National Library of Energy BETA

Sample records for wall material mass

  1. Wall System Innovations: Familiar Materials, Better Performance |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Wall System Innovations: Familiar Materials, Better Performance Wall System Innovations: Familiar Materials, Better Performance This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado. wall_system_innovations_kochkin.pdf (1.48 MB) More Documents & Publications Building America New Homes Case Study: Advanced Extended Plate and Beam Wall System in a Cold-Climate House Building

  2. Luminescent single-walled carbon nanotube/silica composite materials...

    Office of Scientific and Technical Information (OSTI)

    Luminescent single-walled carbon nanotubesilica composite materials Citation Details In-Document Search Title: Luminescent single-walled carbon nanotubesilica composite materials...

  3. Luminescent single-walled carbon nanotube/silica composite materials...

    Office of Scientific and Technical Information (OSTI)

    Luminescent single-walled carbon nanotubesilica composite materials Citation Details In-Document Search Title: Luminescent single-walled carbon nanotubesilica composite materials ...

  4. Fluorescent single walled nanotube/silica composite materials...

    Office of Scientific and Technical Information (OSTI)

    Title: Fluorescent single walled nanotubesilica composite materials Fluorescent composites of surfactant-wrapped single-walled carbon nanotubes (SWNTs) were prepared by exposing ...

  5. COLLOQUIUM: Assessing First Wall Materials at the Atomic Scale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wall Materials at the Atomic Scale and Energy Writ Large at Princeton Professor Emily Carter Princeton University Colloquium Committee: The Princeton Plasma Physics Laboratory...

  6. Material options for a commercial fusion reactor first wall

    SciTech Connect (OSTI)

    Dabiri, A.E.

    1986-05-01

    A study has been conducted to evaluate the potential of various materials for use as first walls in high-power-density commercial fusion reactors. Operating limits for each material were obtained based on a number of criteria, including maximum allowable structural temperatures, critical heat flux, ultimate tensile strength, and design-allowable stress. The results with water as a coolant indicate that a modified alloy similar to HT-9 may be a suitable candidate for low- and medium-power-density reactor first walls with neutron loads of up to 6 MW/m/sup 2/. A vanadium or copper alloy must be used for high-power-density reactors. The neutron wall load limit for vanadium alloys is about 14 MW/sup 2/, provided a suitable coating material is chosen. The extremely limited data base for radiation effects hinders any quantitative assessment of the limits for copper alloys.

  7. Quantified reduction of wall material influx during Hohlraum experiments

    SciTech Connect (OSTI)

    Batha, Steven H.; Fincke, James R.

    2004-10-01

    Heating the gold walls of a Hohlraum with intense laser beams produces a rapidly expanding gold plasma. Eventually, the wall material will converge on the axis of the Hohlraum with a density sufficient to be opaque to any standard radiography source. The gold expansion makes radiography of the back wall through the laser entrance hole of a Hohlraum driven from one side difficult. This experiment demonstrates a reduction of Au influx when the Hohlraum walls are coated with 0.44 {mu}m of parylene-N. The reduction is quantified, using an x-ray framing camera, in a cylindrical Hohlraum driven by 6.8 kJ of laser light.

  8. Mass production of multi-wall carbon nanotubes by metal dusting process with high yield

    SciTech Connect (OSTI)

    Ghorbani, H.; Rashidi, A.M.; Rastegari, S.; Mirdamadi, S.; Alaei, M.

    2011-05-15

    Research highlights: {yields} Synthesis of carbon nanotubes over Fe-Ni nanoparticles supported alloy 304L. {yields} Production of carbon nanotubes with high yield (700-1000%) and low cost catalyst. {yields} Optimum growth condition is CO/H{sub 2} = 1/1, 100 cm{sup 3}/min, at 620 {sup o}C under long term repetitive thermal cycling. {yields} Possibility of the mass production by metal dusting process with low cost. -- Abstract: Carbon nanotube materials were synthesized over Fe-Ni nanoparticles generated during disintegration of the surface of alloy 304L under metal dusting environment. The metal dusting condition was simulated and optimized through exposing stainless steel samples during long term repetitive thermal cycling in CO/H{sub 2} = 1/1, total gas flow rate 100 cm{sup 3}/min, at 620 {sup o}C for 300 h. After reaction, surface morphology of the samples and also carbonaceous deposition which had grown on sample surfaces were examined by stereoscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results revealed that multi-wall carbon nanotubes could be formed over nanocatalyst generated on the alloy surface by exploiting metal dusting process. By optimization of reaction parameters the yields of carbon nanotube materials obtained were 700-1000%. Also it has been shown herein that the amount of carbon nanotube materials remarkably increases when the reaction time is extended up to 300 h, indicating a possibility of the mass production by this easy method.

  9. Expert Meeting Report: Interior Insulation Retrofit of Mass Masonry Wall Assemblies

    SciTech Connect (OSTI)

    Ueno, K.; Van Straaten, R.

    2012-02-01

    The Building Science Consortium held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011 at the Westford Regency Hotel in Westford, MA. This report outlines the extensive information that was presented on assessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce such risks.

  10. Expert Meeting Report. Interior Insulation Retrofit of Mass Masonry Wall Assemblies

    SciTech Connect (OSTI)

    Ueno, K.; Van Straaten, R.

    2012-02-01

    The Building Science Consortium held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011, at the Westford Regency Hotel in Westford, MA. This report outlines the extensive information that was presented on assessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce such risks.

  11. Wall loss of atomic nitrogen determined by ionization threshold mass spectrometry

    SciTech Connect (OSTI)

    Sode, M. Schwarz-Selinger, T.; Jacob, W.; Kersten, H.

    2014-11-21

    In the afterglow of an inductively coupled N{sub 2} plasma, relative N atom densities are measured by ionization threshold mass spectrometry as a function of time in order to determine the wall loss time t{sub wN} from the exponential decay curves. The procedure is performed with two mass spectrometers on different positions in the plasma chamber. t{sub wN} is determined for various pressures, i.e., for 3.0, 5.0, 7.5, and 10?Pa. For this conditions also the internal plasma parameters electron density n{sub e} and electron temperature T{sub e} are determined with the Langmuir probe and the rotational temperature T{sub rot}{sup N{sub 2}} of N{sub 2} is determined with the optical emission spectroscopy. For T{sub rot}{sup N{sub 2}}, a procedure is presented to evaluate the spectrum of the transition ?{sup ?}=0??{sup ?}=2 of the second positive system (C{sup 3}?{sub u}?B{sup 3}?{sub g}) of N{sub 2}. With this method, a gas temperature of 610?K is determined. For both mass spectrometers, an increase of the wall loss times of atomic nitrogen with increasing pressure is observed. The wall loss time measured with the first mass spectrometer in the radial center of the cylindrical plasma vessel increases linearly from 0.31?ms for 3?Pa to 0.82?ms for 10?Pa. The wall loss time measured with the second mass spectrometer (further away from the discharge) is about 4 times higher. A model is applied to describe the measured t{sub wN.} The main loss mechanism of atomic nitrogen for the considered pressure is diffusion to the wall. The surface loss probability ?{sub N} of atomic nitrogen on stainless steel was derived from t{sub wN} and is found to be 1 for the present conditions. The difference in wall loss times measured with the mass spectrometers on different positions in the plasma chamber is attributed to the different diffusion lengths.

  12. COLLOQUIUM: Assessing First Wall Materials at the Atomic Scale and Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Writ Large at Princeton | Princeton Plasma Physics Lab 0, 2016, 4:15pm to 5:30pm Colloquia MBG AUDITORIUM COLLOQUIUM: Assessing First Wall Materials at the Atomic Scale and Energy Writ Large at Princeton Professor Emily Carter Princeton University Quantum mechanics based computer simulations can help provide insights into the survivability of first wall and divertor materials. I will present results of research aimed at assessing how hydrogen isotopes interact with solid tungsten and liquid

  13. Expert Meeting Report: Interior Insulation Retrofit of Mass Masonry Wall Assemblies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interior Insulation Retrofit of Mass Masonry Wall Assemblies K. Ueno and R. Van Straaten Building Science Corporation (BSC) February 2012 ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,

  14. Fluorescent single walled nanotube/silica composite materials

    DOE Patents [OSTI]

    Dattelbaum, Andrew M.; Gupta, Gautam; Duque, Juan G.; Doorn, Stephen K.; Hamilton, Christopher E.; DeFriend Obrey, Kimberly A.

    2013-03-12

    Fluorescent composites of surfactant-wrapped single-walled carbon nanotubes (SWNTs) were prepared by exposing suspensions of surfactant-wrapped carbon nanotubes to tetramethylorthosilicate (TMOS) vapor. Sodium deoxycholate (DOC) and sodium dodecylsulphate (SDS) were the surfactants. No loss in emission intensity was observed when the suspension of DOC-wrapped SWNTs were exposed to the TMOS vapors, but about a 50% decrease in the emission signal was observed from the SDS-wrapped SWNTs nanotubes. The decrease in emission was minimal by buffering the SDS/SWNT suspension prior to forming the composite. Fluorescent xerogels were prepared by adding glycerol to the SWNT suspensions prior to TMOS vapor exposure, followed by drying the gels. Fluorescent aerogels were prepared by replacing water in the gels with methanol and then exposing them to supercritical fluid drying conditions. The aerogels can be used for gas sensing.

  15. Molecular beam mass spectrometer equipped with a catalytic wall reactor for in situ studies in high temperature catalysis research

    SciTech Connect (OSTI)

    Horn, R.; Ihmann, K.; Ihmann, J.; Jentoft, F.C.; Geske, M.; Taha, A.; Pelzer, K.; Schloegl, R.

    2006-05-15

    A newly developed apparatus combining a molecular beam mass spectrometer and a catalytic wall reactor is described. The setup has been developed for in situ studies of high temperature catalytic reactions (>1000 deg. C), which involve besides surface reactions also gas phase reactions in their mechanism. The goal is to identify gas phase radicals by threshold ionization. A tubular reactor, made from the catalytic material, is positioned in a vacuum chamber. Expansion of the gas through a 100 {mu}m sampling orifice in the reactor wall into differentially pumped nozzle, skimmer, and collimator chambers leads to the formation of a molecular beam. A quadrupole mass spectrometer with electron impact ion source designed for molecular beam inlet and threshold ionization measurements is used as the analyzer. The sampling time from nozzle to detector is estimated to be less than 10 ms. A detection time resolution of up to 20 ms can be reached. The temperature of the reactor is measured by pyrometry. Besides a detailed description of the setup components and the physical background of the method, this article presents measurements showing the performance of the apparatus. After deriving the shape and width of the energy spread of the ionizing electrons from measurements on N{sub 2} and He we estimated the detection limit in threshold ionization measurements using binary mixtures of CO in N{sub 2} to be in the range of several hundreds of ppm. Mass spectra and threshold ionization measurements recorded during catalytic partial oxidation of methane at 1250 deg. C on a Pt catalyst are presented. The detection of CH{sub 3}{center_dot} radicals is successfully demonstrated.

  16. Simulation of X-ray Irradiation on Optics and Chamber Wall Materials for Inertial Fusion Energy

    SciTech Connect (OSTI)

    Reyes, S; Latkowski, J F; Abbott, R P; Stein, W

    2003-09-10

    We have used the ABLATOR code to analyze the effect of the x-ray emission from direct drive targets on the optics and the first wall of a conceptual laser Inertial Fusion Energy (IFE) power plant. For this purpose, the ABLATOR code has been modified to incorporate the predicted x-ray spectrum from a generic direct drive target. We have also introduced elongation calculations in ABLATOR to predict the thermal stresses in the optic and first wall materials. These results have been validated with thermal diffusion calculations, using the LLNL heat transfer and dynamic structural finite element codes Topaz3d and Dyna3d. One of the most relevant upgrades performed in the ABLATOR code consists of the possibility to accommodate multi-material simulations. This new feature allows for a more realistic modeling of typical IFE optics and first wall materials, which may have a number of different layers. Finally, we have used the XAPPER facility, at LLNL, to develop our predictive capability and validate the results. The ABLATOR code will be further modified, as necessary, to predict the effects of x-ray irradiation in both the IFE real case and our experiments on the XAPPER facility.

  17. Method of measuring material properties of rock in the wall of a borehole

    DOE Patents [OSTI]

    Overmier, David K.

    1985-01-01

    To measure the modulus of elasticity of the rock in the wall of a borehole, a plug is cut in the borehole wall. The plug, its base attached to the surrounding rock, acts as a short column in response to applied forces. A loading piston is applied to the top of the plug and compression of the plug is measured as load is increased. Measurement of piston load and plug longitudinal deformation are made to determine the elastic modulus of the plug material. Poisson's ratio can be determined by simultaneous measurements of longitudinal and lateral deformation of the plug in response to loading. To determine shear modulus, the top of the plug is twisted while measurements are taken of torsional deformation.

  18. Method of measuring material properties of rock in the wall of a borehole

    DOE Patents [OSTI]

    Overmier, D.K.

    1984-01-01

    To measure the modulus of elasticity of the rock in the wall of a borehole, a plug is cut in the borehole wall. The plug, its base attached to the surrounding rock, acts as a short column in response to applied forces. A loading piston is applied to the top of the plug and compression of the plug is measured as load is increased. Measurements of piston load and plug longitudinal deformation are made to determine the elastic modulus of the plug material. Poisson's ratio can be determined by simultaneous measurements of longitudinal and lateral deformation of the plug in response to loading. To determine shear modulus, the top of the plug is twisted while measurements are taken of torsional deformation.

  19. Optimal Shielding for Minimum Materials Cost of Mass

    SciTech Connect (OSTI)

    Woolley, Robert D.

    2014-08-01

    Material costs dominate some shielding design problems. This is certainly the case for manned nuclear power space applications for which shielding is essential and the cost of launching by rocket from earth is high. In such situations or in those where shielding volume or mass is constrained, it is important to optimize the design. Although trial and error synthesis methods may succeed a more systematic approach is warranted. Design automation may also potentially reduce engineering costs.

  20. Potential Energy Savings Due to Phase Change Material in a Building Wall Assembly: An Examination of Two Climates

    SciTech Connect (OSTI)

    Childs, Kenneth W; Stovall, Therese K

    2012-03-01

    Phase change material (PCM), placed in an exterior wall, alters the temperature profile within the wall and thus influences the heat transport through the wall. This may reduce the net energy transport through the wall via interactions with diurnal temperature swings in the external environment or reduce the electricity needed to meet the net load through the wall by shifting the time of the peak load to a time when the cooling system operates more efficiently. This study covers a broad range of parameters that can influence the effectiveness of such a merged thermal storage-thermal insulation system. These parameters included climate, PCM location within the wall, amount of PCM, midpoint of the PCM melting and freezing range relative to the indoor setpoint temperature, temperature range over which phase change occurs, and the wall orientation. Two climates are investigated using finite difference and optimization analyses: Phoenix and Baltimore, with two utility rate schedules. Although potential savings for a PCM with optimized properties were greater when the PCM was concentrated near the inside wall surface, other considerations described here lead to a recommendation for a full-thickness application. An examination of the temperature distribution within the walls also revealed the potential for this system to reduce the amount of energy transported through the wall framing. Finally, economic benefits can exceed energy savings when time-of-day utility rates are in effect, reflecting the value of peak load reductions for the utility grid.

  1. LIFE Materials: Topical Assessment Report for LIFE Volume 1 TOPIC: Solid First Wall and Structural Components TASK: Radiation Effects on First Wall

    SciTech Connect (OSTI)

    Caro, A

    2008-11-26

    This report consists of the following chapters: CHAPTER A: LIFE Requirements for Materials. Part 1: The structure of the First Wall--Basic requirements; A qualitative view of the challenge; The candidate materials; and Base-line material's properties. CHAPTER B: Summary of Existing Knowledge--Brief historical introduction; Design window; The temperature window; Evolution of the design window with damage; Damage calculations; He and H production; Swelling resistance; Incubation dose for swelling; Design criterion No. 1, Strength; Design criterion No. 2, Corrosion resistance; Design criterion No. 3, Creep resistance; Design criterion No. 4, Radiation induced embrittlement; and Conclusions. CHAPTER C: Identification of Gaps in Knowledge & Vulnerabilities. CHAPTER D: Strategy and Future Work.

  2. Nucleon transverse momentum-dependent parton distributions from domain wall fermion calculations at 297 MeV pion mass

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Engelhardt, M.; Musch, B.; Bhattacharya, T.; Gupta, R.; Hagler, P.; Negele, J.; Pochinsky, A.; Schafer, A.; Syritsyn, S.; Yoon, B.

    2014-06-23

    Here, lattice QCD calculations of transverse momentum-dependent parton distributions (TMDs) in a nucleon are performed based on a definition of TMDs via hadronic matrix elements of quark bilocal operators containing staple-shaped gauge connections. A parametrization of the matrix elements in terms of invariant amplitudes serves to cast them in the Lorentz frame preferred for the lattice calculation. Using a RBC/UKQCD domain wall fermion ensemble corresponding to a pion mass of 297 MeV, on a lattice with spacing 0.084 fm, selected TMD observables are accessed and compared to previous exploration at heavier pion masses on coarser lattices.

  3. Technology Solutions Case Study: Retrofit Measures for Embedded Wood Members in Insulated Mass Masonry Walls

    SciTech Connect (OSTI)

    K. Ueno

    2015-10-01

    In this project, the Building Science Corporation team studied a historic brick building in Lawrence, Massachusetts, which is being renovated into 10 condominium units and adding insulation to the interior side of walls of such masonry buildings.

  4. Material migration studies with an ITER first wall panel proxy on EAST

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ding, R.; Pitts, R. A.; Borodin, D.; Carpentier, S.; Ding, F.; Gong, X. Z.; Guo, H. Y.; Kirschner, A.; Kocan, M.; Li, J. G.; et al

    2015-01-23

    The ITER beryllium (Be) first wall (FW) panels are shaped to protect leading edges between neighbouring panels arising from assembly tolerances. This departure from a perfectly cylindrical surface automatically leads to magnetically shadowed regions where eroded Be can be re-deposited, together with co-deposition of tritium fuel. To provide a benchmark for a series of erosion/re-deposition simulation studies performed for the ITER FW panels, dedicated experiments have been performed on the EAST tokamak using a specially designed, instrumented test limiter acting as a proxy for the FW panel geometry. Carbon coated molybdenum plates forming the limiter front surface were exposed tomore » the outer midplane boundary plasma of helium discharges using the new Material and Plasma Evaluation System (MAPES). Net erosion and deposition patterns are estimated using ion beam analysis to measure the carbon layer thickness variation across the surface after exposure. The highest erosion of about 0.8 µm is found near the midplane, where the surface is closest to the plasma separatrix. No net deposition above the measurement detection limit was found on the proxy wall element, even in shadowed regions. The measured 2D surface erosion distribution has been modelled with the 3D Monte Carlo code ERO, using the local plasma parameter measurements together with a diffusive transport assumption. In conclusion, excellent agreement between the experimentally observed net erosion and the modelled erosion profile has been obtained.« less

  5. Material migration studies with an ITER first wall panel proxy on EAST

    SciTech Connect (OSTI)

    Ding, R.; Pitts, R. A.; Borodin, D.; Carpentier, S.; Ding, F.; Gong, X. Z.; Guo, H. Y.; Kirschner, A.; Kocan, M.; Li, J. G.; Luo, G. -N.; Mao, H. M.; Qian, J. P.; Stangeby, P. C.; Wampler, W. R.; Wang, H. Q.; Wang, W. Z.; Chen, J. L.; Gan, K. F.

    2015-01-23

    The ITER beryllium (Be) first wall (FW) panels are shaped to protect leading edges between neighbouring panels arising from assembly tolerances. This departure from a perfectly cylindrical surface automatically leads to magnetically shadowed regions where eroded Be can be re-deposited, together with co-deposition of tritium fuel. To provide a benchmark for a series of erosion/re-deposition simulation studies performed for the ITER FW panels, dedicated experiments have been performed on the EAST tokamak using a specially designed, instrumented test limiter acting as a proxy for the FW panel geometry. Carbon coated molybdenum plates forming the limiter front surface were exposed to the outer midplane boundary plasma of helium discharges using the new Material and Plasma Evaluation System (MAPES). Net erosion and deposition patterns are estimated using ion beam analysis to measure the carbon layer thickness variation across the surface after exposure. The highest erosion of about 0.8 µm is found near the midplane, where the surface is closest to the plasma separatrix. No net deposition above the measurement detection limit was found on the proxy wall element, even in shadowed regions. The measured 2D surface erosion distribution has been modelled with the 3D Monte Carlo code ERO, using the local plasma parameter measurements together with a diffusive transport assumption. In conclusion, excellent agreement between the experimentally observed net erosion and the modelled erosion profile has been obtained.

