Powered by Deep Web Technologies
Note: This page contains sample records for the topic "waiver mtbe methyl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Atmospheric Methyl Tertiary Butyl Ether (MTBE) at a Rural Mountain Site in California  

E-Print Network [OSTI]

Atmospheric Methyl Tertiary Butyl Ether (MTBE) at a Rural Mountain Site in California Gunnar W. Schade,* Gabrielle B. Dreyfus, and Allen H. Goldstein ABSTRACT (CARB) measured MTBE in urban regions in 1995­ 1996, reporting a range of 0.4 to 13.2 ppbv in the LosMethyl tertiary butyl ether (MTBE

Cohen, Ronald C.

2

Environmental Microbiology (2001) 3(6), 407416 Methyl tert-butyl ether (MTBE) degradation by a  

E-Print Network [OSTI]

Environmental Microbiology (2001) 3(6), 407±416 Methyl tert-butyl ether (MTBE) degradation of California, Riverside, Riverside, CA 92521, USA. Summary The widespread use of methyl tert-butyl ether (MTBE is often proposed as the most promising alter- native after treatment. However, MTBE biodegradation appears

3

Measurement of methyl-tert-butyl-ether (MTBE) in raw drinking water  

SciTech Connect (OSTI)

In order to assess the pathways for human exposure to methyl-tert-butyl-ether (MTBE) and to understand the extent of MTBE contamination in watersheds, a purge and trap gas chromatographic mass spectrometric method to measure part-per-trillion (ppt) concentrations of MTBE in environmental waters was developed. A variety of California's raw drinking waters were analyzed. No detectable MTBE was found in deep groundwater (>1000 feet). However shallow groundwater ({approx}250 feet) contained MTBE concentrations of non-detect to 1300 ppt. MTBE concentrations measured in rivers and lakes ranged from non-detect to 3500 ppt. East (San Francisco) Bay area rain water contained approximately 80 ppt MTBE.

Davisson, M L; Koester, C J; Moran, J E

1999-10-14T23:59:59.000Z

4

Impacts of Ethanol on Anaerobic Production of Tert-Butyl Alcohol (TBA) from Methyl Tert-Butyl Ether (MTBE) in Groundwater  

E-Print Network [OSTI]

Methyl Tert-Butyl Ether (MTBE) in Groundwater P.I. names,Methyl tert-butyl ether (MTBE) is a contaminant of concernsubsurface environments. MTBE appears to be degraded readily

Scow, K M; MacKay, Douglas

2008-01-01T23:59:59.000Z

5

Photoionization of methyl t-butyl ether (MTBE) and t-octyl methyl ether (TOME) and analysis of their pyrolyses by  

E-Print Network [OSTI]

Photoionization of methyl t-butyl ether (MTBE) and t-octyl methyl ether (TOME) and analysis 1999; accepted 20 July 1999 Abstract The pyrolysis products of neutral methyl-d3 t-butyl ether (MTBE-d3 from thermal cracking patterns. MTBE and TOME both exhibit base peaks at m/z 73 (which shifts to m/z 76

Morton, Thomas Hellman

6

IDENTIFYING THE USAGE PATTERNS OF METHYL TERT-BUTYL ETHER (MTBE) AND OTHER OXYGENATES IN GASOLINE USING GASOLINE  

E-Print Network [OSTI]

IDENTIFYING THE USAGE PATTERNS OF METHYL TERT-BUTYL ETHER (MTBE) AND OTHER OXYGENATES IN GASOLINE USING GASOLINE SURVEYS By Michael J. Moran, Rick M. Clawges, and John S. Zogorski U.S. Geological Survey 1608 Mt. View Rapid City, SD 57702 Methyl tert-butyl ether (MTBE) is commonly added to gasoline

7

Determination of methyl tert. butyl ether (MTBE) in gasoline  

SciTech Connect (OSTI)

A GLC-acid extraction method is described for the determination of MTBE in gasolines. The method consists of a programmed GLC analysis starting at about room temperature conducted before and after extraction with cold 85% phosphoric acid. This treatment results in the preferential solubility of ethers and other oxygenated compounds while minimizing the reaction of olefins and aromatics which may be present in the gasolines. Plotting various known concentrations of MTBE in gasolines against the concentrations determined in the same samples by the authors methodology results in a straight line relationship. The concentration of MTBE in any sample of gasoline may thus be determined using their GLC-extraction procedure and the calibration line. The analysis can accommodate a wide choice of standard GLC columns and programs. 2 refs., 1 fig., 1 tab.

Feldman, J.; Orchin, M. (Univ. of Cincinnati, OH (United States))

1993-02-01T23:59:59.000Z

8

Acute toxicity of methyl-tertiary-butyl ether (MTBE) to aquatic organisms  

SciTech Connect (OSTI)

Due to the recent amendment of the Clean Air Act, oxygenates are now being added to gasolines to boost octane and reduce air pollution from combustion in heavily populated areas. Oxygenates such as alcohols (i.e. methanol) and ethers (methyl-tertiary-butyl ether, MTBE) are commonly being used. A series of bioassay studies have been conducted with MTBE, one of the most commonly used octane-enhancing additives. Freshwater and marine studies were conducted with fish, invertebrates and algae to determine the impact of this material on the environment following accidental spills. Static-renewal studies were run to ensure maintenance of MTBE, a highly volatile material in the test containers. Chemical confirmation of exposure concentrations demonstrated the adequacy of the exposure system. Mysid shrimp were highly sensitive to MTBE, with significantly less effect observed with the other species evaluated. These data have implications for spill response, particularly since MTBE is slow to biodegrade and will rapidly move through groundwater. Comparative data for other oxygenates will also be discussed.

BenKinney, M.T.; Barbieri, J.F.; Gross, J.S.; Naro, P.A. [Stonybrook Labs. Inc., Princeton, NJ (United States)

1994-12-31T23:59:59.000Z

9

Manipulation of the HIFVegf pathway rescues methyl tert-butyl ether (MTBE)-induced vascular lesions  

SciTech Connect (OSTI)

Methyl tert-butyl ether (MTBE) has been shown to be specifically anti-angiogenic in piscine and mammalian model systems at concentrations that appear non-toxic in other organ systems. The mechanism by which MTBE targets developing vascular structures is unknown. A global transcriptome analysis of zebrafish embryos developmentally exposed to 0.006255 mM MTBE suggested that hypoxia inducible factor (HIF)-regulated pathways were affected. HIF-driven angiogenesis via vascular endothelial growth factor (vegf) is essential to the developing vasculature of an embryo. Three rescue studies were designed to rescue MTBE-induced vascular lesions: pooled blood in the common cardinal vein (CCV), cranial hemorrhages (CH), and abnormal intersegmental vessels (ISV), and test the hypothesis that MTBE toxicity was HIFVegf dependent. First, zebrafish vegf-a over-expression via plasmid injection, resulted in significantly fewer CH and ISV lesions, 46 and 35% respectively, in embryos exposed to 10 mM MTBE. Then HIF degradation was inhibited in two ways. Chemical rescue by N-oxaloylglycine significantly reduced CCV and CH lesions by 30 and 32% in 10 mM exposed embryos, and ISV lesions were reduced 24% in 5 mM exposed zebrafish. Finally, a morpholino designed to knock-down ubiquitin associated von HippelLindau protein, significantly reduced CCV lesions by 35% in 10 mM exposed embryos. In addition, expression of some angiogenesis related genes altered by MTBE exposure were rescued. These studies demonstrated that MTBE vascular toxicity is mediated by a down regulation of HIFVegf driven angiogenesis. The selective toxicity of MTBE toward developing vasculature makes it a potentially useful chemical in the designing of new drugs or in elucidating roles for specific angiogenic proteins in future studies of vascular development. - Highlights: Global gene expression of MTBE exposed zebrafish suggested altered HIF1 signaling. Over expression of zebrafish vegf-a rescues MTBE-induced vascular lesions. Inhibiting PHD or knocking down VHL rescues MTBE-induced vascular lesions. HIF1-Vegf driven angiogenesis is a target for MTBE vascular toxicity.

Bonventre, Josephine A., E-mail: josephine.bonventre@oregonstate.edu [Rutgers, The State University of New Jersey, Joint Graduate Program in Toxicology, 170 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Rutgers, The State University of New Jersey, Department of Biochemistry and Microbiology, 76 Lipman Dr., New Brunswick, NJ 08901 (United States); Oregon State University, Department of Environmental and Molecular Toxicology, 1011 Agricultural and Life Sciences Bldg, Corvallis, OR 97331 (United States); Kung, Tiffany S., E-mail: tiffany.kung@rutgers.edu [Rutgers, The State University of New Jersey, Joint Graduate Program in Toxicology, 170 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Rutgers, The State University of New Jersey, Department of Biochemistry and Microbiology, 76 Lipman Dr., New Brunswick, NJ 08901 (United States); White, Lori A., E-mail: lawhite@aesop.rutgers.edu [Rutgers, The State University of New Jersey, Joint Graduate Program in Toxicology, 170 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Rutgers, The State University of New Jersey, Department of Biochemistry and Microbiology, 76 Lipman Dr., New Brunswick, NJ 08901 (United States); Cooper, Keith R., E-mail: cooper@aesop.rutgers.edu [Rutgers, The State University of New Jersey, Joint Graduate Program in Toxicology, 170 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Rutgers, The State University of New Jersey, Department of Biochemistry and Microbiology, 76 Lipman Dr., New Brunswick, NJ 08901 (United States)

2013-12-15T23:59:59.000Z

10

Alveolar breath sampling and analysis to assess exposures to methyl tertiary butyl ether (MTBE) during motor vehicle refueling  

SciTech Connect (OSTI)

In this study we present a sampling and analytical methodology that can be used to assess consumers` exposures to methyl tertiary butyl ether (MTBE) that may result from routine vehicle refueling operations. The method is based on the collection of alveolar breath samples using evacuated one-liter stainless steel canisters and analysis using a gas chromatograph-mass spectrometer equipped with a patented `valveless` cryogenic preconcentrator. To demonstrate the utility of this approach, a series of breath samples was collected from two individuals (the person pumping the fuel and a nearby observer) immediately before and for 64 min after a vehicle was refueled with premium grade gasoline. Results demonstrate low levels of MTBE in both subjects` breaths before refueling, and levels that increased by a factor of 35 to 100 after the exposure. Breath elimination models fitted to the post exposure measurements indicate that the half-life of MTBE in the first physiological compartment was between 1.3 and 2.9 min. Analysis of the resulting models suggests that breath elimination of MTBE during the 64 min monitoring period was approximately 155 {mu}g for the refueling subject while it was only 30 {mu}g for the nearby observer. This analysis also shows that the post exposure breath elimination of other gasoline constituents was consistent with previously published observations. 20 refs., 3 figs., 4 tabs.

Lindstrom, A.B.; Pleil, J.D. [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

1996-07-01T23:59:59.000Z

11

Canada could get three MTBE plants  

SciTech Connect (OSTI)

This article reports on the proposed development of three methyl tert-butyl ether (MTBE) plants in Canada. MTBE is used as an oxygenated fuel additive. The author discusses how demand for MTBE is increasing due to the regulation of leaded gasoline by the U.S. and Canadian governments. The exportation of MTBE from Canada to the U.S. is highlighted.

Anderson, E

1990-03-01T23:59:59.000Z

12

Factors influencing biological treatment of MTBE contaminated ground water  

E-Print Network [OSTI]

Methyl tertiary-butyl ether (MTBE) biodegradation in batchCometabolic degradation of MTBE by a cyclohexane-oxidizingof 49 Biological Treatment of MTBE Fortin, N. Y. , and M. A.

Stringfellow, William T.; Hines Jr., Robert D.; Cockrum, Dirk K.; Kilkenny, Scott T.

2001-01-01T23:59:59.000Z

13

Biodegradation of methyl tertiary butyl ether (MTBE) using a granular activated carbon trickling filter  

SciTech Connect (OSTI)

A pilot scale trickling filter was constructed using granular activated carbon (GAC) as the packing medium and inoculated with a microbial culture known to degrade MTBE. The packing dimensions were 0.076 m in diameter and 0.22 m deep. The unit operated with recycling flow for two months before a biofilm was observed on the GAC. After two additional months the biofilm had visibly spread throughout the packing. A few pieces of GAC were placed in a sealed bottle with MTBE-contaminated water and nutrients. Headspace analysis performed over 14 days confirmed that MTBE degradation was occurring. The trickling filter was converted to continuous flow and operated for one month at a nominal flow rate of 0.1 L/min and a hydraulic loading rate of 32 m{sup 3}/m{sup 2}-d. Samples were collected for analysis at the spray nozzle and at the bottom of the trickling filter. Fractional removal varied with influent MTBE concentration, temperature and liquid flow rate. Percent MTBE removal was as high as 85%. A mechanical failure resulted in the trickling filter bed drying and percent removal dropping to less than 1 percent. However, the system recovered within five days.

Converse, B.M.; Schroeder, E.D.; Chang, D.P.Y.

1999-07-01T23:59:59.000Z

14

Oxidation of methyl tert-butyl ether (MTBE) and ethyl tert-butyl ether (ETBE) by ozone and combined ozone/hydrogen peroxide  

SciTech Connect (OSTI)

The aim of this work was to study the reaction of ozone and combined ozone/hydrogen peroxide on oxygenated additives such as methyl tert-butyl ether (MTBE) and ethyl tert-butyl ether (ETBE) in dilute aqueous solution using controlled experimental conditions. Experiments conducted in a semi-continuous reactor with MTBE and ETBE in combination (initial concentration: 2 mmol/L of each) showed that ETBE was better eliminated than MTBE with both ozone and combined O[sub 3]/H[sub 2]O[sub 2]. batch experiments led to the determination of the ratio of the kinetic constants for the reaction of OH[degree]-radical with MTBE and ETBE (k[sub OH[degree]/ETBE]/k[sub OH[degree]//MTBE] = 1.7). Tert-butyl formate and tert-butyl acetate were identified as the ozonation byproducts of MTBE an ETBE, respectively, while tert-butyl alcohol was found to be produced during the ozonation of both compounds. 10 refs., 10 figs., 1 tab.

Leitner, N.K.V.; Papailhou, A.L.; Croue, J.P.; Dore, M. (Univ. de Poitiers (France)); Peyrot, J. (British Petroleum, Harfleur (France))

1994-01-01T23:59:59.000Z

15

Methyl tert-butyl ether (MTBE) is a volatile organic com-pound (VOC) derived from natural gas that is added to gas-  

E-Print Network [OSTI]

Methyl tert-butyl ether (MTBE) is a volatile organic com- pound (VOC) derived from natural gas Water in Urban and Agricultural Areas made from methanol, which is derived primarily from natural gas that is added to gas- oline either seasonally or year round in many parts of the United States to increase

16

MTBE Production Economics (Released in the STEO April 2001)  

Reports and Publications (EIA)

The purpose of this analysis is to evaluate the causes of methyl tertiary butyl ether (MTBE) price increases in 2000.

2001-01-01T23:59:59.000Z

17

Evaluating nonmetallic materials` compatibility with MTBE and MTBE + gasoline service  

SciTech Connect (OSTI)

Methyl-tertiary-butyl-ether (MTBE) has become the leading oxygenate in use in the petroleum industry. Since its introduction several years ago there has been premature deterioration of nonmetallic materials in both neat MTBE and MTBE + gasoline. This degradation is costly in several ways: maintenance, replacement, environmental, and product-loss. Identifying nonmetallic materials compatible with MTBE and MTBE + gasoline is important to the petroleum industry -- all the way from the refinery to the retail sale. Exposure tests have been conducted with different types of nonmetallics in neat MTBE, neat MTBE vapor, and 5% MTBE + 95% gasoline. As in previously reported tests, Teflon{reg_sign} laminates were the top performers, experiencing very little change in any of the properties tested. An ester and ether-based urethane laminate also exhibited only small property changes. Most materials displayed significant deterioration of one or more of the measured properties, even in MTBE condensing vapor and the 5% MTBE + 95% gasoline. The specific effects on each material need to be individually evaluated to determine the effect on service life.

Hotaling, A.C.

1995-12-31T23:59:59.000Z

18

{gamma}-aminobutyric acid{sub A} (GABA{sub A}) receptor regulates ERK1/2 phosphorylation in rat hippocampus in high doses of Methyl Tert-Butyl Ether (MTBE)-induced impairment of spatial memory  

SciTech Connect (OSTI)

Experimental and occupational exposure to Methyl Tert-Butyl Ether (MTBE) has been reported to induce neurotoxicological and neurobehavioral effects, such as headache, nausea, dizziness, and disorientation, etc. However, the molecular mechanisms involved in MTBE-induced neurotoxicity are still not well understood. In the present study, we investigated the effects of MTBE on spatial memory and the expression and function of GABA{sub A} receptor in the hippocampus. Our results demonstrated that intraventricular injection of MTBE impaired the performance of the rats in a Morris water maze task, and significantly increased the expression of GABA{sub A} receptor {alpha}1 subunit in the hippocampus. The phosphorylation of ERK1/2 decreased after the MTBE injection. Furthermore, the decreased ability of learning and the reduction of phosphorylated ERK1/2 level of the MTBE-treated rats was partly reversed by bicuculline injected 30 min before the training. These results suggested that MTBE exposure could result in impaired spatial memory. GABA{sub A} receptor may play an important role in the MTBE-induced impairment of learning and memory by regulating the phosphorylation of ERK in the hippocampus.

Zheng Gang; Zhang Wenbin [Department of Occupational and Environmental Health, School of Public Health and Military Preventive Medicine, Fourth Military Medical University, Xi'an 710032 (China); Zhang Yun [465 Hospital, Jilin Medical College, Jilin 132001 (China); Chen Yaoming; Liu Mingchao; Yao Ting; Yang Yanxia; Zhao Fang [Department of Occupational and Environmental Health, School of Public Health and Military Preventive Medicine, Fourth Military Medical University, Xi'an 710032 (China); Li Jingxia; Huang Chuanshu [Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 (United States); Luo Wenjing [Department of Occupational and Environmental Health, School of Public Health and Military Preventive Medicine, Fourth Military Medical University, Xi'an 710032 (China)], E-mail: luowenj@fmmu.edu.cn; Chen Jingyuan [Department of Occupational and Environmental Health, School of Public Health and Military Preventive Medicine, Fourth Military Medical University, Xi'an 710032 (China)], E-mail: jy_chen@fmmu.edu.cn

2009-04-15T23:59:59.000Z

19

Review of potential technologies for the treatment of Methyl tertiary butyl Ether (MtBE) in drinking water  

SciTech Connect (OSTI)

At present, the state of knowledge on effective treatment technologies for MtBE in drinking water, and groundwater in general, is limited. Research by others is focusing on the remediation of MtBE close to the point of release. The City of Santa Monica, MWD, Komex and USC are currently conducting research into different technologies that could be used to remove MtBE from drinking water supplies. The objectives of the research are to evaluate different treatment technologies to identify cost-effective and technically feasible alternatives for the removal of MtBE from drinking water. The evaluation is considering moderate to high water flow rates (100 to 2,000+ gpm) and low to moderate MtBE concentrations (<2,000 {mu}g/l). The research program includes four phases: (1) Literature Review; (2) Bench Scale Study; (3) Field Scale Pre-pilot Study; and (4) Summary Evaluation. This paper presents some preliminary information and findings from the first phase of this research - the literature review. The review discusses the chemical properties of MtBE and how they affect remediation and thus, an evaluation of alternative treatment technologies. The review of available literature, and the applicability and limitations of the following technologies are presented in detail.

Brown, A.; Browne, T.E. [Komex H2O Science, Huntington Beach, CA (United States); Devinny, J.S. [Univ. of Southern California, Los Angeles, CA (United States)] [and others

1997-12-31T23:59:59.000Z

20

A review of treatment technologies for MTBE  

SciTech Connect (OSTI)

Available treatment technologies for methyl tertiary butyl ether (MTBE) contamination in soil, groundwater, and recovered groundwater are reviewed and assessed. MTBE contamination is becoming an important issue due to the increasing prevalence and regulation of this gasoline additive. In addition, MTBE is more soluble and more mobile in groundwater than most hydrocarbons, so it is usually the first gasoline constituent to reach sensitive receptors. Treatment of MTBE is complicated by its Henry`s constant, which is lower than most other gasoline constituents. Furthermore, evidence of biodegradability of MTBE is mixed, and MTBE does not degrade rapidly abiotically. Groundwater pumping is usually employed to contain and collect MTBE-contaminated groundwater, often successfully because of its high aqueous solubility. Air sparging/soil vapor extraction is also successfully employed to treat MTBE, but its effectiveness is reduced by the low Henry`s constant of MTBE. Sparging and other aerobic bioremediation approaches are hampered by the poor biodegradability of MTBE. Oxidation technologies, such as ozone injection, hold promise for rapid in situ remediation of MTBE. Treatment of recovered groundwater contaminated with MTBE is also problematic. MTBE adsorbs poorly to granular activated carbon; advanced oxidation processes are effective on MTBE, but entail high capital and operating costs; bioreactors are of questionable effectiveness on MTBE. Air stripping is usually the most cost-effective treatment technology for MTBE so long as the off gas from the air stripper can be discharged without treatment. However, off gas treatment is expensive, so groundwater is sometimes heated to reduce the requirement for stripping air.

Bass, D. [Groundwater Technology, Inc., Norwood, MA (United States)

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "waiver mtbe methyl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Methyl tertiary butyl ether (MtBE) contamination of the City of Santa Monica drinking water supply  

SciTech Connect (OSTI)

In the summer of 1996, the City of Santa Monica ceased pumping groundwater from two Well Fields (Charnock and Arcadia) used for public drinking water supply due to persistent and increasing concentrations of MtBE in all seven municipal water supply wells. This lost production accounted for 50% of the City`s total drinking water supply. In late 1996, the City, in cooperation with State and Federal agencies, initiated an investigation of MtBE contamination at the two well fields. The objectives of the investigation were as follows: (1) Review available data on the production, use, chemical characteristics, fate and transport, toxicology, and remediation of MtBE; (2) Identify locations of potential sources of MtBE groundwater contamination at the well fields; (3) Develop an understanding of the hydrologic pathways from the potential sources to the drinking water wells; and (4) Evaluate alternative treatment technologies for the removal of MtBE from drinking water. In addition to a review of available information about MtBE, the investigation included an extensive review of literature and available data relevant to the well fields, including well field production histories, site and regional hydrogeology, all well logs and production in the groundwater basins, general groundwater quality, and the record of MtBE detection. Based upon the review of background information, conceptual hydrogeologic models were developed. A detailed review of agency files for over 45 potential source sites was conducted. The information from this review was summarized, and source site screening and ranking criteria were developed. A field program was conducted at the major well field (Charnock), including soil gas surveys, CPTs, soil borings and well installations, geophysics, and aquifer testing. The field program provided site data which allowed the conceptual hydrogeologic model to be refitted to actual site conditions.

Brown, A.; Farrow, J.R.C. [Komex H2O Science, Huntington Beach, CA (United States); Rodriguez, R.A. [City of Santa Monica, CA (United States)] [and others

1997-12-31T23:59:59.000Z

22

Economics of new MTBE design  

SciTech Connect (OSTI)

Methyl Tertiary Butyl Ether (MTBE) is produced industrially by catalytic reaction between methanol and isobutene. The catalyst that is widely used is an acidic ion exchange resin. This article explores design and economics when sulfuric acid is the catalyst. The profitability of MTBE production depends mainly on the cost of butenes and methhanol. Thus, the example shows MTBE made with a catalyst of sulfuric acid was profitable at a Saudi Arabian location, even though it was not profitable at a U.S. Gulf Coast location.

Al-Jarallah, A.M.; Lee, A.K.K.

1988-07-01T23:59:59.000Z

23

Statoil outlines MTBE development program  

SciTech Connect (OSTI)

This paper reports that Norway's state oil company Den Norkse state Oljeselskap AS has outlined plans to become one of the major European producers of methyl tertiary butyl ether in the 1990s. Statoil predicts European demand for MTBE will jump to 4.5 million metric tons/year by 2000 from 2.5 million tons in 1990. Europe currently is a net importer of MTBE, with a productive capacity of 2.2 million tons/year.

Not Available

1991-11-25T23:59:59.000Z

24

Factors influencing biological treatment of MTBE contaminated ground water  

SciTech Connect (OSTI)

Methyl tert-butyl ether (MTBE) contamination has complicated the remediation of gasoline contaminated sites. Many sites are using biological processes for ground water treatment and would like to apply the same technology to MTBE. However, the efficiency and reliability of MTBE biological treatment is not well documented. The objective of this study was to examine the operational and environmental variables influencing MTBE biotreatment. A fluidized bed reactor was installed at a fuel transfer station and used to treat ground water contaminated with MTBE and gasoline hydrocarbons. A complete set of chemical and operational data was collected during this study and a statistical approach was used to determine what variables were influencing MTBE treatment efficiency. It was found that MTBE treatment was more sensitive to up-set than gasoline hydrocarbon treatment. Events, such as excess iron accumulation, inhibited MTBE treatment, but not hydrocarbon treatment. Multiple regression analysis identified biomass accumulation and temperature as the most important variables controlling the efficiency of MTBE treatment. The influent concentration and loading of hydrocarbons, but not MTBE, also impacted MTBE treatment efficiency. The results of this study suggest guidelines for improving MTBE treatment. Long cell retention times in the reactor are necessary for maintaining MTBE treatment. The onset of nitrification only occurs when long cell retention times have been reached and can be used as an indicator in fixed film reactors that conditions favorable to MTBE treatment exist. Conversely, if the reactor can not nitrify, it is unlikely to have stable MTBE treatment.

Stringfellow, William T.; Hines Jr., Robert D.; Cockrum, Dirk K.; Kilkenny, Scott T.

2001-09-14T23:59:59.000Z

25

Evaluation and Optimization of MTBE Biodegradation in Aquifers, Final Report  

SciTech Connect (OSTI)

This study was focused on meeting the following objectives concerning the process of methyl tertiary butyl ether (MTBE) biodegradation, with the goal of optimizing this process in situ: 1. Assess whether intrinsic bioattenuation of MTBE is feasible under aerobic conditions across several contaminated sites. 2. Determine the effect of co-contaminants, specifically water-soluble gasoline components (most notably benzene, toluene, ethylbenzene and xylenes [BTEX]) on MTBE biodegradation. 3. Determine whether microbial and/or chemical factors contribute to different MTBE degradative activities. 4. Isolate and characterize MTBE-degrading microorganisms from sediments in which MTBE biodegradation was observed.

Legler, T; Balser, L; Koester, C; Wilson, W

2004-02-13T23:59:59.000Z

26

UMass builds bugs to eat MTBE ByAuriaCimino  

E-Print Network [OSTI]

UMass builds bugs to eat MTBE ByAuriaCimino STAfFWRITER An area university's process to destroy with methyl tertiary butyl ether (MTBE), which is found in gasoline. Once the first field trial is complete in particular has suffered from MTBE contamination because of the abundance of groundwater in the state, said

Lovley, Derek

27

Saudi MTBE project revived  

SciTech Connect (OSTI)

Alujain Corp., a member of the Xenel group of Saudi Arabia, is going ahead with plans to build an 800,000-m.t./year methyl tert-butyl ether (MTBE) plant. Bechtel has been appointed project manager for the plant, which will be owned by a new company, National Fuel Additives (Tahseen). Bechtel will help evaluate proposals already submitted for the lump sum turnkey job.

NONE

1996-01-17T23:59:59.000Z

28

MTBE, methanol prices rise  

SciTech Connect (OSTI)

After several months of drifting lower in line with declining autumn gasoline prices, tabs for methyl tert-butyl ether (MTBE) have turned around. There has been no big demand surge, but consumers and traders are beginning to build up inventories in advance of a series of midwinter shutdowns and turnarounds by producers. Spot prices, which dropped as low as 75 cts/gal, have rebounded to 90 cts/gal fob. Eager for a positive glimmer, methanol producers posted a 3-cts/gal increase in contract prices this month. It marks the first upward idea since February. In that time contract prices have dropped 75% from $1.55/gal to 39 cts/gal. A hard winter has hit early in much of the US sending natural gas prices up sharply. At the same time, formaldehyde and acetic acid markets remain firm, and with MTBE rebounding, methanol producers feel entitled to a piece of the action. {open_quotes}I don`t buy into this claim that MTBE demand is up and I don`t think producers can justify even a 3-cts/gal increase,{close_quotes} says one. {open_quotes}There is nothing in the economy to warrant a run-up. Housing starts are weaker, and demand is down at least 80,000 bbl/day with the MTBE shutdown.{close_quotes}

Morris, G.D.L.; Cornitius, T.

1995-12-20T23:59:59.000Z

29

MTBE -- A global perspective  

SciTech Connect (OSTI)

Methyl tertiary butyl ether (MTBE) is a major and familiar component of Reformulated and Oxygenated gasoline in the US. As such, it is essential to the success of the Clean Air Act programs now reaching a crescendo in major urban areas. In less than ten years, US MTBE capacity has grown from about 4,000 B/D to more than 200,000 B/D. Outside of the USA, its role is less widely understood. Although MTBE markets elsewhere are much less driven by legislation, they have seen the same spectacular growth prospects. Overall, about as much MTBE is used today overseas as in the US. To date, this has to be one of the petrochemical industry`s major success stories. Yet today, the MTBE industry stands at a crossroads, with the direction of future development uncertain at best. DeWitt`s gasoline and oxygenates team has closely observed the ups and downs of this market during most of its turbulent history. In this paper, the authors shall try to set down the major developments and prospects, with the personal familiarity of having been there when things changed. The story begins with a brief historical sketch, leading up to the identification of four critical periods in which major changes took place. The causes of today`s uncertainty lie in all of these stages, and are in a very real sense an example of the ``Law of Unintended consequences.`` Having set the stage, a cautious set of predictions will be put forth. These are neither as promising as proponents would like, nor as unpromising as some would tend to believe.

Ludlow, W.I.; Miller, K.D. Jr.; Liew, R.E. van [DeWitt and Co., Inc., Houston, TX (United States)

1995-09-01T23:59:59.000Z

30

Snamprogetti signs MTBE contracts  

SciTech Connect (OSTI)

Snamprogetti (Milan) will use a Russian-developed dehydrogenation process in a world-scale methyl tert-butyl ether (MTBE) plant it is to build at Arzew, Algeria for a previously announced joint venture of Sonatrach (Algiers), Total (Paris), and Ecofuel (Milan). The 600,000-m.t./year plant will be the first in the West to use the improved Snamprogetti-Yarsintez fluidized-bed dehydrogenation (FBD) technology proven on a demonstration plant at Yaroslavl, Russia. The process has also been selected for use in Oxyfuel Corp.`s 500,000-m.t./year MTBE plant near Beaumont, TX. Although the environmental permit is already in place, final agreement for this project has not yet been signed.

Alperowicz, N.

1992-04-15T23:59:59.000Z

31

Analysis of dissolved benzene plumes and methyl tertiary butyl ether (MTBE) plumes in ground water at leaking underground fuel tank (LUFT) sites  

SciTech Connect (OSTI)

The 1990 Clean Air Act Amendments mandate the addition of oxygenates to gasoline products to abate air pollution. Currently, many areas of the country utilize oxygenated or reformulated fuel containing 15- percent and I I-percent MTBE by volume, respectively. This increased use of MTBE in gasoline products has resulted in accidental point source releases of MTBE containing gasoline products to ground water. Recent studies have shown MTBE to be frequently detected in samples of shallow ground water from urban areas throughout the United States (Squillace et al., 1995). Knowledge of the subsurface fate and transport of MTBE in ground water at leaking underground fuel tank (LUFT) sites and the spatial extent of MTBE plumes is needed to address these releases. The goal of this research is to utilize data from a large number of LUFT sites to gain insights into the fate, transport, and spatial extent of MTBE plumes. Specific goals include defining the spatial configuration of dissolved MTBE plumes, evaluating plume stability or degradation over time, evaluating the impact of point source releases of MTBE to ground water, and attempting to identify the controlling factors influencing the magnitude and extent of the MTBE plumes. We are examining the relationships between dissolved TPH, BTEX, and MTBE plumes at LUFT sites using parallel approaches of best professional judgment and a computer-aided plume model fitting procedure to determine plume parameters. Here we present our initial results comparing dissolved benzene and MTBE plumes lengths, the statistical significance of these results, and configuration of benzene and MTBE plumes at individual LUFT sites.

Happel, A.M.; Rice, D. [Lawrence Livermore National Lab., CA (United States); Beckenbach, E. [California Univ., Berkeley, CA (United States); Savalin, L.; Temko, H.; Rempel, R. [California State Water Resources Control Board, Sacramento, CA (United States); Dooher, B. [California Univ., Los Angeles, CA (United States)

1996-11-01T23:59:59.000Z

32

Impacts of Ethanol on Anaerobic Production of Tert-Butyl Alcohol (TBA) from Methyl Tert-Butyl Ether (MTBE) in Groundwater  

E-Print Network [OSTI]

Project title: Impacts of Ethanol on Anaerobic Production oftert-butanol (TBA). As ethanol is being promoted as ainvestigate the effect of ethanol release on existing MTBE

Scow, K M; MacKay, Douglas

2008-01-01T23:59:59.000Z

33

EPA proposal sets MTBE back  

SciTech Connect (OSTI)

Methyl tert-butyl ether (MTBE) producers were looking for a boost from the official New Year`s start of EPA`s reformulated gasoline (RFG) program. But that prospect has been dimmed by an EPA-proposal-in reaction to concerns about RFG prices-to allow states to withdraw from the program. The states that have opted to out make up 5%-6% of the total RFG pool says Arthur Zadronzy, director/government outreach for MTBE producer Arco Chemical. {open_quotes}This is not a major hit, but it is one we have felt,{close_quotes} he says. Despite the state and EPA actions, MTBE producers are not worried about long-term consequences.

Lucas, A.

1995-01-04T23:59:59.000Z

34

Petrochem industry expands North American MTBE capacity  

SciTech Connect (OSTI)

This paper reports that petrochemical manufacturers continue to increase methyl tertiary butyl ether (MTBE) capacity in North America. The action reflects refiners' reformulation of gasoline to help reduce auto emissions. Demand for gasoline blending oxygenates such as MTBE is expected to increase as U.S. refiners reconfigure processing trains to produce fuels meeting requirements of the Clean Air Act amendments of 1990. Recent progress includes plans to build an MTBE plant in Mexico and start-ups of plants on the U.S. Gulf Coast and in Canada.

Not Available

1992-10-05T23:59:59.000Z

35

MTBE: Wild card in groundwater cleanup  

SciTech Connect (OSTI)

Subsurface releases of the gasoline oxygenate, methyl tertiary butyl ether (MTBE) seriously compromise the remediation and closure of properties that have ground water contaminated with BTEX and other conventional fuel hydrocarbon components. Although a manageable protocal for BTEX remediation is being set up, the MTBE problem continues to be difficult. This article discusses a new magnesium peroxide compound which could be part of the solution. Covered topics include oxygen release compound (ORC) enhance bioremediation and the role of oxygen and ORC in MTBE remediation. 1 fig.

