-mail Share Building Technologies Office: Highly Energy Efficient Wall Systems Research Project on Facebook...

Note: This page contains sample records for the topic "wall material mass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Minor Materials  

Science Conference Proceedings (OSTI)

Table 1   Materials used in glass manufacture...Table 1 Materials used in glass manufacture Material Purpose Antimony oxide (Sb 2 O 3 ) Decolorizing and fining agent Aplite (K, Na, Ca, Mg, alumina silicate) Source of alumina Aragonite (CaCO 3 ) Source of calcium oxide Arsenic oxide (As 2 O 3 ) Fining and decolorizing agent Barite/barytes (BaSO 4 )...

182

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1992-01-01T23:59:59.000Z

183

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1994-06-07T23:59:59.000Z

184

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1992-07-28T23:59:59.000Z

185

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1994-01-01T23:59:59.000Z

186

Electric and Magnetic Walls on Dielectric Interfaces  

E-Print Network (OSTI)

Sufficient conditions of the existence of electric or magnetic walls on dielectric interfaces are given for a multizone uniform dielectric waveguiding system. If one of two adjacent dielectric zones supports a TEM field distribution while the other supports a TM (TE) field distribution, then the common dielectric interface behaves as an electric (magnetic) wall, that is, the electric (magnetic) field line is perpendicular to the interface while the magnetic (electric) field line is parallel to the interface.

Changbiao Wang

2010-07-20T23:59:59.000Z

187

Shear wall experiments and design in Japan  

SciTech Connect

This paper summarizes the results of recent survey studies on the available experimental data bases and design codes/standards for reinforced concrete (RC) shear wall structures in Japan. Information related to the seismic design of RC reactor buildings and containment structures was emphasized in the survey. The seismic requirements for concrete structures, particularly those related to shear strength design, are outlined. Detailed descriptions are presented on the development of Japanese shear wall equations, design requirements for containment structures, and ductility requirements.

Park, Y.J.; Hofmayer, C.

1994-12-01T23:59:59.000Z

188

Characterization of Plasma Sprayed Beryllium ITER First Wall Mockups  

Science Conference Proceedings (OSTI)

ITER first wall beryllium mockups, which were fabricated by vacuum plasma spraying the beryllium armor, have survived 3000 thermal fatigue cycles at 1 MW/sq m without damage during high heat flux testing at the Plasma Materials Test Facility at Sandia National Laboratory in New Mexico. The thermal and mechanical properties of the plasma sprayed beryllium armor have been characterized. Results are reported on the chemical composition of the beryllium armor in the as-deposited condition, the through thickness and normal to the through thickness thermal conductivity and thermal expansion, the four-point bend flexure strength and edge-notch fracture toughness of the beryllium armor, the bond strength between the beryllium armor and the underlying heat sink material, and ultrasonic C-scans of the Be/heat sink interface.

Castro, Richard G.; Vaidya, Rajendra U.; Hollis, Kendall J.

1997-12-31T23:59:59.000Z

189

APEX ADVANCED FERRITIC STEEL, FLIBE SELF-COOLED FIRST WALL AND BLANKET DESIGN  

Science Conference Proceedings (OSTI)

OAK-B135 As an element in the US Advanced Power Extraction (APEX) program, they evaluated the design option of using advanced nanocomposite ferritic steel (AFS) as the structural material and Flibe as the tritium breeder and coolant. They selected the recirculating flow configuration as the reference design. Based on the material properties of AFS, they found that the reference design can handle a maximum surface heat flux of 1 MW/m{sup 2}, and a maximum neutron wall loading of 5.4 MW/m{sup 2}, with a gross thermal efficiency of 47%, while meeting all the tritium breeding and structural design requirements. This paper covers the results of the following areas of evaluation: materials selection, first wall and blanket design configuration, materials compatibility, components fabrication, neutronics analysis, thermal hydraulics analysis including MHD effects, structural analysis, molten salt and helium closed cycle power conversion system, and safety and waste disposal of the recirculating coolant design.

WONG,CPC; MALANG,S; SAWAN,M; SVIATOSLAVSKY,I; MOGAHED,E; SMOLENTSEV,S; MAJUMDAR,S; MERRILL,B; MATTAS,R; FRIEND,M; BOLIN,J; SHARAFAT,S

2003-11-01T23:59:59.000Z

190

Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Advanced Materials Express Licensing Active Terahertz Metamaterial Devices Express Licensing Anion-Conducting Polymer, Composition, And Membrane Express Licensing Analysis Of Macromolecule, Liggands And Macromolecule-Lingand Complexes Express Licensing Carbon Microtubes Express Licensing Chemical Synthesis Of Chiral Conducting Polymers Express Licensing Forming Adherent Coatings Using Plasma Processing Express Licensing Hydrogen Scavengers Express Licensing Laser Welding Of Fused Quartz Express Licensing Multiple Feed Powder Splitter Negotiable Licensing Boron-10 Neutron Detectors for Helium-3 Replacement Negotiable Licensing Insensitive Extrudable Explosive Negotiable Licensing Durable Fuel Cell Membrane Electrode Assembly (MEA) Express Licensing Method of Synthesis of Proton Conducting Materials

191

Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Conducting Materials Negotiable Licensing Microseismic Tracer Particles for Hydraulic Fracturing Negotiable Licensing A Photo-Stimulated Low Electron Temperature High Current...

192

Magnetic Materials  

Science Conference Proceedings (OSTI)

Oct 27, 2009 ... Extreme magnetic fields (>2 tesla), especially when combined with temperature, are being shown to revolutionize materials processing and...

193

materials processing  

Science Conference Proceedings (OSTI)

... of the Stainless Steel Elaborated by the Duplex Procedure (Electric Furnace- VOD Installation) [pp. ... Materials Processing on a Solar Furnace Satellite [pp.

194

Materials Studio  

Science Conference Proceedings (OSTI)

Jan 14, 2008 ... G. Fitzgerald; G. Goldbeck-Wood; P. Kung; M. Petersen; L. Subramanian; J. Wescott, " Materials Modeling from Quantum Mechanics to The...

195

Nuclear Materials  

Science Conference Proceedings (OSTI)

Materials and Fuels for the Current and Advanced Nuclear Reactors III ... response of oxide ceramics for nuclear applications through experiment, theory, and...

196

In-Situ Mass, Temperature, and Resistance Measurements during ...  

Science Conference Proceedings (OSTI)

Using a simple household microwave, several materials properties (resistance, mass, and ... Numeric Simulation of the Cooling Process of the Iron Ore Sinter.

197

Extensional and Flexural Waves in a Thin-Walled Graphite/Epoxy Tube  

Science Conference Proceedings (OSTI)

Simulated acoustic emission signals were induced in a thin-walled graphite/epoxy tube by means of lead breaks (Hsu-Neilsen source). The tube is of similar material and layup to be used by NASA in fabricating the struts of Space Station Freedom. The resulting ...

Prosser William H.; Gorman Michael R.; Dorighi John

1992-01-01T23:59:59.000Z

198

Stretchable Supercapacitors Based on Buckled Single-Walled Carbon Nanotube Macrofilms  

E-Print Network (OSTI)

Stretchable Supercapacitors Based on Buckled Single-Walled Carbon Nanotube Macrofilms By Cunjiang to accommodate large strains while retaining intact function. Of various power-source devices, supercapacitors in supercapacitors is the development of new electrode materials. Recently, CNTs have been studied as good candidates

Jiang, Hanqing

199

Mass transport through polycrystalline microstructures  

SciTech Connect

Mass transport properties are important in polycrystalline materials used as protective films. Traditionally, such properties have been studied by examining model polycrystalline structures, such as a regular array of straight grain boundaries. However, these models do not account for a number of features of real grain ensembles, including the grain size distribution and variations in grain shape. In this study, a finite difference scheme is developed to study transient and steady-state mass transport through realistic two dimensional polycrystalline microstructures. Comparisons with the transport properties of traditional model microstructures provide regimes of applicability of such models. The effects of microstructural parameters such as average grain size are examined.

Swiler, T.P.; Holm, E.A.; Young, M.F.; Wright, S.A.

1994-12-31T23:59:59.000Z

200

Joseph S. Wall, 1988 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Joseph S. Wall, 1988 Joseph S. Wall, 1988 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-9395 E: lawrence.award@science.doe.gov 1980's Joseph S. Wall, 1988 Print Text Size: A A A RSS Feeds FeedbackShare Page Life Sciences: For his singular contributions to the development and application of the Scanning Transmission Electron Microscope (STEM), including the extensions of cellular microscopy to the resolution of single atoms, the measurement of mass and shape of macro-molecules, and the creation of a STEM user facility that makes this technology available to a

Note: This page contains sample records for the topic "wall material mass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Thermal Impact of Fasteners in High-Performance Wood-Framed Walls: Preprint  

SciTech Connect

Buildings are heavy consumers of energy, and residential building design is rapidly addressing topics to maximize energy conservation en route to net-zero energy consumption. Annual energy analysis of a building informs the choice among disparate energy measures, for cost, durability, occupant comfort, and whole-house energy use. Physics-based and empirical models of elements of a building are used in such analyses. High-performance wood-framed walls enable builders to construct homes that use much less than 40% of the energy consumed by similar homes built to minimum code. Modeling for these walls has considered physical features such as framing factor, insulation and framing properties, roughness and convective effects, and air leakage. The thermal effects of fasteners used to construct these walls have not been fully evaluated, even though their thermal conductivity is orders of magnitudes higher than that of other building materials. Drywall screws and siding nails are considered in this finite element thermal conductivity analysis of wall sections that represent wood-framed walls that are often used in high-performance homes. Nails and screws reduce even the best walls' insulating performance by approximately 3% and become increasingly significant as the framing factor increases.

Christensen, D.

2011-01-01T23:59:59.000Z

202

Thermal Impact of Fasteners in High-Performance Wood-Framed Walls: Preprint  

SciTech Connect

Buildings are heavy consumers of energy, and residential building design is rapidly addressing topics to maximize energy conservation en route to net-zero energy consumption. Annual energy analysis of a building informs the choice among disparate energy measures, for cost, durability, occupant comfort, and whole-house energy use. Physics-based and empirical models of elements of a building are used in such analyses. High-performance wood-framed walls enable builders to construct homes that use much less than 40% of the energy consumed by similar homes built to minimum code. Modeling for these walls has considered physical features such as framing factor, insulation and framing properties, roughness and convective effects, and air leakage. The thermal effects of fasteners used to construct these walls have not been fully evaluated, even though their thermal conductivity is orders of magnitudes higher than that of other building materials. Drywall screws and siding nails are considered in this finite element thermal conductivity analysis of wall sections that represent wood-framed walls that are often used in high-performance homes. Nails and screws reduce even the best walls' insulating performance by approximately 3% and become increasingly significant as the framing factor increases.

Christensen, D.

2011-01-01T23:59:59.000Z

203

Materials Science Advanced Materials News  

Science Conference Proceedings (OSTI)

... Contributes to Discovery of Novel Quantum Spin-Liquid Release Date ... Novel Filter Material Could Cut Natural Gas Refining Costs Release Date: 03 ...

2010-12-16T23:59:59.000Z

204

Materials Science Advanced Materials Portal  

Science Conference Proceedings (OSTI)

... to Discovery of Novel Quantum Spin-Liquid. illustration of metal organic framework Novel Filter Material Could Cut Natural Gas Refining Costs. ...

2013-06-27T23:59:59.000Z

205

"Gravitational mass" of information?  

E-Print Network (OSTI)

We hypothesize possible new types of forces that would be the result of new types of interactions, static and a slow transient, between objects with related information contents (pattern). Such mechanism could make material composition dependence claimed by Fishbach, et al in Eotvos type experiments plausible. We carried out experiments by using a high-resolution scale with the following memories: USB-2 flash drives (1-16GB), DVD and CD disks to determine if such an interaction exist/detectable with a scale resolution of 10 microgram with these test objects. We applied zero information, white noise and 1/f noise type data. Writing or deleting the information in any of these devices causes peculiar negative weight transients, up to milligrams (mass fraction around 10^-5), which is followed by various types of relaxation processes. These relaxations have significantly different dynamics compared to transients observed during cooling after stationary external heating. Interestingly, a USB-1 MP3 player has also developed comparable transient mass loss during playing music. A classical interpretation of the negative weight transients could be absorbed water in hygroscopic components however comparison of relaxation time constants with air humidity data does not support an obvious explanation. Another classical interpretation with certain contribution is the lifting Bernoulli force caused by the circulation due to convection of the warm air. However, in this case all observed time constants with a device should have been the same unless some hidden parameter causes the observed variations. Further studies are warranted to clarify if there is indeed a new force, which is showing up as negative mass at weight measurement when high-density structural information is changed or read out (measured).

Laszlo B. Kish

2007-11-08T23:59:59.000Z

206

Measure Guideline: Wall Air Sealing and Insulation Methods in Existing Homes; An Overview of Opportunity and Process  

SciTech Connect

This guide provides renovators and retrofit contractors an overview of considerations when including wall air sealing and insulation in an energy retrofit project. It also outlines the potential project risks, various materials for insulating, possible field inspections needed, installation procedures, as well as the benefits and drawbacks. The purpose of this document is to provide the outline of the overview and process of insulating and air sealing walls so that home retrofit professionals can identify approaches to air sealing and insulation measures.

Roberts, S.; Stephenson, R.

2012-09-01T23:59:59.000Z

207

Materials - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

* Coatings & Lubricants * Coatings & Lubricants * Nanofluids * Deformation Joining * Recycling * Catalysts * Assessment * Illinois Center for Advanced Tribology Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Materials ring on liner reciprocating tester Tribology Lab: Ring-on-liner reciprocating tester. Argonne National Laboratory plays an important role in the Department of Energy's (DOE's) efforts to develop advanced materials for transportation. The materials are developed with DOE support from the EERE Office of Vehicle Technology and Office of Hydrogen, Fuel Cells, and Infrastructure Technologies in collaboration with worldwide industrial partners. Examples

208

Composite Materials  

Science Conference Proceedings (OSTI)

Table 8   Properties of composites for electrical make-break contacts...272 (d) 31 (c) 39.5 (d) ? ? C,A Wall switches, thermostat controls Silver-nickel 99.7Ag-0.3Ni ? 10.49 ? 100 53 HR15T (c) 79 HR15T (d) ? ? ? ? T ? 95Ag-5Ni PSR 10.41 9.80??10.41 80??95 32 HRF (c) 84 HRF (d) 165 (c) 24 (c) ? ? C,A,S Appliance switches 90Ag-10Ni PSR 10.31 9.70??10.32 75??90 35 HRF (c) 89 HRF (d)...

209

Composite Materials  

Science Conference Proceedings (OSTI)

Table 2   Properties of composites for electrical make-break contacts...HRF (c) 214 (c) 31 (c) ? ? C, A Wall switches, thermostat controls 81 HRF (d) 272 (d) 39.5 (d) ? ? Silver-nickel 99.7Ag-0.3Ni ? 10.49 ? 100 53 HR15T (c) ? ? ? ? T ? 79 HR15T (d) ? ? ? ? 95Ag-5Ni PSR 10.41 9.80??10.41 80??95 32 HRF (c) 165 (c) 24 (c) ? ? C, A, S Appliance switches 84 HRF (d) ? ? ? ?...

210

OPERATIONAL WINDOWS FOR DRY-WALL AND WETTED-WALL IFE CHAMBERS  

E-Print Network (OSTI)

OPERATIONAL WINDOWS FOR DRY-WALL AND WETTED-WALL IFE CHAMBERS F. NAJMABADI* University the trade- offs, to develop operational windows for chamber con- cepts, and to identify high the injection process; (d) for relatively low yield targets ( 250 MJ), an operational window with no buffer gas

California at San Diego, University of

211

Wall R-values that tell it like it is  

SciTech Connect

The R-value of a whole wall can be considerable lower than the R-value of the insulation that fills it. At DOE`s Buildings Technology Center, scientists have developed a system for measuring whole wall R-value and have already tested several wall systems. Topics covered include the following: how wall r-value is usually calculated; measuring whole-wall r-values; evaluating wall performance; a wall rating label; beyond r-value; r-value terminology. 1 fig., 1 tab.

Christian, J.E. [Oak Ridge National Lab., TN (United States); Kosny, J. [Univ. of Tennessee, Knoxville, TN (United States)

1997-03-01T23:59:59.000Z

212

thermoelectric materials  

E-Print Network (OSTI)

It has been proven that the maximum cooling temperature of a thermoelectric material can be increased by using either pulsed operation or graded Seebeck profiles. In this paper, we show that the maximum cooling temperature can be further increased by the pulsed operation of optimal inhomogeneous thermoelectric materials. A random sampling method is used to obtain the optimal electrical conductivity profile of inhomogeneous materials, which can achieve a much higher cooling temperature than the best uniform materials under the steady-state condition. Numerical simulations of pulsed operation are then carried out in the time domain. In the limit of low thermoelectric figure-of-merit ZT, the finite-difference time-domain simulations are verified by an analytical solution for homogeneous material. This numerical method is applied to high ZT BiTe materials and simulations show that the effective figure-of-merit can be improved by 153 % when both optimal graded electrical conductivity profiles and pulsed operation are used. 1.

Q Zhou; Z Bian; A Shakouri

2007-01-01T23:59:59.000Z

213

Mass Transport within Soils  

Science Conference Proceedings (OSTI)

Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated zone with three major horizons, the saturated zone can be further divided into other zones based on hydraulic and geologic conditions. Wetland soils are a special and important class in which near-saturation conditions exist most of the time. When a contaminant is added to or formed in a soil column, there are several mechanisms by which it can be dispersed, transported out of the soil column to other parts of the environment, destroyed, or transformed into some other species. Thus, to evaluate or manage any contaminant introduced to the soil column, one must determine whether and how that substance will (1) remain or accumulate within the soil column, (2) be transported by dispersion or advection within the soil column, (3) be physically, chemically, or biologically transformed within the soil (i.e., by hydrolysis, oxidation, etc.), or (4) be transported out of the soil column to another part of the environment through a cross-media transfer (i.e., volatilization, runoff, ground water infiltration, etc.). These competing processes impact the fate of physical, chemical, or biological contaminants found in soils. In order to capture these mechanisms in mass transfer models, we must develop mass-transfer coefficients (MTCs) specific to soil layers. That is the goal of this chapter. The reader is referred to other chapters in this Handbook that address related transport processes, namely Chapter 13 on bioturbation, Chapter 15 on transport in near-surface geological formations, and Chapter 17 on soil resuspention. This chapter addresses the following issues: the nature of soil pollution, composition of soil, transport processes and transport parameters in soil, transformation processes in soil, mass-balance models, and MTCs in soils. We show that to address vertical heterogeneity in soils in is necessary to define a characteristic scaling depth and use this to establish process-based expressions for soil MTCs. The scaling depth in soil and the corresponding MTCs depend strongly on (1) the composition of the soil and physical state of the soil, (2) the chemical and physic

McKone, Thomas E.

2009-03-01T23:59:59.000Z

214

Domain wall conduction in multiaxial ferroelectrics  

Science Conference Proceedings (OSTI)

The conductance of domain wall structures consisting of either stripes or cylindrical domains in multiaxial ferroelectric-semiconductors is analyzed. The effects of the flexoelectric coupling, domain size, wall tilt, and curvature on charge accumulation are analyzed using the Landau-Ginsburg Devonshire theory for polarization vector combined with the Poisson equation for charge distributions. The proximity and size effect of the electron and donor accumulation/depletion by thin stripe domains and cylindrical nanodomains are revealed. In contrast to thick domain stripes and wider cylindrical domains, in which the carrier accumulation (and so the static conductivity) sharply increases at the domain walls only, small nanodomains of radii less than 5-10 correlation lengths appeared conducting across the entire cross-section. Implications of such conductive nanosized channels may be promising for nanoelectronics.

Eliseev, E. A. [National Academy of Science of Ukraine, Kiev, Ukraine; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine; Svechnikov, S. V. [National Academy of Science of Ukraine, Kiev, Ukraine; Maksymovych, Petro [ORNL; Kalinin, Sergei V [ORNL

2012-01-01T23:59:59.000Z

215

Living Walls | OpenEI Community  

Open Energy Info (EERE)

Living Walls Living Walls Home > Groups > Buildings Dc's picture Submitted by Dc(15) Member 15 November, 2013 - 13:26 ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer heating living walls metabolic adjustment net zero pre-electricity Renewable Energy Solar university of colorado utility grid Wind Much of the discussion surrounding green buildings centers around reducing energy use. The term net zero is the platinum standard for green buildings, meaning the building in question does not take any more energy from the utility grid than it produces using renewable energy resources, such as solar, wind, or geothermal installations (and sometimes these renewable energy resources actually feed energy back to the utility grid). Architects

216

living walls | OpenEI Community  

Open Energy Info (EERE)

14 14 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142229614 Varnish cache server living walls Home Dc's picture Submitted by Dc(15) Member 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer heating living walls metabolic adjustment net zero pre-electricity Renewable Energy Solar university of colorado utility grid Wind

217

Domain-wall branes in Lifshitz theories  

E-Print Network (OSTI)

We analyze whether or not Lifshitz field theories in 4 + 1 dimensions may provide ultraviolet-complete domain-wall brane models. We first show that Lifshitz scalar field theory can admit topologically stable domain wall solutions. A Lifshitz fermion field is then added to the toy model, and we demonstrate that 3+1- dimensional Kaluza-Klein zero mode solutions do not exist when the four spatial dimensions are treated isotropically. To recover 3 + 1-dimensional chiral fermions dynamically localized to the domain wall, we must postulate the breaking of full 4-dimensional rotational symmetry down to the subgroup of rotations which mix the usual 3-dimensional spatial directions and fix the extra-dimensional axis in addition to the anisotropy between space and time.

Jayne E. Thompson; Raymond R. Volkas

2010-08-12T23:59:59.000Z

218

INTEGRATED ENERGY EFFICIENT WINDOW-WALL SYSTEMS  

SciTech Connect

The building industry faces the challenge of reducing energy use while simultaneously improving construction methods and marketability. This paper describes the first phase of a project to address these concerns by designing an Integrated Window Wall System (IWWS) that can be commercialized. This work builds on previous research conducted during the 1990's by Lawrence Berkeley national Laboratories (LBNL). During this phase, the objective was to identify appropriate technologies, problems and issues and develop a number of design concepts. Four design concepts were developed into prototypes and preliminary energy analyses were conducted Three of these concepts (the foam wall, steel wall, and stiffened plate designs) showed particular potential for meeting the project objectives and will be continued into a second phase where one or two of the systems will be brought closer to commercialization.

Michael Arney, Ph.D.

