National Library of Energy BETA

Sample records for wafer bonding national

  1. MEMS packaging with etching and thinning of lid wafer to form lids and expose device wafer bond pads

    DOE Patents [OSTI]

    Chanchani, Rajen; Nordquist, Christopher; Olsson, Roy H; Peterson, Tracy C; Shul, Randy J; Ahlers, Catalina; Plut, Thomas A; Patrizi, Gary A

    2013-12-03

    In wafer-level packaging of microelectromechanical (MEMS) devices a lid wafer is bonded to a MEMS wafer in a predermined aligned relationship. Portions of the lid wafer are removed to separate the lid wafer into lid portions that respectively correspond in alignment with MEMS devices on the MEMS wafer, and to expose areas of the MEMS wafer that respectively contain sets of bond pads respectively coupled to the MEMS devices.

  2. Wafer bonded epitaxial templates for silicon heterostructures

    DOE Patents [OSTI]

    Atwater, Jr., Harry A. (So. Pasadena, CA); Zahler, James M. (Pasadena, CA); Morral, Anna Fontcubera I (Paris, FR)

    2008-03-11

    A heterostructure device layer is epitaxially grown on a virtual substrate, such as an InP/InGaAs/InP double heterostructure. A device substrate and a handle substrate form the virtual substrate. The device substrate is bonded to the handle substrate and is composed of a material suitable for fabrication of optoelectronic devices. The handle substrate is composed of a material suitable for providing mechanical support. The mechanical strength of the device and handle substrates is improved and the device substrate is thinned to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. An upper portion of the device film exfoliated from the device substrate is removed to provide a smoother and less defect prone surface for an optoelectronic device. A heterostructure is epitaxially grown on the smoothed surface in which an optoelectronic device may be fabricated.

  3. Eutectic bonding of a Ti sputter coated, carbon aerogel wafer to a Ni foil

    SciTech Connect (OSTI)

    Jankowski, A.F.; Hayes, J.P.; Kanna, R.L.

    1994-06-01

    The formation of high energy density, storage devices is achievable using composite material systems. Alternate layering of carbon aerogel wafers and Ni foils with rnicroporous separators is a prospective composite for capacitor applications. An inherent problem exists to form a physical bond between Ni and the porous carbon wafer. The bonding process must be limited to temperatures less than 1000{degrees}C, at which point the aerogel begins to degrade. The advantage of a low temperature eutectic in the Ni-Ti alloy system solves this problem. Ti, a carbide former, is readily adherent as a sputter deposited thin film onto the carbon wafer. A vacuum bonding process is then used to join the Ni foil and Ti coating through eutectic phase formation. The parameters required for successfld bonding are described along with a structural characterization of the Ni foil-carbon aerogel wafer interface.

  4. Wafer bonded virtual substrate and method for forming the same

    DOE Patents [OSTI]

    Atwater, Jr., Harry A. (So. Pasadena, CA); Zahler, James M. (Pasadena, CA); Morral, Anna Fontcuberta i (Paris, FR)

    2007-07-03

    A method of forming a virtual substrate comprised of an optoelectronic device substrate and handle substrate comprises the steps of initiating bonding of the device substrate to the handle substrate, improving or increasing the mechanical strength of the device and handle substrates, and thinning the device substrate to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. The handle substrate is typically Si or other inexpensive common substrate material, while the optoelectronic device substrate is formed of more expensive and specialized electro-optic material. Using the methodology of the invention a wide variety of thin film electro-optic materials of high quality can be bonded to inexpensive substrates which serve as the mechanical support for an optoelectronic device layer fabricated in the thin film electro-optic material.

  5. Wafer-Bonded Internal Back-Surface Reflectors for Enhanced TPV Performance

    SciTech Connect (OSTI)

    C.A. Wang; P.G. Murphy; P.W. O'Brien; D.A. Shiau; A.C. Anderson; Z.L. Liau; D.M. Depoy; G. Nichols

    2002-08-12

    This paper discusses recent efforts to realize GaInAsSb/GaSb TPV cells with an internal back-surface reflector (BSR). The cells are fabricated by wafer bonding the GaInAsSb/GaSb device layers to GaAs substrates with a dielectric/Au reflector, and subsequently removing the GaSb substrate. The internal BSR enhances optical absorption within the device while the dielectric layer provides electrical isolation. This approach is compatible with monolithic integration of series-connected TPV cells and can mitigate the requirements of filters used for front-surface spectral control.

  6. Integrated optical MEMS using through-wafer vias and bump-bonding.

    SciTech Connect (OSTI)

    McCormick, Frederick Bossert; Frederick, Scott K.

    2008-01-01

    This LDRD began as a three year program to integrate through-wafer vias, micro-mirrors and control electronics with high-voltage capability to yield a 64 by 64 array of individually controllable micro-mirrors on 125 or 250 micron pitch with piston, tip and tilt movement. The effort was a mix of R&D and application. Care was taken to create SUMMiT{trademark} (Sandia's ultraplanar, multilevel MEMS technology) compatible via and mirror processes, and the ultimate goal was to mate this MEMS fabrication product to a complementary metal-oxide semiconductor (CMOS) electronics substrate. Significant progress was made on the via and mirror fabrication and design, the attach process development as well as the electronics high voltage (30 volt) and control designs. After approximately 22 months, the program was ready to proceed with fabrication and integration of the electronics, final mirror array, and through wafer vias to create a high resolution OMEMS array with individual mirror electronic control. At this point, however, mission alignment and budget constraints reduced the last year program funding and redirected the program to help support the through-silicon via work in the Hyper-Temporal Sensors (HTS) Grand Challenge (GC) LDRD. Several months of investigation and discussion with the HTS team resulted in a revised plan for the remaining 10 months of the program. We planned to build a capability in finer-pitched via fabrication on thinned substrates along with metallization schemes and bonding techniques for very large arrays of high density interconnects (up to 2000 x 2000 vias). Through this program, Sandia was able to build capability in several different conductive through wafer via processes using internal and external resources, MEMS mirror design and fabrication, various bonding techniques for arrayed substrates, and arrayed electronics control design with high voltage capability.

  7. Wafer-level packaging with compression-controlled seal ring bonding

    DOE Patents [OSTI]

    Farino, Anthony J

    2013-11-05

    A device may be provided in a sealed package by aligning a seal ring provided on a first surface of a first semiconductor wafer in opposing relationship with a seal ring that is provided on a second surface of a second semiconductor wafer and surrounds a portion of the second wafer that contains the device. Forcible movement of the first and second wafer surfaces toward one another compresses the first and second seal rings against one another. A physical barrier against the movement, other than the first and second seal rings, is provided between the first and second wafer surfaces.

  8. Towards large size substrates for III-V co-integration made by direct wafer bonding on Si

    SciTech Connect (OSTI)

    Daix, N. Uccelli, E.; Czornomaz, L.; Caimi, D.; Rossel, C.; Sousa, M.; Siegwart, H.; Marchiori, C.; Fompeyrine, J.; Hartmann, J. M.; Shiu, K.-T.; Cheng, C.-W.; Krishnan, M.; Lofaro, M.; Kobayashi, M.; Sadana, D.

    2014-08-01

    We report the first demonstration of 200 mm InGaAs-on-insulator (InGaAs-o-I) fabricated by the direct wafer bonding technique with a donor wafer made of III-V heteroepitaxial structure grown on 200 mm silicon wafer. The measured threading dislocation density of the In{sub 0.53}Ga{sub 0.47}As (InGaAs) active layer is equal to 3.5 10{sup 9} cm{sup ?2}, and it does not degrade after the bonding and the layer transfer steps. The surface roughness of the InGaAs layer can be improved by chemical-mechanical-polishing step, reaching values as low as 0.4 nm root-mean-square. The electron Hall mobility in 450 nm thick InGaAs-o-I layer reaches values of up to 6000 cm{sup 2}/Vs, and working pseudo-MOS transistors are demonstrated with an extracted electron mobility in the range of 20003000 cm{sup 2}/Vs. Finally, the fabrication of an InGaAs-o-I substrate with the active layer as thin as 90 nm is achieved with a Buried Oxide of 50 nm. These results open the way to very large scale production of III-V-o-I advanced substrates for future CMOS technology nodes.

  9. Direct wafer bonding technology for large-scale InGaAs-on-insulator transistors

    SciTech Connect (OSTI)

    Kim, SangHyeon E-mail: sh-kim@kist.re.kr; Ikku, Yuki; Takenaka, Mitsuru; Takagi, Shinichi; Yokoyama, Masafumi; Nakane, Ryosho; Li, Jian; Kao, Yung-Chung

    2014-07-28

    Heterogeneous integration of III-V devices on Si wafers have been explored for realizing high device performance as well as merging electrical and photonic applications on the Si platform. Existing methodologies have unavoidable drawbacks such as inferior device quality or high cost in comparison with the current Si-based technology. In this paper, we present InGaAs-on-insulator (-OI) fabrication from an InGaAs layer grown on a Si donor wafer with a III-V buffer layer instead of growth on a InP donor wafer. This technology allows us to yield large wafer size scalability of III-V-OI layers up to the Si wafer size of 300?mm with a high film quality and low cost. The high film quality has been confirmed by Raman and photoluminescence spectra. In addition, the fabricated InGaAs-OI transistors exhibit the high electron mobility of 1700?cm{sup 2}/V s and uniform distribution of the leakage current, indicating high layer quality with low defect density.

  10. Lattice-Mismatched GaAs/InGaAs Two-Junction Solar Cells by Direct Wafer Bonding

    SciTech Connect (OSTI)

    Tanabe, K.; Aiken, D. J.; Wanlass, M. W.; Morral, A. F.; Atwater, H. A.

    2006-01-01

    Direct bonded interconnect between subcells of a lattice-mismatched III-V compound multijunction cell would enable dislocation-free active regions by confining the defect network needed for lattice mismatch accommodation to tunnel junction interfaces, while metamorphic growth inevitably results in less design flexibility and lower material quality than is desirable. The first direct-bond interconnected multijunction solar cell, a two-terminal monolithic GaAs/InGaAs two-junction solar cell, is reported and demonstrates viability of direct wafer bonding for solar cell applications. The tandem cell open-circuit voltage was approximately the sum of the subcell open-circuit voltages. This achievement shows direct bonding enables us to construct lattice-mismatched III-V multijunction solar cells and is extensible to an ultrahigh efficiency InGaP/GaAs/InGaAsP/InGaAs four-junction cell by bonding a GaAs-based lattice-matched InGaP/GaAs subcell and an InP-based lattice-matched InGaAsP/InGaAs subcell. The interfacial resistance experimentally obtained for bonded GaAs/InP smaller than 0.10 Ohm-cm{sup 2} would result in a negligible decrease in overall cell efficiency of {approx}0.02%, under 1-sun illumination.

  11. Structured wafer for device processing

    DOE Patents [OSTI]

    Okandan, Murat; Nielson, Gregory N

    2014-05-20

    A structured wafer that includes through passages is used for device processing. Each of the through passages extends from or along one surface of the structured wafer and forms a pattern on a top surface area of the structured wafer. The top surface of the structured wafer is bonded to a device layer via a release layer. Devices are processed on the device layer, and are released from the structured wafer using etchant. The through passages within the structured wafer allow the etchant to access the release layer to thereby remove the release layer.

  12. Structured wafer for device processing

    DOE Patents [OSTI]

    Okandan, Murat; Nielson, Gregory N

    2014-11-25

    A structured wafer that includes through passages is used for device processing. Each of the through passages extends from or along one surface of the structured wafer and forms a pattern on a top surface area of the structured wafer. The top surface of the structured wafer is bonded to a device layer via a release layer. Devices are processed on the device layer, and are released from the structured wafer using etchant. The through passages within the structured wafer allow the etchant to access the release layer to thereby remove the release layer.

  13. DC Wafers | Open Energy Information

    Open Energy Info (EERE)

    Wafers Jump to: navigation, search Name: DC Wafers Place: Leon, Spain Product: Spanish manufacturer of multicrystalline silicon wafers. Planning a 30MW wafer slicing line in Leon,...

  14. Four-Junction Solar Cell with 40% Target Efficiency Fabricated by Wafer Bonding and Layer Transfer: Final Technical Report, 1 January 2005 - 31 December 2007

    SciTech Connect (OSTI)

    Atwater, H. A.

    2008-11-01

    We realized high-quality InGaP/GaAs 2-junction top cells on Ge/Si, InGaAs/InP bottom cells, direct-bond series interconnection of tandem cells, and modeling of bonded 3- and 4-junction device performance.

  15. Three wafer stacking for 3D integration.

    SciTech Connect (OSTI)

    Greth, K. Douglas; Ford, Christine L.; Lantz, Jeffrey W.; Shinde, Subhash L.; Timon, Robert P.; Bauer, Todd M.; Hetherington, Dale Laird; Sanchez, Carlos Anthony

    2011-11-01

    Vertical wafer stacking will enable a wide variety of new system architectures by enabling the integration of dissimilar technologies in one small form factor package. With this LDRD, we explored the combination of processes and integration techniques required to achieve stacking of three or more layers. The specific topics that we investigated include design and layout of a reticle set for use as a process development vehicle, through silicon via formation, bonding media, wafer thinning, dielectric deposition for via isolation on the wafer backside, and pad formation.

  16. Micro-miniature gas chromatograph column disposed in silicon wafers

    DOE Patents [OSTI]

    Yu, Conrad M. (Antioch, CA)

    2000-01-01

    A micro-miniature gas chromatograph column is fabricated by forming matching halves of a circular cross-section spiral microcapillary in two silicon wafers and then bonding the two wafers together using visual or physical alignment methods. Heating wires are deposited on the outside surfaces of each wafer in a spiral or serpentine pattern large enough in area to cover the whole microcapillary area inside the joined wafers. The visual alignment method includes etching through an alignment window in one wafer and a precision-matching alignment target in the other wafer. The two wafers are then bonded together using the window and target. The physical alignment methods include etching through vertical alignment holes in both wafers and then using pins or posts through corresponding vertical alignment holes to force precision alignment during bonding. The pins or posts may be withdrawn after curing of the bond. Once the wafers are bonded together, a solid phase of very pure silicone is injected in a solution of very pure chloroform into one end of the microcapillary. The chloroform lowers the viscosity of the silicone enough that a high pressure hypodermic needle with a thumbscrew plunger can force the solution into the whole length of the spiral microcapillary. The chloroform is then evaporated out slowly to leave the silicone behind in a deposit.