Koenigsberg, S. [Regenesis Bioremediation Products, San Juan Capistrano, CA (United States)

1997-11-01T23:59:59.000Z

36

MTBE from butadiene-rich C/sub 4/s  

SciTech Connect (OSTI)

Methyl tert-butyl ether (MTBE), is made by reacting methanol with isobutylene. The preferred source of isobutylene is a steam cracker C/sub 4/ cut from which butadiene has been removed. However, moving the MTBE synthesis upstream of the butadiene extraction will improve the extraction step. The following is a review of conditions imposed on the MTBE unit's design and operation when placed in this new location.

Ancillotti, F.; Pescarollo, E.; Szatmari, E.; Lazar, L.

1987-12-01T23:59:59.000Z

37

MTBE still in poor health, despite the Clean Air Act  

SciTech Connect (OSTI)

After the second winter oxygenated fuels program of the 1990 Clean Air Act, producers of methyl tert-butyl ether (MTBE) are still feeling the chill of poor profitability. Despite the strong demand growth for MTBE to meet oxygen requirements in reformulated gasoline (RFG), oversupply still dogs the market. That, combined with a run-up in feedstock prices, has seen margins for MTBE markers all but evaporate. And it seems matters are likely to get worse before they get better. This week, Belvieu Environmental Fuels (BEF; Houston) expects to startup its 15,000-bbl/day MTBE plant at Mont Belvieu, TX. In late July, Texaco will start up its 15,000-bbl/day MTBE/propylene oxide (PO) plant at Port Neches, TX. In addition, a rash of refinery-based MTBE and tert-amyl methyl ether projects are nearing completion. {open_quotes}Profitability in MTBE has been extremely poor,{close_quotes} says Marvin O. Schlanger, president of Arco Chemical Americas, the largest MTBE producer. There has, however, been some recent recovery on the spot market, with MTBE moving from less than 60 cts/gal to near cash-cost levels of 70 cts/gal. But contract prices remain depressed, and strength in butane and methanol pricing have all buy wiped out any gains in MTBE.

Wood, A.

1994-05-25T23:59:59.000Z

38

Author's personal copy Automobile proximity and indoor residential concentrations of BTEX and MTBE  

E-Print Network [OSTI]

Author's personal copy Automobile proximity and indoor residential concentrations of BTEX and MTBE to indoor benzene and MTBE concentrations appeared to have been dominated by car exhaust concentrations of other BTEX components and methyl tert-butyl ether (MTBE) have been reported [5,6]. Up until

Siegel, Jeffrey

39

Biotreatment of groundwater contaminated with MTBE: interaction of common environmental co-contaminants  

E-Print Network [OSTI]

Biotreatment of groundwater contaminated with MTBE: interaction of common environmental co November 2005 Key words: aerobic, biodegradation, BTEX, co-contaminant, MTBE, TBA Abstract Contamination of groundwater with the gasoline additive methyl tert-butyl ether (MTBE) is often accompanied by many aromatic

40

MTBE still facing pressure from ethanol under latest fuel proposal  

SciTech Connect (OSTI)

The US EPA's finalized reformulated gasoline rule, part of Phase II of the 1990 Clean Air Act, signals a possible turnaround for the sluggish methyl tert-butyl ether (MTBE) market. But if a 30% renewable fuels proposal favoring ethanol passes, pressure could continue for MTBE.

Lucas, A.

1994-01-26T23:59:59.000Z

Note: This page contains sample records for the topic "waiver mtbe methyl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

MTBE: Capacity boosts on hold amid demand concerns  

SciTech Connect (OSTI)

Uncertainty reigns in the methyl tert-butyl ether (MTBE) market. {open_quotes}We have no choice but to put our expansion plans on the back burner,{close_quotes} says one producer. {open_quotes}Because of government actions, there are no MTBE plants being built or expanded.{close_quotes} Spot MTBE prices have risen ti 82 cts- 83 cts/gal from 76 cts-78 cts/gal earlier this month as the demand for octane enhancement increases for the summer driving season. Some observers say EPA may relax different oxygen requirements for gasoline in different seasons. That would simplify production and supply for MTBE makers.

NONE

1995-05-03T23:59:59.000Z

42

MTBE: The headache of cleaner air  

SciTech Connect (OSTI)

Gasoline with methyl tertiary butyl ether (MTBE) has been sold in the United States since 1979, when it was added to fuels as an octane enhancer after lead was phased out of motor fuels. Recently it has been introduced as a means of reducing carbon monoxide emissions during the winter months in targeted US cities. However, there is concern over health complaints including headaches, dizziness and nausea from residents of some areas. These reports have launched an era of assidious research by scientists and public health officials across the country to learn more about MTBE`s short-term and long-term, and possibly carcinogenic, health effects. New research should help weigh the risk of MTBE as a possible carcinogen and the effectiveness of MTBE-blended fuels in reducing carbon monoxide levels. The question is whether, in minimizing one risk, is another risk - however small - being introduced?

Kneiss, J.

1995-07-01T23:59:59.000Z

43

Global developments in MTBE  

SciTech Connect (OSTI)

This paper is intended to provide an overview of some of the recent developments in MTBE demand growth worldwide and the impact of these developments on MTBE demand in the future. It provides a perspective of the influence of developments in the US on the worldwide MTBE markets. The public`s outcry regarding oxygenates in gasoline, and specifically MTBE, that has been evolving in the US during the past several months is in response to a politically mandated requirement for a fuel that contains oxygen that is provided by MTBE or ethanol. This public unrest had negatively impacted the market price for MTBE at the time this paper was being prepared. However, the author believes that MTBE, because of its clean octane capabilities, will continue to be used as an octane blendstock for gasoline in increasing quantities worldwide as we move through lead phasedown in West Europe and other countries that are experiencing pollution problems relating to exhaust emissions from internal combustion engines. The objectives of this paper are as follows: review developments in MTBE demand 1990--2000; identify regions where MTBE demand growth will occur; review production growth for MTBE, both historical and forecast; examine world trade patterns during the period; assess methanol demand growth during the period; analyze MTBE`s regional price bias; and provide a forecast of future MTBE price trends.

Feller, L.W. [CMAI, Houston, TX (United States)

1995-12-31T23:59:59.000Z

44

Experimental Pathology Laboratories, Inc. Methyl-Tertiary-Butyl Ether  

E-Print Network [OSTI]

COORDINATOR'S REPORT FOR LIFETIME CARCINOGENICITY STUDY OF METHYL-TERTIARY-BUTYL ETHER (MTBE) IN SPRAGUE CARCINOGENICITY STUDY OF METHYL-TERTIARY-BUTYL ETHER (MTBE) IN SPRAGUE-DAWLEY RATS CONDUCTED AT THE CANCER

Baker, Chris I.

45

Falling MTBE demand bursts the methanol bubble  

SciTech Connect (OSTI)

Methanol spot markets in Europe and the US have been hit hard by weakening demand from methyl tert-butyl ether (MTBE) producers. In Europe, spot prices for domestic T2 product have dropped to DM620-DM630/m.t. fob from early-January prices above DM800/m.t. and US spot prices have slipped to $1.05/gal fob from $1.35/gal. While chemical applications for methanol show sustained demand, sharp methanol hikes during 1994 have priced MTBE out of the gasoline-additive market. {open_quotes}We`ve learned an important lesson. We killed [MTBE] applications in the rest of the world,{close_quotes} says one European methanol producer. Even with methanol currently at DM620/m.t., another manufacturer points out, MTBE production costs still total $300/m.t., $30/m.t. more than MTBE spot prices. Since late 1994, Europe`s 3.3-million m.t./year MTBE production has been cut back 30%.

Wiesmann, G.; Cornitius, T.

1995-03-01T23:59:59.000Z

46

Add MTBE unit ahead of alkylation  

SciTech Connect (OSTI)

Approximately three years ago, the people at Diamond Shamrock's Sunray, Texas, refinery recognized a growing demand for high octane super premium unleaded gasoline in their regional marketing area. It was apparent that they would need to change their processing scheme to meet this growing demand. After investigating several options, they decided to install an MTBE (methyl tert-butyl ether) unit upstream of their existing sulfuric acid (H/sub 2/SO/sub 4/) aklylation unit. The new unit would process olefin feed before it entered the alkylation unit. The MTBE unit was expected to improve Diamond Shamrock's gasoline pool in two ways. First, the MTBE would be an additional high octane blending stock for the gasoline pool. Second, the MTBE unit would improve the quality of the olefin stream going to the alkylation unit. Diamond Shamrock brought their MTBE unit onstream in December, 1985. The results of the combined operation exceeded expectations, producing alkylate in excess of 98 RON (Research octane number) and MTBE of 118 RON. These components significantly upgraded the refinery's capability to produce a super premium unleaded gasoline.

Masters, K.R.; Prohaska, E.A.

1988-08-01T23:59:59.000Z

47

The MTBE solution: Octanes, technology, and refinery profitability  

SciTech Connect (OSTI)

This paper has been developed to provide refiners with business decision insight regarding the production of methyl tertiary butyl ether (MTBE) from refinery - (FCC) produced isobutylene. The driving forces making MTBE an attractive investment are examined with regard to the increasing demand for higher octane unleaded gasolines. The decision to proceed with MTBE production depends on the profitability of such an investment and the refiner's ability to meet market demands using available processing equipment, refinery produced streams and external feedstocks. The factors affecting this decision are analyzed in this paper and include: industry ability to meet rising octane demand; profit potential realized by diverting isobutylene to MTBE; availability of technology for producing MTBE; and investment and operating costs required to produce MTBE. Chemical Research and Licensing and NEOCHEM have developed a simple, low cost process to produce MTBE, reducing the excessive equipment and high operating costs that were associated with conventional MTBE designs. The economics and process benefits of installing a CRandL/NEOCHEM MTBE process are examined within the framework of a generalized medium-sized refinery configuration.

Lander, E.P.; Hubbard, J.N.; Smith, L.A.

1983-03-01T23:59:59.000Z

48

Motor Gasoline Outlook and State MTBE Bans  

Reports and Publications (EIA)

The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending state bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year.

2003-01-01T23:59:59.000Z

49

MTBE, Oxygenates, and Motor Gasoline (Released in the STEO October 1999)  

Reports and Publications (EIA)

The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an increase in MTBE production between 1990 and 1994. MTBE demand increased from 83,000 in 1990 to 161,000 barrels per day in 1994. The reformulated gasoline (RFG) program provided a further boost to oxygenate blending. The MTBE contained in motor gasoline increased to 269,000 barrels per day by 1997.

1999-01-01T23:59:59.000Z

50

Veba in MTBE project, cutting aromatics  

SciTech Connect (OSTI)

The new owners of the refinery and petrochemical complex at Schwedt in eastern Germany-RWE-DEA (Hamburg), Veba Oel (Gelsenkirchen), Agip (Rome), Total (Paris), and Elf-Aquitaine (Paris)-plan to build a 60,000-m.t./year methyl tert-butyl ether (MTBE) plant at the site for 1994-1995 completion. The MTBE project forms part of the consortium`s announced DM1.5-billion ($500 million) investment program for the complex that aims to raise refinery throughput from 8 million m.t./year to 12 million m.t./year by 1994 and hike production of naphtha and benzene.

Young, I.; Roberts, M.

1992-04-15T23:59:59.000Z

51

Methanex considers methanol, MTBE in Qatar  

SciTech Connect (OSTI)

CW has learned that Methanex Corp. is considering entering one of two methanol and methyl tert-butyl ether (MTBE) projects in Qatar. Executive v.p. Michael Wilson says that part of the company`s New Zealand plant could be moved to a site in Qatar, which would lower capital costs for the possible project by $75 million-$100 million. Both Qatar General Petroleum Corp. and Qatar Fuel Additives are developing methanol and MTBE projects at Umm Said, Qatar. Methanex says its goal is to ensure low-cost feedstocks.

NONE

1995-12-13T23:59:59.000Z

52

Total to withdraw from Qatar methanol - MTBE?  

SciTech Connect (OSTI)

Total is rumored to be withdrawing from the $700-million methanol and methyl tert-butyl ether (MTBE) Qatar Fuel Additives Co., (Qafac) project. The French company has a 12.5% stake in the project. Similar equity is held by three other foreign investors: Canada`s International Octane, Taiwan`s Chinese Petroleum Corp., and Lee Change Yung Chemical Industrial Corp. Total is said to want Qafac to concentrate on methanol only. The project involves plant unit sizes of 610,000 m.t./year of MTBE and 825,000 m.t./year of methanol. Total declines to comment.

NONE

1996-05-01T23:59:59.000Z

53

Drinking Water Problems: MTBE  

E-Print Network [OSTI]

. This compound belongs to a chemical family of fuel oxygenates that enhance gaso- line combustion by increasing oxygen available for the process. Added to gasoline, MTBE has reduced carbon monoxide and ozone emissions by promoting more complete burning.... Texas follows the EPA drinking water advisory of 20 to 40 micrograms per liter. How can MTBE be Removed from Well Water? MTBE requires a specific treatment process for removal from water. Well owners can use granular activated carbon or charcoal...

Dozier, Monty; Lesikar, Bruce J.

2008-08-28T23:59:59.000Z

54

Ecological hazards of MTBE exposure: A research agenda  

SciTech Connect (OSTI)

Fuel oxygenates are used in metropolitan areas across the United States in order to reduce the amount of carbon monoxide released into the atmosphere during the winter. The most commonly used fuel oxygenate is Methyl tert-butyl ether (MTBE). Its widespread use has resulted in releases into the environment. To date there has been only minimal effort to investigate ecological impacts caused by exposure to concentrations of MTBE typically found in environmental media. Research into the potential for MTBE to adversely affect ecological receptors is essential. Acquisition of such baselines data is especially critical in light of continuing inputs and potential accumulation of MTBE in environmental media. A research Agenda is included in this report and addresses: Assessing Ecological Impacts, Potential Ecological Impacts of MTBE (aquatic organisms, terrestrial organisms), Potential Ecological Endpoints, and A Summary of Research Needs.

Carlsen, T.; Hall, L.; Rice, D.

1997-03-01T23:59:59.000Z

55

Korean oxygenates rule sparks MTBE capacity plans  

SciTech Connect (OSTI)

The Korean government`s strict standard for gasoline sold domestically is expected to have a significant impact on the methyl tert-butyl ether (MTBE) market. The mandate-requiring gasoline oxygen content of 0.5% this year, 0.75% by 1996, and 1.0% by 1998-has sparked a rush by Korean refineries to build new MTBE plants. If expansion plans are carried out, Korea`s MTBE capacity will increase from 280,000 m.t./year to 650,000 m.t./year by 1996, far surpassing predicted demand. Honam Oil, part of the Lucky Group, plans startup of a 100,000-m.t./year unit at Yeochon by early 1996. In addition, by the end of 1996 Ssangyong Oil will bring a 100,000-m.t./year unit onstream.

Kim, Hyung-Jin

1994-06-15T23:59:59.000Z

56

Ecofuel plans MTBE plant in Italy  

SciTech Connect (OSTI)

Ecofuel (Milan), an ENI company, is evaluating construction of a new methyl tert-butyl ether (MTBE) plant in Italy, but has shelved plans for a world-scale MTBE unit in Mexico. The Italian unit is tied to ethylene expansion now under way. Later this year EniChem (Milan), a sister company, is due to complete construction of a 360,000-m.t./year cracker at Brindisi. The C{sub 4} stream available there and from the existing cracker at Priolo in Sicily should provide enough feed for a unit of up to 100,000 m.t./year of MTBE capacity. Some of the feedstock could also come from the Ravenna cracker.

Alperowicz, N.

1992-04-29T23:59:59.000Z

57

Health studies indicate MTBE is safe gasoline additive  

SciTech Connect (OSTI)

Implementation of the oxygenated fuels program by EPA in 39 metropolitan areas, including Fairbanks and Anchorage, Alaska, in the winter of 1992, encountered some unexpected difficulties. Complaints of headaches, dizziness, nausea, and irritated eyes started in Fairbanks, jumped to Anchorage, and popped up in various locations in the lower 48 states. The suspected culprit behind these complaints was the main additive for oxygenation of gasoline is methyl tert-butyl ether (MTBE). A test program, hastily organized in response to these complaints, has indicated that MTBE is a safe gasoline additive. However, official certification of the safety of MTBE is still awaited.

Anderson, E.V.

1993-09-01T23:59:59.000Z

58

MTBE growth limited despite lead phasedown in gasoline  

SciTech Connect (OSTI)

This month's legislated reduction of the allowable amount of lead additives in gasoline will increase demand strongly for methyl-tert-butyl ether (MTBE) as an octane enhancer, but the economics of the refinery business and the likelihood of rapidly increasing high-octane gasoline imports probably will limit the size of the business in coming years. MTBE will be used to fill the octane gap now, but economics and imports of gasoline later on could hold down demand. The limited growth in sales of MTBE is discussed.

Storck, W.

1985-07-15T23:59:59.000Z

59

MTBE, ethanol rules come under fire  

SciTech Connect (OSTI)

EPA is facing stiff challenges to the mandates for methyl tert-butyl ether (MTBE) and ethanol in its reformulated gasoline (RFG) program. Wisconsin officials are receiving hundreds of complaints about the alleged health effects and other problems with MTBE added to gasoline, and Gov. Tommy Thompson is demanding that EPA suspend the RFG program until April 1. Rep. James Sensenbrenner (R., WI) is threatening to introduce a bill to repeal the program in Wisconsin if EPA does not comply. However, EPA administrator Carol Browner says the agency will {open_quotes}defer any decision{close_quotes} on the request. EPA has sent technical experts to Milwaukee to respond to and monitor citizens` complaints.

Begley, R.

1995-03-01T23:59:59.000Z

60

Modeling the atmospheric inputs of MTBE to groundwater systems  

SciTech Connect (OSTI)

A numerical transport model was used to calculate the movement of methyl-t-butyl ether (MTBE) and several other volatile organic compounds (VOCs) from the atmosphere downward through the unsaturated zone and into shallow groundwater. Simulations were carried out for periods as long as 10 years to investigate whether a gaseous atmospheric MTBE source at typical ambient concentrations could account for the presence of MTBE in shallow groundwater at the types of low ug/L levels that have been found during the National Water Quality Assessment Program currently being conducted by the US Geological Survey. The simulations indicate that downward movement of MTBE to shallow groundwater will be very slow when there is no net downward movement of water through the vadose zone. For example, for a vadose zone composed of fine sand, and assuming tens of cm of infiltration, then only a few years will be required for water at a water table that is 5.0 m below ground surface to attain MTBE levels that correspond to saturation with respect to the atmospheric source gaseous concentration. An on/off atmospheric source, as might occur in the seasonal use of MTBE, will lead to concentrations in shallow groundwater that correspond to saturation with the time-averaging atmospheric source concentration.

Pankow, J.F.; Johnson, R.L. [Oregon Graduate Inst., Portland, OR (United States). Dept. of Environmental Science and Engineering; Thomson, N.R. [Univ. of Waterloo, Ontario (Canada). Dept. of Civil Engineering

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "waiver mtbe methyl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Remediation of MTBE in groundwater: A case where pump-and-treat works  

SciTech Connect (OSTI)

Two case studies are discussed in which groundwater pumping reduced levels of dissolved methyl tertiary butyl ether (MTBE) in groundwater by more than two orders of magnitude, in some cases to below detection limits. MTBE contamination in groundwater is becoming an important issue due to the increasing prevalence and regulation of this gasoline additive. In addition, MTBE is more mobile in groundwater than most hydrocarbons, so it is usually the first gasoline constituent to reach sensitive receptors. Since its Henry`s constant is low, in situ removal of MTBE from groundwater by air sparging is slow, and MTBE does not rapidly degrade, either biologically or abiotically. Therefore, groundwater pumping is usually employed to contain and collect MTBE-contaminated groundwater. Pumping groundwater can reduce MME levels to below detection limits within a few years, because MTBE in the subsurface is found mostly dissolved in groundwater. In contrast, the more hydrophobic gasoline hydrocarbons exist mostly in pockets of separate phase material and adsorbed to soil particles and dissolve slowly in groundwater. Hydrocarbon concentrations are rarely reduced to closure levels within a reasonable time frame by pumping. Sites in eastern Massachusetts and southern New Jersey, where groundwater was contaminated with MTBE due to releases of unleaded gasoline from underground storage tanks, are discussed. At these sites, average MTBE levels were reduced by two to three orders of magnitude, from several ppm or more to less than 10 ppb within three years by pumping groundwater at 10 to 30 gpm.

Bass, D.H.; Riley, B. [Groundwater Technology, Inc., Norwood, MA (United States); Farrell, T. [Groundwater Technology, Inc., Trenton, NJ (United States)

1994-12-31T23:59:59.000Z

62

Treatment of Methyl tert-Butyl Ether Vapors in Biotrickling Filters. 2.  

E-Print Network [OSTI]

vapors of methyl tert-butyl ether (MTBE), a gasoline additive of great environmental concern MTBE treatment are discussed. Introduction The rapidly rising number of reports of groundwater con- taminated with the gasoline additive methyl tert-butyl ether (MTBE) has raised concerns about its

63

Health risks associated with exposure to gasoline additives-methyl tertiary butyl ether [MTBE]. Hearing before a Subcommittee of the Committee on Appropriations, United States Senate, One Hundred Third Congress, First Session, Special Hearing  

SciTech Connect (OSTI)

This hearing focuses on an Alaskan study by the Centers for Disease Control which examines possible health risks associated with exposure to gasoline additive know as MTBE. Testimony is given by Dr. William Roper, Director, CDC.

Not Available

1993-01-01T23:59:59.000Z

64

Race to license new MTBE and TAME routes heats up  

SciTech Connect (OSTI)

With refineries and petrochemical manufacturers continuing to gear up production of oxygenates for use in reformulated fuels, new routes to methyl tert-butyl ether (MTBE) and tert-amyl methyl ether (TAME) are clearly hot items in the licensing market. And probably nowhere has the competition become as intense as in offerings for skeletal isomerization technologies to boost ethers production from fluid catalytic cracking and steam cracking.

Rotman, D.

1993-01-06T23:59:59.000Z

65

Meeting the challenge of MTBE biodegradation  

SciTech Connect (OSTI)

Oxygenated and reformulated gasolines have been developed in response to air pollution control regulations targeted at reducing carbon monoxide emissions and photochemical air pollution. The 1990 Clean Air Act Amendments required the addition of fuel oxygenates to gasoline in areas where the level of carbon monoxide exceeded national ambient air quality standards. In the South Coast Air Basin gasoline containing oxygenated compounds has been in use since the late 1980`s. One oxygenated fuel additive most often selected by producers to meet the requirements is methyl tert-butyl ether (MTBE). However, large production numbers associated with MTBE production, combined with the compound`s high water solubility, chemical stability, and toxicity, make it a potentially important groundwater pollutant. The County Sanitation District of Los Angeles, Joint Water Pollution Control Plant in Carson, California is one of the few wastewater treatment plants in the nation that receives refinery wastewater discharge. It has operated several pilot-scale compost-based biofilters for control of various volatile organic contaminants throughout the plant since a 1991 joint study with the University of California, Davis. After one year of operation, one of the biofilters spontaneously developed the ability to degrade MTBE. The paper describes the collaborative efforts to determine the feasibility of transferring the degrading microbial population from the solid to liquid phase, without loss of activity, and to determine some of the environmental requirements necessary for survival of the microbial culture.

Eweis, J.B.; Chang, D.P.Y.; Schroeder, E.D.; Scow, K.M. [Univ. of California, Davis, CA (United States); Morton, R.L.; Caballero, R.C. [Los Angeles County Sanitation Districts, Carson, CA (United States). Joint Water Pollution Control Plant

1997-12-31T23:59:59.000Z

66

State Restrictions on Methyl Tertiary Butyl Ether (released in AEO2006)  

Reports and Publications (EIA)

By the end of 2005, 25 states had barred, or passed laws banning, any more than trace levels of methyl tertiary butyl ether (MTBE) in their gasoline supplies, and legislation to ban MTBE was pending in 4 others. Some state laws address only MTBE; others also address ethers such as ethyl tertiary butyl ether (ETBE) and tertiary amyl methyl ether (TAME). Annual Energy Outlook 2006 assumes that all state MTBE bans prohibit the use of all ethers for gasoline blending.

2006-01-01T23:59:59.000Z

67

US refiners choose variety of routes to MTBE  

SciTech Connect (OSTI)

This paper reports that refiners and merchant manufacturers in the U.S. are gearing up to produce the large volumes of methyl tertiary butyl ether (MTBE) needed to comply with oxygenated gasoline requirements. The 1990 U.S. Clean Air Act Amendments specify that, as of the first of this coming November, gasoline containing a minimum of 2.7 wt % oxygen must be sold in 39 CO-nonattainment cities. Refiners and others are scurrying to bring MTBE capacity on line in time to meet this requirement. Many U.S. refiners already have some operating MTBE capacity, but this will not be nearly enough to meet the looming increase in demand. As a result, additional capacity is being constructed worldwide.

Rhodes, A.K.

1992-09-07T23:59:59.000Z

68

Effect of lower feedstock prices on economics of MTBE complex  

SciTech Connect (OSTI)

Economic evaluation of the methyl tertiary butyl ether (MTBE) complex was carried out starting from n-butane and by captive production of methanol from natural gas. The processing steps consist of isomerization of n-butane to isobutane, dehydrogenation of isobutane to make isobutene, and finally, the reaction of isobutene with methanol to produce MTBE. Two different plant sizes were considered, and the effect of 30% lower feedback prices on profitability was studied. It was found that the raw materials cost is a dominant component, composing about 55% of the total production cost. An internal rate of return of 19% could be realized for 500,000 tons per annum MTBE complex based on economic data in mid-1993. The payback period estimated at this capacity was 3.8 years, and the break-even capacity was 36.6%.

Rahman, F.; Hamid, S.H.; Ali, M.A. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia)

1996-01-01T23:59:59.000Z

69

A near infrared regression model for octane measurements in gasolines which contain MTBE  

SciTech Connect (OSTI)

Near infrared (NIR) spectroscopy has emerged as a superior technique for the on-line determination of octane during the blending of gasoline. This results from the numerous advantages that NIR spectroscopy has over conventional on-line instrumentation. Methyl t-butyl ether (MTBE) is currently the oxygenated blending component of choice. MTBE is advantageous because it has a high blending octane, a low Reid vapor pressure, is relatively cheap, and does not form peroxides (1). The goal of this project was to develop a NIR regression model that could be used to predict pump octanes regardless of whether they contained MTBE.

Maggard, S.M. (Ashland Petroleum Co., KY (USA))

1990-01-01T23:59:59.000Z

70

Oxygenates du`jour...MTBE? Ethanol? ETBE?  

SciTech Connect (OSTI)

There are many different liquids that contain oxygen which could be blended into gasoline. The ones that have been tried and make the most sense are in the alcohol (R-OH) and ether (R-O-R) chemical family. The alcohols considered are: methanol (MeOH), ethanol (EtOH), tertiary butyl alcohol (TBA). The ethers are: methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), tertiary amyl ethyl ether (TAEE), di-isopropyl ether (DIPE). Of the eight oxygenates listed above, the author describes the five that are still waiting for widespread marketing acceptance (methanol, TBA, TAME, TAEE, and DIPE). He then discusses the two most widely used oxygenates in the US, MTBE and ethanol, along with the up-and-coming ethanol ether, ETBE. Selected physical properties for all of these oxygenates can be found in Table 2 at the end of this paper. A figure shows a simplified alcohol/ether production flow chart for the oxygenates listed above and how they are interrelated.

Wolfe, R.

1995-12-31T23:59:59.000Z

71

Detections of MTBE in surficial and bedrock aquifers in New England  

SciTech Connect (OSTI)

The gasoline additive methyl tert-butyl ether (MTBE) was detected in 24% of water samples collected from surficial and bedrock aquifers in areas of New England. MTBE was the most frequently detected volatile organic compound among the 60 volatile chemicals analyzed and was present in 33 of 133 wells sampled from July 1993 through September 1995. The median MTBE concentration measured in ground-water samples was 0.45 microgram per liter and concentrations ranged from 0.2 to 5.8 microgram per liter. The network of wells sampled for MTBE consisted of 103 monitoring wells screened in surficial sand-and-gravel aquifers and 30 domestic-supply wells in fractured crystalline bedrock aquifers. Seventy-seven percent of all MTBE detections were from 26 shallow monitoring wells screened in surficial aquifers. MTBE was detected in42% of monitoring wells in urban areas. In agricultural areas, MTBE was detected i 8% (2 of 24) of wells and was not detected in undeveloped areas. Sixty-two percent of the MTBE detections in surficial aquifers were from wells within 0.25 mile of gasoline stations or underground gasoline storage tanks; all but one of these wells were in Connecticut and Massachusetts, where reformulated gasoline is used. MTBE was detected in 23% of deep domestic-supply wells that tapped fractured bedrock aquifers. MTBE was detected in bedrock wells only in Connecticut and Massachusetts; land use near the wells was suburban to rural, and none of the sampled bedrock wells were within 0.25 mile of a gasoline station.

Grady, S.J. [Geological Survey, Hartford, CT (United States)

1995-12-31T23:59:59.000Z

72

Remediation of overlapping benzene/MTBE and MTBE-only plumes: A case study  

SciTech Connect (OSTI)

Two overlapping dissolved hydrocarbon plumes were identified in the shallow water-bearing zone at a commercial vehicle service and fueling facility. Plume 1 originated from a pre-1993 gasoline product line/dispenser leak. This plume contained a relatively common mix of benzene, toluene, ethylbenzene, xylenes (BTEX), and methyl tert-butyl ether (MTBE); benzene and MTBE were identified as the Plume 1 contaminants of concern based on their detection at approximately 200 {mu}g/l each, which exceeded regulatory guidance. Plume 2, which was detected in the tank cavity during UST removal, resulted from gasoline line leaks/underground storage tank overfills. Although the majority of impacted soils in both the dispenser and tank cavity areas were removed during UST excavation, rainfall during impacted soil removal mobilized the MTBE contained in the soils to groundwater. As a result, Plume 2 contained approximately 900 {mu}g/l MTBE while BTEX compounds were non-detect. Although the impacted zone sustained an approximate yield of only 0.3 gallon per minute, Pennsylvania regulations dictate that this zone must be treated as an aquifer. The failure of remediating gasoline plumes using pump-and-treat has been predominantly due to BTEX`s tendency to adsorb onto soil, creating a residual-phase product layer which acts as a continuing source of dissolved-phase BTEX. Based on this experience, most groundwater and remediation professionals reject pump-and-treat as a viable remedial option, except in situations where controlling groundwater movement is the predominant goal.

Carpenter, P.L. [TolTest, Inc., Pittsburgh, PA (United States); Vinch, C.A. [Ryder Transportation Services, Lawrenceville, NJ (United States)

1997-12-31T23:59:59.000Z

73

Water Research 37 (2003) 37563766 Seasonal and daily variations in concentrations of methyl-  

E-Print Network [OSTI]

by volume to gasoline from November to February, and blending 11% MTBE by volume during the rest of the year; accepted 24 March 2003 Abstract Methyl-tertiary-butyl ether (MTBE), an additive used to oxygenate gasoline of gasoline-powered watercraft. This paper documents and explains both seasonal and daily variations in MTBE

Toran, Laura

74

Lyondell`s new isobutylene route could fuel an MTBE capacity boost  

SciTech Connect (OSTI)

Driven by the hot growth prospects for methyl tert-butyl ether (MTBE), Lyondell Petrochemical (Houston) has developed a route to isobutylene it claims can produce the MTBE feedstock at half the capital cost of alternative synthesis technology. If proved, the process will be used in a new 7500-10,000 bbl/day MTBE plant at Channelview, TX. Lyondell also hopes to license the technology. {open_quotes}With expanding MTBE capacity, we will have to have new routes to isobutylene,{close_quotes} says Bob G. Gower, president and CEO of Lyondell. {open_quotes}We think this is a good fit within Lyondell, but also that it is important technology.{close_quotes} Gower declines to detail its specifics, but says it is a one-step isomerization of n-butenes to isobutylene. The firm has tested the process at a pilot unit and plans a demonstration unit in 1992.

Rotman, D.; Wood, A.

1992-03-25T23:59:59.000Z

75

Synthesis of MTBE during CO hydrogenation: Reaction sites required  

SciTech Connect (OSTI)

Synthesis of methyl tert-butyl ether (MTBE) during carbon monoxide (CO) hydrogenation has been studied with the following reaction schemes: (1) the addition of isobutylene during CO hydrogenation over metal catalysts active for methanol synthesis (Pd/SiO{sub 2} and Li-Pd/SiO{sub 2}) and (2) the addition of isobutylene during CO hydrogenation over a dual bed configuration consisting of Li-Pd/SiO{sub 2} and a zeolite (H-ZSM-5 or HY). The addition of isobutylene during methanol synthesis over the supported Pd catalysts indicated that MTBE cannot be formed on metal sites from a reaction of isobutylene with methanol precursors. However, addition of isobutylene to the syngas feed over a dual bed consisting of a methanol synthesis catalyst and an acid zeolite downstream of the methanol synthesis catalyst showed that MTBE can be synthesized during CO hydrogenation provided acid sites are available. In order to get higher conversions of methanol to MTBE, optimization of the acid catalyst and/or reaction conditions would be required to minimize formation of byproduct hydrocarbons.

Kazi, A.M.; Goodwin, J.G. Jr.; Marcelin, G.; Oukaci, R. [Univ. of Pittsburgh, PA (United States). Dept. of Chemical and Petroleum Engineering

1995-03-01T23:59:59.000Z

76

Iran plans huge private sector MTBE plant  

SciTech Connect (OSTI)

An export-oriented 1-million m.t./year methyl tert-butyl ether (MTBE) plant is planned as one of Iran`s private sector investment projects. State-owned National Petrochemical Co (NPC; Tehran) and the Dubai-based Iranian businessman Abdul Wahab Galadari have signed a letter of intent allowing Galadari to develop the venture. Colt Engineering (Calgary, AL) is assisting Galadari with costs, planning and technology selection for the estimated $300-million plus venture. An important meeting with NPC is scheduled end of this month, says Galadari, and a financial package should be put together by end of March or April. The facility will most likely be wholly-owned by the Galadari family, roughly 50% by members resident in Iran and the remainder by the Dubai-based concern A.W. Galadari Sons. NPC says it may take a token shareholding in the venture.

Alperowicz, N.

1992-01-15T23:59:59.000Z

77

Treatment of methyl t-butyl ether contaminated water using a dense medium plasma reactor, a mechanistic and kinetic investigation  

E-Print Network [OSTI]

and oxidation mechanisms of methyl t-butyl ether (MTBE) in a dense medium plasma (DMP) reactor utilizing gas for the removal of MTBE from an aqueous solution in the DMP reactor. Rate constants are also derived for three reactor configurations and two pin array spin rates. The oxidation products from the treatment of MTBE

Dandy, David

78

MTBE will be a boon to U. S. gas processors  

SciTech Connect (OSTI)

This paper reports that the advent of methyl tertiary butyl ether (MTBE) as the primary oxygenate blending component for oxygenated and reformulated motor fuels promises significant benefits for the U.S. gas-processing industry. Increased demand for isobutane as MTBE-plant feedstock will buoy both normal butane and isobutane pricing in U.S. gulf Coast during the 1990s. Elimination of the need to crack normal butane in U.S. olefin plants will also strengthen competitive feedstocks somewhat, including ethane and propane. And increased use of normal butane as isomerization feedstock will result in wider recognition of the premium quality of gas plant normal butane production compared to most refinery C[sub 4] production.