2002-12-31T23:59:59.000Z

219

Thermodynamics of free Domain Wall fermions  

E-Print Network (OSTI)

Studying various thermodynamic quantities for the free domain wall fermions for both finite and infinite fifth dimensional extent N_5, we find that the lattice corrections are minimum for $N_T\\geq10$ for both energy density and susceptibility, for its irrelevant parameter M in the range 1.45-1.50. The correction terms are, however, quite large for small lattice sizes of $N_T\\leq8$. We propose modifications of the domain wall operator, as well as the overlap operator, to reduce the finite cut-off effects to within 10% of the continuum results of the thermodynamic quantities for the currently used N_T=6-8 lattices. Incorporating chemical potential, we show that \\mu^2 divergences are absent for a large class of such domain wall fermion actions although the chiral symmetry is broken for $\\mu\

R. V. Gavai; Sayantan Sharma

2008-11-19T23:59:59.000Z

220

Turbine airfoil with a compliant outer wall  

DOE Patents (OSTI)

A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation in the outer layer is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a support structure. The outer layer may be a compliant layer configured such that the outer layer may thermally expand and thereby reduce the stress within the outer layer. The outer layer may be formed from a nonplanar surface configured to thermally expand. In another embodiment, the outer layer may be planar and include a plurality of slots enabling unrestricted thermal expansion in a direction aligned with the outer layer.

Campbell, Christian X. (Oviedo, FL); Morrison, Jay A. (Oviedo, FL)

2012-04-03T23:59:59.000Z

Note: This page contains sample records for the topic "wall material mass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Wood Pulp Digetster Wall Corrosion Investigation  

DOE Green Energy (OSTI)

The modeling of the flow in a wood pulp digester is but one component of the investigation of the corrosion of digesters. This report describes the development of a Near-Wall-Model (NWM) that is intended to couple with a CFD model that determines the flow, heat, and chemical species transport and reaction within the bulk flow of a digester. Lubrication theory approximations were chosen from which to develop a model that could determine the flow conditions within a thin layer near the vessel wall using information from the interior conditions provided by a CFD calculation of the complete digester. The other conditions will be determined by coupled solutions of the wood chip, heat, and chemical species transport and chemical reactions. The NWM was to couple with a digester performance code in an iterative fashion to provide more detailed information about the conditions within the NW region. Process Simulations, Ltd (PSL) is developing the digester performance code. This more detailed (and perhaps more accurate) information from the NWM was to provide an estimate of the conditions that could aggravate the corrosion at the wall. It is intended that this combined tool (NWM-PSL) could be used to understand conditions at/near the wall in order to develop methods to reduce the corrosion. However, development and testing of the NWM flow model took longer than anticipated and the other developments (energy and species transport, chemical reactions and linking with the PSL code) were not completed. The development and testing of the NWM are described in this report. In addition, the investigation of the potential effects of a clear layer (layer reduced in concentration of wood chips) near the wall is reported in Appendix D. The existence of a clear layer was found to enhance the flow near the wall.

Giles, GE

2003-09-18T23:59:59.000Z

222

Standing gravitational waves from domain walls  

SciTech Connect

We construct a plane symmetric, standing gravitational wave for a domain wall plus a massless scalar field. The scalar field can be associated with a fluid which has the properties of 'stiff' matter, i.e., matter in which the speed of sound equals the speed of light. Although domain walls are observationally ruled out in the present era, the solution has interesting features which might shed light on the character of exact nonlinear wave solutions to Einstein's equations. Additionally this solution may act as a template for higher dimensional 'brane-world' model standing waves.

Gogberashvili, Merab [Andronikashvili Institute of Physics, 6 Tamarashvili Street, Tbilisi 0177 (Georgia); Javakhishvili Tbilisi State University, 3 Chavchavadze Avenue, Tbilisi 0128 (Georgia); California State University, Fresno, Physics Department, Fresno, California 93740-8031 (United States); Myrzakul, Shynaray [Department of General and Theoretical Physics, Gumilev Eurasian National University, Astana, 010008 (Kazakhstan); California State University, Fresno, Physics Department, Fresno, California 93740-8031 (United States); Singleton, Douglas [California State University, Fresno, Physics Department, Fresno, California 93740-8031 (United States); Institute of Gravitation and Cosmology, Peoples' Friendship University of Russia, Moscow 117198 (Russian Federation)

2009-07-15T23:59:59.000Z

223

When wall insulation doesn`t save  

Science Conference Proceedings (OSTI)

A recent study in Florida concluded that while wall insulation clearly saves heating energy, it is less effective at saving cooling energy. The study focused on concrete block houses on slab foundations, and determined that whether insulation saves cooling energy depends significantly on the interior thermostat setpoint, the lower the thermostat below outside temperature, the more likely wall installation was to save energy. This article describes the design of the study and compares it to other studies. Results in their entirety are described. 1 fig.

Johnson, D.

1997-05-01T23:59:59.000Z

224

FY06 High Strength Weight Reduction Materials Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

HigH StrengtH HigH StrengtH WeigHt reduction MaterialS U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2006 Progress Report for High Strength Weight Reduction Materials Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Advanced Materials Technologies Edward Wall Program Manager, OFCVT Rogelio Sullivan Advanced Materials Technologies Team Leader James Eberhardt Chief Scientist March 2006 High Strength Weight Reduction Materials FY 2006 Progress Report CONTENTS 1. INTRODUCTION................................................................................................................................... 1 2. MATERIALS DEVELOPMENT .......................................................................................................... 3

225

Continuous growth of single-wall carbon nanotubes using chemical vapor deposition  

DOE Patents (OSTI)

The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.

Grigorian, Leonid (Raymond, OH); Hornyak, Louis (Evergreen, CO); Dillon, Anne C (Boulder, CO); Heben, Michael J (Denver, CO)

2008-10-07T23:59:59.000Z

226

Material permeance measurement system and method  

DOE Patents (OSTI)

A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

Hallman, Jr., Russell Louis (Knoxville, TN); Renner, Michael John (Oak Ridge, TN)

2012-05-08T23:59:59.000Z

227

Cryogenic Material Properties Database Cryogenic Material ...  

Science Conference Proceedings (OSTI)

... properties. These include the Handbook on Materials for Superconducting Machinery and the LNG Materials & Fluids. Neither ...

2000-10-27T23:59:59.000Z

228

Shipping container for fissile material  

DOE Patents (OSTI)

The present invention is directed to a shipping container for the interstate transportation of enriched uranium materials. The shipping container is comprised of a rigid, high-strength, cylindrical-shaped outer vessel lined with thermal insulation. Disposed inside the thermal insulation and spaced apart from the inner walls of the outer vessel is a rigid, high-strength, cylindrical inner vessel impervious to liquid and gaseous substances and having the inner surfaces coated with a layer of cadmium to prevent nuclear criticality. The cadmium is, in turn, lined with a protective shield of high-density urethane for corrosion and wear protection. 2 figs.

Crowder, H.E.

1984-12-17T23:59:59.000Z

229

Surface studies of hydroxylated multi-wall carbon nanotubes  

Science Conference Proceedings (OSTI)

CVD grown MWCNTs, of typical diameter 5 to 50 nm and with approximately 15-20 concentric graphene layers in the multi-walls, have been surface functionalised using the Fenton hydroxylation reaction. HRTEM reveals little physical difference between the treated and untreated materials; images from both exhibit similar multi-wall structure and contain evidence for some low-level disruption of the very outermost layers. Raman spectra from the two types of nanotubes are almost identical displaying the disorder (D) peaks at approximately 1350 cm{sup -1} and graphite (G) peaks at approximately 1580 cm{sup -1}, characteristic of graphene-based carbon materials, in approximately equal intensity ratios. Equilibrium adsorption data for nitrogen at 77 K leads to BET surface areas of 60.4 m{sup 2} g{sup -1} for the untreated and 71.8 m{sup 2} g{sup -1} for the hydroxylated samples; the increase in area being due to separation of the tube-bundles during functionalization. This is accompanied by a decrease in measured porosity, mostly at high relative pressures of nitrogen, i.e. where larger (meso 2-5 nm and macro >5 nm) pores are being filled, which is consistent with an attendant loss of inter-tube capillarity. X-ray photoelectron spectroscopy (XPS) shows that hydroxylation increases the nanotube surface oxygen level from 4.3 at.% to 22.3 at.%; chemical shift data indicate that approximately 75% of that oxygen is present as hydroxyl (-OH) groups. Water vapour adsorption by the hydroxylated surfaces leads to Type II isotherms which are characteristic of relatively high numbers of hydrogen bonding interactions compared to the untreated materials which exhibit Type III curves. This difference in polar surface energy is confirmed by calorimetric enthalpies of immersion in water which are -54 mJ m{sup -2} for the untreated and -192 mJ m{sup -2} for the hydroxylated materials. The treated materials therefore have significantly increased water wettability/dispersivity and a greater potential for cross-linking with matrix compounds. The mechanism by which hydroxylation occurs i.e. free radical (OH{sm_bullet}) attack and subsequent electrophilic addition at CC bonds in the graphene basal planes, is discussed.

Bradley, Robert [Department of Materials, University of Oxford, Parks Rd, Oxford, OX1 3PH, UK; Cassity, Kelby [Oak Ridge National Laboratory (ORNL); Andrews, Rodney [University of Kentucky, Lexington; Meier, Mark [University of Kentucky, Lexington; Osbeck, Susan [The Robert Gordon University, Aberdeen AB10 1FR, U.K.; Andreu, Aurik [The Robert Gordon University, Aberdeen AB10 1FR, U.K.; Johnston, Colin [Department of Materials, University of Oxford, Parks Rd, Oxford, OX1 3PH, UK; Crossley, Alison [Department of Materials, University of Oxford, Parks Rd, Oxford, OX1 3PH, UK

2012-01-01T23:59:59.000Z

230

Thermodynamic Measurements under a Wall Cloud  

Science Conference Proceedings (OSTI)

A storm intercept crew from the University of Oklahoma made a sounding near and underneath the wall cloud of the right-moving member of a splitting thunderstorm in north Texas on 27 May 1985. A comparison between the sounding and an environmental ...

Howard B. Bluestein; Eugene W. McCaul Jr.; Gregory P. Byrd; Robert L. Walko

1990-03-01T23:59:59.000Z

231

Multi-wall carbon nanotubes in microwaves  

Science Conference Proceedings (OSTI)

The electromagnetic (EM) response of multi-wall carbon nanotubes (MWCNT) prepared by chemical vapor decomposition (CVD) method has been analyzed in the microwave frequency range. EM absorption properties of MWCNT depend on their medium diameter related ... Keywords: carbon nanotube, coating, electromagnetic absorption, microwave

S. Moseenkov; V. Kuznetsov; A. Usoltseva; I. Mazov; A. Ischenko; T. Buryakov; O. Anikeeva; A. Romanenko; P. Kuzhir; D. Bychenok; K. Batrakov; S. Maksimenko

2009-02-01T23:59:59.000Z

232

A container for heat treating materials in microwave ovens  

DOE Patents (OSTI)

The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed to top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation for reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achievable in the oven without the container.

Holcombe, C.E.; Dykes, N.L.; Kimrey, H.D. Jr.; Mills, J.E.

1988-01-26T23:59:59.000Z

233

Mercury's Protoplanetary Mass  

E-Print Network (OSTI)

Major element fractionation among chondrites has been discussed for decades as ratios relative to Si or Mg. Recently, by expressing ratios relative to Fe, I discovered a new relationship admitting the possibility that ordinary chondrite meteorites are derived from two components, a relatively oxidized and undifferentiated, primitive component and a somewhat differentiated, planetary component, with oxidation state like the highly reduced enstatite chondrites, which I suggested was identical to Mercury's complement of lost elements. Here, on the basis of that relationship, I derive expressions, as a function of the mass of planet Mercury and the mass of its core, to estimate the mass of Mercury's lost elements, the mass of Mercury's alloy and rock protoplanetary core, and the mass of Mercury's gaseous protoplanet. Although Mercury's mass is well known, its core mass is not, being widely believed to be in the range of 70-80 percent of the planet mass. For a core mass of 75 percent, the mass of Mercury's lost elements is about 1.32 times the mass of Mercury, the mass of the alloy and rock protoplanetary core is about 2.32 times the mass of Mercury, and the mass of the gaseous protoplanet of Mercury is about 700 times the mass of Mercury. Circumstantial evidence is presented in support of the supposition that Mercury's lost elements is identical to the planetary component of ordinary chondrite formation.

J. Marvin Herndon

2004-10-01T23:59:59.000Z

234

Green Materials  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... Incorporation of Granite Waste Diamond Wire in Cementitious Matrices: ... determination method simplex from a stroke cement using standard CP-V, ... its property in building materials manufacture, alumina recovery, etc. ... as well as their changes during heat treatment were studied by XRD, FTIR and XPS.

235

Deformation and tribology of multi-walled hollow nanoparticles  

E-Print Network (OSTI)

Multi-walled hollow nanoparticles made from tungsten disulphide (WS$_2$) show exceptional tribological performance as additives to liquid lubricants due to effective transfer of low shear strength material onto the sliding surfaces. Using a scaling approach based on continuum elasticity theory for shells and pairwise summation of van der Waals interactions, we show that van der Waals interactions cause strong adhesion to the substrate which favors release of delaminated layers onto the surfaces. For large and thin nanoparticles, van der Waals adhesion can cause considerable deformation and subsequent delamination. For the thick WS$_2$ nanoparticles, deformation due to van der Waals interactions remains small and the main mechanism for delamination is pressure which in fact leads to collapse beyond a critical value. We also discuss the effect of shear flow on deformation and rolling on the substrate.

U. S. Schwarz; S. Komura; S. A. Safran

2000-05-01T23:59:59.000Z

236

Experimental Estimation Of Energy Damping During Free Rocking Of Unreinforced Masonry Walls. First Results  

SciTech Connect

This paper presents an ongoing experimental program on unreinforced masonry walls undergoing free rocking. Aim of the laboratory campaign is the estimation of kinetic energy damping exhibited by walls released with non-zero initial conditions of motion. Such energy damping is necessary for dynamic modelling of unreinforced masonry local mechanisms. After a brief review of the literature on this topic, the main features of the laboratory tests are presented. The program involves the experimental investigation of several parameters: 1) unit material (brick or tuff), 2) wall aspect ratio (ranging between 14.5 and 7.1), 3) restraint condition (two-sided or one-sided rocking), and 4) depth of the contact surface between facade and transverse walls (one-sided rocking only). All walls are single wythe and the mortar is pozzuolanic. The campaign is still in progress. However, it is possible to present the results on most of the mechanical properties of mortar and bricks. Moreover, a few time histories are reported, already indicating the need to correct some of the assumptions frequent in the literature.

Sorrentino, Luigi; Masiani, Renato; Benedetti, Stefano [Dipartimento di Ingegneria Strutturale e Geotecnica, Sapienza Universita di Roma, via Antonio Gramsci, 53-00197 Roma (Italy)

2008-07-08T23:59:59.000Z

237

Experimental assessment of air permeability in a concrete shear wall subjected to simulated seismic loading  

Science Conference Proceedings (OSTI)

A safety concern for the proposed Special Nuclear Materials Laboratory (SNML) facility at the Los Alamos National Laboratory was air leakage from the facility if it were to experience a design basis earthquake event. To address this concern, a study was initiated to estimate air leakage, driven by wind-generated pressure gradients, from a seismically damaged concrete structure. This report describes a prototype experiment developed and performed to measure the air permeability in a reinforced concrete shear wall, both before and after simulated seismic loading. A shear wall test structure was fabricated with standard 4000-psi concrete mix. Static load-cycle testing was used to simulate earthquake loading. Permeability measurements were made by pressurizing one side of the shear wall above atmospheric conditions and recording the transient pressure decay. As long as the structure exhibited linear load displacement response, no variation in the air permeability was detected. However, experimental results indicate that the air permeability in the shear wall increased by a factor of 40 after the wall had been damaged (cracked). 17 figs., 8 tabs.

Girrens, S.P.; Farrar, C.R.

1991-07-01T23:59:59.000Z

238

Detection of Cell Wall Chemical Variation in Zea Mays Mutants Using Near-Infrared Spectroscopy  

DOE Green Energy (OSTI)

Corn stover is regarded as the prime candidate feedstock material for commercial biomass conversion in the United States. Variations in chemical composition of Zea mays cell walls can affect biomass conversion process yields and economics. Mutant lines were constructed by activating a Mu transposon system. The cell wall chemical composition of 48 mutant families was characterized using near-infrared (NIR) spectroscopy. NIR data were analyzed using a multivariate statistical analysis technique called Principal Component Analysis (PCA). PCA of the NIR data from 349 maize leaf samples reveals 57 individuals as outliers on one or more of six Principal Components (PCs) at the 95% confidence interval. Of these, 19 individuals from 16 families are outliers on either PC3 (9% of the variation) or PC6 (1% of the variation), the two PCs that contain information about cell wall polymers. Those individuals for which altered cell wall chemistry is confirmed with wet chemical analysis will then be subjected to fermentation analysis to determine whether or not biomass conversion process kinetics, yields and/or economics are significantly affected. Those mutants that provide indications for a decrease in process cost will be pursued further to identify the gene(s) responsible for the observed changes in cell wall composition and associated changes in process economics. These genes will eventually be incorporated into maize breeding programs directed at the development of a truly dual use crop.

Buyck, N.; Thomas, S.

2001-01-01T23:59:59.000Z

239

Factors in Selecting a Material for Production  

Science Conference Proceedings (OSTI)

Table 7   Costs of some materials based on mass and volume...(ready mixed) 0.01 Costs are based on July 1991 prices. Source: Ref 14...

240

Material with core-shell structure  

DOE Patents (OSTI)

Disclosed is a material having a composite particle, the composite particle including an outer shell and a core. The core is made from a lithium alloying material and the outer shell has an inner volume that is greater in size than the core of the lithium alloying material. In some instances, the outer mean diameter of the outer shell is less than 500 nanometers and the core occupies between 5 and 99% of the inner volume. In addition, the outer shell can have an average wall thickness of less than 100 nanometers.

Luhrs, Claudia (Rio Rancho, NM); Richard, Monique N. (Ann Arbor, MI); Dehne, Aaron (Maumee, OH); Phillips, Jonathan (Rio Rancho, NM); Stamm, Kimber L. (Ann Arbor, MI); Fanson, Paul T. (Brighton, MI)

2011-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "wall material mass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Field Testing of Low-Cost Bio-Based Phase Change Material  

SciTech Connect

A test wall built with phase change material (PCM)-enhanced loose-fill cavity insulation was monitored for a period of about a year in the warm-humid climate of Charleston, South Carolina. The test wall was divided into various sections, one of which contained only loose-fill insulation and served as a control for comparing and evaluating the wall sections with the PCM-enhanced insulation. This report summarizes the findings of the field test.

Biswas, Kaushik [ORNL; Childs, Phillip W [ORNL; Atchley, Jerald Allen [ORNL

2013-03-01T23:59:59.000Z

242

MACRAD: A mass analysis code for radiators  

SciTech Connect

A computer code to estimate and optimize the mass of heat pipe radiators (MACRAD) is currently under development. A parametric approach is used in MACRAD, which allows the user to optimize radiator mass based on heat pipe length, length to diameter ratio, vapor to wick radius, radiator redundancy, etc. Full consideration of the heat pipe operating parameters, material properties, and shielding requirements is included in the code. Preliminary results obtained with MACRAD are discussed.

Gallup, D.R.

1988-01-01T23:59:59.000Z

243

MSD Molecular Materials - Argonne National Laboratories, Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Molecular Materials Molecular Materials Group carries out synthesis and characterization of novel materials whose unique properties originate at the molecular level. Our...

244

Material flow analysis of concrete in the United States  

E-Print Network (OSTI)

Concrete is the second most consumed material in the world after water. Due to the sheer mass of concrete consumed annually and its associated resource and environmental impacts, improving the materials management of ...

Low, Man-Shi

2005-01-01T23:59:59.000Z

245

Solar Decathlon 2013: Raising More Than Just Walls | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Raising More Than Just Walls Solar Decathlon 2013: Raising More Than Just Walls September 10, 2013 - 1:36pm Addthis Key to the University of North Carolina at Charlotte's...

246

TBU-0061- In the Matter of Misti Wall  

Energy.gov (U.S. Department of Energy (DOE))

Misti Wall (the complainant or Wall), appeals the dismissal of her complaint of retaliation filed under 10 C.F.R. Part 708, the Department of Energy (DOE) Contractor Employee Protection Program. As...

247

After Exodus : re-occupation of the metropolitan wall  

E-Print Network (OSTI)

The title "Exodus alludes to a restricted exclave encircled by a forbidding wall -- effect, a prison on the scale of a metropolis, and one in which people sought refuge voluntarily. Over the past forty years, similar walls ...

Allison, Jordan Lloyd Norman

2012-01-01T23:59:59.000Z

248

Reading the Cosmic Writing on the Wall  

NLE Websites -- All DOE Office Websites (Extended Search)

Reading the Cosmic Reading the Cosmic Writing on the Wall Reading the Cosmic Writing on the Wall NERSC Key to Planck's Revision of Universal Recipe March 21, 2013 Contact: Margie Wylie, mwylie@lbl.gov, + 1 510 486 7421 map800-600.jpg This map shows the oldest light in our universe, as detected with the greatest precision yet by the Planck mission. The ancient light, called the cosmic microwave background, was imprinted on the sky when the universe was 370,000 years old. (Image credit: ESA and the Planck Collaboration) Thanks to a supersensitive space telescope and some sophisticated supercomputing, scientists from the international Planck collaboration have made the closest reading yet of the most ancient story in our universe: the cosmic microwave background (CMB). Today, the team released preliminary results based on the Planck

249

Wall, Pennsylvania: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wall, Pennsylvania: Energy Resources Wall, Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3936801°, -79.7861577° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3936801,"lon":-79.7861577,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

250

High temperature structural insulating material  

DOE Patents (OSTI)

A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

Chen, W.Y.

1984-07-27T23:59:59.000Z

251

Theoretical Mass Spectrometry  

Science Conference Proceedings (OSTI)

... Mass spectrometry is an important technique in analytical chemistry, essential in areas including drug development, criminal ... Facilities/Tools Used: ...

2013-03-19T23:59:59.000Z

252

Container for heat treating materials in microwave ovens  

DOE Patents (OSTI)

The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed of top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achieveable in the oven without the container.