  17. Wafer characteristics via reflectometry

    DOE Patents [OSTI]

    Sopori, Bhushan L. (Denver, CO)

    2010-10-19

    Various exemplary methods (800, 900, 1000, 1100) are directed to determining wafer thickness and/or wafer surface characteristics. An exemplary method (900) includes measuring reflectance of a wafer and comparing the measured reflectance to a calculated reflectance or a reflectance stored in a database. Another exemplary method (800) includes positioning a wafer on a reflecting support to extend a reflectance range. An exemplary device (200) has an input (210), analysis modules (222-228) and optionally a database (230). Various exemplary reflectometer chambers (1300, 1400) include radiation sources positioned at a first altitudinal angle (1308, 1408) and at a second altitudinal angle (1312, 1412). An exemplary method includes selecting radiation sources positioned at various altitudinal angles. An exemplary element (1650, 1850) includes a first aperture (1654, 1854) and a second aperture (1658, 1858) that can transmit reflected radiation to a fiber and an imager, respectfully.

  18. InGaN/GaN multi-quantum well and LED growth on wafer-bonded sapphire-on-polycrystalline AlN substrates by metalorganic chemical vapor deposition.

    SciTech Connect (OSTI)

    Crawford, Mary Hagerott; Olson, S. M.; Banas, M.; Park, Y. -B.; Ladous, C.; Russell, Michael J.; Thaler, Gerald; Zahler, J. M.; Pinnington, T.; Koleske, Daniel David; Atwater, Harry A.

    2008-06-01

    We report growth of InGaN/GaN multi-quantum well (MQW) and LED structures on a novel composite substrate designed to eliminate the coefficient of thermal expansion (CTE) mismatch problems which impact GaN growth on bulk sapphire. To form the composite substrate, a thin sapphire layer is wafer-bonded to a polycrystalline aluminum nitride (P-AlN) support substrate. The sapphire layer provides the epitaxial template for the growth; however, the thermo-mechanical properties of the composite substrate are determined by the P-AlN. Using these substrates, thermal stresses associated with temperature changes during growth should be reduced an order of magnitude compared to films grown on bulk sapphire, based on published CTE data. In order to test the suitability of the substrates for GaN LED growth, test structures were grown by metalorganic chemical vapor deposition (MOCVD) using standard process conditions for GaN growth on sapphire. Bulk sapphire substrates were included as control samples in all growth runs. In situ reflectance monitoring was used to compare the growth dynamics for the different substrates. The material quality of the films as judged by X-ray diffraction (XRD), photoluminescence and transmission electron microscopy (TEM) was similar for the composite substrate and the sapphire control samples. Electroluminescence was obtained from the LED structure grown on a P-AlN composite substrate, with a similar peak wavelength and peak width to the control samples. XRD and Raman spectroscopy results confirm that the residual strain in GaN films grown on the composite substrates is dramatically reduced compared to growth on bulk sapphire substrates.

  19. Stable wafer-carrier system

    DOE Patents [OSTI]

    Rozenzon, Yan; Trujillo, Robert T; Beese, Steven C

    2013-10-22

    One embodiment of the present invention provides a wafer-carrier system used in a deposition chamber for carrying wafers. The wafer-carrier system includes a base susceptor and a top susceptor nested inside the base susceptor with its wafer-mounting side facing the base susceptor's wafer-mounting side, thereby forming a substantially enclosed narrow channel. The base susceptor provides an upward support to the top susceptor.

  20. Particulate contamination removal from wafers using plasmas and mechanical agitation

    DOE Patents [OSTI]

    Selwyn, G.S.

    1998-12-15

    Particulate contamination removal from wafers is disclosed using plasmas and mechanical agitation. The present invention includes the use of plasmas with mechanical agitation for removing particulate matter from the surface of a wafer. The apparatus hereof comprises a mechanical activator, at least one conducting contact pin for transferring the vibration from the activator to the wafer, clamp fingers that maintain the wafer`s position, and means for generating a plasma in the vicinity of the surface of the wafer, all parts of the cleaning apparatus except the mechanical activator and part of the contact pin being contained inside the processing chamber. By exposing a wafer to a plasma and providing motion thereto in a direction perpendicular to its surface, the bonding between the particulate matter and the surface may be overcome. Once free of the wafer surface, the particulates become charged by electrons from the plasma and are drawn into the plasma by attractive forces which keep them from redepositing. The introduction of a flowing gas through the plasma sweeps the particulates away from the wafer and out of the plasma. The entire surface is cleaned during one cleaning step. The use of an rf plasma to accomplish the particulate removal was found to remove more than 90% of the particulates. 4 figs.

  1. Wafer screening device and methods for wafer screening

    DOE Patents [OSTI]

    Sopori, Bhushan; Rupnowski, Przemyslaw

    2014-07-15

    Wafer breakage is a serious problem in the photovoltaic industry because a large fraction of wafers (between 5 and 10%) break during solar cell/module fabrication. The major cause of this excessive wafer breakage is that these wafers have residual microcracks--microcracks that were not completely etched. Additional propensity for breakage is caused by texture etching and incomplete edge grinding. To eliminate the cost of processing the wafers that break, it is best to remove them prior to cell fabrication. Some attempts have been made to develop optical techniques to detect microcracks. Unfortunately, it is very difficult to detect microcracks that are embedded within the roughness/texture of the wafers. Furthermore, even if such detection is successful, it is not straightforward to relate them to wafer breakage. We believe that the best way to isolate the wafers with fatal microcracks is to apply a stress to wafers--a stress that mimics the highest stress during cell/module processing. If a wafer survives this stress, it has a high probability of surviving without breakage during cell/module fabrication. Based on this, we have developed a high throughput, noncontact method for applying a predetermined stress to a wafer. The wafers are carried on a belt through a chamber that illuminates the wafer with an intense light of a predetermined intensity distribution that can be varied by changing the power to the light source. As the wafers move under the light source, each wafer undergoes a dynamic temperature profile that produces a preset elastic stress. If this stress exceeds the wafer strength, the wafer will break. The broken wafers are separated early, eliminating cost of processing into cell/module. We will describe details of the system and show comparison of breakage statistics with the breakage on a production line.

  2. Particulate contamination removal from wafers using plasmas and mechanical agitation

    DOE Patents [OSTI]

    Selwyn, Gary S. (Los Alamos, NM)

    1998-01-01

    Particulate contamination removal from wafers using plasmas and mechanical agitation. The present invention includes the use of plasmas with mechanical agitation for removing particulate matter from the surface of a wafer. The apparatus hereof comprises a mechanical activator, at least one conducting contact pin for transferring the vibration from the activator to the wafer, clamp fingers that maintain the wafer's position, and means for generating a plasma in the vicinity of the surface of the wafer, all parts of the cleaning apparatus except the mechanical activator and part of the contact pin being contained inside the processing chamber. By exposing a wafer to a plasma and providing motion thereto in a direction perpendicular to its surface, the bonding between the particulate matter and the surface may be overcome. Once free of the wafer surface, the particulates become charged by electrons from the plasma and are drawn into the plasma by attractive forces which keep them from redepositing. The introduction of a flowing gas through the plasma sweeps the particulates away from the wafer and out of the plasma. The entire surface is cleaned during one cleaning step. The use of an rf plasma to accomplish the particulate removal was found to remove more than 90% of the particulates.

  3. Etching Of Semiconductor Wafer Edges

    DOE Patents [OSTI]

    Kardauskas, Michael J. (Billerica, MA); Piwczyk, Bernhard P. (Dunbarton, NH)

    2003-12-09

    A novel method of etching a plurality of semiconductor wafers is provided which comprises assembling said plurality of wafers in a stack, and subjecting said stack of wafers to dry etching using a relatively high density plasma which is produced at atmospheric pressure. The plasma is focused magnetically and said stack is rotated so as to expose successive edge portions of said wafers to said plasma.

  4. Bonded semiconductor substrate

    DOE Patents [OSTI]

    Atwater, Jr.; Harry A. , Zahler; James M.

    2010-07-13

    Ge/Si and other nonsilicon film heterostructures are formed by hydrogen-induced exfoliation of the Ge film which is wafer bonded to a cheaper substrate, such as Si. A thin, single-crystal layer of Ge is transferred to Si substrate. The bond at the interface of the Ge/Si heterostructures is covalent to ensure good thermal contact, mechanical strength, and to enable the formation of an ohmic contact between the Si substrate and Ge layers. To accomplish this type of bond, hydrophobic wafer bonding is used, because as the invention demonstrates the hydrogen-surface-terminating species that facilitate van der Waals bonding evolves at temperatures above 600.degree. C. into covalent bonding in hydrophobically bound Ge/Si layer transferred systems.

  5. Swiss Wafers AG | Open Energy Information

    Open Energy Info (EERE)

    Wafers AG Jump to: navigation, search Name: Swiss Wafers AG Place: Weinfelden, Switzerland Zip: 8570 Sector: Services Product: Swiss-based manufacturer of mono and multicrystalline...

  6. Wafer handling and placement tool

    DOE Patents [OSTI]

    Witherspoon, Linda L. (22 Cottonwood La., Los Lunas, NM 87031)

    1988-01-05

    A spring arm tool is provided for clamp engaging and supporting wafers while the tool is hand held. The tool includes a pair of relatively swingable jaw element supporting support arms and the jaw elements are notched to enjoy multiple point contact with a wafer peripheral portion. Also, one disclosed form of the tool includes remotely operable workpiece ejecting structure carried by the jaw elements thereof.

  7. Sandia starts silicon wafer production for three nuclear weapon programs |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration starts silicon wafer production for three nuclear weapon programs | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact

  8. Wafer characteristics via reflectometry and wafer processing apparatus and method

    DOE Patents [OSTI]

    Sopori, Bhushan L. (Denver, CO)

    2007-07-03

    An exemplary system includes a measuring device to acquire non-contact thickness measurements of a wafer and a laser beam to cut the wafer at a rate based at least in part on one or more thicknesses measurements. An exemplary method includes illuminating a substrate with radiation, measuring at least some radiation reflected from the substrate, determining one or more cutting parameters based at least in part on the measured radiation and cutting the substrate using the one or more cutting parameters. Various other exemplary methods, devices, systems, etc., are also disclosed.

  9. Heating device for semiconductor wafers

    DOE Patents [OSTI]

    Vosen, Steven R. (Berkeley, CA)

    1999-01-01

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernable pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light.

  10. Heating device for semiconductor wafers

    DOE Patents [OSTI]

    Vosen, S.R.

    1999-07-27

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernible pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light. 4 figs.

  11. Support apparatus for semiconductor wafer processing

    DOE Patents [OSTI]

    Griffiths, Stewart K.; Nilson, Robert H.; Torres, Kenneth J.

    2003-06-10

    A support apparatus for minimizing gravitational stress in semiconductor wafers, and particularly silicon wafers, during thermal processing. The support apparatus comprises two concentric circular support structures disposed on a common support fixture. The two concentric circular support structures, located generally at between 10 and 70% and 70 and 100% and preferably at 35 and 82.3% of the semiconductor wafer radius, can be either solid rings or a plurality of spaced support points spaced apart from each other in a substantially uniform manner. Further, the support structures can have segments removed to facilitate wafer loading and unloading. In order to withstand the elevated temperatures encountered during semiconductor wafer processing, the support apparatus, including the concentric circular support structures and support fixture can be fabricated from refractory materials, such as silicon carbide, quartz and graphite. The claimed wafer support apparatus can be readily adapted for use in either batch or single-wafer processors.

  12. Performance and Reliability of Bonded Interfaces for High-Temperature Packaging; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    DeVoto, Douglas

    2015-06-10

    This is a technical review of the DOE VTO EDT project EDT063, Performance and Reliability of Bonded Interfaces for High-Temperature Packaging. A procedure for analyzing the reliability of sintered-silver through experimental thermal cycling and crack propagation modeling has been outlined and results have been presented.

  13. Method for making circular tubular channels with two silicon wafers

    DOE Patents [OSTI]

    Yu, Conrad M. (Antioch, CA); Hui, Wing C. (Campbell, CA)

    1996-01-01

    A two-wafer microcapillary structure is fabricated by depositing boron nitride (BN) or silicon nitride (Si.sub.3 N.sub.4) on two separate silicon wafers (e.g., crystal-plane silicon with [100] or [110] crystal orientation). Photolithography is used with a photoresist to create exposed areas in the deposition for plasma etching. A slit entry through to the silicon is created along the path desired for the ultimate microcapillary. Acetone is used to remove the photoresist. An isotropic etch, e.g., such as HF/HNO.sub.3 /CH.sub.3 COOH, then erodes away the silicon through the trench opening in the deposition layer. A channel with a half-circular cross section is then formed in the silicon along the line of the trench in the deposition layer. Wet etching is then used to remove the deposition layer. The two silicon wafers are aligned and then bonded together face-to-face to complete the microcapillary.

  14. Cavity based furnace for wafer screening - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Cavity based furnace for wafer screening National Renewable Energy Laboratory Contact NREL About This Technology NREL Principal Engineer Bhushan Sopori has fired up an optical furnace he developed to efficiently fabricate solar cells. NREL Principal Engineer Bhushan Sopori has fired up an optical furnace he developed to efficiently fabricate solar cells. Technology Marketing Summary The U.S. Department of Energy (DOE)

  15. Wafer scale micromachine assembly method

    DOE Patents [OSTI]

    Christenson, Todd R. (Albuquerque, NM)

    2001-01-01

    A method for fusing together, using diffusion bonding, micromachine subassemblies which are separately fabricated is described. A first and second micromachine subassembly are fabricated on a first and second substrate, respectively. The substrates are positioned so that the upper surfaces of the two micromachine subassemblies face each other and are aligned so that the desired assembly results from their fusion. The upper surfaces are then brought into contact, and the assembly is subjected to conditions suited to the desired diffusion bonding.

  16. Methane production using resin-wafer electrodeionization

    DOE Patents [OSTI]

    Snyder, Seth W; Lin, YuPo; Urgun-Demirtas, Meltem

    2014-03-25

    The present invention provides an efficient method for creating natural gas including the anaerobic digestion of biomass to form biogas, and the electrodeionization of biogas to form natural gas and carbon dioxide using a resin-wafer deionization (RW-EDI) system. The method may be further modified to include a wastewater treatment system and can include a chemical conditioning/dewatering system after the anaerobic digestion system. The RW-EDI system, which includes a cathode and an anode, can either comprise at least one pair of wafers, each a basic and acidic wafer, or at least one wafer comprising of a basic portion and an acidic portion. A final embodiment of the RW-EDI system can include only one basic wafer for creating natural gas.

  17. REC ScanWafer AS | Open Energy Information

    Open Energy Info (EERE)

    ScanWafer AS Jump to: navigation, search Name: REC ScanWafer AS Place: Hovik, Norway Zip: 1323 Product: Norwegian manufacturer of multicrystalline wafers. Coordinates: 58.002571,...

  18. Siltronic Samsung Wafer Pte Ltd SSW | Open Energy Information

    Open Energy Info (EERE)

    Siltronic Samsung Wafer Pte Ltd SSW Jump to: navigation, search Name: Siltronic Samsung Wafer Pte Ltd (SSW) Place: Singapore Zip: 528759 Sector: Solar Product: Singapore-based JV...