  6. Mass transfer during wall-rock alteration: An example from a quartz-graphite vein, Black Hills, South Dakota

    SciTech Connect (OSTI)

    Galbreath, K.C.; Duke, E.F.; Papike, J.J. ); Laul, J.C. )

    1988-07-01

    Mass transfer and fluid-rock interaction have been evaluated along two sample traverses in low-sillimanite grade quartz-mica schist adjacent to a synmetamorphic quartz-graphite vein in the southern Black Hills, South Dakota. In an {approximately}17 cm halo between apparently unaltered schist and the vein contact is an outer zone of cryptic alteration and three inner zones of visible alteration. The cryptic zone consists of the original prograde metamorphic mineral assemblage plus anomalously high amounts of tourmaline. The outermost visible zone contains abundant graphite. The second visible zone is defined by intensive bleaching of the schist. The innermost visible zone, immediately adjacent to the vein, is tourmaline + quartz + plagioclase + limonite + graphite. The vein is composed almost entirely of quartz, but also contains trace amounts of graphite. Mass balance calculations indicate that Al was essentially inert. The predominant chemical changes during wall-rock alteration were addition of B and C from the vein-forming fluid along with loss of K from the wall rocks, corresponding to precipitation of tourmaline and graphite, and the progressive destruction of microcline, biotite, and muscovite toward the vein. In addition, the elements V, Cr, Cu, Zn, Pb, As, Sb, W, and Au were introduced into the country rock, whereas Si, Rb, Ba, and Cs were removed. Fluid-rock interaction modeling suggests that between one and four equivalent masses of fluid interacted chemically with the most altered mineral assemblages. In addition, greater than one equivalent mass of reactive fluid penetrated to distances of at least 5 cm from the vein contact.

  7. Building America Case Study: Retrofit Measure for Embedded Wood Members in Insulated Mass Masonry Walls, Lawrence, Massachusetts

    SciTech Connect (OSTI)

    2015-10-01

    ?There are many existing buildings with load-bearing mass masonry walls, whose energy performance could be improved with the retrofit of insulation. However, adding insulation to the interior side of walls of such masonry buildings in cold (and wet) climates may cause performance and durability problems. Some concerns, such as condensation and freeze-thaw have known solutions. But wood members embedded in the masonry structure will be colder (and potentially wetter) after an interior insulation retrofit. Moisture content and relative humidity were monitored at joist ends in historic mass brick masonry walls retrofitted with interior insulation in a cold climate (Zone 5A); data were collected from 2012-2015. Eleven joist ends were monitored in all four orientations. One limitation of these results is that the renovation is still ongoing, with limited wintertime construction heating and no permanent occupancy to date. Measurements show that many joists ends remain at high moisture contents, especially at north- and east-facing orientations, with constant 100 percent RH conditions at the worst cases. These high moisture levels are not conducive for wood durability, but no evidence for actual structural damage has been observed. Insulated vs. non-insulated joist pockets do not show large differences. South facing joists have safe (10-15 percent) moisture contents. Given the uncertainty pointed out by research, definitive guidance on the vulnerability of embedded wood members is difficult to formulate. In high-risk situations, or when a very conservative approach is warranted, the embedded wood member condition can be eliminated entirely, supporting the joist ends outside of the masonry pocket.

  8. Method for studying a sample of material using a heavy ion induced mass spectrometer source

    DOE Patents [OSTI]

    Fries, D.P.; Browning, J.F.

    1999-02-16

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.

  9. Method for studying a sample of material using a heavy ion induced mass spectrometer source

    DOE Patents [OSTI]

    Fries, David P.; Browning, James F.

    1999-01-01

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.

  10. System for studying a sample of material using a heavy ion induced mass spectrometer source

    DOE Patents [OSTI]

    Fries, D.P.; Browning, J.F.

    1998-07-21

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high (n,f) reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.

  11. System for studying a sample of material using a heavy ion induced mass spectrometer source

    DOE Patents [OSTI]

    Fries, David P.; Browning, James F.

    1998-01-01

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.

  12. Mass spectrometry of nuclear materials; Attention to detail

    SciTech Connect (OSTI)

    Shields, W.R

    1989-11-01

    Measurements of the {sup 235}U/{sup 238}U ratio in product-quality material have improved from uncertainties of 0.1 percent (rel) to 0.2 percent since the Manhattan Project. The hardware and procedural changes responsible for these measurement improvements are traced and discussed.

  13. Optimal shielding design for minimum materials cost or mass

    SciTech Connect (OSTI)

    Woolley, Robert D.

    2015-12-02

    The mathematical underpinnings of cost optimal radiation shielding designs based on an extension of optimal control theory are presented, a heuristic algorithm to iteratively solve the resulting optimal design equations is suggested, and computational results for a simple test case are discussed. A typical radiation shielding design problem can have infinitely many solutions, all satisfying the problem's specified set of radiation attenuation requirements. Each such design has its own total materials cost. For a design to be optimal, no admissible change in its deployment of shielding materials can result in a lower cost. This applies in particular to very small changes, which can be restated using the calculus of variations as the Euler-Lagrange equations. Furthermore, the associated Hamiltonian function and application of Pontryagin's theorem lead to conditions for a shield to be optimal.

  14. Optimal shielding design for minimum materials cost or mass

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Woolley, Robert D.

    2015-12-02

    The mathematical underpinnings of cost optimal radiation shielding designs based on an extension of optimal control theory are presented, a heuristic algorithm to iteratively solve the resulting optimal design equations is suggested, and computational results for a simple test case are discussed. A typical radiation shielding design problem can have infinitely many solutions, all satisfying the problem's specified set of radiation attenuation requirements. Each such design has its own total materials cost. For a design to be optimal, no admissible change in its deployment of shielding materials can result in a lower cost. This applies in particular to very smallmore » changes, which can be restated using the calculus of variations as the Euler-Lagrange equations. Furthermore, the associated Hamiltonian function and application of Pontryagin's theorem lead to conditions for a shield to be optimal.« less

  15. BUILDING MATERIAL CHARACTERIZATION USING A CONCRETE FLOOR AND WALL CONTAMINATION PROFILING TECHNOLOGY

    SciTech Connect (OSTI)

    Aggarwal, Dr. S.,; Charters, G.; Thacker, Dr. D.

    2003-02-27

    Certain radioisotopes can penetrate concrete and contaminate the concrete well below the surface. The challenge is to determine the extent and magnitude of the contamination problem in real-time. The concrete profiling technology, TRUPROSM in conjunction with portable radiometric instrumentation produces a profile of radiological or chemical contamination through the material being studied. The data quality, quantity, and representativeness may be used to produce an activity profile from the hot spot surface into the material being sampled. This activity profile may then be expanded to ultimately characterize the facility and expedite waste segregation and facility closure at a reduced cost and risk. Performing a volumetric concrete or metal characterization safer and faster (without lab intervention) is the objective of this characterization technology. This way of determining contamination can save considerable time and money. Currently, concrete core bores are shipped to certified laboratories where the concrete residue is run through a battery of tests to determine the contaminants. The existing core boring operation volatilizes or washes out some of the contaminants (like tritium) and oftentimes cross-contaminates the area around the core bore site. The volatilization of the contaminants can lead to airborne problems in the immediate vicinity of the core bore. Cross-contamination can increase the contamination area and thereby increase the amount of waste generated. The goal is to avoid those field activities that could cause this type of release.

  16. First results from 2+1-Flavor Domain Wall QCD: Mass Spectrum, Topology Change and Chiral Symmetry with $L_s=8$

    SciTech Connect (OSTI)

    D. J. Antonio; T. Blum; K. C. Bowler; P. A. Boyle; N. H. Christ; S. D. Cohen; M. A. Clark; C. Dawson; A. Hart; K. Hashimoto; T. Izubuchi; B. Joó; C. Jung; A. D. Kennedy; R. D. Kenway; S. Li; H. W. Lin; M.F. Lin; R. D. Mawhinney; C.M. Maynard; J. Noaki; S. Ohta; S. Sasaki; A. Soni; R. J. Tweedie; A. Yamaguchi

    2007-06-01

    We present results for the static interquark potential, light meson and baryon masses, and light pseudoscalar meson decay constants obtained from simulations of domain wall QCD with one dynamical flavour approximating the $s$ quark, and two degenerate dynamical flavours with input bare masses ranging from $m_s$ to $m_s/4$ approximating the $u$ and $d$ quarks. We compare these quantities obtained using the Iwasaki and DBW2 improved gauge actions, and actions with larger rectangle coefficients, on $16^3\\times32$ lattices. We seek parameter values at which both the chiral symmetry breaking residual mass due to the finite lattice extent in the fifth dimension and the Monte Carlo time history for topological charge are acceptable for this set of quark masses at lattice spacings above 0.1 fm. We find that the Iwasaki gauge action is best, demonstrating the feasibility of using QCDOC to generate ensembles which are good representations of the QCD path integral on lattices of up to 3 fm in spatial extent with lattice spacings in the range 0.09-0.13 fm. Despite large residual masses and a limited number of sea quark mass values with which to perform chiral extrapolations, our results for light hadronic physics scale and agree with experimental measurements within our statistical uncertainties.

  17. Porous wall hollow glass microspheres as a medium or substrate for storage and formation of novel materials

    DOE Patents [OSTI]

    Wicks, George G; Serkiz, Steven M.; Zidan, Ragaiy; Heung, Leung K.

    2014-06-24

    Porous wall hollow glass microspheres are provided as a template for formation of nanostructures such as carbon nanotubes, In addition, the carbon nanotubes in combination with the porous wall hollow glass microsphere provides an additional reaction template with respect to carbon nanotubes.

  18. Wall Insulation

    SciTech Connect (OSTI)

    2000-10-01

    This fact sheet provides information on advanced wall framing, including insulating walls, airtight construction, and moisture control.

  19. The accretion of solar material onto white dwarfs: No mixing with core material implies that the mass of the white dwarf is increasing

    SciTech Connect (OSTI)

    Starrfield, Sumner

    2014-04-15

    Cataclysmic Variables (CVs) are close binary star systems with one component a white dwarf (WD) and the other a larger cooler star that fills its Roche Lobe. The cooler star is losing mass through the inner Lagrangian point of the binary and some unknown fraction of this material is accreted by the WD. One consequence of the WDs accreting material, is the possibility that they are growing in mass and will eventually reach the Chandrasekhar Limit. This evolution could result in a Supernova Ia (SN Ia) explosion and is designated the Single Degenerate Progenitor (SD) scenario. This paper is concerned with the SD scenario for SN Ia progenitors. One problem with the single degenerate scenario is that it is generally assumed that the accreting material mixes with WD core material at some time during the accretion phase of evolution and, since the typical WD has a carbon-oxygen CO core, the mixing results in large amounts of carbon and oxygen being brought up into the accreted layers. The presence of enriched carbon causes enhanced nuclear fusion and a Classical Nova explosion. Both observations and theoretical studies of these explosions imply that more mass is ejected than is accreted. Thus, the WD in a Classical Nova system is losing mass and cannot be a SN Ia progenitor. However, the composition in the nuclear burning region is important and, in new calculations reported here, the consequences to the WD of no mixing of accreted material with core material have been investigated so that the material involved in the explosion has only a Solar composition. WDs with a large range in initial masses and mass accretion rates have been evolved. I find that once sufficient material has been accreted, nuclear burning occurs in all evolutionary sequences and continues until a thermonuclear runaway (TNR) occurs and the WD either ejects a small amount of material or its radius grows to about 10{sup 12} cm and the evolution is ended. In all cases where mass ejection occurs, the

  20. MASS ESTIMATES OF RAPIDLY MOVING PROMINENCE MATERIAL FROM HIGH-CADENCE EUV IMAGES

    SciTech Connect (OSTI)

    Williams, David R.; Baker, Deborah; Van Driel-Gesztelyi, Lidia

    2013-02-20

    We present a new method for determining the column density of erupting filament material using state-of-the-art multi-wavelength imaging data. Much of the prior work on filament/prominence structure can be divided between studies that use a polychromatic approach with targeted campaign observations and those that use synoptic observations, frequently in only one or two wavelengths. The superior time resolution, sensitivity, and near-synchronicity of data from the Solar Dynamics Observatory's Advanced Imaging Assembly allow us to combine these two techniques using photoionization continuum opacity to determine the spatial distribution of hydrogen in filament material. We apply the combined techniques to SDO/AIA observations of a filament that erupted during the spectacular coronal mass ejection on 2011 June 7. The resulting 'polychromatic opacity imaging' method offers a powerful way to track partially ionized gas as it erupts through the solar atmosphere on a regular basis, without the need for coordinated observations, thereby readily offering regular, realistic mass-distribution estimates for models of these erupting structures.

  1. Fluidized wall for protecting fusion chamber walls

    DOE Patents [OSTI]

    Maniscalco, James A.; Meier, Wayne R.

    1982-01-01

    Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithium-ceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

  2. High spatial resolution mapping of deposition layers on plasma facing materials by laser ablation microprobe time-of-flight mass spectroscopy

    SciTech Connect (OSTI)

    Xiao, Qingmei; Li, Cong; Hai, Ran; Zhang, Lei; Feng, Chunlei; Ding, Hongbin, E-mail: hding@dlut.edu.cn [School of Physics and Optical Electronic Technology, Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Chinese Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Zhou, Yan; Yan, Longwen; Duan, Xuru [Southwestern Institute of Physics, P.O. Box 432, No. 3 South Section 3, Circle Road 2, Chengdu 610041, Sichuan (China)

    2014-05-15

    A laser ablation microprobe time-of-flight mass spectroscopy (LAM-TOF-MS) system with high spatial resolution, ?20 nm in depth and ?500 ?m or better on the surface, is developed to analyze the composition distributions of deposition layers on the first wall materials or first mirrors in tokamak. The LAM-TOF-MS system consists of a laser ablation microprobe combined with a TOF-MS and a data acquisition system based on a LabVIEW program software package. Laser induced ablation combined with TOF-MS is an attractive method to analyze the depth profile of deposited layer with successive laser shots, therefore, it can provide information for composition reconstruction of the plasma wall interaction process. In this work, we demonstrate that the LAM-TOF-MS system is capable of characterizing the depth profile as well as mapping 2D composition of deposited film on the molybdenum first mirror retrieved from HL-2A tokamak, with particular emphasis on some of the species produced during the ablation process. The presented LAM-TOF-MS system provides not only the 3D characterization of deposition but also the removal efficiency of species of concern.

  3. A Residual Mass Ballistic Testing Method to Compare Armor Materials or Components (Residual Mass Ballistic Testing Method)

    SciTech Connect (OSTI)

    Benjamin Langhorst; Thomas M Lillo; Henry S Chu

    2014-05-01

    A statistics based ballistic test method is presented for use when comparing multiple groups of test articles of unknown relative ballistic perforation resistance. The method is intended to be more efficient than many traditional methods for research and development testing. To establish the validity of the method, it is employed in this study to compare test groups of known relative ballistic performance. Multiple groups of test articles were perforated using consistent projectiles and impact conditions. Test groups were made of rolled homogeneous armor (RHA) plates and differed in thickness. After perforation, each residual projectile was captured behind the target and its mass was measured. The residual masses measured for each test group were analyzed to provide ballistic performance rankings with associated confidence levels. When compared to traditional V50 methods, the residual mass (RM) method was found to require fewer test events and be more tolerant of variations in impact conditions.

  4. Performance of a selective surfaced water wall retrofit

    SciTech Connect (OSTI)

    Arasteh, D.; Harrje, D.T.; Nall, D.H.; Settles, G.S.

    1980-01-01

    The results of a successful passive water wall design and implementation in a suburban central New Jersey home are presented. The unique aspects of this work include the use of a selective surface coating on the exterior face of the thermal mass, the use of low-cost materials, and detailed performance measurements of the wall and home. The overall approach was to evaluate the retrofit possibilities of such a passive solar addition. Material costs of approximately $650 make this water wall design an attractive candidate for the do-it-yourself home retrofit. The wall performed well in supplying almost 20% of the winter heating requrements for the entire house. Compared to night insulation, the selective surface proved to be slightly less effective but much more economical.

  5. Bumper wall for plasma device

    DOE Patents [OSTI]

    Coultas, Thomas A.

    1977-01-01

    Operation of a plasma device such as a reactor for controlled thermonuclear fusion is facilitated by an improved bumper wall enclosing the plasma to smooth the flow of energy from the plasma as the energy impinges upon the bumper wall. The bumper wall is flexible to withstand unequal and severe thermal shocks and it is readily replaced at less expense than the cost of replacing structural material in the first wall and blanket that surround it.

  6. Diamagnetic composite material structure for reducing undesired electromagnetic interference and eddy currents in dielectric wall accelerators and other devices

    DOE Patents [OSTI]

    Caporaso, George J.; Poole, Brian R.; Hawkins, Steven A.

    2015-06-30

    The devices, systems and techniques disclosed here can be used to reduce undesired effects by magnetic field induced eddy currents based on a diamagnetic composite material structure including diamagnetic composite sheets that are separated from one another to provide a high impedance composite material structure. In some implementations, each diamagnetic composite sheet includes patterned conductor layers are separated by a dielectric material and each patterned conductor layer includes voids and conductor areas. The voids in the patterned conductor layers of each diamagnetic composite sheet are arranged to be displaced in position from one patterned conductor layer to an adjacent patterned conductor layer while conductor areas of the patterned conductor layers collectively form a contiguous conductor structure in each diamagnetic composite sheet to prevent penetration by a magnetic field.

  7. Verification and Validation of EnergyPlus Conduction Finite Difference and Phase Change Material Models for Opaque Wall Assemblies

    SciTech Connect (OSTI)

    Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.; Booten, C.

    2012-07-01

    Phase change materials (PCMs) represent a potential technology to reduce peak loads and HVAC energy consumption in buildings. There are few building energy simulation programs that have the capability to simulate PCM but their accuracy has not been completely tested. This report summarizes NREL efforts to develop diagnostic tests cases to obtain accurate energy simulations when PCMs are modeled in residential buildings.

  8. Analysis of mass loss of a coal particle during the course of burning in a flow of inert material

    SciTech Connect (OSTI)

    Pelka, Piotr

    2009-08-15

    This paper is an attempt to explain the role of erosion during the process of coal combustion in a circulating fluidized bed. Different kinds of carbon deposits found in Poland, both bituminous as well as lignite with the particle of 10 mm in diameter were the subject of the research. According to many publications it is well known that erosion plays a significant role in coal combustion, by changing its mechanism as well as generating an additional mass loss of the mother particle. The purpose of this research was to determine the influence of an inert material on an erosive mass loss of a single coal particle burning in a two-phase flow. The determination of the influence of a coal type, the rate of flow of inert material and the temperature inside the furnace on the erosive mass loss of burning coal particle was also taken into consideration. The results obtained indicate that the velocity of the erosive mass loss depends on the chemical composition and petrographic structure of burning coal. The mechanical interaction of inert and burning coal particles leads to the shortening of the period of overall mass loss of the coal particle by even two times. The increase in the rate of flow of the inert material intensifies the generation of mass loss by up to 100%. The drop in temperature which slows down the combustion process, decreases the mass loss of the coal particle as the result of mechanical interaction of the inert material. As was observed, the process of percolation plays a significant role by weakening the surface of the burning coal. (author)

  9. Mass and mixing angle patterns in the Standard Model and its material Supersymmetric Extension

    SciTech Connect (OSTI)

    Ramond, P.

    1992-01-01

    Using renormalization group techniques, we examine several interesting relations among masses and mixing angles of quarks and lepton in the Standard Model of Elementary Particle Interactions as a functionof scale. We extend the analysis to the minimal Supersymmetric Extension to determine its effect on these mass relations. For a heavy to quark, and minimal supersymmetry, most of these relations, can be made to agree at one unification scale.