Holcombe, Cressie E. (Farragut, TN); Dykes, Norman L. (Oak Ridge, TN); Kimrey, Jr., Harold D. (Knoxville, TN); Mills, James E. (Knoxville, TN)

1989-01-01T23:59:59.000Z

253

Development of vanadium base alloys for fusion first-wall/blanket applications  

SciTech Connect

Vanadium alloys have been identified as a leading candidate material for fusion first-wall/blanket applications. Certain vanadium alloys exhibit favorable safety and environmental characteristics, good fabricability, high temperature and heat load capability, good compatibility with liquid metals and resistance to irradiation damage effects. The current focus is on vanadium alloys with (3-5)% Cr and (3-5)% Ti with a V-4Cr-4Ti alloy as the leading candidate. Preliminary results indicate that the crack-growth rates of certain alloys are not highly sensitive to irradiation. Results from the Dynamic Helium Charging Experiment (DHCE) which simulates fusion relevant helium/dpa ratios are similar to results from neutron irradiated material. This paper presents an overview of the recent results on the development of vanadium alloys for fusion first wall/blanket applications.

Smith, D.L.; Chung, H.M.; Loomis, B.A. [Argonne National Lab., IL (United States); Matsui, H. [Tohoku Univ., Sendai (Japan); Votinov, S. [Bochvar Institute of Inorganic Materials (Russia); VanWitzenburg, W. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands)

1994-09-01T23:59:59.000Z

254

Recording of Heart Wall Motion with Ultrasound  

Science Conference Proceedings (OSTI)

An ultrasonic echo?ranging apparatus using a pulse transmitter and high gain broadband receiver connected to a bariumtitanatetransducer has been used to obtain echoes from the walls and septa of the beating heart. The apparatus can be used over a center frequency range of 0.5 to 2.5 Mc. The sound beam is directed into the heart through the spaces between the ribs

John M. Reid

1961-01-01T23:59:59.000Z

255

Polysulfone /Multi-Walled Carbon Nanotube Hybrid Nanocomposites  

Science Conference Proceedings (OSTI)

Abstract Scope, Polyurethane (PU)/ polysulfone/multi-walled carbon nanotubes ( MWNTs) hybrid nanocomposites of different weight ratio have been prepared...

256

Cooperative Dynamics of a 'Conjugated' Domain Wall in Giant ...  

Science Conference Proceedings (OSTI)

Presentation Title, Cooperative Dynamics of a 'Conjugated' Domain Wall in Giant ... Appropriately designed, such a superstructure can cooperatively move...

257

Elbow mass flow meter  

SciTech Connect

Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

McFarland, Andrew R. (College Station, TX); Rodgers, John C. (Santa Fe, NM); Ortiz, Carlos A. (Bryan, TX); Nelson, David C. (Santa Fe, NM)

1994-01-01T23:59:59.000Z

258

Alloy materials  

DOE Patents (OSTI)

An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

Hans Thieme, Cornelis Leo (Westborough, MA); Thompson, Elliott D. (Coventry, RI); Fritzemeier, Leslie G. (Acton, MA); Cameron, Robert D. (Franklin, MA); Siegal, Edward J. (Malden, MA)

2002-01-01T23:59:59.000Z

259

Testing wall panels for earthquake response  

SciTech Connect

As part of the structural response research program being conducted for the Nevada Operations Office of ERDA a testing program for the investigation of nonstructural wall panels subjected to racking was developed and conducted. The objectives of the testing program were to determine thresholds for damage to partitions due to horizontal adjacent story displacement in high-rise buildings and to gather data that can be used to determine the influence of nonstructural partitions on the structural response of high-rise buildings. In general, the wall panels were constructed to represent typical partitions used in high-rise building construction. Some of the panels were used for special parameter studies or for comparisons with other test programs. A specially designed testing frame simulated cyclic lateral displacement, parallel to the plane of the wall panels, that might be experienced during the response of a building to strong winds or earthquake motion. Stiffness and strength characteristics, estimates of equivalent viscous damping, and damage threshold results were obtained. The data appear to give a good approximate evaluation of the performance of non-load-bearing partitions under cyclic loading. (LCL)

Freeman, S.A.

1976-01-01T23:59:59.000Z

260

Fluctuating pressure correlations in wall turbulence  

E-Print Network (OSTI)

The purpose of the present paper is to study the influence of wall-echo on pressure fluctuations $p'$, and on statistical correlations containing $p'$, {\\em viz} redistribution $\\phi_{ij}$ and pressure diffusion $d_{ij}^{(p)}$. We extend the usual analysis of turbulent correlations containing pressure fluctuations in wall-bounded \\tsc{dns} computations [Kim J.: {\\em J. Fluid Mech.} {\\bf 205} (1989) 421--451], separating $p'$ not only into rapid $p_{(\\mathrm{r})}'$ and slow $p_{(\\mathrm{s})}'$ parts [Chou P.Y.: {\\em Quart. Appl. Math.} {\\bf 3} (1945) 38--54], but further into volume (weakly inhomogeneous; $p'_{(\\mathrm{r};\\mathfrak{V})}$ and $p'_{(\\mathrm{s};\\mathfrak{V})}$) and surface (strongly inhomogeneous wall-echo; $p'_{(\\mathrm{r};w)}$ and $p'_{(\\mathrm{s};w)}$) terms. An algorithm, based on a Green's function approach, is developed to compute the above splittings for various correlations containing pressure fluctuations (redistribution, pressure diffusion, velocity/pressure-gradient), in fully develope...

Gerolymos, G A; Senechal, D; Vallet, I

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wall material mass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Predicted concentrations in new relocatable classrooms of volatile organic compounds emitted from standard and alternate interior finish materials  

SciTech Connect

Relocatable classrooms (RCs) are widely employed by California school districts to satisfy rapidly expanding space requirements due to population growth and class size reduction policies. There is public concern regarding indoor environmental quality (IEQ) in schools, particularly in RCs, but very little data to support or dispel these concerns. Several studies are investigating various aspects of IEQ in California schools. This laboratory-based study focused on evaluating the emissions of toxic and/or odorous volatile organic compounds (VOCs), including formaldehyde and acetaldehyde, from materials used to finish the interiors of new RCs. Furthermore, the study implemented a procedure for VOC source reduction by testing and selecting lower-emitting materials as substitutes for standard materials. In total, 17 standard and alternate floor coverings, wall panels and ceiling panels were quantitatively tested for emissions of VOCs using smallscale environmental chambers. Working with the largest northern California manufacturer of conventional RCs and two school districts, specifications were developed for four new RCs to be produced in early summer 2001. Two of these will be predominantly finished with standard materials. Alternate carpet systems, an alternate wall panel covering and an alternate ceiling panel were selected for the two other RCs based on the results of the laboratory study and considerations of cost and anticipated performance and maintenance. Particular emphasis was placed on reducing the concentrations of VOCs on California agency lists of toxic compounds. Indoor concentrations of toxic and odorous VOCs were estimated for the four classrooms by mass balance using the measured VOC emission factors, exposed surface areas of the materials in the RCs, and three ventilation rate scenarios. Results indicate that reductions in the concentrations of formaldehyde, acetaldehyde phenol, di(ethylene glycol) butyl ether, vinyl acetate, 1,2,4-trimethylbenzene and 1-methyl-2-pyrrolidinone should be achieved as the result of the source reduction procedure.

Hodgson, Alfred T.; Fisk, William J.; Shendell, Derek G.; Apte, Michael G.

2001-07-01T23:59:59.000Z

262

Proposal on Lithium Wall Experiment (LWX) on PBXM 1  

E-Print Network (OSTI)

Proposal on Lithium Wall Experiment (LWX) on PBX­M 1 Leonid E. Zakharov, Princeton University; OUTLINE 1. Mini­conference on Lithium walls and low recycling regime. 2. PBX­M Capabilities. 3. Motivation "Lithium covered walls and low recycling regimes in toka­ maks". APS meeting, October 23­27, 2000, Quebec

Zakharov, Leonid E.

263

Simulation of terrace wall methane-steam reforming reactors  

Science Conference Proceedings (OSTI)

Terrace wall arrangement is one of the most common arrangements for methane-steam reforming reactor furnaces. In this work, a mathematical model of heat transfer in terrace wall furnaces has been developed. The model has been coupled with a reliable ... Keywords: heat transfer modeling, methane-steam reforming, reformer simulation, terrace wall furnace

J. S. Soltan Mohammadzadeh; A. Zamaniyan

2002-08-01T23:59:59.000Z

264

Electronics Properties of Single-Walled Twisted Carbon Nanotubes  

Science Conference Proceedings (OSTI)

Electronic properties are calculated and simulited by using density functional theory based on the nonequilibrium Green's function when a zigzag single-wall carbon nanotube (SCNTs) is twisted. We found that the twist of the single-wall carbon nanotube ... Keywords: single-wall twisted carbon nanotubes, nonequilibrium Green's function, density functional theory, electric structure, electronic transmission

Qing-fang Fu; Da-peng Hao; Xiao-mi Yan; Dao-wei He; Zhi-shun Chen; Li-guang Wang; Terence K. S. W

2011-04-01T23:59:59.000Z

265

Photovoltaic Materials  

Science Conference Proceedings (OSTI)

The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNLs unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporations Electronic, Color and Glass Materials (ECGM) business unit is currently the worlds largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferros ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

2012-10-15T23:59:59.000Z

266

Functional Materials for Energy | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Fuel Cells Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at Interfaces Materials Synthesis from Atoms to Systems Materials Characterization Materials Theory and Simulation Energy Frontier Research Centers Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Functional Materials for Energy SHARE Functional Materials for Energy The concept of functional materials for energy occupies a very prominent position in ORNL's research and more broadly the scientific research sponsored by DOE's Basic Energy Sciences. These materials facilitate the capture and transformation of energy, the storage of energy or the efficient release and utilization of stored energy. A different kind of

267

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

ESTABLISHED MATERIALS TECHNOLOGIES ... Specifically, digital resources are available relating to materials for nuclear power, materials sustainability, and ...

268

SAVANNAH RIVER SITE TANK 18 AND TANK 19 WALL SAMPLER PERFORMANCE  

SciTech Connect

A sampling tool was required to evaluate residual activity ({mu}Curies per square foot) on the inner wall surfaces of underground nuclear waste storage tanks. The tool was required to collect a small sample from the 3/8 inch thick tank walls. This paper documents the design, testing, and deployment of the remotely operated sampling device. The sampler provides material from a known surface area to estimate the overall surface contamination in the tank prior to closure. The sampler consisted of a sampler and mast assembly mast assembly, control system, and the sampler, or end effector, which is defined as the operating component of a robotic arm. The mast assembly consisted of a vertical 30 feet long, 3 inch by 3 inch, vertical steel mast and a cantilevered arm hinged at the bottom of the mast and lowered by cable to align the attached sampler to the wall. The sampler and mast assembly were raised and lowered through an opening in the tank tops, called a riser. The sampler is constructed of a mounting plate, a drill, springs to provide a drive force to the drill, a removable sampler head to collect the sample, a vacuum pump to draw the sample from the drill to a filter, and controls to operate the system. Once the sampler was positioned near the wall, electromagnets attached it to the wall, and the control system was operated to turn on the drill and vacuum to remove and collect a sample from the wall. Samples were collected on filters in removable sampler heads, which were readily transported for further laboratory testing.

Leishear, R.; Thaxton, D.; Minichan, R.; France, T.; Steeper, T.; Corbett, J.; Martin, B.; Vetsch, B.

2009-12-19T23:59:59.000Z

269

Boiling radial flow in fractures of varying wall porosity  

DOE Green Energy (OSTI)

The focus of this report is the coupling of conductive heat transfer and boiling convective heat transfer, with boiling flow in a rock fracture. A series of experiments observed differences in boiling regimes and behavior, and attempted to quantify a boiling convection coefficient. The experimental study involved boiling radial flow in a simulated fracture, bounded by a variety of materials. Nonporous and impermeable aluminum, highly porous and permeable Berea sandstone, and minimally porous and permeable graywacke from The Geysers geothermal field. On nonporous surfaces, the heat flux was not strongly coupled to injection rate into the fracture. However, for porous surfaces, heat flux, and associated values of excess temperature and a boiling convection coefficient exhibited variation with injection rate. Nucleation was shown to occur not upon the visible surface of porous materials, but a distance below the surface, within the matrix. The depth of boiling was a function of injection rate, thermal power supplied to the fracture, and the porosity and permeability of the rock. Although matrix boiling beyond fracture wall may apply only to a finite radius around the point of injection, higher values of heat flux and a boiling convection coefficient may be realized with boiling in a porous, rather than nonporous surface bounded fracture.

Barnitt, Robb Allan

2000-06-01T23:59:59.000Z

270

Information about Materials Properties  

Science Conference Proceedings (OSTI)

Table 6   Examples of materials information required during detail design...identification Material class (metal, plastic, ceramic composite) Material subclass Material industry designation Material product form Material condition designation (temper, heat treatment, etc.) Material specification Material alternative names Material component designations (composite/assembly)...

271

Asymmetric error field interaction with rotating conducting walls  

Science Conference Proceedings (OSTI)

The interaction of error fields with a system of differentially rotating conducting walls is studied analytically and compared to experimental data. Wall rotation causes eddy currents to persist indefinitely, attenuating and rotating the original error field. Superposition of error fields from external coils and plasma currents are found to break the symmetry in wall rotation direction. The vacuum and plasma eigenmodes are modified by wall rotation, with the error field penetration time decreased and the kink instability stabilized, respectively. Wall rotation is also predicted to reduce error field amplification by the marginally stable plasma.

Paz-Soldan, C.; Brookhart, M. I.; Hegna, C. C.; Forest, C. B. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

2012-07-15T23:59:59.000Z

272

Nikhil Gupta Brings Materials Science to the Masses  

Science Conference Proceedings (OSTI)

Mar 3, 2011 ... Only a scanning electron microscope showed the damage. Gupta and Coelho also determined that, not only did the size of the bone fractures...

273

Stochastic Domain-Wall Depinning in Magnetic Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

Stochastic Domain-Wall Depinning Stochastic Domain-Wall Depinning in Magnetic Nanowires Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Wednesday, 29 July 2009 00:00 Reliably controlling the motion of magnetic domain walls along magnetic nanowires is a key requirement for current technological development of novel classes of logic and storage devices, but understanding the nature of non-deterministic domain-wall motion remains a scientific challenge. A statistical analysis of high-resolution magnetic soft x-ray microscopy images by a Berkeley Lab-University of Hamburg group has now revealed that the stochastic behavior of the domain-wall depinning field in notch-patterned Ni80Fe20 (permalloy) nanowires depends strongly on the wire width and the notch depth. This result both provides valuable insight into the motion of magnetic-domain walls and opens a path to further technological developments in spintronics applications.

274

Highly Energy Efficient Wall Systems Research Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Highly Energy Efficient Wall Systems Highly Energy Efficient Wall Systems Research Project Highly Energy Efficient Wall Systems Research Project The Department of Energy is currently conducting research into highly energy efficient wall systems. Walls with high R-values are better insulators, and their development can help buildings come closer to having zero net energy consumption. Project Description This project seeks to develop a commercially viable wall system up to R-40 through integration of vacuum technology with the exterior insulated façade system (EIFS). Dow Corning will develop a wall system configuration of expanded polystyrene vacuum isolation panels that can be specified for R-values of 20, 30, and 40. This project also aims to develop a unitized protection system of vacuum isolation panels and to validate current code

275

Ideal Magnetohydrodynamics Stability Spectrum with a Resistive Wall  

SciTech Connect

We show that the eigenvalue equations describing a cylindrical ideal magnetophydrodynamicsw (MHD) plasma interacting with a thin resistive wall can be put into the standard mathematical form: ??? = ??? ?. This is accomplished by using a finite element basis for the plasma, and by adding an extra degree of freedom corresponding to the electrical current in the thin wall. The standard form allows the use of linear eigenvalue solvers, without additional interations, to compute the complete spectrum of plasma modes in the presence of a surrounding restrictive wall at arbitrary separation. We show that our method recovers standard results in the limits of (1) an infinitely resistive wall (no wall), and (2) a zero resistance wall (ideal wall).

S.P. Smith and S.C. Jardin

2008-05-22T23:59:59.000Z

276

Some effects of packaging materials on critical arrays of fissile materials  

SciTech Connect

The surface density representation of array criticality provides a comprehensive display of criticality parameters of arrays of packaged fissile materials. The study leads to the following conclusions: (1) The mass limits established by the N 16.5 standard for air-spaced spherical units in water-reflected arrays may be adequate for transportation packages; (2) criticality assessments made for one fissile material can be extended to other materials which have defined equivalent masses for array criticality of air-spaced units; and (3) a uniform minimum margin of subcriticality can be established for transportation of packaged fissile materials.

Thomas, J.T.; Tang, J.S.

1977-01-01T23:59:59.000Z

277

Local mass/heat transfer from a wall-mounted block in rectangular ...  

Science Conference Proceedings (OSTI)

Turbine blades are frequently cooled by cold fluid circulating ... cooling can lead to local blade over-heating, which ..... duced oscillations of bridge tower. J Wind...

278

FY2003 Progress Report for Automotive Propulsion Materials Program  

NLE Websites -- All DOE Office Websites (Extended Search)

FreedomCAR and Vehicle Technologies FreedomCAR and Vehicle Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2003 Progress Report for Automotive Propulsion Materials Program Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Edward Wall Program Manager December 2003 U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2003 Progress Report for Automotive Propulsion Materials Program Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Edward Wall Program Manager December 2003 CONTENTS 1. INTRODUCTION ........................................................................................................... 1

279

WELDING THIN-WALLED URANIUM CYLINDERS  

SciTech Connect

One of Its Monograph Series, The Industrial Atom.'' The development of a satisfactory process for the fusion welding of thin-walled uranium cylinders is discussed. Optimum results were obtained using the inert-gas shielded-arc method without the use of filler metal. The ductility of the welded joints, however, was lower than that of cast metal. Surface conditions and and the purity of the inert gas used affected the weld soundness. Straight polarity direct current was used for welding to achieve maximum penetration and to provide are stability. Welding must be done in the flat position. (auth)

Brundige, E.L.; Taub, J.M.; Hanks, G.S.; Doll, D.T.

1957-01-01T23:59:59.000Z

280

Gas turbine bucket wall thickness control  

DOE Patents (OSTI)

A core for use in casting a turbine bucket including serpentine cooling passages is divided into two pieces including a leading edge core section and a trailing edge core section. Wall thicknesses at the leading edge and the trailing edge of the turbine bucket can be controlled independent of each other by separately positioning the leading edge core section and the trailing edge core section in the casting die. The controlled leading and trailing edge thicknesses can thus be optimized for efficient cooling, resulting in more efficient turbine operation.

Stathopoulos, Dimitrios (Glenmont, NY); Xu, Liming (Greenville, SC); Lewis, Doyle C. (Greer, SC)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wall material mass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Heat and mass transfer in porous media  

DOE Green Energy (OSTI)

Field test data on the OOSI MR3 experiments are used as a basis for exhibiting the computational capabilities of the WAFE computer code, which is a generalized tool for the analysis of heat and mass transfer in multi-dimensional domains of porous geothermal materials.

Cook, T.L.; Harlow, F.H.; Travis, B.J.; Bartel, T.J.; Tyner, C.E.

1981-01-01T23:59:59.000Z

282

Measuring wall forces in a slurry pipeline.  

E-Print Network (OSTI)

??Slurry transport is a key material handling technology in a number of industries. In oilsands ore transport, slurry pipelining also promotes conditioning to release and (more)

El-Sayed, Suheil

2010-01-01T23:59:59.000Z

283

Materials Science Evaluation Portal  

Science Conference Proceedings (OSTI)

NIST Home > Materials Science Evaluation Portal. Materials Science Evaluation Portal. Subject Areas. Modeling; Nondestructive; ...

2013-08-08T23:59:59.000Z

284

Materials Performance Staff  

Science Conference Proceedings (OSTI)

... Kinetics Staff; Materials Science and Engineering Division Staff Directory; MML Organization. Contact. Materials Performance ...

2013-08-20T23:59:59.000Z

285

Does Information Have Mass?  

E-Print Network (OSTI)

Does information have mass? This question has been asked many times and there are many answers even on the Internet, including on Yahoo Answers. Usually the answer is "no". Attempts have been made to assess the physical mass of information by estimating the mass of electrons feeding the power-guzzling computers and devices making up the Internet, the result being around 50 gram. Other efforts to calculate the mass of information have assumed that each electron involved in signal transfer carries one bit of information, which makes the corresponding mass to be about 10^-5 gram. We address the fundamental question of minimum mass related to a bit of information from the angles of quantum physics and special relativity. Our results indicate that there are different answers depending on the physical situation, and sometimes the mass can even be negative. We tend to be skeptical about the earlier mass estimations, mentioned above, because our results indicate that the electron's mass does not play a role in any on...

Kish, Laszlo B

2013-01-01T23:59:59.000Z

286

Nuclear Masses in Astrophysics  

E-Print Network (OSTI)

Among all nuclear ground-state properties, atomic masses are highly specific for each particular combination of N and Z and the data obtained apply to a variety of physics topics. One of the most crucial questions to be addressed in mass spectrometry of unstable radionuclides is the one of understanding the processes of element formation in the Universe. To this end, accurate atomic mass values of a large number of exotic nuclei participating in nucleosynthesis are among the key input data in large-scale reaction network calculations. In this paper, a review on the latest achievements in mass spectrometry for nuclear astrophysics is given.

Christine Weber; Klaus Blaum; Hendrik Schatz

2008-12-09T23:59:59.000Z

287

Mass-Loaded Flows  

E-Print Network (OSTI)

A key process within astronomy is the exchange of mass, momentum, and energy between diffuse plasmas in many types of astronomical sources (including planetary nebulae, wind-blown bubbles, supernova remnants, starburst superwinds, and the intracluster medium) and dense, embedded clouds or clumps. This transfer affects the large scale flows of the diffuse plasmas as well as the evolution of the clumps. I review our current understanding of mass-injection processes, and examine intermediate-scale structure and the global effect of mass-loading on a flow. I then discuss mass-loading in a variety of diffuse sources.