  19. Analyzes Data from Semiconductor Wafers

    Energy Science and Technology Software Center (OSTI)

    2002-07-23

    This program analyzes reflectance data from semiconductor wafers taken during the deposition or evolution of a thin film, typically via chemical vapor deposition (CVD) or molecular beam epitaxy (MBE). It is used to determine the growth rate and optical constants of the deposited thin films using a virtual interface concept. Growth rates and optical constants of multiple-layer structures is possible by selecting appropriate sections in the reflectance vs time waveform. No prior information or estimatesmore » of growth rates and materials properties is required if an absolute reflectance waveform is used. If the optical constants of a thin film are known, then the growth rate may be extracted from a relative reflectance data set. The analysis is valid for either s or p polarized light at any incidence angle and wavelength. The analysis package is contained within an easy-to-use graphical user interface. The program is based on the algorighm described in the following two publications: W.G. Breiland and K.P. Killen, J. Appl. Phys. 78 (1995) 6726, and W. G. Breiland, H.Q. Hou, B.E. Hammons, and J.F. Klem, Proc. XXVIII SOTAPOCS Symp. Electrochem. Soc. San Diego, May 3-8, 1998. It relies on the fact that any multiple-layer system has a reflectance spectrum that is mathematically equivalent to a single-layer thin film on a virtual substrate. The program fits the thin film reflectance with five adjustable parameters: 1) growth rate, 2) real part of complex refractive index, 3) imaginary part of refractive index, 4) amplitude of virtual interface reflectance, 5) phase of virtual interface reflectance.« less

  20. Porous solid ion exchange wafer for immobilizing biomolecules

    DOE Patents [OSTI]

    Arora, Michelle B. (Woodridge, IL); Hestekin, Jamie A. (Morton Grove, IL); Lin, YuPo J. (Naperville, IL); St. Martin, Edward J. (Libertyville, IL); Snyder, Seth W. (Lincolnwood, IL)

    2007-12-11

    A porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer. Also disclosed is a porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer containing a biomolecule with a tag. A separate bioreactor is also disclosed incorporating the wafer described above.

  1. Device Tosses Out Unusable PV Wafers - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Device Tosses Out Unusable PV Wafers January 11, 2013 Photo of a scientist in safety glasses using tweezers to hold a rectangular gray silicon wafer. He is about to load it into a large silver-metallic instrument. Enlarge image NREL postdoctoral scientist Rene Rivero readies a wafer for the Silicon Photovoltaic Wafer Screening System. Credit: Dennis Schroeder Silicon wafers destined to become photovoltaic (PV) cells can take a bruising through assembly lines, as they are oxidized, annealed,

  2. Cost-Effective Silicon Wafers for Solar Cells: Direct Wafer Enabling Terawatt Photovoltaics

    SciTech Connect (OSTI)

    2010-01-15

    Broad Funding Opportunity Announcement Project: 1366 is developing a process to reduce the cost of solar electricity by up to 50% by 2020from $0.15 per kilowatt hour to less than $0.07. 1366s process avoids the costly step of slicing a large block of silicon crystal into wafers, which turns half the silicon to dust. Instead, the company is producing thin wafers directly from molten silicon at industry-standard sizes, and with efficiencies that compare favorably with todays state-of-the-art technologies. 1366s wafers could directly replace wafers currently on the market, so there would be no interruptions to the delivery of these products to market. As a result of 1366s technology, the cost of silicon wafers could be reduced by 80%.

  3. Wafer-fused semiconductor radiation detector

    DOE Patents [OSTI]

    Lee, Edwin Y. (Livermore, CA); James, Ralph B. (Livermore, CA)

    2002-01-01

    Wafer-fused semiconductor radiation detector useful for gamma-ray and x-ray spectrometers and imaging systems. The detector is fabricated using wafer fusion to insert an electrically conductive grid, typically comprising a metal, between two solid semiconductor pieces, one having a cathode (negative electrode) and the other having an anode (positive electrode). The wafer fused semiconductor radiation detector functions like the commonly used Frisch grid radiation detector, in which an electrically conductive grid is inserted in high vacuum between the cathode and the anode. The wafer-fused semiconductor radiation detector can be fabricated using the same or two different semiconductor materials of different sizes and of the same or different thicknesses; and it may utilize a wide range of metals, or other electrically conducting materials, to form the grid, to optimize the detector performance, without being constrained by structural dissimilarity of the individual parts. The wafer-fused detector is basically formed, for example, by etching spaced grooves across one end of one of two pieces of semiconductor materials, partially filling the grooves with a selected electrical conductor which forms a grid electrode, and then fusing the grooved end of the one semiconductor piece to an end of the other semiconductor piece with a cathode and an anode being formed on opposite ends of the semiconductor pieces.

  4. Optical cavity furnace for semiconductor wafer processing

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  5. Devices using resin wafers and applications thereof

    DOE Patents [OSTI]

    Lin, YuPo J. (Naperville, IL); Henry, Michael P. (Batavia, IL); Snyder, Seth W. (Lincolnwood, IL); St. Martin, Edward (Libertyville, IL); Arora, Michelle (Woodridge, IL); de la Garza, Linda (Woodridge, IL)

    2009-03-24

    Devices incorporating a thin wafer of electrically and ionically conductive porous material made by the method of introducing a mixture of a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material into a mold. The mixture is subjected to temperatures in the range of from about 60.degree. C. to about 170.degree. C. at pressures in the range of from about 0 to about 500 psig for a time in the range of from about 1 to about 240 minutes to form thin wafers. Devices include electrodeionization and separative bioreactors in the production of organic and amino acids, alcohols or esters for regenerating cofactors in enzymes and microbial cells.

  6. Resin Wafer Electrodeionization Technology Reduces the Cost of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Resin Wafer Electrodeionization Technology Reduces the Cost of Clean Energy, Chemicals, and...

  7. 1366 Direct Wafer: Demolishing the Cost Barrier for Silicon Photovoltaics

    SciTech Connect (OSTI)

    Lorenz, Adam

    2013-08-30

    The goal of 1366 Direct Wafer™ is to drastically reduce the cost of silicon-based PV by eliminating the cost barrier imposed by sawn wafers. The key characteristics of Direct Wafer are 1) kerf-free, 156-mm standard silicon wafers 2) high throughput for very low CAPEX and rapid scale up. Together, these characteristics will allow Direct Wafer™ to become the new standard for silicon PV wafers and will enable terawatt-scale PV – a prospect that may not be possible with sawn wafers. Our single, high-throughput step will replace the expensive and rate-limiting process steps of ingot casting and sawing, thereby enabling drastically lower wafer cost. This High-Impact PV Supply Chain project addressed the challenges of scaling Direct Wafer technology for cost-effective, high-throughput production of commercially viable 156 mm wafers. The Direct Wafer process is inherently simple and offers the potential for very low production cost, but to realize this, it is necessary to demonstrate production of wafers at high-throughput that meet customer specifications. At the start of the program, 1366 had demonstrated (with ARPA-E funding) increases in solar cell efficiency from 10% to 15.9% on small area (20cm2), scaling wafer size up to the industry standard 156mm, and demonstrated initial cell efficiency on larger wafers of 13.5%. During this program, the throughput of the Direct Wafer furnace was increased by more than 10X, simultaneous with quality improvements to meet early customer specifications. Dedicated equipment for laser trimming of wafers and measurement methods were developed to feedback key quality metrics to improve the process and equipment. Subsequent operations served both to determine key operating metrics affecting cost, as well as generating sample product that was used for developing downstream processing including texture and interaction with standard cell processing. Dramatic price drops for silicon wafers raised the bar significantly, but the developments made under this program have increased 1366 confidence that Direct Wafers can be produced for ~$0.10/W, still nearly 50% lower than current industry best practice. Wafer quality also steadily improved throughout the program, both in electrical performance and geometry. The improvements to electrical performance were achieved through a combination of optimized heat transfer during growth, reduction of metallic impurities to below 10 ppbw total metals, and lowering oxygen content to below 2e17 atoms/cc. Wafer average thickness has been reduced below 200µm with standard deviation less than 20µm. Measurement of spatially varying thickness shortly after wafer growth is being used to continually improve uniformity by adjusting thermal conditions. At the conclusion of the program, 1366 has developed strong relationships with four leading Tier1 cell manufactures and several have demonstrated 17% cell efficiency on Direct Wafer. Sample volumes were limited, with the largest trial consisting of 300 Direct Wafers, and there remains strong pull for larger quantities necessary for qualification before sales contracts can be signed. This will be the focus of our pilot manufacturing scale up in 2014.

  8. Process and apparatus for casting multiple silicon wafer articles

    DOE Patents [OSTI]

    Nanis, Leonard (Palo Alto, CA)

    1992-05-05

    Method and apparatus of casting silicon produced by the reaction between SiF.sub.4 and an alkaline earth metal into thin wafer-shaped articles suitable for solar cell fabrication.

  9. Solving the Mystery of the Billion-Dollar Bond, Double Bond | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Solving the Mystery of the Billion-Dollar Bond, Double Bond Solving the Mystery of the Billion-Dollar Bond, Double Bond October 26, 2011 - 4:56pm Addthis John Shanklin, biochemist at Brookhaven National Laboratory, and Ed Whittle, research assistant in Shanklin's lab, with a fatty acid molecule model and plant seeds and casings in the foreground. | Courtesy of Brookhaven National Laboratory John Shanklin, biochemist at Brookhaven National Laboratory, and Ed Whittle, research assistant

  10. Electrochemical method for defect delineation in silicon-on-insulator wafers

    DOE Patents [OSTI]

    Guilinger, Terry R. (Albuquerque, NM); Jones, Howland D. T. (Albuquerque, NM); Kelly, Michael J. (Albuquerque, NM); Medernach, John W. (Albuquerque, NM); Stevenson, Joel O. (Albuquerque, NM); Tsao, Sylvia S. (Albuquerque, NM)

    1991-01-01

    An electrochemical method for defect delineation in thin-film SOI or SOS wafers in which a surface of a silicon wafer is electrically connected so as to control the voltage of the surface within a specified range, the silicon wafer is then contacted with an electrolyte, and, after removing the electrolyte, defects and metal contamination in the silicon wafer are identified.

  11. Recovery Act: Novel Kerf-Free PV Wafering that provides a low-cost approach to generate wafers from 150um to 50um in thickness

    SciTech Connect (OSTI)

    Fong, Theodore E.

    2013-05-06

    The technical paper summarizes the project work conducted in the development of Kerf-Free silicon wafering equipment for silicon solar wafering. This new PolyMax technology uses a two step process of implantation and cleaving to exfoliate 50um to 120um wafers with thicknesses ranging from 50um to 120um from a 125mm or 156mm pseudo-squared silicon ingot. No kerf is generated using this method of wafering. This method of wafering contrasts with the current method of making silicon solar wafers using the industry standard wire saw equipment. The report summarizes the activity conducted by Silicon Genesis Corporation in working to develop this technology further and to define the roadmap specifications for the first commercial proto-type equipment for high volume solar wafer manufacturing using the PolyMax technology.

  12. (110) Oriented silicon wafer latch accelerometer and process for forming the same

    DOE Patents [OSTI]

    Ciarlo, Dino R.

    1990-01-01

    A method for etching a (110) silicon wafer to produce latching cantilever beams, which bend parallel to the surface of the wafer. The resulting apparatus is also part of the invention.

  13. Chemical method for producing smooth surfaces on silicon wafers

    DOE Patents [OSTI]

    Yu, Conrad (Antioch, CA)

    2003-01-01

    An improved method for producing optically smooth surfaces in silicon wafers during wet chemical etching involves a pre-treatment rinse of the wafers before etching and a post-etching rinse. The pre-treatment with an organic solvent provides a well-wetted surface that ensures uniform mass transfer during etching, which results in optically smooth surfaces. The post-etching treatment with an acetic acid solution stops the etching instantly, preventing any uneven etching that leads to surface roughness. This method can be used to etch silicon surfaces to a depth of 200 .mu.m or more, while the finished surfaces have a surface roughness of only 15-50 .ANG. (RMS).

  14. Municipal Bond - Power Purchase Agreement Model Continues to...

    Broader source: Energy.gov (indexed) [DOE]

    power purchase agreement model to provide low-cost solar energy. Author: National Renewable Energy Laboratory Municipal Bond - Power Purchase Agreement Model Continues to Provide...

  15. Imaging Study of Multi-Crystalline Silicon Wafers Throughout the Manufacturing Process: Preprint

    SciTech Connect (OSTI)

    Johnston, S.; Yan, F.; Zaunbracher, K.; Al-Jassim, M.; Sidelkheir, O.; Blosse, A.

    2011-07-01

    Imaging techniques are applied to multi-crystalline silicon bricks, wafers at various process steps, and finished solar cells. Photoluminescence (PL) imaging is used to characterize defects and material quality on bricks and wafers. Defect regions within the wafers are influenced by brick position within an ingot and height within the brick. The defect areas in as-cut wafers are compared to imaging results from reverse-bias electroluminescence and dark lock-in thermography and cell parameters of near-neighbor finished cells. Defect areas are also characterized by defect band emissions. The defect areas measured by these techniques on as-cut wafers are shown to correlate to finished cell performance.

  16. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Trending: Metal Oxo Bonds Print Wednesday, 29 May 2013 00:00 Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides

  17. Bonding thermoplastic polymers

    DOE Patents [OSTI]

    Wallow, Thomas I. (Fremont, CA); Hunter, Marion C. (Livermore, CA); Krafcik, Karen Lee (Livermore, CA); Morales, Alfredo M. (Livermore, CA); Simmons, Blake A. (San Francisco, CA); Domeier, Linda A. (Danville, CA)

    2008-06-24

    We demonstrate a new method for joining patterned thermoplastic parts into layered structures. The method takes advantage of case-II permeant diffusion to generate dimensionally controlled, activated bonding layers at the surfaces being joined. It is capable of producing bonds characterized by cohesive failure while preserving the fidelity of patterned features in the bonding surfaces. This approach is uniquely suited to production of microfluidic multilayer structures, as it allows the bond-forming interface between plastic parts to be precisely manipulated at micrometer length scales. The bond enhancing procedure is easily integrated in standard process flows and requires no specialized equipment.