  10. Monte Carlo study of electron-beam penetration and backscattering in multi-walled carbon nanotube materials: The effect of different scattering models

    SciTech Connect (OSTI)

    Kyriakou, Ioanna; Emfietzoglou, Dimitris; Nojeh, Alireza; Moscovitch, Marko

    2013-02-28

    A systematic study of electron-beam penetration and backscattering in multi-walled carbon nanotube (MWCNT) materials for beam energies of {approx}0.3 to 30 keV is presented based on event-by-event Monte Carlo simulation of electron trajectories using state-of-the-art scattering cross sections. The importance of different analytic approximations for computing the elastic and inelastic electron-scattering cross sections for MWCNTs is emphasized. We offer a simple parameterization for the total and differential elastic-scattering Mott cross section, using appropriate modifications to the Browning formula and the Thomas-Fermi screening parameter. A discrete-energy-loss approach to inelastic scattering based on dielectric theory is adopted using different descriptions of the differential cross section. The sensitivity of electron penetration and backscattering parameters to the underlying scattering models is examined. Our simulations confirm the recent experimental backscattering data on MWCNT forests and, in particular, the steep increase of the backscattering yield at sub-keV energies as well as the sidewalls escape effect at high-beam energies.

  11. In Situ-Grown ZnCo2O4 on Single-Walled Carbon Nanotubes as Air Electrode Materials for Rechargeable Lithium–Oxygen Batteries

    SciTech Connect (OSTI)

    Liu, Bin; Xu, Wu; Yan, Pengfei; Bhattacharya, Priyanka; Cao, Ruiguo; Bowden, Mark E.; Engelhard, Mark H.; Wang, Chong M.; Zhang, Jiguang

    2015-10-12

    Although lithium-oxygen (Li-O2) batteries have great potential to be used as one of the next generation energy storage systems due to their ultrahigh theoretical specific energy, there are still many significant barriers before their practical applications. These barriers include electrolyte and electrode instability, poor ORR/OER efficiency and cycling capability, etc. Development of a highly efficient catalyst will not only enhance ORR/OER efficiency, it may also improve the stability of electrolyte because the reduced charge voltage. Here we report the synthesis of nano-sheet-assembled ZnCo2O4 spheres/single walled carbon nanotubes (ZCO/SWCNTs) composites as high performance air electrode materials for Li-O2 batteries. The ZCO catalyzed SWCNTs electrodes delivered high discharge capacities, decreased the onset of oxygen evolution reaction by 0.9 V during charge processes, and led to more stable cycling stability. These results indicate that ZCO/SWCNTs composite can be used as highly efficient air electrode for oxygen reduction and evolution reactions. The highly enhanced catalytic activity by uniformly dispersed ZnCo2O4 catalyst on nanostructured electrodes is expected to inspire

  12. Axion domain wall baryogenesis

    SciTech Connect (OSTI)

    Daido, Ryuji; Kitajima, Naoya; Takahashi, Fuminobu

    2015-07-28

    We propose a new scenario of baryogenesis, in which annihilation of axion domain walls generates a sizable baryon asymmetry. Successful baryogenesis is possible for a wide range of the axion mass and decay constant, m≃10{sup 8}–10{sup 13} GeV and f≃10{sup 13}–10{sup 16} GeV. Baryonic isocurvature perturbations are significantly suppressed in our model, in contrast to various spontaneous baryogenesis scenarios in the slow-roll regime. In particular, the axion domain wall baryogenesis is consistent with high-scale inflation which generates a large tensor-to-scalar ratio within the reach of future CMB B-mode experiments. We also discuss the gravitational waves produced by the domain wall annihilation and its implications for the future gravitational wave experiments.

  13. Mass and charge overlaps in beamline implantation into compound semiconductor materials

    SciTech Connect (OSTI)

    Current, M. I.; Eddy, R.; Hudak, C.; Serfass, J.; Mount, G.

    2012-11-06

    Mass overlaps occurring as a result of extraction of ions from an arc discharge and gas collisions, producing molecular break up and charge exchange in the accelerator beamline, are examined for ion implantation into compound semiconductors. The effects of the choice of plasma gas elements for Be{sup +} implants are examined as an example.

  14. Turbine airfoil with outer wall thickness indicators

    DOE Patents [OSTI]

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  15. STATUS OF THE DIELECTRIC WALL ACCELERATOR

    SciTech Connect (OSTI)

    Caporaso, G J; Chen, Y; Sampayan, S; Akana, G; Anaya, R; Blackfield, D; Carroll, J; Cook, E; Falabella, S; Guethlein, G; Harris, J; Hawkins, S; Hickman, B; Holmes, C; Horner, A; Nelson, S; Paul, A; Pearson, D; Poole, B; Richardson, R; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J; Weir, J

    2009-04-22

    The dielectric wall accelerator (DWA) system being developed at the Lawrence Livermore National Laboratory (LLNL) uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. High electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The system is capable of accelerating any charge to mass ratio particle. Applications of high gradient proton and electron versions of this accelerator will be discussed. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, photoconductive switches and compact proton sources.

  16. Characterization of Two Different Clay Materials by Thermogravimetry (TG), Differential Scanning Calorimetry (DSC), Dilatometry (DIL) and Mass Spectrometry (MS) - 12215

    SciTech Connect (OSTI)

    Post, Ekkehard; Henderson, Jack B.

    2012-07-01

    An illitic clay containing higher amounts of organic materials was investigated by dilatometry, thermogravimetry and differential scanning calorimetric. The evolved gases were studied during simultaneous TG-DSC (STA) and dilatometer measurements with simultaneous mass spectrometry in inert gas and oxidizing atmosphere. The dilatometer results were compared with the STA-MS results which confirmed and explained the reactions found during heating of the clay, like dehydration, dehydroxylation, shrinkage, sintering, quartz phase transition, combustion or pyrolysis of organics and the solid state reactions forming meta-kaolinite and mullite. The high amount of organic material effects in inert gas atmosphere most probably a reduction of the oxides which leads to a higher mass loss than in oxidizing atmosphere. Due to this reduction an additional CO{sub 2} emission at around 1000 deg. C was detected which did not occur in oxidizing atmosphere. Furthermore TG-MS results of a clay containing alkali nitrates show that during heating, in addition to water and CO{sub 2}, NO and NO{sub 2} are also evolved, leading to additional mass loss steps. These types of clays showed water loss starting around 100 deg. C or even earlier. This relative small mass loss affects only less shrinkage during the expansion of the sample. The dehydroxylation and the high crystalline quartz content result in considerable shrinkage and expansion of the clay. During the usual solid state reaction where the clay structure collapses, the remaining material finally shrinks down to a so-called clinker. With the help of MS the TG steps can be better interpreted as the evolved gases are identified. With the help of the MS it is possible to distinguish between CO{sub 2} and water (carbonate decomposition, oxidation of organics or dehydration/dehydroxylation). The MS also clearly shows that mass number 44 is found during the TG step of the illitic clay at about 900 deg. C in inert gas, which was interpreted

  17. Mass Spectrometry and Fourier Transform Infrared Spectroscopy for Analysis of Biological Materials

    SciTech Connect (OSTI)

    Anderson, Timothy J.

    2014-12-01

    Time-of-flight mass spectrometry along with statistical analysis was utilized to study metabolic profiles among rats fed resistant starch (RS) diets. Fischer 344 rats were fed four starch diets consisting of 55% (w/w, dbs) starch. A control starch diet consisting of corn starch was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. A subgroup received antibiotic treatment to determine if perturbations in the gut microbiome were long lasting. A second subgroup was treated with azoxymethane (AOM), a carcinogen. At the end of the eight week study, cecal and distal-colon contents samples were collected from the sacrificed rats. Metabolites were extracted from cecal and distal colon samples into acetonitrile. The extracts were then analyzed on an accurate-mass time-of-flight mass spectrometer to obtain their metabolic profile. The data were analyzed using partial least-squares discriminant analysis (PLS-DA). The PLS-DA analysis utilized a training set and verification set to classify samples within diet and treatment groups. PLS-DA could reliably differentiate the diet treatments for both cecal and distal colon samples. The PLS-DA analyses of the antibiotic and no antibiotic treated subgroups were well classified for cecal samples and modestly separated for distal-colon samples. PLS-DA analysis had limited success separating distal colon samples for rats given AOM from those not treated; the cecal samples from AOM had very poor classification. Mass spectrometry profiling coupled with PLS-DA can readily classify metabolite differences among rats given RS diets.

  18. Determining the U-value of a wall from field measurements of heat flux and surface temperatures

    SciTech Connect (OSTI)

    Modera, M.P.; Sherman, M.H.; Sonderegger, R.C.

    1986-05-01

    Thermal conductances (U-values) and thermal resistances (R-values) are discussed throughout the literature as the appropriate parameters for characterizing heat transfer through walls. Because the quoted numbers are usually determined from the handbook values of material properties, they have several drawbacks: (1) they do not take into account degradation effects, (2) they ignore construction irregularities, and (3) they do not take into account multi-dimensional heat flow. This paper examines the use of field measurements of heat flow and surface temperatures to determine the U-values of walls. The effects of thermal mass on measurements of wall U-values are described in detail, using two data interpretation techniques to estimate the U-values of insulated and uninsulated cavity walls, with and without brick facing. The errors in U-value estimation are determined by comparison with an analytical model of wall thermal performance. For each wall, the error in the U-value determination is plotted as a function of test length for several typical weather conditions. For walls with low thermal mass, such as an fiberglass-insulated cavity wall, it appears that, under favorable test conditions, a 6-hour measurement is adequate to measure the U-value within about 10% uncertainty. For masonary walls, the measurement time required is considerably longer than 6 hours. It is shown that for masonry walls, and in general, the optimal measurement time is a multiple of 24 hours due to the effects of diurnal weather fluctuations.

  19. Validating mass spectrometry measurements of nuclear materials via a non-contact volume analysis method of ion sputter craters

    SciTech Connect (OSTI)

    Willingham, David G.; Naes, Benjamin E.; Fahey, Albert J.

    2015-01-01

    A combination of secondary ion mass spectrometry, optical profilometry and a statistically-driven algorithm was used to develop a non-contact volume analysis method to validate the useful yields of nuclear materials. The volume analysis methodology was applied to ion sputter craters created in silicon and uranium substrates sputtered by 18.5 keV O- and 6.0 keV Ar+ ions. Sputter yield measurements were determined from the volume calculations and were shown to be comparable to Monte Carlo calculations and previously reported experimental observations. Additionally, the volume calculations were used to determine the useful yields of Si+, SiO+ and SiO2+ ions from the silicon substrate and U+, UO+ and UO2+ ions from the uranium substrate under 18.5 keV O- and 6.0 keV Ar+ ion bombardment. This work represents the first steps toward validating the interlaboratory and cross-platform performance of mass spectrometry for the analysis of nuclear materials.

  20. Isolation of 163Ho from dysprosium target material by HPLC for neutrino mass measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mocko, Veronika; Taylor, Wayne  A.; Nortier, Francois M.; Engle, Jonathan  W.; Barnhart, Todd  E.; Nickles, Robert  J.; Pollington, Anthony  D.; Kunde, Gerd  J.; Rabin, Michael  W.; Birnbaum, Eva  R.

    2015-04-29

    The rare earth isotope 163Ho is of interest for neutrino mass measurements. This report describes the isolation of 163Ho from a proton-irradiated dysprosium target and its purification. A Dy metal target was irradiated with 16 MeV protons for 10 h. After target dissolution, 163Ho was separated from the bulk Dy via cation-exchange high performance liquid chromatography using 70 mmol dm–3 α-hydroxyisobutyric acid as the mobile phase. Subsequent purification of the collected Ho fraction was performed to remove the α-hydroxyisobutyrate chelating agent and to concentrate the Ho in a low ionic strength aqueous matrix. The final solution was characterized by MC-ICP-MSmore » to determine the 163Ho/165Ho ratio, 163Ho and the residual Dy content. The HPLC purification process resulted in a decontamination factor 1.4E5 for Dy. As a result, the isolated Ho fraction contained 24.8 ±1.3 ng of 163Ho corresponding to holmium recovery of 72 ± 3%.« less

  1. Multiple moving wall dry coal extrusion pump

    DOE Patents [OSTI]

    Fitzsimmons, Mark Andrew

    2013-05-14

    A pump for transporting particulate material includes a passageway defined on each side between an inlet and an outlet by a moving wall.

  2. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    SciTech Connect (OSTI)

    Horkley, J. J.; Carney, K. P.; Gantz, E. M.; Davies, J. E.; Lewis, R. R.; Crow, J. P.; Poole, C. A.; Grimes, T. S.; Giglio, J. J.

    2015-03-17

    Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure spike solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for age determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determine 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described.

  3. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Horkley, J. J.; Carney, K. P.; Gantz, E. M.; Davies, J. E.; Lewis, R. R.; Crow, J. P.; Poole, C. A.; Grimes, T. S.; Giglio, J. J.

    2015-03-17

    Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure “spike” solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for “age” determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determinemore » 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described.« less

  4. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    SciTech Connect (OSTI)

    Horkley, J. J.; Carney, K. P.; Gantz, E. M.; Davies, J. E.; Lewis, R. R.; Crow, J. P.; Poole, C. A.; Grimes, T. S.; Giglio, J. J.

    2015-03-17

    Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure “spike” solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for “age” determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determine 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described.

  5. The Dielectric Wall Accelerator

    SciTech Connect (OSTI)

    Caporaso, George J.; Chen, Yu-Jiuan; Sampayan, Stephen E.

    2009-01-01

    The Dielectric Wall Accelerator (DWA), a class of induction accelerators, employs a novel insulating beam tube to impress a longitudinal electric field on a bunch of charged particles. The surface flashover characteristics of this tube may permit the attainment of accelerating gradients on the order of 100 MV/m for accelerating pulses on the order of a nanosecond in duration. A virtual traveling wave of excitation along the tube is produced at any desired speed by controlling the timing of pulse generating modules that supply a tangential electric field to the tube wall. Because of the ability to control the speed of this virtual wave, the accelerator is capable of handling any charge to mass ratio particle; hence it can be used for electrons, protons and any ion. The accelerator architectures, key technologies and development challenges will be described.

  6. First wall for polarized fusion reactors

    DOE Patents [OSTI]

    Greenside, H.S.; Budny, R.V.; Post, D.E. Jr.

    1985-01-29

    A first-wall or first-wall coating for use in a fusion reactor having polarized fuel may be formed of a low-Z non-metallic material having slow spin relaxation, i.e., a depolarization rate greater than 1 sec/sup -1/. Materials having these properties include hydrogenated and deuterated amorphous semiconductors. A method for preventing the rapid depolarization of a polarized plasma in a fusion device may comprise the step of providing a first-wall or first-wall coating formed of a low-Z, non-metallic material having a depolarization rate greater than 1 sec/sup -1/.

  7. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    SciTech Connect (OSTI)

    J.J. Horkley; K.P E.M. Gantz; J.E. Davis; R.R. Lewis; J.P. Crow; C.A. Poole; T.S. Grimes; J.J. Giglio

    2015-03-01

    t Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure spike solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for age determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determine 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution,

  8. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Materials Access to Hopper Phase II (Cray XE6) If you are a current NERSC user, you are enabled to use Hopper Phase II. Use your SSH client to connect to Hopper II:...

  9. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Materials Understanding and manipulating the most fundamental properties of materials can lead to major breakthroughs in solar power, reactor fuels, optical computing, telecommunications. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets Yu Seung Kim (left) and Kwan-Soo Lee (right) New class of fuel cells offer increased flexibility, lower cost A new class of fuel cells based on a newly discovered polymer-based material could bridge

  10. Seismic behavior of geogrid reinforced slag wall

    SciTech Connect (OSTI)

    Edincliler, Ayse; Baykal, Gokhan; Saygili, Altug

    2008-07-08

    Flexible retaining structures are known with their high performance under earthquake loads. In geogrid reinforced walls the performance of the fill material and the interface of the fill and geogrid controls the performance. Geosynthetic reinforced walls in seismic regions must be safe against not only static forces but also seismic forces. The objective of this study is to determine the behavior of a geogrid reinforced slag wall during earthquake by using shaking table experiments. This study is composed of three stages. In the first stage the physical properties of the material to be used were determined. In the second part, a case history involving the use of slag from steel industry in the construction of geogrid reinforced wall is presented. In the third stage, the results of shaking table tests conducted using model geogrid wall with slag are given. From the results, it is seen that slag can be used as fill material for geogrid reinforced walls subjected to earthquake loads.

  11. Thin Wall Cast Iron: Phase II

    SciTech Connect (OSTI)

    Doru M. Stefanescu

    2005-07-21

    The development of thin-wall technology allows the designers of energy consuming equipment to select the most appropriate material based on cost/material properties considerations, and not solely on density. The technology developed in this research project will permit the designers working for the automotive industry to make a better informed choice between competing materials and thin wall cast iron, thus decreasing the overall cost of the automobile.

  12. Electrochemically induced deposition method to prepare {gamma}-MnO{sub 2}/multi-walled carbon nanotube composites as electrode material in supercapacitors

    SciTech Connect (OSTI)

    Fan Zhen

    2008-08-04

    The {gamma}-MnO{sub 2}/multi-walled carbon nanotube ({gamma}-MnO{sub 2}/MWNT) composite has been prepared by electrochemically induced deposition method. The morphology and crystal structure of the composite were investigated by X-ray diffraction and scanning electron microscopy, respectively. The capacitive properties of the {gamma}-MnO{sub 2}/MWNT composite have been investigated by cyclic voltammetry (CV). A specific capacitance (based on {gamma}-MnO{sub 2}) as high as 579 F g{sup -1} is obtained at a scan rate of 10 mV s{sup -1} in 0.1 M Na{sub 2}SO{sub 4} aqueous solution. Additionally, the {gamma}-MnO{sub 2}/MWNT composite electrode shows excellent long-term cycle stability (only 2.4% decrease of the specific capacitance is observed after 500 CV cycles)

  13. First wall for polarized fusion reactors

    DOE Patents [OSTI]

    Greenside, Henry S.; Budny, Robert V.; Post, Jr., Douglass E.

    1988-01-01

    Depolarization mechanisms arising from the recycling of the polarized fuel at the limiter and the first-wall of a fusion reactor are greater than those mechanisms in the plasma. Rapid depolarization of the plasma is prevented by providing a first-wall or first-wall coating formed of a low-Z, non-metallic material having a depolarization rate greater than 1 sec.sup.-1.

  14. Wall surveyor project report

    SciTech Connect (OSTI)

    Mullenhoff, D.J.; Johnston, B.C.; Azevedo, S.G.

    1996-02-22

    A report is made on the demonstration of a first-generation Wall Surveyor that is capable of surveying the interior and thickness of a stone, brick, or cement wall. LLNL`s Micropower Impulse Radar is used, based on emitting and detecting very low amplitude and short microwave impulses (MIR rangefinder). Six test walls were used. While the demonstrator MIR Wall Surveyor is not fieldable yet, it has successfully scanned the test walls and produced real-time images identifying the walls. It is planned to optimize and package the evaluation wall surveyor into a hand held unit.

  15. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  16. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  17. Imaging mass spectrometer with mass tags

    DOE Patents [OSTI]

    Felton, James S.; Wu, Kuang Jen; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2010-06-01

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  18. Imaging mass spectrometer with mass tags

    DOE Patents [OSTI]

    Felton, James S.; Wu, Kuang Jen J.; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2013-01-29

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  19. Storage containers for radioactive material

    DOE Patents [OSTI]

    Groh, E.F.; Cassidy, D.A.; Dates, L.R.

    1980-07-31

    A radioactive material storage system is claimed for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together. The plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage.

  20. POLAR DISK GALAXY FOUND IN WALL BETWEEN VOIDS

    SciTech Connect (OSTI)

    Stanonik, K.; Van Gorkom, J. H.; Platen, E.; Van de Weygaert, R.; Van der Hulst, J. M.; Aragon-Calvo, M. A.; Peebles, P. J. E.

    2009-05-01

    We have found an isolated polar disk galaxy in what appears to be a cosmological wall situated between two voids. This void galaxy is unique as its polar disk was discovered serendipitously in an H I survey of SDSS void galaxies, with no optical counterpart to the H I polar disk. Yet the H I mass in the disk is comparable to the stellar mass in the galaxy. This suggests slow accretion of the H I material at a relatively recent time. There is also a hint of a warp in the outer parts of the H I disk. The central, stellar disk appears relatively blue, with faint near-UV emission, and is oriented (roughly) parallel to the surrounding wall, implying gas accretion from the voids. The considerable gas mass and apparent lack of stars in the polar disk, coupled with the general underdensity of the environment, supports recent theories of cold flow accretion as an alternate formation mechanism for polar disk galaxies.

  1. CBEI: Packaged Masonry Wall Retrofit Solution for Small and Medium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CBEI: Packaged Masonry Wall Retrofit Solution for Small and Medium Sized Commercial Buildings - 2015 Peer Review Presenter: Mugdha Mokashi, Bayer Materials View the Presentation ...