J. M. Pittard

2006-07-13T23:59:59.000Z

288

"A Wall Victim from the West": Migration, German Division, and Multidirectional Memory in Kreuzberg  

E-Print Network (OSTI)

19502000. The German Wall: Fallout in Europe. Ed. Marcin Berlin. The German Wall: Fallout in Europe. Ed. Marc

Jurgens, Jeffrey

2013-01-01T23:59:59.000Z

289

Plasma-wall interaction data needs critical to a Burning Core Experiment (BCX)  

Science Conference Proceedings (OSTI)

The Division of Development and Technology has sponsored a four day US-Japan workshop ''Plasma-Wall Interaction Data Needs Critical to a Burning Core Experiment (BCX)'', held at Sandia National Laboratories, Livermore, California on June 24 to 27, 1985. The workshop, which brought together fifty scientists and engineers from the United States, Japan, Germany, and Canada, considered the plasma-material interaction and high heat flux (PMI/HHF) issues for the next generation of magnetic fusion energy devices, the Burning Core Experiment (BCX). Materials options were ranked, and a strategy for future PMI/HHF research was formulated. The foundation for international collaboration and coordination of this research was also established. This volume contains the last three of the five technical sessions. The first of the three is on plasma materials interaction issues, the second is on research facilities and the third is from smaller working group meetings on graphite, beryllium, advanced materials and future collaborations.

Not Available

1985-11-01T23:59:59.000Z

290

Experimental Evaluation of Innovative Wall Daylighting Systems  

E-Print Network (OSTI)

Daylighting offers the potential to save electrical energy and reduce peak demand for lighting, the major consumer of energy in a variety of buildings. However, widespread adoption of daylighting techniques is hampered by the lack of both daylight resource information and simple, reliable methods of testing daylighting designs. To surmount these obstacles, facilities for collecting illuminance data and for testing small-scale and full-size models have been established. These are (1) an extensively instrumented resource measurement station, (2) a sun angle simulator for exploring the geometries of the sun and the building during the early stages of design, (3) a heliodon to allow detailed illuminance and luminance distribution measurements in scale models, and (4) a rotating test building for quantitative and qualitative assessments of full-scale components. The current research efforts have been using these facilities to seek ways of projecting light admitted through walls deep into interior spaces. Sidelighting systems are of interest because the wall is the only available source of daylight in many commercial buildings. Innovative static and dynamic reflector assemblies have been examined and proven effective. Compared with typical sidelighting designs, the systems examined in this study project light deeper and produce more uniform illuminance across the space.

Place, J. W.; Howard, T. C.; Paulos, S.; Chung, K.

1988-01-01T23:59:59.000Z

291

Dynamic load test of Arquin-designed CMU wall.  

SciTech Connect

The Arquin Corporation has developed a new method of constructing CMU (concrete masonry unit) walls. This new method uses polymer spacers connected to steel wires that serve as reinforcing as well as a means of accurately placing the spacers so that the concrete block can be dry stacked. The hollows of the concrete block are then filled with grout. As part of a New Mexico Small Business Assistance Program (NMSBA), Sandia National Laboratories conducted a series of tests that dynamically loaded wall segments to compare the performance of walls constructed using the Arquin method to a more traditional method of constructing CMU walls. A total of four walls were built, two with traditional methods and two with the Arquin method. Two of the walls, one traditional and one Arquin, had every third cell filled with grout. The remaining two walls, one traditional and one Arquin, had every cell filled with grout. The walls were dynamically loaded with explosive forces. No significant difference was noted between the performance of the walls constructed by the Arquin method when compared to the walls constructed by the traditional method.

Jensen, Richard Pearson

2010-02-01T23:59:59.000Z

292

Axial couplings of heavy hadrons from domain-wall lattice QCD  

Science Conference Proceedings (OSTI)

We calculate matrix elements of the axial current for static-light mesons and baryons in lattice QCD with dynamical domain wall fermions. We use partially quenched heavy hadron chiral perturbation theory in a finite volume to extract the axial couplings g{sub 1}, g{sub 2}, and g{sub 3} from the data. These axial couplings allow the prediction of strong decay rates and enter chiral extrapolations of most lattice results in the b sector. Our calculations are performed with two lattice spacings and with pion masses down to 227 MeV.

W. Detmold, C.J.D. Lin, S. Meinel

2011-12-01T23:59:59.000Z

293

On the Photon Mass  

E-Print Network (OSTI)

We review the case for the photon having a tiny mass compatible with the experimental limits. We go over some possible experimental tests for such a photon mass including the violation of Lorentz symmetry. We point out that such violations may already have been witnessed in tests involving high energy gamma rays from outer space as also ultra high energy cosmic rays.

Burra G. Sidharth

2007-06-22T23:59:59.000Z

294

Thermal masses in leptogenesis  

E-Print Network (OSTI)

We investigate the validity of using thermal masses in the kinematics of final states in the decay rate of heavy neutrinos in leptogenesis calculations. We find that using thermal masses this way is a reasonable approximation, but corrections arise through quantum statistical distribution functions and leptonic quasiparticles.

Kiessig, Clemens P

2009-01-01T23:59:59.000Z

295

Elbow mass flow meter  

DOE Patents (OSTI)

The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

1994-08-16T23:59:59.000Z

296

The origin of mass  

Science Conference Proceedings (OSTI)

The origin of mass is one of the deepest mysteries in science. Neutrons and protons, which account for almost all visible mass in the Universe, emerged from a primordial plasma through a cataclysmic phase transition microseconds after the Big Bang. However, ... Keywords: Gordon Bell Prize categories: scalability and time to solution, SC13 proceedings

Peter Boyle, Michael I. Buchoff, Norman Christ, Taku Izubuchi, Chulwoo Jung, Thomas C. Luu, Robert Mawhinney, Chris Schroeder, Ron Soltz, Pavlos Vranas, Joseph Wasem

2013-11-01T23:59:59.000Z

297

2007 Propulsion Materials Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle t echnologies Progra M Less dependence on foreign oil today, and transition to a petroleum-free, emissions-free vehicle tomorrow. 2 0 0 7 a n n u a l p r o g r e s s r e p o r t U.S. Department of Energy Office of Vehicle Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2007 Progress Report for Propulsion Materials Energy Efficiency and Renewable Energy Office of Vehicle Technologies Advanced Materials Technologies Edward J. Wall Program Manager, OVT Rogelio A. Sullivan Advanced Materials Technologies Team Leader Jerry L. Gibbs Technology Manager January 2008 CONTENTS INTRODUCTION..................................................................................................................................... 1 PROJECT 18518 - MATERIALS FOR HIGH EFFICIENCY ENGINES......................................... 9

298

W Transverse Mass  

NLE Websites -- All DOE Office Websites (Extended Search)

Some Data Analysis Some Data Analysis The Tevatron produces millions of collisions each second in CDF and DZero. The detectors have hardware triggers to decide if a collision is "interesting," that is it contains a candidate event for any one of a number studies. Our dataset contains 48,844 candidate events for a W mass study. There are other datasets to study Z mass, top and b quarks, QCD, etc. Why don't all the W decays give exactly the same mass? Are all these candidates really Ws? What if we chose only some of these data. How would our choice effect the value of the transverse mass? Work with your classmates. Test the data to see what you can learn. Help with data analysis. Record the best estimate of the W transverse mass from your data analysis. Explain which data you used and why. Check with your classmates and explain any differences between your estimate and theirs.

299

Functional Materials for Energy | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Fuel Cells Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at...

300

Materials Science & Tech Division | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

accident tolerant fuels, and providing the materials underpinning for fusion energy. The nuclear materials program leverages off both fundamental and applied capabilities within...

Note: This page contains sample records for the topic "wall material mass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Sandia National Labs: Materials Science & Engineering, Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

MATERIALS SCIENCE & ENGINEERING HOME OrganizationMission Capabilities Awards & Accomplishments Patents MATERIALS SCIENCE AND ENGINEERING CENTER Techniques 1 2 3 4 5 6 7 These are...

302

Stochastic Domain-Wall Depinning in Magnetic Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Reliably controlling the motion of magnetic domain walls along magnetic nanowires is a key requirement for current technological development of novel classes of logic and storage devices, but understanding the nature of non-deterministic domain-wall motion remains a scientific challenge. A statistical analysis of high-resolution magnetic soft x-ray microscopy images by a Berkeley Lab-University of Hamburg group has now revealed that the stochastic behavior of the domain-wall depinning field in notch-patterned Ni80Fe20 (permalloy) nanowires depends strongly on the wire width and the notch depth. This result both provides valuable insight into the motion of magnetic-domain walls and opens a path to further technological developments in spintronics applications.

303

Stochastic Domain-Wall Depinning in Magnetic Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Reliably controlling the motion of magnetic domain walls along magnetic nanowires is a key requirement for current technological development of novel classes of logic and storage devices, but understanding the nature of non-deterministic domain-wall motion remains a scientific challenge. A statistical analysis of high-resolution magnetic soft x-ray microscopy images by a Berkeley Lab-University of Hamburg group has now revealed that the stochastic behavior of the domain-wall depinning field in notch-patterned Ni80Fe20 (permalloy) nanowires depends strongly on the wire width and the notch depth. This result both provides valuable insight into the motion of magnetic-domain walls and opens a path to further technological developments in spintronics applications.

304

Stochastic Domain-Wall Depinning in Magnetic Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Reliably controlling the motion of magnetic domain walls along magnetic nanowires is a key requirement for current technological development of novel classes of logic and storage devices, but understanding the nature of non-deterministic domain-wall motion remains a scientific challenge. A statistical analysis of high-resolution magnetic soft x-ray microscopy images by a Berkeley Lab-University of Hamburg group has now revealed that the stochastic behavior of the domain-wall depinning field in notch-patterned Ni80Fe20 (permalloy) nanowires depends strongly on the wire width and the notch depth. This result both provides valuable insight into the motion of magnetic-domain walls and opens a path to further technological developments in spintronics applications.

305

Stochastic Domain-Wall Depinning in Magnetic Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Reliably controlling the motion of magnetic domain walls along magnetic nanowires is a key requirement for current technological development of novel classes of logic and storage devices, but understanding the nature of non-deterministic domain-wall motion remains a scientific challenge. A statistical analysis of high-resolution magnetic soft x-ray microscopy images by a Berkeley Lab-University of Hamburg group has now revealed that the stochastic behavior of the domain-wall depinning field in notch-patterned Ni80Fe20 (permalloy) nanowires depends strongly on the wire width and the notch depth. This result both provides valuable insight into the motion of magnetic-domain walls and opens a path to further technological developments in spintronics applications.

306

Stochastic Domain-Wall Depinning in Magnetic Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Reliably controlling the motion of magnetic domain walls along magnetic nanowires is a key requirement for current technological development of novel classes of logic and storage devices, but understanding the nature of non-deterministic domain-wall motion remains a scientific challenge. A statistical analysis of high-resolution magnetic soft x-ray microscopy images by a Berkeley Lab-University of Hamburg group has now revealed that the stochastic behavior of the domain-wall depinning field in notch-patterned Ni80Fe20 (permalloy) nanowires depends strongly on the wire width and the notch depth. This result both provides valuable insight into the motion of magnetic-domain walls and opens a path to further technological developments in spintronics applications.

307

MassMass transfer andtransfer and arationstearationste  

E-Print Network (OSTI)

, temperature, T, and energy, E, are scalars and their gradient is a vector dc/dx or arationste scalars diffusion coefficient D; for species A in medium B : D = DAB 4 erföringo dx dc D dt.A dm m Massöve c cSepa dx dc )DD(m th Irreversible Thermodynamics considers Thermo-diffusion 4 erföringo T T Thermo

Zevenhoven, Ron

308

Trombe Walls in Low-Energy Buildings: Practical Experiences; Preprint  

DOE Green Energy (OSTI)

Low-energy buildings today improve on passive solar design by incorporating a thermal storage and delivery system called a Trombe wall. Trombe walls were integrated into the envelope of a recently completed Visitor Center at Zion National Park and a site entrance building at the National Wind Technology Center located at the National Renewable Energy Laboratory. NREL helped to design these commercial buildings to minimize energy consumption, using Trombe walls as an integral part of their design.

Torcellini, P.; Pless, S.

2004-07-01T23:59:59.000Z

309

Materials Project: A Materials Genome Approach  

DOE Data Explorer (OSTI)

Technological innovation - faster computers, more efficient solar cells, more compact energy storage - is often enabled by materials advances. Yet, it takes an average of 18 years to move new materials discoveries from lab to market. This is largely because materials designers operate with very little information and must painstakingly tweak new materials in the lab. Computational materials science is now powerful enough that it can predict many properties of materials before those materials are ever synthesized in the lab. By scaling materials computations over supercomputing clusters, this project has computed some properties of over 80,000 materials and screened 25,000 of these for Li-ion batteries. The computations predicted several new battery materials which were made and tested in the lab and are now being patented. By computing properties of all known materials, the Materials Project aims to remove guesswork from materials design in a variety of applications. Experimental research can be targeted to the most promising compounds from computational data sets. Researchers will be able to data-mine scientific trends in materials properties. By providing materials researchers with the information they need to design better, the Materials Project aims to accelerate innovation in materials research.[copied from http://materialsproject.org/about] You will be asked to register to be granted free, full access.

Ceder, Gerbrand [MIT; Persson, Kristin [LBNL

310

Mr. Andy Wall0 The Aerospace Corporation  

Office of Legacy Management (LM)

'k.f' :, , j '"; ,,' 'k.f' :, , j '"; ,,' DEC 5 1984 Mr. Andy Wall0 The Aerospace Corporation suite 4000 955 L'Enfant Plaza, S.W. Washington, D.C. 20024 Dear Mr. Wallo: The Divisfon of Remedial Action Projects staff has reviewed the authority review documents for Gardinler, Inc., Tampa, Florida; Conserv (formerly Virginia-Carolina Chemical Co.), Nichols, Florida; and Blockson Chemical co., Joliet, Illinois. Based on the content therein and in consultation with Mr. Steve Miller, Office of General Counsel (C&11), Departamt of Energy, It has been determined that the Department has no authority, through the Atomic Energy Act of 1954, as amended, to conduct remedial action at the aforementioned sites, Therefore, please prepare the document packages necessary to notify the appropriate state authorities and the

311

An Exploration of Wall Retrofit Best Practices  

SciTech Connect

A series of experiments were performed to examine wall retrofit options including replacing the cladding, adding insulation under the cladding, and multiple sealing methods that can be used when installing replacement windows in well-built or loosely-built rough openings. These experiments included thermal measurements in a hot box and air-leakage measurements. The retrofit claddings considered included wood-lap siding, vinyl siding, and vinyl siding with an integrated and formed foam insulation. Retrofit insulations included expanded and extruded polystyrene and foil-faced polyisocyanurate in various thicknesses. Air sealing methods for replacement windows included traditional caulking, exterior trim variations, loose-fill fiberglass, low-expansion foam, self-expanding foam inserts, and specialty tape. Results were applied to a model to estimate whole-house energy impacts for multiple climates.

Stovall, Therese K [ORNL; Petrie, Thomas [ORNL; Kosny, Jan [ORNL; Childs, Phillip W [ORNL; Atchley, Jerald Allen [ORNL; Hulvey, Kimberly D [ORNL

2007-01-01T23:59:59.000Z

312

Installing Windows with Foam Sheathing on a Wood-Frame Wall  

SciTech Connect

Residential housing design continues to move toward the development of high-performance sustainable building systems. To be sustainable, a building must not only be efficient and durable but also economically viable. For these reasons, new methods of enclosure design have been examined that provide high thermal performance and long-term durability and also reduce material use (including waste), simplify or integrate systems and details, and potentially reduce overall initial costs of construction. One new idea relating to enclosure design is to use exterior foam insulating sheathing as the primary sheathing and drainage plane for the wall assembly. However, as with any building enclosure system, proper details for the management of water, vapor, and energy transfer is critical. Window systems need to be installed in such a way as to be consistent with principles of building science. Window installations also require an understanding of how to maintain the continuity of the drainage plane of the wall.

Not Available

2005-05-01T23:59:59.000Z

313

Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall  

SciTech Connect

Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

Michael Kruzic

2007-09-01T23:59:59.000Z

314

Reinforced Concrete Wall Research Based on the Experience ...  

Science Conference Proceedings (OSTI)

... the Experience and Observations from the February 2010 Maule, Chile, Earthquake ... of walls as observed in Chile could be realized in the US. ...

2013-02-23T23:59:59.000Z

315

Iran Thomas Auditorium, 8600 Charged Domain Walls in Ferroelectrics  

NLE Websites -- All DOE Office Websites (Extended Search)

Monday, February 4, 2013 11:00 am Iran Thomas Auditorium, 8600 Charged Domain Walls in Ferroelectrics Alexander K. Tagantsev Ceramics Laboratory, Swiss Federal Institute of...

316

Changes in Cell Wall Carbohydrate Extractability Are Correlated...  

NLE Websites -- All DOE Office Websites (Extended Search)

Short Communication Changes in Cell Wall Carbohydrate Extractability Are Correlated with Reduced Recalcitrance of HCT Downregulated Alfalfa Biomass Sivakumar Pattathil, 1 Trina...

317

Walls Falling Faster for Solid-State Memory  

Science Conference Proceedings (OSTI)

... found that flaws in the structure of magnetic nanoscale wires play an ... the domain walls, and the information they enclose, through the wire and past ...

2010-11-08T23:59:59.000Z

318

Moisture Management for High R-Value Walls  

SciTech Connect

The following report explains the moisture-related concerns for High R-value wall assemblies and discusses past Building America research work that informs this study. Hygrothermal simulations were prepared for several common approaches to High R-value wall construction in six cities (Houston, Atlanta, Seattle, St. Louis, Chicago, and International Falls) representing a range of climate zones (2, 3, 4C, 4, 5A, and 7, respectively). The simulations are informed by experience gained from past research in this area and validated by field measurement and forensic experience. The modeling program was developed to assess the moisture durability of the wall assemblies based on three primary sources of moisture: construction moisture, air leakage condensation, and bulk water leakage. The peak annual moisture content of the wood based exterior sheathing was used to comparatively analyze the response to the moisture loads for each of the walls in each given city. Walls which experienced sheathing moisture contents between 20% and 28% were identified as risky, whereas those exceeding 28% were identified as very high risk. All of the wall assemblies perform well under idealized conditions. However, only the walls with exterior insulation, or cavity insulation which provides a hygrothermal function similar to exterior insulation, perform adequately when exposed to moisture loads. Walls with only cavity insulation are particularly susceptible to air leakage condensation. None of the walls performed well when a precipitation based bulk water leak was introduced to the backside of the sheathing, emphasizing the importance of proper flashing details.

Lepage, R.; Schumacher, C.; Lukachko, A.

2013-11-01T23:59:59.000Z

319

Single Wall Carbon Nanotube/Polyacrylonitrile Composite Fiber .  

E-Print Network (OSTI)

??Single Wall Carbon Nanotubes (SWNTs), discovered in 1993, have good mechanical, electrical and thermal properties. Polyacrylonitrile (PAN) is an important fiber for textiles as well (more)

Liang, Jianghong

2004-01-01T23:59:59.000Z

320

Wall and laser spot motion in cylindrical hohlraums  

Science Conference Proceedings (OSTI)

Wall and laser spot motion measurements in empty, propane-filled and plastic (CH)-lined gold coated cylindrical hohlraums were performed on the Omega laser facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Wall motion was measured using axial two-dimensional (2D) x-ray imaging and laser spot motion was perpendicularly observed through a thinned wall using streaked hard x-ray imaging. Experimental results and 2D hydrodynamic simulations show that while empty targets exhibit on-axis plasma collision, CH-lined and propane-filled targets inhibit wall expansion, corroborated with perpendicular streaked imaging showing a slower motion of laser spots.

Huser, G.; Courtois, C.; Monteil, M.-C. [CEA, DAM, DIF, F-91297 Arpajon (France)

2009-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "wall material mass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Moisture Management of High-R Walls (Fact Sheet)  

SciTech Connect

The following report explains the moisture-related concerns for High R-value wall assemblies and discusses past Building America research work that informs this study. Hygrothermal simulations were prepared for several common approaches to High R-value wall construction in six cities (Houston, Atlanta, Seattle, St. Louis, Chicago, and International Falls) representing a range of climate zones (2, 3, 4C, 4, 5A, and 7, respectively). The simulations are informed by experience gained from past research in this area and validated by field measurement and forensic experience. The modeling program was developed to assess the moisture durability of the wall assemblies based on three primary sources of moisture: construction moisture, air leakage condensation, and bulk water leakage. The peak annual moisture content of the wood based exterior sheathing was used to comparatively analyze the response to the moisture loads for each of the walls in each given city. Walls which experienced sheathing moisture contents between 20% and 28% were identified as risky, whereas those exceeding 28% were identified as very high risk. All of the wall assemblies perform well under idealized conditions. However, only the walls with exterior insulation, or cavity insulation which provides a hygrothermal function similar to exterior insulation, perform adequately when exposed to moisture loads. Walls with only cavity insulation are particularly susceptible to air leakage condensation. None of the walls performed well when a precipitation based bulk water leak was introduced to the backside of the sheathing, emphasizing the importance of proper flashing details.

Not Available

2013-12-01T23:59:59.000Z

322

Materials Under Extremes | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Defect Physics Lightweight Related Research Functional Materials for Energy Chemistry and Physics at Interfaces Materials Synthesis from Atoms to Systems...

323

NETL: Advanced Research - Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Materials High Temperature Materials The environment inside a slagging gasifier is one of the worst imaginable from a materials standpoint. Another extreme...

324

Nuclear Materials Committee  

Science Conference Proceedings (OSTI)

The Nuclear Materials Committee is part of the Structural Materials Division. Our Mission: Includes the scientific and technical aspects of materials which are...

325

Helium-Cooled Refractory Alloys First Wall and Blanket Evaluation  

Science Conference Proceedings (OSTI)

Under the APEX program the He-cooled system design task is to evaluate and recommend high power density refractory alloy first wall and blanket designs and to recommend and initiate tests to address critical issues. We completed the preliminary design of a helium-cooled, W-5Re alloy, lithium breeder design and the results are reported in this paper. Many areas of the design were assessed, including material selection, helium impurity control, and mechanical, nuclear and thermal hydraulics design, and waste disposal, tritium and safety design. System study results show that at a closed cycle gas turbine (CCGT) gross thermal efficiency of 57.5%, a superconducting coil tokamak reactor, with an aspect ratio of 4, and an output power of 2 GWe, can be projected to have a cost of electricity at 54.6 mill/kWh. Critical issues were identified and we plan to continue the design on some of the critical issues during the next phase of the APEX design study.

Wong, C.P.C.; Nygren, R.E.; Baxi, C.B.; Fogarty, P.; Ghoniem, N.; Khater, H.; McCarthy, K.; Merrill, B.; Nelson, B.; Reis, E.E.; Sharafat, S.; Schleicher, R.; Sze, D.K.; Ulrickson, M.; Willms, S.; Youssef, M.; Zinkel, S.