  18. Therml & Gravitational Stress in Si Wafers; Lim. on Process Htg & Cool. Rates

    Energy Science and Technology Software Center (OSTI)

    1997-01-14

    The MacWafer code determines maximum allowable processing temperatures and maximum heating and cooling rates for thermal processing of silicon semiconductor wafers in single and multiple wafer furnaces. The program runs interactively on Macintosh, PC, and workstation computers. Execution time is typically 20 seconds on a Macintosh 68040 processor operating at 33 MHz. Gravitational stresses and displacements are first calculated based on the user''s input of a support system consisting of a ring beneath the wafermore » and/or arbitrarily placed point supports. The maximum operating temperature is then deduced by comparing the calculated gravitational stresses with the temperature-dependent wafer strength. At lower temperatures, the difference between wafer strength and gravitational stress is used to determine the allowable thermal stress, and hence the allowable radial temperature difference across the wafer. Finally, an analytical model of radial heat transfer in a batch furnace yields the maximum heating or cooling rate as a function of the allowable temperature difference based on the user''s inputs of wafer spacing and furnace power. Outputs to the screen include plots of stress components and vertical displacement, as well as tables of maximum stresses and maximum heating and cooling rates as a function of temperature. All inputs and outputs may be directed to user-named files for further processing or graphical display.« less

  19. Therml & Gravitational Stress in Si Wafers; Lim. on Process Htg & Cool. Rates

    Energy Science and Technology Software Center (OSTI)

    1997-01-14

    The MacWafer code determines maximum allowable processing temperatures and maximum heating and cooling rates for thermal processing of silicon semiconductor wafers in single and multiple wafer furnaces. The program runs interactively on Macintosh, PC, and workstation computers. Execution time is typically 20 seconds on a Macintosh 68040 processor operating at 33 MHz. Gravitational stresses and displacements are first calculated based on the user''s input of a support system consisting of a ring beneath the wafermoreand/or arbitrarily placed point supports. The maximum operating temperature is then deduced by comparing the calculated gravitational stresses with the temperature-dependent wafer strength. At lower temperatures, the difference between wafer strength and gravitational stress is used to determine the allowable thermal stress, and hence the allowable radial temperature difference across the wafer. Finally, an analytical model of radial heat transfer in a batch furnace yields the maximum heating or cooling rate as a function of the allowable temperature difference based on the user''s inputs of wafer spacing and furnace power. Outputs to the screen include plots of stress components and vertical displacement, as well as tables of maximum stresses and maximum heating and cooling rates as a function of temperature. All inputs and outputs may be directed to user-named files for further processing or graphical display.less

  20. Qualified Energy Conservation Bonds (QECBs)

    Broader source: Energy.gov [DOE]

    With tax credit bonds, generally the borrower who issues the bond pays back only the principal of the bond, and the bondholder receives federal tax credits in lieu of the traditional bond interest...

  1. Wafer chamber having a gas curtain for extreme-UV lithography

    DOE Patents [OSTI]

    Kanouff, Michael P. (Livermore, CA); Ray-Chaudhuri, Avijit K. (Livermore, CA)

    2001-01-01

    An EUVL device includes a wafer chamber that is separated from the upstream optics by a barrier having an aperture that is permeable to the inert gas. Maintaining an inert gas curtain in the proximity of a wafer positioned in a chamber of an extreme ultraviolet lithography device can effectively prevent contaminants from reaching the optics in an extreme ultraviolet photolithography device even though solid window filters are not employed between the source of reflected radiation, e.g., the camera, and the wafer. The inert gas removes the contaminants by entrainment.

  2. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide

  3. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the...

  4. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in both in technological and biological processes that are often governed by careful control over the physical and chemical properties of metal-oxygen bonds. For example,...

  5. Electronically and ionically conductive porous material and method for manufacture of resin wafers therefrom

    DOE Patents [OSTI]

    Lin, YuPo J. (Naperville, IL); Henry, Michael P. (Batavia, IL); Snyder, Seth W. (Lincolnwood, IL)

    2011-07-12

    An electrically and ionically conductive porous material including a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material. The thermoplastic binder immobilizes the moieties with respect to each other but does not substantially coat the moieties and forms the electrically conductive porous material. A wafer of the material and a method of making the material and wafer are disclosed.

  6. Electronically and ionically conductive porous material and method for manufacture of resin wafers therefrom

    DOE Patents [OSTI]

    Lin, YuPo J. (Naperville, IL); Henry, Michael P. (Batavia, IL); Snyder, Seth W. (Lincolnwood, IL)

    2008-11-18

    An electrically and ionically conductive porous material including a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material. The thermoplastic binder immobilizes the moieties with respect to each other but does not substantially coat the moieties and forms the electrically conductive porous material. A wafer of the material and a method of making the material and wafer are disclosed.

  7. Thin, High Lifetime Silicon Wafers with No Sawing; Re-crystallization in a Thin Film Capsule

    SciTech Connect (OSTI)

    Emanuel Sachs Tonio Buonassisi

    2013-01-16

    The project fits within the area of renewable energy called photovoltaics (PV), or the generation of electricity directly from sunlight using semiconductor devices. PV has the greatest potential of any renewable energy technology. The vast majority of photovoltaic modules are made on crystalline silicon wafers and these wafers accounts for the largest fraction of the cost of a photovoltaic module. Thus, a method of making high quality, low cost wafers would be extremely beneficial to the PV industry The industry standard technology creates wafers by casting an ingot and then sawing wafers from the ingot. Sawing rendered half of the highly refined silicon feedstock as un-reclaimable dust. Being a brittle material, the sawing is actually a type of grinding operation which is costly both in terms of capital equipment and in terms of consumables costs. The consumables costs associated with the wire sawing technology are particularly burdensome and include the cost of the wire itself (continuously fed, one time use), the abrasive particles, and, waste disposal. The goal of this project was to make wafers directly from molten silicon with no sawing required. The fundamental concept was to create a very low cost (but low quality) wafer of the desired shape and size and then to improve the quality of the wafer by a specialized thermal treatment (called re-crystallization). Others have attempted to create silicon sheet by recrystallization with varying degrees of success. Key among the difficulties encountered by others were: a) difficulty in maintaining the physical shape of the sheet during the recrystallization process and b) difficulty in maintaining the cleanliness of the sheet during recrystallization. Our method solved both of these challenges by encapsulating the preform wafer in a protective capsule prior to recrystallization (see below). The recrystallization method developed in this work was extremely effective at maintaining the shape and the cleanliness of the wafer. In addition, it was found to be suitable for growing very large crystals. The equipment used was simple and inexpensive to operate. Reasonable solar cells were fabricated on re-crystallized material.

  8. Qualified Energy Conservation Bonds

    Broader source: Energy.gov [DOE]

    Provides an in-depth description of qualified energy conservation bonds, including process and mechanics, case studies, utilization trends, barriers, and regulatory and legal issues. Author: Energy Programs Consortium

  9. Bonding aerogels with polyurethanes

    SciTech Connect (OSTI)

    Matthews, F.M.; Hoffman, D.M.

    1989-11-01

    Aerogels, porous silica glasses with ultra-fine cell size (30nm), are made by a solution gelation (sol-gel) process. The resulting gel is critical point dried to densities from 0.15--0.60 g/cc. This material is machinable, homogeneous, transparent, coatable and bondable. To bond aerogel an adhesive should have long cure time, no attack on the aerogel structure, and high strength. Several epoxies and urethanes were examined to determine if they satisfied these conditions. Bond strengths above 13 psi were found with double bubble and DP-110 epoxies and XI-208/ODA-1000 and Castall U-2630 urethanes. Hardman Kalex Tough Stuff'' A-85 hardness urethane gave 18 psi bond strength. Hardman A-85, Tuff-Stuff'' was selected for further evaluation because it produced bond strengths comparable to the adherend cohesive strength. 5 refs., 2 figs.

  10. Microwave ECR plasma electron flood for low pressure wafer charge neutralization

    SciTech Connect (OSTI)

    Vanderberg, Bo; Nakatsugawa, Tomoya; Divergilio, William

    2012-11-06

    Modern ion implanters typically use dc arc discharge Plasma Electron Floods (PEFs) to neutralize wafer charge. The arc discharge requires using at least some refractory metal hardware, e.g. a thermionically emitting filament, which can be undesirable in applications where no metallic contamination is critical. rf discharge PEFs have been proposed to mitigate contamination risks but the gas flows required can result in high process chamber pressures. Axcelis has developed a microwave electron cyclotron resonance (ECR) PEF to provide refractory metals contamination-free wafer neutralization with low gas flow requirement. Our PEF uses a custom, reentrant cusp magnet field providing ECR and superior electron confinement. Stable PEF operation with extraction slits sized for 300 mm wafers can be attained at Xe gas flows lower than 0.2 sccm. Electron extraction currents can be as high as 20 mA at absorbed microwave powers < 70 W. On Axcelis' new medium current implanter, plasma generation has proven robust against pressure transients caused by, for example, photoresist outgassing by high power ion beams. Charge monitor and floating potential measurements along the wafer surface corroborate adequate wafer charge neutralization for low energy, high current ion beams.

  11. Low temperature material bonding technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2002-02-12

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  12. Low Temperature Material Bonding Technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2000-10-10

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  13. Phase transformations during the Ag-In plating and bonding of vertical diode elements of multijunction solar cells

    SciTech Connect (OSTI)

    Klochko, N. P. Khrypunov, G. S.; Volkova, N. D.; Kopach, V. R.; Lyubov, V. N.; Kirichenko, M. V.; Momotenko, A. V.; Kharchenko, N. M.; Nikitin, V. A.

    2013-06-15

    The conditions of the bonding of silicon multijunction solar cells with vertical p-n junctions using Ag-In solder are studied. The compositions of electrodeposited indium films on silicon wafers silver plated by screen printing and silver and indium films fabricated by layer-by-layer electrochemical deposition onto the surface of silicon vertical diode cells silver plated in vacuum are studied. Studying the electrochemical-deposition conditions, structure, and surface morphology of the grown layers showed that guaranteed bonding is provided by 8-min heat treatment at 400 Degree-Sign C under the pressure of a stack of metallized silicon wafers; however, the ratio of the indium and silver layer thicknesses should not exceed 1: 3. As this condition is satisfied, the solder after wafer bonding has the InAg{sub 3} structure (or InAg{sub 3} with an Ag phase admixture), due to which the junction melting point exceeds 700 Degree-Sign C, which guarantees the functioning of such solar cells under concentrated illumination.

  14. Study on higher harmonic suppression using edge filter and polished Si wafer

    SciTech Connect (OSTI)

    Gupta, R. K. Singh, Amol Modi, Mohammed H. Lodha, G. S.

    2014-04-24

    Higher harmonics contamination is a severe problem in synchrotron beamlines where grating monochromators are used. In these beamlines, absorption edge filters and critical angle mirrors are used to suppress the harmonic contaminations. In the present study, carried out using Indus-1 reflectivity beamline, a harmonic suppression characteristic of Al edge filter and polished silicon wafer are determined. It is found that the Al filter suppresses higher harmonics in 2–7% range whereas the polished silicon wafer can suppress the higher harmonics below 1%. The results of comparative study are discussed.

  15. Material requirements for the adoption of unconventional silicon crystal and wafer growth techniques for high-efficiency solar cells

    SciTech Connect (OSTI)

    Hofstetter, Jasmin; del Caizo, Carlos; Wagner, Hannes; Castellanos, Sergio; Buonassisi, Tonio

    2015-10-15

    Silicon wafers comprise approximately 40% of crystalline silicon module cost and represent an area of great technological innovation potential. Paradoxically, unconventional wafer-growth techniques have thus far failed to displace multicrystalline and Czochralski silicon, despite four decades of innovation. One of the shortcomings of most unconventional materials has been a persistent carrier lifetime deficit in comparison to established wafer technologies, which limits the device efficiency potential. In this perspective article, we review a defect-management framework that has proven successful in enabling millisecond lifetimes in kerfless and cast materials. Control of dislocations and slowly diffusing metal point defects during growth, coupled to effective control of fast-diffusing species during cell processing, is critical to enable high cell efficiencies. As a result, to accelerate the pace of novel wafer development, we discuss approaches to rapidly evaluate the device efficiency potential of unconventional wafers from injection-dependent lifetime measurements.

  16. Material requirements for the adoption of unconventional silicon crystal and wafer growth techniques for high-efficiency solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hofstetter, Jasmin; del Cañizo, Carlos; Wagner, Hannes; Castellanos, Sergio; Buonassisi, Tonio

    2015-10-15

    Silicon wafers comprise approximately 40% of crystalline silicon module cost and represent an area of great technological innovation potential. Paradoxically, unconventional wafer-growth techniques have thus far failed to displace multicrystalline and Czochralski silicon, despite four decades of innovation. One of the shortcomings of most unconventional materials has been a persistent carrier lifetime deficit in comparison to established wafer technologies, which limits the device efficiency potential. In this perspective article, we review a defect-management framework that has proven successful in enabling millisecond lifetimes in kerfless and cast materials. Control of dislocations and slowly diffusing metal point defects during growth, coupled tomore » effective control of fast-diffusing species during cell processing, is critical to enable high cell efficiencies. As a result, to accelerate the pace of novel wafer development, we discuss approaches to rapidly evaluate the device efficiency potential of unconventional wafers from injection-dependent lifetime measurements.« less

  17. Photochemical tissue bonding

    DOE Patents [OSTI]

    Redmond, Robert W. (Brookline, MA); Kochevar, Irene E. (Charlestown, MA)

    2012-01-10

    Photochemical tissue bonding methods include the application of a photosensitizer to a tissue and/or tissue graft, followed by irradiation with electromagnetic energy to produce a tissue seal. The methods are useful for tissue adhesion, such as in wound closure, tissue grafting, skin grafting, musculoskeletal tissue repair, ligament or tendon repair and corneal repair.

  18. Diffusion Bonding Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diffusion Bonding Characterization - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  19. Diffusion Bonding Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Photovoltaic Systems Evaluation Laboratory PV Regional ... Facility Geomechanics and Drilling Labs National ... Health Monitoring Offshore Wind High-Resolution ...

  20. Low temperature reactive bonding

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); Bionta, Richard M. (Livermore, CA)

    1995-01-01

    The joining technique requires no external heat source and generates very little heat during joining. It involves the reaction of thin multilayered films deposited on faying surfaces to create a stable compound that functions as an intermediate or braze material in order to create a high strength bond. While high temperatures are reached in the reaction of the multilayer film, very little heat is generated because the films are very thin. It is essentially a room temperature joining process.

  1. Bond Program | Open Energy Information

    Open Energy Info (EERE)

    Bond Program Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:en.openei.orgwindex.php?titleBondProgram&oldid5427...

  2. IMPROVED BONDING METHOD

    DOE Patents [OSTI]

    Padgett, E.V. Jr.; Warf, D.H.

    1964-04-28

    An improved process of bonding aluminum to aluminum without fusion by ultrasonic vibrations plus pressure is described. The surfaces to be bonded are coated with an aqueous solution of alkali metal stearate prior to assembling for bonding. (AEC) O H19504 Present information is reviewed on steady state proliferation, differentiation, and maturation of blood cells in mammals. Data are cited from metabolic tracer studies, autoradiographic studies, cytologic studies, studies of hematopoietic response to radiation injuries, and computer analyses of blood cell production. A 3-step model for erythropoiesis and a model for granulocyte kinetics are presented. New approaches to the study of lymphocytopoiesis described include extracorporeal blood irradiation to deplete lymphocytic tissue without direct injury to the formative tissues as a means to study the stressed system, function control, and rates of proliferation. It is pointed out that present knowledge indicates that lymphocytes comprise a mixed family, with diverse life spans, functions, and migration patterns with apparent aimless recycling from modes to lymph to blood to nodes that has not yet been quantitated. Areas of future research are postulated. (70 references.) (C.H.)