  2. Evaluation of Wall Boundary Condition Parameters for Gas-Solids

    Office of Scientific and Technical Information (OSTI)

    ... constitutive relations for antigranulocytes-materials, with application to plane shearing. ... Study of wall boundary condition in numerical simulations of 2D bubbling fluidized beds. ...

  3. Tokamak reactor first wall

    DOE Patents [OSTI]

    Creedon, R.L.; Levine, H.E.; Wong, C.; Battaglia, J.

    1984-11-20

    This invention relates to an improved first wall construction for a tokamak fusion reactor vessel, or other vessels subjected to similar pressure and thermal stresses.

  4. Hot wire production of single-wall and multi-wall carbon nanotubes

    DOE Patents [OSTI]

    Dillon, Anne C.; Mahan, Archie H.; Alleman, Jeffrey L.

    2010-10-26

    Apparatus (210) for producing a multi-wall carbon nanotube (213) may comprise a process chamber (216), a furnace (217) operatively associated with the process chamber (216), and at least one filament (218) positioned within the process chamber (216). At least one power supply (220) operatively associated with the at least one filament (218) heats the at least one filament (218) to a process temperature. A gaseous carbon precursor material (214) operatively associated with the process chamber (216) provides carbon for forming the multi-wall carbon nanotube (213). A metal catalyst material (224) operatively associated with the process (216) catalyzes the formation of the multi-wall carbon nanotube (213).

  5. Wall System Innovations: Familiar Materials, Better Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System in a Cold-Climate House Building America Webinar: High-Performance Enclosure Strategies, Part I: Unvented Roof Systems and Innovative Advanced Framing Strategies Key Issues

  6. Isolation of 163Ho from dysprosium target material by HPLC for neutrino mass measurements

    SciTech Connect (OSTI)

    Mocko, Veronika; Taylor, Wayne  A.; Nortier, Francois M.; Engle, Jonathan  W.; Barnhart, Todd  E.; Nickles, Robert  J.; Pollington, Anthony  D.; Kunde, Gerd  J.; Rabin, Michael  W.; Birnbaum, Eva  R.

    2015-04-29

    The rare earth isotope 163Ho is of interest for neutrino mass measurements. This report describes the isolation of 163Ho from a proton-irradiated dysprosium target and its purification. A Dy metal target was irradiated with 16 MeV protons for 10 h. After target dissolution, 163Ho was separated from the bulk Dy via cation-exchange high performance liquid chromatography using 70 mmol dm–3 α-hydroxyisobutyric acid as the mobile phase. Subsequent purification of the collected Ho fraction was performed to remove the α-hydroxyisobutyrate chelating agent and to concentrate the Ho in a low ionic strength aqueous matrix. The final solution was characterized by MC-ICP-MS to determine the 163Ho/165Ho ratio, 163Ho and the residual Dy content. The HPLC purification process resulted in a decontamination factor 1.4E5 for Dy. As a result, the isolated Ho fraction contained 24.8 ±1.3 ng of 163Ho corresponding to holmium recovery of 72 ± 3%.

  7. Thin Wall Iron Castings

    SciTech Connect (OSTI)

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  8. Building America Expert Meeting: Interior Insulation Retrofit of Mass

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Masonry Wall Assemblies | Department of Energy Interior Insulation Retrofit of Mass Masonry Wall Assemblies Building America Expert Meeting: Interior Insulation Retrofit of Mass Masonry Wall Assemblies The Building Science Corporation team held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011, at the Westford Regency Hotel in Westford, MA. Featured speakers included John Straube, Christopher Schumacher and Kohta Ueno of Building Science

  9. CBEI - Packaged Masonry Wall Retrofit Solutions for Small and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Start date & Planned end date: Phase(PH) I June 1st, 2013 to Oct. 1st, 2014 ... buildings with masonry construction(concrete mass walls) account for energy ...

  10. Enhancement of wall jet transport properties

    DOE Patents [OSTI]

    Claunch, S.D.; Farrington, R.B.

    1997-02-04

    By enhancing the natural instabilities in the boundary layer and in the free shear layer of a wall jet, the boundary is minimized thereby increasing the transport of heat and mass. Enhancing the natural instabilities is accomplished by pulsing the flow of air that creates the wall jet. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct. 17 figs.

  11. Enhancement of wall jet transport properties

    DOE Patents [OSTI]

    Claunch, Scott D.; Farrington, Robert B.

    1997-01-01

    By enhancing the natural instabilities in the boundary layer and in the free shear layer of a wall jet, the boundary is minimized thereby increasing the transport of heat and mass. Enhancing the natural instabilities is accomplished by pulsing the flow of air that creates the wall jet. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct.

  12. Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bak, Seong -Min; Hu, Enyuan; Zhou, Yongning; Yu, Xiqian; Senanayake, Sanjaya D.; Cho, Sung -Jin; Kim, Kwang -Bum; Chung, Kyung Yoon; Yang, Xiao -Qing; Nam, Kyung -Wan

    2014-11-24

    Thermal stability of charged LiNixMnyCozO2 (NMC, with x + y + z = 1, x:y:z = 4:3:3 (NMC433), 5:3:2 (NMC532), 6:2:2 (NMC622), and 8:1:1 (NMC811)) cathode materials is systematically studied using combined in situ time- resolved X-ray diffraction and mass spectroscopy (TR-XRD/MS) techniques upon heating up to 600 °C. The TR-XRD/MS results indicate that the content of Ni, Co, and Mn significantly affects both the structural changes and the oxygen release features during heating: the more Ni and less Co and Mn, the lower the onset temperature of the phase transition (i.e., thermal decomposition) and the larger amount of oxygenmore » release. Interestingly, the NMC532 seems to be the optimized composition to maintain a reasonably good thermal stability, comparable to the low-nickel-content materials (e.g., NMC333 and NMC433), while having a high capacity close to the high-nickel-content materials (e.g., NMC811 and NMC622). The origin of the thermal decomposition of NMC cathode materials was elucidated by the changes in the oxidation states of each transition metal (TM) cations (i.e., Ni, Co, and Mn) and their site preferences during thermal decomposition. It is revealed that Mn ions mainly occupy the 3a octahedral sites of a layered structure (R3¯m) but Co ions prefer to migrate to the 8a tetrahedral sites of a spinel structure (Fd3¯m) during the thermal decomposition. Such element-dependent cation migration plays a very important role in the thermal stability of NMC cathode materials. The reasonably good thermal stability and high capacity characteristics of the NMC532 composition is originated from the well-balanced ratio of nickel content to manganese and cobalt contents. As a result, this systematic study provides insight into the rational design of NMC-based cathode materials with a desired balance between thermal stability and high energy density.« less

  13. Hollow porous-wall glass microspheres for hydrogen storage

    DOE Patents [OSTI]

    Heung, Leung K.; Schumacher, Ray F.; Wicks, George G.

    2010-02-23

    A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

  14. Thermal performance of concrete masonry unit wall systems

    SciTech Connect (OSTI)

    Kosny, J.

    1995-12-31

    New materials, modern building wall technologies now available in the building marketplace, and unique, more accurate, methods of thermal analysis of wall systems create an opportunity to design and erect buildings where thermal envelopes that use masonry wall systems can be more efficient. Thermal performance of the six masonry wall systems is analyzed. Most existing masonry systems are modifications of technologies presented in this paper. Finite difference two-dimensional and three-dimensional computer modeling and unique methods of the clear wall and overall thermal analysis were used. In the design of thermally efficient masonry wall systems is t to know how effectively the insulation material is used and how the insulation shape and its location affect the wall thermal performance. Due to the incorrect shape of the insulation or structural components, hidden thermal shorts cause additional heat losses. In this study, the thermal analysis of the clear wall was enriched with the examination of the thermal properties of the wall details and the study of a quantity defined herein the Thermal Efficiency of the insulation material.

  15. Development of a Thin-Wall Magnesium side door Inner Panel for Automobiles

    SciTech Connect (OSTI)

    Jekl, J.; Auld, J.; Sweet, C.; Carter, Jon; Resch, Steve; Klarner, A.; Brevick, J.; Luo, A.

    2015-05-17

    Cast magnesium side door inner panels can provide a good combination of weight, functional, manufacturing and economical requirements. However, several challenges exist including casting technology for thin-wall part design, multi-material incompatibility and relatively low strength vs steel. A project has been initiated, supported by the US Department of Energy, to design and develop a lightweight frame-under-glass door having a thin-wall, full die-cast, magnesium inner panel. This development project is the first of its kind within North America. Phase I of the project is now complete and the 2.0mm magnesium design, through casting process enablers, has met or exceeded all stiffness requirements, with significant mass reduction and part consolidation. In addition, a corrosion mitigation strategy has been established using industry-accepted galvanic isolation methods and coating technologies.

  16. Thermal treatment wall

    DOE Patents [OSTI]

    Aines, Roger D.; Newmark, Robin L.; Knauss, Kevin G.

    2000-01-01

    A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

  17. Metal-doped single-walled carbon nanotubes and production thereof

    DOE Patents [OSTI]

    Dillon, Anne C.; Heben, Michael J.; Gennett, Thomas; Parilla, Philip A.

    2007-01-09

    Metal-doped single-walled carbon nanotubes and production thereof. The metal-doped single-walled carbon nanotubes may be produced according to one embodiment of the invention by combining single-walled carbon nanotube precursor material and metal in a solution, and mixing the solution to incorporate at least a portion of the metal with the single-walled carbon nanotube precursor material. Other embodiments may comprise sputter deposition, evaporation, and other mixing techniques.

  18. Membranes for nanometer-scale mass fast transport

    DOE Patents [OSTI]

    Bakajin, Olgica; Holt, Jason; Noy, Aleksandr; Park, Hyung Gyu

    2011-10-18

    Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  19. SRNL POROUS WALL GLASS MICROSPHERES

    SciTech Connect (OSTI)

    Wicks, G; Leung Heung, L; Ray Schumacher, R

    2008-04-15

    The Savannah River National Laboratory (SRNL) has developed a new medium for storage of hydrogen and other gases. This involves fabrication of thin, Porous Walled, Hollow Glass Microspheres (PW-HGMs), with diameters generally in the range of 1 to several hundred microns. What is unique about the glass microballons is that porosity has been induced and controlled within the thin, one micron thick walls, on the scale of 10 to several thousand Angstroms. This porosity results in interesting properties including the ability to use these channels to fill the microballons with special absorbents and other materials, thus providing a contained environment even for reactive species. Gases can now enter the microspheres and be retained on the absorbents, resulting in solid-state and contained storage of even reactive species. Also, the porosity can be altered and controlled in various ways, and even used to filter mixed gas streams within a system. SRNL is involved in about a half dozen different programs involving these PW-HGMs and an overview of some of these activities and results emerging are presented.

  20. The temperature dependence of ultra-cold neutron wall losses...

    Office of Scientific and Technical Information (OSTI)

    Title: The temperature dependence of ultra-cold neutron wall losses in material bottles coated with deuterated polystryene Ultra-cold neutrons (UCN) from the LANSCE super-thermal ...

  1. Thermal Performance of Uninsulated and Partially Filled Wall Cavities: Preprint

    SciTech Connect (OSTI)

    Ridouane, E. H.; Bianchi, M.

    2011-08-01

    Low-rise, wood-framed homes are the most common type of residential structures in the United States. Wood wall construction supports roofs efficiently and provides a stable frame for attaching interior and exterior wall coverings. Wall cavities are prevalent and increase thermal resistance, particularly when they are filled with insulating material. This paper describes detailed computational fluid dynamics modeling to evaluate the thermal performance of uninsulated or partially filled wall cavities and accounts for conduction through framing, convection, and radiation. Parameters are ambient outdoor temperature, cavity surface emissivity, cavity aspect ratio, and insulation height. Understanding the thermal performance of uninsulated or partially insulated wall cavities is essential for conserving energy in residential buildings. The results can serve as input for building energy simulation tools such as DOE2 and EnergyPlus for modeling the temperature dependent energy performance of new and older homes with uninsulated or partially insulated walls.

  2. Moisture Research - Optimizing Wall Assemblies

    SciTech Connect (OSTI)

    Arena, Lois; Mantha, Pallavi

    2013-05-01

    In this project, the Consortium for Advanced Residential Buildings (CARB) team evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls. Wall assemblies evaluated included code minimum walls using spray foam insulation and fiberglass batts, high R-value walls at least 12 in. thick (R-40 and R-60 assemblies), and brick walls with interior insulation.

  3. Methods for degrading or converting plant cell wall polysaccharides

    DOE Patents [OSTI]

    Berka, Randy; Cherry, Joel

    2008-08-19

    The present invention relates to methods for converting plant cell wall polysaccharides into one or more products, comprising: treating the plant cell wall polysaccharides with an effective amount of a spent whole fermentation broth of a recombinant microorganism, wherein the recombinant microorganism expresses one or more heterologous genes encoding enzymes which degrade or convert the plant cell wall polysaccharides into the one or more products. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying plant cell wall polysaccharides with an effective amount of a spent whole fermentation broth of a recombinant microorganism, wherein the recombinant microorganism expresses one or more heterologous genes encoding enzymes which degrade or convert the plant cell wall polysaccharides into saccharified material; (b) fermenting the saccharified material of step (a) with one or more fermenting microoganisms; and (c) recovering the organic substance from the fermentation.

  4. POROUS WALL, HOLLOW GLASS MICROSPHERES

    SciTech Connect (OSTI)

    Sexton, W.

    2012-06-30

    Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to 'normal glasses of a 1 to 2 order of

  5. High-R Walls for Remodeling: Wall Cavity Moisture Monitoring

    SciTech Connect (OSTI)

    Wiehagen, J.; Kochkin, V.

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  6. High-R Walls for Remodeling. Wall Cavity Moisture Monitoring

    SciTech Connect (OSTI)

    Wiehagen, J.; Kochkin, V.

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  7. Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure

    DOE Patents [OSTI]

    Sachtler, W.M.H.; Huang, Y.Y.

    1998-07-28

    Methods are disclosed for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physical sorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics. 17 figs.

  8. Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure

    DOE Patents [OSTI]

    Sachtler, Wolfgang M. H.; Huang, Yin-Yan

    1998-01-01

    Methods for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physisorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics.

  9. Materials Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Videos Materials

  10. NREL: Energy Analysis - Anna Wall

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anna Wall Photo of Anna Wall Anna Wall is a member of the Technology Systems and Sustainability Analysis Group in the Strategic Energy Analysis Center. Energy Technologies Analyst On staff since April 2014 Phone number: 303-384-6887 E-mail: anna.wall@nrel.gov Areas of expertise Geochemistry (aqueous and hard rock), with applications to geothermal resource characterization and mineral carbon sequestration Ratings methodologies and energy resource reporting standards Sustainable equity finance:

  11. Chest wall invasion by lung cancer: limitations of CT evaluation

    SciTech Connect (OSTI)

    Pennes, D.R.; Glazer, G.M.; Wimbish, K.J.; Gross, B.H.; Long, R.W.; Orringer, M.B.

    1985-03-01

    Thirty-three patients with peripheral pulmonary malignancies contiguous with a pleural surface were evaluated for chest wall invasion by computed tomography (CT). CT criteria included pleural thickening adjacent to the tumor, encroachment on or increased density of the extrapleural fat, asymmetry of the extrapleural soft tissues adjacent to the tumor, apparent mass invading the chest wall, and rib destruction. The CT scans were classified as positive, negative, or equivocal for invasion, and a decision matrix was constructed comparing CT results with pathologic data. CT scanning has low accuracy in assessing chest wall invasion in patients with peripheral lung cancers.

  12. Sustainable wall construction and exterior insulation retrofit technology process and structure

    DOE Patents [OSTI]

    Vohra, Arun

    2000-01-01

    A low-cost process for exterior wall insulation retrofit, or new wall construction by stacking layers of fabric tube filled with insulating material against a wall and covering them with mesh and stucco provides a durable structure with good insulating value.

  13. Structural Studies of Complex Carbohydrates of Plant Cell Walls

    SciTech Connect (OSTI)

    Darvill, Alan; Hahn, Michael G.; O'Neill, Malcolm A.; York, William S.

    2015-02-17

    Most of the solar energy captured by land plants is converted into the polysaccharides (cellulose, hemicellulose, and pectin) that are the predominant components of the cell wall. These walls, which account for the bulk of plant biomass, have numerous roles in the growth and development of plants. Moreover, these walls have a major impact on human life as they are a renewable source of biomass, a source of diverse commercially useful polymers, a major component of wood, and a source of nutrition for humans and livestock. Thus, understanding the molecular mechanisms that lead to wall assembly and how cell walls and their component polysaccharides contribute to plant growth and development is essential to improve and extend the productivity and value of plant materials. The proposed research will develop and apply advanced analytical and immunological techniques to study specific changes in the structures and interactions of the hemicellulosic and pectic polysaccharides that occur during differentiation and in response to genetic modification and chemical treatments that affect wall biosynthesis. These new techniques will make it possible to accurately characterize minute amounts of cell wall polysaccharides so that subtle changes in structure that occur in individual cell types can be identified and correlated to the physiological or developmental state of the plant. Successful implementation of this research will reveal fundamental relationships between polysaccharide structure, cell wall architecture, and cell wall functions.

  14. MAYmw Wall0

    Office of Legacy Management (LM)

    ,...-. ~_I : Cd.0 / ., j: ' ! -;:---- /,5l2 MAYmw Wall0 50 l/89 NE-23 NE-23 List of California Sites Hattie Carwell. SAN/NSQA Division Attached for your information is the list of California sites we identified in our search of Manhattdn Engineer District records for the Formerly Utilized Sites Remedial Action Program (FUSRAP). None of the facilities listed qualified for FUSRAP,'Vhe;:only'site in California that was included in FUSRAP was Gilman Hall on the University of California-Berkeley

  15. Method of manufacturing hollow members having uniform wall thickness through use of ablation

    DOE Patents [OSTI]

    Anderson, Paul R.; Downs, Raymond L.; Henderson, Timothy M.

    1982-01-01

    A method of manufacturing a hollow structure of uniform wall thickness comprising the steps of selecting or forming a precursor having one wall surface of desired geometry, treating a portion of the precursor consisting of the one wall surface and a uniform depth of material beneath the wall surface to increase resistance to ablation, and then removing by ablation and discarding the remaining or untreated portion of the precursor.

  16. Engineering the fusion reactor first wall

    SciTech Connect (OSTI)

    Wurden, Glen; Scott, Willms

    2008-01-01

    Recently the National Academy of Engineering published a set of Grand Challenges in Engineering in which the second item listed was entitled 'Provide energy from fusion'. Clearly a key component of this challenge is the science and technology associated with creating and maintaining burning plasmas. This is being vigorously addressed with both magnetic and inertial approaches with various experiments such as ITER and NIF. Considerably less attention is being given to another key component of this challenge, namely engineering the first wall that will contain the burning plasma. This is a daunting problem requiring technologies and materials that can not only survive, but also perform multiple essential functions in this extreme environment. These functions are (1) shield the remainder of the device from radiation. (2) convert of neutron energy to useful heat and (3) breed and extract tritium to maintain the reactor fuel supply. The first wall must not contaminate the plasma with impurities. It must be infused with cooling to maintain acceptable temperatures on plasma facing and structural components. It must not degrade. It must avoid excessive build-up of tritium on surfaces, and, if surface deposits do form, must be receptive to cleaning techniques. All these functions and constraints must be met while being subjected to nuclear and thermal radiation, particle bombardment, high magnetic fields, thermal cycling and occasional impingement of plasma on the surface. And, operating in a nuclear environment, the first wall must be fully maintainable by remotely-operated manipulators. Elements of the first wall challenge have been studied since the 1970' s both in the US and internationally. Considerable foundational work has been performed on plasma facing materials and breeding blanket/shield modules. Work has included neutronics, materials fabrication and joining, fluid flow, tritium breeding, tritium recovery and containment, energy conversion, materials damage and

  17. Todd Vander Wall | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vander Wall Research Scientist Todd.Vander.Wall@nrel.gov | 303-384-7783 Research Interests Todd Vander Wall comes to the National Renewable Energy Laboratory (NREL) from the environmental and chemical engineering industry, where he focused on environmental chemistry. He originally designed and implemented methanogenesis systems for the growth and collection of biogenic methane from municipal solid waste. Following that, he performed in-situ investigations on thermogenic methane from subsurface

  18. Oven wall panel construction

    DOE Patents [OSTI]

    Ellison, Kenneth; Whike, Alan S.