1999-08-01T23:59:59.000Z

326

Nondestructive Evaluation: Enhanced Ferromagnetic Tubular Inspection Techniques for High-Performance Thin-Walled Ferritic Stainless Steel and Carbon Steel Tubing  

Science Conference Proceedings (OSTI)

Research and development (R&D) results obtained from investigating enhanced remote-field inspection methods with specialized sensors for testing thin-walled ferritic stainless steel tubing material are presented in this report. SeaCure tubing material was the primary focus of this investigation. Because of aging components, material reliability has become a major concern to operating power plants. Stringent efforts are being pursued daily by various industries and agencies to ensure the safe and reliable...

2007-12-20T23:59:59.000Z

327

Dynamics of quasi-spherical Z-pinch implosions with mass redistribution and displacement modification  

Science Conference Proceedings (OSTI)

Implosions of (quasi-)spherical loads with mass redistribution and displacement modification are investigated numerically. Both methods can theoretically counterbalance the nonuniformity of magnetic pressure along the load surface and realize quasi-spherical Z-pinch implosions. Mass redistribution is feasible for spherical loads with large radius and weight, while the displacement modification is more suitable for light loads, such as those composed of wire arrays. Simulation results suggest that, for mass redistributed spherical loads, wall instabilities induced by polar mass flows will deform the imploding shell. For prolate spherical loads, in which the wall instability cannot develop, the kinetic energy distribution is disturbed at high latitude. These passive behaviors and their possible mitigation methods, such as reshaping the electrode, are investigated numerically in this paper.

Zhang Yang [Institute of Applied Physics and Computational Mathematics, P. O. Box 8009-09, Beijing 100094 (China); Institute of Nuclear Physics and Chemistry, P. O. Box 919-212, Mianyang 621900 (China); Ding Ning; Sun Shunkai; Xue Chuang; Ning Cheng; Xiao Delong; Huang Jun [Institute of Applied Physics and Computational Mathematics, P. O. Box 8009-09, Beijing 100094 (China); Li Zhenghong [Institute of Nuclear Physics and Chemistry, P. O. Box 919-212, Mianyang 621900 (China)

2012-12-15T23:59:59.000Z

328

Higgs Mass Calculations  

NLE Websites -- All DOE Office Websites (Extended Search)

this sheet now. Help with data analysis Higgs Mass Plot Project Contact: Thomas Jordan - jordant@fnal.gov Web Maintainer: qnet-webmaster@fnal.gov Last Update: August 22,...

329

Solids mass flow determination  

DOE Patents (OSTI)

Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

Macko, Joseph E. (Hempfield Township, Westmoreland County, PA)

1981-01-01T23:59:59.000Z

330

W Transverse Mass  

NLE Websites -- All DOE Office Websites (Extended Search)

Transverse Mass Histogram Transverse Mass Histogram Data for 49,844 candidate W events are in an Excel spreadsheet with the following data as shown in the table below: A B C D 1 Run No Event No W TMass GeV/c2 Bins 2 55237 19588 68.71732 3 55237 30799 72.19464 Get the data. Sort the data by ascending mass. Be sure to sort all the data in the first three columns! Make a histogram of the data. Rather than graphing the data as individual points, physicists group the data by mass. They consider the full range of the data and divide it into "bins" of equal range size. A histogram is a graph of the number of events in each bin vs. the bin range. They are looking for a peak in the data where most of the masses fall. This will be the value of the mass as detemined by that dataset, and the width of the distribution is a reflection of the errors in the measurements.

331

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

May 28, 2012 ... Administrative & Policy Manual .... Materials and Society: Energy Technology, Policy, and Education; Materials Processing and Production; and...

332

Magnetic Materials Staff  

Science Conference Proceedings (OSTI)

... Materials Science and Engineering Division Staff Directory; MML Organization. Contact. Magnetic Materials Group Robert Shull, Group Leader. ...

2012-10-09T23:59:59.000Z

333

Anisotropic Curie Temperature Materials  

Science Conference Proceedings (OSTI)

Symposium, Magnetic Materials for Energy Applications -III. Presentation Title, Anisotropic Curie Temperature Materials. Author(s), Harsh Deep Chopra, Jason...

334

Material Properties References  

Science Conference Proceedings (OSTI)

... Thermal Conductivity. LNG Materials and Fluids. Ed. ... Aluminum 3003. Linear thermal expansion. LNG Materials and Fluids. Ed. ...

2013-02-05T23:59:59.000Z

335

emerging materials - TMS  

Science Conference Proceedings (OSTI)

plenary discussion. Energy and Security; Nuclear Materials; Fuel Cells; Materials for Alternative Energy Applications. Advanced Metallic Composites and ...

336

Bioinspired Materials Engineering  

Science Conference Proceedings (OSTI)

Conference Tools for Materials Science & Technology 2014 ... structured functional materials with improved and designed (piezo )electrical, magnetic, optical,...

337

Multiscale Modeling of Materials  

Science Conference Proceedings (OSTI)

Oct 27, 2009 ... Parametric materials design integrating materials science, applied mechanics and quantum physics within a systems engineering framework...

338

Radiation Shields Materials  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2009. Symposium, Materials Solutions for the Nuclear Renaissance. Presentation Title, Radiation...

339

Nanomechanical Materials Behavior Committee  

Science Conference Proceedings (OSTI)

The Nanomechanical Materials Behavior Committee is part of the Materials Processing & Manufacturing Division;. Our Mission: Focuses on the nanomechanical...

340

Retention and Surface Pore Formation in Helium Implanted Tungsten as a Fusion First Wall Material  

Science Conference Proceedings (OSTI)

High Average Power Laser and Other IFE R&D / Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1)

S. J. Zenobia; G. L. Kulcinski

Note: This page contains sample records for the topic "wall material mass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Factors Associated With Chest Wall Toxicity After Accelerated Partial Breast Irradiation Using High-Dose-Rate Brachytherapy  

Science Conference Proceedings (OSTI)

Purpose: The purpose of this analysis was to evaluate dose-volume relationships associated with a higher probability for developing chest wall toxicity (pain) after accelerated partial breast irradiation (APBI) by using both single-lumen and multilumen brachytherapy. Methods and Materials: Rib dose data were available for 89 patients treated with APBI and were correlated with the development of chest wall/rib pain at any point after treatment. Ribs were contoured on computed tomography planning scans, and rib dose-volume histograms (DVH) along with histograms for other structures were constructed. Rib DVH data for all patients were sampled at all volumes {>=}0.008 cubic centimeter (cc) (for maximum dose related to pain) and at volumes of 0.5, 1, 2, and 3 cc for analysis. Rib pain was evaluated at each follow-up visit. Patient responses were marked as yes or no. No attempt was made to grade responses. Eighty-nine responses were available for this analysis. Results: Nineteen patients (21.3%) complained of transient chest wall/rib pain at any point in follow-up. Analysis showed a direct correlation between total dose received and volume of rib irradiated with the probability of developing rib/chest wall pain at any point after follow-up. The median maximum dose at volumes {>=}0.008 cc of rib in patients who experienced chest wall pain was 132% of the prescribed dose versus 95% of the prescribed dose in those patients who did not experience pain (p = 0.0035). Conclusions: Although the incidence of chest wall/rib pain is quite low with APBI brachytherapy, attempts should be made to keep the volume of rib irradiated at a minimum and the maximum dose received by the chest wall as low as reasonably achievable.

Brown, Sheree, E-mail: shereedst32@hotmail.com [Department of Radiation Oncology, WellStar Kennestone Hospital, Marietta, Georgia (United States); Vicini, Frank [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan (United States); Vanapalli, Jyotsna R.; Whitaker, Thomas J.; Pope, D. Keith [Department of Radiation Oncology, WellStar Kennestone Hospital, Marietta, Georgia (United States); Lyden, Maureen [BioStat International, Inc., Tampa, Florida (United States); Bruggeman, Lisa; Haile, Kenneth L.; McLaughlin, Mark P. [Department of Radiation Oncology, WellStar Kennestone Hospital, Marietta, Georgia (United States)

2012-07-01T23:59:59.000Z

342

Wall Lake Municipal Utilities Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wall Lake Municipal Utilities Wind Farm Wall Lake Municipal Utilities Wind Farm Jump to: navigation, search Name Wall Lake Municipal Utilities Wind Farm Facility Wall Lake Municipal Utilities Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wall Lake Municipal Utilities Developer Wall Lake Municipal Utilities Energy Purchaser Wall Lake Municipal Utilities Location Wall Lake IA Coordinates 42.281965°, -95.094098° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.281965,"lon":-95.094098,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

343

Liquid Lithium Wall Experiments in CDX-U R. Majeski,  

E-Print Network (OSTI)

Liquid Lithium Wall Experiments in CDX-U R. Kaita, a R. Majeski, a S. Luckhardt, b R. Doerner, b M ABSTRACT The concept of a flowing lithium first wall for a fusion reactor may lead to a significant advance is intensely heated and well diagnosed, and an extensive liquid lithium plasma-facing surface will be used

344

Particle production by the expanding thin-walled bubble  

E-Print Network (OSTI)

Neglecting the effect of particle production at the moment of bubble nucleation, the spectrum of created particles during the bubble expansion is evaluated in the thin-wall approximation. It is shown that the expanding thin-walled bubble makes the dominant contribution to the particle production.

Michael Maziashvili

2003-11-27T23:59:59.000Z

345

Mound Isotope Power Systems; AMTEC Integral Cell Wall Compression Test  

DOE Green Energy (OSTI)

An AMTEC (Alkali Metal Thermal-to-Electric Conversion) device is tested under a compression load at a rate of 0.0025 inches/minute. The integral cell wall is made of Haynes Alloy 25. The wall buckled at 724 pounds load.

None

1997-11-05T23:59:59.000Z

346

Reducing the beta-shift in domain wall fermion simulations  

E-Print Network (OSTI)

The beta-shift induced from dynamical domain wall quarks leads to increased roughness of the gauge field, thus reversing the effect of smoothing from the gauge action improvement. By exploiting the relation of overlap and domain wall fermions in greater detail,we propose an algorithm which reduces the beta-shift to the level of dynamical overlap fermions.

Alban Allkoci; Artan Borici

2006-01-24T23:59:59.000Z

347

Bending and shear moduli of single-walled carbon nanotubes  

Science Conference Proceedings (OSTI)

Elastic properties of single-walled carbon nanotubes (SWCNT) obtained experimentally and computationally are reviewed. Attention is paid particularly on the evaluation of Young's and shear moduli of SWCNT. A finite element method (FEM) previously presented ... Keywords: Finite element method, Mechanical properties, Single-walled carbon nanotubes

Cho W. S. To

2006-02-01T23:59:59.000Z

348

Progressive collapse simulation of precast panel shear walls during earthquakes  

Science Conference Proceedings (OSTI)

A distinct element method (DEM) program is modified to model precast panel shear walls. The influence of collapse time t"0 of local failure of a panel is presented. Integrity analyses of a twelve-storey, three-bay precast panel shear wall in different ... Keywords: Concrete panels, Distinct element method, Earthquakes, Failure process simulation, Progressive collapse

O. A. Pekau; Yuzhu Cui

2006-01-01T23:59:59.000Z

349

Method for forming materials  

DOE Patents (OSTI)

A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

Tolle, Charles R. (Idaho Falls, ID); Clark, Denis E. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Miller, Karen S. (Idaho Falls, ID)

2009-10-06T23:59:59.000Z

350

Detailed Analysis of the Thermal Mass Credits in a Code-Traceable DOE-2 Simulation of the 2001 IECC for a Single-Family Residence in Texas  

E-Print Network (OSTI)

This paper presents the results of a study that investigates the thermal mass credits in the 2001 International Energy Conservation Code (IECC) (ICC 1999, 2001) for a single-family residence in Texas using the DOE-2 building energy simulation program. In this analysis seven different wall types were simulated, and each wall type was matched to the recommended overall U-value of a lightweight wall that meets the prescriptive specifications of the 2001 IECC. This paper presents an analysis of the total annual cooling and heating energy use for wall types with varying thermal mass, and thermostat settings, as well as recommendations concerning the most energy-efficient wall type, and includes input specification methods using the DOE-2 program

Kim, S.; Haberl, J.

2008-12-01T23:59:59.000Z

351

Materials Informatics: Fast Track to New Materials  

SciTech Connect

Current methods for new materials development focus on either deeper fundamental-level studies or generation of large quantities of data. The data challenge in materials science is not only the volume of data being generated by many independent investigators, but its heterogeneity and also its complexity that must be transformed, analyzed, correlated and communicated. Materials informatics addresses these issues. Materials informatics is an emerging information-based field combining computational, statistical, and mathematical approaches with materials sciences for accelerating discovery and development of new materials. Within the informatic framework, the various different forms of information form a system architecture, an iterative cycle for transforming data into knowledge.

Ferris, Kim F.; Peurrung, Loni M.; Marder, James M.

2007-01-01T23:59:59.000Z

352

Borehole-Wall Imaging with Acoustic and Optical Televiewers for  

Open Energy Info (EERE)

Borehole-Wall Imaging with Acoustic and Optical Televiewers for Borehole-Wall Imaging with Acoustic and Optical Televiewers for Fractured-Bedrock Aquifer Investigations Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Borehole-Wall Imaging with Acoustic and Optical Televiewers for Fractured-Bedrock Aquifer Investigations Abstract Imaging with acoustic and optical televiewers results in continuous and oriented 360 degree views of the borehole wall from which the character and orientation of lithologic and structural features can be defined for fractured-bedrock aquifer investigations. Fractures are more clearly defined under a wider range of conditions on acoustic images than on optical images including dark-colored rocks, cloudy borehole water, and coated borehole walls. However, optical images allow for the direct viewing

353

Giga-Dalton Mass Spectrometry  

Current techniques to study large bio?molecules using mass spectrometer require fragmentation for the mass?to?charge ratios to be within the working range of the mass spectrometer. Analysis of the data is complex and often requires simulation ...

354

The Formation of Pluto's Low Mass Satellites  

E-Print Network (OSTI)

Motivated by the New Horizons mission, we consider how Pluto's small satellites -- currently P5, Nix, P4, and Hydra -- grow in debris from the giant impact that forms the Pluto-Charon binary or in solid material captured from the protoplanetary debris disk. If the satellites have masses close to their minimum masses, our analysis suggests that capture of material into a circumplanetary or circumbinary debris disk is a viable mechanism for satellite formation. If the satellites are more massive, they probably form in debris from the giant impact. After the impact, Pluto and Charon accrete some of the debris and eject the rest from the binary orbit. During the ejection, high velocity collisions among debris particles produce a collisional cascade, leading to the ejection of some debris from the system and enabling the remaining debris particles to find stable orbits around the binary. Our numerical simulations of viscous diffusion, coagulation, and migration show that collisional evolution within a ring or disk...

Kenyon, Scott J

2013-01-01T23:59:59.000Z

355

NEWTON's Material Science References  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Science References Material Science References Do you have a great material science reference link? Please click our Ideas page. Featured Reference Links: Materials Research Society Materials Research Society The Materials Research Society has assembled many resources in its Materials Science Enthusiasts site. This site has information for the K-12 audience, general public, and materials science professionals. Material Science nanoHUB nanHUB.org is the place for nanotechnology research, education, and collaboration. There are Simulation Programs, Online Presentations, Courses, Learning Modules, Podcasts, Animations, Teaching Materials, and more. (Intened for high school and up) Materials Science Resources on the Web Materials Science Resources on the Web This site gives a good general introduction into material science. Sponsered by Iowa State, it talks about what material science is, ceramics and composites, and other topics.

356

Advanced Wall Framing; BTS Technology Fact Sheet  

SciTech Connect

Advanced framing techniques for home construction have been researched extensively and proven effective. Both builders and home owners can benefit from advanced framing. Advanced framing techniques create a structurally sound home that has lower material and labor costs than a conventionally framed house. This fact sheet describes advanced framing techniques, design considerations, and framing.

Southface Energy Institute; Tromly, K.

2000-11-07T23:59:59.000Z

357

EMSL: Capabilities: Mass Spectrometry Experts  

NLE Websites -- All DOE Office Websites (Extended Search)

Related EMSL User Projects Mass Spectrometry Tools are Applied to all Science Themes Next-Generation Mass Spectrometry Proteomics Research Resource for Integrative Biology...

358

Electromagnetic Nature of Thermo-Mechanical Mass-Energy Transfer Due to Photon Diffusive Re-Emission and  

E-Print Network (OSTI)

mass-transfer trough material systems involved, from a mass-energy source to a sink system. Otherwise- contact" diffusive re-emission and propagation) and commensurate mass-transfer trough material systems conduction theory (parabolic difference equation), allowing infinite speed of thermal energy propagation (i

Kostic, Milivoje M.

359

Monitoring of Refractory Wall recession using high temperature impact echo instrumentation  

SciTech Connect

Regression of refractory linings of furnaces occurs due to a variety of mechanisms. The specific mechanism selected for investigation during this program is the regression of refractories which are in direct contact with a liquid corrodant. Examples include the melting of glass, the production of pig iron and steel, and the melting of aluminum. The rates of regression to a wall thickness which requires reline or extensive reconstruction vary widely, from less than a year to over ten years depending on the specific service environment. This program investigated the feasibility of measuring refractory wall thickness with an impact-echo method while at operating temperature (wall temperatures exceeding 500 C). The impact-echo method uses the impact of a small sphere with the surface of the test object to send a stress wave into the object. In a plate-like structure, the stress wave reflects back to the front surface, reverberating in the structure and causing a periodic surface displacement whose frequency is inversely proportional to the thickness of the test object. Impact-echo testing was chosen because it requires access to only one side of the test object and could be performed during the operation of a refractory structure. Commercially-available impact-echo instrumentation is available for room temperature use for a variety of tests on concrete. The enabling technology for this work was to use a high-temperature piezoelectric material, aluminum nitride, as the receiving sensor for the stress waves, allowing its use on refractories during furnace operation.

University of Dayton

2004-04-30T23:59:59.000Z

360

Design, manufacture and initial operation of the beryllium components of the JET ITER-like wall  

E-Print Network (OSTI)

The aim of the JET ITER-like Wall Project was to provide JET with the plasma facing material combination now selected for the DT phase of ITER (bulk beryllium main chamber limiters and a full tungsten divertor) and, in conjunction with the upgraded neutral beam heating system, to achieve ITER relevant conditions. The design of the bulk Be plasma facing components had to be compatible with increased heating power and pulse length, as well as to reuse the existing tile supports originally designed to cope with disruption loads from carbon based tiles and be installed by remote handling. Risk reduction measures (prototypes, jigs, etc) were implemented to maximize efficiency during the shutdown. However, a large number of clashes with existing components not fully captured by the configuration model occurred. Restarting the plasma on the ITER-like Wall proved much easier than for the carbon wall and no deconditioning by disruptions was observed. Disruptions have been more threatening than expected due to the redu...

Riccardo, V; Matthews, G F; Nunes, I; Thompson, V; Villedieu, E; Contributors, JET EFDA

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wall material mass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Photon: history, mass, charge  

E-Print Network (OSTI)

The talk consists of three parts. ``History'' briefly describes the emergence and evolution of the concept of photon during the first two decades of the 20th century. ``Mass'' gives a short review of the literature on the upper limit of the photon's mass. ``Charge'' is a critical discussion of the existing interpretation of searches for photon charge. Schemes, in which all photons are charged, are grossly inconsistent. A model with three kinds of photons (positive, negative and neutral) seems at first sight to be more consistent, but turns out to have its own serious problems.

L. B. Okun

2006-02-03T23:59:59.000Z

362

Mass and Heat Recovery  

E-Print Network (OSTI)

In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building (air to air heat exchanger). In my papers I use (water to air heat exchanger) as a heat recovery and I use the water as a mass recovery. The source of mass and heat recovery is the condensate water which we were dispose and connect it to the drain lines.

Hindawai, S. M.

2010-01-01T23:59:59.000Z

363

Irradiation Environment of the Materials Test Station  

SciTech Connect

Conceptual design of the proposed Materials Test Station (MTS) at the Los Alamos Neutron Science Center (LANSCE) is now complete. The principal mission is the irradiation testing of advanced fuels and materials for fast-spectrum nuclear reactor applications. The neutron spectrum in the fuel irradiation region of MTS is sufficiently close to that of fast reactor that MTS can match the fast reactor fuel centerline temperature and temperature profile across a fuel pellet. This is an important characteristic since temperature and temperature gradients drive many phenomena related to fuel performance, such as phase stability, stoichiometry, and fission product transport. The MTS irradiation environment is also suitable in many respects for fusion materials testing. In particular, the rate of helium production relative to atomic displacements at the peak flux position in MTS matches well that of fusion reactor first wall. Nuclear transmutation of the elemental composition of the fusion alloy EUROFER97 in MTS is similar to that expected in the first wall of a fusion reactor.

Pitcher, Eric John [Los Alamos National Laboratory

2012-06-21T23:59:59.000Z

364

Educational Material Science Games  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Science Games Material Science Games Do you have a great material science game? Please click our Ideas page. Featured Games: >KS2 Bitsize BBC - Materials KS2 Bitsize BBC - Materials Sponsored by the BBC, K2S Bitsize offers tons of free online science games including a section on materials. Learn about the changes in materials, changing states, heat, rocks, soils, solids, liquids, gases, and much more. Science Kids - Properties of Materials Science Kids - Properties of Materials Learn about the properties of materials as you experiment with a variety of objects in this great science activity for kids. Discover the interesting characteristics of materials; are they flexible, waterproof, strong or transparent? Characteristics of Materials - BBC Schools Characteristics of Materials - BBC Schools

365

Wall Orientation and Shear Stress in the Lattice Boltzmann Model  

E-Print Network (OSTI)

The wall shear stress is a quantity of profound importance for clinical diagnosis of artery diseases. The lattice Boltzmann is an easily parallelizable numerical method of solving the flow problems, but it suffers from errors of the velocity field near the boundaries which leads to errors in the wall shear stress and normal vectors computed from the velocity. In this work we present a simple formula to calculate the wall shear stress in the lattice Boltzmann model and propose to compute wall normals, which are necessary to compute the wall shear stress, by taking the weighted mean over boundary facets lying in a vicinity of a wall element. We carry out several tests and observe an increase of accuracy of computed normal vectors over other methods in two and three dimensions. Using the scheme we compute the wall shear stress in an inclined and bent channel fluid flow and show a minor influence of the normal on the numerical error, implying that that the main error arises due to a corrupted velocity field near ...

Matyka, Maciej; Miros?aw, ?ukasz

2013-01-01T23:59:59.000Z

366

System and method for measuring permeability of materials  

DOE Patents (OSTI)

Systems and methods are provided for measuring the permeance of a material. The permeability of the material may also be derived. Systems typically provide a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

Hallman, Jr., Russell Louis; Renner, Michael John

2013-07-09T23:59:59.000Z

367

Penetration through a wall: Is it reality?  