Otto, K.W. (Purvin and Gertz, Inc. Dallas, TX (United States))

1993-01-11T23:59:59.000Z

79

MTBE movements between Texas Gulf Coast plants to be enhanced  

SciTech Connect (OSTI)

This paper reports that Texas Eastern Products Pipeline Co. (Teppco), Houston, has begun construction of its shuttle pipeline, a 10-mile, 6 and 8-in. line to move methyl tertiary butyl ether (MTBE) between producers and refiners along the Houston Ship Channel. Funding for the project has been approved, rights-of-way are secured, and procurement of materials is under way, according to Teppco. The line will flow from the western edge of Shell's refinery eastward to storage facilities of Teppco's Baytown terminal. The shuttle pipeline anticipates the US requirement for oxygenated gasolines that takes effect Nov. 1. Approximately 70% of the available US merchant capacity for MTBE is located along the shuttle's path, Teppco says.

Not Available

1992-07-27T23:59:59.000Z

80

The Social Costs of an MTBE Ban in California  

E-Print Network [OSTI]

349 The Social Costs of an MTBE Ban in California REFERENCESD.E. Rolston. Impacts of MTBE on California Groundwater. Environmental Assessment of MTBE, Vol. 4. A. Keller et al. ,

Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waiver mtbe methyl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Effects of temperature and acidic pre-treatment on Fenton-driven oxidation of MTBE-spent granular activated carbon  

SciTech Connect (OSTI)

The effects of temperature and acidic pretreatment on Fenton-driven chemical oxidation of methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC, derived from bituminous coal) were investigated. Limiting factors in MTBE removal in GAC include the heterogeneous distribution of amended Fe, and slow intraparticle diffusive transport of MTBE and hydrogen peroxide (H{sub 2}O{sub 2}) into the 'reactive zone'. Acid pretreatment of GAC before Fe amendment altered the surface chemistry of the GAC, lowered the pH point of zero charge, and resulted in greater penetration and more uniform distribution of Fe in GAC. This led to a condition where Fe, MTBE, and H{sub 2}O{sub 2} coexisted over a larger volume of the GAC contributing to greater MTBE oxidation and removal. H{sub 2}O{sub 2} reaction and MTBE removal in GAC increased with temperature. Modeling H{sub 2}O{sub 2} transport and reaction in GAC indicated that H{sub 2}O{sub 2} penetration was inversely proportional with temperature and tortuosity, and occurred over a larger fraction of the total volume of small GAC particles (0.3 mm diameter) relative to large particles (1.2 mm diameter). Acidic pretreatment of GAC, Fe-amendment, elevated reaction temperature, and use of small GAC particles are operational parameters that improve Fenton-driven oxidation of MTBE in GAC. 29 refs., 6 figs., 1 tab.

Kan, E.; Huling, S.G. [Robert S. Kerr Environmental Research Center, Ada, OK (United States)

2009-03-01T23:59:59.000Z

82

MTBE catalyst shows increased conversion in commercial unit  

SciTech Connect (OSTI)

Rising demand for methyl tertiary butyl ether (MTBE) has spawned interest in finding a cost-effective means of increasing production from existing units. A commercial trial of an improved MTBE catalyst was conducted recently at Lyondell Petrochemical Co.'s Channelview, Tex., plant. The new catalyst called Amberlyst 35 Wet, enhanced oxygenate production in the Lyondell trial. The new catalyst changes the activity coefficients of at least one of the components of the MTBE reaction, resulting in higher equilibrium conversion relative to its first-generation counterpart. Key catalyst properties are: particle size, 0.4--1.25 mm; Apparent density, 0.82 g/ml; Surface area, 44 sq m/g; Moisture content, 56%; Concentration of acid sites, 1.9 meq/ml (5.4 meq/g); Porosity, 0.35 cc/g; and Average pore diameter, 300 [angstrom]. Suggested operating conditions are: maximum temperature, 284 F (140 C); minimum bed depth, 24 in. (0.61 m); and liquid hourly space velocity (LHSV), 1--5 hr[sup [minus]1].

Not Available

1994-10-10T23:59:59.000Z

83

Review of the environmental behavior and fate of methyl tert-butyl ether  

SciTech Connect (OSTI)

A review of pertinent equations and current research indicates that when gasoline oxygenated with methyl tert-butyl ether (MTBE) comes into contact with water, large amounts of MTBe can dissolve. At 25 C, the water solubility of MTBE is about 5,000 mg/L for a gasoline that is 10% MTBE by weight, whereas for a nonoxygenated gasoline, the total hydrocarbon solubility in water is typically about 120 mg/L. Methyl tert-butyl ether sorbs only weakly to subsurface solids; therefore, sorption does not substantially retard the transport of MTBE by ground water. In addition, MTBE generally resists biodegradation in ground water. The half-life of MTBE in the atmosphere can be as short as 3 d in a regional airshed. In the air, MTBE tends to partition into atmospheric water, including precipitation. However, the washing out of gas-phase MTBE by precipitation will not, by itself, greatly alter the gas-phase concentration of the compound in the air. The partitioning of MTBE to precipitation can nevertheless result in concentrations as high as 3 {micro}g/L or more in urban precipitation and can contribute to the presence of MTBE in surface and ground water.

Squillace, P.J.; Zogorski, J.S. [Geological Survey, Rapid City, SD (United States); Pankow, J.F. [Oregon Graduate Inst. of Science and Technology, Beaverton, OR (United States). Dept. of Environmental Science and Engineering; Korte, N.E. [Oak Ridge National Lab., TN (United States). Environmental Science Div.

1997-09-01T23:59:59.000Z

84

energy savings by the use of mtbe to replace alkylate in automotive gasolines  

SciTech Connect (OSTI)

This paper presents data on the differences in energy consumption in the production of leaded and unleaded AI-93 gasolines with various blend components. The authors investigate as high-octane components certain products that are more effective in use and less energy-consuming in production in comparison with alkylate. In particular, methyl tert-butyl ether (MTBE) is discussed; it is not poisonous, it has a high heat of combustion, and it does not attack materials of construction. The addition of 11% MTBE to gasoline lowers the cold start temperature of engines by 10-12 degrees. Moreover, no adjustment of the carburetor is required for the changeover to gasoline with 11% MTBE.

Englin, B.A.; Emel'yanov, V.E.; Terent'ev, G.A.; Vinogradov, A.M.

1986-07-01T23:59:59.000Z

85

Removal of MTBE and other organic contaminants from water by sorption to high silica zeolites  

SciTech Connect (OSTI)

Select zeolites with high SiO{sub 2}/Al{sub 2}O{sub 3} ratios were shown to effectively remove methyl tert-butyl ether (MTBE), chloroform, and trichloroethylene (TCE) from water. In laboratory studies using batch sorption equilibria, high Si large-port mordenite and ZSM-5 (silicalite) were found to have sorption properties for MTBE and TCE superior to activated carbon. for example, at an equilibrium solution concentration of 100 {micro}g/L, high Si mordenite retained 8--12x more MTBE than either of two powdered activated carbons used as reference sorbents. Sorption results also highlight the importance of pore size and SiO{sub 2}/Al{sub 2}O{sub 3} ration on contaminant removal efficiencies by zeolites.

Anderson, M.A.

2000-02-15T23:59:59.000Z

86

Aerobic mineralization of MTBE and tert-butyl alcohol by stream-bed sediment microorganisms  

SciTech Connect (OSTI)

Microorganisms indigenous to the stream-bed sediments at two gasoline-contaminated groundwater sites demonstrated significant mineralization of the fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Up to 73% of [U-{sup 14}C]-MTBE and 84% of [U-{sup 14}C]-TBA were degraded to {sup 14}CO{sub 2} under mixed aerobic/anaerobic conditions. No significant mineralization was observed under strictly anaerobic conditions. The results indicate that, under the mixed aerobic/anaerobic conditions characteristic of stream-bed sediments, microbial processes may provide a significant environmental sink for MTBE and TBA delivered to surface water bodies by contaminated groundwater or by other sources.

Bradley, P.M.; Landmeyer, J.E.; Chapelle, F.H. [Geological Survey, Columbia, SC (United States)] [Geological Survey, Columbia, SC (United States)

1999-06-01T23:59:59.000Z

87

The social costs of an MTBE ban in California (Condensed version)  

E-Print Network [OSTI]

in Focus: Phasing Out MTBE in Gasoline," Annual Energyand P. J. Bartholomae, "MTBE and Benzene Plume Behavior: ASoil Sediment & Groundwater MTBE Special Issue, March, 43-

Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

2002-01-01T23:59:59.000Z

88

MTBE demand as a oxygenated fuel additive  

SciTech Connect (OSTI)

The MTBE markets are in the state of flux. In the U.S. the demand has reached a plateau while in other parts of the world, it is increasing. The various factors why MTBE is experiencing a global shift will be examined and future volumes projected.

NONE

1996-10-01T23:59:59.000Z

89

Interdisciplinary investigation of subsurface contaminant transport and fate at point-source releases of gasoline containing MTBE  

SciTech Connect (OSTI)

Methyl tert-butyl ether (MTBE) is commonly found at concentrations above the current U.S. Environmental Protection Agency draft lifetime health advisory for drinking water (20 to 200 micrograms per liter) at many point-source gasoline release sites. MTBE is significantly more persistent than benzene, toluene, ethyl-benzene and xylenes (BTEX) in the subsurface. Therefore, evaluation of the implications of its presence in gasoline to monitored natural attenuation and engineered bioremediation alternatives is warranted. An interdisciplinary, field-based investigation of the subsurface transport and fate of MTBE and petroleum hydrocarbons is being conducted by the U.S. Geological Survey (USGS) Toxic Substances Hydrology Program at the site of an underground gasoline storage-tank release near Beaufort, South Carolina. The objective of the investigation is to provide a systematic evaluation of natural attenuation of MTBE compared to BTEX. Results of the field and laboratory studies at this site will be generalized to a broader range of hydrogeochemical conditions through experiments at other sites. Furthermore, newly developed methods of analysis can be applied to sites across the Nation. This investigation of MTBE at point-source release sites is coordinated with investigations of the occurrence of MTBE in shallow ground water, surface water, precipitation, and the atmosphere being conducted by the USGS National Water-Quality Assessment Program.

Buxton, H.T.; Baehr, A.L. [Geological Survey, West Trenton, NJ (United States); Landmeyer, J.E. [Geological Survey, Columbia, SC (United States)] [and others

1997-12-31T23:59:59.000Z

90

Multiple steady states during reactive distillation of methyl tert-butyl ether  

SciTech Connect (OSTI)

This paper presents results of computer simulations of the synthesis of methyl tert-butyl ether (MTBE) in a fixed-bed reactor and in a reactive distillation column. These calculations clearly showed the advantages of MTBE synthesis in a catalytic distillation tower. Furthermore, the computer simulations showed that multiple steady states may occur in the reactive distillation column during MTBE synthesis in a broad range of operating conditions. An analysis of some sensitivity studies is presented.

Nijhuis, S.A. (Univ. of Amsterdam (Netherlands). Chemical Engineering Dept.); Kerkhof, F.P.J.M.; Mak, A.N.S. (Comprimo Engineers and Contractors, Amsterdam (Netherlands))

1993-11-01T23:59:59.000Z

91

Location of MTBE and toluene in the channel system of the zeolite mordenite: Adsorption and host-guest interactions  

SciTech Connect (OSTI)

This paper reports a study of the location of Methyl Tertiary Butyl Ether (MTBE) and toluene molecules adsorbed in the pores of the organophylic zeolite mordenite from an aqueous solution. The presence of these organic molecules in the zeolite channels was revealed by structure refinement performed by the Rietveld method. About 3 molecules of MTBE and 3.6 molecules of toluene per unit cell were incorporated into the cavities of mordenite, representing 75% and 80% of the total absorption capacity of this zeolite. In both cases a water molecule was localized inside the side pocket of mordenite. The saturation capacity determined by the adsorption isotherms, obtained by batch experiments, and the weight loss given by thermogravimetric (TG) analyses were in very good agreement with these values. The interatomic distances obtained after the structural refinements suggest MTBE could be connected to the framework through a water molecule, while toluene could be bonded to framework oxygen atoms. The rapid and high adsorption of these hydrocarbons into the organophylic mordenite zeolite makes this cheap and environmental friendly material a suitable candidate for the removal of these pollutants from water. - graphical abstract: Location of MTBE (a) and toluene (b) in mordenite channels (projection along the [001] direction). Highlights: Black-Right-Pointing-Pointer We investigated the MTBE and toluene adsorption process into an organophilic zeolite mordenite. Black-Right-Pointing-Pointer The presence of MTBE and toluene in mordenite was determined by X-ray diffraction studies. Black-Right-Pointing-Pointer About 3 molecules of MTBE and 3.6 molecules of toluene per unit cell were incorporated into the zeolite cavities. Black-Right-Pointing-Pointer MTBE is connected to the framework through a water molecule. Black-Right-Pointing-Pointer Toluene is directly bonded to framework oxygen atoms.

Arletti, Rossella, E-mail: rossella.arletti@unito.it [Department of Earth Sciences, University of Torino Via Valperga Caluso 35, I-10125, Torino (Italy)] [Department of Earth Sciences, University of Torino Via Valperga Caluso 35, I-10125, Torino (Italy); Martucci, Annalisa; Alberti, Alberto [Department of Earth Sciences, University of Ferrara, Via G. Saragat 1, I-44100, Ferrara (Italy)] [Department of Earth Sciences, University of Ferrara, Via G. Saragat 1, I-44100, Ferrara (Italy); Pasti, Luisa; Nassi, Marianna [Department of Chemistry, University of Ferrara, Via L. Borsari 26, I-44100 Ferrara (Italy)] [Department of Chemistry, University of Ferrara, Via L. Borsari 26, I-44100 Ferrara (Italy); Bagatin, Roberto [Research Centre for Non-Conventional Energy-Istituto ENI Donegani, Environmental Technologies, Via Fauser 4, I-28100 Novara (Italy)] [Research Centre for Non-Conventional Energy-Istituto ENI Donegani, Environmental Technologies, Via Fauser 4, I-28100 Novara (Italy)

2012-10-15T23:59:59.000Z

92

MTBE, Oxygenates, and Motor Gasoline  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricityrgy81 §98 3.241MTBE,

93

Two US markets, or one? How the MTBE-gasoline relationship is evolving  

SciTech Connect (OSTI)

This issue of Energy Detente features the price sensitivity of Methyl Tertiary Butyl Ether. Data is presented for US wholesale gasoline prices vs. MTBE for the 20-month period beginning in June 1994 and ending in January 1996, and the data is discussed. Also contained in this issue is the refining netback data and the fuel price/tax data for the period ending January 5, 1996.

NONE

1996-01-26T23:59:59.000Z

94

Disposition, metabolism, and toxicity of methyl tertiary butyl ether, an oxygenate for reformulated gasoline  

SciTech Connect (OSTI)

Studies of the toxicology of methyl tertiary butyl ether (MTBE) were reviewed as a possible information base for evaluating the health effects of evaporative emissions from reformulated gasoline (RFG). Perirenal fat/blood MTBE concentration ratios ranged from 9.7 to 11.6 after 15 wk of intermittent exposure. During an oxyfuels program in Fairbanks, AK, blood levels of occupationally exposed workers were 0.2-31.5 {mu}g/L MTBE and 1.6 to 72.2 {mu}g/L TBA with a mean TBA:MTBE blood concentration ratio of 4.2. In patients who received MTBE by percutaneous, transhepatic puncture for the dissolution of cholesterol gallstones, concentrations of MTBE in fat tissue reached 60 and 300 {mu}g/g at a treatment time when mean blood MTBE was less than 20 {mu}g/ml. The results of laboratory and clinical studies indicate that metabolites of MTBE may contribute to the nephropathy, neoplasms, and other pathological changes associated with repeated exposure to MTBE in experimental animals. It is concluded that such studies can provide a well-defined database for quantitatitive safety comparisons and health risk-benefit analyses of MTBE and other oxygenates in RFG. 39 refs., 1 tab.

Hutcheon, D.E.; Hove, W. ten; Boyle, J. III [UMDNJ, New Jersey Medical Schook, Newark, NJ (United States)] [UMDNJ, New Jersey Medical Schook, Newark, NJ (United States); Arnold, J.D. [Arnold & Arnold, Inc., Kansas City, MO (United States)] [Arnold & Arnold, Inc., Kansas City, MO (United States)

1996-04-05T23:59:59.000Z

95

A screening model for evaluating the degradation and transport of MTBE and other fuel oxygenates in the subsurface  

SciTech Connect (OSTI)

Methyl tert-butyl ether (MTBE) has received high attention as it contributed to cleaner air and contaminated thousands of underground storage tank sites. Because MTBE is very water soluble, it is more difficult to remove from water by conventional remediation techniques. Therefore, biodegradation of MTBE has become a remediation alternative. In order to understand the transport and transformation processes, they present a closed form solution as a screening tool in this paper. The possible reaction pathways of first-order reactions are described as a reaction matrix. The singular value decomposition is conducted analytically to decouple the partial differential equations of the multi-species transport system coupled by the reaction matrix into multiple independent subsystems. Therefore, the complexity of mathematical description for the reactive transport system is significantly reduced and analytical solutions may be previously available or easily derived.

Sun, Y; Lu, X

2004-04-20T23:59:59.000Z

96

The Social Costs of an MTBE Ban in California  

E-Print Network [OSTI]

85 MTBE is more soluble in water than BTEX, which means thatlong as BTEX plumes; and California Regional Water QualityMTBE than BTEX dissolves in a given quantity of water. This

Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

2005-01-01T23:59:59.000Z

97

Personal Services Agreements Waivers  

E-Print Network [OSTI]

Personal Services Agreements Waivers: Appendix A2 Responsible Administrative Units: Human Resources be performed by CSM staff. 4. Student Recruit Data Collection Services: Services include collecting a nation the adequate staff to perform these services. #12;Personal Services Agreements Waivers: Appendix A2 Responsible

98

Personal Services Agreements Waivers  

E-Print Network [OSTI]

Personal Services Agreements Waivers: Appendix A1 Responsible Administrative Units: Human Resources mapping, reviewing, surveying, and data collection for which CSM does not have staff qualified to perform these specialized services. #12;Personal Services Agreements Waivers: Appendix A1 Responsible Administrative Units

99

High-temperature ignition of propane with MTBE as an additive: Shock-tube experiments and modeling  

SciTech Connect (OSTI)

Ignition of propane has been studied in a shock tube and by computational modeling to determine the effect of methyl tert-butyl ether (MTBE) as a fuel additive. MTBE and isobutene were added in amounts up to 25% of the fuel to propane-oxygen-argon mixtures in shock-tube experiments covering a range of temperatures between 1450 and 1800 K. Ignition delays were measured from chemiluminescence at 432 nm due to excited CH radicals. The temperature dependence of the ignition rates was analyzed to yield Arrhenius parameters of E{sub a}{approximately}40 kcal/mol and log (A){approximately} 9.0 sec{sup {minus}1} for the overall reaction. Reactions involving MTBE and its decomposition products were combined with an established propane mechanism in a numerical model to describe the kinetic interaction of this additive with a typical hydrocarbon fuel. The experiments and the kinetic model both show that MTBE and isobutene retard propane ignition with nearly equal efficiency. The kinetic model demonstrates that isobutene kinetics are responsible for inhibition by both MTBE and isobutene, and the specific elementary reactions which produce this behavior are identified.

Gray, J.A. (Sandia National Labs., Livermore, CA (United States)); Westbrook, C.K. (Lawrence Livermore National Lab., CA (United States))

1991-01-01T23:59:59.000Z

100

High-temperature ignition of propane with MTBE as an additive: Shock-tube experiments and modeling. Revision 1  

SciTech Connect (OSTI)

Ignition of propane has been studied in a shock tube and by computational modeling to determine the effect of methyl tert-butyl ether (MTBE) as a fuel additive. MTBE and isobutene were added to amounts up to 25% of the fuel to propane-oxygen-argon mixtures to shock-tube experiments covering a range of temperatures between 1450 and 1800 K. Ignition delays were measured from chemiluminescence at 432 nm due to excited CH radicals. The temperature dependence of the ignition rates was analyzed to yield Arrhenium parameters of E{sub a}{sup {minus}}40 kcal/mol and log(A) {sup {minus}}9.0 sec{sup {minus}1} for the overall reaction. Reactions involving MTBE and its decomposition products were combined with an established propane mechanism in a numerical model to describe the kinetic interaction of this additive with a typical hydrocarbon fuel. The experiments and the kinetic model both show that MTBE and isobutene retard propane ignition with nearly equal efficiency. The kinetic model demonstrates that isobutene kinetics are responsible for inhibition by both MTBE and isobutene, and the specific elementary reactions which produce this behavior are identified. 19 refs., 1 fig., 3 tabs.

Gray, J.A. [Sandia National Labs., Livermore, CA (United States); Westbrook, C.K. [Lawrence Livermore National Lab., CA (United States)

1991-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "waiver mtbe methyl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

High-temperature ignition of propane with MTBE as an additive: Shock-tube experiments and modeling  

SciTech Connect (OSTI)

Ignition of propane has been studied in a shock tube and by computational modeling to determine the effect of methyl tert-butyl ether (MTBE) as a fuel additive. MTBE and isobutene were added in amounts up to 25% of the fuel to propane-oxygen-argon mixtures in shock-tube experiments covering a range of temperatures between 1450 and 1800 K. Ignition delays were measured from chemiluminescence at 432 nm due to excited CH radicals. The temperature dependence of the ignition rates was analyzed to yield Arrhenius parameters of E{sub a}{approximately}40 kcal/mol and log (A){approximately} 9.0 sec{sup {minus}1} for the overall reaction. Reactions involving MTBE and its decomposition products were combined with an established propane mechanism in a numerical model to describe the kinetic interaction of this additive with a typical hydrocarbon fuel. The experiments and the kinetic model both show that MTBE and isobutene retard propane ignition with nearly equal efficiency. The kinetic model demonstrates that isobutene kinetics are responsible for inhibition by both MTBE and isobutene, and the specific elementary reactions which produce this behavior are identified.

Gray, J.A. [Sandia National Labs., Livermore, CA (United States); Westbrook, C.K. [Lawrence Livermore National Lab., CA (United States)

1991-12-31T23:59:59.000Z

102

High-temperature ignition of propane with MTBE as an additive: Shock-tube experiments and modeling  

SciTech Connect (OSTI)

Ignition of propane has been studied in a shock tube and by computational modeling to determine the effect of methyl tert-butyl ether (MTBE) as a fuel additive. MTBE and isobutene were added to amounts up to 25% of the fuel to propane-oxygen-argon mixtures to shock-tube experiments covering a range of temperatures between 1450 and 1800 K. Ignition delays were measured from chemiluminescence at 432 nm due to excited CH radicals. The temperature dependence of the ignition rates was analyzed to yield Arrhenium parameters of E{sub a}{sup {minus}}40 kcal/mol and log(A) {sup {minus}}9.0 sec{sup {minus}1} for the overall reaction. Reactions involving MTBE and its decomposition products were combined with an established propane mechanism in a numerical model to describe the kinetic interaction of this additive with a typical hydrocarbon fuel. The experiments and the kinetic model both show that MTBE and isobutene retard propane ignition with nearly equal efficiency. The kinetic model demonstrates that isobutene kinetics are responsible for inhibition by both MTBE and isobutene, and the specific elementary reactions which produce this behavior are identified. 19 refs., 1 fig., 3 tabs.

Gray, J.A. (Sandia National Labs., Livermore, CA (United States)); Westbrook, C.K. (Lawrence Livermore National Lab., CA (United States))

1991-12-01T23:59:59.000Z

103

Role of Volatilization in Changing TBA and MTBE Concentrations at  

E-Print Network [OSTI]

a low affinity for gasoline (low Kfw, Table 1). Therefore, minute amounts of TBA in the MTBE blended tertiary butyl ether (MTBE) added to gasoline. Frequent observations of high TBA, and especially rising TBA/MTBE concentration ratios, in groundwater at gasoline spill sites are generally attributed to microbial conversion

104

Iron optimization for Fenton-driven oxidation of MTBE-spent granular activated carbon  

SciTech Connect (OSTI)

Fenton-driven chemical oxidation of methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) was accomplished through the addition of iron (Fe) and hydrogen peroxide (H{sub 2}O{sub 2}) (15.9 g/L; pH 3). The GAC used was URV, a bituminous-coal based carbon. The Fe concentration in GAC was incrementally varied (1020-25 660 mg/kg) by the addition of increasing concentrations of Fe solution (FeSO4{center_dot}7H{sub 2}O). MTBE degradation in Fe-amended GAC increased by an order of magnitude over Fe-unamended GAC and H{sub 2}O{sub 2} reaction was predominantly (99%) attributed to GAC-bound Fe within the porous structure of the GAC. Imaging and microanalysis of GAC particles indicated limited penetration of Fe into GAC. The optimal Fe concentration was 6710 mg/kg (1020 mg/kg background; 5690 mg/kg amended Fe) and resulted in the greatest MTBE removal and maximum Fe loading oxidation efficiency (MTBE oxidized (g)/Fe loaded to GAC(mg/Kg)). At lower Fe concentrations, the H{sub 2}O{sub 2} reaction was Fe limited. At higher Fe concentrations, the H{sub 2}O{sub 2} reaction was not entirely Fe limited, and reductions in GAC surface area, GAC pore volume, MTBE adsorption, and Fe loading oxidation efficiency were measured. Results are consistent with nonuniform distribution of Fe, pore blockage in H{sub 2}O{sub 2} transport, unavailable Fe, and limitations in H{sub 2}O{sub 2} diffusive transport, and emphasize the importance of optimal Fe loading. 22 refs., 6 figs., 2 tabs.

Scott G. Huling; Patrick K. Jones; Tony R. Lee [U.S. Environmental Protection Agency, Ada, OK (United States). Office of Research and Development, National Risk Management Research Laboratory

2007-06-01T23:59:59.000Z

105

Multivariable controller increased MTBE complex capacity  

SciTech Connect (OSTI)

Capacity increased by more than 4.6% when one dynamic matrix multivariable controller began operating in Valero Refining Company`s MTBE production complex in Corpus Christi, Texas. This was on a plant that was already running well above design capacity due to previously made process changes. A single controller was developed to cover an isobutane dehydrogenation (ID) unit and an MTBE reaction and fractionation plant with the intermediate isobutylene surge drum. The overall benefit is realized by a comprehensive constrained multivariable predictive controller that properly handles all sets of limits experienced by the complex, whether limited by the front-end ID or back-end MTBE units. The controller has 20 manipulated, 6 disturbance and 44 controlled variables, and covers widely varying dynamics with settling times ranging from twenty minutes to six hours. The controller executes each minute with a six hour time horizon. A unique achievement is intelligent surge drum level handling by the controller for higher average daily complex capacity as a whole. The ID unit often operates at simultaneous limits on reactor effluent compressor capacity, cold box temperature and hydrogen/hydrocarbon ratio, and the MTBE unit at impurity in butene column overhead as well as impurity in MTBE product. The paper discusses ether production, isobutane dehydrogenation, maximizing production, controller design, and controller performance.

Robertson, D.; Peterson, T.J.; O`Connor, D. [DMC Corp., Houston, TX (United States); Payne, D.; Adams, V. [Valero Refining Co., Corpus Christi, TX (United States)

1997-03-01T23:59:59.000Z

106

active methyl tert-butyl: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by Fusarium solani CiteSeer Summary: Fusarium solani degraded methyl tert-butyl ether (MTBE) and other oxygenated compounds from gasoline including tert-butyl alcohol (TBA). The...

107

Production of methyl tert-alkyl ethers  

SciTech Connect (OSTI)

The transition to the use of unleaded gasolines has required the replacement of tetraethyl lead by oxygen-containing compounds such as methanol, ethanol, and ethers, which are termed {open_quotes}oxygenates{close_quotes} in the technical literature. These may be used in commercial gasolines in amounts of 10-15% by volume, equivalent to 2% oxygen by weight. When methyl tert-butyl ether (MTBE) is used, the oxygen content may amount to 2.7% by weight. This oxygenate gives a significant improvement of knock resistance of naphtha fractions, the greatest effects being observed for straight-run naphthas and reformer naphthas produced under normal conditions; the MTBE also improves the engine power and economy characteristics and lowers the carbon monoxide content in the exhaust by 15-30% and the hydrocarbon content by 7-8%. This paper describes methods for the production of MTBE and also methyl tert-alkyl ethers.

Trofimov, V.A.

1995-01-01T23:59:59.000Z

108

Texas plant will use new process to coproduce propylene oxide, MTBE  

SciTech Connect (OSTI)

Texaco Chemical Co. is building a $400 + million facility to produce 1.2 billion lb/year (14,000 b/d) methyl tertiary butyl ether (MTBE) and 400 million lb/year (about 500 metric tons/day) propylene oxide (PO). The facility-under construction at Port Neches, Tex.-will utilize a newly developed Texaco process that coproduces the two chemicals. The process produces propylene oxide and tertiary butyl alcohol (TBA) from the reaction of isobutane with oxygen in one step, then in a second step with propylene. The TBA is then reacted with methanol in a one-step process that synthesizes MTBE. The paper describes the Port Neches facilities, construction schedule, feedstocks, product uses, and auxiliary equipment.

Rhodes, A.K.

1993-08-30T23:59:59.000Z

109

Gas phase synthesis of MTBE on triflic-acid-modified zeolites  

SciTech Connect (OSTI)

The gas phase synthesis of MTBE (methyl tert-butyl ether) was studied using three series of triflic acid (TFA)-modified zeolites, the parent materials being HY, H-mordenite, and HZSM-5. Impregnation with TFA was found to enhance MTBE synthesis activity only for the large-pore zeolite Y and only up to a certain extent of modification. A high level of TFA modification caused a reduction in activity, apparently due to blockage of the active sites by TFA molecules and extra-lattice Al formed during the modification process. The mechanism of activity enhancement by TFA modification appears to be related to the formation of extra-lattice Al rather than the direct presence of TFA. 20 refs., 6 figs., 1 tab.

Nikolopoulos, A.A.; Kogelbauer, A.; Goodwin, J.G. Jr. [Univ. of Pittsburgh, PA (United States)] [and others] [Univ. of Pittsburgh, PA (United States); and others

1996-01-01T23:59:59.000Z

110

Toxicity of methyl tertiary butyl ether to Daphnia magna and photobacterium phosphoreum  

SciTech Connect (OSTI)

Methyl tertiary butyl ether (MTBE) is a liquid organic compound added to gasoline to increase its oxygen content and to reduce the emission of carbon monoxide during combustion in many urban areas. In order to meet the 1990 Clean Air Act amendments, gasoline must contain 2.7% oxygen (by weight) or 15% (by volume) of MTBE in gasoline to meet the regulations for the control of carbon monoxide emissions. Health effects caused by inhalation of MTBE include headaches, dizziness, irritated eyes and nausea; MTBE is one of cancer--causing chemicals. Intracaval injection of MTBE (0.2 mg/kg) caused the highest mortality (100%) in rats. General anesthetic effect induced by MTBE was found at or above 1200 mg/kg body weight; Rosenkranz and Klopman (1991) predicted that MTBE is neither a genotoxicant nor a carcinogen. Nevertheless, the safety of using MTBE in oxygenated fuels is now being questioned from its potential as groundwater pollutant. This study measures the toxicity of MTBE to Daphnia magna and Photobacterium phosphoreum. 13 refs.

Gupta, G.; Lin, Y.J. [Univ. of Maryland Eastern Shore, Princess Anne, MD (United States)

1995-10-01T23:59:59.000Z

111

Observation on the biodegradation and bioremediation potential of methyl t-butyl ether  

SciTech Connect (OSTI)

There have been few reports documenting evidence for the biodegradation of the fuel oxygenate alkyl ether, methyl t-butyl ether (MTBE) in groundwater, soils, and biosludges. Partial (or complete) microbial breakdown of MTBE has been observed in an anaerobic subsoil, a river sediment under methanogenic conditions, a cyclohexane-degrading bacterial consortium and a pure culture of the methylotroph, Methylisnus trichosporium OB3b. An aerobic bacterial enrichment (BC-1) isolated from an industrial transient (non-accumulating) metabolic intermediate. The studies suggest that MTBE is cleaved by BC-1 to TBA which is then metabolized via isopropanol and acetone. There is little information on the occurrence of indigenous MTBE-degraders in groundwater, soils and activated sludges. Preliminary evidence has been obtained, however, from a marketing terminal groundwater site that naturally-occurring MTBE-degraders are present in some monitoring wells. Microcosm experiments with groundwater from this aquifer show that MTBE is aerobically degraded (no TBA formed) with a first-order decay rate (0.31/day) similar to BTEX. Also, MTBE did not inhibit the intrinsic biodegradation potential of BTEX in groundwater microcosms. In summary, the data presented indicate that MTBE biodegradation has been observed in some environmental media. Further work is needed to assess the feasibility of using indigenous or derived aerobic and anaerobic MTBE-degrading cultures for treating fuel ethers in groundwaters or wastewater with in-situ or ex-situ bioremediation technologies.

Salanitro, J.; Wisniewski, H.; McAllister, P. [Shell Development Co., Houston, TX (United States)

1995-12-31T23:59:59.000Z

112

Biodegradation of methyl tert-butyl ether by a bacterial pure culture  

SciTech Connect (OSTI)

A bacterial strain, PM1, which is able to utilize methyl tert-butyl ether (MTBE) as its sole carbon and energy source, was isolated from a mixed microbial consortium in a compost biofilter capable of degrading MTBE. Initial linear rates of MTBE degradation by 2 x 10{sup 6} cells ml{sup {minus}1} were 0.07, 1.17, and 3.56 {mu}g ml{sup {minus}1} h{sup {minus}1} for initial concentrations of 5, 50, and 500 {mu}g MTBE ml{sup {minus}1}, respectively. When incubated with 20 {mu}g of uniformly labeled [{sup 14}C]MTBE ml{sup {minus}1}, strain PM1 converted 46% to {sup 14}CO{sub 2} and 19% to {sup 14}C-labeled cells within 120 h. This yield is consistent with the measurement of protein accumulation at different MTBE concentrations from which was estimated a biomass yield of 0.18 of cells mg MTBE{sup {minus}1}. Strain PM1 was inoculated into sediment core material collected from a contaminated groundwater plume at Port Hueneme, California, in which there was no evidence of MTBE degradation. Strain PM1 readily degraded 20 {micro}g of MTBE ml{sup {minus}1} added to the core material. The rate of MTBE removal increased with additional inputs of 20 {micro}g of MTBE ml{sup {minus}1}. These results suggest that PM1 has potential for use in the remediation of MTBE-contaminated environments.