    1980-04-22

    An oven roof or wall is formed from modular panels, each of which comprises an inner fabric and an outer fabric. Each such fabric is formed with an angle iron framework and somewhat resilient tie-bars or welded at their ends to flanges of the angle irons to maintain the inner and outer frameworks in spaced disposition while minimizing heat transfer by conduction and permitting some degree of relative movement on expansion and contraction of the module components. Suitable thermal insulation is provided within the module. Panels or skins are secured to the fabric frameworks and each such skin is secured to a framework and projects laterally so as slidingly to overlie the adjacent frame member of an adjacent panel in turn to permit relative movement during expansion and contraction.

  19. disrupting the plant cell wall

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    disrupting the plant cell wall - Sandia Energy Energy Search Icon Sandia Home Locations ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  20. Measure Guideline. Deep Energy Enclosure Retrofit for Interior Insulation of Masonry Walls

    SciTech Connect (OSTI)

    Musunuru, S.; Pettit, B.

    2015-04-30

    This Measure Guideline describes a deep energy enclosure retrofit solution for insulating mass masonry buildings from the interior. It describes the retrofit assembly, technical details, and installation sequence for retrofitting masonry walls. Interior insulation of masonry retrofits might adversely affect the durability of the wall. This guideline includes a review of decision criteria pertinent to retrofitting masonry walls from the interior and the possible risk of freeze-thaw damage.

  1. Measure Guideline: Deep Energy Enclosure Retrofit for Interior Insulation of Masonry Walls

    SciTech Connect (OSTI)

    Musunuru, S.; Pettit, B.

    2015-04-01

    This Measure Guideline describes a deep energy enclosure retrofit (DEER) solution for insulating mass masonry buildings from the interior. It describes the retrofit assembly, technical details, and installation sequence for retrofitting masonry walls. Interior insulation of masonry retrofits has the potential to adversely affect the durability of the wall; this document includes a review of decision criteria pertinent to retrofitting masonry walls from the interior and the possible risk of freeze-thaw damage.

  2. Transporting particulate material

    DOE Patents [OSTI]

    Aldred, Derek Leslie; Rader, Jeffrey A.; Saunders, Timothy W.

    2011-08-30

    A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

  3. Moisture Research - Optimizing Wall Assemblies

    SciTech Connect (OSTI)

    Arena, L.; Mantha, P.

    2013-05-01

    The Consortium for Advanced Residential Buildings (CARB) evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls.

  4. Analysis of Nitrogen Incorporation in Group III-Nitride-Arsenide Materials Using a Magnetic Sector Secondary-Ion Mass Spectrometry (SIMS) Instrument: Preprint

    SciTech Connect (OSTI)

    Reedy, R. C.; Geisz, J. F.; Kurtz, S. R.; Adams, R. O.; Perkins, C. L.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Group III-nitride-arsenide materials were studied by SIMS, XRD, and Profiler to determine small amounts of nitrogen that can lower the alloys bandgap significantly.

  5. Post-cast EDM method for reducing the thickness of a turbine nozzle wall

    DOE Patents [OSTI]

    Jones, Raymond Joseph; Bojappa, Parvangada Ganapathy; Kirkpatrick, Francis Lawrence; Schotsch, Margaret Jones; Rajan, Rajiv; Wei, Bin

    2002-01-01

    A post-cast EDM process is used to remove material from the interior surface of a nozzle vane cavity of a turbine. A thin electrode is passed through the cavity between opposite ends of the nozzle vane and displaced along the interior nozzle wall to remove the material along a predetermined path, thus reducing the thickness of the wall between the cavity and the external surface of the nozzle. In another form, an EDM process employing a profile as an electrode is disposed in the cavity and advanced against the wall to remove material from the wall until the final wall thickness is achieved, with the interior wall surface being complementary to the profile surface.

  6. Intense Magnetized Plasma-Wall Interaction

    SciTech Connect (OSTI)

    Bauer, Bruno S.; Fuelling, Stephan

    2013-11-30

    This research project studied wall-plasma interactions relevant to fusion science. Such interactions are a critical aspect of Magneto-Inertial Fusion (MIF) because flux compression by a pusher material, in particular the metal for the liner approach to MIF, involves strong eddy current heating on the surface of the pusher, and probably interactions and mixing of the pusher with the interior fuel during the time when fusion fuel is being burned. When the pusher material is a metal liner, high-energy-density conditions result in fascinating behavior. For example, "warm dense matter" is produced, for which material properties such as resistivity and opacity are not well known. In this project, the transformation into plasma of metal walls subjected to pulsed megagauss magnetic fields was studied with an experiment driven by the UNR 1 MA Zebra generator. The experiment was numerically simulated with using the MHRDR code. This simple, fundamental high-energy-density physics experiment, in a regime appropriate to MIF, has stimulated an important and fascinating comparison of numerical modeling codes and tables with experiment. In addition, we participated in developing the FRCHX experiment to compress a field-reversed-configuration (FRC) plasma with a liner, in collaboration with researchers from Air Force Research Laboratory and Los Alamos National Lab, and we helped develop diagnostics for the Plasma Liner Experiment (PLX) at LANL. Last, but not least, this project served to train students in high-energy-density physics.

  7. Method and apparatus for constructing an underground barrier wall structure

    DOE Patents [OSTI]

    Dwyer, Brian P.; Stewart, Willis E.; Dwyer, Stephen F.

    2002-01-01

    A method and apparatus for constructing a underground barrier wall structure using a jet grout injector subassembly comprising a pair of primary nozzles and a plurality of secondary nozzles, the secondary nozzles having a smaller diameter than the primary nozzles, for injecting grout in directions other than the primary direction, which creates a barrier wall panel having a substantially uniform wall thickess. This invention addresses the problem of the weak "bow-tie" shape that is formed during conventional jet injection when using only a pair of primary nozzles. The improvement is accomplished by using at least four secondary nozzles, of smaller diameter, located on both sides of the primary nozzles. These additional secondary nozzles spray grout or permeable reactive materials in other directions optimized to fill in the thin regions of the bow-tie shape. The result is a panel with increased strength and substantially uniform wall thickness.

  8. Wall Insulation; BTS Technology Fact Sheet

    SciTech Connect (OSTI)

    Southface Energy Institute; Tromly, K.

    2000-11-07

    Properly sealed, moisture-protected, and insulated walls help increase comfort, reduce noise, and save on energy costs. This fact sheet addresses these topics plus advanced framing techniques, insulation types, wall sheathings, and steps for effective wall construction and insulation.

  9. Security_Walls_VPP_Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recognized for Outstanding Safety CARLSBAD, N.M., May 10, 2013 - The U.S. Department of Energy (DOE) has awarded Security Walls, LLC, the Waste Isolation Pilot Plant's (WIPP)...

  10. CBEI: Packaged Masonry Wall Retrofit Solution for Small and Medium Sized

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings - 2015 Peer Review | Department of Energy Packaged Masonry Wall Retrofit Solution for Small and Medium Sized Commercial Buildings - 2015 Peer Review CBEI: Packaged Masonry Wall Retrofit Solution for Small and Medium Sized Commercial Buildings - 2015 Peer Review Presenter: Mugdha Mokashi, Bayer Materials View the Presentation CBEI: Packaged Masonry Wall Retrofit Solution for Small and Medium Sized Commercial Buildings - 2015 Peer Review (1.25 MB) More Documents &

  11. MHD Electrode and wall constructions

    DOE Patents [OSTI]

    Way, Stewart; Lempert, Joseph

    1984-01-01

    Electrode and wall constructions for the walls of a channel transmitting the hot plasma in a magnetohydrodynamic generator. The electrodes and walls are made of a plurality of similar modules which are spaced from one another along the channel. The electrodes can be metallic or ceramic, and each module includes one or more electrodes which are exposed to the plasma and a metallic cooling bar which is spaced from the plasma and which has passages through which a cooling fluid flows to remove heat transmitted from the electrode to the cooling bar. Each electrode module is spaced from and electrically insulated from each adjacent module while interconnected by the cooling fluid which serially flows among selected modules. A wall module includes an electrically insulating ceramic body exposed to the plasma and affixed, preferably by mechanical clips or by brazing, to a metallic cooling bar spaced from the plasma and having cooling fluid passages. Each wall module is, similar to the electrode modules, electrically insulated from the adjacent modules and serially interconnected to other modules by the cooling fluid.

  12. Hybrid materials and methods for producing the same

    DOE Patents [OSTI]

    Luzzi, David E.; Smith, Brian W.

    2008-02-19

    A hybrid material is provided which comprises a first single-walled nanotube having a lumen, and a fill molecule contained within the lumen of the single-walled nanotube. A method for producing the hybrid material is also provided wherein a single-walled nanotube is contacted with a fill molecule to cause the fill molecule to enter the lumen of the single-walled nanotube.

  13. Hybrid materials and methods for producing the same

    DOE Patents [OSTI]

    Luzzi, David E.; Smith, Brian W.

    2003-04-08

    A hybrid material is provided which comprises a first single-walled nanotube having a lumen, and a fill molecule contained within the lumen of the single-walled nanotube. A method for producing the hybrid material is also provided wherein a single-walled nanotube is contacted with a fill molecule to cause the fill molecule to enter the lumen of the single-walled nanotube.

  14. Titanium dioxide, single-walled carbon nanotube composites

    DOE Patents [OSTI]

    Yao, Yuan; Li, Gonghu; Gray, Kimberly; Lueptow, Richard M.

    2015-07-14

    The present invention provides titanium dioxide/single-walled carbon nanotube composites (TiO.sub.2/SWCNTs), articles of manufacture, and methods of making and using such composites. In certain embodiments, the present invention provides membrane filters and ceramic articles that are coated with TiO.sub.2/SWCNT composite material. In other embodiments, the present invention provides methods of using TiO.sub.2/SWCNT composite material to purify a sample, such as a water or air sample.

  15. Composites of Doped Semiconducting Single-walled Carbon Nanotubes and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fluorene-based Polymers for Thermoelectric Power Conversion - Energy Innovation Portal Composites of Doped Semiconducting Single-walled Carbon Nanotubes and Fluorene-based Polymers for Thermoelectric Power Conversion National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Thermoelectric materials are materials which are able to create electricity when exposed to a heat source. This phenomenon is caused by the flow of electrons from heated regions

  16. New Combined Laser Ablation Platform Determines Cell Wall Chemistry (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    NREL has designed and developed a combined laser ablation/pulsed sample introduction/mass spectrometry platform that integrates pyrolysis and/or laser ablation with resonance-enhanced multiphoton ionization (REMPI) time-of-flight mass spectrometry. Using this apparatus, we can measure the cell wall chemical composition of untreated biomass materials. Understanding the chemical composition of untreated biomass is key to both the biochemical and thermochemical conversion of lignocellulosic biomass to biofuels. In the biochemical conversion process, the new technique provides a better understanding of the chemistry of lignin and will improve accessibility to plant sugars. In thermochemical conversion, the information provided by the new technique may help to reduce the formation of unwanted byproducts during gasification. NREL validated the ability of the system to detect pyrolysis products from plant materials using poplar, a potentially high-impact bioenergy feedstock. In the technique, biomass vapors are produced by laser ablation using the 3rd harmonic of an Nd:YAG laser (355 nm). The resulting vapors are entrained in a free jet expansion of helium, then skimmed and introduced into an ionization region. REMPI is used to ionize the vapors because it is highly sensitive for detecting lignin and aromatic metabolites. The laser ablation method was used to selectively volatilize specific plant tissues and detect lignin-based products from the vapors with enhanced sensitivity. This will allow the determination of lignin distribution in future biomass studies.

  17. Design of SC walls and slabs for impulsive loading

    SciTech Connect (OSTI)

    Varma, Amit H.

    2015-11-11

    Reinforced concrete (RC) structures have historically been the preferred choice for blast resistant structures because of their mass and the ductility provided by steel reinforcement. Steel-plate composite (SC) walls are a viable alternative to RC for protecting the infrastructure against explosive threats. SC structures consist of two steel faceplates with a plain concrete core between them. The steel faceplates are anchored to the concrete using stud anchors and connected to each other using tie bars. SC structures provide mass from the concrete infill and ductility from the continuous external steel faceplates. This dissertation presents findings and recommendations from experimental and analytical investigations of the performance of SC walls subjected to far-field blast loads.

  18. MASS SPECTROMETER

    DOE Patents [OSTI]

    White, F.A.

    1960-08-23

    A mass spectrometer is designed with a first adjustable magnetic field for resolving an ion beam into beams of selected masses, a second adjustable magnetic field for further resolving the ion beam from the first field into beams of selected masses, a thin foil disposed in the path of the beam between the first and second magnets to dissociate molecular ions incident thereon, an electrostatic field for further resolving the ion beam from the second field into beams of selected masses, and a detector disposed adjacent to the electrostatic field to receive the ion beam.

  19. Process for forming a long gas turbine engine blade having a main wall with a thin portion near a tip

    DOE Patents [OSTI]

    Campbell, Christian X; Thomaidis, Dimitrios

    2014-05-13

    A process is provided for forming an airfoil for a gas turbine engine involving: forming a casting of a gas turbine engine airfoil having a main wall and an interior cavity, the main wall having a wall thickness extending from an external surface of the outer wall to the interior cavity, an outer section of the main wall extending from a location between a base and a tip of the airfoil casting to the tip having a wall thickness greater than a final thickness. The process may further involve effecting movement, using a computer system, of a material removal apparatus and the casting relative to one another such that a layer of material is removed from the casting at one or more radial portions along the main wall of the casting.

  20. Shear wall ultimate drift limits

    SciTech Connect (OSTI)

    Duffey, T.A.; Goldman, A.; Farrar, C.R.

    1994-04-01

    Drift limits for reinforced-concrete shear walls are investigated by reviewing the open literature for appropriate experimental data. Drift values at ultimate are determined for walls with aspect ratios ranging up to a maximum of 3.53 and undergoing different types of lateral loading (cyclic static, monotonic static, and dynamic). Based on the geometry of actual nuclear power plant structures exclusive of containments and concerns regarding their response during seismic (i.e.,cyclic) loading, data are obtained from pertinent references for which the wall aspect ratio is less than or equal to approximately 1, and for which testing is cyclic in nature (typically displacement controlled). In particular, lateral deflections at ultimate load, and at points in the softening region beyond ultimate for which the load has dropped to 90, 80, 70, 60, and 50 percent of its ultimate value, are obtained and converted to drift information. The statistical nature of the data is also investigated. These data are shown to be lognormally distributed, and an analysis of variance is performed. The use of statistics to estimate Probability of Failure for a shear wall structure is illustrated.

  1. Engineering rock mass classifications

    SciTech Connect (OSTI)

    Bieniawski, Z.T.

    1989-01-01

    This book is a reference on rock mass classification, consolidating into one handy source information widely scattered through the literature. Includes new, unpublished material and case histories. Presents the fundamental concepts of classification schemes and critically appraises their practical application in industrial projects such as tunneling and mining.

  2. Structural Changes and Thermal Stability of Charged LiNix Mny CozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bak, Seong-Min; Hu, Enyuan; Zhou, Yongning; Yu, Xiqian; Senanayake, Sanjaya D.; Cho, Sung-Jin; Kim, Kwang-Bum; Chung, Kyung Yoon; Yang, Xiao-Qing; Nam, Kyung-Wan

    2014-11-24

    Thermal stability of charged LiNixMnyCozO2 (NMC, with x + y + z = 1, x:y:z = 4:3:3 (NMC433), 5:3:2 (NMC532), 6:2:2 (NMC622), and 8:1:1 (NMC811)) cathode materials is systematically studied using combined in situ time- resolved X-ray diffraction and mass spectroscopy (TR-XRD/MS) techniques upon heating up to 600 C. The TR-XRD/MS results indicate that the content of Ni, Co, and Mn significantly affects both the structural changes and the oxygen release features during heating: the more Ni and less Co and Mn, the lower the onset temperature of the phase transition (i.e., thermal decomposition) and the larger amount of oxygenmorerelease. Interestingly, the NMC532 seems to be the optimized composition to maintain a reasonably good thermal stability, comparable to the low-nickel-content materials (e.g., NMC333 and NMC433), while having a high capacity close to the high-nickel-content materials (e.g., NMC811 and NMC622). The origin of the thermal decomposition of NMC cathode materials was elucidated by the changes in the oxidation states of each transition metal (TM) cations (i.e., Ni, Co, and Mn) and their site preferences during thermal decomposition. It is revealed that Mn ions mainly occupy the 3a octahedral sites of a layered structure (R3?-m) but Co ions prefer to migrate to the 8a tetrahedral sites of a spinel structure (Fd3-m) during the thermal decomposition. Such element-dependent cation migration plays a very important role in the thermal stability of NMC cathode materials. The reasonably good thermal stability and high capacity characteristics of the NMC532 composition is originated from the well-balanced ratio of nickel content to manganese and cobalt contents. This systematic study provides insight into the rational design of NMC-based cathode materials with a desired balance between thermal stability and high energy density.less

  3. Experimental study of a fiber absorber-suppressor modified Trombe wall

    SciTech Connect (OSTI)

    Choudhury, D; Birkebak, R C

    1982-12-01

    An experimental study has been conducted to ascertain the effects of introducing fiber bed absorbers on Trombe wall passive solar collectors. Two identical, Trombe wall passive solar units were constructed that incorporate the basic components of masonry collector-storage walls: glazings, masonry and thermal insulation. Both units were extensively instrumented with thermocouples and heat flux transducers. Ambient temperature, relative humidity, wind speed and insolation are also measured. In the first part of the study the two Trombe wall units were tested with a single glass cover. The thermal performance of both units was found to be virtually identical. In the second part of the study a single cover Trombe wall unit was compared with a double cover unit and the latter was found to have higher air gap and masonry wall temperatures and heat fluxes. In the final phase of the experiment, an absorbing, scattering and emitting fiberglass-like material was placed in the air gap of the single gazed wall. Tests were conducted to compare the solar-thermal performance, heat loss and gain characteristics between the units with and without the fiber absorber-suppressor. This experiment showed that the fiber bed served to decouple the wall at night from its exterior environment and to reduce the heat losses. The modified Trombe wall with the fiber absorber-suppressor out-performed the double glazed Trombe wall system by approximately ten percent gain in useable thermal energy. Also, the fiber bed eliminates one glazing thereby reducing system cost as well.

  4. Hardfacing material

    DOE Patents [OSTI]

    Branagan, Daniel J.

    2012-01-17

    A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  5. Magnetoelectric domain wall dynamics and its implications for magnetoelectric memory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Belashchenko, K. D.; Tchernyshyov, O.; Kovalev, Alexey A.; Tretiakov, O. A.

    2016-03-30

    Domain wall dynamics in a magnetoelectric antiferromagnet is analyzed, and its implications for magnetoelectric memory applications are discussed. Cr2O3 is used in the estimates of the materials parameters. It is found that the domain wall mobility has a maximum as a function of the electric field due to the gyrotropic coupling induced by it. In Cr2O3, the maximal mobility of 0.1 m/(s Oe) is reached at E≈0.06 V/nm. Fields of this order may be too weak to overcome the intrinsic depinning field, which is estimated for B-doped Cr2O3. These major drawbacks for device implementation can be overcome by applying amore » small in-plane shear strain, which blocks the domain wall precession. Domain wall mobility of about 0.7 m/(s Oe) can then be achieved at E = 0.2 V/nm. Furthermore, a split-gate scheme is proposed for the domain-wall controlled bit element; its extension to multiple-gate linear arrays can offer advantages in memory density, programmability, and logic functionality.« less

  6. Devices with extended area structures for mass transfer processing of fluids

    DOE Patents [OSTI]

    TeGrotenhuis, Ward E.; Wegeng, Robert S.; Whyatt, Greg A.; King, David L.; Brooks, Kriston P.; Stenkamp, Victoria S.

    2009-04-21

    A microchannel device includes several mass transfer microchannels to receive a fluid media for processing at least one heat transfer microchannel in fluid communication with a heat transfer fluid defined by a thermally conductive wall, and at several thermally conductive fins each connected to the wall and extending therefrom to separate the mass transfer microchannels from one another. In one form, the device may optionally include another heat transfer microchannel and corresponding wall that is positioned opposite the first wall and has the fins and the mass transfer microchannels extending therebetween.