E-Print Network (OSTI)

A tennis ball is not expected to penetrate through a brick wall since a motion under a barrier is impossible in classical mechanics. With quantum effects a motion of a particle through a barrier is allowed due to quantum tunneling. According to usual theories of tunneling, the particle density decays inside a classical barrier resulting in an extremely slow pentration process. However, there are no general laws forbidding fast motion through classical barriers. The problem addressed is investigation of unusual features o quantum tunneling through a classic static barrier which is at least two-dimensional. Here we show that penetration through such barrier can be not slow. When the barrier satisfies the certain conditions, a regime of quantum lens is possible with formation of caustics. De Broglie waves are reflected from the caustics, interfere, and result in a not small flux from under the barrier. This strongly contrasts to the usual scenario with a decaying under-barrier density. We construct a particular example of fast motion through a classical barrier. One can unexectedly conclude that, in principle, nature allows fast penetration through classical barriers which against common sense. The phenomenon may be responsible for a variety of processes in labs and nature. For example, tunneling in solids may occur with a different scenario, in biophysics and chemistry one can specify conditions for unusual reactions, and evanescent optical waves may strongly change their properties. In condensed matter and cosmic physics there are phenomena with misterious reasons of an energy emission, for instance, gamma-ray bursts. One can try to treat them in the context of fast escape from under some barriers.

B. Ivlev

2011-08-25T23:59:59.000Z

368

Liquefaction process for solid carbonaceous materials containing alkaline earth metal humates  

DOE Patents (OSTI)

An improved liquefaction process wherein wall scale and particulate agglomeration during the liquefaction of solid carbonaceous materials containing alkaline earth metal humates is reduced and/or eliminated by subjecting the solid carbonaceous materials to controlled cyclic cavitation during liquefaction. It is important that the solid carbonaceous material be slurried in a suitable solvent or diluent during liquefaction. The cyclic cavitation may be imparted via pressure cycling, cyclic agitation and the like. When pressure cycling or the like is employed an amplitude equivalent to at least 25 psia is required to effectively remove scale from the liquefaction vessel walls.

Epperly, William R. (Summit, NJ); Deane, Barry C. (East Brunswick, NJ); Brunson, Roy J. (Buffalo Grove, IL)

1982-01-01T23:59:59.000Z

369

Aerosol penetration through a seismically loaded shear wall  

SciTech Connect

An experimental study was performed to measure the aerosol penetration through a reinforced concrete shear wall after simulated seismic damage. Static load-cycle testing, to stress levels sufficient to induce visible shear cracking, was used to simulate the earthquake loading. Air permeability tests were performed both before and after the simulated seismic loading damaged the structure. Aerosol penetration measurements were conducted on the cracked shear wall structure using 0.10 {mu}m monodisperse particles. The measured aerosol number penetration through the cracked shear wall was 0.5%. 7 refs.

Farrar, C.R.; Girrens, S.P.

1992-01-01T23:59:59.000Z

370

Aerosol penetration through a seismically loaded shear wall  

SciTech Connect

An experimental study was performed to measure the aerosol penetration through a reinforced concrete shear wall after simulated seismic damage. Static load-cycle testing, to stress levels sufficient to induce visible shear cracking, was used to simulate the earthquake loading. Air permeability tests were performed both before and after the simulated seismic loading damaged the structure. Aerosol penetration measurements were conducted on the cracked shear wall structure using 0.10 {mu}m monodisperse particles. The measured aerosol number penetration through the cracked shear wall was 0.5%. 7 refs.

Farrar, C.R.; Girrens, S.P.

1992-05-01T23:59:59.000Z

371

Warm Water Mass Formation  

Science Conference Proceedings (OSTI)

Poleward heat transport by the own implies warm Water mass formation, i.e., the retention by the tropical and subtropical ocean of some of its net radiant heat gain. Under what condition net heat retention becomes comparable to latent heat ...

G. T. Csanady

1984-02-01T23:59:59.000Z

372

Polymer electronic devices and materials.  

Science Conference Proceedings (OSTI)

Polymer electronic devices and materials have vast potential for future microsystems and could have many advantages over conventional inorganic semiconductor based systems, including ease of manufacturing, cost, weight, flexibility, and the ability to integrate a wide variety of functions on a single platform. Starting materials and substrates are relatively inexpensive and amenable to mass manufacturing methods. This project attempted to plant the seeds for a new core competency in polymer electronics at Sandia National Laboratories. As part of this effort a wide variety of polymer components and devices, ranging from simple resistors to infrared sensitive devices, were fabricated and characterized. Ink jet printing capabilities were established. In addition to promising results on prototype devices the project highlighted the directions where future investments must be made to establish a viable polymer electronics competency.

Schubert, William Kent; Baca, Paul Martin; Dirk, Shawn M.; Anderson, G. Ronald; Wheeler, David Roger

2006-01-01T23:59:59.000Z

373

Method for calibrating mass spectrometers  

DOE Patents (OSTI)

A method whereby a mass spectra generated by a mass spectrometer is calibrated by shifting the parameters used by the spectrometer to assign masses to the spectra in a manner which reconciles the signal of ions within the spectra having equal mass but differing charge states, or by reconciling ions having known differences in mass to relative values consistent with those known differences. In this manner, the mass spectrometer is calibrated without the need for standards while allowing the generation of a highly accurate mass spectra by the instrument.

Anderson, Gordon A [Benton City, WA; Brands, Michael D [Richland, WA; Bruce, James E [Schwenksville, PA; Pasa-Tolic, Ljiljana [Richland, WA; Smith, Richard D [Richland, WA

2002-12-24T23:59:59.000Z

374

Materials and Components Technology Division research summary, 1991  

Science Conference Proceedings (OSTI)

This division has the purpose of providing a R and D capability for design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs are in support of the Integral Fast Reactor, life extension for light water reactors, fuels development for the new production reactor and research and test reactors, fusion reactor first-wall and blanket technology, safe shipment of hazardous materials, fluid mechanics/materials/instrumentation for fossile energy systems, and energy conservation and renewables (including tribology, high- temperature superconductivity). Separate abstracts have been prepared for the data base.

Not Available

1991-04-01T23:59:59.000Z

375

Advanced Materials Processing  

Science Conference Proceedings (OSTI)

Feb 15, 2010... the copper bearing materials which did not contain inflammable materials due to a restriction on capacity of furnace waste heat boilers.

376

Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Directionally Solidified Materials Using high-temperature optical floating zone furnace to produce monocrystalline molybdenum alloy micro-pillars Home | Science & Discovery | Advanced Materials Advanced Materials | Advanced Materials SHARE ORNL has the nation's most comprehensive materials research program and is a world leader in research that supports the development of advanced materials for energy generation, storage, and use. We have core strengths in three main areas: materials synthesis, characterization, and theory. In other words, we discover and make new materials, we study their structure,

377

Material Properties References  

Science Conference Proceedings (OSTI)

... Cryogenics June 1962 p.230-235. Thermal Conductivity. LNG Materials and Fluids. Ed. ... Linear thermal expansion. LNG Materials and Fluids. Ed. ...

2013-02-05T23:59:59.000Z

378

Advanced Research Materials Program  

NLE Websites -- All DOE Office Websites (Extended Search)

materials requirements for all fossil energy systems, including materials for advanced power generation and coal fuels technologies. Examples of these technologies include coal...

379

TMS Materials Cyberinfrastructure Portal  

Science Conference Proceedings (OSTI)

The Materials Cyber- infrastructure Portal serves as an online access point to critical tools and resourcesincluding computational models and materials...

380

Material Design Tools  

Science Conference Proceedings (OSTI)

Mar 12, 2012 ... In this presentation, we will discuss our activities in developing an infrastructure, named MaterialsGenome (Trademark of MaterialsGenome,...

Note: This page contains sample records for the topic "wall material mass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Defining the data challenges associated with building the materials innovation infrastructure at the core of the U.S. Materials Genome Initiative (MGI) was the...

382

Novel Materials and Phenomenon  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... Magnetic Materials for Energy Applications -III: Novel Materials and ... In traditional Permanent Magnet Machines, such as motors and...

383

MATERIALS TRANSFER AGREEMENT  

NLE Websites -- All DOE Office Websites (Extended Search)

MTAXX-XXX 1 MATERIAL TRANSFER AGREEMENT for Manufacturing Demonstration Facility and Carbon Fiber Technology Facility In order for the RECIPIENT to obtain materials, the RECIPIENT...

384

Photovoltaic Cell Materials  

Energy.gov (U.S. Department of Energy (DOE))

Although crystalline silicon cells are the most common type, photovoltaic (PV), or solar cells, can be made of many semiconductor materials. Each material has unique strengths and characteristics...

385

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

DOE Awards $45 Million to Deploy Advanced Transportation Technologies Novel Electrode Material Offers Alternative for Li-ion Batteries New Materials Make...

386

IOMMMS Global Materials Forum  

Science Conference Proceedings (OSTI)

Natural Fiber Composites Significant Contribution to a Green Economy Recent Development of Materials for Green Energy in Korea The Role of Materials...

387

Twisted mass finite volume effects  

SciTech Connect

We calculate finite-volume effects on the pion masses and decay constant in twisted mass lattice QCD at finite lattice spacing. We show that the lighter neutral pion in twisted mass lattice QCD gives rise to finite-volume effects that are exponentially enhanced when compared to those arising from the heavier charged pions. We demonstrate that the recent two flavor twisted mass lattice data can be better fitted when twisted mass effects in finite-volume corrections are taken into account.

Colangelo, Gilberto; Wenger, Urs; Wu, Jackson M. S. [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, 3012 Bern (Switzerland)

2010-08-01T23:59:59.000Z

388

NREL: News Feature - NREL Breaks Down Walls for Biofuels  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL Breaks Down Walls for Biofuels NREL Breaks Down Walls for Biofuels November 30, 2009 Researchers at the National Renewable Energy Laboratory (NREL) and ethanol producers are racing to come up with ways to make ethanol from cellulosic biomass that are cheaper and easier to produce than current methods. But they are hitting a wall. Cell walls in plants are making the production of cellulosic ethanol a challenge. So researchers are creating their own computer program to help model and break down the tiny fibers of cellulose - or fibrils - found in plant cells. Although ethanol is becoming more available to consumers, NREL is working closely with the U.S. Department of Energy (DOE) to meet a quickly approaching goal to produce competitively priced ethanol for $1.50 per gallon by 2012. Why the rush? DOE believes this is the price at which

389

Sizing Relationships for Pipe Wall Preheater-710 Reactor Experiment  

SciTech Connect

Relationships presented as curves are given that permit selection of preheater pipe diameters and lengths consistent with objective pressure drops, wall temperatures, and heat addition. The data are for 710 reactor experiment coolant and operating conditions.

Moon, C.W.

1965-01-29T23:59:59.000Z

390

Tire shreds as lightweight retaining wall backfill: Active conditions  

Science Conference Proceedings (OSTI)

A 4.88-m-high retaining wall test facility was constructed to test tire shreds as retaining wall backfill. The front wall of the facility could be rotated outward away from the fill and was instrumented to measure the horizontal stress. Measurement of movement within the backfill and settlement of the backfill surface during wall rotation allowed estimation of the pattern of movement within the fill. Tests were conducted with tire shreds from three suppliers. Moreover, horizontal stress at this rotation for tire shreds was about 35% less than the active stress expected for conventional granular backfill. Design parameters were developed using two procedures; the first used the coefficient of lateral earth pressure and the other was based on equivalent fluid pressure. The inclination of the sliding plane with respect to horizontal was estimated to range from 61{degree} to 70{degree} for the three types of shreds.

Tweedie, J.J. [State of Maine Dept. of Transportation, Augusta, ME (United States); Humphrey, D.N.; Sandford, T.C. [Univ. of Maine, Orono, ME (United States). Dept. of Civil and Environmental Engineering

1998-11-01T23:59:59.000Z

391

Evaluations of single walled carbon nanotubes using resonance Raman spectroscopy  

E-Print Network (OSTI)

This work reports the results of two studies which use resonance Raman scattering to evaluate the vibrational properties of single walled carbon nanotubes (SWNTs). In the first study, we report an evaluation of second-order ...

Brar, Victor W. (Victor Watson), 1981-

2004-01-01T23:59:59.000Z

392

Improving Glass Walls Thermal Resistance In Air-Conditioned Buildings  

E-Print Network (OSTI)

The solar radiation through an air conditioned building depends on what is called the building envelope. Building envelope consists of the surfaces that separate the inside from the building outdoors. Area, direction, and specifications of glass walls; as one of envelope surfaces; has an important impact on solar radiation. Design and construction of glass walls have significant effects on building comfort and energy consumption. This paper describes methods of improving glass walls thermal resistance in air conditioned buildings. Effect of glass wall radiation temperature on the indoor temperature distribution of building rooms is also investigated. Heat gain through various types of glass is discussed. Optimization and testing of these types are carried out theoretically and experimentally as well. A series of experiments on different types of glass with special strips is performed.

Galal, T.; Kulaib, A. M.; Alajmi, R.; Al-Ansary. A; Abuzaid, M.

2010-01-01T23:59:59.000Z

393

Influence of soil parameters on the motion of rocking walls  

E-Print Network (OSTI)

Introduced as a system in earthquake engineering in 2004 [6], rocking walls are a fairly new system in earthquake engineering. Their performance has been proven, both in research as in practice. However, a few uncertainties ...

Houbrechts, Jeroen J. J. (Jeroen Jose Julien)

2011-01-01T23:59:59.000Z

394

Domain wall induced magnetoresistance in a superconductor/ferromagnet nanowire  

E-Print Network (OSTI)

In a nanowire consisting of a ferromagnet/insulator/superconductor multilayer structure, the superconductivity is shown to depend strongly on the configuration of the magnetic domain walls in the neighboring ferromagnetic ...

Miao, G. X.

395

YMGI Through-the-Wall Air Conditioner Determined Noncompliant...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

testing revealed that this model operates at a Seasonal Energy Efficiency Rating (SEER) of 8.3. The current federal standard requires that through-the-wall split system...

396

Transpiring wall supercritical water oxidation test reactor design report  

Science Conference Proceedings (OSTI)

Sandia National Laboratories is working with GenCorp, Aerojet and Foster Wheeler Development Corporation to develop a transpiring wall supercritical water oxidation reactor. The transpiring wall reactor promises to mitigate problems of salt deposition and corrosion by forming a protective boundary layer of pure supercritical water. A laboratory scale test reactor has been assembled to demonstrate the concept. A 1/4 scale transpiring wall reactor was designed and fabricated by Aerojet using their platelet technology. Sandia`s Engineering Evaluation Reactor serves as a test bed to supply, pressurize and heat the waste; collect, measure and analyze the effluent; and control operation of the system. This report describes the design, test capabilities, and operation of this versatile and unique test system with the transpiring wall reactor.

Haroldsen, B.L.; Ariizumi, D.Y.; Mills, B.E.; Brown, B.G. [Sandia National Labs., Livermore, CA (United States). Engineering for Transportation and Environment Dept.; Rousar, D.C. [GenCorp Aerojet, Sacramento, CA (United States)

1996-02-01T23:59:59.000Z

397

Helium Pumping Wall for a Liquid Lithium Tokamak Richard Majeski...  

NLE Websites -- All DOE Office Websites (Extended Search)

is that a permeable wall is used to separate out helium produced as ash by a burning fusion reactor. This would replace the divertor structure and associated pumps in a...

398

Gas Adsorption on Heterogeneous Single-Walled Carbon Nanotube...  

NLE Websites -- All DOE Office Websites (Extended Search)

the adsorption of C, Xe, and Ar onto bundles of closed-ended SWNTs. The Single-walled carbon nanotubes (SWNTs) are of inter- est as gas adsorbents because of their unique...

399

Dynamic analysis of concrete coupled wall structures : a parametric study  

E-Print Network (OSTI)

Concrete coupled wall structure is a system that can efficiently dissipate energy under the effect of lateral loads. It has been widely used in medium height buildings for several decades. While researchers have conducted ...

Huang, Elaine Annabelle, 1981-

2005-01-01T23:59:59.000Z

400

Seismic design, testing and analysis of reinforced concrete wall buildings  

E-Print Network (OSTI)

J. of Engrg. Mech. 130, 1019, ASCE. Massone L.M. and WallaceWall. (To be submitted in ASCE Journal of Structuralof the Structural Division ASCE, 137-157. He, X. , Moaveni,

Panagiotou, Marios

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wall material mass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Conserval aka SolarWall | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Conserval (aka SolarWall) Place Toronto, Ontario, Canada Zip M3J2N5 Sector Solar Product Makes solar passive heating and cooling products, and...

402

Hygro-Thermal Performance of Imperfectly Protected Below-Grade Walls with Interior Insulation.  

E-Print Network (OSTI)

??This study investigates the performance of three different types of insulation installed in the interior of a basement wall system in a below-grade wall system. (more)

Wolfgang, Brian

2010-01-01T23:59:59.000Z

403

Critical Plane Analysis of Wall Assembly in a Hot, Humid Climate  

E-Print Network (OSTI)

Condensation plane analysis for determining critical planes at which condensation may occur can be performed for building assemblies in any climate. Procedures for doing so in heating climates where buildings dry to the outside of envelope assemblies are given in 1997 ASHRAE Fundamentals Handbook, Chapter 22 "Thermal and Moisture Control in Insulated Assemblies - Fundamentals." Little original work is available elsewhere in the literature to guide analysis for buildings in hot and humid climates. Example 1 in Chapter 22 of the Fundamentals Handbook gives step-by-step calculations, for a heating climate. To analyze envelope assemblies in hot and humid climates where drying predominately occurs to the indoors, no direct discussion or examples are available. This paper presents this detail for a typical light commercial wall assembly, and provides the basis for analysis of any envelope assembly in hot and humid climates. Analysis of an envelope assembly in hot and humid climates seeks to determine if there is a critical plane in the wall towards which water vapor flows more rapidly from the outdoors than it flows to the indoors. (In heating climates, the analysis is reversed). In order to do this, weather data must be examined to yield outdoor conditions, and indoor conditions must be identified. Water vapor and thermal resistance of the materials in the wall assembly must also be established. These data are then used to perform calculations using the basic diffusion equation and methods described in the Fundamentals Handbook.' Each potentially critical plane is analyzed to determine if water vapor can accumulate more rapidly than it dissipates. This potential accumulation would signify a heightened risk of equilibrium relative humidity sufficient to amplify microbial growth, or to promote the deterioration of building materials.

Turner, S. C.

2000-01-01T23:59:59.000Z

404

Chapter 6: Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

: Materials : Materials Material Selection Sustainable Building Materials System Integration Issues | Chapter 6 Material Selection Materials The use of durable, attractive, and environmentally responsible building materials is a key element of any high-performance building effort. The use of natural and healthy materials contributes to the well-being of the occupants and to a feeling of connection with the bounty of the natural world. Many construction materials have significant environ- mental impacts from pollutant releases, habitat destruc- tion, and depletion of natural resources. This can occur during extraction and acquisition of raw materials, pro- "Then I say the Earth belongs to duction and manufacturing processes, and transporta- tion. In addition, some construction materials can harm

405

NEWTON's Material Science Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Science Videos Material Science Videos Do you have a great material science video? Please click our Ideas page. Featured Videos: University of Maryland - Material Science University of Maryland - Material Science The Department of Materials Science and Engineering offers a set of videos about various topics in material science to help students understand what material science is. Learn about plasma, polymers, liquid crystals and much more. LearnersTV.com - Material Science LearnersTV.com - Material Science LearnersTV.com offers a series of educational material science lectures that are available to the public for free. Learn about topics like polymers, non-crystalline solids, crystal geometry, phase diagrams, phase transformations and more. NanoWerk - Nanotechnology Videos NanoWerk - Nanotechnology Videos

406

Static load test of Arquin-designed CMU wall.  

Science Conference Proceedings (OSTI)

The Arquin Corporation has developed a new method of constructing CMU (concrete masonry unit) walls. This new method uses polymer spacers connected to steel wires that serve as reinforcing as well as means of accurately placing the spacers so that the concrete block can be dry stacked. The hollows of the concrete block used in constructing the wall are then filled with grout. As part of a New Mexico Small Business Assistance Program (NMSBAP), Sandia National Laboratories conducted a series of tests that statically loaded wall segments to compare the Arquin method to a more traditional method of constructing CMU walls. A total of 12 tests were conducted, three with the Arquin method using a W5 reinforcing wire, three with the traditional method of construction using a number 3 rebar as reinforcing, three with the Arquin method using a W2 reinforcing wire, and three with the traditional construction method but without rebar. The results of the tests showed that the walls constructed with the Arquin method and with a W5 reinforcing wire withstood more load than any of the other three types of walls that were tested.

Jensen, Richard Pearson; Cherry, Jeffery L.

2008-12-01T23:59:59.000Z

407

Mass Market Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Market Demand Response Mass Market Demand Response Speaker(s): Karen Herter Date: July 24, 2002 - 12:00pm Location: Bldg. 90 Demand response programs are often quickly and poorly crafted in reaction to an energy crisis and disappear once the crisis subsides, ensuring that the electricity system will be unprepared when the next crisis hits. In this paper, we propose to eliminate the event-driven nature of demand response programs by considering demand responsiveness a component of the utility obligation to serve. As such, demand response can be required as a condition of service, and the offering of demand response rates becomes a requirement of utilities as an element of customer service. Using this foundation, we explore the costs and benefits of a smart thermostat-based demand response system capable of two types of programs: (1) a mandatory,

408

Testing of Liquid Scintillator Materials for Gamma and Neutron Detection  

Science Conference Proceedings (OSTI)

The key fact about fissile material is that a sufficient quantity of the material can produce chains of fissions, including some very long chains. A chain of fissions will give rise to a detected burst of neutrons with longer chains generally producing larger bursts. These bursts produce distinctive time correlations in a detector near the multiplying material. These correlations are measurable and can be analyzed to infer attributes of the fissile material including fissile material mass, assembly neutron multiplication, characteristic fast fission chain evolution time scale, also known as the {alpha} time scale, thermalization time scale. The correlation signal is very robust with respect to background and to neutron absorbing material.