  3. Qualified Energy Conservation Bond Webinars

    Broader source: Energy.gov [DOE]

    Provides a listing of past qualified energy conservation bond webinars and associated files. Author: U.S. Department of Energy

  4. Low temperature reactive bonding

    DOE Patents [OSTI]

    Makowiecki, D.M.; Bionta, R.M.

    1995-01-17

    The joining technique is disclosed that requires no external heat source and generates very little heat during joining. It involves the reaction of thin multilayered films deposited on faying surfaces to create a stable compound that functions as an intermediate or braze material in order to create a high strength bond. While high temperatures are reached in the reaction of the multilayer film, very little heat is generated because the films are very thin. It is essentially a room temperature joining process. 5 figures.

  5. Method for photolithographic definition of recessed features on a semiconductor wafer utilizing auto-focusing alignment

    DOE Patents [OSTI]

    Farino, A.J.; Montague, S.; Sniegowski, J.J.; Smith, J.H.; McWhorter, P.J.

    1998-07-21

    A method is disclosed for photolithographically defining device features up to the resolution limit of an auto-focusing projection stepper when the device features are to be formed in a wafer cavity at a depth exceeding the depth of focus of the stepper. The method uses a focusing cavity located in a die field at the position of a focusing light beam from the auto-focusing projection stepper, with the focusing cavity being of the same depth as one or more adjacent cavities wherein a semiconductor device is to be formed. The focusing cavity provides a bottom surface for referencing the focusing light beam and focusing the stepper at a predetermined depth below the surface of the wafer, whereat the device features are to be defined. As material layers are deposited in each device cavity to build up a semiconductor structure such as a microelectromechanical system (MEMS) device, the same material layers are deposited in the focusing cavity, raising the bottom surface and re-focusing the stepper for accurately defining additional device features in each succeeding material layer. The method is especially applicable for forming MEMS devices within a cavity or trench and integrating the MEMS devices with electronic circuitry fabricated on the wafer surface. 15 figs.

  6. Method for photolithographic definition of recessed features on a semiconductor wafer utilizing auto-focusing alignment

    DOE Patents [OSTI]

    Farino, Anthony J. (Albuquerque, NM); Montague, Stephen (Albuquerque, NM); Sniegowski, Jeffry J. (Albuquerque, NM); Smith, James H. (Albuquerque, NM); McWhorter, Paul J. (Albuquerque, NM)

    1998-01-01

    A method is disclosed for photolithographically defining device features up to the resolution limit of an auto-focusing projection stepper when the device features are to be formed in a wafer cavity at a depth exceeding the depth of focus of the stepper. The method uses a focusing cavity located in a die field at the position of a focusing light beam from the auto-focusing projection stepper, with the focusing cavity being of the same depth as one or more adjacent cavities wherein a semiconductor device is to be formed. The focusing cavity provides a bottom surface for referencing the focusing light beam and focusing the stepper at a predetermined depth below the surface of the wafer, whereat the device features are to be defined. As material layers are deposited in each device cavity to build up a semiconductor structure such as a microelectromechanical system (MEMS) device, the same material layers are deposited in the focusing cavity, raising the bottom surface and re-focusing the stepper for accurately defining additional device features in each succeeding material layer. The method is especially applicable for forming MEMS devices within a cavity or trench and integrating the MEMS devices with electronic circuitry fabricated on the wafer surface.

  7. Method for protecting chip corners in wet chemical etching of wafers

    DOE Patents [OSTI]

    Hui, Wing C. (Campbell, CA)

    1994-01-01

    The present invention is a corner protection mask design that protects chip corners from undercutting during anisotropic etching of wafers. The corner protection masks abut the chip corner point and extend laterally from segments along one or both corner sides of the corner point, forming lateral extensions. The protection mask then extends from the lateral extensions, parallel to the direction of the corner side of the chip and parallel to scribe lines, thus conserving wafer space. Unmasked bomb regions strategically formed in the protection mask facilitate the break-up of the protection mask during etching. Corner protection masks are useful for chip patterns with deep grooves and either large or small chip mask areas. Auxiliary protection masks form nested concentric frames that etch from the center outward are useful for small chip mask patterns. The protection masks also form self-aligning chip mask areas. The present invention is advantageous for etching wafers with thin film windows, microfine and micromechanical structures, and for forming chip structures more elaborate than presently possible.

  8. Method for protecting chip corners in wet chemical etching of wafers

    DOE Patents [OSTI]

    Hui, W.C.

    1994-02-15

    The present invention is a corner protection mask design that protects chip corners from undercutting during anisotropic etching of wafers. The corner protection masks abut the chip corner point and extend laterally from segments along one or both corner sides of the corner point, forming lateral extensions. The protection mask then extends from the lateral extensions, parallel to the direction of the corner side of the chip and parallel to scribe lines, thus conserving wafer space. Unmasked bomb regions strategically formed in the protection mask facilitate the break-up of the protection mask during etching. Corner protection masks are useful for chip patterns with deep grooves and either large or small chip mask areas. Auxiliary protection masks form nested concentric frames that etch from the center outward are useful for small chip mask patterns. The protection masks also form self-aligning chip mask areas. The present invention is advantageous for etching wafers with thin film windows, microfine and micromechanical structures, and for forming chip structures more elaborate than presently possible. 63 figures.

  9. Producing microchannels using graduated diffusion bonding of a stack of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    precision machined foils or sheets (laminates) to make a micro-channel reactor - Energy Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Producing microchannels using graduated diffusion bonding of a stack of precision machined foils or sheets (laminates) to make a micro-channel reactor A novel multi-step process for the diffusion bonding of laminates National Energy Technology Laboratory Contact NETL About This Technology Publications: PDF

  10. Geek-Up[09.03.10]-- Innovative Silicon Wafers, Real-Time Power Traders and Petascale & Exascale Supercomputers

    Broader source: Energy.gov [DOE]

    A trillion holes in a silicon wafer the size of a compact disk? Buying when the Columbia River Basin is low, and selling when it's high. And how supercomputers can revolutionize climate science and modeling.

  11. Solder extrusion pressure bonding process and bonded products produced thereby

    DOE Patents [OSTI]

    Beavis, L.C.; Karnowsky, M.M.; Yost, F.G.

    1992-06-16

    Disclosed is a process for production of soldered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about [minus]40 C and 110 C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.

  12. Method of bonding

    DOE Patents [OSTI]

    Saller, deceased, Henry A. (late of Columbus, OH); Hodge, Edwin S. (Columbus, OH); Paprocki, Stanley J. (Columbus, OH); Dayton, Russell W. (Columbus, OH)

    1987-12-01

    1. A method of making a fuel-containing structure for nuclear reactors, comprising providing an assembly comprising a plurality of fuel units; each fuel unit consisting of a core plate containing thermal-neutron-fissionable material, sheets of cladding metal on its bottom and top surfaces, said cladding sheets being of greater width and length than said core plates whereby recesses are formed at the ends and sides of said core plate, and end pieces and first side pieces of cladding metal of the same thickness as the core plate positioned in said recesses, the assembly further comprising a plurality of second side pieces of cladding metal engaging the cladding sheets so as to space the fuel units from one another, and a plurality of filler plates of an acid-dissolvable nonresilient material whose melting point is above 2000.degree. F., each filler plate being arranged between a pair of said second side pieces and the cladding plates of two adjacent fuel units, the filler plates having the same thickness as the second side pieces; the method further comprising enclosing the entire assembly in an envelope; evacuating the interior of the entire assembly through said envelope; applying inert gas under a pressure of about 10,000 psi to the outside of said envelope while at the same time heating the assembly to a temperature above the flow point of the cladding metal but below the melting point of any material of the assembly, whereby the envelope is pressed against the assembly and integral bonds are formed between plates, sheets, first side pieces, and end pieces and between the sheets and the second side pieces; slowly cooling the assembly to room temperature; removing the envelope; and dissolving the filler plates without attacking the cladding metal.

  13. Smart interfacial bonding alloys

    SciTech Connect (OSTI)

    R. Q. Hwang; J. C. Hamilton; J. E. Houston

    1999-04-01

    The goal of this LDRD was to explore the use of the newly discovered strain-stabilized 2-D interfacial alloys as smart interface bonding alloys (SIBA). These materials will be used as templates for the heteroepitaxial growth of metallic thin films. SIBA are formed by two metallic components which mix at an interface to relieve strain and prevent dislocations from forming in subsequent thin film growth. The composition of the SIBA is determined locally by the amount of strain, and therefore can react smartly to areas of the highest strain to relieve dislocations. In this way, SIBA can be used to tailor the dislocation structure of thin films. This project included growth, characterization and modeling of films grown using SIBA templates. Characterization will include atomic imaging of the dislocations structure, measurement of the mechanical properties of the film using interface force microscopy (IFM) and the nanoindenter, and measurement of the electronic structure of the SIBA with synchrotron photoemission. Resistance of films to sulfidation and oxidation will also be examined. The Paragon parallel processing computer will be used to calculate the structure of the SIBA and thin films in order to develop ability to predict and tailor SIBA and thin film behavior. This work will lead to the possible development of a new class of thin film materials with properties tailored by varying the composition of the SIBA, serving as a buffer layer to relieve the strain between the substrate and the thin film. Such films will have improved mechanical and corrosion resistance allowing application as protective barriers for weapons applications. They will also exhibit enhanced electrical conductivity and reduced electromigration making them particularly suitable for application as interconnects and other electronic needs.

  14. Fusion bonding and alignment fixture

    DOE Patents [OSTI]

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2000-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  15. Method for vacuum fusion bonding

    DOE Patents [OSTI]

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2001-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  16. Clean Energy Revenue Bond Program

    Broader source: Energy.gov [DOE]

    The bonds are exempt from taxation by the state, and any type of renewable energy system and most energy efficiency measures, including energy recovery and combined heat and power (CHP) systems,...

  17. Public Bonding Options | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bonding Options Public Bonding Options Traditionally, state and local governments (as well as certain other nonprofit organizations such as universities and hospitals) have had the ability to issue debt, in the form of bonds, to finance construction and/or improvements to public infrastructure. Bonds issued by state and local governments-often referred to as municipal or public bonds-can also be used, under certain circumstances for private activities. Public bonds vary by tax liability, as well

  18. Low Temperature Material Bonding Techniq Ue

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2002-08-06

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  19. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    describe bonding in organometallics are at frequently at odds with classical coordination chemistry, in that they invoke a covalent bond between the metal and the carbon-based...

  20. Method to improve commercial bonded SOI material

    DOE Patents [OSTI]

    Maris, Humphrey John (Barrington, RI); Sadana, Devendra Kumar (Pleasantville, NY)

    2000-07-11

    A method of improving the bonding characteristics of a previously bonded silicon on insulator (SOI) structure is provided. The improvement in the bonding characteristics is achieved in the present invention by, optionally, forming an oxide cap layer on the silicon surface of the bonded SOI structure and then annealing either the uncapped or oxide capped structure in a slightly oxidizing ambient at temperatures greater than 1200.degree. C. Also provided herein is a method for detecting the bonding characteristics of previously bonded SOI structures. According to this aspect of the present invention, a pico-second laser pulse technique is employed to determine the bonding imperfections of previously bonded SOI structures.

  1. Local Option- Industrial Facilities and Development Bonds

    Broader source: Energy.gov [DOE]

    Under the Utah Industrial Facilities and Development Act, counties, municipalities, and state universities in Utah may issue Industrial Revenue Bonds (IRBs) or Industrial Development Bonds (IDBs)...

  2. Qualified Energy Conservation Bonds (QECBs) & New Clean Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Qualified Energy Conservation Bonds (QECBs) & New Clean Renewable Energy Bonds (New CREBs) Qualified Energy Conservation Bonds (QECBs) & New Clean Renewable Energy Bonds (New ...

  3. Robust Technique for Measuring and Simulating Silicon Wafer Quality Characteristics that Enable the Prediction of Solar Cell Electrical Performance of MEMC Silicon Wafer. Cooperative Research and Development Final Report, CRADA Number CRD-11-438

    SciTech Connect (OSTI)

    Sopori, Bhushan

    2015-12-01

    NREL and MEMC Electronic Materials are interested in developing a robust technique for monitoring material quality of mc-Si and mono-Si wafers -- a technique that can provide relevant data to accurately predict the performance of solar cells fabricated on them. Previous work, performed under two TSAs between NREL and MEMC, has established that dislocation clusters are the dominant performance-limiting factor in MEMC mc-Si solar cells. The work under this CRADA will go further in verifying these results on a larger data set, evaluate possibilities of faster method(s) for mapping dislocations in wafers/ingots, understanding dislocation generation during ingot casting, and helping MEMC to have an internal capability for basic characterization that will provide feedback needed for more accurate crystallization simulations. NREL has already developed dislocation mapping technique and developed a basic electronic model (called Network Model) that uses spatial distribution of dislocations to predict the cell performance. In this CRADA work, we will use these techniques to: (i) establish dislocation, grain size, and grain orientation distributions of the entire ingots (through appropriate DOE) and compare these with theoretical models developed by MEMC, (ii) determine concentrations of some relevant impurities in selected wafers, (iii) evaluate potential of using photoluminescence for dislocation mapping and identification of recombination centers, (iv) evaluate use of diode array analysis as a detailed characterization tool, and (v) establish dislocation mapping as a wafer-quality monitoring tool for commercial mc-Si production.

  4. Transient liquid phase ceramic bonding

    DOE Patents [OSTI]

    Glaeser, Andreas M. (Berkeley, CA)

    1994-01-01

    Ceramics are joined to themselves or to metals using a transient liquid phase method employing three layers, one of which is a refractory metal, ceramic or alloy. The refractory layer is placed between two metal layers, each of which has a lower melting point than the refractory layer. The three layers are pressed between the two articles to be bonded to form an assembly. The assembly is heated to a bonding temperature at which the refractory layer remains solid, but the two metal layers melt to form a liquid. The refractory layer reacts with the surrounding liquid and a single solid bonding layer is eventually formed. The layers may be designed to react completely with each other and form refractory intermetallic bonding layers. Impurities incorporated into the refractory metal may react with the metal layers to form refractory compounds. Another method for joining ceramic articles employs a ceramic interlayer sandwiched between two metal layers. In alternative embodiments, the metal layers may include sublayers. A method is also provided for joining two ceramic articles using a single interlayer. An alternate bonding method provides a refractory-metal oxide interlayer placed adjacent to a strong oxide former. Aluminum or aluminum alloys are joined together using metal interlayers.