  7. Electronic multi-purpose material level sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1997-03-11

    The present electronic multi-purpose material level sensor is based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line that is partially immersed in a liquid, powder, or other substance such as grain in a silo. The time difference of the reflections at the start of the transmission line and the air/liquid interface are used to determine levels to better than 0.01 inch. The sensor is essentially independent of circuit element and temperature variations, and can be mass produced at an extremely low price. The transmission line may be a Goubau line, microstrip, coaxial cable, twin lead, CPS or CPW, and may typically be a strip placed along the inside wall of a tank. The reflected pulses also contain information about strata within the liquid such as sludge-build-up at the bottom of an oil tank. 9 figs.

  8. Electronic multi-purpose material level sensor

    DOE Patents [OSTI]

    McEwan, Thomas E.

    1997-01-01

    The present electronic multi-purpose material level sensor is based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line that is partially immersed in a liquid, powder, or other substance such as grain in a silo. The time difference of the reflections at the start of the transmission line and the air/liquid interface are used to determine levels to better than 0.01 inch. The sensor is essentially independent of circuit element and temperature variations, and can be mass produced at an extremely low price. The transmission line may be a Goubau line, microstrip, coaxial cable, twin lead, CPS or CPW, and may typically be a strip placed along the inside wall of a tank. The reflected pulses also contain information about strata within the liquid such as sludge-build-up at the bottom of an oil tank.

  9. 2013 Wall Street Perspective on SMRs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wall Street Perspective on SMRs 2013 Wall Street Perspective on SMRs Summary of results of a 2013 survey on Wall Street attitudes toward small modular reactors. 2013 Wall Street Perspective on SMRs (597.12 KB) More Documents & Publications 2014 Wall Street Perspectives on SMRs - Report 2014 Wall Street Perspective on SMRs 2015 Wall Street Perspectives on SMRs Update

  10. Tube wall thickness measurement apparatus

    DOE Patents [OSTI]

    Lagasse, Paul R.

    1987-01-01

    An apparatus for measuring the thickness of a tube's wall for the tube's entire length and circumference by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.

  11. Tube wall thickness measurement apparatus

    DOE Patents [OSTI]

    Lagasse, P.R.

    1985-06-21

    An apparatus for measuring the thickness of a tube's wall for the tube's entire length and radius by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.

  12. Material isolation enclosure

    DOE Patents [OSTI]

    Martell, Calvin J.; Dahlby, Joel W.; Gallimore, Bradford F.; Comer, Bob E.; Stone, Water A.; Carlson, David O.

    1993-01-01

    An enclosure similar to a glovebox for isolating materials from the atmosphere, yet allowing a technician to manipulate the materials and also apparatus which is located inside the enclosure. A portion of a wall of the enclosure is comprised of at least one flexible curtain. An opening defined by a frame is provided for the technician to insert his hands and forearms into the enclosure. The frame is movable in one plane, so that the technician has access to substantially all of the working interior of the enclosure. As the frame is moved by the technician, while he accomplishes work inside the enclosure, the curtain moves such that the only opening through the enclosure wall is the frame. In a preferred embodiment, where a negative pressure is maintained inside the enclosure, the frame is comprised of airfoils so that turbulence is reduced, thereby enhancing material retention within the box.

  13. Material isolation enclosure

    DOE Patents [OSTI]

    Martell, C.J.; Dahlby, J.W.; Gallimore, B.F.; Comer, B.E.; Stone, W.A.; Carlson, D.O.

    1993-04-27

    An enclosure is described, similar to a glove box, for isolating materials from the atmosphere, yet allowing a technician to manipulate the materials and also apparatus which is located inside the enclosure. A portion of a wall of the enclosure is comprised of at least one flexible curtain. An opening defined by a frame is provided for the technician to insert his hands and forearms into the enclosure. The frame is movable in one plane, so that the technician has access to substantially all of the working interior of the enclosure. As the frame is moved by the technician, while he accomplishes work inside the enclosure, the curtain moves such that the only opening through the enclosure wall is the frame. In a preferred embodiment, where a negative pressure is maintained inside the enclosure, the frame is comprised of airfoils so that turbulence is reduced, thereby enhancing material retention within the box.

  14. Promising Technology: Cool Paints for Exterior Walls

    Broader source: Energy.gov [DOE]

    Cool Paints increase the solar reflectance of exterior walls. By reflecting more sunlight, the wall surface maintains a cooler temperature. This decrease in temperature leads to less heat transfer through the walls into the building. During the cooling season, the addition of cool paints can decrease the cooling load of the building.

  15. Six Thousand Electrochemical Cycles of Double-Walled Silicon Nanotube Anodes for Lithium Ion Batteries

    SciTech Connect (OSTI)

    Wu, H

    2011-08-18

    Despite remarkable progress, lithium ion batteries still need higher energy density and better cycle life for consumer electronics, electric drive vehicles and large-scale renewable energy storage applications. Silicon has recently been explored as a promising anode material for high energy batteries; however, attaining long cycle life remains a significant challenge due to materials pulverization during cycling and an unstable solid-electrolyte interphase. Here, we report double-walled silicon nanotube electrodes that can cycle over 6000 times while retaining more than 85% of the initial capacity. This excellent performance is due to the unique double-walled structure in which the outer silicon oxide wall confines the inner silicon wall to expand only inward during lithiation, resulting in a stable solid-electrolyte interphase. This structural concept is general and could be extended to other battery materials that undergo large volume changes.

  16. Anchored nanostructure materials and method of fabrication

    SciTech Connect (OSTI)

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2012-11-27

    Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

  17. MASS SPECTROMETRY

    DOE Patents [OSTI]

    Nier, A.O.C.

    1959-08-25

    A voltage switching apparatus is described for use with a mass spectrometer in the concentratron analysis of several components of a gas mixture. The system automatically varies the voltage on the accelerating electrode of the mass spectrometer through a program of voltages which corresponds to the particular gas components under analysis. Automatic operation may be discontinued at any time to permit the operator to manually select any desired predetermined accelerating voltage. Further, the system may be manually adjusted to vary the accelerating voltage over a wide range.

  18. Moisture and Structural Analysis for High Performance Hybrid Wall Assemblies

    SciTech Connect (OSTI)

    Grin, A.; Lstiburek, J.

    2012-09-01

    Based on past experience in the Building America program, BSC has found that combinations of materials and approachesin other words, systemsusually provide optimum performance. Integration is necessary, as described in this research project. The hybrid walls analyzed utilize a combination of exterior insulation, diagonal metal strapping, and spray polyurethane foam and leave room for cavity-fill insulation. These systems can provide effective thermal, air, moisture, and water barrier systems in one assembly and provide structure.

  19. ENCAPSULATION OF PALLADIUM IN POROUS WALL HOLLOW GLASS MICROSPHERES

    SciTech Connect (OSTI)

    Heung, L; George Wicks, G; Ray Schumacher, R

    2008-04-09

    A new encapsulation method was investigated in an attempt to develop an improved palladium packing material for hydrogen isotope separation. Porous wall hollow glass microspheres (PWHGMs) were produced by using a flame former, heat treating and acid leaching. The PWHGMs were then filled with palladium salt using a soak-and-dry process. The palladium salt was reduced at high temperature to leave palladium inside the microspheres.

  20. Mechanism of bubble detachment from vibrating walls

    SciTech Connect (OSTI)

    Kim, Dongjun; Park, Jun Kwon Kang, Kwan Hyoung; Kang, In Seok

    2013-11-15

    We discovered a previously unobserved mechanism by which air bubbles detach from vibrating walls in glasses containing water. Chaotic oscillation and subsequent water jets appeared when a wall vibrated at greater than a critical level. Wave forms were developed at water-air interface of the bubble by the wall vibration, and water jets were formed when sufficiently grown wave-curvatures were collapsing. Droplets were pinched off from the tip of jets and fell to the surface of the glass. When the solid-air interface at the bubble-wall attachment point was completely covered with water, the bubble detached from the wall. The water jets were mainly generated by subharmonic waves and were generated most vigorously when the wall vibrated at the volume resonant frequency of the bubble. Bubbles of specific size can be removed by adjusting the frequency of the wall's vibration.

  1. Single event mass spectrometry

    DOE Patents [OSTI]

    Conzemius, Robert J.

    1990-01-16

    A means and method for single event time of flight mass spectrometry for analysis of specimen materials. The method of the invention includes pulsing an ion source imposing at least one pulsed ion onto the specimen to produce a corresponding emission of at least one electrically charged particle. The emitted particle is then dissociated into a charged ion component and an uncharged neutral component. The ion and neutral components are then detected. The time of flight of the components are recorded and can be used to analyze the predecessor of the components, and therefore the specimen material. When more than one ion particle is emitted from the specimen per single ion impact, the single event time of flight mass spectrometer described here furnis This invention was made with Government support under Contract No. W-7405-ENG82 awarded by the Department of Energy. The Government has certain rights in the invention.

  2. Nanoscale mass conveyors

    DOE Patents [OSTI]

    Regan, Brian C.; Aloni, Shaul; Zettl, Alexander K.

    2008-03-11

    A mass transport method and device for individually delivering chargeable atoms or molecules from source particles is disclosed. It comprises a channel; at least one source particle of chargeable material fixed to the surface of the channel at a position along its length; a means of heating the channel; and a means for applying an controllable electric field along the channel, whereby the device transports the atoms or molecules along the channel in response to applied electric field. In a preferred embodiment, the mass transport device will comprise a multiwalled carbon nanotube (MWNT), although other one dimensional structures may also be used. The MWNT or other structure acts as a channel for individual or small collections of atoms due to the atomic smoothness of the material. Also preferred is a source particle of a metal such as indium. The particles move by dissociation into small units, in some cases, individual atoms. The particles are preferably less than 100 nm in size.

  3. Quark Masses

    SciTech Connect (OSTI)

    Gasser, Juerg

    2005-10-26

    In my talk, I reviewed some basic aspects of quark masses: what do they mean, how can they be determined, what is our present knowledge on them. The talk was addressed to non specialists in the field, and so is this write up.

  4. Method and apparatus for de-watering biomass materials in a compression drying process

    DOE Patents [OSTI]

    Haygreen, John G.

    1986-01-01

    A method and apparatus for more effectively squeezing moisture from wood chips and/or other "green" biomass materials. A press comprising a generally closed chamber having a laterally movable base at the lower end thereof, and a piston or ram conforming in shape to the cross-section of the chamber is adapted to periodically receive a charge of biomass material to be dehydrated. The ram is forced against the biomass material with suffcient force to compress the biomass and to crush the matrix in which moisture is contained within the material with the face of the ram being configured to cause a preferential flow of moisture from the center of the mass outwardly to the grooved walls of the chamber. Thus, the moisture is effectively squeezed from the biomass and flows through the grooves formed in the walls of the chamber to a collecting receptacle and is not drawn back into the mass by capillary action when the force is removed from the ram.

  5. Thermal balance of a wall with PCM-enhanced thermal insulation

    SciTech Connect (OSTI)

    Kosny, Jan; Kossecka, Elizabeth; Williams, Teresa

    2010-01-01

    ABSTRACT: PCM insulation mixtures function as lightweight thermal mass components. It is expected that these types of dynamic insulation systems will contribute to the objective of reducing energy use in buildings. In this paper, dynamic thermal properties of a material in which phase hange occurs are analyzed, using the temperature-dependent specific heat model. Integral formula for the total heat flow in finite time interval, across the surface of a slab of the phase change material, was derived. Simulations have been performed to analyze heat transfer through a light-weight wall assembly with PCM-enhanced insulation, in different external climate thermal conditions. Results of simulations indicate that for cyclic processes, the effect of PCM in an insulation layer results rather in time shifting of the heat flux extreme values than in reduction of the total heat flow. The heat gains maxima, resulting in high cooling loads, are shifted in time by about two hours and reduced about 15% to 30% for not very high external sol-air temperatures.

  6. Phosphorous adsorption and precipitation in a permeable reactive wall: Applications for wastewater disposal systems

    SciTech Connect (OSTI)

    Baker, M.J.; Blowes, D.W. |; Placek, C.J. |

    1997-12-31

    A permeable reactive mixture has been developed using low cost, readily available materials that is capable of providing effective, long-term phosphorous treatment in areas impacted by on-land wastewater disposal. The reactive mixture creates a geochemical environment suitable for P-attenuation by both adsorption and precipitation reactions. Potential benefits include significant reductions in phosphorous loading to receiving groundwater and surface water systems, and the accumulation of P-mass in a finite and accessible volume of material. The mixture may be applied as a component within surface treatment systems or in subsurface applications such as horizontal or vertical permeable reactive walls. The mixture averaged > 90% treatment efficiency over 3.6 years of continuous-flow laboratory column experiments. The mixture was further evaluated at the pilot-scale to treat municipal wastewater, and the field-scale to treat a well-characterized septic system plume using an in situ funnel and gate system. Average PO{sub 4}-P concentrations in effluent exiting the reactive mixture range between 0 - 0.3 mg/L. Mineralogical analyses have isolated the phases responsible for phosphorous uptake, and discrete phosphate precipitates have been identified.

  7. Modification of near-wall coherent structures by inertial particles

    SciTech Connect (OSTI)

    Richter, David H.; Sullivan, Peter P.

    2014-10-15

    Direct numerical simulations are combined with two-way coupled Lagrangian point particles to study the effect of Reynolds number on particle-turbulence interaction. Turbulent planar Couette flow is simulated at a constant dispersed phase mass loading of ϕ{sub m} = 0.25 for particle Stokes numbers of St{sub K} = [O(1), O(10), O(100)] (based on the Stokes time scale of the particle and the Kolmogorov time scale of the flow) and bulk Reynolds numbers of Re{sub b} = [8100, 24000, 72000] (based on the plate velocity difference and separation distance). Statistics of swirling strength |λ{sub ci}| are used to evaluate the impact of particles on near-wall motions which are responsible for turbulent, wall-normal momentum transport. Instantaneously, the number of high-strength swirling motions near the wall decreases significantly in the presence of particles, and this trend is enhanced with increasing Re{sub b}. Conditional averages are computed using linear stochastic estimation, providing the average structures responsible for ejection events near the wall. These conditional eddies are weakened substantially by the presence of the dispersed phase, and this effect is again enhanced with increasing Re{sub b}. We propose a mechanism where particles, by interfering with the hairpin regeneration process near the wall, can influence turbulent fluxes in a way that increases with Re{sub b} despite only having direct interaction with scales on the same order as their small physical size. At the same time, turbulent momentum flux concentrated at higher wavenumbers with increasing Re{sub b} allows small particles to be effective agents for altering turbulent transport.

  8. Sheath oscillation characteristics and effect on near-wall conduction in a krypton Hall thruster

    SciTech Connect (OSTI)

    Zhang, Fengkui Kong, Lingyi; Li, Chenliang; Yang, Haiwei; Li, Wei

    2014-11-15

    Despite its affordability, the krypton Hall-effect thruster in applications always had problems in regard to performance. The reason for this degradation is studied from the perspective of the near-wall conductivity of electrons. Using the particle-in-cell method, the sheath oscillation characteristics and its effect on near-wall conduction are compared in the krypton and xenon Hall-effect thrusters both with wall material composed of BNSiO{sub 2}. Comparing these two thrusters, the sheath in the krypton-plasma thruster will oscillate at low electron temperatures. The near-wall conduction current is only produced by collisions between electrons and wall, thereby causing a deficiency in the channel current. The sheath displays spatial oscillations only at high electron temperature; electrons are then reflected to produce the non-oscillation conduction current needed for the krypton-plasma thruster. However, it is accompanied with intensified oscillations.

  9. weapons material | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    material

  10. Thermal Performance Evaluation of Walls with Gas Filled Panel Insulation

    SciTech Connect (OSTI)

    Shrestha, Som S.; Desjarlais, Andre Omer; Atchley, Jerald Allen

    2014-11-01

    Gas filled insulation panels (GFP) are very light weight and compact (when uninflated) advanced insulation products. GFPs consist of multiple layers of thin, low emittance (low-e) metalized aluminum. When expanded, the internal, low-e aluminum layers form a honeycomb structure. These baffled polymer chambers are enveloped by a sealed barrier and filled with either air or a low-conductivity gas. The sealed exterior aluminum foil barrier films provide thermal resistance, flammability protection, and properties to contain air or a low conductivity inert gas. This product was initially developed with a grant from the U.S. Department of Energy. The unexpanded product is nearly flat for easy storage and transport. Therefore, transportation volume and weight of the GFP to fill unit volume of wall cavity is much smaller compared to that of other conventional insulation products. This feature makes this product appealing to use at Army Contingency Basing, when transportation cost is significant compared to the cost of materials. The objective of this study is to evaluate thermal performance of walls, similar to those used at typical Barracks Hut (B-Hut) hard shelters, when GFPs are used in the wall cavities. Oak Ridge National Laboratory (ORNL) tested performance of the wall in the rotatable guarded hotbox (RGHB) according to the ASTM C 1363 standard test method.

  11. 2014 Wall Street Perspective on SMRs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Wall Street Perspective on SMRs 2014 Wall Street Perspective on SMRs Summary briefing on the results of a 2014 survey of Wall Street attitudes toward SMRs. 2014 New Generation Financial Survey (423.08 KB) More Documents & Publications 2014 Wall Street Perspectives on SMRs - Report 2015 Wall Street Perspectives on SMRs Update 2013 Wall Street Perspective on SMRs

  12. 2015 Wall Street Perspectives on SMRs Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Wall Street Perspectives on SMRs Update 2015 Wall Street Perspectives on SMRs Update Summary briefing on the results of a September 2015 survey of Wall Street attitudes toward SMRs. 2015 Financial Survey: Nuclear Energy (415.36 KB) More Documents & Publications 2014 Wall Street Perspective on SMRs 2014 Wall Street Perspectives on SMRs - Report 2013 Wall Street Perspective on SMRs

  13. Thermal control system and method for a passive solar storage wall

    DOE Patents [OSTI]

    Ortega, Joseph K. E.

    1984-01-01

    The invention provides a system and method for controlling the storing and elease of thermal energy from a thermal storage wall wherein said wall is capable of storing thermal energy from insolation of solar radiation. The system and method includes a device such as a plurality of louvers spaced a predetermined distance from the thermal wall for regulating the release of thermal energy from the thermal wall. This regulating device is made from a material which is substantially transparent to the incoming solar radiation so that when it is in any operative position, the thermal storage wall substantially receives all of the impacting solar radiation. The material in the regulating device is further capable of being substantially opaque to thermal energy so that when the device is substantially closed, thermal release of energy from the storage wall is substantially minimized. An adjustment device is interconnected with the regulating mechanism for selectively opening and closing it in order to regulate the release of thermal energy from the wall.

  14. Textural break foundation wall construction modules

    DOE Patents [OSTI]

    Phillips, Steven J.

    1990-01-01

    Below-grade, textural-break foundation wall structures are provided for inhibiting diffusion and advection of liquids and gases into and out from a surrounding hydrogeologic environment. The foundation wall structure includes a foundation wall having an interior and exterior surface and a porous medium disposed around a portion of the exterior surface. The structure further includes a modular barrier disposed around a portion of the porous medium. The modular barrier is substantially removable from the hydrogeologic environment.

  15. Panelized wall system with foam core insulation

    SciTech Connect (OSTI)

    Kosny, Jan; Gaskin, Sally

    2009-10-20

    A wall system includes a plurality of wall members, the wall members having a first metal panel, a second metal panel, and an insulating core between the first panel and the second panel. At least one of the first panel and the second panel include ridge portions. The insulating core can be a foam, such as a polyurethane foam. The foam can include at least one opacifier to improve the k-factor of the foam.

  16. Beetle Kill Wall at NREL

    ScienceCinema (OSTI)

    None

    2013-05-29

    When it comes to designing an interior decorative feature for one of the most energy efficient office buildings in the world, very few would consider bringing in a beetle to do the job. But thats what happened at the U.S. Department of Energy's (DOE) Research Support Facility (RSF) located on the National Renewable Energy Laboratory (NREL) campus.In June, the RSF will become home to more than 800 workers from DOE and NREL and building visitors will be greeted with a soaring, two-story high wall entirely covered with wood harvested from the bark beetle infestation that has killed millions of pine trees in the Western U.S. But, the use of beetle kill wood is just one example of the resources being leveraged to make the RSF a model for sustainability and one more step toward NRELs goal to be a net zero energy campus.

  17. Virtual gap dielectric wall accelerator

    DOE Patents [OSTI]

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  18. Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House

    SciTech Connect (OSTI)

    Mallay, D.; Wiehagen, J.