Hanson, J.R.; Ackerman, C.E.; Scow, K.M.

1999-11-01T23:59:59.000Z

113

Remediation of a fractured clay soil contaminated with gasoline containing MTBE  

SciTech Connect (OSTI)

Gasoline and other light non-aqueous phase liquids (LNAPLs) released into fractured clay soils initially move by advection of the LNAPL through the fractures. Once advective movement of the LNAPL ceases, dissolution of the gasoline components into the pore water and diffusion into the intact blocks of clay becomes an important transport process. The aqueous-phase flux of each compound in the mixture depends in large part upon its aqueous solubility. For example, a low-solubility compound like isooctane remains primarily in the fracture in the LNAPL. A high-solubility compound, like methyl-tert-butyl ether (MTBE), dissolves readily and may move almost entirely into the clay matrix. The distribution of compounds between the matrix and the fractures will have an important impact on the rate at which the gasoline contaminated soil can be remediated. In this context, the presence of soluble additives like MTBE can significantly impact the risk and remediation time for the, soil. Beginning in 1993 a field study to examine the applicability of air flushing for remediation of low-permeability soils was sponsored by API. The study focused on a variety of soil vapor extraction (SVE) and in situ air sparging (IAS) approaches for mass removal and risk reduction. The source of gasoline contamination in this study was a release of 50 liters of a mixture containing 14 gasoline hydrocarbons ranging from pentane to naphthalene, and including MTBE. The mixture was released into the shallow subsurface and allowed to redistribute for 10 months prior to air flushing startup. Numerical modeling indicated that essentially all of the MTBE should have dissolved into the matrix. In contrast, essentially all of the isooctane should have remained in the LNAPL in the fractures.

Johnson, R.L.; Grady, D.E. [Oregon Graduate Institute, Portland, OR (United States); Walden, T. [BP Oil Europe, Brussels (Belgium)

1997-12-31T23:59:59.000Z

114

Kinetics and mechanism of the sonolytic destruction of methyl tert-butyl ether by ultrasonic irradiation in the presence of ozone  

SciTech Connect (OSTI)

The kinetics and mechanism of the sonolytic degradation of methyl tert-butyl ether (MTBE) have been investigated at an ultrasonic frequency of 205 kHz and power of 200 W L{sup {minus}1}. The observed first-order degradation rate constant for the loss of MTBE increased from 4.1 {times} 10{sup {minus}4} s{sup {minus}1} to 8.5 {times} 10{sup {minus}4} s{sup {minus}1} as the concentration of MTBE decreased from 1.0 to 0.01 mM. In the presence of O{sub 3}, the sonolytic rate of destruction of MTBE was accelerated substantially. The rate of MTBE sonolysis with ozone was enhanced by a factor of 1.5--3.9 depending on the initial concentration of MTBE. tert-Butyl formate, tert-butyl alcohol, methyl acetate, and acetone were found to be the primary intermediates and byproducts of the degradation reaction with yields of 8, 5, 3, and 12%, respectively. A reaction mechanism involving three parallel pathways that include the direct pyrolytic decomposition of MTBE, the direct reaction of MTBE with ozone, and the reaction of MTBE with hydroxyl radical is proposed.

Kang, J.W. [Yonsei Univ., Wonju (Korea, Republic of). Dept. of Industrial Environment and Health] [Yonsei Univ., Wonju (Korea, Republic of). Dept. of Industrial Environment and Health; Hoffmann, M.R. [California Inst. of Tech., Pasadena, CA (United States). W.M. Keck Labs.] [California Inst. of Tech., Pasadena, CA (United States). W.M. Keck Labs.

1998-10-15T23:59:59.000Z

115

Recovery of methanol in an MTBE process  

SciTech Connect (OSTI)

In a process for the manufacture of methyltertiarybutylether (MTBE) in which methanol and a mixture of C/sub 4/ hydrocarbons containing isobutylene are contacted in a reaction zone containing an ion-exchange resin catalyst under suitable conditions to effect the reaction of methanol and isobutylene to produce a reaction product containing MTBE, unreacted methanol, unreacted isobutylene and other C/sub 4/ hydrocarbons, the reaction product is introduced to a fractionation zone wherein it is separated into a bottoms product comprising essentially MTBE and an overhead product containing unreacted methanol, unreacted isobutylene, and other C/sub 4/ hydrocarbons, and the overhead product is introduced to an absorption zone wherein the methanol is absorbed; the improvement is described which comprises utilizing silica gel as adsorbent and regenerating the silica gel adsorbent in a closed loop by contacting the silica gel absorbent with a desorption gas stream at an elevated temperature for a sufficient period of time to remove absorbed methanol, cooling the effluent from the adsorption zone to condense desorbed methanol removing desorbed methanol from the system and recycling the desorption gas to the adsorption zone.

Whisenhunt, D.E.; Byers, G.L.; Hattiangadi, U.S.

1988-05-31T23:59:59.000Z

116

Eliminating MTBE in Gasoline in 2006  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96Nebraska NuclearDecade Year-08/03)1 Eliminating MTBE in

117

Feasibility of using bioaugmentation with bacterial strain PM1 for bioremediation of MTBE-contaminated vadose and groundwater environments  

E-Print Network [OSTI]

2000. "In Situ Treatment of MTBE by Biostimulation of NativeAmerican Petroleum Institute MTBE Biodegradation Workshop,Detection and Quantification of MTBE-degrading Strain PM1 by

Scow, Kate M; Hristova, Krassimira

2001-01-01T23:59:59.000Z

118

The Social Costs of an MTBE Ban in California  

E-Print Network [OSTI]

in Gasoline. Annual Energy Outlook 2000. DOE/EIA-0383,in Gaso- line. Annual Energy Outlook 2000. DOE/EIA-0383,MTBE in Gasoline, Annual Energy Outlook 2000, 2001a. Mazur,

Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

2005-01-01T23:59:59.000Z

119

Fast photoreactions of ethanol and MTBE on tropospheric metal oxide particles  

SciTech Connect (OSTI)

Ethanol (EtOH) and tert-Butyl methyl ether (MTBE) are both finding increased use as oxygenated additives to fuels. However, the environmental fate in the troposphere of these species is unclear when they escape as fugitive emissions. In several locations there are reports of human illness in response to MTBE in particular. Volatile organic compounds (VOC`s) such as these are generally thought to react by a variety of homogeneous free-radical mechanisms, usually beginning with attack by OH radical. However, we show by laboratory kinetic studies that the heterogeneous photoreaction on solid suspended metal-oxide particulates such as fly ash proceeds with a comparable rate, especially in urban environments. EtOH reacts to form acetaldehyde, and EtOH forms isobutene, methanol, and formaldehyde. Our work appears to be the first-ever demonstration that VOC`s can react as fast by a heterogeneous mechanism as by a homogeneous one in the atmosphere. Experiments by various optical and kinetic techniques show that the active phases in fly ash are Fe oxides, which are fairly abundant in other atmospheric particulates as well.

Idriss, H.; Seebauer, E.G. [Univ. of Illinois, Urbana, IL (United States)

1995-12-31T23:59:59.000Z

120

Intrinsic bioremediation of a BTEX and MTBE plume under mixed aerobic/denitrifying conditions  

SciTech Connect (OSTI)

A shallow Coastal Plain aquifer in rural Sampson Country, North Carolina, has been contaminated with petroleum hydrocarbon from a leaking underground storage tank containing gasoline.An extensive field characterization has been performed to define the horizontal and vertical distribution of soluble gasoline components and indicator parameters. A plume of dissolved methyl tert-butyl ether (MTBE) and the aromatic hydrocarbons benzene, toluene, ethylbenzene, and xylene isomers (BTEX) is present in the aquifer and has migrated over 600 ft from the source area. Background dissolved oxygen concentrations range from 7 to 8 mg/L, and nitrate concentrations range from 5 to 22 mg/L as N due to extensive fertilization of fields surrounding the spill. In the center of the BTEX plume, oxygen concentrations decline to less than 1 mg/L while nitrate concentrations remain high. The total mass flux of MTBE and all BTEX components decline with distance downgradient relative to a conservative tracer (chloride). At the source, the total BTEX concentration exceeds 75 mg/L while 130 ft downgradient, total BTEX concentrations are less than 4.9 mg/L, a 15-fold reduction. Toluene and ethylbenzene decline most rapidly followed by m-p-xylene, o-xylene and finally benzene. Biodegradation of TEX appears to be enhanced by the excess nitrate present in the aquifer while benzene biodegradation appears to be due to strictly aerobic processes.

Borden, R.C.; Daniel, R.A. [North Carolina State Univ., Raleigh, NC (United States). Civil Engineering Dept.

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "waiver mtbe methyl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Heterogeneous models of tubular reactors packed with ion-exchange resins: Simulation of the MTBE synthesis  

SciTech Connect (OSTI)

The study of behavior of fixed-bed reactors using ion-exchange resins as catalysts was carried out by making use of a complete bidimensional heterogeneous model for the reactor, which included the resistances inside the ion-exchange resin particles, considered with a macroreticular structure. The active sites were located inside the gel phase of the resin, represented by microspheres, and on the macropores walls. The overall efficiency of such heterogeneous catalyst particles was defined by the macroeffectiveness and microeffectiveness factors accounting for the process behavior on the macropores and inside the microspheres. The synthesis of methyl tert-butyl ether, MTBE, a liquid-phase reversible exothermic reaction between methanol and isobutene, was considered as a reference case. This system was studied in the temperature range of 313--338 K, and the effect of the thermodynamic equilibrium conditions was examined. The results predicted by the complete heterogeneous model were compared with those obtained with the simple pseudohomogeneous model, which revealed higher hot spots. Moreover, a comparison between bidimensional and unidimensional models was also performed. The orthogonal collocation method was used for the discretization of the differential equations inside the catalyst particles, which were reduced from three (corresponding to the three mass balances for the three compounds, isobutene, methanol, and MTBE) to only one differential equation, by using the concept of the generalized variable.

Quinta Ferreira, R.M.; Almeida-Costa, C.A. [Univ. of Coimbra (Portugal). Dept. of Chemical Engineering; Rodrigues, A.E. [Univ. of Porto (Portugal). Dept. of Chemical Engineering

1996-11-01T23:59:59.000Z

122

The social costs of an MTBE ban in California (Long version)  

E-Print Network [OSTI]

Ethanol, Non-oxy Case D'( p) MTBE Case D(p) U.S. Supply S(p)NO. 932 THE SOCIAL COSTS OF AN MTBE BAN IN CALIFORNIA (LONGMTBE .

Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

2002-01-01T23:59:59.000Z

123

October 2012 Renewable Fuel Standard Waiver  

E-Print Network [OSTI]

for four different biofuel categories and their effects on agricultural commodity markets. This report no waiver of the RFS in response to the drought. Analysis reported here estimates the effects of a waiverOctober 2012 Renewable Fuel Standard Waiver Options during the Drought of 2012 FAPRI-MU Report #11

Noble, James S.

124

Atmosphere-Water Interaction of Chloroform, Toluene, and MTBE in Small Perennial Urban Streams  

E-Print Network [OSTI]

Atmosphere-Water Interaction of Chloroform, Toluene, and MTBE in Small Perennial Urban Streams-butyl ether (MTBE) are frequently detected VOCs in the atmosphere, surface water, and ground water in urban not be the predominant source of chloroform and toluene in the two urban streams. In contrast, MTBE may be coming from

125

ClassWaiver-PUA.pdf | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

ClassWaiver-PUA.pdf More Documents & Publications ClassWaiverNPUA-2.pdf EXHIBIT A: CRADA, WFO, PUA and NPUA Comparison Table, with suggested changes Class Patent Waiver...

126

Class_Waiver_NPUA-2.pdf | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

lassWaiverNPUA-2.pdf ClassWaiverNPUA-2.pdf More Documents & Publications EXHIBIT A: CRADA, WFO, PUA and NPUA Comparison Table, with suggested changes ClassWaiver-PUA.pdf Class...

127

Kinetics and modeling of mixture effects during complete catalytic oxidation of benzene and methyl tert-butyl ether  

SciTech Connect (OSTI)

The performance of a catalytic incinerator depends on the nature of the compounds being oxidized and cannot be predicted simply by knowing the performance of the incinerator with pure-component model compounds. Considering the importance of mixture effects, an attempt was made to develop a combined model to predict the conversion when benzene and methyl tert-butyl ether (MTBE) are simultaneously oxidized. Complete catalytic oxidation of benzene and MTBE, singly and in mixtures, was investigated over a platinum catalyst. No inhibition effects were seen with benzene, but MTBE conversion was distinctly inhibited by benzene. A Mars-van Krevelen rate model was used to explain the results. Model parameters were obtained from pure-component experiments and then incorporated into a multicomponent model without any adjustment or additional rate parameters. The multicomponent model was able to predict the conversion of benzene and MTBE oxidation in the binary mixture using the pure-component data without adjustable parameters.

Dangi, S.; Abraham, M.A. [Univ. of Tulsa, OK (United States). Dept. of Chemical Engineering] [Univ. of Tulsa, OK (United States). Dept. of Chemical Engineering

1997-06-01T23:59:59.000Z

128

(Expired) Nationwide Limited Public Interest Waiver for LED Lighting...  

Energy Savers [EERE]

(Expired) Nationwide Limited Public Interest Waiver for LED Lighting and HVAC Units: February 11, 2010 (Expired) Nationwide Limited Public Interest Waiver for LED Lighting and HVAC...

129

Class Patent Waiver W(C)2011-009  

Broader source: Energy.gov [DOE]

This is a request by WFO Class Waiver for a DOE waiver of domestic and foreign patent rights under agreement N/A.

130

The current status of the U.S. MTBE industry  

SciTech Connect (OSTI)

This paper reviews the status of the MTBE industry from its beginnings as a result of the Clean Air Act Amendments and the need for the use of oxygenates in non-attainment areas. During 1990--93 three world scale merchant plants were constructed and in 1994 two more were brought on stream. The paper tabulates reasons why MTBE gained the lion`s share of the oxygenates market. Finally the paper discusses the problems that now plague the industry and their causes.

Rose, G.M. [Global Octanes Corp., Houston, TX (United States)

1995-12-31T23:59:59.000Z

131

he increasing frequency of detection of the widely used gasoline additive methyl tert-  

E-Print Network [OSTI]

T he increasing frequency of detection of the widely used gasoline additive methyl tert- butyl, the September 15, 1999, Report of the Blue Ribbon Panel on Oxygenates in Gasoline (1) states that between 5 with large releases (e.g., LUFTs). Unprecedented growth in use Use of MTBE as a gasoline additive began

132

Reactant adsorption and its impact upon MTBE synthesis on zeolites  

SciTech Connect (OSTI)

Zeolites show interesting properties as catalysts for MTBE synthesis from methanol and isobutene such as a high selectivity to MTBE even at a low methanol/isobutene feed ratio. In order to explain this high selectivity, the adsorption behaviors of HY and HZSM-5 zeolites and their impact on activity and selectivity for MTBE synthesis were studied. Adsorption experiments, carried out under conditions similar to those used for reaction, showed that ca. 2.5 molecules of methanol were adsorbed per acid site on HZSM-5 and HY zeolites, whereas isobutene was found to form a 1:1 adsorption complex. The excess methanol adsorbed was found to be only weakly bonded, probably via hydrogen bonds. On a commercially used resin catalyst (Amberlyst-15) equal amounts of methanol and isobutene were adsorbed. The higher methanol uptake of the zeolites was paralleled by a higher selectivity to MTBE as compared to the resin catalyst. The increased adsorption of methanol on the zeolites was concluded to play a key role in suppressing the formation of by-products due to isobutene dimerization or oligomerization by decreasing the adsorption of isobutene on the active sites and thereby keeping these sites available for reaction. 40 refs., 5 figs., 3 tabs.

Kogelbauer, A.; Nikolopoulos, A.A.; Goodwin, J.G. Jr.; Marcelin, G. [Univ. of Pittsburgh, PA (United States)] [Univ. of Pittsburgh, PA (United States)

1995-03-01T23:59:59.000Z

133

New low energy process for MTBE and TAME  

SciTech Connect (OSTI)

Considered as new bulk petrochemicals of limited feedstocks MTBE (methyltertbutylether) and TAME (tertamylmethylether) need cheap and simple, minimum-cost production processes. The problems in optimizing the etherification are set by specifications for ether products and hydrocarbon raffinates. Working up reaction products from etherification processes containing hydrocarbons, methanol and ether to secure the pure main and side products is difficult because of azeotrope formation of methanol with ethers or hydrocarbons. At EC Erdolchemie GmbH, Cologne, a semicommercial unit with a capacity of 2,500 metric t/y has now been successfully operated for nearly one year producing high purity MTBE (> 99 wt.%) and a raffinate II with methanol content of < 0.05 wt.%. The TAME process has successfully been tested in a 3,000 kg/y TAME pilot plant for almost two years. Based on the operating experience, EC has prepared the engineering for a commercial multiproduct plant, including the production of 30,000 metric t/y MTBE, 15,000 metric t/y TAME and 6,000 metric t/y methylbutenes (TAME cracking product) in the first stage. EC has made application to the authorities for a construction permit. The process for MTBE and TAME will be licensed by EC Erdolchemie GmbH, Postfach 75 20 02, 5000 Cologne 71, West Germany or by Lurgi Kohle und Mineraloltechnik GmbH, Postfach 11 12 31, 6000 Frankfurt Main 2, West Germany.

Herwig, J.; Schleppinghoff, B.; Schulwitz, S.

1984-06-01T23:59:59.000Z

134

Cytotoxic and DNA-damaging effects of methyl tert-butyl ether and its metabolites on HL-60 cells in vitro  

SciTech Connect (OSTI)

Methyl tert-butyl ether (MTBE) is a widely used oxygenate in unleaded gasoline; however, few studies have been conducted on the toxicity of this compound. This study evaluates the cytotoxic and DNA-damaging effects of MTBE and its metabolites in a human haemopoietic cell line, HL-60. The metabolites of MTBE studied include tertiary butyl alcohol (TBA), {alpha}-hydroxyisobutyric acid (HIBA), and formaldehyde. Comet assay is used to assess DNA damage, and the cytotoxicity is investigated by lactate dehydrogenease (LDH) release. The results show no significant cytotoxic effects of MTBE, TBA, and HIBA over a concentration ranging from 1 to 30 mM. Formaldehyde, in contrast, causes a substantial LDH release at a concentration of 5 {mu}M. Hydrogen peroxide, a known oxidative agent, at concentrations ranging from 10 to 100 {mu}M, produces a significant dose-related increase in DNA damage, whereas a much higher concentration of MTBE (1 to 30 mM) is required to produce a similar observation. The genotoxic effects of TBA and HIBA appear to be identical to that of MTBE. Conversely, DNA damage is observed for formaldehyde at a relatively low concentration range (5 to 100 {mu}M). These findings suggest that MTBE and its metabolites, except formaldehyde, have relatively low cytotoxic and genotoxic effects. 16 refs., 4 figs.

Tang, G.H. [Xian Medical Univ. (China); Shen, Y.; Shen, H.M. [National Univ. of Singapore (Singapore)] [and others

1996-12-31T23:59:59.000Z

135

Ethanol Waivers: Needed or Irrelevant?  

E-Print Network [OSTI]

Ethanol Waivers: Needed or Irrelevant? JAMES M. GRIFFIN & RACHAEL DAHL The Mosbacher Institute VOLUME 3 | ISSUE 2 | 2012 2012 RELAXING THE ETHANOL MANDATE The severity of the drought of 2012 affecting for ethanol production, 6.72 BB for domestic food and feed and the remainder for exports (Figure 1). The USDA

Boas, Harold P.

136

E-Print Network 3.0 - aerobic mtbe biodegradation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

27 ACCEPTED BY WATER ENVIRONMENT RESEARCH ODOR AND VOC REMOVAL FROM WASTEWATER TREATMENT PLANT Summary: capable of MTBE biodegradation. 12;Effective treatment of a mixture...

137

KENTUCKY VETERAN DEPENDENT TUITION WAIVER Dear Student  

E-Print Network [OSTI]

KENTUCKY VETERAN DEPENDENT TUITION WAIVER Dear Student: As a recipient of a Kentucky Veteran Dependent Tuition Waiver (KRS 164.505 or .515) at the University of Kentucky, you are responsible the age of 26. Questions should be directed to the Kentucky Center for Veterans Affairs at (502) 595

MacAdam, Keith

138

Determination of Methyl tert-Butyl Ether and tert-Butyl Alcohol in Water by Solid-Phase Microextraction/Head Space Analysis in Comparison to EPA Method 5030/8260B  

SciTech Connect (OSTI)

Methyl tert-butyl ether (MTBE) is now one of the most common groundwater contaminants in the United States. Groundwater contaminated with MTBE is also likely to be contaminated with tert-butyl alcohol (TBA), because TBA is a component of commercial grade MTBE, TBA can also be used as a fuel oxygenate, and TBA is a biodegradation product of MTBE. In California, MTBE is subject to reporting at concentrations greater than 3 {micro}g/L. TBA is classified as a ''contaminant of current interest'' and has a drinking water action level of 12 {micro}g/L. In this paper, we describe the development and optimization of a simple, automated solid phase microextraction (SPME) method for the analysis of MTBE and TBA in water and demonstrate the applicability of this method for monitoring MTBE and TBA contamination in groundwater, drinking water, and surface water. In this method, the headspace (HS) of a water sample is extracted with a carboxen/polydimethylsiloxane SPME fiber, the MTBE and TBA are desorbed into a gas chromatograph (GC), and detected using mass spectrometry (MS). The method is optimized for the routine analysis of MTBE and TBA with a level of quantitation of 0.3 {micro}g/L and 4 {micro}g/L, respectively, in water. MTBE quantitation was linear for over two orders of concentration (0.3 {micro}g/L -80 {micro}g/L). TBA was found to be linear within the range of 4 {micro}g/L-7,900 {micro}g/L. The lower level of detection for MTBE is 0.03 {micro}g/L using this method. This SPME method using headspace extraction was found to be advantageous over SPME methods requiring immersion of the fiber into the water samples, because it prolonged the life of the fiber by up to 400 sample analyses. This is the first time headspace extraction SPME has been shown to be applicable to the measurement of both MTBE and TBA at concentrations below regulatory action levels. This method was compared with the certified EPA Method 5030/8260B (purge-and-trap/GC/MS) using split samples from laboratory bioreactors treating MTBE contaminated water and applied to environmental samples collected throughout the East Bay area of California. Results from the SPME-HS/GC/MS method were directly comparable to the EPA Method 5030/8260B. This method provides an simple, inexpensive, accurate, and sensitive alternative to EPA Method 5030/8260B for the analysis of MTBE and TBA in water samples.

Oh, Keun-Chan; Stringfellow, William T.

2003-10-02T23:59:59.000Z

139

The evolution of fuel: A dissertation on MTBE and elastomers  

SciTech Connect (OSTI)

This paper begins with a history of the development of the internal combustion engine and the need for a fuel octane booster that would also be non-polluting. The use of ethers as fuel additives cause a compatibility problem with valve sealing materials. The main purpose of this presentation is to address this compatibility problem. The paper makes specific recommendations for the author`s General Twin Seal, describing the seal components (slip seal, bonnet and lower plate O-rings, gland O-rings, bearing retainer O-rings, and pressure relief device seals) and which materials these components should be manufactured from to be compatible with the following fuel additives: toluene, MTBE, and various mixtures of toluene and MTBE.

Smith, G.M. [General Valve Co., Brookshire, TX (United States)

1995-12-31T23:59:59.000Z

140

Why methyl tert-butyl ether production by reactive distillation may yield multiple solutions  

SciTech Connect (OSTI)

This paper presents an explanation of why methyl tert-butyl ether (MTBE) production by reactive distillation may yield multiple solutions. Widely different composition profiles and conversions may, as already reported by Krishna and others, results with identical column specifications, depending on the initial estimates provided. A hypothesis yielding a qualitative understanding of this phenomenon has been developed. The inert n-butene plays a key role in the proposed explanation: As the reaction mixture is diluted with n-butene, the activity coefficient of methanol increases substantially and the temperature decreases. This dilution has a profound effect on the equilibrium conversion, enabling MTBE to escape from the reactive zone without decomposition. When methanol is fed below or in the lower part of the reactive zone of the column, the ``lifting capacity`` of the minimum boiling point MTBE-methanol azeotrope will also be important.

Hauan, S.; Hertzberg, T.; Lien, K.M. [Univ. of Trondheim (Norway)

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "waiver mtbe methyl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Exposure to methyl tert-butyl ether and benzene among service station attendants and operators  

SciTech Connect (OSTI)

Concerns for atmospheric pollution from auto exhaust have led to the blending of {open_quotes}oxygenates{close_quotes} with motor fuels. The most common oxygenate, methyl tert-butyl ether (MTBE) is currently required within several metropolitan areas (Denver and Phoenix) in the range of 12% of the motor fuel. Amendments to the Clean Air Act may expand this requirement to as many as 44 other areas of the United States in the near future. In consideration of the magnitude of potential uncontrolled exposures from its extensive use and a related concern involving the potential influence of MTBE blending on exposures to other constituents of gasoline (particularly benzene), an evaluation of exposures among service station attendants and operators was undertaken at the request, and in cooperation with, the American Petroleum Institute during the latter part of 1990. For application of the survey results to a broad audience, three categories or types of service stations were identified with regard to MTBE use and exposure potential: (a) service stations that do not use MTBE or use it only as an octane enhancer, (b) service stations with seasonal requirements to use 12-15% MTBE (the Denver, Colorado, and Phoenix, Arizona, metropolitan areas), and (c) service stations equipped with stage II (active) vapor recovery systems (several coastal areas, most notably Southern California). 4 refs., 4 tabs.

Hartle, R. [National Inst. for Occupational Safety and Health, Cincinnati, OH (United States)

1993-12-01T23:59:59.000Z

142

Reaction calorimetry study of the liquid-phase synthesis of tert-butyl methyl ether  

SciTech Connect (OSTI)

The liquid-phase addition of methanol to isobutene to give tert-butyl methyl ether (MTBE) on the ion-exchange resin Lewatit K2631 has been studied in a calorimetric reactor. Heat capacity of MTBE and enthalpy of the MTBE synthesis reaction in the temperature range 312--333 K have been determined. MTBE heat capacity in the liquid phase has been found to obey the equation c[sub P] (J/mol[center dot]K) = 472.34 [minus] 2.468(T/K) + 0.005071(T/K)[sup 2]. At 298 K the standard molar reaction enthalpy is [Delta]H[degree] = [minus]33.8 kJ/mol. A method to estimate apparent activation energies from heat flow rate in a given reaction has been developed and proved to be valid for the MTBE synthesis. Using this method, an apparent activation energy of 91.1--95.2 kJ/mol is calculated. A [minus]3.8 kJ/mol value has been found for the adsorption enthalpy of methanol on the ion-exchange resin Lewatit K2631 by a combination of reaction calorimetry and thermogravimetry. This allows the calculation of an activation energy on the gel phase of the resin of 91 kJ/mol.

Sola, L.; Pericas, M.A.; Cunill, F.; Iborra, M. (Univ. de Barcelona (Spain). Dept. d'Enginyeria Quimica)

1994-11-01T23:59:59.000Z

143

Pilot-scale evaluation of chemical oxidation for MTBE-contaminated soil  

SciTech Connect (OSTI)

The US Environmental Protection Agency (USEPA) has tentatively classified MTBE as a possible human carcinogen, thus further emphasizing the importance for study of fate, transport, and environmental effects of MTBE. The treatment of subsurface contaminants (e.g., MTBE) from leaking underground storage tank (LUST) sites presents many complex challenges. Many techniques have been employed for the remediation of contaminants in soil and groundwater at LUST sites. Under sponsorship of US EPA's National Risk Management Research Laboratory, IT Corporation has conducted evaluations of chemical oxidation of MTBE contaminated soil using Fenton's Reagent (hydrogen peroxide catalyzed by ferrous sulfate), simulating both ex-situ and in-situ soil remediation. Bench-scale ex-situ tests have shown up to 90% degradation of MTBE within 12 hours. Pilot-scale MTBE oxidation tests were conducted in a stainless paddle-type mixer with a 10 cubic foot mixing volume. The reactor was designed with a heavy duty mixer shaft assembly to homogenize soil and included provisions for contaminant and reagent addition, mixing, and sample acquisition. The tests were performed by placing 400 pounds of a synthetic soil matrix (consisting of a mixture of top soil, sand, gravel and clay) in the reactor, spiking with 20 ppm of MTBE, and mixing thoroughly. The variables evaluated in the pilot-scale tests included reaction time, amount of hydrogen peroxide, and amount of ferrous sulfate. After 8 hours of reaction, using 4 times the stoichiometric quantity of hydrogen peroxide and a 10:1 hydrogen peroxide: ferrous iron weight ratio, approximately 60% MTBE degradation was observed. When 10 times the stoichiometric quantity of hydrogen peroxide was used (with the same ratio of hydrogen peroxide to ferrous iron), 90% MTBE degradation was observed. When the same test was performed without any ferrous iron addition, 75% MTBE degradation was observed.

Rahman, M.; Schupp, D.A.; Krishnan, E.R.; Tafuri, A.N.; Chen, C.T.

1999-07-01T23:59:59.000Z

144

Treatment of methyl tert-butyl ether vapors in biotrickling filters. 1. Reactor startup, steady-state performance, and culture characteristics  

SciTech Connect (OSTI)

An aerobic microbial consortium able to biodegrade methyl tert-butyl ether (MTBE) was enriched in two waste air biotrickling filters after continuous operation for 6 months. After this acclimation phase, the two laboratory-scale biotrickling filters were able to degrade up to 50 g of MTBE per cubic meter of reactor per hour, a value comparable to other gasoline constituents. Such high performance could be sustained for at least 4--6 weeks. After the acclimation phase, the MTBE degrading biotrickling filters were characterized by their almost full conversion of MTBE to carbon dioxide and the absence of any degradation byproducts in either the gas or the liquid phase. They also exhibited a very high specific degradation activity per amount of biomass, and a low rate of biomass accumulation. An observed biomass yield of 0.1 g g{sup {minus}1} and a specific growth rate of 0.025 day{sup {minus}1} were determined for the biotrickling filter process culture. Further data on MTBE mass transfer and on the dynamic behavior of the biotrickling filter are presented in part 2 of this paper. Overall, the results demonstrate that MTBE can be effectively biodegraded under carefully controlled environmental conditions.

Fortin, N.Y.; Deshusses, M.A. [Univ. of California, Riverside, CA (United States). Dept. of Chemical and Environmental Engineering] [Univ. of California, Riverside, CA (United States). Dept. of Chemical and Environmental Engineering

1999-09-01T23:59:59.000Z

145

STATEMENT OF CONSIDERATIONS PETITION FOR ADVANCE WAIVER OF PATENT...  

Broader source: Energy.gov (indexed) [DOE]

of the waiver petition and in view of the objectives and considerations set forth in 10 CFR 784, all of which have been considered, it is recommended that the requested waiver be...

146

STATEMENT OF CONSIDERATIONS REQUEST FOR ADVANCE WAIVER OF PATENT...  

Broader source: Energy.gov (indexed) [DOE]

of the waiver petition and in view of the objectives and considerations set forth in 10 CFR 784, all of which have been considered, it is recommended that the requested waiver be...

147

STATEMENT OF CONSIDERATIONS REQUEST FOR ADVANCE WAIVER OF PATENT...  

Broader source: Energy.gov (indexed) [DOE]

of the waiver petition and in view of the objectives and considerations set forth in 10 CFR 784, all of which have been conSidered, it is recommended that the requested waiver be...

148

STATEMENT OF CONSIDERATIONS REQUEST BY INVENTOR FOR THE WAIVER...  

Broader source: Energy.gov (indexed) [DOE]

of the Waiver Petition and in view of the objectives and considerations set forth in 10 CFR 784, all of which have been considered, it is recommended that the requested waiver be...

149

STATEMENT OF CONSIDERATIONS ADVANCE WAIVER OF PATENT RIGHTS TO...  

Broader source: Energy.gov (indexed) [DOE]

been determined that this advance waiver of patent rights will best -2- WAIVER ACTION - ABSTRACT W(A)-06-020 (CH-1376) REQUESTOR CONTRACT SCOPE OF WORK RATIONALE FOR DECISION...

150

Patent Waivers Overview | Department of Energy  

Energy Savers [EERE]

Advance, Identified, and Class patent waivers. Detailed Information As stated in 10 CFR 784.3 - Policy, Section 6 of Public Law 96-517 (the Bayh-Dole patent and trademark...

151

Advance Patent Waiver W(A)2010-042 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Waiver W(A)2010-042 More Documents & Publications Advance Patent Waiver W(A)2005-023 WA02055PRAXAIRWaiverofDomesticandForeignPatentRigh.pdf ClassWaiverWC-2003-001.pdf...

152

Advance Patent Waiver W(A)2012-003 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Waiver W(A)2012-003 More Documents & Publications Advance Patent Waiver W(A)2013-019 Class Patent Waiver W(C)2012-003 WA02048EATONCORPORATIONWaviverofPatentRightsUnderA...

153

New processes to recovery methanol and remove oxygenates from Valero MTBE unit  

SciTech Connect (OSTI)

The refiner today has to evaluate every available option to increase octane in the gasoline pool to make up for the loss in octane created by lead phase down. Production of MTBE is one of the most attractive options. MTBE is produced by selectivity reacting isobutylene with methanol. Valero Refining's refinery at Corpus Christie, Texas (formerly Saber Refining) is one of the most modern refineries built in the last decade to upgrade resids. As part of the gasoline upgrading Valero had built a Butamer Unit to convert normal butane to isobutane upstream of their HF Alkylation Unit. In 1984 as an ongoing optimization of its operations, Valero Refining evaluated various processes to enable it to increase the octane output, and decided to build an MTBE unit. Valero selected the MTBE process licensed by Arco Technology, Inc. and contracted with Jacobs Engineering Group, Inc., Houston, Texas to provide detailed engineering and procurement services.

Hillen, P.; Clemmons, J.

1987-01-01T23:59:59.000Z

154

Traitement biologique in situ au sein d'un aquifre de polluants de type ETBE et MTBE  

E-Print Network [OSTI]

Traitement biologique in situ au sein d'un aquifère de polluants de type ETBE et MTBE Yves Benoit Villeurbanne (6) CNRS, UMR5557, Ecologie Microbienne ­ 69100 Villeurbanne Résumé Le MtBE et l' EtBE sont des : Traçabilité, Innocuité, Efficacité: Application aux polluants pétroliers type MTBE, ETBE), financé par le pôle

Paris-Sud XI, Université de

155

WA_98_016_ABB_POWER_T_AND_D_COMPANY_Waiver_of_Domestic_and_F...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Advance Patent Waiver W(A)2011-046 Advance Patent Waiver W(A)2009-016 WA96016AIRPRODUCTSANDCHEMICALSINCWaiverofDomestic...