Verbeke, J M; Nakae, L; Kerr, P; Dietrich, D; Dougan, A

2009-06-19T23:59:59.000Z

409

Detailed Analysis of Thermal Mass Effects in a Code-Traceable DOE-2 Simulation of the 2000 IECC for a Single-Family Residence in Texas: A Project for Texas' Senate Bill 5 Legislation for Reducing Pollution in Nonattainment and Affected Areas  

E-Print Network (OSTI)

This study examines the thermal mass effects in a code-traceable DOE-2 simulation of the 2000 IECC (International Energy Conservation Code) for a single-family residence in Texas. This report is composed of two major simulations: 1) the simulation according to the location of the insulation of IECC2000, and 2) the simulation according to the types of real brick and block walls which are practically used at the residential house. In this study, the 2000 IECC was used to develop the base case simulation model in Houston, Texas. The DOE-2 energy simulation program was used to analyze changes to the annual energy use caused by changing various building materials. The best energy conservative material layout was then chosen that contained reduced annual energy use, peak cooling and heating loads, and peak day electricity use.

Kim, S.; Haberl, J. S.

2008-07-18T23:59:59.000Z

410

Morphology Characterization of Multi-walled Carbon Nanotubes in ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Joining of Advanced and Specialty Materials (JASM XV). Presentation Title...

411

Permanent Magnet Materials  

Science Conference Proceedings (OSTI)

Table 4   Applications of permanent magnet materials...material Primary reason for selection Alternative material Condition or reason favoring selection of alternative material Aircraft magnetos, military or civilian SmCo Maximum energy per unit volume Cast Alnico 5 Availability or cost restraint Alternators SmCo Compactness and reliability Ferrite...

412

Cementitious Materials Workshop - Presentations  

Cementitious Materials for Waste Treatment, Disposal, Remediation and Decommissioning Workshop. December 12-14, 2006

413

Cementitious Materials Workshop - Contacts  

Cementitious Materials for Waste Treatment, Disposal, Remediation and Decommissioning Workshop. December 12-14, 2006

414

Permanent Magnet Materials  

Science Conference Proceedings (OSTI)

Table 4 Applications of permanent magnet materials...material Primary reason for selection Alternative material Condition or reason favoring selection of alternative material Aircraft magnetos, military or civilian SmCo Maximum energy per unit volume Cast Alnico 5 Availability or cost restraint Alternators SmCo Compactness and reliability Ferrite...

415

Materials Innovation Committee - TMS  

Science Conference Proceedings (OSTI)

... SMD Council, - General Committees, ---- Accreditation Committee, ---- Audit Committee, ---- Education Committee, ---- Materials and Society Committee...

416

About Materials Week '97  

Science Conference Proceedings (OSTI)

LINKS ABOUT INDIANAPOLIS TOUR INFORMATION STUDENT ACTIVITIES SPECIAL EVENTS MATERIALS EXPOSITION CALENDAR OF EVENTS

417

Characterization of phenolic resins with thermogravimetry-mass spectrometry  

Science Conference Proceedings (OSTI)

As part of an advanced material research program, thermogravimetry-mass spectrometry (TG-MS) analysis of a phenolic resin was carried out recently for the study of the curing of the prepolymer, solvent extraction, and carbonization of the polymer at high temperature in inert atmosphere. These steps are critical to the quality of the produced advanced material. In addition to TG-MS, several other complementary techniques were also employed for the analysis of the phenolic resin prepolymer and its curing and thermal degradation products. These techniques include pyrolysis-gas chromatography-mass spectrometry, direct insertion probe-mass spectrometry and gas chromatography-mass spectrometry. 7 refs., 5 figs., 3 tabs.

Chang, Cherng; Tackett, J.R.

1990-01-01T23:59:59.000Z

418

NREL Evaluates the Thermal Performance of Uninsulated Walls to Improve the Accuracy of Building Energy Simulation Tools (Fact Sheet)  

SciTech Connect

This technical highlight describes NREL research to develop models of uninsulated wall assemblies that help to improve the accuracy of building energy simulation tools when modeling potential energy savings in older homes. Researchers at the National Renewable Energy Laboratory (NREL) have developed models for evaluating the thermal performance of walls in existing homes that will improve the accuracy of building energy simulation tools when predicting potential energy savings of existing homes. Uninsulated walls are typical in older homes where the wall cavities were not insulated during construction or where the insulating material has settled. Accurate calculation of heat transfer through building enclosures will help determine the benefit of energy efficiency upgrades in order to reduce energy consumption in older American homes. NREL performed detailed computational fluid dynamics (CFD) analysis to quantify the energy loss/gain through the walls and to visualize different airflow regimes within the uninsulated cavities. The effects of ambient outdoor temperature, radiative properties of building materials, and insulation level were investigated. The study showed that multi-dimensional airflows occur in walls with uninsulated cavities and that the thermal resistance is a function of the outdoor temperature - an effect not accounted for in existing building energy simulation tools. The study quantified the difference between CFD prediction and the approach currently used in building energy simulation tools over a wide range of conditions. For example, researchers found that CFD predicted lower heating loads and slightly higher cooling loads. Implementation of CFD results into building energy simulation tools such as DOE2 and EnergyPlus will likely reduce the predicted heating load of homes. Researchers also determined that a small air gap in a partially insulated cavity can lead to a significant reduction in thermal resistance. For instance, a 4-in. tall air gap (Figure 1a) led to a 15% reduction in resistance. Similarly, a 2-ft tall air gap (Figure 1c) led to 54% reduction in thermal resistance. NREL researchers plan to extend this study to include additional wall configurations, and also to evaluate the performance of attic spaces with different insulation levels. NREL's objective is to address each potential issue that leads to inaccuracies in building energy simulation tools to improve the predictions.

Not Available

2012-01-01T23:59:59.000Z

419

NREL Evaluates the Thermal Performance of Uninsulated Walls to Improve the Accuracy of Building Energy Simulation Tools (Fact Sheet)  

SciTech Connect

This technical highlight describes NREL research to develop models of uninsulated wall assemblies that help to improve the accuracy of building energy simulation tools when modeling potential energy savings in older homes. Researchers at the National Renewable Energy Laboratory (NREL) have developed models for evaluating the thermal performance of walls in existing homes that will improve the accuracy of building energy simulation tools when predicting potential energy savings of existing homes. Uninsulated walls are typical in older homes where the wall cavities were not insulated during construction or where the insulating material has settled. Accurate calculation of heat transfer through building enclosures will help determine the benefit of energy efficiency upgrades in order to reduce energy consumption in older American homes. NREL performed detailed computational fluid dynamics (CFD) analysis to quantify the energy loss/gain through the walls and to visualize different airflow regimes within the uninsulated cavities. The effects of ambient outdoor temperature, radiative properties of building materials, and insulation level were investigated. The study showed that multi-dimensional airflows occur in walls with uninsulated cavities and that the thermal resistance is a function of the outdoor temperature - an effect not accounted for in existing building energy simulation tools. The study quantified the difference between CFD prediction and the approach currently used in building energy simulation tools over a wide range of conditions. For example, researchers found that CFD predicted lower heating loads and slightly higher cooling loads. Implementation of CFD results into building energy simulation tools such as DOE2 and EnergyPlus will likely reduce the predicted heating load of homes. Researchers also determined that a small air gap in a partially insulated cavity can lead to a significant reduction in thermal resistance. For instance, a 4-in. tall air gap (Figure 1a) led to a 15% reduction in resistance. Similarly, a 2-ft tall air gap (Figure 1c) led to 54% reduction in thermal resistance. NREL researchers plan to extend this study to include additional wall configurations, and also to evaluate the performance of attic spaces with different insulation levels. NREL's objective is to address each potential issue that leads to inaccuracies in building energy simulation tools to improve the predictions.

2012-01-01T23:59:59.000Z

420

Strange and charm meson masses from twisted mass lattice QCD  

E-Print Network (OSTI)

We present first results of a 2+1+1 flavor twisted mass lattice QCD computation of strange and charm meson masses. We focus on D and D_s mesons with spin J = 0,1 and parity P = -,+.

Martin Kalinowski; Marc Wagner

2012-12-03T23:59:59.000Z

Note: This page contains sample records for the topic "wall material mass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

EMSL: Capabilities: Mass Spectrometry: Next-Generation Mass Spectrometry  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-Generation Mass Spectrometry Next-Generation Mass Spectrometry Additional Information Meet the Mass Spectrometry Experts Related EMSL User Projects Mass Spectrometry Tools are Applied to all Science Themes Next-Generation Mass Spectrometry Proteomics Research Resource for Integrative Biology Biological and Environmental Research - PNNL Proteomics PNNL's Biological MS Data and Software Distribution Center Mass Spectrometry brochure EMSL is committed to offering state-of-the-art instruments to its users. At a workshop in January of 2008, EMSL mass spectrometry experts joined experts from many universities, private companies, and government institutions and laboratories at a conference held at the National High Magnetic Field Laboratory in Tallahassee Florida. Workshop participants reviewed the state of the art of high-performance mass spectrometers,

422

A test program to determine the structural properties of unreinforced hollow clay tile masonry walls at the DOE Oak Ridge plants  

SciTech Connect

A recent Department of Energy (DOE) General Design Criteria'' has emphasized the importance of determining the adequacy and safety of both new and existing facilities to natural phenomenon hazards. Many of the buildings at the DOE Oak Ridge facilities are constructed with unreinforced masonry hollow clay tile infill walls -- in some cases these walls comprise a substantial part of the lateral force resistance for a building. In order to perform a realistic assessment of the strength of the buildings to seismic events it is important to accurately predict the behavior of these walls. Very little information is currently available on hollow clay tile masonry, its structural properties and behavior. As the in-situ condition of these walls throughout the plants is suspect due to their age and exposure to numerous chemicals, a test program was initiated at the Oak Ridge plants to obtain material properties for use in the natural phenomena hazards analysis. This paper presents the preliminary results of that testing program. The following tests on clay-tile walls, units, and panels were performed: (1) in-situ mortar bed shear strength, (2) compression strength, (3) splitting tensile strength, and (4) diagonal tension (shear) strength of panels which had been removed from existing walls. The testing program is ongoing, is being expanded, and will include not only in-plane tests, but out-of-plane bending testing as well. 11 refs., 3 figs., 5 tabs.

Fricke, K.E.; Jones, W.D.

1989-11-20T23:59:59.000Z

423

MassMass transfer andtransfer and separation technologyseparation technology  

E-Print Network (OSTI)

Driving force Apparatus Heat exchange Energy T Heat exchanger Gas absorption Mass G L c y-y* Packed towerGas absorption Mass G L c, y-y* Packed tower, or tray column Gas desorption Mass L G c, y*-y Packed tower tower, or tray column and B from a mix Vaporisation cooling Energy, water h (enthalpy) Spray tower

Zevenhoven, Ron

424

Thermalisation of a two-dimensional photonic gas in a 'white-wall' photon box  

E-Print Network (OSTI)

Bose-Einstein condensation, the macroscopic accumulation of bosonic particles in the energetic ground state below a critical temperature, has been demonstrated in several physical systems. The perhaps best known example of a bosonic gas, blackbody radiation, however exhibits no Bose-Einstein condensation at low temperatures. Instead of collectively occupying the lowest energy mode, the photons disappear in the cavity walls when the temperature is lowered - corresponding to a vanishing chemical potential. Here we report on evidence for a thermalised two-dimensional photon gas with freely adjustable chemical potential. Our experiment is based on a dye filled optical microresonator, acting as a 'white-wall' box for photons. Thermalisation is achieved in a photon number-conserving way by photon scattering off the dye-molecules, and the cavity mirrors both provide an effective photon mass and a confining potential - key prerequisites for the Bose-Einstein condensation of photons. As a striking example for the unusual system properties, we demonstrate a yet unobserved light concentration effect into the centre of the confining potential, an effect with prospects for increasing the efficiency of diffuse solar light collection.

Jan Klaers; Frank Vewinger; Martin Weitz

2010-04-17T23:59:59.000Z

425

Structural stability of transparent conducting films assembled from length purified single-wall carbon nanotubes  

DOE Green Energy (OSTI)

Single-wall carbon nanotube (SWCNT) films show significant promise for transparent electronics applications that demand mechanical flexibility, but durability remains an outstanding issue. In this work, thin membranes of length purified single-wall carbon nanotubes (SWCNTs) are uniaxially and isotropically compressed by depositing them on prestrained polymer substrates. Upon release of the strain, the topography, microstructure, and conductivity of the films are characterized using a combination of optical/fluorescence microscopy, light scattering, force microscopy, electron microscopy, and impedance spectroscopy. Above a critical surface mass density, films assembled from nanotubes of well-defined length exhibit a strongly nonlinear mechanical response. The measured strain dependence reveals a dramatic softening that occurs through an alignment of the SWCNTs normal to the direction of prestrain, which at small strains is also apparent as an anisotropic increase in sheet resistance along the same direction. At higher strains, the membrane conductivities increase due to a compression-induced restoration of conductive pathways. Our measurements reveal the fundamental mode of elasto-plastic deformation in these films and suggest how it might be suppressed.

J. M. Harris; G. R. S. Iyer; D. O. Simien; J. A. Fagan; J. Y. Huh; J. Y. Chung; S. D. Hudson; J. Obrzut; J. F. Douglas; C. M. Stafford; E. K. Hobbie

2011-01-01T23:59:59.000Z

426

Time dependence of gases from plasma-wall interactions in ISX-A  

DOE Green Energy (OSTI)

Numerous papers have been published concerning radiation damage and thermal properties of first walls in tokamak reactors. However vacuum properties are also important, particularly as regards the adsorption and release of gases during and immediately following tokamak discharges. We have studied the time evolution of working and impurity gases by means of a quadrupole mass spectrometer attached to the ISX-A tokamak. These results were compared with measurements in a similar (304L stainless steel) laboratory vacuum system, with no tokamak discharges. Laboratory tests were made with a 100-msec-long H/sub 2/ puff. The partial pressures of CH/sub 4/, H/sub 2/O, and CO all exhibited very small intermediate peaks followed by a second rise which began 25 to 50 msec after the beginning of the puff and peaked some 200 to 300 msec later. When Ar was substituted for the H/sub 2/ puff the partial pressures of these impurities behaved in a similar manner except that the magnitude of the increase was less. The pressure rise of the impurity gases following the H/sub 2/ puffs varied, depending on the vacuum system configuration, differences in wall preparation of the tokamak and the absence of a plasma in the laboratory systems.

Simpkins, J.E.; Colchin, R.J.

1979-01-01T23:59:59.000Z

427

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Sep 10, 2008 ... Investigations will focus on searching for signs of the Higgs boson, a previously undetected particle thought to generate mass. Scientists will...

428

NETL: Onsite Research: Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

furnace-based technology. 1998-2004: Developed a process to produce extremely thin wall steel castings for use in the transportation industry. Cupola furnace technology:...

429

The kaon semileptonic form factor with near physical domain wall quarks  

E-Print Network (OSTI)

We present a new calculation of the K->pi semileptonic form factor at zero momentum transfer in domain wall lattice QCD with Nf=2+1 dynamical quark flavours. By using partially twisted boundary conditions we simulate directly at the phenomenologically relevant point of zero momentum transfer. We perform a joint analysis for all available ensembles which include three different lattice spacings (a=0.09-0.14fm), large physical volumes (m_pi*L>3.9) and pion masses as low as 171 MeV. The comprehensive set of simulation points allows for a detailed study of systematic effects leading to the prediction f+(0)=0.9670(20)(+18/-46), where the first error is statistical and the second error systematic. The result allows us to extract the CKM-matrix element |Vus|=0.2237(+13/-8) and confirm first-row CKM-unitarity in the Standard Model at the sub per mille level.

Peter A. Boyle; Jonathan M. Flynn; Nicolas Garron; Andreas Juttner; Chris T. Sachrajda; Karthee Sivalingam; James M. Zanotti

2013-05-30T23:59:59.000Z

430

Density Functional Theory Calculations of Mass Transport in UO2  

SciTech Connect

In this talk we present results of density functional theory (DFT) calculations of U, O and fission gas diffusion in UO{sub 2}. These processes all impact nuclear fuel performance. For example, the formation and retention of fission gas bubbles induce fuel swelling, which leads to mechanical interaction with the clad thereby increasing the probability for clad breach. Alternatively, fission gas can be released from the fuel to the plenum, which increases the pressure on the clad walls and decreases the gap thermal conductivity. The evolution of fuel microstructure features is strongly coupled to diffusion of U vacancies. Since both U and fission gas transport rates vary strongly with the O stoichiometry, it is also important to understand O diffusion. In order to better understand bulk Xe behavior in UO{sub 2{+-}x} we first calculate the relevant activation energies using DFT techniques. By analyzing a combination of Xe solution thermodynamics, migration barriers and the interaction of dissolved Xe atoms with U, we demonstrate that Xe diffusion predominantly occurs via a vacancy-mediated mechanism. Since Xe transport is closely related to diffusion of U vacancies, we have also studied the activation energy for this process. In order to explain the low value of 2.4 eV found for U migration from independent damage experiments (not thermal equilibrium) the presence of vacancy clusters must be included in the analysis. Next we investigate species transport on the (111) UO{sub 2} surface, which is motivated by the formation of small voids partially filled with fission gas atoms (bubbles) in UO{sub 2} under irradiation. Surface diffusion could be the rate-limiting step for diffusion of such bubbles, which is an alternative mechanism for mass transport in these materials. As expected, the activation energy for surface diffusion is significantly lower than for bulk transport. These results are further discussed in terms of engineering-scale fission gas release models. Finally, oxidation of UO{sub 2} and the importance of cluster formation for understanding thermodynamic and kinetic properties of UO{sub 2+x} are investigated.

Andersson, Anders D. [Los Alamos National Laboratory; Dorado, Boris [CEA; Uberuaga, Blas P. [Los Alamos National Laboratory; Stanek, Christopher R. [Los Alamos National Laboratory

2012-06-26T23:59:59.000Z

431

Joining of dissimilar materials  

DOE Patents (OSTI)

A method of joining dissimilar materials having different ductility, involves two principal steps: Decoration of the more ductile material's surface with particles of a less ductile material to produce a composite; and, sinter-bonding the composite produced to a joining member of a less ductile material. The joining method is suitable for joining dissimilar materials that are chemically inert towards each other (e.g., metal and ceramic), while resulting in a strong bond with a sharp interface between the two materials. The joining materials may differ greatly in form or particle size. The method is applicable to various types of materials including ceramic, metal, glass, glass-ceramic, polymer, cermet, semiconductor, etc., and the materials can be in various geometrical forms, such as powders, fibers, or bulk bodies (foil, wire, plate, etc.). Composites and devices with a decorated/sintered interface are also provided.

Tucker, Michael C; Lau, Grace Y; Jacobson, Craig P

2012-10-16T23:59:59.000Z

432

MASS SPECTROMETER LEAK  

DOE Patents (OSTI)

An improved valve is described for precisely regulating the flow of a sample fluid to be analyzed, such as in a mass spectrometer, where a gas sample is allowed to "leak" into an evacuated region at a very low, controlled rate. The flow regulating valve controls minute flow of gases by allowing the gas to diffuse between two mating surfaces. The structure of the valve is such as to prevent the corrosive feed gas from contacting the bellows which is employed in the operation of the valve, thus preventing deterioration of the bellows.

Shields, W.R.

1960-10-18T23:59:59.000Z

433

HIGEE Mass Transfer  

E-Print Network (OSTI)

Distillation, absorption, and gas stripping have traditionally been performed in tall columns utilizing trays or packing. Columns perform satisfactorily, but have characteristics which may be disadvantages in some applications: Large size, particularly height; high weight; high cost of installation; difficulty in modularization; foaming for certain systems; must be vertical, especially for trayed towers; large liquid inventory; difficulty in modifying column internals once installed; start up time to reach steady state conditions in excessive. Many of these disadvantages can be overcome by use of HIGEE, an innovative vapor-liquid mass transfer system which utilizes a rotating bed of packing to achieve high efficiency separations, and consequent reduction in size and weight.

Mohr, R. J.; Fowler, R.

1986-06-01T23:59:59.000Z

434

Heat and mass exchanger  

Science Conference Proceedings (OSTI)

A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

2011-06-28T23:59:59.000Z

435

Determining the neutrino mass hierarchy  

Science Conference Proceedings (OSTI)

In this proceedings I review the physics that future experiments will use to determine the neutrino mass hierarchy.

Parke, Stephen J.; /Fermilab

2006-07-01T23:59:59.000Z

436

Interface structure for hub and mass attachment in flywheel rotors  

DOE Patents (OSTI)

An interface structure is described for hub and mass attachment in flywheel rotors. The interface structure efficiently transmits high radial compression forces and withstands both large circumferential elongation and local stresses generated by mass-loading and hub attachments. The interface structure is comprised of high-strength fiber, such as glass and carbon, woven into an angle pattern which is about 45{degree} with respect to the rotor axis. The woven fiber is bonded by a ductile matrix material which is compatible with and adheres to the rotor material. This woven fiber is able to elongate in the circumferential direction to match the rotor growth during spinning. 2 figs.

Deteresa, S.J.; Groves, S.E.

1998-06-02T23:59:59.000Z

437

Interface structure for hub and mass attachment in flywheel rotors  

DOE Patents (OSTI)

An interface structure for hub and mass attachment in flywheel rotors. The interface structure efficiently transmits high radial compression forces and withstands both large circumferential elongation and local stresses generated by mass-loading and hub attachments. The interface structure is comprised of high-strength fiber, such as glass and carbon, woven into an angle pattern which is about 45.degree. with respect to the rotor axis. The woven fiber is bonded by a ductile matrix material which is compatible with and adheres to the rotor material. This woven fiber is able to elongate in the circumferential direction to match the rotor growth during spinning.

Deteresa, Steven J. (Livermore, CA); Groves, Scott E. (Brentwood, CA)

1998-06-02T23:59:59.000Z

438

Material Optimization for Heterostructure Integrated Thermionic Coolers  

E-Print Network (OSTI)

The material figure-of-merit for conventional thermoelectrics is p meff ' '43 where p is the electron or hole mobility, meff its effective mass, and p the material thermal conductivity. From the electronic point of view, in order to optimize the cooler performance, there is a trade off between electron effective mass and its mobility. While high mobility is inherently important to facilitate electron transport in the material and reduce the Joule heating, a large effective mass is only required due to the syrnnzetry of electronic density-of-states with respect to the Fermi energy in an energy range on the order of thermal energy (ks*T) near the Fermi level. It is possible to increase this asymmetry by using doping densities so that the Fermi level is close to the bandedge. In this case there is a small number of electrons participating in the conduction and the net transport of heat is small. We clarify how this trade off is alleviated in high barrier thermionic coolers. Prospects for different material systems to realize bulk and superlattice thermionic coolers are also discussed.