    2014-09-01

    Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate. Of primary interest is the influence of the ICF walls on developing an effective air sealing strategy and selecting an appropriate heating and cooling equipment type and capacity. The domestic water heating system is analyzed for costs and savings to investigate options for higher efficiency electric water heating. A method to ensure mechanical ventilation air flows is examined. The final solution package includes high-R mass walls, very low infiltration rates, multi-stage heat pump heating, solar thermal domestic hot water system, and energy recovery ventilation. This solution package can be used for homes to exceed 2012 International Energy Conservation Code requirements throughout all climate zones and achieves the DOE Challenge Home certification.

  19. CXD 4606, 9831 Wall Construction Project (4606)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9831 Wall Construction Project (4606) Y-12 Site Office Oak Ridge, Anderson County, Tennessee The proposed action is to upgrade of the existing contamination area associated with an...

  20. Fillability of Thin-Wall Steel Castings

    SciTech Connect (OSTI)

    Robert C. Voigt; Joseph Bertoletti; Andrew Kaley; Sandi Ricotta; Travis Sunday

    2002-07-30

    The use of steel components is being challenged by lighter nonferrous or cast iron components. The development of techniques for enhancing and ensuring the filability of thin-wall mold cavities is most critical for thinner wall cast steel production. The purpose of this research was to develop thin-wall casting techniques that can be used to reliably produce thin-wall castings from traditional gravity poured sand casting processes. The focus of the research was to enhance the filling behavior to prevent misrunds. Experiments were conducted to investigate the influence of various foundry variables on the filling of thin section steel castings. These variables include casting design, heat transfer, gating design, and metal fluidity. Wall thickness and pouring temperature have the greatest effect on casting fill. As wall thickness increases the volume to surface area of the casting increases, which increases the solidification time, allowing the metal to flow further in thicker sect ions. Pouring time is another significant variable affecting casting fill. Increases or decreases of 20% in the pouring time were found to have a significant effect on the filling of thin-wall production castings. Gating variables, including venting, pouring head height, and mold tilting also significantly affected thin-wall casting fill. Filters offer less turbulent, steadier flow, which is appropriate for thicker castings, but they do not enhance thin-wall casting fill.

  1. Living Walls | OpenEI Community

    Open Energy Info (EERE)

    systems and the new field of biomimicry. Biomimicry is the science of imitating nature to solve human design problems. The Living Wall concept takes the principles behind...

  2. Water Wall Turbine | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Water Wall Turbine Region: Canada Sector: Marine and Hydrokinetic Website: www.wwturbine.com This company is listed in the Marine and Hydrokinetic...

  3. new chemistry to break down cell walls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new chemistry to break down cell walls - Sandia Energy Energy Search Icon Sandia Home ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  4. Wall, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wall, Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3936801, -79.7861577 Show Map Loading map... "minzoom":false,"mappingser...

  5. Isotope mass spectrometry from 1968 to 1989

    SciTech Connect (OSTI)

    DeBievre, P. )

    1989-11-01

    The principal developments in isotope mass spectrometry are described with respect to instrument construction, detector technology, measurement precision, measurement accuracy, and reference materials. The increase in the application of isotope mass spectrometry is summarized, with special emphasis on its use in safeguards of nuclear materials. The future potential versus the present achievements of the field are discussed.

  6. MASS SPECTROMETRY

    DOE Patents [OSTI]

    Friedman, L.

    1962-01-01

    method is described for operating a mass spectrometer to improve its resolution qualities and to extend its period of use substantially between cleanings. In this method, a small amount of a beta emitting gas such as hydrogen titride or carbon-14 methane is added to the sample being supplied to the spectrometer for investigation. The additive establishes leakage paths on the surface of the non-conducting film accumulating within the vacuum chamber of the spectrometer, thereby reducing the effect of an accumulated static charge on the electrostatic and magnetic fields established within the instrument. (AEC)

  7. Thermal stability in the blended lithium manganese oxide – Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study

    SciTech Connect (OSTI)

    Hu, Enyuan; Bak, Seong Min; Senanayake, Sanjaya D.; Yang, Xiao-Qing; Nam, Kyung-Wan; Zhang, Lulu; Shao, Minhua

    2015-03-01

    Thermal stabilities of a series of blended LiMn2O4(LMO)-LiNi1/3Co1/3Mn1/3O2 (NCM) cathode materials with different weight ratios were studied by in situ time-resolved X-ray diffraction (XRD) combined with mass spectroscopy in the temperature range of 25°C-580°C under helium atmosphere. Upon heating, the electrochemically delithiated LMO changed into Mn3O4 phase at around 250°C. Formation of MnO with rocksalt structure started at 520°C. This observation is in contrast to the previous report for chemically delithiate LMO in air, in which a process of λ-MnO2 transforming to β-MnO2 was observed. Oxygen peak was not observed in all cases, presumably as a result of either consumption by the carbon or detection limit. CO2 profile correlates well with the phase transition and indirectly suggests the oxygen release of the cathode. Introducing NCM into LMO has two effects: first, it makes the high temperature rock-salt phase formation more complicated with more peaks in CO2 profile due to different MO (M = Ni, Mn, Co) phases; secondly, the onset temperature of CO2 release is lowered, implying lowered oxygen release temperature. Upon heating, XRD patterns indicate the NCM part reacts first, followed by the LMO part. This confirms the better thermal stability of LMO over NCM.

  8. Thermal stability in the blended lithium manganese oxide – Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, Enyuan; Bak, Seong Min; Senanayake, Sanjaya D.; Yang, Xiao-Qing; Nam, Kyung-Wan; Zhang, Lulu; Shao, Minhua

    2015-03-01

    Thermal stabilities of a series of blended LiMn2O4(LMO)-LiNi1/3Co1/3Mn1/3O2 (NCM) cathode materials with different weight ratios were studied by in situ time-resolved X-ray diffraction (XRD) combined with mass spectroscopy in the temperature range of 25°C-580°C under helium atmosphere. Upon heating, the electrochemically delithiated LMO changed into Mn3O4 phase at around 250°C. Formation of MnO with rocksalt structure started at 520°C. This observation is in contrast to the previous report for chemically delithiate LMO in air, in which a process of λ-MnO2 transforming to β-MnO2 was observed. Oxygen peak was not observed in all cases, presumably as a result of either consumptionmore » by the carbon or detection limit. CO2 profile correlates well with the phase transition and indirectly suggests the oxygen release of the cathode. Introducing NCM into LMO has two effects: first, it makes the high temperature rock-salt phase formation more complicated with more peaks in CO2 profile due to different MO (M = Ni, Mn, Co) phases; secondly, the onset temperature of CO2 release is lowered, implying lowered oxygen release temperature. Upon heating, XRD patterns indicate the NCM part reacts first, followed by the LMO part. This confirms the better thermal stability of LMO over NCM.« less

  9. Thermal stability in the blended lithium manganese oxide Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study

    SciTech Connect (OSTI)

    Hu, Enyuan; Bak, Seong Min; Senanayake, Sanjaya D.; Yang, Xiao-Qing; Nam, Kyung-Wan; Zhang, Lulu; Shao, Minhua

    2015-03-01

    Thermal stabilities of a series of blended LiMn2O4(LMO)-LiNi1/3Co1/3Mn1/3O2 (NCM) cathode materials with different weight ratios were studied by in situ time-resolved X-ray diffraction (XRD) combined with mass spectroscopy in the temperature range of 25C-580C under helium atmosphere. Upon heating, the electrochemically delithiated LMO changed into Mn3O4 phase at around 250C. Formation of MnO with rocksalt structure started at 520C. This observation is in contrast to the previous report for chemically delithiate LMO in air, in which a process of ?-MnO2 transforming to ?-MnO2 was observed. Oxygen peak was not observed in all cases, presumably as a result of either consumption by the carbon or detection limit. CO2 profile correlates well with the phase transition and indirectly suggests the oxygen release of the cathode. Introducing NCM into LMO has two effects: first, it makes the high temperature rock-salt phase formation more complicated with more peaks in CO2 profile due to different MO (M = Ni, Mn, Co) phases; secondly, the onset temperature of CO2 release is lowered, implying lowered oxygen release temperature. Upon heating, XRD patterns indicate the NCM part reacts first, followed by the LMO part. This confirms the better thermal stability of LMO over NCM.

  10. Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House

    SciTech Connect (OSTI)

    Mallay, D.; Wiehagen, J.

    2014-09-01

    Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate.

  11. External Insulation of Masonry Walls and Wood Framed Walls

    SciTech Connect (OSTI)

    Baker, P.

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1” to 1 ½”), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  12. External Insulation of Masonry Walls and Wood Framed Walls

    SciTech Connect (OSTI)

    Baker, P.

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1" to 1 1/2"), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  13. Moisture Durability Assessment of Selected Well-insulated Wall Assemblies

    SciTech Connect (OSTI)

    Pallin, Simon B.; Boudreaux, Philip R.; Kehrer, Manfred; Hun, Diana E.; Jackson, Roderick K.; Desjarlais, Andre Omer

    2015-12-01

    This report presents the results from studying the hygrothermal performance of two well-insulated wall assemblies, both complying with and exceeding international building codes (IECC 2015 2014, IRC 2015). The hygrothermal performance of walls is affected by a large number of influential parameters (e.g., outdoor and indoor climates, workmanship, material properties). This study was based on a probabilistic risk assessment in which a number of these influential parameters were simulated with their natural variability. The purpose of this approach was to generate simulation results based on laboratory chamber measurements that represent a variety of performances and thus better mimic realistic conditions. In total, laboratory measurements and 6,000 simulations were completed for five different US climate zones. A mold growth indicator (MGI) was used to estimate the risk of mold which potentially can cause moisture durability problems in the selected wall assemblies. Analyzing the possible impact on the indoor climate due to mold was not part of this study. The following conclusions can be reached from analyzing the simulation results. In a hot-humid climate, a higher R-value increases the importance of the airtightness because interior wall materials are at lower temperatures. In a cold climate, indoor humidity levels increase with increased airtightness. Air leakage must be considered in a hygrothermal risk assessment, since air efficiently brings moisture into buildings from either the interior or exterior environment. The sensitivity analysis of this study identifies mitigation strategies. Again, it is important to remark that MGI is an indicator of mold, not an indicator of indoor air quality and that mold is the most conservative indicator for moisture durability issues.

  14. 2014 Wall Street Perspectives on SMRs - Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Wall Street Perspectives on SMRs - Report 2014 Wall Street Perspectives on SMRs - Report Summary of the results of a 2014 survey of Wall Street attitudes toward small modular reactors. View from Wall Street: Nuclear Energy and Small Modular Reactors (284.42 KB) More Documents & Publications 2013 Wall Street Perspective on SMRs 2014 Wall Street Perspective on SMRs 2015 Wall Street Perspectives on SMRs Update

  15. Risk Assessment of Energy-Efficient Walls

    SciTech Connect (OSTI)

    Pallin, Simon B.; Hun, Diana E.; Jackson, Roderick K.; Kehrer, Manfred

    2014-12-01

    This multi-year project aims to provide the residential construction industry with energy-efficient wall designs that are moisture durable. The present work focused on the initial step of this project, which is to develop a moisture durability protocol that identifies energy efficient wall designs that have a low probability of experiencing moisture problems.

  16. Near-wall serpentine cooled turbine airfoil

    SciTech Connect (OSTI)

    Lee, Ching-Pang

    2014-10-28

    A serpentine coolant flow path is formed by inner walls in a cavity between pressure and suction side walls of a turbine airfoil, the cavity partitioned by one or more transverse partitions into a plurality of continuous serpentine cooling flow streams each having a respective coolant inlet.

  17. Automotion of domain walls for spintronic interconnects

    SciTech Connect (OSTI)

    Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.

    2014-06-07

    We simulate “automotion,” the transport of a magnetic domain wall under the influence of demagnetization and magnetic anisotropy, in nanoscale spintronic interconnects. In contrast to spin transfer driven magnetic domain wall motion, the proposed interconnects operate without longitudinal charge current transfer, with only a transient current pulse at domain wall creation and have favorable scaling down to the 20 nm dimension. Cases of both in-plane and out-of-plane magnetization are considered. Analytical dependence of the velocity of domain walls on the angle of magnetization are compared with full micromagnetic simulations. Deceleration, attenuation and disappearance, and reflection of domain walls are demonstrated through simulation. Dependences of the magnetization angle on the current pulse parameters are studied. The energy and delay analysis suggests that automotion is an attractive option for spintronic logic interconnects.

  18. Giga-Dalton Mass Spectrometry - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Advanced Materials Advanced Materials Find More Like This Return to Search Giga-Dalton Mass Spectrometry Major leap forward for Mass Spectrometry Applications to Life Sciences Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryCurrent techniques to study large bio?molecules using mass spectrometer require fragmentation for the mass?to?charge ratios to be within the working range of the mass spectrometer. Analysis

  19. Technology Solutions Case Study: Hygrothermal Performance of a Double-Stud Cellulose Wall

    SciTech Connect (OSTI)

    2015-06-01

    Moisture problems within the building shell can be caused by a number of factors including excess interior moisture that is transported into the wall through air leakage and vapor drive, bulk water intrusion from leaks and wind-driven rain, capillary action from concrete to wood connections, and through wetted building materials such as siding wetted from rain splash back. With the increasing thickness of walls, moisture issues could increase. Several builders have successfully used “double-wall” systems to more practically achieve higher R-values in thicker framed walls. A double wall typically consists of a load-bearing external frame wall constructed with 2 × 4 framing at 16 in. on center using conventional methods. After the building is enclosed, an additional frame wall is constructed several inches inside the load-bearing wall. Several researchers have used moisture modeling software to conduct extensive analysis of these assemblies; however, little field research has been conducted to validate the results. In this project, the Building America research team Consortium for Advanced Residential Buildings monitored a double-stud assembly in climate zone 5A to determine the accu¬racy of moisture modeling and make recommendations to ensure durable and efficient assemblies.

  20. Compact Dielectric Wall Accelerator Development For Intensity Modulated Proton Therapy And Homeland Security Applications

    SciTech Connect (OSTI)

    Chen, Y -; Caporaso, G J; Guethlein, G; Sampayan, S; Akana, G; Anaya, R; Blackfield, D; Cook, E; Falabella, S; Gower, E; Harris, J; Hawkins, S; Hickman, B; Holmes, C; Horner, A; Nelson, S; Paul, A; Pearson, D; Poole, B; Richardson, R; Sanders, D; Stanley, J; Sullivan, J; Wang, L; Watson, J; Weir, J

    2009-06-17

    Compact dielectric wall (DWA) accelerator technology is being developed at the Lawrence Livermore National Laboratory. The DWA accelerator uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. Its high electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The DWA concept can be applied to accelerate charge particle beams with any charge to mass ratio and energy. Based on the DWA system, a novel compact proton therapy accelerator is being developed. This proton therapy system will produce individual pulses that can be varied in intensity, energy and spot width. The system will be capable of being sited in a conventional linac vault and provide intensity modulated rotational therapy. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, SiC photoconductive switches and compact proton sources. Applications of the DWA accelerator to problems in homeland security will also be discussed.

  1. Magnetic shielding of the channel walls in a Hall plasma accelerator

    SciTech Connect (OSTI)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.; Goebel, Dan M.; Grys, Kristi de; Mathers, Alex

    2011-03-15

    In a qualification life test of a Hall thruster it was found that the erosion of the acceleration channel practically stopped after {approx}5600 h. Numerical simulations using a two-dimensional axisymmetric plasma solver with a magnetic field-aligned mesh reveal that when the channel receded from its early-in-life to its steady-state configuration the following changes occurred near the wall: (1) reduction of the electric field parallel to the wall that prohibited ions from acquiring significant impact kinetic energy before entering the sheath, (2) reduction of the potential fall in the sheath that further diminished the total energy ions gained before striking the material, and (3) reduction of the ion number density that decreased the flux of ions to the wall. All these changes, found to have been induced by the magnetic field, constituted collectively an effective shielding of the walls from any significant ion bombardment. Thus, we term this process in Hall thrusters 'magnetic shielding'.

  2. High-R Walls - Building America Top Innovation | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America Top Innovation This photo shows two framed walls. High-performance homes require walls that cost-effectively ... R-value is almost always lower than the rated whole-wall ...

  3. High Performance Walls in Hot-Dry Climates (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    High Performance Walls in Hot-Dry Climates Citation Details In-Document Search Title: High Performance Walls in Hot-Dry Climates High performance walls represent a high priority...

  4. Material Misfits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Issues submit Material Misfits How well nanocomposite materials align at their interfaces determines what properties they have, opening broad new avenues of materials-science...

  5. Materials Professor Honored with AVS Welch Award, Donates Funds to Support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Students | Center for Energy Efficient Materials Materials Professor Honored with AVS Welch Award, Donates Funds to Support Students Chris G. Van de Walle, Professor of Materials, has been awarded the 2013 AVS Medard W. Welch Award, the premier honor given by AVS, the Science and Technology society. Van de Walle will receive the award at the AVS 60th International Symposium and Conference next week in Long Beach, California. The award recognizes Professor Van de Walle, "for seminal

  6. Degradation of Algal Cell Walls by Enzymes and Dyes - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Degradation of Algal Cell Walls by Enzymes and Dyes National Renewable Energy Laboratory ... for extracting the oils from the cells by first weakening the cell walls using enzymes. ...

  7. Seeing through walls at the nanoscale: Microwave microscopy of...

    Office of Scientific and Technical Information (OSTI)

    Seeing through walls at the nanoscale: Microwave microscopy of enclosed objects and ... Title: Seeing through walls at the nanoscale: Microwave microscopy of enclosed objects and ...

  8. Lanzhou Great Wall Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wall Development Co Ltd Jump to: navigation, search Name: Lanzhou Great Wall Development Co., Ltd. Place: Lanzhou, Gansu Province, China Zip: 730000 Sector: Hydro Product:...

  9. YMGI Through-the-Wall Air Conditioner Determined Noncompliant...

    Energy Savers [EERE]

    YMGI Through-the-Wall Air Conditioner Determined Noncompliant With Energy Efficiency Standard YMGI Through-the-Wall Air Conditioner Determined Noncompliant With Energy Efficiency ...

  10. Modifications of the cell wall of yeasts grown on hexadecane...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modifications of the cell wall of yeasts grown on hexadecane and under starvation conditions Title Modifications of the cell wall of yeasts grown on hexadecane and under starvation...

  11. Wall Lake Municipal Utilities Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Municipal Utilities Energy Purchaser Wall Lake Municipal Utilities Location Wall Lake IA Coordinates 42.281965, -95.094098 Show Map Loading map... "minzoom":false,"mappings...

  12. MHK Technologies/Water Wall Turbine | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search << Return to the MHK database homepage Water Wall Turbine.png Technology Profile Primary Organization Water Wall Turbine Technology Type Click...

  13. Building America Special Research Project: High-R Walls Case...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Special Research Project: High-R Walls Case Study Analysis Building America Special Research Project: High-R Walls Case Study Analysis This report considers a ...

  14. Solar Decathlon 2013: Raising More Than Just Walls | Department...

    Office of Environmental Management (EM)

    Raising More Than Just Walls Solar Decathlon 2013: Raising More Than Just Walls September ... To celebrate the groundbreaking of their Solar Decathlon house, the team invited all of ...

  15. Sorted Single-Walled Carbon Nanotube Films for Transparent Electrodes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sorted Single-Walled Carbon Nanotube Films for Transparent Electrodes in Organic Solar Cells Home > Research > ANSER Research Highlights > Sorted Single-Walled Carbon Nanotube...

  16. 2014 Wall Street Perspectives on SMRs - Report | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Perspectives on SMRs - Report 2014 Wall Street Perspectives on SMRs - Report Summary of the results of a 2014 survey of Wall Street attitudes toward small modular reactors. PDF ...

  17. Wall of fundamental constants (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Wall of fundamental constants Citation Details In-Document Search Title: Wall of fundamental constants Authors: Olive, Keith A. ; Peloso, Marco ; Uzan, Jean-Philippe Publication ...

  18. PROCESS OF FORMING POWDERED MATERIAL

    DOE Patents [OSTI]

    Glatter, J.; Schaner, B.E.

    1961-07-14

    A process of forming high-density compacts of a powdered ceramic material is described by agglomerating the powdered ceramic material with a heat- decompossble binder, adding a heat-decompossble lubricant to the agglomerated material, placing a quantity of the material into a die cavity, pressing the material to form a compact, pretreating the compacts in a nonoxidizing atmosphere to remove the binder and lubricant, and sintering the compacts. When this process is used for making nuclear reactor fuel elements, the ceramic material is an oxide powder of a fissionsble material and after forming, the compacts are placed in a cladding tube which is closed at its ends by vapor tight end caps, so that the sintered compacts are held in close contact with each other and with the interior wall of the cladding tube.