156

WA_04_085_THE_BOEING_COMPANY_Waiver_of_domestic_and_Foreign_...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Advance Patent Waiver W(A)2010-018 Advance Patent Waiver W(A)2007-012 WA99017AIRPRODUCTSANDCHEMICALSWaiverofDomesticand...

157

WC_2000_003_CLASS_WAIVER_FOR_BWXT_UNDER_A_MANAGEMENT_AND_OPE...  

Broader source: Energy.gov (indexed) [DOE]

NDERAMANAGEMENTANDOPE.pdf More Documents & Publications ClassWaiverWC-2000-003.pdf WC2000004CLASSWAIVERMadeinthePerformanceofCRADAby.pdf ClassWaiverWC-2000-004...

158

Automobile proximity and indoor residential concentrations of BTEX and MTBE  

SciTech Connect (OSTI)

Attached garages have been identified as important sources of indoor residential air pollution. However, the literature lacks information on how the proximity of cars to the living area affects indoor concentrations of gasoline-related compounds, and the origin of these pollutants. We analyzed data from the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study and evaluated 114 residences with cars in an attached garage, detached garage or carport, or without cars. Results indicate that homes with cars in attached garages were affected the most. Concentrations in homes with cars in detached garages and residences without cars were similar. The contribution from gasoline-related sources to indoor benzene and MTBE concentrations appeared to be dominated by car exhaust, or a combination of tailpipe and gasoline vapor emissions. Residing in a home with an attached garage could lead to benzene exposures ten times higher than exposures from commuting in heavy traffic.

Corsi, Dr. Richard [University of Texas, Austin; Morandi, Dr. Maria [University of Texas Health Science Center, Houston; Siegel, Dr. Jeffrey [University of Texas, Austin; Hun, Diana E [ORNL

2011-01-01T23:59:59.000Z

159

Whole-Genome Analysis of Methyl tert-Butyl Ether-Degrading Beta-Proteobacterium Methylibium petroleiphilum PM1  

E-Print Network [OSTI]

D. J. Slomczynski. 2003. BTEX/MTBE bioremediation: BionetsScow, and L. Alvarez-Cohen. MTBE and benzene biodegradationinteractions in BTEX and MTBE mixtures by an MTBE-degrading

2007-01-01T23:59:59.000Z

160

Whole-genorne analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1  

SciTech Connect (OSTI)

Methylibium petroleiphilum PM1 is a methylotroph distinguished by its ability to completely metabolize the fuel oxygenate methyl tert-butyl ether (MTBE). Strain PM1 also degrades aromatic (benzene, toluene, and xylene) and straight-chain (C, to C,,) hydrocarbons present in petroleum products. Whole-genome analysis of PM1 revealed an similar to 4-Mb circular chromosome and an similar to 600-kb megaplasmid, containing 3,831 and 646 genes, respectively. Aromatic hydrocarbon and alkane degradation, metal resistance, and methylotrophy are encoded on the chromosome. The megaplasmid contains an unusual t-RNA island, numerous insertion sequences, and large repeated elements, including a 40-kb region also present on the chromosome and a 29-kb tandem repeat encoding phosphonate transport and cobalamin biosynthesis. The megaplasmid also codes for alkane degradation and was shown to play an essential role in MTBE degradation through plasmid-curing experiments. Discrepancies between the insertion sequence element distribution patterns, the distributions of best BLASTP hits among major phylogenetic groups, and the G+C contents of the chromosome (69.2%) and plasmid (66%), together with comparative genome hybridization experiments, suggest that the plasmid was recently acquired and apparently carries the genetic information responsible for PM1's ability to degrade MTBE. Comparative genomic hybridization analysis with two PM1-like MTBE-degrading environmental isolates (similar to 99% identical 16S rRNA gene sequences) showed that the plasmid was highly conserved (ca. 99% identical), whereas the chromosomes were too diverse to conduct resequencing analysis. PM1's genome sequence provides a foundation for investigating MTBE biodegradation and exploring the genetic regulation of multiple biodegradation pathways in M. petroleiphilum and other MTBE-degrading beta-proteobacteria.

Kane, Staci R. [Lawrence Livermore National Laboratory (LLNL); Chakicherla, Anu Y. [Lawrence Livermore National Laboratory (LLNL); Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Schmidt, Radomir [University of California, Davis; Shin, M [U.S. Department of Energy, Joint Genome Institute; Legler, Tina C. [Lawrence Livermore National Laboratory (LLNL); Scow, Kate M. [University of California, Davis; Larimer, Frank W [ORNL; Lucas, Susan [Joint Genome Institute, Walnut Creek, California; Richardson, P M [U.S. Department of Energy, Joint Genome Institute; Hristova, Krassimira R. [University of California, Davis

2007-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "waiver mtbe methyl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

One multivariable controller increased capacity of an Oleflex{trademark}/MTBE complex  

SciTech Connect (OSTI)

Capacity increased by more than 4.6% when one dynamic matrix controller began operating in Valero Refining Company`s MTBE production complex in Corpus Christi, Texas. This was on a plant that was already running well above design capacity due to process changes previously made on the plant. A single controller was developed to cover an Oleflex{trademark} isobutane dehydrogenation unit and an MTBe reaction and fractionation plant with the intermediate isobutylene surge drum. The overall benefit is realized by a comprehensive constrained multivariable predictive controller which properly handles all sets of limits experienced by the complex, whether limited by the front-end Oleflex{trademark} or back-end MTBE unit. The controller has 20 manipulated, 6 disturbance and 44 controlled variables, and covers widely varying dynamics with settling times ranging from twenty minutes to six hours. The controller executes each minute with a six hour time horizon. A unique achievement is intelligent handling of the surge drum level by the controller for higher average daily capacity of the complex as a whole. The Oleflex{trademark} often operates at simultaneous limits on reactor effluent compressor capacity, cold box temperature and hydrogen/hydrocarbon ratio and the MTBE at impurity in butene column overhead as well as impurity in MTBE product.

Robertson, D.; Peterson, T.J.; O`Connor, D. [Dynamic Matrix Control Corp., Houston, TX (United States); Adams, V.; Payne, D. [Valero Refining Co., Corpus Christi, TX (United States)

1996-12-01T23:59:59.000Z

162

Relationship between MTBE-blended gasoline properties and warm-up driveability  

SciTech Connect (OSTI)

The relationship between MBE-blended gasoline properties and warm-up driveability is investigated by focusing on the transient combustion air-fuel ratio that strongly relates to the combustion state of the engine. As a result, although warm-up driveability of MTBE-free gasoline has a high correlation with 50% distillation temperature (T50) and a high correlation with 100 C distillation volume (E100), the correlation is found to be low when blended with MTBE. Various formulas that improve correlation with peak excess air ratio ({lambda}) by correcting T50 and E100 for the amount of MTBE blended are examined. The formula for which the highest determination coefficient is obtained is proposed as a new driveability index (DI) that can also be applied to MTBE-blended gasoline. In addition, the effect on driveability by gasoline base materials using this new DI also is investigated. The results indicate that the new DI worsen when heavy reformate containing large amounts of aromatics or MTBE, an oxygen-containing compound, is used for the octane improver, leaving the balance of the volatility out of consideration.

Suzawa, Takumi; Yamaguchi, Kazunori; Kashiwabara, Kimito [Mitsubishi Motors Corp., Tokyo (Japan); Fujisawa, Norihiro; Matsubara, Michiro

1995-12-31T23:59:59.000Z

163

Advance Patent Waiver W(A)2011-052  

Broader source: Energy.gov [DOE]

This is a request by 3M COMPANY for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0000456.

164

Advance Patent Waiver W(A)2011-029  

Broader source: Energy.gov [DOE]

This is a request by W. R. GRACE COMPANY for a DOE waiver of domestic and foreign patent rights under agreement DE-FOA-0000324.

165

Advance Patent Waiver W(A)2013-014  

Broader source: Energy.gov [DOE]

This is a request by W.R GRACE AND CO for a DOE waiver of domestic and foreign patent rights under agreement DE- EE0005991.

166

Advance Patent Waiver W(A)2011-008  

Broader source: Energy.gov [DOE]

This is a request by CERAMATEC, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0000395.

167

Title: Advance Patent Waiver W(A)2011-041  

Broader source: Energy.gov [DOE]

This is a request by GENERAL MOTOR for a DOE waiver of domestic and foreign patent rights under agreement DE-AC36-08GO28308.

168

Identified Patent Waiver W(I)2011-012  

Broader source: Energy.gov [DOE]

This is a request by ALSTOM POWER, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-01NT41223.

169

Patent Waiver W(I)2011-013  

Broader source: Energy.gov [DOE]

This is a request by ALSTOM POWER, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-01NT41223.

170

Identified Patent Waiver W(I)2011-011  

Broader source: Energy.gov [DOE]

This is a request by ALSTOM POWER, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-01NT41223.

171

Advance Patent Waiver W(A)2010-049  

Broader source: Energy.gov [DOE]

This is a request by PRAXAIR, INC for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-07NT43088

172

Advance Patent Waiver W(A)2010-019  

Broader source: Energy.gov [DOE]

This is a request by PRAXAIR, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FC36-08GO18063

173

Identified Patent Waiver W(I)2008-011  

Broader source: Energy.gov [DOE]

This is a request by ELTRON RESEARCH, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-05NT42469

174

Advance Patent Waiver W(A)2009-020  

Broader source: Energy.gov [DOE]

This is a request by PRAXAIR, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-NT0005341

175

Advance Patent Waiver W(A)2008-032  

Broader source: Energy.gov [DOE]

This is a request by CUMMINS, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-07NT43279

176

Advance Patent Waiver W(A)2006-003  

Broader source: Energy.gov [DOE]

This is a request by CUMMINS, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-05NT42418

177

Advance Patent Waiver W(A)2012-004  

Broader source: Energy.gov [DOE]

This is a request by GENERAL ELECTRIC GLOBAL REARCH for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-FO0007514.

178

Identified Patent Waiver W(I)2008-006  

Broader source: Energy.gov [DOE]

This is a request by CLAGHORN, RONALD for a DOE waiver of domestic and foreign patent rights under agreement DE-AC27-01RV14136

179

Advance Patent Waiver W(A)2011-070  

Broader source: Energy.gov [DOE]

This is a request by CASCADE ENGINEERING INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0005440.

180

Advance Patent Waiver W(A)2008-005  

Broader source: Energy.gov [DOE]

This is a request by AMERICAN SUPERCONDUCTOR CORPORATION for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-07NT43243

Note: This page contains sample records for the topic "waiver mtbe methyl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Advance Patent Waiver W(A)2008-043  

Broader source: Energy.gov [DOE]

This is a request by AMERICAN SUPERCONDUCTOR CORPORATION for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-07NT43240

182

Advance Patent Waiver W(A)2012-016  

Broader source: Energy.gov [DOE]

This is a request by LINDE, INC. for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-FE0007453.

183

Advance Patent Waiver W(A)2006-005  

Broader source: Energy.gov [DOE]

This is a request by AIR PRODUCTS & CHEMICALS for a DOE waiver of domestic and foreign patent rights under agreement DE-FG36-05GO85026

184

Advance Patent Waiver W(A)2011-028  

Broader source: Energy.gov [DOE]

This is a request by PPG INDUSTRIES, INC for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0004736.

185

Class Patent Waiver W(C)2009-010  

Broader source: Energy.gov [DOE]

This is a request by INDUSTRIAL PARTNERSHIP PROGRAM for a DOE waiver of domestic and foreign patent rights under agreement DE-FOA-0000113

186

Class Patent Waiver W(C)2009-011  

Broader source: Energy.gov [DOE]

This is a request by ENHANCED GEOTHERMAL SYSTEMS COMPONENT RESEARCH AND DEVELOPMENT for a DOE waiver of domestic and foreign patent rights under agreement DE-FOA-00000075

187

Advance Patent Waiver W(A)2009-064  

Broader source: Energy.gov [DOE]

This is a request by ROLLS ROYCE FUEL SYSTEMS for a DOE waiver of domestic and foreign patent rights under agreement DE-FE0000303

188

Advance Patent Waiver W(A)2011-002  

Broader source: Energy.gov [DOE]

This is a request by APPLIED MATERIALS, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0003838.

189

Identified Patent Waiver W(I)2010-008  

Broader source: Energy.gov [DOE]

This is a request by BENEQ OY for a DOE waiver of domestic and foreign patent rights under agreement DE-AC36-08GO28308

190

Advance Patent Waiver W(A)2010-024  

Broader source: Energy.gov [DOE]

This is a request by EASTMAN CHEMICAL COMPANY for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-05NT42469

191

Advance Patent Waiver W(A)2009-048  

Broader source: Energy.gov [DOE]

This is a request by GENERAL ELECTRIC COMPANY for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-08NT0005310

192

Advance Patent Waiver W(A)2008-033  

Broader source: Energy.gov [DOE]

This is a request by Whitefox Technologies, Limited for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-07NT43090

193

Advance Patent Waiver W(A)2011-024  

Broader source: Energy.gov [DOE]

This is a request by SCHWEITZER ENGINEERING LAB INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-OE0000538.

194

Advance Patent Waiver W(A)2011-036  

Broader source: Energy.gov [DOE]

This is a request by HONEYWELL LABORATORIES for a DOE waiver of domestic and foreign patent rights under agreement DE-OE0000544.

195

Advance Patent Waiver W(A)2011-040  

Broader source: Energy.gov [DOE]

This is a request by SYPRIS ELECTRONICS for a DOE waiver of domestic and foreign patent rights under agreement DE-OE0000543.

196

Advance Patent Waiver W(A)2011-046  

Broader source: Energy.gov [DOE]

This is a request by ALSTOM GRID INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-OE0000551.

197

Advance Patent Waiver W(A)2011-020  

Broader source: Energy.gov [DOE]

This is a request by CUMMINS, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0003403.

198

Advance Patent Waiver W(A)2012-027  

Broader source: Energy.gov [DOE]

This is a request by DAIMIER TRUCKS NORTH AMERICA for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-EE0003348.

199

Advance Patent Waiver W(A)2011-022  

Broader source: Energy.gov [DOE]

This is a request by GENERAL ELECTRICC CO for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0003839.

200

Advance Patent Waiver W(A)2007-014  

Broader source: Energy.gov [DOE]

This is a request by DONALDSON COMPANY for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-06NT42861

Note: This page contains sample records for the topic "waiver mtbe methyl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Advance Patent Waiver W(A)2011-023  

Broader source: Energy.gov [DOE]

This is a request by SCHWEITZER ENGINEERING LAB INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-OE0000537.

202

Advance Patent Waiver W(A)2011-018  

Broader source: Energy.gov [DOE]

This is a request by ESOLAR for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0003595.

203

Advance Patent Waiver W(A)2012-013  

Broader source: Energy.gov [DOE]

This is a request by BAKER HUGHES OILFIELD OPERATIONS, INC. for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-EE0005505.

204

Advance Patent Waiver W(A)2008-027  

Broader source: Energy.gov [DOE]

This is a request by ALCOA, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FC36-08GO180278

205

Advance Patent Waiver W(A)2009-004  

Broader source: Energy.gov [DOE]

This is a request by SCHLUMBERGER TECHNOLOGY CORP for a DOE waiver of domestic and foreign patent rights under agreement DE-FG36-08GO18182

206

Advance Patent Waiver W(A)2009-069  

Broader source: Energy.gov [DOE]

This is a request by ENVIRON INTERNATIOAL CORPORATION for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0000069

207

Advance Patent Waiver W(A)2011-026  

Broader source: Energy.gov [DOE]

This is a request by US SYNTHETIC CORPORATION for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0003633.

208

Advance Patent Waiver W(A)2008-026  

Broader source: Energy.gov [DOE]

This is a request by Siemens Power Generation for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-98FT40343

209

Advance Patent Waiver W(A)2007-022  

Broader source: Energy.gov [DOE]

This is a request by SIEMENS for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-02NT41247

210

Advance Patent Waiver W(A)2005-054  

Broader source: Energy.gov [DOE]

This is a request by SIEMEN for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-05NT42444.

211

Advance Patent Waiver W(A)2012-028  

Broader source: Energy.gov [DOE]

This is a request by SIEMENS ENERGY, INC. for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-FE0005666.

212

Advance Patent Waiver W(A)2011-032  

Broader source: Energy.gov [DOE]

This is a request by SIEMENS ENERGY, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FE0003714.

213

STATEMENT OF CONSIDERATIONS PETITION FOR ADVANCE WAIVER OF PATENT...  

Broader source: Energy.gov (indexed) [DOE]

in its waiver petition, Petitioner has significant experience in the area of silicon carbide based amplifiers. In fact, such amplifiers were first demonstrated over 10 years ago...

214

Advance Patent Waiver W(A)2005-049  

Broader source: Energy.gov [DOE]

This is a request by AMERICAN AIR LIQUIDE for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-02NT41586.

215

Advance Patent Waiver W(A)2008-028  

Broader source: Energy.gov [DOE]

This is a request by INEOS USA LLC for a DOE waiver of domestic and foreign patent rights under agreement DE-FG36-04GO14315

216

Advance Patent Waiver W(A)2010-026  

Broader source: Energy.gov [DOE]

This is a request by INEOS USA LLC for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0002883

217

Advance Patent Waiver W(A)2008-035  

Broader source: Energy.gov [DOE]

This is a request by POET RESEARCH, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FC36-08GO88033

218

Advance Patent Waiver W(A)2010-003  

Broader source: Energy.gov [DOE]

This is a request by GENERAL ELECTRICC GLOBAL RESEARCH for a DOE waiver of domestic and foreign patent rights under agreement DE-FE0000784

219

Advance Patent Waiver W(A)2010-062  

Broader source: Energy.gov [DOE]

This is a request by PARKER HANNIFIN CORPORATION for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0000296

220

Advance Patent Waiver W(A)2013-005  

Broader source: Energy.gov [DOE]

This is a request by STATOIL WIND US LLC for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0005988.

Note: This page contains sample records for the topic "waiver mtbe methyl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Class Patent Waiver W(C)2010-005  

Broader source: Energy.gov [DOE]

This is a request by REGIONAL INNOVATIVE CLUSTER INITIATIVE for a DOE waiver of domestic and foreign patent rights under agreement E-RIC FOA

222

STATEMENT OF CONSIDERATIONS REQUEST FOR ADVANCE WAIVER OF PATENT...  

Broader source: Energy.gov (indexed) [DOE]

waiver petition, UTC's purpose will be to characterize polymer electrolyte membrane (PEM) fuel cell durability and performance under freezing conditions in order to gain an...

223

Advance Patent Waiver W(A)2011-049  

Broader source: Energy.gov [DOE]

This is a request by DOW CHEMICAL COMPANY for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0003916.

224

Advance Patent Waiver W(A)2012-032  

Broader source: Energy.gov [DOE]

This is a request by EATON CORPORATION for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-EE0005665.

225

Advance Patent Waiver W(A)2008-046  

Broader source: Energy.gov [DOE]

This is a request by EATON CORPORATION for a DOE waiver of domestic and foreign patent rights under agreement DE-FG36-08GO18131

226

Advance Patent Waiver W(A)2007-005  

Broader source: Energy.gov [DOE]

This is a request by EATON CORPORATION for a DOE waiver of domestic and foreign patent rights under agreement DE-FG36-06GO16054

227

Advance Patent Waiver W(A)2011-030  

Broader source: Energy.gov [DOE]

This is a request by EATON CORPORATION for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0003911.

228

Advance Patent Waiver W(A)2012-025  

Broader source: Energy.gov [DOE]

This is a request by EATON CORPORATION for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-OE0000592.

229

Advance Patent Waiver W(A)2011-065  

Broader source: Energy.gov [DOE]

This is a request by OWENS CORNING for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0005338.

230

Advance Patent Waiver W(A)2010-012  

Broader source: Energy.gov [DOE]

This is a request by CRAY, INC. for a DOE waiver of domestic and foreign patent rights under agreement B580786

231

Advance Patent Waiver W(A)2005-051  

Broader source: Energy.gov [DOE]

This is a request by SOUTHERN COMPANY SERVICE for a DOE waiver of domestic and foreign patent rights under agreement DE-FC02-05CH11327.

232

Advance Patent Waiver W(A)2011-058  

Broader source: Energy.gov [DOE]

This is a request by GENERAL ELECTRIC CO. for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0005143.

233

Advance Patent Waiver W(A)2008-031  

Broader source: Energy.gov [DOE]

This is a request by Novozymes North America for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-07NT43084

234

Advance Patent Waiver W(A)2008-042  

Broader source: Energy.gov [DOE]

This is a request by Novozymes Inc. for a DOE waiver of domestic and foreign patent rights under agreement DE-FC36-0BG01BOBO

235

Advance Patent Waiver W(A)2012-002  

Broader source: Energy.gov [DOE]

This is a request by NOVOZYMES NORTH AMERICA, INC. for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-FE0007741.

236

Advance Patent Waiver W(A)2012-024  

Broader source: Energy.gov [DOE]

This is a request by SIEMENS ENERGY, INC. for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-EE0005493.

237

Class Patent Waiver W(C)2009-017  

Broader source: Energy.gov [DOE]

This is a request by GEOTHERMAL TECHNOLOGIES PROGRAM for a DOE waiver of domestic and foreign patent rights under agreement DE-FOA-0000116

238

Class Patent Waiver W(C)2009-007  

Broader source: Energy.gov [DOE]

This is a request by HIGH PENETRATION SOLAR DEPLOYMENT for a DOE waiver of domestic and foreign patent rights under agreement DE-FOA-0000085

239

Identified Patent Waiver W(I)2008-008  

Broader source: Energy.gov [DOE]

This is a request by SANDIA CORPORATION for a DOE waiver of domestic and foreign patent rights under agreement DE-AC04-94AL85000

240

Advance Patent Waiver W(A)2005-004  

Broader source: Energy.gov [DOE]

This is a request by ALSTO for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-03NT41986.

Note: This page contains sample records for the topic "waiver mtbe methyl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Advance Patent Waiver W(A)2011-048  

Broader source: Energy.gov [DOE]

This is a request by ADA-ES for a DOE waiver of domestic and foreign patent rights under agreement DE-FE0004343.

242

Advance Patent Waiver W(A)2008-013  

Broader source: Energy.gov [DOE]

This is a request by SANYO ELECTRIC COMPANY for a DOE waiver of domestic and foreign patent rights under agreement DE-FC36-07GO17050

243

Advance Patent Waiver W(A)2005-033  

Broader source: Energy.gov [DOE]

This is a request by EASTMAN CHEMICAL COMPANY for a DOE waiver of domestic and foreign patent rights under agreement DE-AC26-99NT40675.

244

Advance Patent Waiver W(A)2013-019  

Broader source: Energy.gov [DOE]

This is a request by CREE, INC. for a DOE waiver of domestic and foreign patent rights under agreement NGB-3-23028-01.

245

Advance Patent Waiver W(A)2011-050  

Broader source: Energy.gov [DOE]

This is a request by EMERSON ELECTRIC for a DOE waiver of domestic and foreign patent rights under agreement DE-FE0004000.

246

Identified Patent Waiver W(I)2011-009  

Broader source: Energy.gov [DOE]

This is a request by SINTERED POLYCRYSTALLINE for a DOE waiver of domestic and foreign patent rights under agreement DE-AC05-00OR22725.

247

Identified Patent Waiver W(I)2011-010  

Broader source: Energy.gov [DOE]

This is a request by THERMALLY CONDUCTIVE for a DOE waiver of domestic and foreign patent rights under agreement DE-AC05-OO0R22725.

248

Advance Patent Waiver W(A)2007-021  

Broader source: Energy.gov [DOE]

This is a request by SUN POWER CORPORATION for a DOE waiver of domestic and foreign patent rights under agreement DE-PS36-06GO96034

249

Advance Patent Waiver W(A)2011-071  

Broader source: Energy.gov [DOE]

This is a request by THE DOW CHEMICAL COMPANY for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0005434.

250

Advance Patent Waiver W(A)2011-059  

Broader source: Energy.gov [DOE]

This is a request by CARLISLE CONSTRUCTION MATERIALS, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0005435.

251

Advance Patent Waiver W(A)2008-020  

Broader source: Energy.gov [DOE]

This is a request by GE GLOBAL RESEARCH for a DOE waiver of domestic and foreign patent rights under agreement DE-FC36-07GO17045

252

Advance Patent Waiver W(A)2011-035  

Broader source: Energy.gov [DOE]

This is a request by 3M COMPANY for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0004739.

253

Identified Patent Waiver W(I)2008-009  

Broader source: Energy.gov [DOE]

This is a request by SABIC INNOVATIVE PLASTICS for a DOE waiver of domestic and foreign patent rights under agreement DE-FC36-03GO13000

254

REQUEST BY ASEC MANUFACTURING COMPANY FOR AN ADVANCE WAIVER OF...  

Broader source: Energy.gov (indexed) [DOE]

of the inventions made under the subsubcontract. W(A)-96-014 ORO-633 WAIVER ACTION ABSTRACT REQUESTOR CONTRACT SCOPE OF WORK RATIONALE FOR DECISION DISPOSITION ASEC...

255

Identified Patent Waiver W(I)2011-003  

Broader source: Energy.gov [DOE]

This is a request by RESONANT CAVITY APPARATUS for a DOE waiver of domestic and foreign patent rights under agreement DE-AC04-94AL85000.

256

Advance Patent Waiver W(A)2012-019  

Broader source: Energy.gov [DOE]

This is a request by GE ENERGY for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-FE0007902.

257

Identified Patent Waiver W(I)2008-001  

Broader source: Energy.gov [DOE]

This is a request by IMAGINEERING TECHNOLOGIES INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-AC07-94ID13223

258

Advance Patent Waiver W(A)2008-021  

Broader source: Energy.gov [DOE]

This is a request by CARGILL, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FC36-07GO17055

259

REQUEST BY CUMMINS ENGINE COMPANY, INC., FOR AN ADVANCE WAIVER  

Broader source: Energy.gov (indexed) [DOE]

CUMMINS ENGINE COMPANY, INC., FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER DEPARTMENT OF ENERGY COOPERATIVE AGREEMENT...

260

REQUEST BY CUMMINS ENGINE COMPANY, INC., FOR AN ADVANCE WAIVER...  

Broader source: Energy.gov (indexed) [DOE]

CUMMINS ENGINE COMPANY, INC., FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER DEPARTMENT OF ENERGY GRANT NO....

Note: This page contains sample records for the topic "waiver mtbe methyl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Advance Patent Waiver W(A)2012-005  

Broader source: Energy.gov [DOE]

This is a request by PHILIPS LUMILEDS LIGHTING, LLC for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-EE0005099.

262

Advance Patent Waiver W(A)2013-018  

Broader source: Energy.gov [DOE]

This is a request by General Motors, LLC for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0006082.

263

Advance Patent Waiver W(A)2012-029  

Broader source: Energy.gov [DOE]

This is a request by ALCOA COMMERICAL WINDOWS, LLC for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-EE0004012.

264

Advance Patent Waiver W(A)2012-020  

Broader source: Energy.gov [DOE]

This is a request by CLIPPER WINDPOWER LLC for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-EE0005141.

265

Identified Patent Waiver W(I)2011-006  

Broader source: Energy.gov [DOE]

This is a request by SANDIA NATIONAL LABORATORY for a DOE waiver of domestic and foreign patent rights under agreement DE-AC04-95AL85000.

266

Advance Patent Waiver W(A)2012-033  

Broader source: Energy.gov [DOE]

This is a request by GE-GLOBAL RESEARCH for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-OE000593.

267

Advance Patent Waiver W(A)2010-055  

Broader source: Energy.gov [DOE]

This is a request by SUN POWER CORPORATIO for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0002066

268

Advance Patent Waiver W(A)2012-009  

Broader source: Energy.gov [DOE]

This is a request by AE SOLAR for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-EE0005340.

269

Advance Patent Waiver W(A)2011-001  

Broader source: Energy.gov [DOE]

This is a request by PRAXAIR, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FE0004908.

270

Advance Patent Waiver W(A)2013-022  

Broader source: Energy.gov [DOE]

This is a request by 3M COMPANY for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0005795.

271

Advance Patent Waiver W(A)2012-030  

Broader source: Energy.gov [DOE]

This is a request by SRI INTERNATIONAL for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-FE0000896.

272

Advance Patent Waiver W(A)2013-031  

Broader source: Energy.gov [DOE]

This is a request by WESTINGHOUSE ELECTRIC COMPANY for a DOE waiver of domestic and foreign patent rights under agreement DE-NE0000566.

273

Advance Patent Waiver W(A)2012-022  

Broader source: Energy.gov [DOE]

This is a request by FORD MOTOR COMPANY for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-FOA-0000421.

274

Advance Patent Waiver W(A)2013-003  

Broader source: Energy.gov [DOE]

This is a request by UNITED TECHNOLOGIES CORPORATION for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0006108.

275

Advance Patent Waiver W(A)2010-053  

Broader source: Energy.gov [DOE]

This is a request by PPG INDUSTRIESS, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0003586

276

Identified Patent Waiver W(I)2010-007  

Broader source: Energy.gov [DOE]

This is a request by HONEYWELL INTERNATIONAL, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-AC04-94AL85000

277

Advance Patent Waiver W(A)2011-057  

Broader source: Energy.gov [DOE]

This is a request by 3M COMPANY for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0003837.

278

Advance Patent Waiver W(A)2011-061  

Broader source: Energy.gov [DOE]

This is a request by ABENGOA SOLAR INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FC36-08GO18037.

279

Advance Patent Waiver W(A)2011-063  

Broader source: Energy.gov [DOE]

This is a request by ABENGOA SOLAR INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FC36-08GO18156.

280

Advance Patent Waiver W(A)2013-006  

Broader source: Energy.gov [DOE]

This is a request by PRINCIPLE POWER, INC for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0005987.

Note: This page contains sample records for the topic "waiver mtbe methyl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Advance Patent Waiver W(A)2009-036  

Broader source: Energy.gov [DOE]

This is a request by GENERAL ELECTRIC COMPANY for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-08NT01579

282

Advance Patent Waiver W(A)2012-011  

Broader source: Energy.gov [DOE]

This is a request by RAYMOND TINNERMAN MANUFACTURING INC. for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-EE0005438.

283

Advance Patent Waiver W(A)2013-027  

Broader source: Energy.gov [DOE]

This is a request by ELECTRICORE INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0005968

284

Advance Patent Waiver W(A)2013-015  

Broader source: Energy.gov [DOE]

This is a request by Caterpillar Inc for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0005980.

285

Advance Patent Waiver W(A)2013-007  

Broader source: Energy.gov [DOE]

This is a request by CA TCHLIGHT ENERGY, LLC for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0005974.

286

Advance Patent Waiver W(A)2013-008  

Broader source: Energy.gov [DOE]

This is a request by GENERAL MOTORS LLC for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0005969.

287

Class Patent Waiver W(C)2012-006  

Broader source: Energy.gov [DOE]

This is a request by LBNL DESIGN FORWARD PROJECT for a DOE Class patent waiver of domestic and foreign patent rights under agreement N/A.

288

Advance Patent Waiver W(A)2012-018  

Broader source: Energy.gov [DOE]

This is a request by GE ENERGY for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-FE0007859.

289

Class Patent Waiver W(C)2011-001  

Broader source: Energy.gov [DOE]

This is a request by JEFFERSON SCIENCE ASSOCIATE, LLC for a DOE waiver of domestic and foreign patent rights under agreement DE-AC0506OR23177.

290

Advance Patent Waiver W(A)2012-031  

Broader source: Energy.gov [DOE]

This is a request by SRI INTERNATIONAL for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-NT0005578.

291

Identified Patent Waiver W(I)2012-014  

Broader source: Energy.gov [DOE]

This is a request by CERAMATEC, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FE0000408.

292

Identified Patent Waiver W(I)2012-015  

Broader source: Energy.gov [DOE]

This is a request by CERAMATEC, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FE0000408.

293

Identified Patent Waiver W(I)2012-016  

Broader source: Energy.gov [DOE]

This is a request by CERAMATEC, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FE0000408.

294

Advance Patent Waiver W(A)2010-065  

Broader source: Energy.gov [DOE]

This is a request by DRESSER WAUKESHA for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0004016

295

Advance Patent Waiver W(A)2008-036  

Broader source: Energy.gov [DOE]

This is a request by LIGNOL INNOVATIONS, LTD. for a DOE waiver of domestic and foreign patent rights under agreement DE-FC36-08GO18047

297

Isobaric vapor-liquid equilibria in the systems methyl 1,1-dimethylethyl ether + hexane and + heptane  

SciTech Connect (OSTI)

The vapor-liquid equilibrium at 94 kPa has been determined for the binary systems of methyl 1,1-dimethylethyl ether (MTBE) with hexane and with heptane. Both systems deviate slightly from ideal behavior, can be described as regular solutions, and do not present an azeotrope. The activity coefficients and boiling point of the solutions were correlated with its composition by the Redlich-Kister, Wohl, Wilson, UNIQUAC, NRTL, and Wisniak-Tamir equations.

Wisniak, J.; Magen, E.; Shachar, M.; Zeroni, I.; Segura, H. [Ben-Gurion Univ. of the Negev, Beer-Sheva (Israel). Dept. of Chemical Engineering] [Ben-Gurion Univ. of the Negev, Beer-Sheva (Israel). Dept. of Chemical Engineering; Reich, R. [Univ. de Concepcion (Chile). Dept. of Chemical Engineering] [Univ. de Concepcion (Chile). Dept. of Chemical Engineering

1997-03-01T23:59:59.000Z

298

Active Duty Military Tuition Waiver UNIVERSITY OF NEW MEXICO  

E-Print Network [OSTI]

Active Duty Military Tuition Waiver UNIVERSITY OF NEW MEXICO SEMESTER: __________ YEAR of the (DUTY STATION) State of New Mexico. This active duty assignment is for the period from _______________________________________________________ ORGANIZATION Return waiver to: The University of New Mexico Division of Enrollment Management Office

New Mexico, University of

299

Cost-share Fee Waiver request form Request for a cost share for a GSSP fee waiver on the following project. Documentation from granting  

E-Print Network [OSTI]

Cost-share Fee Waiver request form Request for a cost share for a GSSP fee waiver on the following project. Documentation from granting agency with information regarding tuition as unallowable must____________________________________________________________ Project Name __________________________________________________________________ Funding Agency

Taylor, Jerry

300

Exposure to methyl tert-butyl ether, benzene, and total hydrocarbons at the Singapore-Malaysia causeway immigration checkpoint  

SciTech Connect (OSTI)

The primary aim of this study was to determine the extent and levels of exposure to volatile organic compounds (VOCs) from automobile emissions in a group of immigration officers at a busy cross-border checkpoint. A majority (80%) of the workers monitored were exposed to benzene at levels between 0.01 and 0.5 ppm, with only 1.2% exceeding the current Occupational Safety and Health Administration occupational exposure limit of 1 ppm. The geometric mean (GM) concentrations of 8-hr time-weighted average exposure were 0.03 ppm, 0.9 ppm, and 2.46 ppm for methyl-tert-butyl ether (MTBE), benzene, and total hydrocarbons (THC), respectively. The highest time-weighted average concentrations measured were 1.05 ppm for MTBE, 2.01 ppm for benzene, and 34 ppm for THC. It was found that motorbikes emitted a more significant amount of pollutants compared with motor cars. On average, officers at the motorcycle booths were exposed to four to five times higher levels of VOCs (GMs of 0.07 ppm, 0.23 ppm, and 4.7 ppm for MTBE, benzene, and THC) than their counterparts at the motor car booths (GMs of 0.01 ppm, 0.05 ppm, and 1.5 ppm). The airborne concentrations of all three pollutants correlated with the flow of vehicle traffic. Close correlations were also noted for the concentrations in ambient air for the three pollutants measured. Benzene and MTBE had a correlation coefficient of 0.97. The overall findings showed that the concentrations of various VOCs were closely related to the traffic density, suggesting that they were from a common source, such as exhaust emissions from the vehicles. The results also indicated that although benzene, MTBE, and THC are known to be volatile, a significant amount could still be detected in the ambient environment, thus contributing to our exposure to these compounds. 4 refs., 6 figs.