  5. Qualified Energy Conservation Bonds | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Qualified Energy Conservation Bonds Qualified Energy Conservation Bonds A Qualified Energy Conservation Bond (QECB) is a bond that enables qualified state, tribal, and local government issuers to borrow money at attractive rates to fund energy conservation projects (it is important to note that QECBs are not grants). A QECB is among the lowest-cost public financing tools because the U.S. Department of the Treasury subsidizes the issuer's borrowing costs. Like Build America Bonds, QECBs are

  6. Awards | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wafer Electrodeionization 2011 R&D 100 Awards Enhanced Renewable Methane Production System Advanced Ceramic Film Capacitors for Power Electronics in Electric Drive Vehicles...

  7. Non-bonded ultrasonic transducer

    DOE Patents [OSTI]

    Eoff, J.M.

    1984-07-06

    A mechanically assembled non-bonded ultrasonic transducer includes a substrate, a piezoelectric film, a wetting agent, a thin metal electrode, and a lens held in intimate contact by a mechanical clamp. No epoxy or glue is used in the assembly of this device.

  8. Bonded polyimide fuel cell package

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Jankowski, Alan; Graff, Robert T.; Bettencourt, Kerry

    2010-06-08

    Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.

  9. Vacancy-type defects induced by grinding of Si wafers studied by monoenergetic positron beams

    SciTech Connect (OSTI)

    Uedono, Akira; Yoshihara, Nakaaki; Mizushima, Yoriko; Kim, Youngsuk; Nakamura, Tomoji; Ohba, Takayuki; Oshima, Nagayasu; Suzuki, Ryoichi

    2014-10-07

    Vacancy-type defects introduced by the grinding of Czochralski-grown Si wafers were studied using monoenergetic positron beams. Measurements of Doppler broadening spectra of the annihilation radiation and the lifetime spectra of positrons showed that vacancy-type defects were introduced in the surface region (<98 nm), and the major defect species were identified as (i) relatively small vacancies incorporated in dislocations and (ii) large vacancy clusters. Annealing experiments showed that the defect concentration decreased with increasing annealing temperature in the range between 100 and 500C. After 600700C annealing, the defect-rich region expanded up to about 170 nm, which was attributed to rearrangements of dislocation networks, and a resultant emission of point defects toward the inside of the sample. Above 800C, the stability limit of those vacancies was reached and they started to disappear. After the vacancies were annealed out (900C), oxygen-related defects were the major point defects and they were located at <25 nm.

  10. Hi Bond Tapes Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hi Bond Tapes Ltd Jump to: navigation, search Name: Hi-Bond Tapes Ltd Place: Northamptonshire, England, United Kingdom Zip: NN17 5TS Product: Northamptonshire-based supplier of...

  11. INFORMATION REGARDING PERFORMANCE AND PAYMENT BONDS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PAYMENT BOND A payment bond assures payments as required by law to all persons supplying labor or material in the prosecution of the work provided for in the Subcontract. A...

  12. A spatially resolved retarding field energy analyzer design suitable for uniformity analysis across the surface of a semiconductor wafer

    SciTech Connect (OSTI)

    Sharma, S.; Gahan, D. Hopkins, M. B.; Kechkar, S.; Daniels, S.

    2014-04-15

    A novel retarding field energy analyzer design capable of measuring the spatial uniformity of the ion energy and ion flux across the surface of a semiconductor wafer is presented. The design consists of 13 individual, compact-sized, analyzers, all of which are multiplexed and controlled by a single acquisition unit. The analyzers were tested to have less than 2% variability from unit to unit due to tight manufacturing tolerances. The main sensor assembly consists of a 300 mm disk to mimic a semiconductor wafer and the plasma sampling orifices of each sensor are flush with disk surface. This device is placed directly on top of the rf biased electrode, at the wafer location, in an industrial capacitively coupled plasma reactor without the need for any modification to the electrode structure. The ion energy distribution, average ion energy, and average ion flux were measured at the 13 locations over the surface of the powered electrode to determine the degree of spatial nonuniformity. The ion energy and ion flux are shown to vary by approximately 20% and 5%, respectively, across the surface of the electrode for the range of conditions investigated in this study.

  13. Taking Advantage of Qualified Energy Conservation Bonds

    Broader source: Energy.gov [DOE]

    This webinar, held on Sept. 22, 2010, provides information on qualified energy conservation bonds. Examples include New York and Colorado.

  14. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Covalent Bonding in Actinide Sandwich Molecules Covalent Bonding in Actinide Sandwich Molecules Print Wednesday, 28 May 2014 00:00 Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide and actinide compounds could have profound consequences for their unique chemical reactivity and physical properties. Now, researchers working at ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic

  15. WAFER TEST CAVITY -Linking Surface Microstructure to RF Performance: a ‘Short-­‐Sample Test Facility’ for characterizing superconducting materials for SRF cavities.

    SciTech Connect (OSTI)

    Pogue, Nathaniel; Comeaux, Justin; McIntyre, Peter

    2014-05-30

    The Wafer Test cavity was designed to create a short sample test system to determine the properties of the superconducting materials and S‐I‐S hetero‐structures. The project, funded by ARRA, was successful in accomplishing several goals to achieving a high gradient test system for SRF research and development. The project led to the design and construction of the two unique cavities that each severed unique purposes: the Wafer test Cavity and the Sapphire Test cavity. The Sapphire Cavity was constructed first to determine the properties of large single crystal sapphires in an SRF environment. The data obtained from the cavity greatly altered the design of the Wafer Cavity and provided the necessary information to ascertain the Wafer Test cavity’s performance.

  16. Clean Energy and Bond Finance Initiative

    Broader source: Energy.gov [DOE]

    Provides information on Clean Energy and Bond Finance Initiative (CE+BFI). CE+BFI brings together public infrastructure finance agencies, clean energy public fund managers and institutional investors across the country to explore how to raise capital at scale for clean energy development through bond financing. Author: Clean Energy and Bond Finance Initiative

  17. High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers

    SciTech Connect (OSTI)

    Antoniadis, H.

    2011-03-01

    Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

  18. Thermal oxidation of polycrystalline and single crystalline aluminum nitride wafers (Prop 2003-054)

    SciTech Connect (OSTI)

    Speakman, Scott A; Gu, Z; Edgar, J H; Blom, Douglas Allen; Perrin, J; Chaudhuri, J

    2006-10-01

    Two types of aluminum nitride (AlN) samples were oxidized in flowing oxygen between 900 C and 1150 C for up to 6 h - highly (0001) textured polycrystalline AlN wafers and low defect density AlN single crystals. The N-face consistently oxidized at a faster rate than the Al-face. At 900 C and 1000 C after 6 h, the oxide was 15% thicker on the N-face than on the Al-face of polycrystalline AlN. At 1100 C and 1150 C, the oxide was only 5% thicker on the N-face, as the rate-limiting step changed from kinetically-controlled to diffusion-controlled with the oxide thickness. A linear parabolic model was established for the thermal oxidation of polycrystalline AlN on both the Al- and N-face. Transmission electron microscopy (TEM) confirmed the formation of a thicker crystalline oxide film on the N-face than on the Al-face, and established the crystallographic relationship between the oxide film and substrate. The oxidation of high-quality AlN single crystals resulted in a more uniform colored oxide layer compared to polycrystalline AlN. The aluminum oxide layer was crystalline with a rough AlN/oxide interface. The orientation relationship between AlN and Al{sub 2}O{sub 3} was (0001) AlN//(10{bar 1}0) Al{sub 2}O{sub 3} and (1{bar 1}00) AlN//(01{bar 1}2) Al{sub 2}O{sub 3}.

  19. Hydrogen Bonding Under High-Pressure (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: Hydrogen Bonding Under High-Pressure Citation Details In-Document Search Title: Hydrogen Bonding Under High-Pressure Authors: Manaa, M R ; Fried, L E Publication Date: 2010-03-12 OSTI Identifier: 1090831 Report Number(s): LLNL-CONF-425764 DOE Contract Number: W-7405-ENG-48 Resource Type: Conference Resource Relation: Conference: Presented at: Pacifichem 2010, Honolulu, HI, United States, Dec 18 - Dec 19, 2010 Research Org: Lawrence Livermore National Laboratory (LLNL), Livermore, CA

  20. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Covalent Bonding in Actinide Sandwich Molecules Print Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide and actinide compounds could have profound consequences for their unique chemical reactivity and physical properties. Now, researchers working at ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic actinide "sandwich" complexes that have been lightning rods in

  1. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Covalent Bonding in Actinide Sandwich Molecules Print Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide and actinide compounds could have profound consequences for their unique chemical reactivity and physical properties. Now, researchers working at ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic actinide "sandwich" complexes that have been lightning rods in

  2. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Covalent Bonding in Actinide Sandwich Molecules Print Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide and actinide compounds could have profound consequences for their unique chemical reactivity and physical properties. Now, researchers working at ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic actinide "sandwich" complexes that have been lightning rods in

  3. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Covalent Bonding in Actinide Sandwich Molecules Print Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide and actinide compounds could have profound consequences for their unique chemical reactivity and physical properties. Now, researchers working at ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic actinide "sandwich" complexes that have been lightning rods in

  4. Qualified Energy Conservation Bond (QECB) Update: New

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    18, 2012 Qualified Energy Conservation Bond (QECB) Update: New Guidance from the U.S. Department of Treasury and the Internal Revenue Service Qualified Energy Conservation Bonds (QECBs) are federally-subsidized bonds that enable state, tribal, and local government issuers to borrow money to fund a range of energy conservation projects at very attractive borrowing rates over long contract terms. In June 2012, the U.S. Department of the Treasury (Treasury) and the Internal Revenue Service (IRS)

  5. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Covalent Bonding in Actinide Sandwich Molecules Print Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide and actinide compounds could have profound consequences for their unique chemical reactivity and physical properties. Now, researchers working at ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic actinide "sandwich" complexes that have been lightning rods in

  6. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Covalent Bonding in Actinide Sandwich Molecules Print Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide and actinide compounds could have profound consequences for their unique chemical reactivity and physical properties. Now, researchers working at ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic actinide "sandwich" complexes that have been lightning rods in

  7. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bonds, are vital as industrial or bioinorganic catalysts and as precursors for nanomaterial synthesis. The work at the ALS also provides conclusive evidence for a new form of...

  8. Green Infrastructure Bonds | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    allowing the Department of Business, Economic Development, and Tourism to issue Green Infrastructure Bonds to secture low-cost financing for clean energy installations,...

  9. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic actinide "sandwich" complexes that have been lightning rods in discussions of...

  10. Metal-bonded graphite foam composites

    DOE Patents [OSTI]

    Menchhofer, Paul A; Klett, James W

    2015-04-28

    A metal-bonded graphite foam composite includes a ductile metal continuous phase and a dispersed phase that includes graphite foam particles.

  11. Hydrogen Adsorption Induces Interlayer Carbon Bond Formation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Adsorption Induces Interlayer Carbon Bond Formation in Supported Few-Layer Graphene Friday, February 28, 2014 Among the allotropes of carbon, diamond has some of the most...

  12. Qualified Energy Conservation Bonds (QECBs) & New Clean Renewable Energy Bonds (New CREBs)

    Broader source: Energy.gov [DOE]

    Provides a presentation overview of qualified energy conservation bond and new clean renewable energy bonds, including characteristics, mechanics, allocated volume, and other information. Author: U.S. Department of Energy

  13. Identification of products containing {single_bond}COOH, {single_bond}OH, and {single_bond}C{double_bond}O in atmospheric oxidation of hydrocarbons

    SciTech Connect (OSTI)

    Yu, J.; Flagan, R.C.; Seinfeld, J.H.

    1998-08-15

    Atmospheric oxidation of hydrocarbons by hydroxyl radicals and ozone leads to products containing {single_bond}COOH, {single_bond}OH, and {single_bond}C{double_bond}O functional groups. The high polarity of such compounds precludes direct GC-MS analysis. In addition, many such compounds often exist in a single sample at trace levels. An analytical method has been developed to identify compounds containing one or more functional groups of carbonyl, carboxy, and hydroxy in atmospheric samples. In the method, {single_bond}C{double_bond}O groups are derivatized using O-(2,3,4,5,6-pentafluorobenzyl) hydroxy amine(PFBHA), and {single_bond}COOH and {single_bond}OH groups are derivatized using a silylation reagent N,O-bis(trimethylsilyl)-trifluoroacetamide (BSTFA). The derivatives are easily resolved by a GC column. The chemical ionization mass spectra of these derivatives exhibit several pseudomolecular ions, allowing unambiguous determination of molecular weights. Functional group identification is accomplished by monitoring the ions in the electron ionization mass spectra that are characteristic of each functional group derivative: m/z 181 for carbonyl and m/z 73 and 75 for carboxyl and hydroxy groups. The method is used to identify products in laboratory studies of ozone oxidation of {alpha}-pinene and {Delta}{sup 3}-carene.

  14. Hydrogen bond dynamics in bulk alcohols

    SciTech Connect (OSTI)

    Shinokita, Keisuke; Cunha, Ana V.; Jansen, Thomas L. C.; Pshenichnikov, Maxim S.

    2015-06-07

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamicsquantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquidalcoholshas attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups.

  15. 1 mil gold bond wire study.

    SciTech Connect (OSTI)

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.; Rutherford, Brian Milne

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.

  16. Sandia National Laboratories: Research: High Consequence, Automation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    multiple gears. The sandwiched wafers are removed from the workcell and placed in an etching bath where the gears are released from the second wafer. This process can be repeated...

  17. Excellent Passivation and Low Reflectivity Al2O3/TiO2 Bilayer Coatings for n-Wafer Silicon Solar Cells: Preprint

    SciTech Connect (OSTI)

    Lee, B. G.; Skarp, J.; Malinen, V.; Li, S.; Choi, S.; Branz, H. M.

    2012-06-01

    A bilayer coating of Al2O3 and TiO2 is used to simultaneously achieve excellent passivation and low reflectivity on p-type silicon. This coating is targeted for achieving high efficiency n-wafer Si solar cells, where both passivation and anti-reflection (AR) are needed at the front-side p-type emitter. It could also be valuable for front-side passivation and AR of rear-emitter and interdigitated back contact p-wafer cells. We achieve high minority carrier lifetimes {approx}1 ms, as well as a nearly 2% decrease in absolute reflectivity, as compared to a standard silicon nitride AR coating.