  19. Wall-E Is So Jealous Right Now: SRR Robots Help Clean Up SRS | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Wall-E Is So Jealous Right Now: SRR Robots Help Clean Up SRS Wall-E Is So Jealous Right Now: SRR Robots Help Clean Up SRS June 13, 2012 - 3:09pm Addthis What Is A PackBot? The PackBot, which is the size of a foot stool, is a versatile ground robot that efficiently navigates various terrain including rubble, narrow passages and steep grades. Multiple cameras on the robot will relay real-time images to the operator control unit. These images, coupled with a 3-D image of the PackBot

  20. Functional Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Functional Materials Researchers in NETL's Functional Materials Development competency work to discover and develop advanced functional materials and component processing technologies to meet technology performance requirements and enable scale-up for proof-of-concept studies. Research includes separations materials and electrochemical and magnetic materials, specifically: Separations Materials Synthesis, purification, and basic characterization of organic substances, including polymers and

  1. Material containment enclosure

    DOE Patents [OSTI]

    Carlson, David O.

    1993-01-01

    An isolation enclosure and a group of isolation enclosures useful when a relatively large containment area is required. The enclosure is in the form of a ring having a section removed so that a technician may enter the center area of the ring. In a preferred embodiment, an access zone is located in the transparent wall of the enclosure and extends around the inner perimeter of the ring so that a technician can insert his hands into the enclosure to reach any point within. The inventive enclosures provide more containment area per unit area of floor space than conventional material isolation enclosures.

  2. Three-Dimensional Numerical Evaluation of Thermal Performance of Uninsulated Wall Assemblies

    SciTech Connect (OSTI)

    Ridouane, El Hassan; Bianchi, Marcus V.A.

    2011-11-01

    This study describes a detailed 3D computational fluid dynamics model that evaluates the thermal performance of uninsulated wall assemblies. It accounts for conduction through framing, convection, and radiation and allows for material property variations with temperature. This research was presented at the ASME 2011 International Mechanical Engineering Congress and Exhibition; Denver, Colorado; November 11-17, 2011

  3. APEX ADVANCED FERRITIC STEEL, FLIBE SELF-COOLED FIRST WALL AND BLANKET DESIGN

    SciTech Connect (OSTI)

    WONG,CPC; MALANG,S; SAWAN,M; SVIATOSLAVSKY,I; MOGAHED,E; SMOLENTSEV,S; MAJUMDAR,S; MERRILL,B; MATTAS,R; FRIEND,M; BOLIN,J; SHARAFAT,S

    2003-11-01

    OAK-B135 As an element in the US Advanced Power Extraction (APEX) program, they evaluated the design option of using advanced nanocomposite ferritic steel (AFS) as the structural material and Flibe as the tritium breeder and coolant. They selected the recirculating flow configuration as the reference design. Based on the material properties of AFS, they found that the reference design can handle a maximum surface heat flux of 1 MW/m{sup 2}, and a maximum neutron wall loading of 5.4 MW/m{sup 2}, with a gross thermal efficiency of 47%, while meeting all the tritium breeding and structural design requirements. This paper covers the results of the following areas of evaluation: materials selection, first wall and blanket design configuration, materials compatibility, components fabrication, neutronics analysis, thermal hydraulics analysis including MHD effects, structural analysis, molten salt and helium closed cycle power conversion system, and safety and waste disposal of the recirculating coolant design.

  4. Structural Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Materials Structural Materials Development enables advanced technologies through the discovery, development, and demonstration of cost-effective advanced structural materials for use in extreme environments (high-temperature, high-stress, erosive, and corrosive environments, including the performance of materials in contact with molten slags and salts). Research includes materials design and discovery, materials processing and manufacturing, and service-life prediction of materials

  5. Building a barrier wall through boulders

    SciTech Connect (OSTI)

    McMahon, D.R.; Mann, M.J. ); Tulett, R.C. )

    1994-10-01

    When the Occidental Chemical Co., Niagara Falls, N.Y., set out to remediate and contain wastes and ground water at its upstate New York site, they found that part of the proposed cutoff wall would be located in land reclaimed from the Niagara River. The fill was rock blasted out for a tunnel years ago, and the presence of boulders rule out conventional barrier-wall construction techniques. Occidental's first approach to containment had been a conventional soil-bentonite wall. Because of the area's geography and the location of the wastes, a portion of the wall had to be aligned along the riverbank. The company wanted to separate the plant area from the river, and decided to extend the barrier to the concrete headwall for intakes at the nearby Robert Moses Niagara Power Plant. This meant about 2,000 ft of the barrier wall would run through shot-rock fill placed during construction of the powerplant in the 1960s. Conduits for that plant were constructed by blasting rock to form open-cut tunnels several miles long. Some of the resulting shot rock was placed along the riverbank, extending the shoreline about 200 ft into the river near the now-contaminated site. The Rober Moses Parkway, a four-land highway, was constructed on the reclaimed land about 100 ft from the new shoreline.

  6. Materials Technical Team Roadmap

    SciTech Connect (OSTI)

    none,

    2013-08-01

    Roadmap identifying the efforts of the Materials Technical Team (MTT) to focus primarily on reducing the mass of structural systems such as the body and chassis in light-duty vehicles (including passenger cars and light trucks) which enables improved vehicle efficiency regardless of the vehicle size or propulsion system employed.

  7. Double Wall Framing Technique An Example of High Performance, Sustainable Building Envelope Technology

    SciTech Connect (OSTI)

    Kosny, Dr. Jan; Asiz, Andi; Shrestha, Som S; Biswas, Kaushik; Nitin, Shukla

    2015-01-01

    Double wall technologies utilizing wood framing have been well-known and used in North American buildings for decades. Most of double wall designs use only natural materials such as wood products, gypsum, and cellulose fiber insulation, being one of few building envelope technologies achieving high thermal performance without use of plastic foams or fiberglass. Today, after several material and structural design modifications, these technologies are considered as highly thermally efficient, sustainable option for new constructions and sometimes, for retrofit projects. Following earlier analysis performed for U.S. Department of Energy by Fraunhofer CSE, this paper discusses different ways to build double walls and to optimize their thermal performance to minimize the space conditioning energy consumption. Description of structural configuration alternatives and thermal performance analysis are presented as well. Laboratory tests to evaluate thermal properties of used insulation and whole wall system thermal performance are also discussed in this paper. Finally, the thermal loads generated in field conditions by double walls are discussed utilizing results from a joined project performed by Zero Energy Building Research Alliance and Oak Ridge National Laboratory (ORNL), which made possible evaluation of the market viability of low-energy homes built in the Tennessee Valley. Experimental data recorded in two of the test houses built during this field study is presented in this work.

  8. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  9. Turbine airfoil with a compliant outer wall

    DOE Patents [OSTI]

    Campbell, Christian X.; Morrison, Jay A.

    2012-04-03

    A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation in the outer layer is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a support structure. The outer layer may be a compliant layer configured such that the outer layer may thermally expand and thereby reduce the stress within the outer layer. The outer layer may be formed from a nonplanar surface configured to thermally expand. In another embodiment, the outer layer may be planar and include a plurality of slots enabling unrestricted thermal expansion in a direction aligned with the outer layer.

  10. Wall thickness measuring method and apparatus

    DOE Patents [OSTI]

    Salzer, L.J.; Bergren, D.A.

    1987-10-06

    An apparatus for measuring the wall thickness of a nonmagnetic article having a housing supporting a magnet and a contiguous supporting surface. The tubular article and the housing are releasably secured to the supporting surface and a support member of an optical comparator, respectively. To determine the wall thickness of the article at a selected point, a magnetically responsive ball is positioned within the tubular article over said point and retained therein by means of a magnetic field produced by the magnet. Thereafter, an optical comparator is employed to project a magnified image of the ball on a screen and the wall thickness at the selected point is calculated by using a ball surface measurement taken with the comparator in conjunction with a previously determined base line measurement.

  11. INTEGRATED ENERGY EFFICIENT WINDOW-WALL SYSTEMS

    SciTech Connect (OSTI)

    Michael Arney, Ph.D.

    2002-12-31

    The building industry faces the challenge of reducing energy use while simultaneously improving construction methods and marketability. This paper describes the first phase of a project to address these concerns by designing an Integrated Window Wall System (IWWS) that can be commercialized. This work builds on previous research conducted during the 1990's by Lawrence Berkeley national Laboratories (LBNL). During this phase, the objective was to identify appropriate technologies, problems and issues and develop a number of design concepts. Four design concepts were developed into prototypes and preliminary energy analyses were conducted Three of these concepts (the foam wall, steel wall, and stiffened plate designs) showed particular potential for meeting the project objectives and will be continued into a second phase where one or two of the systems will be brought closer to commercialization.

  12. Wall thickness measuring method and apparatus

    DOE Patents [OSTI]

    Salzer, Leander J.; Bergren, Donald A.

    1989-01-01

    An apparatus for measuring the wall thickness of a nonmagnetic article having a housing supporting a magnet and a contiguous supporting surface. The tubular article and the housing are releasably secured to the supporting surface and a support member of an optical comparator, respectively. To determine the wall thickness of the article at a selected point, a magnetically responsive ball is positioned within the tubular article over said point and retained therein by means of a magnetic field produced by the magnet. Thereafter, an optical comparator is employed to project a magnified image of the ball on a screen and the wall thickness at the selected point is calculated by using a ball surface measurement taken with the comparator in conjunction with a previously determined base line measurement.

  13. Domain wall conduction in multiaxial ferroelectrics

    SciTech Connect (OSTI)

    Eliseev, E. A.; Morozovska, A. N.; Svechnikov, S. V.; Maksymovych, Petro; Kalinin, Sergei V

    2012-01-01

    The conductance of domain wall structures consisting of either stripes or cylindrical domains in multiaxial ferroelectric-semiconductors is analyzed. The effects of the flexoelectric coupling, domain size, wall tilt, and curvature on charge accumulation are analyzed using the Landau-Ginsburg Devonshire theory for polarization vector combined with the Poisson equation for charge distributions. The proximity and size effect of the electron and donor accumulation/depletion by thin stripe domains and cylindrical nanodomains are revealed. In contrast to thick domain stripes and wider cylindrical domains, in which the carrier accumulation (and so the static conductivity) sharply increases at the domain walls only, small nanodomains of radii less than 5-10 correlation lengths appeared conducting across the entire cross-section. Implications of such conductive nanosized channels may be promising for nanoelectronics.

  14. Wood Pulp Digetster Wall Corrosion Investigation

    SciTech Connect (OSTI)

    Giles, GE

    2003-09-18

    The modeling of the flow in a wood pulp digester is but one component of the investigation of the corrosion of digesters. This report describes the development of a Near-Wall-Model (NWM) that is intended to couple with a CFD model that determines the flow, heat, and chemical species transport and reaction within the bulk flow of a digester. Lubrication theory approximations were chosen from which to develop a model that could determine the flow conditions within a thin layer near the vessel wall using information from the interior conditions provided by a CFD calculation of the complete digester. The other conditions will be determined by coupled solutions of the wood chip, heat, and chemical species transport and chemical reactions. The NWM was to couple with a digester performance code in an iterative fashion to provide more detailed information about the conditions within the NW region. Process Simulations, Ltd (PSL) is developing the digester performance code. This more detailed (and perhaps more accurate) information from the NWM was to provide an estimate of the conditions that could aggravate the corrosion at the wall. It is intended that this combined tool (NWM-PSL) could be used to understand conditions at/near the wall in order to develop methods to reduce the corrosion. However, development and testing of the NWM flow model took longer than anticipated and the other developments (energy and species transport, chemical reactions and linking with the PSL code) were not completed. The development and testing of the NWM are described in this report. In addition, the investigation of the potential effects of a clear layer (layer reduced in concentration of wood chips) near the wall is reported in Appendix D. The existence of a clear layer was found to enhance the flow near the wall.

  15. Ultra High Mass Range Mass Spectrometer System

    DOE Patents [OSTI]

    Reilly, Peter T. A. [Knoxville, TN

    2005-12-06

    Applicant's present invention comprises mass spectrometer systems that operate in a mass range from 1 to 10.sup.16 DA. The mass spectrometer system comprising an inlet system comprising an aerodynamic lens system, a reverse jet being a gas flux generated in an annulus moving in a reverse direction and a multipole ion guide; a digital ion trap; and a thermal vaporization/ionization detector system. Applicant's present invention further comprises a quadrupole mass spectrometer system comprising an inlet system having a quadrupole mass filter and a thermal vaporization/ionization detector system. Applicant's present invention further comprises an inlet system for use with a mass spectrometer system, a method for slowing energetic particles using an inlet system. Applicant's present invention also comprises a detector device and a method for detecting high mass charged particles.

  16. Helium Pumping Wall for a Liquid Lithium Tokamak Richard Majeski |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Helium Pumping Wall for a Liquid Lithium Tokamak Richard Majeski This invention is designed to be a subsystem of a device, a tokamak with walls or plasma facing components of liquid lithium. This approach to constructing the lithium-bearing walls of the tokamak allows the wall to fulfill a necessary function -- helium pumping - for which a complex structure was formerly required. The primary novel feature of the invention is that a permeable wall is used to

  17. A self-consistent two-fluid model of a magnetized plasma-wall transition

    SciTech Connect (OSTI)

    Gyergyek, T.; Kovačič, J.

    2015-09-15

    A self-consistent one-dimensional two-fluid model of the magnetized plasma-wall transition is presented. The model includes magnetic field, elastic collisions between ions and electrons, and creation/annihilation of charged particles. Two systems of differential equations are derived. The first system describes the whole magnetized plasma-wall transition region, which consists of the pre-sheath, the magnetized pre-sheath (Chodura layer), and the sheath, which is not neutral, but contains a positive space charge. The second system of equations describes only the neutral part of the plasma-wall transition region—this means only the pre-sheath and the Chodura layer, but not also the sheath. Both systems are solved numerically. The first system of equations has two singularities. The first occurs when ion velocity in the direction perpendicularly to the wall drops below the ion thermal velocity. The second occurs when the electron velocity in the direction perpendicularly to the wall exceeds the electron thermal velocity. The second system of differential equations only has one singularity, which has also been derived analytically. For finite electron to ion mass ratio, the integration of the second system always breaks down before the Bohm criterion is fulfilled. Some properties of the first system of equations are examined. It is shown that the increased collision frequency demagnetizes the plasma. On the other hand, if the magnetic field is so strong that the ion Larmor radius and the Debye length are comparable, the electron velocity in the direction perpendicularly to the wall reaches the electron thermal velocity before the ion velocity in the direction perpendicularly to the wall reaches the ion sound velocity. In this case, the integration of the model equations breaks down before the Bohm criterion is fulfilled and the sheath is formed.

  18. Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Propulsion Materials FY 2013 Progress Report ii CONTENTS INTRODUCTION ....................................................................................................................................... 1 Project 18516 - Materials for H1ybrid and Electric Drive Systems ...................................................... 4 Agreement 19201 - Non-Rare Earth Magnetic Materials ............................................................................ 4 Agreement 23278 - Low-Cost

  19. Standing gravitational waves from domain walls

    SciTech Connect (OSTI)

    Gogberashvili, Merab; Myrzakul, Shynaray; Singleton, Douglas

    2009-07-15

    We construct a plane symmetric, standing gravitational wave for a domain wall plus a massless scalar field. The scalar field can be associated with a fluid which has the properties of 'stiff' matter, i.e., matter in which the speed of sound equals the speed of light. Although domain walls are observationally ruled out in the present era, the solution has interesting features which might shed light on the character of exact nonlinear wave solutions to Einstein's equations. Additionally this solution may act as a template for higher dimensional 'brane-world' model standing waves.

  20. Cell Wall Recipe: A Lesson on Biofuels

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students will investigate how changes in the DNA sequence that codes for cell wall formation can have a favorable outcome in producing plants that have higher levels of cellulose than the parent plant. The cellulose yield is most important in the production of ethanol: the greater the amount of cellulose within the cell wall, the greater the amount of ethanol that can be produced. To engage students, the first part of this lesson has students participating in a discovery activity where they will extract DNA from wheat germ.

  1. Measure Guideline: Wall Air Sealing and Insulation Methods in Existing Homes; An Overview of Opportunity and Process

    SciTech Connect (OSTI)

    Roberts, S.; Stephenson, R.

    2012-09-01

    This guide provides renovators and retrofit contractors an overview of considerations when including wall air sealing and insulation in an energy retrofit project. It also outlines the potential project risks, various materials for insulating, possible field inspections needed, installation procedures, as well as the benefits and drawbacks. The purpose of this document is to provide the outline of the overview and process of insulating and air sealing walls so that home retrofit professionals can identify approaches to air sealing and insulation measures.

  2. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Materials Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Materials Physics and Applications» Materials Science and Technology» Institute for Materials Science» Materials Science Rob Dickerson uses a state-of-the-art transmission electron microscope at the Electron Microscopy Laboratory managed by Los

  3. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Biological and Environmental Research May 7-8, 2009 Invitation Workshop Invitation Letter...

  4. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Basic Energy Sciences February 9-10, 2010 Official DOE Invitation Workshop Invitation...

  5. Structural Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Materials Development enables advanced technologies through the discovery, development, and demonstration of cost-effective advanced structural materials for use in ...

  6. Cementitious building material incorporating end-capped polyethylene glycol as a phase change material

    DOE Patents [OSTI]

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    A cementitious composition comprising a cementitious material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the compositions are useful in making pre-formed building materials such as concrete blocks, brick, dry wall and the like or in making poured structures such as walls or floor pads; the glycols can be encapsulated to reduce their tendency to retard set.

  7. Tin-wall hollow ceramic spheres from slurries. Final report

    SciTech Connect (OSTI)

    Chapman, A.T.; Cochran, J.K.

    1992-12-31

    The overall objective of this effort was to develop a process for economically fabricating thin-wall hollow ceramic spheres from conventional ceramic powders using dispersions. This process resulted in successful production of monosized spheres in the mm size range which were point contact bonded into foams. Thin-wall hollow ceramic spheres of small (one to five millimeter) diameter have novel applications as high-temperature insulation and light structural materials when bonded into monolithic foams. During Phase 1 of this program the objective as to develop a process for fabricating thin-wall hollow spheres from powder slurries using the coaxial nozzle fabrication method. Based on the success during Phase 1, Phase 2 was revised to emphasize the assessment of the potential structural and insulation applications for the spheres and modeling of the sphere formation process was initiated. As more understanding developed, it was clear that to achieve successful structural application, the spheres had to be bonded into monolithic foams and the effort was further expanded to include both bonding into structures and finite element mechanical modeling which became the basis of Phase 3. Successful bonding techniques and mechanical modeling resulted but thermal conductivities were higher than desired for insulating activities. In addition, considerable interest had been express by industry for the technology. Thus the final Phase 4 concentrated on methods to reduce thermal conductivity by a variety of techniques and technology transfer through individualized visits. This program resulted in three Ph.D. theses and 10 M.S. theses and they are listed in the appropriate technical sections.

  8. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in multiferroic BiFeO3, only 2-3 nm wide and distinct from the surrounding insulating material.1 Conductivity was completely unexpected since domain walls present only a subtle...

  9. Material bagging device

    DOE Patents [OSTI]

    Wach, Charles G.; Nelson, Robert E.; Brak, Stephen B.

    1984-01-01

    A bagging device for transferring material from one chamber through an opening in a wall to a second chamber includes a cylindrical housing communicating with the opening and defining a passage between the chambers. A cylindrical cartridge is slidably received within the housing. The cartridge has a substantially rigid cylindrical sleeve to which is affixed a pliable tube. The pliable tube is positioned concentrically about the sleeve and has a pleated portion capable of unfolding from the sleeve and a closed end extending over a terminal end of the sleeve. Sealing means are interposed in sealed relationship between the cartridge and the housing. Material from one chamber is inserted into the cartridge secured in the housing and received in the closed end of the tube which unfolds into the other chamber enclosing the material therein. The tube may then be sealed behind the material and then severed to form a bag-like enclosure defined by the tube's closed terminal end and the new seal. The new seal then forms a terminal end for the unsevered portion of the pliable tube into which additional material may be placed and the bagging process repeated.

  10. material protection

    National Nuclear Security Administration (NNSA)

    %2A en Office of Weapons Material Protection http:www.nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1