Tan, C.; Ong, H.Y.; Kok, P.W. [and others

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "waiver mtbe methyl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Advance Patent Waiver W(A)2005-006 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

W(A)2005-006 More Documents & Publications Advance Patent Waiver W(A)2008-022 WA04079PRAXAIRINCWaiverofPatentRightsUnderaSubcon.pdf Advance Patent Waiver W(A)2011-063...

302

Advance Patent Waiver W(A)2009-039 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Advance Patent Waiver W(A)2010-007 Advance Patent Waiver W(A)2012-034 Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion...

303

LIDEM unit for the production of methyl tert-butyl ether from butanes  

SciTech Connect (OSTI)

One of the basic problems in the production of motor fuels is how to obtain high-octane unleaded gasolines that will meet today`s ecological requirements. The term {open_quotes}reformulated gasolines{close_quotes} has come into general use throughout the world to denote fuels with a certain chemical composition. These gasolines consist of preselected components; as shown by worldwide experience, they must include oxygen-containing compounds that are distinguished by high octane numbers and low reactivities. Standards in effect in the United States, Japan, and certain Western European countries require that automotive gasolines must contain at least 2-4% by weight of oxygen-containing compounds (calculated as oxygen). In the last 15 years, in order to meet these requirements, production has been set up in various countries for the manufacture of high-octane oxygen-containing components known as oxygenates. The most common of these is methyl tert-butyl ether (MTBE), obtained by etherification of isobutene by methanol. Process technology developed by this last organization was used as the basis for constructing a unit in the Nizhnekamskneftekhim Production Association and at the Mazheikyai Petroleum Refinery in Lithuania. MTBE production has been held back mainly by a shortage of isobutene, which is obtained mainly from butane-butene cuts produced in cat crackers. In order to alleviate this shortage, it has been proposed that MTBE should be obtained from saturated C{sub 4} hydrocarbons that are recovered in processing oilfield associated gas, and also in the refinery from primary distillation units, catalytic reformers, and hydrocrackers. A working design was developed in 1991-1992 by Lengiproneftekhim for a basically new combination unit designed for the processing of saturated C{sub 4} hydrocarbons, which has been termed the LIDEM unit (Leningrad - isomerization - dehydrogenation - MTBE).

Rudin, M.G.; Zadvornov, M.A.

1994-09-01T23:59:59.000Z

304

STATEMENT OF CONSIDERATIONS ADVANCE WAIVER OF THE GOVERNMENT...  

Broader source: Energy.gov (indexed) [DOE]

AIR PRODUCTS AND CHEMICALS, INC IN THE PERFORMANCE OF COOPERATIVE AGREEMENT NO. DE-FC08-99NV13578; DOE WAIVER NO. W(A)-99-022; SAN-682 The Petitioner, Air Products and Chemicals...

305

STATEMENT OF CONSIDERATIONS REQUEST BY PRAXAIR, INC. FOR WAIVER...  

Broader source: Energy.gov (indexed) [DOE]

PRAXAIR, INC. FOR WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS IN AN IDENTIFIED INVENTION, DOE DOCKET NO. S- 115,861 MADE UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26- 05NT42469,...

306

Class Patent Waiver W(C)2008-007  

Broader source: Energy.gov [DOE]

This is a request by NEW YORK BLUE SUPERCOMPUTER for a DOE waiver of domestic and foreign patent rights under agreement DE-AC02-98CH10886

307

Advance Patent Waiver W(A)2005-053  

Broader source: Energy.gov [DOE]

This is a request by ALLEGHENY TECHNLOGIES WAH CHANG DIVISION for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-05NT42513.

308

Identified Patent Waiver W(I)2012-012  

Broader source: Energy.gov [DOE]

This is a request by DR. F. JEFFREY MARTIN for a DOE Identified patent waiver of domestic and foreign patent rights under agreement DE-AC52-06NA25396.

309

Advance Patent Waiver W(A)2010-033  

Broader source: Energy.gov [DOE]

This is a request by ROLLS ROYCE FUEL SYSTEMS for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-08NT01911

310

REQUEST BY CATERPILLAR INC. FOR AN ADVANCE WAIVER OF DOMESTIC...  

Broader source: Energy.gov (indexed) [DOE]

of cost sharing by Caterpillar and the objectives and considerations set forth in 10 CFR 784.4, all of which have been considered, it is recommended that the requested waiver...

311

STATEMENT OF CONSIDERATIONS Advance Test Reactor Class Waiver  

Broader source: Energy.gov (indexed) [DOE]

Advance Test Reactor Class Waiver W(C)-2008-004 The Advanced Test Reactor (A TR) is a pressurized water test reactor at the Idaho National Laboratory (INL) that operates at low...

312

Advance Patent Waiver W(A)2008-004  

Broader source: Energy.gov [DOE]

This is a request by HUNTSMAN ADVANCED MATERIALS AMERICANS, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FG36-07GO17012

313

Class Patent Waiver W(C)2012-002  

Broader source: Energy.gov [DOE]

This is a request by DEMONSTRATION FACILITY PROGRAM (MDF) for a DOE Class patent waiver of domestic and foreign patent rights under agreement DE-AC05-OR22725.

314

Advance Patent Waiver W(A)2005-025  

Broader source: Energy.gov [DOE]

This is a request by G.E. NUCLEAR ENERGY for a DOE waiver of domestic and foreign patent rights under agreement DE-FC07-05ID14635

315

Advance Patent Waiver W(A)2005-026  

Broader source: Energy.gov [DOE]

This is a request by G.E. NUCLEAR ENERGY for a DOE waiver of domestic and foreign patent rights under agreement DE-FC07-05ID14036.

316

Advance Patent Waiver W(A)2010-004  

Broader source: Energy.gov [DOE]

This is a request by GE-HITACHI NUCLEAR ENERGY AMERICAS, LLC for a DOE waiver of domestic and foreign patent rights under agreement DE-FC52-09N29626

317

STATEMENT OF CONSIDERATIONS PETITION FOR ADVANCE WAIVER OF PATENT...  

Broader source: Energy.gov (indexed) [DOE]

COMPANY (13M") UNDER COOPERATIVE AGREEMENT NO. DE-FC3607G017006 BETWEEN 3M AND DOE; W(A)200B-019; CH-1442 The Petitioner, 3M, has requested a waiver of domestic and certain foreign...

318

Advance Patent Waiver W(A)2005-060  

Broader source: Energy.gov [DOE]

This is a request by SHELL SOLAR INDUSTRIES, LP for a DOE waiver of domestic and foreign patent rights under agreement DE-AC36-98GO10337.

319

STATEMENT OF CONSIDERATIONS ADVANCE WAIVER OF PATENT RIGHTS TO...  

Broader source: Energy.gov (indexed) [DOE]

0 STATEMENT OF CONSIDERATIONS ADVANCE WAIVER OF PATENT RIGHTS TO HONEYWELL TURBO TECHNOLOGIES (HTT) UNDER DOE PRIME CONTRACT NO. DE-DE-FC26- 06NT42873 FOR "ADVANCED TURBO-CHARGING...

320

STATEMENT OF CONSIDERATIONS ADVANCE CLASS WAIVER OF PATENT RIGHTS...  

Broader source: Energy.gov (indexed) [DOE]

waiver is in direct support ofthe EPAct 2005 Section 106 goal of voluntary reduction of energy intensity of U.S. manufacturing industries by 25% over the next 10 years and the...

Note: This page contains sample records for the topic "waiver mtbe methyl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Identified Patent Waiver W(I)2012-009  

Broader source: Energy.gov [DOE]

This is a request by UNITED TECHNOLOGIES RESEARCH for a DOE Identified patent waiver of domestic and foreign patent rights under agreement DE-AC02-05CH11231.

322

Class Patent Waiver W(C)2012-004  

Broader source: Energy.gov [DOE]

This is a request by BIOENERGY SCIENCE CENTER (BESC) for a DOE Class patent waiver of domestic and foreign patent rights under agreement DE-AC05-00OR22725.

323

Advance Patent Waiver W(A)2009-068  

Broader source: Energy.gov [DOE]

This is a request by United Solar Systems Corp. for a DOE waiver of domestic and foreign patent rights under agreement DE-FC36-07GO17053

324

STATEMENT OF CONSIDERATIONS ADVANCE WAIVER OF PATENT RIGHTS TO...  

Broader source: Energy.gov (indexed) [DOE]

the waived invention is suspended until approved in writing by the DOE. WAIVER ACTION - ABSTRACT W(A)-06-029 (CH-1386) REQUESTOR CONTRACT SCOPE OF WORK RATIONALE FOR DECISION...

325

STATEMENT OF CONSIDERATIONS ADVANCE WAIVER OF PATENT RIGHTS TO...  

Broader source: Energy.gov (indexed) [DOE]

of inventions made under this contract. -2- ** TOTAL PRGE.03 * WAIVER A CTION - ABSTRACT W(A)-04-016 (CH-1182) REQUESTOR CONTRACT SCOPE OF WORK RATIONALE FOR DECISION...

326

REQUEST BY EATON CORPORATION FOR AN ADVANCE WAIVER OF DOMESTIC...  

Broader source: Energy.gov (indexed) [DOE]

grinding process developed under the sub-subcontract. W(A)-94-011 ORO-578 WAIVER ACTION ABSTRACT REOUESTOR CONTRACT SCOPE OF WORK RATIONALE FOR DECISION DISPOSITION Eaton...

327

REQUEST BY GOLDEN TECHNOLOGIES COMPANY, INC. FOR AN ADVANCE WAIVER...  

Broader source: Energy.gov (indexed) [DOE]

and U.S. Competitiveness clauses will be added W(A)-94-008 ORO-575 WAIVER ACTION ABSTRACT REQUESTOR CONTRACT SCOPE OF WORK RATIONALE FOR DECISION DISPOSITION Golden...

328

STATEMENT OF CONSIDERATIONS PETITION FOR ADVANCE WAIVER OF PATENT...  

Broader source: Energy.gov (indexed) [DOE]

will not license, assign or otherwise transfer any waived invention to 1 WAIVER ACTION - ABSTRACT W(A)-04-011 REQUESTOR CONTRACT SCOPE OF WORK RATIONALE FOR DECISIONDISPOSITION 4...

329

STATEMENT OF CONSIDERATIONS ADVANCE WAIVER OF PATENT RIGHTS TO...  

Broader source: Energy.gov (indexed) [DOE]

the waived invention is suspended until approved in writing by the DOE. WAIVER ACTION - ABSTRACT W(A)-06-018 (CH-1372) REQUESTOR CONTRACT SCOPE OF WORK RATIONALE FOR DECISION...

330

Identified Patent Waiver W(I)2012-004  

Broader source: Energy.gov [DOE]

This is a request by UCHICAGO ARGONNE, LLC for a DOE Identified patent waiver of domestic and foreign patent rights under agreement DE-AC02-06CH11357.

331

Identified Patent Waiver W(I)2012-005  

Broader source: Energy.gov [DOE]

This is a request by UCHICAGO ARGONNE, LLC for a DOE Identified patent waiver of domestic and foreign patent rights under agreement DE-AC02-06CH11357.

332

Identified Patent Waiver W(I)2012-003  

Broader source: Energy.gov [DOE]

This is a request by UCHICAGO ARGONNE, LLC for a DOE Identified patent waiver of domestic and foreign patent rights under agreement DE-AC02-06CH11357.

333

Class Patent Waiver W(C)2012-007  

Broader source: Energy.gov [DOE]

This is a request by SOLID-STATE LIGHTING ROUND 4 for a DOE Class patent waiver of domestic and foreign patent rights under agreement DE-FOA-0000792.

334

STATEMENT OF CONSIDERATIONS CLASS WAIVER OF THE GOVERNMENT'S  

Broader source: Energy.gov (indexed) [DOE]

to Designated Non-Proprietary User facilities at all DOE facilities funded by any DOE program. Therefore, the 1983 Non-Proprietary User Class Waiver is superseded by this new...

335

Advance Patent Waiver W(A)2005-031  

Broader source: Energy.gov [DOE]

This is a request by OSRAM SYLVANIA PRODUCTS, INC for a DOE waiver of domestic and foreign patent rights under agreement DE-FG36-05GO85042.

336

WA_1995_019_DONNELLY_CORPORATION_Waiver_of_Domestic_and_Fore...  

Broader source: Energy.gov (indexed) [DOE]

WA00030ASEAMERICASRequesttoAssignTitletoWaiver-Inv.pdf WA1995018OPTICALCOATINGLABORATORYINCWaiverofDomesti.pdf WA04009ROCKWELLSCIENTIFICCOWailve...

337

Exhibit 2B-Petition for Advance Waiver of Patent Rights UT-B Contracts Div Page 1 of 4  

E-Print Network [OSTI]

's patent waiver regulations at 10 CFR part 784. You must request waivers by using the attached DOE form PETITION FOR ADVANCE WAIVER OF PATENT RIGHTS UNDER 10 C.F.R. PART 784 DOE WAIVER NO. __________ (To.S.C. 202, 203 and 204, as well as other provisions that may be required in accordance with 10 C.F.R. 784

Pennycook, Steve

338

Gas phase synthesis of MTBE from methanol and isobutene over dealuminated zeolites  

SciTech Connect (OSTI)

Gas phase synthesis of MTBE from methanol and isobutene has been investigated over different zeolites. It is shown that bulk Si/Al ratio has a marked influence on the formation of MTBE. H-beta zeolite was found to be as active as acid Amberlyst-15 (reference catalyst), and noticeably superior to non- and dealuminated forms of H-Y, H-ZSM-5, zeolite omega, and H-mordenites. Screening test results obtained over other catalysts (SAPOs and pillared clays) are briefly commented. The contribution of the external surface of the zeolites to the reaction is discussed. In the case of H-Y zeolites, it is shown that extra framework Al species ({sup 27}Al NMR signal at 30 ppm) have a detrimental effect on the reaction. 64 refs., 12 figs., 3 tabs.

Collignon, F.; Mariani, M.; Moreno, S.; Remy, M.; Poncelet, G. [Universite Catholique de Louvain (Belgium)] [Universite Catholique de Louvain (Belgium)

1997-02-01T23:59:59.000Z

339

Rates and products of degradation for MTBE and other oxygenate fuel additives in the subsurface environment  

SciTech Connect (OSTI)

The recent realization that oxygenated fuel additives such as MTBE are becoming widely distributed groundwater contaminants has created a sudden and pressing demand for data on the processes that control their environmental fate. Explaining and predicting the subsequent environmental fate of these compounds is going to require extrapolations over long time frames that will be very sensitive to the quality of input data on each compound. To provide such data, they have initiated a systematic study of the pathways and kinetics of fuel oxygenate degradation under subsurface conditions. Batch experiments in simplified model systems are being performed to isolate specific processes that may contribute to MTBE degradation. A variety of degradation pathways can be envisioned that lead to t-butyl alcohol (TBA) as the primary or secondary product. However, experiments to date with a facultative iron reducing bacteria showed no evidence for TBA formation. Continuing experiments include mixed cultures from a range of aquifer materials representative of NAWQA study sites.

Tratnyek, P.G.; Church, C.D.; Pankow, J.F. [Oregon Graduate Inst., Portland, OR (United States). Dept. of Environmental Science and Engineering

1995-12-31T23:59:59.000Z

340

Stratospheric ozone, global warming, and the principle of unintended consequences - an ongoing science and policy story  

E-Print Network [OSTI]

as methyl-tert-butyl ether (MTBE), lubricating oil and itsthe environment. Use of the MTBE additive in gasoline wasof gasoline laced with MTBE into groundwater resulted in

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waiver mtbe methyl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Ethylene dichloride 1 MTBE 2 Vinylchloride 3 Ethylbenzene 1Methyl- Tertiary-Butyl-Ether (MTBE) or Ethyl-Tertiary-Butyl-Styrene Vinylchloride MTBE Benzene, Toluene, Xylene Acetone

Neelis, Maarten

2008-01-01T23:59:59.000Z

342

Cometabolic bioremediation  

E-Print Network [OSTI]

Intrinsic bioremediation of MTBE-contaminated groundwater atcontaminants, e.g. PCE, TCE, MTBE, TNT, dioxane, atrazine,Methyl tert-butyl ether (MTBE) has also been remediated

Hazen, Terry C.

2010-01-01T23:59:59.000Z

343

Synthesis of octane enhancers during slurry-phase Fischer-Tropsch. [801Methyl tert-butyl ether  

SciTech Connect (OSTI)

The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl ether (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: (1) Addition of isobutylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch. (2) Addition of isobutylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst. (3) Addition of methanol to slurry phase FT synthesis making iso-olefins. During the sixth quarter we completed the construction of the slurry bubble column reactor (SBCR), conducted initial shake-down experiments in a cold-flow mode, and finalized the selection process of the acid catalysts for conversion of syngas-produced alcohols and isobutylene to MTBE (scheme 2). Tasks 3, 4, and 5 are awaiting complete implementation of the SBCR system.

Marcelin, G.

1992-06-24T23:59:59.000Z

344

Treatment of methyl tert-butyl ether vapors in a biotrickling filters. 2. Analysis of the rate-limiting step and behavior under transient conditions  

SciTech Connect (OSTI)

Detailed experiments were performed with gas phase biotrickling filters treating vapors of methyl tert-butyl ether (MTBE), a gasoline additive of great environmental concern. A particular emphasis was placed on the analysis of the rate-limiting step, and it was found that the process was mostly limited by the biological reaction rather than by mass transfer. Further experiments involved the study of the dynamic behavior of the biotrickling filters under simulated field conditions. In all cases, the biotrickling filters adapted rapidly to the new conditions, and new steady states were obtained within hours. The relevance of the results and the implications as far as implementation of biotrickling filters for field MTBE treatment are discussed.

Fortin, N.Y.; Deshusses, M.A. [Univ. of California, Riverside, CA (United States). Dept. of Chemical and Environmental Engineering] [Univ. of California, Riverside, CA (United States). Dept. of Chemical and Environmental Engineering

1999-09-01T23:59:59.000Z

345

VOL. 32, No.4 UNL WATER CENTER AUGUST 2000 New Method For Detecting Trace Amounts of MTBE  

E-Print Network [OSTI]

water their use to help curb growing prob- at spill sites. lems with air pollution. MTBE is the most emis-by Steve Ress sions, are considered small. Gasoline additives that help keep our air clean can- "Most of the information available on oxygenates 10 mine the extent of their environmental impacts

Nebraska-Lincoln, University of

346

REQUEST FOR INDIRECT COST WAIVER I. Project Director  

E-Print Network [OSTI]

REQUEST FOR INDIRECT COST WAIVER I. Project Director: Department: Project Title: Project Sponsor without fully recovering the institutional indirect costs which will be incurred in conducting the project COSTS 1. FULL: OF I. A. C. 2. PARTIAL: OF H. B. K. TOTAL PROJECT COSTS L. INDIRECT COSTS TO BE WAIVED, J

Krovi, Venkat

347

Potential Supply Impacts of Removal of 1-Pound RVP Waiver  

E-Print Network [OSTI]

by the Office of Oil and Gas of the Energy Information Administration. General questions concerning the report, Petroleum Division #12;1 Energy Information Administration/Potential Supply Impacts of Removal of 1-Pound;2 Energy Information Administration/Potential Supply Impacts of Removal of 1-Pound Waiver provides

Patzek, Tadeusz W.

348

Massachusetts Institute of Technology Affiliate Health Insurance Waiver Form  

E-Print Network [OSTI]

Massachusetts Institute of Technology Affiliate Health Insurance Waiver Form Affiliate's last name A deductible not to exceed $500 per accident or illness Please carefully review the standards listed below for: mental and nervous conditions (60 inpatient days per year); alcohol and drug abuse; and maternity

Polz, Martin

349

Class_Waiver_W_C-2001-002.pdf | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Documents & Publications WC2001002CLASSWAIVERToFACULTYMEMBERSOFHISTORICALLY.pdf WC1990014CLASSADVANCEWAIVERofUSandForeignRightsfo.pdf ClassWaiverWC-2000-002...

350

Class_Waiver_W_C-2000-002.pdf | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications ClassWaiverWC-2001-002.pdf Subcontractor Rights Under CRADAs and WFO Agreements WC1990012CLASSWAIVERofPatentRightsinInventionsMade.pdf...

351

WA_1994_017_GOLDEN_TECHNOLOGIES_COMPANY_Waiver_of_Domestic_a...  

Broader source: Energy.gov (indexed) [DOE]

for An Advance Waiver of Domestic and Foreign Rights. January 10, 1995 WA1994011EATONCORPORATIONWaiverofDomesticandForeign.pdf WA1994014GOLDENTECHNOLOGIESCOMPA...

352

WA_1993_022_NORTON_COMPANY_Waiver_of_Domestic_and_Foreign_Ri...  

Broader source: Energy.gov (indexed) [DOE]

Golden Technologies Company, Inc. Request for An Advance Waiver of Domestic and Foreign Rights. January 10, 1995 WA1994011EATONCORPORATIONWaiverofDomesticandForeign...

353

WC_1999_006_CLASS_WAIVER_FOR_BECHTEL_RESEARCH_AND_CO-OP_AGRE...  

Broader source: Energy.gov (indexed) [DOE]

Documents & Publications WC1999005CLASSWAIVERBECHTELBWXTIDAHOLLCManagement.pdf WC2000004CLASSWAIVERMadeinthePerformanceofCRADAby.pdf ClassWaiverWC-2000-004...

354

Class_Waiver_W_C-2000-003.pdf | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Documents & Publications WC2000003CLASSWAIVERFORBWXTUNDERAMANAGEMENTANDOPE.pdf WC2000004CLASSWAIVERMadeinthePerformanceofCRADAby.pdf ClassWaiverWC-2000-004...

355

Class_Waiver_W_C-2000-004.pdf | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications WC2000004CLASSWAIVERMadeinthePerformanceofCRADAby.pdf ClassWaiverWC-2000-003.pdf WC2000003CLASSWAIVERFORBWXTUNDERAMANAGEM...

356

REQUEST BY SEMIKRON INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND...  

Broader source: Energy.gov (indexed) [DOE]

or licensees. Additionally, should Semikron or other entity receiving * * WAIVER ACTION - ABSTRACT REQUESTOR: Semikron Inc. DE-FC02-00EE50632 CONTRACT SCOPE OF WORK: Development...

357

Sonolytic destruction of methyl tert-butyl ether by ultrasonic irradiation: The role of O{sub 3}, H{sub 2}O{sub 2}, frequency, and power density  

SciTech Connect (OSTI)

The kinetics of degradation of methyl tert-butyl ether (MTBE) by ultrasonic irradiation in the presence of ozone as functions of applied frequencies and applied power are investigated. Experiments are performed over the frequency range of 205--1,078 kHz. The higher overall reaction rates are observed at 358 and 618 kHz and then at 205 and 1,078 kHz. The observed pseudo-first-order rate constant, k{sub 0}, for MTBE degradation increases with increasing power density up to 250 W L{sup {minus}1}. A linear dependence of the first-order rate constant, k{sub O{sub 3}}, for the simultaneous degradation of O{sub 3} on power density is also observed. Naturally occurring organic matter (NOM) is shown to have a negligible effect on observed reaction rates.

Kang, J.W.; Hung, H.M.; Lin, A.; Hoffmann, M.R. [California Inst. of Tech., Pasadena, CA (United States). W.M. Keck Labs.] [California Inst. of Tech., Pasadena, CA (United States). W.M. Keck Labs.

1999-09-15T23:59:59.000Z

358

Emissions of volatile organic compounds inferred from airborne flux measurements over a megacity  

E-Print Network [OSTI]

methyl-tertiary-butyl- ether (MTBE) and the biomass burningfrom all source categories. MTBE is a gasoline additive andwith the fuel tracer MTBE (e.g. 0.82 for MTBE/benzene).

Karl, T.; Apel, E.; Hodzic, A.; Riemer, D. D; Blake, D. R; Wiedinmyer, C.

2009-01-01T23:59:59.000Z

359

REV 8.22.12 ACKNOWLEDGEMENT OF RISK AND WAIVER OF LIABILITY  

E-Print Network [OSTI]

REV 8.22.12 ACKNOWLEDGEMENT OF RISK AND WAIVER OF LIABILITY Event Name: Event Date: Event Time: Team/Club, etc. (if applicable): Read this Acknowledgement of Risk and Waiver of Liability carefully. I acknowledge that participation in this ACTIVITY has the following non-exhaustive list

Tullos, Desiree

360

University of Idaho, SRC Climbing Center Acknowledgement of Risk and Waiver of Liability  

E-Print Network [OSTI]

University of Idaho, SRC Climbing Center Acknowledgement of Risk and Waiver of Liability Signatures)Emergency contact: PHONE: CELL: Acknowledgement of Risk and Waiver of Liability Participant, and parent(s) / guardians of participant if participant is under 18 years of age, must read this Acknowledgement of Risk

Waits, Lisette

Note: This page contains sample records for the topic "waiver mtbe methyl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Agreement, Release, and Waiver for Use of Bicycle Parking Room Page 1 of 3  

E-Print Network [OSTI]

Agreement, Release, and Waiver for Use of Bicycle Parking Room Page 1 of 3 Northwestern University, IL 60611 BICYCLE PARKING AGREEMENT AGREEMENT, RELEASE, AND WAIVER FOR USE OF BICYCLE PARKING ROOM defined herein), subject to space availability, for parking one bicycle during Licensee's work day, which

Shahriar, Selim

362

Treatment of Methyl tert-Butyl Ether Contaminated Water Using a Dense  

E-Print Network [OSTI]

-butyl ether (MTBE) in a dense medium plasma (DMP) reactor utilizing gas chromatog- raphy-massspectrometryandgaschromatography-thermal conductivity techniques. A rate law is developed for the removal of MTBE from an aqueous solution in the DMP. The oxidation products from the treatment of MTBE-contaminated water in the DMP reactor were found

Dandy, David

363

Pyrolysis of Organic Molecules Relevant to Combustion as Monitored by Photoionization Time-of-Flight Mass Spectrometry  

E-Print Network [OSTI]

is observed, which is similar to MTBE in this system whichisobutene formed from MTBE, is found to occur. REFERENCES [methyl tert-butyl ether (MTBE) and tert-amyl methyl ether (

Weber, Kevin Howard

2010-01-01T23:59:59.000Z

364

Life-cycle Environmental Inventory of Passenger Transportation in the United States  

E-Print Network [OSTI]

Methyltert?ButylEther(MTBE);http://www.atsdr.cdc.gov/MethylTertiaryButyl Ether (MTBE), which was easilyaccountingwasnotperformedonMTBEandtheresult of

Chester, Mikhail V

2008-01-01T23:59:59.000Z

365

File:ErosivityWaiverForm.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jumptight-gas.pdf Jump to:ErosivityWaiverForm.pdf Jump

366

REQUEST BY PRAXAIR, INC.(PRAXAIR) FOR AN ADVANCE WAIVER OF DOMESTIC...  

Broader source: Energy.gov (indexed) [DOE]

PRAXAIR, INC.(PRAXAIR) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS TO INVENTIONS MADE UNDER CONTRACT NO. DE-FC26-00NT41027 ENTITLED "NOVEL REACTOR FOR THE...

367

WA_00_013_GENECOR_INTERNATIONAL_Waiver_of_US_Competitiveness...  

Broader source: Energy.gov (indexed) [DOE]

WaiverofUSCompetitiveness.pdf More Documents & Publications U.S. Biofuels Industry: Mind the Gap Advance Patent Waiver W(A)2008-045 WA01008NOVOZYMEBIOTECHWaiverofDomesti...

368

(distillation) (Le Chatelier  

E-Print Network [OSTI]

acetate(methyl-, ethyl-, butyl-) , methanol isobutene MTBE , ethanol isobutene ETBE , methanol 2-methyl-1% MTBE 3 DMC . 2% 1990 MTBE 1999 3 2002 MTBE . [ 1-1 ] Phosgene process polycarbonate(PC) 50/ . DMC DMC MTBE / . ( : Amoco, "Review of DMC Manufacture and its

Hong, Deog Ki

369

he U.S. Geological Survey's (USGS) National Water-Quality Assess-  

E-Print Network [OSTI]

of the wells included methyl tert-butyl ether (MTBE), tetrachloroethene (PCE), dichlorodifluoromethane, 1

370

Multiple Objective Stormwater Management For the Coliseum Complex  

E-Print Network [OSTI]

methyl tertiary butyl ether (MTBE) remain in the soil around5.2 ppb xylenes, and 160 ppb MTBE remain in the groundwater

Jones, Jesse; Kraai, Rachel

2009-01-01T23:59:59.000Z

371

Effects of water chemistry on NF/RO membrane structure and performance  

E-Print Network [OSTI]

methyl tert-butyl ether (MTBE), benzene, ethylbenzene,TCE** Industrial C 2 HCl 3 MTBE** [48] Industrial C 5 H 12 O

Mo, Yibing

2013-01-01T23:59:59.000Z

372

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

methyl-tertiary butyl ether (MTBE), from gasoline by 2004.MTBE was used to meet a requirement for gasoline to containbeginning in 2002, replacing MTBE with ethanol. According to

2007-01-01T23:59:59.000Z

373

The Scientific Basis for the Regulation of Nanoparticles: Challenging Paracelsus and Pare  

E-Print Network [OSTI]

NANOTECHNOILOGY 402 (2007). 20. MTBE unquestionably causesTertiary-Butyl Ether (MTBE)-a Gasoline Additive-CausesMethyl Tertiary-butyl Ether (MTBE) in CD-I Mice and F-344

Goldstein, Bernard D.

2010-01-01T23:59:59.000Z

374

Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area  

E-Print Network [OSTI]

Methanol Ethanol Acetone MEK MTBE CO Methane UCI UCI TOGA/methyl tertiary butyl ether (MTBE), and toluene all ratioedthe observed decay. For MTBE, also a species that is not

2010-01-01T23:59:59.000Z

375

Soil type, crop and irrigation technique affect nitrogen leaching to groundwater  

E-Print Network [OSTI]

water contamination with MTBE (methyl tertiary-butyl ether,that areas vulnerable to MTBE are also vulner- able tothat affect the movement of MTBE. If only a small amount of

Letey, John; Vaughan, Peter

2013-01-01T23:59:59.000Z

376

Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: measurement comparison, emission ratios, and source attribution  

E-Print Network [OSTI]

methyl tert-butyl ether (MTBE) at 57 amu has been previouslyby a fragment of MTBE (62%) with minor contributions fromFortner and Knighton, 2008). MTBE also in- terfered (16%)

2011-01-01T23:59:59.000Z

377

Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2-C10volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O3and SO2  

E-Print Network [OSTI]

methyl tertiary- butyl ether (MTBE) and its effect on plasmaand three VOCs (propyne, furan, MTBE) remained below their 3Ethanol Acetone MEK MAC MVK MTBE Furan CH 3 OH C 2 H 5 OH C

2010-01-01T23:59:59.000Z

378

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

methyl-tertiary butyl ether (MTBE), from gasoline by 2004.MTBE was used to meet a requirement for gasoline to containbeginning in 2002, replacing MTBE with ethanol. According to

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

379

Finding the missing stratospheric Bry: a global modeling study of CHBr3 and CH2Br2  

E-Print Network [OSTI]

Methanol Ethanol Acetone MEK MTBE CO Methane UCI UCI TOGA/methyl tertiary butyl ether (MTBE), and toluene all ratioedthe observed decay. For MTBE, also a species that is not

2010-01-01T23:59:59.000Z

380

QUANTIFYING NON-POINT SOURCES OF VOLATILE ORGANIC COMPOUNDS IN STORMWATER FROM A PARKING LOT  

E-Print Network [OSTI]

-butyl ether (MTBE) on urban particles indicates a site- specific interaction between MTBE and a particulate is a possible source only for the gasoline oxygenate methyl tert-butyl ether (MTBE). Lopes and Bender (1998

Note: This page contains sample records for the topic "waiver mtbe methyl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Assessing the Effectiveness of California's Underground Storage Tank Annual Inspection Rate Requirements  

E-Print Network [OSTI]

Methyl Tert-Butyl Ether (MTBE), a gasoline additive. Thefor the lions share of MTBE contamination, as well asIn response to the MTBE crisis, California increased the

Cutter, W. Bowman

2008-01-01T23:59:59.000Z

382

Trichloroethene Removal From Waste Gases in Anaerobic Biotrickling Filters Through Reductive Dechlorination  

E-Print Network [OSTI]

methyl tert-butyl ether (MTBE) vapors into water was used.MTBE is highly soluble in water (dimensionless Henrysgas stream was laden with MTBE vapors (200-300 mg m -3 )

Popat, Sudeep Chandrakant

2010-01-01T23:59:59.000Z

383

Life-Cycle Water Impacts of U.S. Transportation Fuels  

E-Print Network [OSTI]

Drinking Water: Methyl Tertiary Butyl Ether (MTBE).http://www.epa.gov/mtbe/water.htm (11/30/10), Chiu, Y. W. ;LCFS LCI LP LPG MED MRO MSF MTBE MWD MWDOC NAICS NERC NETL

Scown, Corinne Donahue

2010-01-01T23:59:59.000Z

384

Comparison of SPME headspace analysis to U.S. EPA method5030/8260B for MTBE monitoring  

SciTech Connect (OSTI)

A novel method for analysis of methyl tert-butyl ether andtert-butyl alcohol using solid phase microextraction is described andcompared to a standard method.