  18. Atomically Bonded Transparent Superhydrophobic Coatings

    SciTech Connect (OSTI)

    Aytug, Tolga

    2015-08-01

    Maintaining clarity and avoiding the accumulation of water and dirt on optically transparent surfaces such as US military vehicle windshields, viewports, periscope optical head windows, and electronic equipment cover glasses are critical to providing a high level of visibility, improved survivability, and much-needed safety for warfighters in the field. Through a combination of physical vapor deposition techniques and the exploitation of metastable phase separation in low-alkali borosilicate, a novel technology was developed for the fabrication of optically transparent, porous nanostructured silica thin film coatings that are strongly bonded to glass platforms. The nanotextured films, initially structurally superhydrophilic, exhibit superior superhydrophobicity, hence antisoiling ability, following a simple but robust modification in surface chemistry. The surfaces yield water droplet contact angles as high as 172. Moreover, the nanostructured nature of these coatings provides increased light scattering in the UV regime and reduced reflectivity (i.e., enhanced transmission) over a broad range of the visible spectrum. In addition to these functionalities, the coatings exhibit superior mechanical resistance to abrasion and are thermally stable to temperatures approaching 500C. The overall process technology relies on industry standard equipment and inherently scalable manufacturing processes and demands only nontoxic, naturally abundant, and inexpensive base materials. Such coatings, applied to the optical components of current and future combat equipment and military vehicles will provide a significant strategic advantage for warfighters. The inherent self-cleaning properties of such superhydrophobic coatings will also mitigate biofouling of optical windows exposed to high-humidity conditions and can help decrease repair/replacement costs, reduce maintenance, and increase readiness by limiting equipment downtime.

  19. Process Of Bonding Copper And Tungsten

    DOE Patents [OSTI]

    Slattery, Kevin T. (St. Charles, MO); Driemeyer, Daniel E. (Manchester, MO); Davis, John W. (Ballwin, MO)

    2000-07-18

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by sintering a stack of individual copper and tungsten powder blend layers having progressively higher copper content/tungsten content, by volume, ratio values in successive powder blend layers in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  20. A Surprising Path for Proton Transfer Without Hydrogen Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Surprising Path for Proton Transfer Without Hydrogen Bonds Print Hydrogen bonds are found everywhere in chemistry and biology and are critical in DNA and RNA. A hydrogen bond...

  1. A Surprising Path for Proton Transfer Without Hydrogen Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Surprising Path for Proton Transfer Without Hydrogen Bonds A Surprising Path for Proton Transfer Without Hydrogen Bonds Print Wednesday, 25 July 2012 00:00 Hydrogen bonds are...

  2. Identification and Characterization of Performance Limiting Regions in Poly-Si Wafers Used for PV Cells: Preprint

    SciTech Connect (OSTI)

    Guthrey, H.; Gorman, B.; Al-Jassim, M.

    2011-07-01

    As demand for silicon photovoltaic (PV) material increases, so does the need for cost-effective feedstock and production methods that will allow enhanced penetration of silicon PV into the total energy market. The focus on cost minimization for production of polycrystalline silicon (poly-Si) PV has led to relaxed feedstock purity requirements, which has also introduced undesirable characteristics into cast poly-Si PV wafers. To produce cells with the highest possible conversion efficiencies, it is crucial to understand how reduced purity requirements and defects that are introduced through the casting process can impair minority carrier properties in poly-Si PV cells. This is only possible by using multiple characterization techniques that give macro-scale information (such as the spatial distribution of performance-limiting regions), as well as micro and nano-scale information about the structural and chemical nature of such performance-limiting regions. This study demonstrates the usefulness of combining multiple techniques to analyze performance-limiting regions in the poly-Si wafers that are used for PV cells. This is done by first identifying performance-limiting regions using macro-scale techniques including photoluminescence (PL) imaging, microwave photoconductive decay (uPCD), and reflectometry), then using smaller-scale techniques such as scanning electron microscopy (SEM), electron backscattered diffraction (EBSD), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), cathodoluminescence (CL), and transmission electron microscopy (TEM) to understand the nature of such regions. This analysis shows that structural defects as well as metallic impurities are present in performance-limiting regions, which together act to decrease conversion efficiencies in poly-Si PV cells.

  3. Local Option- Energy Efficiency Project Bonds

    Broader source: Energy.gov [DOE]

    On March 2015, the Arkansas legislature passed SB 896 or the “Local Government Energy Efficiency Project Bond Act” which provides enabling legislation for a municipality or a county to issue energy...

  4. Nearly Equivalent Inter- and Intramolecular Hydrogen Bonding...

    Office of Scientific and Technical Information (OSTI)

    at High Pressure Citation Details In-Document Search Title: Nearly Equivalent Inter- and Intramolecular Hydrogen Bonding in 1,3,5-Triamino-2,4,6-trinitrobenzene at High Pressure ...

  5. Method for forming or bonding a liner

    DOE Patents [OSTI]

    Prevender, Thomas S. (Albuquerque, NM)

    1980-01-01

    A process and means for forming or bonding a liner to a shell or element wherein the liner is filled with or immersed in water and a portion of the water is frozen.

  6. Cement Bond Log | Open Energy Information

    Open Energy Info (EERE)

    casing and cement and between cement and borehole wall. Most cement-bond logs are a measurement only of the amplitude of the early arriving casing signal. Although a small...

  7. Method of bonding metals to ceramics

    DOE Patents [OSTI]

    Maroni, V.A.

    1991-04-23

    A ceramic or glass having a thin layer of silver, gold or alloys thereof at the surface thereof is disclosed. A first metal is bonded to the thin layer and a second metal is bonded to the first metal. The first metal is selected from the class consisting of In, Ga, Sn, Bi, Zn, Cd, Pb, Tl and alloys thereof, and the second metal is selected from the class consisting of Cu, Al, Pb, Au and alloys thereof. 3 figures.

  8. Method of bonding metals to ceramics

    DOE Patents [OSTI]

    Maroni, Victor A.

    1991-01-01

    A ceramic or glass having a thin layer of silver, gold or alloys thereof at the surface thereof. A first metal is bonded to the thin layer and a second metal is bonded to the first metal. The first metal is selected from the class consisting of In, Ga, Sn, Bi, Zn, Cd, Pb, Tl and alloys thereof, and the second metal is selected from the class consisting of Cu, Al, Pb, An and alloys thereof.

  9. Qualified Energy Conservation Bond (QECB) Update: New Guidance...

    Office of Environmental Management (EM)

    Qualified Energy Conservation Bond (QECB) Update: New Guidance from the U.S. Department of Treasury and the Internal Revenue Service Qualified Energy Conservation Bond (QECB) ...

  10. Using Qualified Energy Conservation Bonds for Public Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Qualified Energy Conservation Bonds for Public Building Upgrades: Reducing Energy Bills in the City of Philadelphia Using Qualified Energy Conservation Bonds for Public Building ...

  11. Deflagration Rates and Molecular Bonding Trends of Statically...

    Office of Scientific and Technical Information (OSTI)

    Molecular Bonding Trends of Statically Compressed Secondary Explosives Citation Details In-Document Search Title: Deflagration Rates and Molecular Bonding Trends of Statically ...

  12. Fitzgerald Wtr Lgt & Bond Comm | Open Energy Information

    Open Energy Info (EERE)

    Fitzgerald Wtr Lgt & Bond Comm Jump to: navigation, search Name: Fitzgerald Wtr Lgt & Bond Comm Place: Georgia Phone Number: (229) 426-5400 Website: fitzutilities.com Outage...

  13. Peer Exchange Call on Financing and Revenue: Bond Funding | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Exchange Call on Financing and Revenue: Bond Funding Peer Exchange Call on Financing and Revenue: Bond Funding Better Buildings Neighborhood Program Peer Exchange Call on...

  14. An unusual carbon-carbon bond cleavage reaction during phosphinothrici...

    Office of Scientific and Technical Information (OSTI)

    An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis Citation Details In-Document Search Title: An unusual carbon-carbon bond cleavage reaction ...

  15. FITCH RATES ENERGY NORTHWEST, WA'S ELECTRIC REV RFDG BONDS 'AA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    debt (4.1 billion). KEY RATING DRIVERS BONNEVILLE'S OBLIGATION SECURES BONDS: The rating on the Energy Northwest bonds reflects the credit quality of Bonneville and its...

  16. Pressure-Induced Hydrogen Bond Symmetrization in Iron Oxyhydroxide...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Pressure-Induced Hydrogen Bond Symmetrization in Iron Oxyhydroxide Citation Details In-Document Search Title: Pressure-Induced Hydrogen Bond Symmetrization in Iron ...

  17. Guidance for Energy Efficiency and Conservation Block Grant Grantees on Qualified Energy Conservation Bonds and New Clean Renewable Energy Bonds

    Office of Energy Efficiency and Renewable Energy (EERE)

    Guidance for Energy Efficiency and Conservation Block Grant Program grantees regarding Qualified Energy Conservation Bonds (QECBs) and New Clean Renewable Energy Bonds (New CREBs)

  18. Qualified Energy Conservation Bond (QECB) Update: New Guidance from the U.S. Department of Treasury and the Internal Revenue Service

    Broader source: Energy.gov [DOE]

    Provides a summary of the June 2012 U.S. Department of Treasury clarification of what constitutes a qualified project for potential issuers of qualified energy conservation bond capacity. Author: Lawrence Berkeley National Laboratory

  19. Qualified Energy Conservation Bond State-by-State Summary Tables

    Broader source: Energy.gov [DOE]

    Provides a list of qualified energy conservation bond state summary tables. Author: Energy Programs Consortium

  20. Bonded ultrasonic transducer and method for making

    DOE Patents [OSTI]

    Dixon, R.D.; Roe, L.H.; Migliori, A.

    1995-11-14

    An ultrasonic transducer is formed as a diffusion bonded assembly of piezoelectric crystal, backing material, and, optionally, a ceramic wear surface. The mating surfaces of each component are silver films that are diffusion bonded together under the application of pressure and heat. Each mating surface may also be coated with a reactive metal, such as hafnium, to increase the adhesion of the silver films to the component surfaces. Only thin silver films are deposited, e.g., a thickness of about 0.00635 mm, to form a substantially non-compliant bond between surfaces. The resulting transducer assembly is substantially free of self-resonances over normal operating ranges for taking resonant ultrasound measurements. 12 figs.

  1. Method of bonding metals to ceramics

    DOE Patents [OSTI]

    Maroni, Victor A. (Naperville, IL)

    1992-01-01

    A method of forming a composite by providing a ceramic capable of having zero electrical resistance and complete diamagnetism at superconducting temperatures, bonding a thin layer of Ag, Au or alloys thereof with the ceramic. Thereafter, there is bonded a first metal to the ceramic surface at a temperature less than about 400.degree. C., and then a second metal is bonded to the first metal at a temperature less than about 400.degree. C. to form a composite wherein the first metal is selected from the class consisting of In, Ga, Sn, Bi, Zn, Cd, Pb, Ti and alloys thereof and wherein the second metal is selected from the class consisting of Al, Cu, Pb and Zn and alloys thereof.

  2. Process Of Bonding Copper And Tungsten

    DOE Patents [OSTI]

    Slattery, Kevin T. (St. Charles, MO); Driemeyer, Daniel E. (Manchester, MO)

    1999-11-23

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by thermal plasma spraying mixtures of copper powder and tungsten powder in a varied blending ratio such that the blending ratio of the copper powder and the tungsten powder that is fed to a plasma torch is intermittently adjusted to provide progressively higher copper content/tungsten content, by volume, ratio values in the interlayer in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  3. Bonded ultrasonic transducer and method for making

    DOE Patents [OSTI]

    Dixon, Raymond D. (Los Alamos, NM); Roe, Lawrence H. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1995-01-01

    An ultrasonic transducer is formed as a diffusion bonded assembly of piezoelectric crystal, backing material, and, optionally, a ceramic wear surface. The mating surfaces of each component are silver films that are diffusion bonded together under the application of pressure and heat. Each mating surface may also be coated with a reactive metal, such as hafnium, to increase the adhesion of the silver films to the component surfaces. Only thin silver films are deposited, e.g., a thickness of about 0.00635 mm, to form a substantially non-compliant bond between surfaces. The resulting transducer assembly is substantially free of self-resonances over normal operating ranges for taking resonant ultrasound measurements.

  4. Epoxy bond and stop etch fabrication method

    DOE Patents [OSTI]

    Simmons, Jerry A. (Sandia Park, NM); Weckwerth, Mark V. (Pleasanton, CA); Baca, Wes E. (Albuquerque, NM)

    2000-01-01

    A class of epoxy bond and stop etch (EBASE) microelectronic fabrication techniques is disclosed. The essence of such techniques is to grow circuit components on top of a stop etch layer grown on a first substrate. The first substrate and a host substrate are then bonded together so that the circuit components are attached to the host substrate by the bonding agent. The first substrate is then removed, e.g., by a chemical or physical etching process to which the stop etch layer is resistant. EBASE fabrication methods allow access to regions of a device structure which are usually blocked by the presence of a substrate, and are of particular utility in the fabrication of ultrafast electronic and optoelectronic devices and circuits.

  5. Fundamental aspects of recoupled pair bonds. II. Recoupled pair bond dyads in carbon and sulfur difluoride

    SciTech Connect (OSTI)

    Dunning, Thom H. Takeshita, Tyler Y.; Xu, Lu T.

    2015-01-21

    Formation of a bond between a second ligand and a molecule with a recoupled pair bond results in a recoupled pair bond dyad. We examine the recoupled pair bond dyads in the a{sup 3}B{sub 1} states of CF{sub 2} and SF{sub 2}, which are formed by the addition of a fluorine atom to the a{sup 4}?{sup ?} states of CF and SF, both of which possess recoupled pair bonds. The two dyads are very different. In SF{sub 2}, the second FSF bond is very strong (D{sub e} = 106.3 kcal/mol), the bond length is much shorter than that in the SF(a{sup 4}?{sup ?}) state (1.666 versus 1.882 ), and the three atoms are nearly collinear (?{sub e} = 162.7) with only a small barrier to linearity (0.4 kcal/mol). In CF{sub 2}, the second FCF bond is also very strong (D{sub e} = 149.5 kcal/mol), but the bond is only slightly shorter than that in the CF(a{sup 4}?{sup ?}) state (1.314 versus 1.327 ), and the molecule is strongly bent (?{sub e} = 119.0) with an 80.5 kcal/mol barrier to linearity. The a{sup 3}B{sub 1} states of CF{sub 2} and SF{sub 2} illustrate the fundamental differences between recoupled pair bond dyads formed from 2s and 3p lone pairs.

  6. Adhesive bonding using variable frequency microwave energy

    DOE Patents [OSTI]

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-09-08

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  7. Adhesive bonding using variable frequency microwave energy

    DOE Patents [OSTI]

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-08-25

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  8. Phosphate-bonded calcium aluminate cements

    DOE Patents [OSTI]

    Sugama, T.

    1993-09-21

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120 C to about 300 C to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate. 10 figures.

  9. Adhesive bonding using variable frequency microwave energy

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); McMillan, April D. (Knoxville, TN); Paulauskas, Felix L. (Oak Ridge, TN); Fathi, Zakaryae (Cary, NC); Wei, Jianghua (Raleigh, NC)

    1998-01-01

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy.