Ali Shakouri; Chris Labounty

1999-01-01T23:59:59.000Z

439

Comprehensive Nuclear Materials  

Science Conference Proceedings (OSTI)

This book encompasses a rich seam of current information on the vast and multidisciplinary field of nuclear materials employed in fission and prototype fusion systems. Discussion includes both historical and contemporary international research in nuclear materials, from Actinides to Zirconium alloys, from the worlds leading scientists and engineers. Synthesizes pertinent current science to support the selection, assessment, validation and engineering of materials in extreme nuclear environments. The work discusses the major classes of materials suitable for usage in nuclear fission, fusion reactors and high power accelerators, and for diverse functions in fuels, cladding, moderator and control materials, structural, functional, and waste materials.

Konings, Dr. Rudy J. M. [European Commission Joint Research Centre; Allen, Todd R. [University of Wisconsin, Madison; Stoller, Roger E [ORNL; Yamanaka, Prof. Shinsuke [Osaka University

2012-01-01T23:59:59.000Z

440

Materials science and engineering  

Science Conference Proceedings (OSTI)

During FY-96, work within the Materials Science and Engineering Thrust Area was focused on material modeling. Our motivation for this work is to develop the capability to study the structural response of materials as well as material processing. These capabilities have been applied to a broad range of problems, in support of many programs at Lawrence Livermore National Laboratory. These studies are described in (1) Strength and Fracture Toughness of Material Interfaces; (2) Damage Evolution in Fiber Composite Materials; (3) Flashlamp Envelope Optical Properties and Failure Analysis; (4) Synthesis and Processing of Nanocrystalline Hydroxyapatite; and (5) Room Temperature Creep Compliance of Bulk Kel-E.

Lesuer, D.R.

1997-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "wall material mass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Property:PotentialBiopowerGaseousMass | Open Energy Information  

Open Energy Info (EERE)

PotentialBiopowerGaseousMass PotentialBiopowerGaseousMass Jump to: navigation, search Property Name PotentialBiopowerGaseousMass Property Type Quantity Description The potential mass of gaseous biopower material for a place. Use this type to express a quantity of magnitude, or an object's resistance to acceleration. The default unit is the kilogram (kg). http://en.wikipedia.org/wiki/Kilogram Acceptable units (and their conversions) are: Kilograms - 1 kg, kilo, kilogram, kilograms, Kilogram, kilogramme, kilos Grams - 1000 g, gram, gramme, grams Tonnes - 0.001 tonnes, metric tons, Tonnes, Metric Tonnes Pounds - 2.205 lbs, pounds, pound, Pounds, Lbs Stone - 0.1575 stones, st, stone Ounces - 35.27 ounces, oz, Ounces, ounce BDT - 0.001 BDT, Bone Dry Tonnes, bdt Pages using the property "PotentialBiopowerGaseousMass"

442

Application of phase change materials in passive solar systems. Final report, October 1, 1977-November 30, 1978  

DOE Green Energy (OSTI)

A modular, hybrid passive solar energy collection and storage unit called the Thermal Wall Panel was designed and constructed. The Thermal Wall Panel uses the concept of energy storage in phase change materials combined with direct solar gain. Based on measurements, a Thermal Wall Panel with movable night-time insulation (R = 6.80) between the storage components and the outside can retain and deliver as heat an average of 45 percent of the sun's energy which falls on it during the day. Based on calculations, a 120 square foot wall can provide about 25 percent of the heating needs of a 1100 square foot house. Analysis indicates that when the Thermal Wall Panel (R = 6.00 nighttime insulation) is combined with other direct gain passive solar energy systems as large, south-facing windows, 56 percent of a home's heating needs can be provided. A Thermal Wall Panel can be installed into a typical home in the Mid-Atlantic Region for an incremental cost of from $6 to $8 per square foot beyond the cost of the normal wall and pay for itself in 5 to 9 years at 1978 energy costs. Also, the Thermal Wall Panel does not require any additional foundation support. A computer model has been developed for the Thermal Wall Panel which shows good agreement with predicted and measured performance.

Sliwkowski, J.

1979-01-01T23:59:59.000Z

443

Quantum Fusion of Strings (Flux Tubes) and Domain Walls  

E-Print Network (OSTI)

We consider formation of composite strings and domain walls as a result of fusion of two elementary objects (elementary strings in the first case and elementary walls in the second) located at a distance from each other. The tension of the composite object T_2 is assumed to be less than twice the tension of the elementary object T_1, so that bound states are possible. If in the initial state the distance d between the fusing strings or walls is much larger than their thickness and satisfies the conditions T_1 d^2 >> 1 (in the string case) and T_1 d^3 >> 1 (in the wall case), the problem can be fully solved quasiclassically. The fusion probability is determined by the first, "under the barrier" stage of the process. We find the bounce configuration and its extremal action S_B. In the wall problem e^{-S_B} gives the fusion probability per unit time per unit area. In the string case, due to a logarithmic infrared divergence, the problem is well formulated only for finite-length strings. The fusion probability per unit time can be found in the limit in which the string length is much larger than the distance between two merging strings.

S. Bolognesi; M. Shifman; M. B. Voloshin

2009-05-11T23:59:59.000Z

444

Linear electric field mass spectrometry  

DOE Patents (OSTI)

A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.

McComas, David J. (Los Alamos, NM); Nordholt, Jane E. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

445

Linear electric field mass spectrometry  

DOE Patents (OSTI)

A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

McComas, D.J.; Nordholt, J.E.

1992-12-01T23:59:59.000Z

446

Application of phase-change materials in passive solar systems. Final report  

DOE Green Energy (OSTI)

The Institute of Energy Conversion of the University of Delaware has designed and constructed a modular, hybrid passive solar energy collection and storage unit called the Thermal Wall Panel. The Thermal Wall Panel uses the concept of energy storage in phase change materials combined with direct solar gain. In the winter of 1977-78, the Thermal Wall Panel was tested at Solar One, the Institute's solar house and laboratory. The key results and conclusions from this testing and analysis program include the following: (1) Based on measurements, a Thermal Wall Panel with movable nighttime insulation (R = 6.80) between the storage components and the outside can retain and deliver as heat an average of 45 percent of the sun's energy which falls on it during the day. (2) Based on calculations, a 120 square foot wall can provide about 25 percent of the heating needs of a 1100 square foot house. Analysis indicates that when the Thermal Wall Panel (R = 6.00 nighttime insulation) is combined with other direct gain passive solar energy systems as large, south-facing windows, 56 percent of a home's heating needs can be provided. (3) A Thermal Wall Panel can be installed into a typical home in the Mid-Atlantic Region for an incremental cost of from $6 to $8 per square foot beyond the cost of the normal wall and pay for itself in 5 to 9 years at 1978 energy costs. Also, the Thermal Wall Panel does not require any additional foundation support. (4) A computer model has been developed for the Thermal Wall Panel which shows good agreement with predicted and measured performance. Based on these results, it is recommended that full-scale testing of the system be initiated at multiple sites in the Mid-Atlantic Region.

Sliwkowski, J.

1979-01-01T23:59:59.000Z

447

Computer-Aided Materials Selection  

Science Conference Proceedings (OSTI)

Table 42   Examples of materials information required during product design...identification Material class (metal, plastic, ceramic, composite) Material subclass Material industry designation Material product form Material condition designation (temper, heat treatment, etc.) Material specification Material alternative names Material component designations (composite/assembly)...

448

Lightweighting Materials | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL conducts lightweighting materials research in several areas: materials development, properties and manufacturing, computational materials science, and multi-material enabling...

449

Three Dimensional Molecular Imaging for Lignocellulosic Materials  

SciTech Connect

The development of high efficiency, inexpensive processing protocols to render biomass components into fermentable substrates for the sequential processing of cell wall components into fuels and important feedstocks for the biorefinery of the future is a key goal of the national roadmap for renewable energy. Furthermore, the development of such protocols depends critically on detailed knowledge of the spatial and temporal infiltration of reagents designed to remove and separate the phenylpropenoid heteropolymer (lignin) from the processable sugar components sequestered in the rigid cell walls of plants. A detailed chemical and structural understanding of this pre-enzymatic processing in space and time was the focus of this program. We worked to develop new imaging strategies that produce real-time molecular speciation information in situ; extract sub-surface information about the effects of processing; and follow the spatial and temporal characteristics of the molecular species in the matrix and correlate this complex profile with saccharification. Spatially correlated SIMS and Raman imaging were used to provide high quality, high resolution subcellular images of Miscanthus cross sections. Furthermore, the combination of information from the mass spectrometry and Raman scattering allows specific chemical assignments of observed structures, difficult to assign from either imaging approach alone and lays the foundation for subsequent heterocorrelated imaging experiments targeted at more challenging biological systems, such as the interacting plant-microbe systems relevant to the rhizosphere.

Bohn, Paul W.; Sweedler, Jonathan V.

2011-06-09T23:59:59.000Z

450

NREL Evaluates Thermal Performance of Uninsulated Walls to Improve Accuracy of Building Energy Simulation Tools (Fact Sheet)  

SciTech Connect

NREL researchers discover ways to increase accuracy in building energy simulations tools to improve predictions of potential energy savings in homes. Uninsulated walls are typical in older U.S. homes where the wall cavities were not insulated during construction or where the insulating material has settled. Researchers at the National Renewable Energy Laboratory (NREL) are investigating ways to more accurately calculate heat transfer through building enclosures to verify the benefit of energy efficiency upgrades that reduce energy use in older homes. In this study, scientists used computational fluid dynamics (CFD) analysis to calculate the energy loss/gain through building walls and visualize different heat transfer regimes within the uninsulated cavities. The effects of ambient outdoor temperature, the radiative properties of building materials, insulation levels, and the temperature dependence of conduction through framing members were considered. The research showed that the temperature dependence of conduction through framing members dominated the differences between this study and previous results - an effect not accounted for in existing building energy simulation tools. The study provides correlations for the resistance of the uninsulated assemblies that can be implemented into building simulation tools to increase the accuracy of energy use estimates in older homes, which are currently over-predicted.

2012-03-01T23:59:59.000Z

451

EC Transmission Line Materials  

SciTech Connect

The purpose of this document is to identify materials acceptable for use in the US ITER Project Office (USIPO)-supplied components for the ITER Electron cyclotron Heating and Current Drive (ECH&CD) transmission lines (TL), PBS-52. The source of material property information for design analysis shall be either the applicable structural code or the ITER Material Properties Handbook. In the case of conflict, the ITER Material Properties Handbook shall take precedence. Materials selection, and use, shall follow the guidelines established in the Materials Assessment Report (MAR). Materials exposed to vacuum shall conform to the ITER Vacuum Handbook. [Ref. 2] Commercial materials shall conform to the applicable standard (e.g., ASTM, JIS, DIN) for the definition of their grade, physical, chemical and electrical properties and related testing. All materials for which a suitable certification from the supplier is not available shall be tested to determine the relevant properties, as part of the procurement. A complete traceability of all the materials including welding materials shall be provided. Halogenated materials (example: insulating materials) shall be forbidden in areas served by the detritiation systems. Exceptions must be approved by the Tritium System and Safety Section Responsible Officers.

Bigelow, Tim S [ORNL

2012-05-01T23:59:59.000Z

452

Finite element analysis of the Arquin-designed CMU wall under a dynamic (blast) load.  

Science Conference Proceedings (OSTI)

The Arquin Corporation designed a CMU (concrete masonry unit) wall construction and reinforcement technique that includes steel wire and polymer spacers that is intended to facilitate a faster and stronger wall construction. Since the construction method for an Arquin-designed wall is different from current wall construction practices, finite element computer analyses were performed to estimate the ability of the wall to withstand a hypothetical dynamic load, similar to that of a blast from a nearby explosion. The response of the Arquin wall was compared to the response of an idealized standard masonry wall exposed to the same dynamic load. Results from the simulations show that the Arquin wall deformed less than the idealized standard wall under such loading conditions. As part of a different effort, Sandia National Laboratories also looked at the relative static response of the Arquin wall, results that are summarized in a separate SAND Report.

Lopez, Carlos; Petti, Jason P.

2008-12-01T23:59:59.000Z

453

Utilization of melting techniques for borehole wall stabilization. [Applied to geothermal well production systems  

DOE Green Energy (OSTI)

A research program on the Subterrene concept based on excavation by melting has been completed. Theoretical and experimental studies were made for a broad range of applications. Most recently, a study of Subterrene deep geothermal well production systems predicted that, compared to rotary-drilled wells, significant cost savings are possible, e.g., 2 and 4 million dollars for 10-km-deep wells and geothermal gradients of 25 and 40 K/km, respectively. It was also concluded that for most wells the rate of penetration of the melting bits should be increased several times over that attained in the Subterrene tests. Subterrene melting penetration tests showed that borehole glass liners can be formed in a wide variety of materials and structural characterization tests showed that tuff glass cylinders can be many times stronger in compression than the parent material. Also, the tests showed that the rock-glass liner permeability decreases rapidly with confining pressure. New melting devices are conceivable that could line rotary-drilled boreholes with rock glass or other materials with resultant improvements in well costs. With emphasis on borehole liners, an overview of Subterrene program results, data on rock-glass liners, and suggestions on how molten materials might be applied to the borehole wall as part of a rotary drilling operation are presented.

Altseimer, J.H.

1977-01-01T23:59:59.000Z

454

Three Dimensional Molecular Imaging for Lignocellulosic Materials  

DOE Green Energy (OSTI)

components sequestered in the rigid cell walls of plants. A detailed chemical and structural understanding of this pre-enzymatic processing in space and time was the focus of this program. We worked to develop new imaging strategies that produce real-time molecular speciation information in situ; extract sub-surface information about the effects of processing; and follow the spatial and temporal characteristics of the molecular species in the matrix and correlate this complex profile with saccharification. Spatially correlated SIMS and Raman imaging were used to provide high quality, high resolution subcellular images of Miscanthus cross sections. Furthermore, the combination of information from the mass spectrometry and Raman scattering allows specific chemical assignments of observed structures, difficult to assign from either imaging approach alone and lays the foundation for subsequent heterocorrelated imaging experiments targeted at more challenging biological systems, such as the interacting plant-microbe systems relevant to the rhizosphere.

Bohn, Paul W.; Sweedler, Jonathan V.

2011-06-09T23:59:59.000Z

455

LANL: Materials Science Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Laboratory (MSL) is Materials Science Laboratory (MSL) is an interdisciplinary facility dedicated to research on current materials and those of future interest. It is a 56,000 square-foot modern facility that can be easily reconfigured to accom- modate new processes and operations. It compris- es 27 laboratories, 15 support rooms, and 60 offices. The MSL supports many distinct materi- als research topics, grouped into four focus areas: mechanical behavior, materials processing, syn- thesis, and characterization. Research within the MSL supports programs of national interest in defense, energy, and the basic sciences. The MSL is a non-classified area in the Materials Science Complex in close proximity to classified and other non-classified materials research facilities. The Materials Science

456

ARM - Public Information Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

govPublicationsPublic Information Materials govPublicationsPublic Information Materials Publications Journal Articles Conference Documents Program Documents Technical Reports Publications Database Public Information Materials Image Library Videos Publication Resources Submit a Publication Publishing Procedures ARM Style Guide (PDF, 448KB) Acronyms Glossary Logos Contacts RSS for Publications Public Information Materials The ARM Climate Research Facility develops public information materials to communicate the purpose and objectives of the program to general audiences. These materials are designed to increase awareness of ARM Climate Research Facility goals and to document its scientific results to a lay audience. Public information materials include fact sheets, brochures, CDs, videos, press releases, and information packets. Approved materials are made

457

Materials/Condensed Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials/Condensed Matter Print Materials/Condensed Matter Print Materials research provides the foundation on which the economic well being of our high-tech society rests. The impact of advanced materials ranges dramatically over every aspect of our modern world from the minutiae of daily life to the grand scale of our national economy. Invariably, however, breakthroughs to new technologies trace their origin both to fundamental research in the basic properties of condensed matter and to applied research aimed at manipulating properties (structural, physical, chemical, electrical, magnetic, optical, etc.). Increasingly, the frontiers of materials research include materials that are "strongly correlated," characterized by strong coupling between a material's electrons with other electrons, magnetism, or the material lattice itself. This coupling often results in novel behavior, such as superconductivity, that may lead to technologically important applications.

458

Structural Materials - Characterization  

Science Conference Proceedings (OSTI)

Mar 14, 2012 ... Cr, are important structural materials for use in advanced nuclear ... holds promise for grain boundary engineering of surface and near-surface ... nuclear structural material Alloy 690 to illustrate the effects of shield gas, travel...

459

Battery separator material  

SciTech Connect

A novel, improved battery separator material particularly adaptable for use in maintenance free batteries. The battery separator material includes a diatomaceous earth filler, an acrylate copolymer binder and a combination of fibers comprising polyolefin, polyester and glass fibers.

Bodendorf, W. J.

1985-07-16T23:59:59.000Z

460

Nanocomposites as thermoelectric materials  

E-Print Network (OSTI)

Thermoelectric materials have attractive applications in electric power generation and solid-state cooling. The performance of a thermoelectric device depends on the dimensionless figure of merit (ZT) of the material, ...

Hao, Qing

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wall material mass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Energy Absorbing Material  

To overcome limitations with cellular silicone foams, LLNL innovators have developed a new 3D energy absorbing material with tailored/engineered bulk-scale properties. The energy absorbing material has 3D patterned architectures specially designed for ...

462

Factors of material consumption  

E-Print Network (OSTI)

Historic consumption trends for materials have been studied by many researchers, and, in order to identify the main drivers of consumption, special attention has been given to material intensity, which is the consumption ...

Silva Daz, Pamela Cristina

2012-01-01T23:59:59.000Z

463

Nanostructured composite reinforced material  

DOE Patents (OSTI)

A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

Seals, Roland D. (Oak Ridge, TN); Ripley, Edward B. (Knoxville, TN); Ludtka, Gerard M. (Oak Ridge, TN)

2012-07-31T23:59:59.000Z

464

Qualitative Reliability Issues for Solid and Liquid Wall Fusion Designs  

SciTech Connect

This report is an initial effort to identify issues affecting reliability and availability of solid and liquid wall designs for magnetic fusion power plant designs. A qualitative approach has been used to identify the possible failure modes of major system components and their effects on the systems. A general set of design attributes known to affect the service reliability has been examined for the overview solid and liquid wall designs, and some specific features of good first wall design have been discussed and applied to these designs as well. The two generalized designs compare well in regard to these design attributes. The strengths and weaknesses of each design approach are seen in the comparison of specific features.

Cadwallader, L.C.

2001-01-31T23:59:59.000Z

465

Qualitative Reliability Issues for Solid and Liquid Wall Fusion Design  

Science Conference Proceedings (OSTI)

This report is an initial effort to identify issues affecting reliability and availability of solid and liquid wall designs for magnetic fusion power plant designs. A qualitative approach has been used to identify the possible failure modes of major system components and their effects on the systems. A general set of design attributes known to affect the service reliability has been examined for the overview solid and liquid wall designs, and some specific features of good first wall design have been discussed and applied to these designs as well. The two generalized designs compare well in regard to these design attributes. The strengths and weaknesses of each design approach are seen in the comparison of specific features.

Cadwallader, Lee Charles

2001-01-01T23:59:59.000Z

466

Long-Term Field Monitoring of an EIFS Clad Wall  

E-Print Network (OSTI)

A popular retrofit option is to install an exterior insulation finish system to the walls of existing buildings. This study evaluates the thermal and moisture performance of such a system with a vented wall assembly. In addition to being a case study, this field monitoring was intended to verify computation methods of building envelope performance. The long term monitoring was designed to be non-destructive so that the building envelope performance is not affected by the measurements that are made, and to allow easy removal of sensors for recalibration and retrieval at the end of the test period. The field monitoring is planned for two years to capture a wide range of environmental conditions. This paper discusses the instrumentation used in the study and presents interim results of the thermal resistance of the wall and surface moisture.

Nady Sad William; M. Nady; A. Sad; William C. Brown; Iain S. Walker

1997-01-01T23:59:59.000Z

467

Orlando Materials Innovation  

Science Conference Proceedings (OSTI)

Ford Motor Company. Buddy Damm. Manager, Metallurgical Applications and Modeling Dept. The Timken Company. Frank Preli. Chief Engineer,. Materials and...

468

Electronics Materials Staff  

Science Conference Proceedings (OSTI)

... Biomaterials Staff; Complex Fluids Staff; Sustainable Polymers Staff; Materials Science and Engineering Division Staff Directory; MML Organization. ...

2012-10-07T23:59:59.000Z

469

Standard Reference Materials  

Science Conference Proceedings (OSTI)

... Inn, KGW, Liggett, WS, and Hutchinson, JMR (1984), "The National Bureau of Standards Rocky Flats Soil Standard Reference Material," Nuclear ...

470

Enabling Materials Resource Sustainability  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... REWAS 2013: Enabling Materials Resource Sustainability: Enabling Sustainability through Education and Consumer Awareness Sponsored...

471

Materials and Society Initiatives  

Science Conference Proceedings (OSTI)

broader cross-section of TMS membership on topics including: resource sustainability, energy, environment, and sustainable materials design and processing.

472

Materials Reference Books  

Science Conference Proceedings (OSTI)

Materials Science Reference Books. ... The Smithells Metals Reference Book Brandis and Brook; Butterworth-Heinemann; Published 1992; ISBN ...

2010-10-05T23:59:59.000Z

473

Materials Processing Fundamentals  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium, Materials Processing Fundamentals. Sponsorship, The Minerals, Metals...

474

Materials Processing & Manufacturing Division  

Science Conference Proceedings (OSTI)

In its broadest scope, the Materials Processing & Manufacturing Division (MPMD) covers manufacturing from product design to production, integrating process...

475

Materials Science/Crystallography  

Science Conference Proceedings (OSTI)

... Understanding the ormation of Methane Hydrate F ... J.247 agnetic Excitation Spectrum in Spin ... eutron Vibrational Spectroscopy of Organic Materials ...

2003-11-12T23:59:59.000Z

476

SRNL - Cementitious Materials Workshop  

... the Department of Energy, ... engineers, project managers, ... status and future direction of the cement materials technology in radioactive waste ...

477

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Dec 10, 2010 ... ESTABLISHED MATERIALS TECHNOLOGIES ... A new, exciting development is the application of these techniques to biological systems,...

478

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Aug 13, 2012 ... ESTABLISHED MATERIALS TECHNOLOGIES ... These projects include the development and validation of modeling tools to deliver higher...

479

Materials Analysis - TMS  

Science Conference Proceedings (OSTI)

Mar 17, 2004 ... 2004 TMS Annual Meeting & Exhibition: Materials Analysis: Understanding ... with the leading failure scenario based on visual observations.

480

Energetic Material Explosives  

INL has invented a process for creating energetic materials, including trinitrotoluene (TNT). By using a carbon dioxide environment, which reduces ...