Stringfellow, William T.; Oh, Kuen-Chan

2005-02-01T23:59:59.000Z

385

RELATIONS BETWEEN THE DETECTION OF METHYL TERT-BUTYL ETHER (MTBE) IN SURFACE AND GROUND WATER AND ITS CONTENT IN GASOLINE  

E-Print Network [OSTI]

AND ITS CONTENT IN GASOLINE By Michael J. Moran, Mike J. Halde, Rick M. Clawges and John S. Zogorski U in the United States as an octane enhancer and oxygenate in gasoline. Octane enhancement began in the late 1970's with the phase-out of tetraethyl lead from gasoline. The use of oxygenates was expanded

386

WAIVER OF RIGHT TO PRE-TERMINATION HEARING FOR CLASSIFIED STAFF ONLY  

E-Print Network [OSTI]

WAIVER OF RIGHT TO PRE-TERMINATION HEARING FOR CLASSIFIED STAFF ONLY Office of Human Resources Rev Discipline and SPP 1011 Involuntary Terminations, you are entitled to a pre-termination hearing prior to the effective date of termination stated in your Notice of Intent to Recommend Termination. The purpose

Rhoads, James

387

SPORT & RECREATION SERVICES-ICE HOCKEY INTRAMURALS RELEASE OF LIABILITY, WAIVER OF CLAIMS,  

E-Print Network [OSTI]

of injury arising from falling and impacting against the floor or ice surface, walls or rink boardsSPORT & RECREATION SERVICES-ICE HOCKEY INTRAMURALS RELEASE OF LIABILITY, WAIVER OF CLAIMS #:______________________ TO: THE UNIVERSITY OF LETHBRIDGE (THE "UOFL"), THE ACTIVITY: The UofL plays host to Ice Hockey

Burg, Theresa

388

BOWLING GREEN STATE UNIVERSITY LIABILITY RELEASE, WAIVER, DISCHARGE AND AGREEMENT NOT TO SUE  

E-Print Network [OSTI]

BOWLING GREEN STATE UNIVERSITY LIABILITY RELEASE, WAIVER, DISCHARGE AND AGREEMENT NOT TO SUE 1. I, forever discharge, and covenant not to sue the State of Ohio, Bowling Green State University, and its employment with Bowling Green State University. If I am a driver, driving my personal vehicle, I certify

Moore, Paul A.

389

Alternative Compliance: Guidelines for Preparing and Submitting a Waiver Request Application and Other Documentation Requirements  

SciTech Connect (OSTI)

This document is designed to assist covered fleets interested in taking advantage of more flexible compliance options and to facilitate the transition from Standard Compliance to Alternative Compliance. It is designed to help fleets better understand the Alternative Compliance option and successfully complete the waiver application process.

Not Available

2013-03-01T23:59:59.000Z

390

Alternative Compliance: Guidelines for Preparing and Submitting a Waiver Request Application and Other Documentation Requirements (Book)  

SciTech Connect (OSTI)

This document is designed to assist covered fleets interested in taking advantage of more flexible compliance options and to facilitate the transition from Standard Compliance to Alternative Compliance. It is designed to help fleets better understand the Alternative Compliance option and successfully complete the waiver application process.

Sears, T.

2014-01-01T23:59:59.000Z

391

Alternative Compliance: Guidelines for Preparing and Submitting a Waiver Request Application and Other Documentation Requirements (Book)  

SciTech Connect (OSTI)

This document is designed to assist covered fleets interested in taking advantage of more flexible compliance options and to facilitate the transition from Standard Compliance to Alternative Compliance. It is designed to help fleets better understand the Alternative Compliance option and successfully complete the waiver application process.

Not Available

2010-11-01T23:59:59.000Z

392

Alternative Compliance: Guidelines for Preparing and Submitting a Waiver Request Application and Other Documentation Requirements (Brochure)  

SciTech Connect (OSTI)

This document is designed to assist covered fleets interested in taking advantage of more flexible compliance options and to facilitate the transition from Standard Compliance to Alternative Compliance. It is designed to help fleets better understand the Alternative Compliance option and successfully complete the waiver application process.

Not Available

2014-06-01T23:59:59.000Z

393

Colorado Advantage Recommendation Form Waiver THIS SECTION TO BE COMPLETED BY APPLICANT  

E-Print Network [OSTI]

Colorado Advantage Recommendation Form Waiver THIS SECTION TO BE COMPLETED BY APPLICANT Applicant not waive the right, you will have access to this recommendation should you become a Colorado Advantage for admission into the University of Colorado Boulder Colorado Advantage: PhD Preview Program Recommender's Name

Colorado at Boulder, University of

394

Effect of Ethanol and Methyl-tert-Butyl Ether on Monoaromatic Hydrocarbon Biodegradation: Response Variability for Different Aquifer Materials Under Various Electron-Accepting Conditions  

SciTech Connect (OSTI)

Aquifer microcosms were used to determine how ethanol and methyl-tert-butyl ether (MtBE) affect monoaromatic hydrocarbon degradation under different electron-accepting conditions commonly found in contaminated sites experiencing natural attenuation. Response variability was investigated by using aquifer material from four sites with different exposure history. The lag phase prior to BTEX (benzene, toluene, ethylbenzene, and xylenes) and ethanol degradation was typically shorter in microcosms with previously contaminated aquifer material, although previous exposure did not always result in high degradation activity. Toluene was degraded in all aquifer materials and generally under a broader range of electron-accepting conditions compared to benzene, which was degraded only under aerobic conditions. MtBE was not degraded within 100 days under any condition, and it did not affect BTEX or ethanol degradation patterns. Ethanol was often degraded before BTEX compounds, and had a variable effect on BTEX degradation as a function of electron-accepting conditions and aquifer material source. An occasional enhancement of toluene degradation by ethanol occurred in denitrifying microcosms with unlimited nitrate; this may be attributable to the fortuitous growth of toluene-degrading bacteria during ethanol degradation. Nevertheless, experiments with flow-through aquifer columns showed that this beneficial effect could be eclipsed by an ethanol-driven depletion of electron acceptors, which significantly inhibited BTEX degradation and is probably the most important mechanism by which ethanol could hinder BTEX natural attenuation. A decrease in natural attenuation could increase the likelihood that BTEX compounds reach a receptor as well as the potential duration of exposure.

Ruiz-Aguilar, G L; Fernandez-Sanchez, J M; Kane, S R; Kim, D; Alvarez, P J

2003-10-06T23:59:59.000Z

395

Detailed chemical kinetic reaction mechanism for biodiesel components methyl stearate and methyl oleate  

E-Print Network [OSTI]

Detailed chemical kinetic reaction mechanism for biodiesel components methyl stearate and methyl are developed for two of the five major components of biodiesel fuel, methyl stearate and methyl oleate renewable sources, can reduce net emissions of greenhouse gases. An important class of biodiesel fuels

Paris-Sud XI, Université de

396

List of EERE Waivers in the Federal Register | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen toLeveragingLindsey Geisler About UsList of EERE Waivers

397

Advance Patent Waiver W(A)2012-021 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, April 20142-021 Advance Patent Waiver

398

Advance Patent Waiver W(A)2013-013 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, April 20142-021 Advance Patent Waiver3-013

399

Advance Patent Waiver W(A)2010-006 | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access to OUO DOE MMeeting10-006 Advance Patent Waiver

400

Advance Patent Waiver W(A)2011-006 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative Records Schedule1-006 Advance Patent Waiver

Note: This page contains sample records for the topic "waiver mtbe methyl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

File:04NVCMonitoringWellWaiver (1).pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNAMTEEncroachmentPermit.pdf JumpsourceNVCMonitoringWellWaiver (1).pdf Jump to:

402

Advance Patent Waiver W(A)2011-034 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034 Advance Patent Waiver W(A)2011-034 This document

403

39903Federal Register / Vol. 74, No. 152 / Monday, August 10, 2009 / Rules and Regulations addressed to ``Request for Waiver of  

E-Print Network [OSTI]

addressed to ``Request for Waiver of Special Handling Fee, Office of the General Counsel, U.S. Copyright Indian Nation, based on our interpretation of comments that we received from the Penobscot Indian Nation to the Atlantic salmon habitat that is contained within the Penobscot Indian Reservation.'' We interpreted

404

MTBE Production Economics  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricityrgy81 §98 3.241

405

Detailed Chemical Kinetic Reaction Mechanism for Biodiesel Components Methyl Stearate and Methyl Oleate  

SciTech Connect (OSTI)

New chemical kinetic reaction mechanisms are developed for two of the five major components of biodiesel fuel, methyl stearate and methyl oleate. The mechanisms are produced using existing reaction classes and rules for reaction rates, with additional reaction classes to describe other reactions unique to methyl ester species. Mechanism capabilities were examined by computing fuel/air autoignition delay times and comparing the results with more conventional hydrocarbon fuels for which experimental results are available. Additional comparisons were carried out with measured results taken from jet-stirred reactor experiments for rapeseed methyl ester fuels. In both sets of computational tests, methyl oleate was found to be slightly less reactive than methyl stearate, and an explanation of this observation is made showing that the double bond in methyl oleate inhibits certain low temperature chain branching reaction pathways important in methyl stearate. The resulting detailed chemical kinetic reaction mechanism includes more approximately 3500 chemical species and more than 17,000 chemical reactions.

Naik, C; Westbrook, C K; Herbinet, O; Pitz, W J; Mehl, M

2010-01-22T23:59:59.000Z

406

alkyl-tert alkyl ethers: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TREAT METHYL- TERT-BUTYL ETHER CONTAMINATED CiteSeer Summary: Methyl-tert-butyl ether (MTBE) is a commonly used gasoline additive. Leaking underground storage tank systems,...

407

International Journal of Mass Spectrometry 249250 (2006) 303310 Pyrolysis of 2-methoxy-2,3,3-trimethylbutane (MTMB) monitored by  

E-Print Network [OSTI]

used fuel oxygenates MTBE and TAME), the predominance of bond homolysis at temperatures >900 K suggests homologues ­ methyl tert-butyl ether (MTBE) and tert-amyl methyl ether (TAME) ­ present a new set of problems discussed as alternatives to MTBE and TAME, because they are expected to be much less soluble in water. More

Morton, Thomas Hellman

408

UNIVERSITY OF CALIFORNIA Santa Barbara  

E-Print Network [OSTI]

, B. Dooher, and D. Rice, Analysis of dissolved benzene plumes and methyl tertiary butyl ether (MTBE, An evaluation of MTBE impacts to California groundwater resources, pp. 68 p., Lawrence Livermore National, Temporal Analysis of Methyl Tertiary Butyl Ether (MTBE) Plumes at California Leaking Underground Fuel tank

California at Santa Barbara, University of

409

Texas Rice, Volume V, Number 5  

E-Print Network [OSTI]

environmental lawsuits because one of their products, the gasoline additive MTBE, has con- taminated drinking water in hundreds of communities. House leaders have insisted an MTBE waiver be part of energy legislation. There have been discussions among House... Repub- licans to establish a federal fund for MTBE cleanup along with liability protection for the manufactures. President Bush praised the Senate for passing the measure, saying it would help U.S. economic growth by addressing the causes of high energy...

410

EINLADUNG INFOTAG 2001 Eine Forschungsanstalt  

E-Print Network [OSTI]

durch den Benzinzusatz MTBE. Methyl-tert-butylether gehört weltweit zu den meistproduzierten orga- nischen Chemikalien. Weil MTBE im Grundwasser auftritt, soll es in den USA als Benzinzusatz verboten

Wehrli, Bernhard

411

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Aug. 2004, p. 47204726 Vol. 70, No. 8 0099-2240/04/$08.00 0 DOI: 10.1128/AEM.70.8.47204726.2004  

E-Print Network [OSTI]

contamination of surface and groundwater resources by the gasoline oxygenate methyl tert-butyl ether (MTBE) is leading to its phaseout. Ethanol, a likely candidate to substitute MTBE, is increasingly being used

Alvarez, Pedro J.

412

Isothermal vapor-liquid equilibria for 2-methyl-2-butanol + 2-methyl-1-butanol + 1-pentanol  

SciTech Connect (OSTI)

Vapor-liquid equilibria (VLE) for 2-methyl-2-butanol + 2-methyl-1-butanol and 2-methyl-2-butanol + 2-methyl-1-butanol + 1-pentanol have been measured at 373.15 K. The binary VLE results have been correlated by different liquid-phase activity coefficient models. The binary interaction parameters obtained from Wilson, NRTL, and UNIQUAC models in this and a previously study are used to predict the VLE data for the ternary system. Vapor-liquid equilibrium (VLE) data are necessary for the design of distillation processes.

Aucejo, A.; Burguet, M.C.; Monton, J.B.; Munoz, R.; Sanchotello, M.; Vazquez, M.I. (Univ. of Valencia (Spain). Dept. de Ingenieria Quimica)

1994-07-01T23:59:59.000Z

413

Treatment of Methyl tert-Butyl Ether Vapors in Biotrickling Filters. 1.  

E-Print Network [OSTI]

because of its low cost and blending characteristics. Depending on the season, reformulated gasoline of reactor per hour, a value comparable to other gasoline constituents. Such high performance could enhancer in gasoline. The use of MTBE increased rapidly after the 1990 Clean Air Act Amendments required

414

Conference Waiver  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

events and issues of concern to DOE Emergency Management. Events such as Fukushima, the wild-land fires, and other catastrophic disasters have uncovered issues that must be...

415

Conference Waiver  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheatfor Optimized91 * September 2005|Conference

416

MOTORCYCLE SAFETY COURSE WAIVER & INDEMNIFICATION rev.01/13 Participation in this course requires physical stamina, motor coordination, and mental alertness. The undersigned hereby attests that  

E-Print Network [OSTI]

MOTORCYCLE SAFETY COURSE WAIVER & INDEMNIFICATION rev.01/13 Participation in this course requires of _____________________________________________________, the Motorcycle Safety Foundation, the training sponsor, the owner of the training motorcycle, and the owner to participate in the Motorcycle Safety Course, I agree as follows: I fully understand and acknowledge that: (a

417

Determination of Total Lipids as Fatty Acid Methyl Esters (FAME...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

will be replaced by an ester bond between the fatty acid and a methyl group, producing methyl esters of the fatty acids (FAME) and free glycerol. 1.4 The FAME are then...

418

Comparative Dynamics of Leucine Methyl Groups in FMOC-Leucine...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dynamics of Leucine Methyl Groups in FMOC-Leucine and in a ProteinHydrophobic Core Probed by Solid-State Deuteron Comparative Dynamics of Leucine Methyl Groups in FMOC-Leucine and...

419

Sub-millimeter sized methyl butanoate droplet combustion: Microgravity experiments  

E-Print Network [OSTI]

-dependent, sphero-symmetric droplet combustion simulation that includes detailed gas phase chemical kineticsSub-millimeter sized methyl butanoate droplet combustion: Microgravity experiments and detailed 2012 Abstract Combustion characteristics of isolated sub-millimeter sized methyl butanoate (MB

Walter, M.Todd

420

Vapor-liquid equilibria for systems of 1-butanol with 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl-2-butanol, and 3-methyl-2-butanol at 30 and 100 kPa  

SciTech Connect (OSTI)

Vapor-liquid equilibrium data were measured for binary systems of 1-butanol with 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl-2-butanol, and 3-methyl-2-butanol at 30 and 100 kPa. The experimental data obtained in this work are thermodynamically consistent according to a point-to-point consistency test, and deviation from ideal behavior is small in all cases. They can be equally well correlated with the Margules, Van Laar, Wilson, NRTL, and UNIQUAC equations.

Aucejo, A.; Burguet, M.C.; Monton, J.B.; Munoz, R.; Sanchotello, M.; Vazquez, M.I. (Univ. de Valencia (Spain). Dept. de Ingenieria Quimica)

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "waiver mtbe methyl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

E-Print Network 3.0 - amplified methylation polymorphism Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Sciences and Ecology 2 Infraspecific DNA Methylation Polymorphism in Cotton (Gossypium Summary: Infraspecific DNA Methylation Polymorphism in Cotton (Gossypium...

422

PROOF COPY [023113] 008209QEE [023113]008209QEE  

E-Print Network [OSTI]

as a replacement for the gasoline oxygenate, methyl tert-butyl ether MTBE , may lead to indirect impacts related facilitate the migration of pre-existing contamination. MTBE 25 mg/L influent was not degraded inlet by one order of magnitude relative to columns fed BTEX alone or with MTBE. However, 16S

Alvarez, Pedro J.

423

Environmental Toxicology and Chemistry, Vol. 21, No. 12, pp. 26312639, 2002 Printed in the USA  

E-Print Network [OSTI]

--Aquifer microcosms were used to determine how ethanol and methyl-tert-butyl ether (MtBE) affect monoaromatic compared to benzene, which was degraded only under aerobic conditions. The MtBE was not degraded within 100 to phase out MtBE as a gasoline oxy- genate is likely to significantly increase the use of ethanol

Alvarez, Pedro J.

424

90% of new cars have engines specially designed to run on hydrous ethanol. This avoids the expense of remov-  

E-Print Network [OSTI]

competes with gasoline (petrol), diesel and MTBE (methyl tert-butyl ether, added to gasoline to MTBE, however, ethanol is comparable regarding price per energy unit and has considerable environmental advantages. MTBE is added to gasoline as an octane booster, replac- ing the lead formerly used

425

Physico-chemical and biological characterization of an aquifer polluted with Yves Benoit (1)  

E-Print Network [OSTI]

to in order to meet specific requirements. Oxygenates such as methyl tert-butyl ether (MTBE) or ethyl tert on groundwater was not estimated prior to their utilization and the actual level of MTBE and ETBE contamination of MTBE- and ETBE-biodegradation is quite poor. Two directives have been adopted in the EU to promote

Paris-Sud XI, Université de

426

Critical Reviews in Environmental Science and Technology, 00(0):000000 (2001) 1064-3389/01/$.50  

E-Print Network [OSTI]

water contamination by methyl tert-butyl ether (MTBE) have made policymakers more cognizant of the need reformulated gasoline (RFG) (2% oxygen) year-round to reduce emissions that contribute to ozone formation. MTBE-making process that lead to the widespread use of MTBE over the last decade is now quite controversial (BRP, 1999

Alvarez, Pedro J.

427

Monitoring synaptic protein dynamics with higher temporal, spatial, and molecular resolution  

E-Print Network [OSTI]

Spectrometry mSOG MiniSOG MTBE Methyl tert-butyl ether mTORMethyl tert-butyl ether (MTBE, 1.4 mL) was then added for1,000 g, 5 min). The MTBE layer was collected into a 1.5-mL

Butko, Margaret

2012-01-01T23:59:59.000Z

428

I. Pt-Catalyzed Tandem Epoxide Fragmentation/Pentannulation of Propargylic Esters II. Progress Toward the Kopsia Family of Indole Alkaloids  

E-Print Network [OSTI]

methyl t-butyl ether (MTBE), a much more environmentallyPhMe, reflux POCl 3 , Et 3 N CN MTBE Scheme 3.3: OptimizedO H NH POCl 3 , Et 3 N CN MTBE 1-Isocyanocyclohex-1-ene (

Pujanauski, Brian Gerard

2010-01-01T23:59:59.000Z

429

Effects of oxygenate concentration on species mole fractions in premixed n-heptane flames  

E-Print Network [OSTI]

-heptane/oxygenate mixtures were 2.7 and 3.4. Three different fuel oxygenates (i.e. MTBE, methanol, and ethanol) were tested tertiary-butyl ether (MTBE), ethyl tertiary-butyl ether (ETBE), and tertiary amyl methyl ether (TAME)) were considered as possible fuel oxygenates. MTBE and ethanol are the most common oxygenates currently used

Senkan, Selim M.

430

Fourier Transform Infrared Spectroscopy  

E-Print Network [OSTI]

FTIR - 1 Fourier Transform Infrared Spectroscopy FTIR DETERMINATION OF MTBE IN GASOLINE AND ETHANOL FTIR DETERMINATION OF MTBE IN GASOLINE AND ETHANOL IN VODKA AND MOUTHWASH INTRODUCTION As a part has contained MTBE (methyl tert­butyl ether) as its primary oxygenate. However, there has been

Nizkorodov, Sergey

431

Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria  

SciTech Connect (OSTI)

Methylmercury is a neurotoxin that poses significant health risks to humans. Some anaerobic sulphate- and iron-reducing bacteria can methylate oxidized forms of mercury, generating methylmercury1-4. One strain of sulphate-reducing bacteria (Desulfovibrio desulfuricans ND132) can also methylate elemental mercury5. The prevalence of this trait among different bacterial strains and species remains unclear, however. Here, we compare the ability of two strains of the sulphate-reducing bacterium Desulfovibrio and one strain of the iron-reducing bacterium Geobacter to oxidise and methylate elemental mercury in a series of laboratory incubations. Experiments were carried out under dark, anaerobic conditions, in the presence of environmentally-relevant concentrations of elemental mercury. We report differences in the ability of these organisms to oxidise and methylate elemental mercury. In line with recent findings5, we show that Desulfovibrio desulfuricans ND132 can both oxidise and methylate elemental mercury. However, the rate of methylation of elemental mercury is only about one third the rate of methylation of oxidized mercury. We also show that Desulfovibrio alaskensis G20 can oxidise, but not methylate, elemental mercury. Geobacter sulfurreducens PCA is able to oxidise and methylate elemental mercury in the presence of cysteine. We suggest that the activity of methylating and non-methylating bacteria may together enhance the formation of methylmercury in anaerobic environments.

Hu, Haiyan [ORNL] [ORNL; Lin, Hui [ORNL] [ORNL; Zheng, Wang [ORNL] [ORNL; Tomanicek, Stephen J [ORNL] [ORNL; Johs, Alexander [ORNL] [ORNL; Feng, Xinbin [ORNL] [ORNL; Elias, Dwayne A [ORNL] [ORNL; Liang, Liyuan [ORNL] [ORNL; Liang, Liyuan [ORNL] [ORNL; Gu, Baohua [ORNL] [ORNL

2013-01-01T23:59:59.000Z

432

Major sources to waivers - lessons learned and $ saved at two U.S. Navy facilities  

SciTech Connect (OSTI)

Naval Surface Warfare Center Carderock Division (NSWCCD) manages 17 US Navy research and development (R and D) facilities across the country. These include two facilities in Maryland -- one in Annapolis and the other in West Bethesda which is better known as Carderock. NO{sub x} is the only air emission which exceeds a threshold limit at both properties. The potential to emit NO{sub x} is 72 tpy for Annapolis and 51 tpy for Carderock. The facilities are in different counties but each county has a trigger limit for NO{sub x} of 25 tpy making both facilities major sources. In preparation for the Title V permit applications to the state of Maryland, Carderock budgeted $150,000 in fiscal year 1996 to have a contractor conduct air emission inventories and prepare the Title V permits for both Carderock and Annapolis. However, the Carderock Air Program Manager did not pursue a contractor to perform the work but personally conducted the air emission inventory for both Annapolis and Carderock. Noticing a large difference between the potential-to-emit and the actual emissions of NO{sub x}, the Air Program Manager began negotiations with the Maryland Department of the Environment (MDE) to waive the requirement for the Title V permit application. MDE responded in December 1996 that if the facility`s actual emissions would not exceed 50% of any of the threshold limits during any 12 month period, then a letter of understanding stating such should be submitted to MDE. This letter of understanding would be recognized by the US EPA and MDE and would act as a waiver to the Title V permit applicability up to July 31, 1998. Carderock and Annapolis meet this requirement and letters of understanding were drafted and sent to MDE in January 1997.

Klitsch, M. [Naval Surface Warfare Center, West Bethesda, MD (United States). Carderock Div.

1997-12-31T23:59:59.000Z

433

Water Quality  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

which can lead to public health problems. * MtBE (Methyl tert Butyl Ether), a gasoline additive, has begun to contaminate ground water supplies. * Similarly, perchlorate has...

434

An Experimental and Kinetic Modeling Study of Methyl Decanoate Combustion  

SciTech Connect (OSTI)

Biodiesel is typically a mixture of long chain fatty acid methyl esters for use in compression ignition engines. Improving biofuel engine performance requires understanding its fundamental combustion properties and the pathways of combustion. This research study presents new combustion data for methyl decanoate in an opposed-flow diffusion flame. An improved detailed chemical kinetic model for methyl decanoate combustion is developed, which serves as the basis for deriving a skeletal mechanism via the direct relation graph method. The novel skeletal mechanism consists of 648 species and 2998 reactions. This mechanism well predicts the methyl decanoate opposed-flow diffusion flame data. The results from the flame simulations indicate that methyl decanoate is consumed via abstraction of hydrogen atoms to produce fuel radicals, which lead to the production of alkenes. The ester moiety in methyl decanoate leads to the formation of low molecular weight oxygenated compounds such as carbon monoxide, formaldehyde, and ketene.

Sarathy, S M; Thomson, M J; Pitz, W J; Lu, T

2010-02-19T23:59:59.000Z

435

Methyl viologen radical reactions with several oxidizing agents. [Gamma Radiation  

SciTech Connect (OSTI)

The rates of oxidation of the methyl viologen radical by peroxodisulfate and hydrogen peroxide has been investigated. The methyl viologen free radical was produced by pulse radiolysis. The reaction of the peroxodisulfate radical with the methyl viologen radical was first order in both species, and the reaction rate constant is reported. A el-radiation study revealed a chain decomposition of the peroxodisulfate radical involving the methyl viologen radical when methanol, ethanol, or 2-propanol was present. Loss of the methyl viologen radical was then no longer observed to be a simple first-order reaction. The reaction of hydrogen peroxide with the methyl viologen radical was very slow in the presence of 1 M methanol. A much faster reaction in the absence of methanol was interpreted to be a reaction of the methyl viologen radical with the peroxy radicals. Hydrogen peroxide, in contrast to the chain decomposition of peroxodisulfate radicals, does not participate in a chain reaction involving the methyl viologen radical and methanol. Rate constants for the reaction of methyl viologen radical with dichromate radical, iodate radical, and ferricyanide radical are reported.

Levey, G.; Ebbesen, T.W.

1983-01-01T23:59:59.000Z

436

ORTH/VIM proteins that regulate DNA methylation are functional ubiquitin E3 ligases  

E-Print Network [OSTI]

ORTH/VIM proteins that regulate DNA methylation are functional ubiquitin E3 ligases Edward Kraft1 methylation status in vivo. Keywords: RING, E3 ligase, DNA methylation, ubiquitylation, ORTH/VIM, SRA

Jacobsen, Steve

437

Host cells and methods for producing 3-methyl-2-buten-1-ol, 3-methyl-3-buten-1-ol, and 3-methyl-butan-1-ol  

DOE Patents [OSTI]

The invention provides for a method for producing a 5-carbon alcohol in a genetically modified host cell. In one embodiment, the method comprises culturing a genetically modified host cell which expresses a first enzyme capable of catalyzing the dephosphorylation of an isopentenyl pyrophosphate (IPP) or dimethylallyl diphosphate (DMAPP), such as a Bacillus subtilis phosphatase (YhfR), under a suitable condition so that 5-carbon alcohol is 3-methyl-2-buten-1-ol and/or 3-methyl-3-buten-1-ol is produced. Optionally, the host cell may further comprise a second enzyme capable of reducing a 3-methyl-2-buten-1-ol to 3-methyl-butan-1-ol, such as a reductase.

Chou, Howard H. (Berkeley, CA); Keasling, Jay D. (Berkeley, CA)

2011-07-26T23:59:59.000Z

438

E-Print Network 3.0 - arsenic methylation profiles Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: , urinary arsenic methylation profiles, and urothelial carcinoma susceptibility. Food Chem. Toxicol. 46, 929... and in vitro studies suggest that methylated arsenic...

439

Methyl bromide emissions to the atmosphere from temperate woodland ecosystems  

E-Print Network [OSTI]

The environmental importance of methyl bromide (CH3Br) arises from its contribution to stratospheric ozone loss processes and, as a consequence, its emissions from anthropogenic sources are subject to the Montreal Protocol. A better understanding...

Drewer, Julia; Heal, Kate V; Smith, Keith A; Heal, Mathew R

2008-01-01T23:59:59.000Z

440

The Genetics of de novo Methylation in Arabidopsis thaliana  

E-Print Network [OSTI]

domains akin to UHRF1 and the VIM proteins. These proteinsthe VARIANT IN METHYLATION (VIM) family. In higher orderUHRF1 in mammal or the VIM proteins in plants. UHRF1/VIM

Greenberg, Maxim Van Cleef

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waiver mtbe methyl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Regulation of yeast development by mRNA methylation  

E-Print Network [OSTI]

The internal methylation of mRNA post-transcriptionally is an essential component of the mRNA editing machinery in virtually every eukaryotic system. Despite this ubiquity, little is known about the relevance, consequences ...

Agarwala, Sudeep D

2012-01-01T23:59:59.000Z

442

akap12 promoter methylation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(MEK) with hydrogen peroxide (H2O2), is widely used in industry as a radicalThermal Hazard Analysis of Methyl Ethyl Ketone Peroxide Ron-Hsin Chang, Chi-Min Shu and Po-Yin Yeh...

443

Control of mercury methylation in wetlands through iron addition  

E-Print Network [OSTI]

Mason, R. P. ; Flegal, A. R. , Mercury speciation in the SanP. ; Flegal, A. R. , Decadal mercury trends in San FranciscoP. G. ; Nelson, D. C. , Mercury methylation from unexpected

Sedlak, David L; Ulrich, Patrick D

2009-01-01T23:59:59.000Z

444

Methyl arsenic adsorption and desorption behavior on iron oxides  

E-Print Network [OSTI]

METHYL ARSENIC ADSORPTION AND DESORPTION BEHAVIOR ON IRON OXIDES A Thesis by BRANDON JAMES LAFFERTY Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 2004 Major Subject: Soil Science METHYL ARSENIC ADSORPTION AND DESORPTION BEHAVIOR ON IRON OXIDES A Thesis by BRANDON JAMES LAFFERTY Submitted to Texas A&M University...

Lafferty, Brandon James

2005-08-29T23:59:59.000Z

445

The synthesis of some N-methylated aminoalkylphosphonic acids  

E-Print Network [OSTI]

(XLIII) were o heated with diethyl hydrogenphosphonate (XVI) at approximately 100 until the evolution of dimethylarnine (XXX) ceased. The 1-dimethyl- amino 1-alkenes (XLIV) reacted exothermically with diethyl hydro- genphosphonate (XVI) once... exothermically with methyl iodide at room temperature whereas the other eaters, which contained more bulky (R) substituents, did not. Secondly, the betaine obtained m the highest yield, N, N, N-trimethyl-N-(phosphono- methyl)ammonium hydroxide, mner salt...

Eikenberry, Jon Nathan

1966-01-01T23:59:59.000Z

446

Nested methylation-specific polymerase chain reaction cancer detection method  

DOE Patents [OSTI]

A molecular marker-based method for monitoring and detecting cancer in humans. Aberrant methylation of gene promoters is a marker for cancer risk in humans. A two-stage, or "nested" polymerase chain reaction method is disclosed for detecting methylated DNA sequences at sufficiently high levels of sensitivity to permit cancer screening in biological fluid samples, such as sputum, obtained non-invasively. The method is for detecting the aberrant methylation of the p16 gene, O 6-methylguanine-DNA methyltransferase gene, Death-associated protein kinase gene, RAS-associated family 1 gene, or other gene promoters. The method offers a potentially powerful approach to population-based screening for the detection of lung and other cancers.

Belinsky, Steven A. (Albuquerque, NM); Palmisano, William A. (Edgewood, NM)

2007-05-08T23:59:59.000Z

447

Methods for detection of methyl-CpG dinucleotides  

DOE Patents [OSTI]

The invention provides methods for enriching methyl-CpG sequences from a DNA sample. The method makes use of conversion of cytosine residues to uracil under conditions in which methyl-cytosine residues are preserved. Additional methods of the invention enable to preservation of the context of me-CpG dinucleotides. The invention also provides a recombinant, full length and substantially pure McrA protein (rMcrA) for binding and isolation of DNA fragments containing the sequence 5'-C.sup.MeCpGG-3'. Methods for making and using the rMcrA protein, and derivatives thereof are provided.

Dunn, John J.

2013-01-29T23:59:59.000Z

448

Methods for detection of methyl-CpG dinucleotides  

DOE Patents [OSTI]

The invention provides methods for enriching methyl-CpG sequences from a DNA sample. The method makes use of conversion of cytosine residues to uracil under conditions in which methyl-cytosine residues are preserved. Additional methods of the invention enable to preservation of the context of me-CpG dinucleotides. The invention also provides a recombinant, full length and substantially pure McrA protein (rMcrA) for binding and isolation of DNA fragments containing the sequence 5'-C.sup.MeCpGG-3'. Methods for making and using the rMcrA protein, and derivatives thereof are provided.

Dunn, John J

2013-11-26T23:59:59.000Z

449

Methods for detection of methyl-CpG dinucleotides  

DOE Patents [OSTI]

The invention provides methods for enriching methyl-CpG sequences from a DNA sample. The method makes use of conversion of cytosine residues to uracil under conditions in which methyl-cytosine residues are preserved. Additional methods of the invention enable to preservation of the context of me-CpG dinucleotides. The invention also provides a recombinant, full length and substantially pure McrA protein (rMcrA) for binding and isolation of DNA fragments containing the sequence 5'-C.sup.MeCpGG-3'. Methods for making and using the rMcrA protein, and derivatives thereof are provided.

Dunn, John J.

2012-09-11T23:59:59.000Z

450

Effects of hydration water on protein methyl group dynamics insolution  

SciTech Connect (OSTI)

Elastic and quasielastic neutron scattering experiments have been used to investigate the dynamics of methyl groups in a protein-model hydrophobic peptide in solution. The results suggest that, when the hydrophobic side chains are hydrated by a single hydration water layer, the only allowed motions are confined and attributed to librational and rotational movement associated with the methyl groups. They provide unique experimental evidence that the structural and dynamical properties of the interfacial water strongly influence the side-chain dynamics and the activation of diffusive motion.

Russo D; Hura GL; Copley JRD

2007-01-01T23:59:59.000Z

451

E-Print Network 3.0 - anhydride-vinyl methyl ether Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4-Methyl-2-pentanol Other secondary alcohols... - quire handling with precautions. Acrolein tert-Butyl methyl ether Di(1-propynl) ether n... Methoxy-1,3,5,7- cyclooctatetraene...

452

Freezing of Dynamics of a Methyl Group in a Protein Hydrophobic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Freezing of Dynamics of a Methyl Group in a Protein Hydrophobic Core at Cryogenic Temperatures by Deuteron NMR Spectroscopy. Freezing of Dynamics of a Methyl Group in a Protein...

453

Environmental and age effects on methylation changes in human brain and blood cells  

E-Print Network [OSTI]

Previous studies have shown that DNA methylation may 1 e associated with disease, aging, the rate of aging and genetics. In this thesis, age is accurately predicted from DNA methylation in brain and blood tissues using two ...

Giguzinsky, Orit

2014-01-01T23:59:59.000Z

454

Ultrafast photochemistry of methyl hydroperoxide on ice particles  

E-Print Network [OSTI]

Ultrafast photochemistry of methyl hydroperoxide on ice particles M. A. Kambouresa , S. AOOH, on water clusters produces a surprisingly wide range of products on a subpicosecond time scale | photodissociation Photoinduced processes at surfaces of water or ice are of interest in atmospheric chemistry

Nizkorodov, Sergey

455

Phase 1 Methyl Iodide Deep-Bed Adsorption Tests  

SciTech Connect (OSTI)

Nuclear fission results in the production of fission products (FPs) and activation products including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent [Jubin 2012b]. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the first phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during Fiscal Year (FY) 2013 and early FY-2014. Testing has been performed to address questions posed in the test plan, and followed the testing outline in the test plan. Tests established detection limits, developed procedures for sample analysis with minimal analytical interferences, and confirmed earlier results that show that the methyl iodide reacts when in contact with the AgZ sorbent, and not significantly in the gas flow upstream of the sorbent. The reaction(s) enable separation of the iodine from the organic moiety, so that the iodine can chemisorb onto the sorbent. The organic moiety can form other compounds, some of which are organic compounds that are detected and can be tentatively identified using GC-FID and GCMS. Test results also show that other gas constituents (NOx and/or H2O) can affect the methyl iodide reactions. With NOx and H2O present in the gas stream, the majority of uncaptured iodine exiting iodine-laden sorbent beds is in the form of I2 or HI, species that are soluble in NaOH scrubbing solution for iodine analysis. But when NOx and H2O are not present, then the majority of the uncaptured iodine exiting iodine-laden sorbent is in the form of methyl iodide. Methyl iodide adsorption efficiencies have been high enough so that initial DFs exceed 1,000 to 10,000. The methyl iodide mass transfer zone depths are estimated at 4-8 inches, possibly deeper than mass transfer zone depths estimated for I2 adsorption on AgZ. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

Nick Soelberg; Tony Watson

2014-08-01T23:59:59.000Z

456

Technical Review Report for the Mound 1KW Package Safety Analysis Report for Packaging Waiver for the Use of Modified Primary Containment Vessel (PCV)  

SciTech Connect (OSTI)

This Technical Review Report (TRR) documents the review, performed by the Lawrence Livermore National Laboratory (LLNL) staff, at the request of the U.S. Department of Energy (DOE), on the Waiver for the Use of Modified Primary Containment Vessels (PCV). The waiver is to be used to support a limited number of shipments of fuel for the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) Project in support of the National Aeronautics and Space Administration's (NASA's) Mars Science Laboratory (MSL) mission. Under the waiver, an inventory of existing national security PCVs will be converted to standard PCVs. Both types of PCVs are currently approved for use by the Office of Nuclear Energy. LLNL has previously reviewed the national security PCVs under Mound 1KW Package Safety Analysis Report for Packaging, Addendum No. 1, Revision c, dated June 2007 (Addendum 1). The safety analysis of the package is documented in the Safety Analysis Report for Packaging (SARP) for the Mound 1KW Package (i.e., the Mound 1KW SARP, or the SARP) where the standard PCVs have been reviewed by LLNL. The Mound 1KW Package is certified by DOE Certificate of Compliance (CoC) number USA/9516/B(U)F-85 for the transportation of Type B quantities of plutonium heat source material. The waiver requests an exemption, claiming safety equivalent to the requirements specified in 10 CFR 71.12, Specific Exemptions, and will lead to a letter amendment to the CoC. Under the waiver, the Office of Radioisotope Power Systems, NE-34, is seeking an exemption from 10 CFR 71.19(d)(1), Previously Approved Package,[5] which states: '(d) NRC will approve modifications to the design and authorized contents of a Type B package, or a fissile material package, previously approved by NRC, provided--(1) The modifications of a Type B package are not significant with respect to the design, operating characteristics, or safe performance of the containment system, when the package is subjected to the tests specified in {section}71.71 and 71.73.' The LLNL staff had previously reviewed a request from Idaho National Laboratory (INL) to reconfigure national security PCVs to standard PCVs. With a nominal 50% reduction in both the height and the volume, the LLNL staff initially deemed the modifications to be significant, which would not be allowed under the provisions of 10 CFR 71.19(d)(1)--see above. As a follow-up, the DOE requested additional clarification from the Nuclear Regulatory Commission (NRC). The NRC concluded that the reconfiguration would be a new fabrication, and that an exemption to the regulations would be required to allow its use, as per the requirements specified in 10 CFR 71.19(c)(1), Previously Approved Package: '(c) A Type B(U) package, a Type B(M) package, or a fissile material package previously approved by the NRC with the designation '-85' in the identification number of the NRC CoC, may be used under the general license of {section}71.17 with the following additional conditions: (1) Fabrication of the package must be satisfactorily completed by December 31, 2006, as demonstrated by application of its model number in accordance with 71.85(c).' Although the preferred approach toward the resolution of this issue would be for the applicant to submit an updated SARP, the applicant has stated that the process of updating the Model Mound 1KW Package SARP is a work that is in progress, but that the updated SARP is not yet ready for submittal. The applicant has to provide a submittal, proving that the package meets the '-96' requirements of International Atomic Energy Agency (IAEA) Safety Standards Series No. TS-R-1, in order to fabricate approved packagings after December 31, 2006. The applicant has further stated that all other packaging features, as described in the currently approved Model Mound 1KW Package SARP, remain unchanged. This report documents the LLNL review of the waiver request. The specific review for each SARP Chapter is documented.

West, M; Hafner, R

2008-05-05T23:59:59.000Z

457

Mercury Methylation in Mine Wastes Collected from Abandoned Mercury Mines in the USA  

SciTech Connect (OSTI)

Mercury mines contain highly elevated Hg contents, but more problematic environmentally are elemental Hg and soluble Hg salts produced during ore retorting that remain in wastes at mine sites. Under certain conditions, these inorganic Hg compounds convert to bioavailable, highly toxic organic Hg forms. Speciation and transformation of Hg was studied in wastes collected from abandoned Hg mines at McDermitt, NV, and Terlingua, TX, which are moderate size on an international scale and produced about 10,000 and 5,000 t of elemental Hg, respectively. In waste samples, we measured total Hg and methyl-Hg contents, identified various Hg compounds using Hg-thermo-desorption pyrolysis, and determined rates of Hg methylation and methyl-Hg demethylation using isotopic-tracer methods. Pyrolysis analysis of mine wastes showed variable amounts of cinnabar, metacinnabar, Hg salts, elemental Hg, and elemental Hg sorbed onto particulates such as clay and Fe-oxides. Mine wastes with the highest methyl-Hg contents correspond to those with elemental Hg and particulate-sorbed elemental Hg, and also produced the highest laboratory-estimated potential Hg methylation rates, as much as 4.8%/day. Samples containing dominantly cinnabar showed little or no Hg methylation. Mine wastes with high methyl-Hg contents generally showed low methyl-Hg demethylation, suggesting that Hg methylation was dominant. Both mines are located in semiarid climates, and during this study, streambeds below the mines were dry. Total Hg contents in stream sediment collected below the mines show significant dilution, and methyl-Hg contents were typically below the limit of determination. Methylation of Hg downstream from Hg mines is probably lower in arid climates due to lack of mine-water runoff and lower microbial activity. The correspondence of mine wastes containing elemental Hg and high methyl-Hg contents suggests that Hg0 oxidizes to Hg2+, which is subsequently bioavailable for microbial Hg methylation.

Gray, John E. (U.S. Geological Survey); Hines, Mark E. (Massachusetts, Univ Of); Biester, Harald (Heidelberg College); Lasorsa, Brenda K. (BATTELLE (PACIFIC NW LAB))

2003-05-01T23:59:59.000Z

458

Proton NMR analysis of octane number for motor gasoline: Part V  

SciTech Connect (OSTI)

A method to predict the octane number of automobile gasoline containing methyl tert-butyl ether (MTBE) by proton magnetic resonance (PMR) spectrometry was studied. Samples of gasoline whose octane numbers had been identified according to the ASTM standards (commercially available premium gasoline to which MTBE was added at rates of 7 vol % and 14 vol %) were used in this investigation of the effect of MTBE on the octane number. The findings were utilized to introduce a term regarding MTBE into the previously reported linear regression equation for estimating the octane number from the PMR spectrum, and the appropriateness of the linear regression equation was assessed. As a result the MTBE contents in the sample were determined with satisfactory accuracy by using a standard addition method, and a linear regression equation reflecting the effect of MTBE was obtained. These achievements are reported. 11 refs., 3 figs., 5 tabs.

Ichikawa, M.; Nonaka, N.; Amano, H.; Takada, I.; Ishimori, S. [Suzuki Motor Corp., Hamamatsu (Japan); Andoh, H.; Kumamoto, K. [Showa Shell Sikiyu Tokyo (Japan)

1992-10-01T23:59:59.000Z

459

Motor Gasoline Outlook and State MTBE Bans  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. Crude Oil31 E n e

460

E-Print Network 3.0 - acibenzolar-s-methyl para controle Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a coffee-leaf extract formulation in tomato Summary: ), acibenzolar-S-methyl (Bion) or water (control) and three days subsequently infected with the tomato pathogen... in the...

Note: This page contains sample records for the topic "waiver mtbe methyl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Durability of Poly (Methyl Methacrylate) Lenses Used in Concentrating Photovoltaics (Presentation)  

SciTech Connect (OSTI)

This presentation reports the findings of NREL's screen test to characterize the durability of poly (methyl methacrylate) lenses used in concentrated photovoltaics.

Miller, D.; Gedvilas, L.; To, B.; Kennedy, C.; Kurtz, S.

2010-10-21T23:59:59.000Z

462

E-Print Network 3.0 - anhydroecgonine methyl ester Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Idaho Collection: Environmental Sciences and Ecology 9 A Novel Post-translational Modification of Yeast Elongation Factor 1A Summary: that is released as volatile methyl groups...

463

Personal Services Agreements Waivers  

E-Print Network [OSTI]

these services. 4. Support and Maintenance Agreements: Services include preventive maintenance as well - Equipment Maintenance/Repair Services in this category are used for all types of equipment maintenance the equipment necessary to perform certain services. 2. Equipment Maintenance and Repair: Services include

464

Personal Services Agreements Waivers  

E-Print Network [OSTI]

, State Controller's Office). All personal services contract activity will be reported through the state

465

Control Study of Ethyl tert-Butyl Ether Reactive Distillation Muhammad A. Al-Arfaj  

E-Print Network [OSTI]

-butyl ether (ETBE) for gasoline blending as a replacement for methyl tert-butyl ether (MTBE) because and be blended with ETBE in the gasoline pool. Even for neat operation, if the conversion is low, the unconverted

Al-Arfaj, Muhammad A.

466

APPENDXD.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Report The Form EIA-819, "Monthly Oxygenate Report" provides production data for fuel ethanol and methyl tertiary butyl ether (MTBE). End-of-month stock data held at ethanol...

467

antioxidant butylated hydroxytoluene: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by Fusarium solani CiteSeer Summary: Fusarium solani degraded methyl tert-butyl ether (MTBE) and other oxygenated compounds from gasoline including tert-butyl alcohol (TBA). The...

468

alkyl tert-butyl ether: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by Fusarium solani CiteSeer Summary: Fusarium solani degraded methyl tert-butyl ether (MTBE) and other oxygenated compounds from gasoline including tert-butyl alcohol (TBA). The...

469

Characterization of the Deltaproteobacteria in contaminated and uncontaminated stream sediments and identification of potential mercury methylators  

SciTech Connect (OSTI)

Microbial communities were examined in surface stream sediments at 5 contaminated sites and 1 control site near Oak Ridge, TN, USA, to identify bacteria that could be contributing to mercury (Hg) methylation. The phylogenetic composition of the sediment bacterial community was examined over 3 quarterly sampling periods (36 samples) using 16S rRNA gene pyrosequencing. Only 3064 sequences (0.85% of the total community) were identified as Deltaproteobacteria, the only group known to methylate Hg, using the Ribosomal Database Project classifier at the 99% confidence threshold. Constrained ordination techniques indicated statistically significant positive linear correlations between Desulfobulbus spp., Desulfonema spp. and Desulfobacca spp. and methyl-Hg concentrations at the Hg-contaminated sites. In contrast, the distribution of organisms related to Byssovorax spp. was significantly correlated to inorganic carbon, nitrate and uranium concentrations but not to Hg or methyl-Hg. Overall, the abundance and richness of Deltaproteobacteria sequences were higher in uncontaminated sediments, while the majority of the members present at the contaminated sites were either known potential metal-reducers/methylators or metal tolerant species. Given the abundance relative to other known Hg methylators and the association with methyl-Hg, Desulfobulbus spp. is considered a prime candidate for involvement in Hg methylation in these streams.

Mosher, Jennifer [ORNL; Vishnivetskaya, Tatiana A [ORNL; Elias, Dwayne A [ORNL; Podar, Mircea [ORNL; Brooks, Scott C [ORNL; Brown, Steven D [ORNL; Brandt, Craig C [ORNL; Palumbo, Anthony Vito [ORNL

2012-01-01T23:59:59.000Z

470

Arsenic Methylation and Bladder Cancer Risk in CaseControl Studies in Argentina and the  

E-Print Network [OSTI]

Arsenic Methylation and Bladder Cancer Risk in Case­Control Studies in Argentina and the United's susceptibility to bladder cancer. Methods: Urinary methylation products were measured in subjects from Argentina (114 cases and 114 controls) and the United States (23 cases and 49 controls). Results: In Argentina

California at Berkeley, University of

471

et al. (2008) identified several additional methylation sites on FOXO1 that ap-  

E-Print Network [OSTI]

, it remains to be deter- mined how methylation alters the activity and posttranslational regulation. In this light, methylation could, therefore, play a very general role in the regulation of FOXO1 activity serve as a link between aging and age-related diseases such as diabe- tes and cancer. FOXO dysregulation

Hertel, Klemens J.

472

Mercury methylation in oxygen deficient zones of the oceans: No evidence for the predominance of anaerobes  

E-Print Network [OSTI]

Mercury methylation in oxygen deficient zones of the oceans: No evidence for the predominance Keywords: Methylmercury Oxygen minimum zone Arabian Sea Equatorial Eastern Pacific Mercury methylation Although a large fraction of the world's population is exposed to mercury through consumption of marine

Morel, François M. M.

473

Methyl-CpG island-associated genome signature tags  

DOE Patents [OSTI]

Disclosed is a method for analyzing the organismic complexity of a sample through analysis of the nucleic acid in the sample. In the disclosed method, through a series of steps, including digestion with a type II restriction enzyme, ligation of capture adapters and linkers and digestion with a type IIS restriction enzyme, genome signature tags are produced. The sequences of a statistically significant number of the signature tags are determined and the sequences are used to identify and quantify the organisms in the sample. Various embodiments of the invention described herein include methods for using single point genome signature tags to analyze the related families present in a sample, methods for analyzing sequences associated with hyper- and hypo-methylated CpG islands, methods for visualizing organismic complexity change in a sampling location over time and methods for generating the genome signature tag profile of a sample of fragmented DNA.

Dunn, John J

2014-05-20T23:59:59.000Z

474

THE JOURNAL OF CHEMICAL PHYSICS 138, 054301 (2013) Photodissociation dynamics of the methyl perthiyl radical at 248 nm  

E-Print Network [OSTI]

the photodissociation of the methyl perthiyl radical CH3SS at 248 nm. The radical was produced by flash pyrolysis

Neumark, Daniel M.

475

Optical measurements of methyl group tunneling in molecular crystals: Temperature dependence of the nuclear spin conversion rate  

E-Print Network [OSTI]

) The tunneling methyl groups in dimethyl-s-tetrazine (DMST) doped single crystals of durene were investigated

476

Modelling Study of the Low-Temperature Oxidation of Large Methyl Esters J. Biet, V. Warth, O. Herbinet*  

E-Print Network [OSTI]

-decane / methyl palmitate mixture in a jet-stirred reactor. This paper also presents the construction and a comparison of models for methyl esters from C7 up to C17 in terms of conversion in a jet-stirred reactor, the development of renewable energy is more vital than ever [1,2]. The production of biofuels such as methyl

Paris-Sud XI, Université de

477

Ethanol Demand in United States Production of Oxygenate-limited Gasoline  

SciTech Connect (OSTI)

Ethanol competes with methyl tertiary butyl ether (MTBE) to satisfy oxygen, octane, and volume requirements of certain gasolines. However, MTBE has water quality problems that may create significant market opportunities for ethanol. Oak Ridge National Laboratory (ORNL) has used its Refinery Yield Model to estimate ethanol demand in gasolines with restricted use of MTBE. Reduction of the use of MTBE would increase the costs of gasoline production and possibly reduce the gasoline output of U.S. refineries. The potential gasoline supply problems of an MTBE ban could be mitigated by allowing a modest 3 vol percent MTBE in all gasoline. In the U.S. East and Gulf Coast gasoline producing regions, the 3 vol percent MTBE option results in costs that are 40 percent less than an MTBE ban. In the U.S. Midwest gasoline producing region, with already high use of ethanol, an MTBE ban has minimal effect on ethanol demand unless gasoline producers in other regions bid away the local supply of ethanol. The ethanol/MTBE issue gained momentum in March 2000 when the Clinton Administration announced that it would ask Congress to amend the Clean Air Act to provide the authority to significantly reduce or eliminate the use of MTBE; to ensure that air quality gains are not diminished as MTBE use is reduced; and to replace the existing oxygenate requirement in the Clean Air Act with a renewable fuel standard for all gasoline. Premises for the ORNL study are consistent with the Administration announcement, and the ethanol demand curve estimates of this study can be used to evaluate the impact of the Administration principles and related policy initiatives.

Hadder, G.R.

2000-08-16T23:59:59.000Z

478

Composition of the wax fraction of bitumen from methylated brown coals  

SciTech Connect (OSTI)

Changes in the group and individual compositions of the wax fractions of bitumen in the course of brown coal methylation were studied. With the use of IR and NMR spectroscopy and chromatography-mass spectrometry, it was found that the esters of methylated coal waxes consisted of the native esters of fatty acids and the methyl esters of these acids formed as a result of an alkylation treatment. Esterification and transesterification were predominant among the reactions of aliphatic fraction components. A positive effect of methanol alkylation on an increase in the yield of the aliphatic fractions was found.

S.I. Zherebtsov; A.I. Moiseev [Russian Academy of Sciences, Kemerovo (Russian Federation). Institute of Coal and Coal Chemistry

2009-04-15T23:59:59.000Z

479

Genomic DNA methylation in various developmental stages of two plant pathogenic fungi  

E-Print Network [OSTI]

blotting procedure. The blots were then hybridized with DNA probes from the highly repeated Neurospora crassa rDNA repeat unit labeled with [a. P] dCTP in a random-primed oligolabeling reaction. Results of the hybridizations were visualized... shows s. high degree of methylation at the inner (3') C in both stages (mycelia and sclerotia) at the genomic level. The rRNA genes exhibit the same high level of methylation at the 3' C with the addition of some stage specific methylation...

Schliesing, Laura Jo

1990-01-01T23:59:59.000Z

480

Anti-inflammatory and antifibrotic effects of methyl palmitate  

SciTech Connect (OSTI)

Methyl palmitate (MP) has been shown earlier to inhibit Kupffer cells and rat peritoneal macrophages. To evaluate the potential of MP to inhibit the activation of other macrophages, RAW cells (macrophages of alveolar origin) were treated with varying concentrations of MP (0.25, 0.5, 1 mM). Assessment of cytotoxicity using MTT assay revealed that 0.25 and 0.5 mM are not toxic to RAW cells. MP was able to inhibit the phagocytic function of RAW cells. Treatment of cells with MP 24 hours prior to LPS stimulation significantly decreased nitric oxide release and altered the pattern of cytokines release; there was a significant decrease in TNF-{alpha} and a significant increase in IL-10 compared to the controls. However, there is a non-significant change in IL-6 level. Furthermore, phosphorylation of inhibitory kappa B (I{kappa}B{alpha}) protein was significantly decreased in RAW cells treated with 0.5 mM MP after LPS stimulation. Based upon the in-vitro results, it was examined whether MP treatment will be effective in preventing bleomycin-induced lung inflammation and fibrosis in-vivo. Bleomycin given by itself caused destruction of the lung architecture characterized by pulmonary fibrosis with collapse of air alveoli and emphysematous. Bleomycin induced a significant increase in hydroxyproline level and activated NF-{kappa}B, p65 expression in the lung. MP co-treatment significantly ameliorated bleomycin effects. These results suggest that MP has a potential of inhibiting macrophages in general. The present study demonstrated for the first time that MP has anti-inflammatory and antifibrotic effect that could be through NF-kB inhibition. Thus MP like molecule could be a promising anti-inflammatory and antifibrotic drug. - Research Highlights: >Methyl palmitate is a universal macrophage inhibitor. >It could be a promising nucleus of anti-inflammatory and antifibrotic drugs. >The underlying mechanism of these effects could be through NF-kB inhibition.

El-Demerdash, Ebtehal, E-mail: ebtehal_dm@yahoo.com

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "waiver mtbe methyl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Bioremediation of the organophosphate methyl parathion using genetically engineered and native organisms  

E-Print Network [OSTI]

to remediate hazardous substances at significantly higher rates than found with natural systems. Specifically, degradation of methyl parathion (MP) by hydrolysis with a genetically engineered Escherichia coli was investigated along with degradation of one...

Diaz Casas, Adriana Z.

2005-11-01T23:59:59.000Z

482

Thermomechanical properties of polyhedral oligomeric silsequioxane- poly(methyl methacrylate) nanocomposites  

E-Print Network [OSTI]

Poly(methyl methacrylate)s (PMMA) containing polyhedral oligomeric silsesquioxane (POSS) nanoparticles (d [approx.] 1.5 nm) were subjected to heological, mechanical, and morphological tests to determine the effects that ...

Kopesky, Edward Thomas

2005-01-01T23:59:59.000Z

483

A unique regulatory phase of DNA methylation in the early mammalian embryo  

E-Print Network [OSTI]

DNA methylation is highly dynamic during mammalian embryogenesis. It is broadly accepted that the paternal genome is actively depleted of 5-methylcytosine at fertilization, followed by passive loss that reaches a minimum ...

Chan, Michelle M.

484

Halogenated 1'-methyl-1,2'-bipyrroles (MBPs) in the Norwestern Atlantic  

E-Print Network [OSTI]

Halogenated 1'-methyl-1,2'-bipyrroles (MBPs) are a distinctive class of marine organic compounds. They are naturally produced, they have a unique carbon structure, they are highly halogenated, and they bioaccumulate in ...

Pangallo, Kristin C

2009-01-01T23:59:59.000Z

485

Temporal and spatial variation in methyl bromide emissions from a salt marsh  

E-Print Network [OSTI]

Methyl bromide (CH3Br) is a trace gas involved in stratospheric ozone depletion with both anthropogenic and natural sources. Estimates of natural source strengths are highly uncertain. In this study, >320 highly temporally ...

Drewer, Julia; Heal, Mathew R; Heal, Kate V; Smith, Keith A

2006-01-01T23:59:59.000Z

486

An evaluation of the 3M Organic Vapor Monitor #3500 as a short term exposure limit sampling device for acetone, methyl ethyl ketone, and methyl iso butyl ketone  

E-Print Network [OSTI]

. An exploded view of the monitor is illustrated in Figure 1. The theory of diffusive sampling considers a concentration gra- dient between the ambient air and the adsorbent to be the driving force for sampling. For the adsorption to be controlled by diffu...AN EVALUATION OF THE 3M ORGANIC VAPOR MONITOR 43500 AS A SHOR'I TERM EXPOSURE LIMIT SAMPLING DEVICE FOR ACETONE, METHYL ETHYL KETONE, AND METHYL ISO BUTYL KETONE A Thesis by LLOYD B. ANDREW III Submitted to the Graduate College of Texas ASM...

Andrew, Lloyd B.

2012-06-07T23:59:59.000Z

487

Chromosome-wide mapping of DNA methylation patterns in normal and malignant prostate cells reveals pervasive methylation of gene-associated and conserved intergenic sequences  

E-Print Network [OSTI]

G island [13-15], chromosome-wide [15], or genome-wide [16] til- ing microarrays or to analyze by next generation sequen- cing [17,18]. Here, we describe the use of an MBD-chip approach (Figure 1A) to compare the chromosome-wide DNA methylation patterns... identified as differentially methylated in the LNCaP cells compared to the PrEC cells. We could then compare the distribution of CpG dinucleotide content and number of regions overlapping CpG islands in these simulated data sets with these parameters in our...

Yegnasubramanian, Srinivasan; Wu, Zhijin; Haffner, Michael C; Esopi, David; Aryee, Martin J; Badrinath, Raghav; He, Tony L; Morgan, James D; Carvalho, Benilton S; Zheng, Qizhi; De Marzo, Angelo M; Irizarry, Rafael A; Nelson, William G

2011-06-13T23:59:59.000Z

488

Radio-methyl vorozole and methods for making and using the same  

DOE Patents [OSTI]

Radiotracer vorozole compounds for in vivo and in vitro assaying, studying and imaging cytochrome P450 aromatase enzymes in humans, animals, and tissues and methods for making and using the same are provided. [N-radio-methyl] vorozole substantially separated from an N-3 radio-methyl isomer of vorozole is provided. Separation is accomplished through use of chromatography resins providing multiple mechanisms of selectivity.

Kim, Sung Won; Biegon, Anat; Fowler, Joanna S.

2014-08-05T23:59:59.000Z

489

Radio-methyl vorozole and methods for making and using the same  

DOE Patents [OSTI]

Radiotracer vorozole compounds for in vivo and in vitro assaying, studying and imaging cytochrome P450 aromatase enzymes in humans, animals, and tissues and methods for making and using the same are provided. [N-radio-methyl] vorozole substantially separated from an N-3 radio-methyl isomer of vorozole is provided. Separation is accomplished through use of chromatography resins providing multiple mechanisms of selectivity.

Kim, Sung Won; Biegon, Anat; Fowler, Joanna S.

2014-08-12T23:59:59.000Z

490

INVOLVED IN DE NOVO 2-containing complex involved in RNA-directed DNA methylation in Arabidopsis  

SciTech Connect (OSTI)

At least three pathways control maintenance of DNA cytosine methylation in Arabidopsis thaliana. However, the RNA-directed DNA methylation (RdDM) pathway is solely responsible for establishment of this silencing mark. We previously described INVOLVED IN DE NOVO 2 (IDN2) as being an RNA-binding RdDM component that is required for DNA methylation establishment. In this study, we describe the discovery of two partially redundant proteins that are paralogous to IDN2 and that form a stable complex with IDN2 in vivo. Null mutations in both genes, termed IDN2-LIKE 1 and IDN2-LIKE 2 (IDNL1 and IDNL2), result in a phenotype that mirrors, but does not further enhance, the idn2 mutant phenotype. Genetic analysis suggests that this complex acts in a step in the downstream portion of the RdDM pathway. We also have performed structural analysis showing that the IDN2 XS domain adopts an RNA recognition motif (RRM) fold. Finally, genome-wide DNA methylation and expression analysis confirms the placement of the IDN proteins in an RdDM pathway that affects DNA methylation and transcriptional control at many sites in the genome. Results from this study identify and describe two unique components of the RdDM machinery, adding to our understanding of DNA methylation control in the Arabidopsis genome.

Ausin, Israel; Greenberg, Maxim V.C.; Simanshu, Dhirendra K.; Hale, Christopher J.; Vashisht, Ajay A.; Simon, Stacey A.; Lee, Tzuu-fen; Feng, Suhua; Espaola, Sophia D.; Meyers, Blake C.; Wohlschlegel, James A.; Patel, Dinshaw J.; Jacobsen, Steven E. (UCLA); (MSKCC); (Delaware)

2012-10-23T23:59:59.000Z

491

Vapor-liquid equilibria of hydrocarbons and fuel oxygenates. 2  

SciTech Connect (OSTI)

Vapor-liquid equilibrium data for methyl tert-butyl ether (MTBE) + 1-heptene, MTBE + four-component gasoline prototype, ethanol + four-component gasoline prototype, and separately MTBE and ethanol with the Auto/Oil Air Quality Improvement Research Gasoline Blend A are reported. Small additions of MTBE have a very small effect on the total equilibrium pressure of this gasoline blend, and at most temperatures will decrease this pressure. In contrast, small additions of ethanol to this gasoline blend result in a significant increase in the equilibrium pressure at all temperatures. Analysis shows that the vapor-liquid equilibrium data for the MTBE-containing systems are easily correlated using a modified Peng-Robinson equation of state with conventional van der Waals one-fluid mixing rules. Data for mixtures containing ethanol cannot be accurately correlated in this way.

Bennett, A.; Lamm, S.; Orbey, H.; Sandler, S.I. (Univ. of Delaware, Newark (United States))

1993-04-01T23:59:59.000Z

492

Polystyrene/Poly(methyl methacrylate) Blends in the Presence of Cyclohexane: Selective Solvent Washing or Equilibrium Adsorption?  

E-Print Network [OSTI]

-cyclohexane (PS:CH), poly(methyl methacrylate)-carbon tetrachloride (PMMA:CCl4), and PS:CCl4 adsorbing

493

Technical and operational overview of the C[sub 4] Oleflex process at Valero refinery  

SciTech Connect (OSTI)

Changes in gasoline composition stemming from the 1990 Clean Air Act (CAA) Amendments prompted Valero Energy Corporation to evaluate options for producing reformulated gasoline. The evaluation culminated in a project to upgrade butanes into methyl tertiary butyl ether (MTBE). Technology selection focused on the dehydrogenation of isobutane, and the UOP Oleflex process was selected. The MTBE project was implemented in 34 months and was $3 million under budget. The guaranteed MTBE production of 12,500 BPSD was achieved within one month of mechanical completion and has since reached 15,000 BPSD. Even at the low MTBE prices prevailing in late 1993, the butane upgrading project contributed significantly to Valero Refinery's overall profitability. Worldwide demand is expected to increase MTBE prices in 1996, thereby further increasing profits. The paper describes the project evaluation activities which led to the selection of the Oleflex process, engineering and construction, the MTBE complex start-up and operation, the Valero MTBE complex performance, and future plans. The paper also discusses feedstock utilization efficiency and MTBE market analysis.

Hohnholt, J.F.; Payne, D. (Valero Refining Co., Corpus Christi, TX (United States)); Gregor, J.; Smith, E. (UOP, Des Plaines, IL (United States))

1994-01-01T23:59:59.000Z

494

Biogeochemistry of arsenic in natural waters: The importance of methylated species  

SciTech Connect (OSTI)

Water samples from a number of lakes and estuaries, mostly in California, showed measurable concentrations of methylated arsenic (equivalent to 1-59% of total As) with the exception of one highly alkaline lake. Neither depleted phosphate concentrations nor high dissolved salts correlated with the appearance of methylated forms of As. A temporal study of As speciation in Davis Creek Reservoir, a seasonally anoxic lake in northern California, demonstrated that dimethylarsinic acid increased sufficiently to become the dominant form of dissolved As within the surface photic zone during late summer and fall. Methylated forms decreased while arsenate increased when the lake over-turned in early December, which suggested a degradation of dimethylarsinic acid to arsenate.

Anderson, L.C.D.; Bruland, K.W. (Univ. of California, Santa Cruz (USA))

1991-03-01T23:59:59.000Z

495

Austrian refiner benefits from advanced control  

SciTech Connect (OSTI)

OeMV-AG Energy implemented advanced process controls on 27 units at its refinery in Schwechat, Austria. A variety of controls were implemented on the butadiene and methyl tertiary butyl ether (MTBE) units in January 1993. After more than 1 year of operation, the butadiene/MTBE project has shown a number of benefits, including reduced energy consumption and increased capacity in both units. The paper discusses the process, advanced control, the simple model predictive controller, control objectives, the butadiene unit, the MTBE unit, and benefits of the advanced controllers.

Richard, L.A.; Spencer, M. [Setpoint Inc., Houston, TX (United States); Schuster, R.; Tuppinger, D.M.; Wilmsen, W.F. [OeMV-AG Energy, Schwechat (Austria)

1995-03-20T23:59:59.000Z

496

Salt effect on the isobaric vapor-liquid equilibrium of the methyl acetate + methanol system  

SciTech Connect (OSTI)

The effect of sodium thiocyanate at constant salt mole fraction from 0.01 to 0.05 and at saturation on the vapor-liquid equilibrium (VLE) of methyl acetate + methanol has been studied at 101.32 kPa using a modified Othmer equilibrium still. The salt exhibited both salting-in and salting-out effects on the methyl acetate, the azeotrope being eliminated at saturation. The results were correlated using the extended UNIQUAC model of Sander et al. and the electrolytic NRTL model of Mock et al.

Iliuta, M.C.; Thyrion, F.C. [Louvain Univ., Louvain-la-Neuve (Belgium). Chemical Engineering Inst.] [Louvain Univ., Louvain-la-Neuve (Belgium). Chemical Engineering Inst.; Landauer, O.M. [Univ. Politehnica Bucharest (Romania)] [Univ. Politehnica Bucharest (Romania)

1996-07-01T23:59:59.000Z

497

Kinetics of the reduction of methyl viologen with hydrogen on a colloidal Pt catalyst  

SciTech Connect (OSTI)

The evolution of H/sub 2/ on a Pt catalyst under the influence of one-electron reductors is part of the photocatalytic process of decomposition of H/sub 2/O into H/sub 2/ and O/sub 2/. As a model reaction we selected the reduction of methyl viologen. The bonding constant for hydrogen on colloidal Pt, as well as the effective rate constant of the heterolytic splitting of H/sub 2/ on the same Pt catalyst are determined. A mathematical description of the reduction of methyl viologen with hydrogen is suggested.

Maier, V.E.; Shafirovich, V.Ya.

1988-10-01T23:59:59.000Z

498

Acute environmental toxicity and persistence of methyl salicylate: A chemical agent simulant. Final report  

SciTech Connect (OSTI)

The interactions of methyl salicylate with plant foliage and soils were assessed using aerosol/vapor exposure methods. Measurements of deposition velocity and residence times for soils and foliar surfaces are reported. Severe plant contact toxicity was observed at foliar mass-loading levels above 4 {mu}g/cm{sup 2} leaf; however, recovery was noted after four to fourteen days. Methyl salicylate has a short-term effect on soil dehydrogenase activity, but not phosphatase activity. Results of the earthworm bioassay indicated only minimal effects on survival.

Cataldo, D.A.; Ligotke, M.W.; Harvey, S.D.; Fellows, R.J.; Li, S.W.

1994-06-01T23:59:59.000Z

499

Effect of Amino Acid Subsititution in Set1 on Histone H3 Methylation and Gene Silencing in Saaccharomyces Cerevisiae  

E-Print Network [OSTI]

EFFECT OF AMINO ACID SUBSITITUTION IN SET1 ON HISTONE H3 METHYLATION AND GENE SILENCING IN SAACCHAROMYCES CEREVISIAE A Senior Honors Thesis by MORGAN CHATEAU Submitted to the Office...3 Methylation and Gene Silencing in Saccharomyces cerevisiae (April 2008) Morgan Chateau Department of Biochemistry and Biophysics Texas A&M University Fellows Advisor: Associate Professor Dr. Mary Bryk Department of Biochemistry...

Chateau, Morgan

2008-08-24T23:59:59.000Z

500

Reverse Atom Transfer Radical Polymerization of Methyl Methacrylate in Room-Temperature Ionic Liquids  

E-Print Network [OSTI]

, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China Received 14, the removal and recycling of the catalytic materials become important. It is expected that using ionic liquids as ATRP media. They performed the copper(I)-mediated ATRP of methyl methacrylate (MMA) in 1-butyl-3

Wan, Xin-hua