  10. Bonded Radii and the Contraction of the Electron Density of the Oxygen Atom by Bonded Interactions

    SciTech Connect (OSTI)

    Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.; Iversen, Bo B.; Spackman, M. A.

    2013-02-21

    The bonded radii for more than 550 bonded pairs of atoms, comprising more than 50 crystals, determined from experimental and theoretical electron density distributions, are compared with the effective ionic, ri(M), and crystal radii, rc(M), for metal atoms, M, bonded to O atoms. At odds with the fixed ionic radius of 1.40 , assumed for the O atom in the compilation of the ionic radii, the bonded radius for the atom, rb(O), is not fixed but displays a relatively wide range of values as the O atom is progressively polarized by the M-O bonded interactions: as such, rb(O) decreases systematically from 1.40 (the Pauling radius of the oxide anion) as bond lengths decrease when bonded to an electropositive atom like sodium, to 0.64 (Braggs atomic radius of the O atom) when bonded to an electronegative atom like nitrogen. Both rb(M) and rb(O) increase in tandum with the increasing coordination number of the M atom. The bonded radii of the M atoms are highly correlated with both ri(M) and rc(M), but they both depart systematically from rb(M) and become smaller as the electronegativity of the M atom increases and the M-O bond length decreases. The well-developed correlations between both sets of radii and rb(M) testifies to the relative precision of both sets of radii and the fact that both sets are highly correlated the M-O bond 1 lengths. On the other hand, the progressive departure of rb(O) from the fixed ionic radius of the O atom with the increasing electronegativity of the bonded M atom indicates that any compilation of sets of ionic radii, assuming that the radius for the oxygen atom is fixed in value, is problematical and impacts on the accuracy of the resulting sets of ionic and crystal radii thus compiled. The assumption of a fixed O atom radius not only results in a negative ionic radii for several atoms, but it also results in values of rb(M) that are much as ~ 0.6 larger than the ri(M) and rc(M) values, respectively, particularly for the more electronegative M atoms. On the other hand, the ionic radii are in closer agreement with rb(M) for the more electropositive atoms. Notwithstanding that ionic radii are typically smaller than bonded radii, particularly for the more electronegative atoms, they have been used with considerable success in understanding and rationalizing problems and properties in crystal chemistry primarily because both ionic and crystal radii are highly correlated on a one-to-one basis with both the bonded radii and the associated M-O bond lengths. The lack of agreement between the effective ionic and crystal radii and the bonded radii for the more shared bonded interactions is ascribed to the progressive increase in the polarization of the O atom by the bonded atoms with a concomitant decrease in its radius, a factor that was neglected in the compilation of ionic and crystal radii for fluorides, oxides, sulfides and nitrides. This accounts for ionic radii for these materials being smaller than the bonded radii for the more electronegative atoms.

  11. High-throughput characterization of stresses in thin film materials libraries using Si cantilever array wafers and digital holographic microscopy

    SciTech Connect (OSTI)

    Lai, Y. W.; Ludwig, A.; Hamann, S.; Ehmann, M.

    2011-06-15

    We report the development of an advanced high-throughput stress characterization method for thin film materials libraries sputter-deposited on micro-machined cantilever arrays consisting of around 1500 cantilevers on 4-inch silicon-on-insulator wafers. A low-cost custom-designed digital holographic microscope (DHM) is employed to simultaneously monitor the thin film thickness, the surface topography and the curvature of each of the cantilevers before and after deposition. The variation in stress state across the thin film materials library is then calculated by Stoney's equation based on the obtained radii of curvature of the cantilevers and film thicknesses. DHM with nanometer-scale out-of-plane resolution allows stress measurements in a wide range, at least from several MPa to several GPa. By using an automatic x-y translation stage, the local stresses within a 4-inch materials library are mapped with high accuracy within 10 min. The speed of measurement is greatly improved compared with the prior laser scanning approach that needs more than an hour of measuring time. A high-throughput stress measurement of an as-deposited Fe-Pd-W materials library was evaluated for demonstration. The fast characterization method is expected to accelerate the development of (functional) thin films, e.g., (magnetic) shape memory materials, whose functionality is greatly stress dependent.

  12. Real-time, noninvasive monitoring of ion energy and ion current at a wafer surface during plasma etching

    SciTech Connect (OSTI)

    Sobolewski, Mark A. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2006-09-15

    A noninvasive, nonperturbing technique for real-time monitoring of ion energy distributions and total ion current at a wafer surface during plasma processing has been used to monitor rapid changes in CF{sub 4}/Ar etching plasmas in an inductively coupled, rf-biased plasma reactor. To mimic the effects of process recipe steps or reactor malfunctions, perturbations were made in the inductive source power, gas flow, and pressure, and the resulting effects on total ion current, sheath voltage, and ion energy were monitored. During etching of a thermal silicon dioxide film, smaller changes, which are caused by the etch process itself, were also observed. Sheath voltages determined by the noninvasive technique were in good agreement with simultaneous measurements made using a capacitive probe. In addition to providing a demonstration of the speed and accuracy of the technique, the results also provide useful information about the relative importance of different types of equipment malfunctions and suggest methods for minimizing their effects. In particular, operating at constant bias voltage, instead of constant bias power, gave more stable ion energies. The physical mechanisms that cause the observed changes in ion energy are discussed, and a comparison to other process monitoring methods is presented. No other noninvasive, nonperturbing method yields ion current or ion energies as accurately as the technique presented here.

  13. Non-bonded piezoelectric ultrasonic transducer

    DOE Patents [OSTI]

    Eoff, James M.

    1985-01-01

    A mechanically assembled non-bonded ultrasonic transducer includes a substrate, a piezoelectric film, a wetting agent, a thin metal electrode, and a lens held in intimate contact by a mechanical clamp. No epoxy or glue is used in the assembly of this device.

  14. Fluorinated diamond bonded in fluorocarbon resin

    DOE Patents [OSTI]

    Taylor, Gene W. (Los Alamos, NM)

    1982-01-01

    By fluorinating diamond grit, the grit may be readily bonded into a fluorocarbon resin matrix. The matrix is formed by simple hot pressing techniques. Diamond grinding wheels may advantageously be manufactured using such a matrix. Teflon fluorocarbon resins are particularly well suited for using in forming the matrix.

  15. Article coated with flash bonded superhydrophobic particles

    DOE Patents [OSTI]

    Simpson, John T (Clinton, TN) [Clinton, TN; Blue, Craig A (Knoxville, TN) [Knoxville, TN; Kiggans, Jr., James O [Oak Ridge, TN

    2010-07-13

    A method of making article having a superhydrophobic surface includes: providing a solid body defining at least one surface; applying to the surface a plurality of diatomaceous earth particles and/or particles characterized by particle sizes ranging from at least 100 nm to about 10 .mu.m, the particles being further characterized by a plurality of nanopores, wherein at least some of the nanopores provide flow through porosity, the particles being further characterized by a plurality of spaced apart nanostructured features that include a contiguous, protrusive material; flash bonding the particles to the surface so that the particles are adherently bonded to the surface; and applying a hydrophobic coating layer to the surface and the particles so that the hydrophobic coating layer conforms to the nanostructured features.

  16. Bond order potential module for LAMMPS

    Energy Science and Technology Software Center (OSTI)

    2012-09-11

    pair_bop is a module for performing energy calculations using the Bond Order Potential (BOP) for use in the parallel molecular dynamics code LAMMPS. The bop pair style computes BOP based upon quantum mechanical incorporating both sigma and pi bondings. By analytically deriving the BOP pair bop from quantum mechanical theory its transferability to different phases can approach that of quantum mechanical methods. This potential is extremely effective at modeling 111-V and II-VI compounds such asmore » GaAs and CdTe. This potential is similar to the original BOP developed by Pettifor and later updated by Murdock et al. and Ward et al.« less

  17. Reversible Sigma C-C Bond Formation Between Phenanthroline Ligands...

    Office of Scientific and Technical Information (OSTI)

    Reversible Sigma C-C Bond Formation Between Phenanthroline Ligands Activated by (C5Me5)2Yb Citation Details In-Document Search Title: Reversible Sigma C-C Bond Formation Between ...

  18. Measurement of Moisture Outgassing of the Plastic-Bonded TATB...

    Office of Scientific and Technical Information (OSTI)

    Measurement of Moisture Outgassing of the Plastic-Bonded TATB Explosive LX-17 Citation Details In-Document Search Title: Measurement of Moisture Outgassing of the Plastic-Bonded...

  19. Pre-plated reactive diffusion-bonded battery electrode plaques

    DOE Patents [OSTI]

    Maskalick, Nicholas J. (Pittsburgh, PA)

    1984-01-01

    A high strength, metallic fiber battery plaque is made using reactive diffusion bonding techniques, where a substantial amount of the fibers are bonded together by an iron-nickel alloy.

  20. Vacuum fusion bonding of glass plates

    DOE Patents [OSTI]

    Swierkowski, Steve P. (Livermore, CA); Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    2001-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  1. Vacuum fusion bonding of glass plates

    DOE Patents [OSTI]

    Swierkowski, Steve P. (Livermore, CA); Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    2000-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  2. Microchannel cooling of face down bonded chips

    DOE Patents [OSTI]

    Bernhardt, A.F.

    1993-06-08

    Microchannel cooling is applied to flip-chip bonded integrated circuits, in a manner which maintains the advantages of flip-chip bonds, while overcoming the difficulties encountered in cooling the chips. The technique is suited to either multi chip integrated circuit boards in a plane, or to stacks of circuit boards in a three dimensional interconnect structure. Integrated circuit chips are mounted on a circuit board using flip-chip or control collapse bonds. A microchannel structure is essentially permanently coupled with the back of the chip. A coolant delivery manifold delivers coolant to the microchannel structure, and a seal consisting of a compressible elastomer is provided between the coolant delivery manifold and the microchannel structure. The integrated circuit chip and microchannel structure are connected together to form a replaceable integrated circuit module which can be easily decoupled from the coolant delivery manifold and the circuit board. The coolant supply manifolds may be disposed between the circuit boards in a stack and coupled to supplies of coolant through a side of the stack.

  3. Microchannel cooling of face down bonded chips

    DOE Patents [OSTI]

    Bernhardt, Anthony F. (Berkeley, CA)

    1993-01-01

    Microchannel cooling is applied to flip-chip bonded integrated circuits, in a manner which maintains the advantages of flip-chip bonds, while overcoming the difficulties encountered in cooling the chips. The technique is suited to either multichip integrated circuit boards in a plane, or to stacks of circuit boards in a three dimensional interconnect structure. Integrated circuit chips are mounted on a circuit board using flip-chip or control collapse bonds. A microchannel structure is essentially permanently coupled with the back of the chip. A coolant delivery manifold delivers coolant to the microchannel structure, and a seal consisting of a compressible elastomer is provided between the coolant delivery manifold and the microchannel structure. The integrated circuit chip and microchannel structure are connected together to form a replaceable integrated circuit module which can be easily decoupled from the coolant delivery manifold and the circuit board. The coolant supply manifolds may be disposed between the circuit boards in a stack and coupled to supplies of coolant through a side of the stack.

  4. YuPo Lin | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yupo Lin YuPo Lin ElectroChemical and Bioprocessing Engineer E-mail yplin@anl.gov Projects Innovative Separations Resin Wafer Electrodeionization

  5. A Surprising Path for Proton Transfer Without Hydrogen Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Surprising Path for Proton Transfer Without Hydrogen Bonds A Surprising Path for Proton Transfer Without Hydrogen Bonds Print Wednesday, 25 July 2012 00:00 Hydrogen bonds are found everywhere in chemistry and biology and are critical in DNA and RNA. A hydrogen bond results from the attractive dipolar interaction of a chemical group containing a hydrogen atom with a group containing an electronegative atom, such as nitrogen, oxygen, or fluorine, in the same or a different molecule. Conventional

  6. New Clean Renewable Energy Bonds | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Clean Renewable Energy Bonds New Clean Renewable Energy Bonds New clean renewable energy bonds (CREBs) are tax credit bonds, the proceeds of which are used for capital expenditures incurred by governmental bodies (including states and municipalities), public power providers, or cooperative electric companies for a "qualified renewable energy facility." CREBs have been authorized since 2005. New CREBs replaced CREBs in 2008; the 2008 legislation reduced the amount of the credit to

  7. Energetics of Hydrogen Bond Network Rearrangements in Liquid Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print Wednesday, 25 May 2005 00:00 The unique chemical and physical properties of liquid water are thought to result from the highly directional hydrogen bonding (H-bonding) network structure and its associated dynamics. However, despite intense experimental and theoretical scrutiny, a complete description of this structure has been elusive. Recently, with the

  8. Qualified Energy Conservation Bonds: Updates from the Field

    Broader source: Energy.gov [DOE]

    This webinar, held on March 28, 2011, focuses on qualified energy conservation bond updates, including issuance trends and performance contracting.

  9. GUIDANCE FOR ENERGY EFFICIENCY AND CONSERVATION BLOCK GRANT GRANTEES ON Qualified Energy Conservation Bonds and New Clean Renewable Energy Bonds.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EECBG PROGRAM NOTICE 10-018 EFFECTIVE DATE: July 27, 2010 SUBJECT: GUIDANCE FOR ENERGY EFFICIENCY AND CONSERVATION BLOCK GRANT GRANTEES ON QUALIFIED ENERGY CONSERVATION BONDS AND NEW CLEAN RENEWABLE ENERGY BONDS. PURPOSE To provide guidance to the Department of Energy's (Department or DOE) Energy Efficiency and Conservation Block Grant (EECBG) grantees regarding Qualified Energy Conservation Bonds (QECBs) and New Clean Renewable Energy Bonds (New CREBs). SCOPE The provisions of this guidance

  10. Anion Coordination in Metal-Organic Frameworks Functionalized with Urea Hydrogen-Bonding Groups

    SciTech Connect (OSTI)

    Custelcean, Radu; Moyer, Bruce A.; Bryantsev, Vyacheslav; Hay, Benjamin P.

    2005-12-15

    A series of metal-organic frameworks (MOFs) functionalized with urea hydrogen-bonding groups have been designed, synthesized, and structurally analyzed by single crystal X-ray diffraction to evaluate the efficacy of anion binding within the structural constraints of the MOFs. We found that urea-based functionalities may be used for anion binding within metal-organic frameworks when the tendency for urea???urea self-association is decreased by strengthening the intramolelcular CH???O hydrogen bonding of N-phenyl substituents to the carbonyl oxygen atom. Theoretical calculations indicate that N,N?-bis(m-pyridyl)urea (BPU) and N,N?-bis(m-cyanophenyl)urea (BCPU) should have enhanced hydrogen-bonding donor abilities toward anions and decreased tendencies to self-associate into hydrogen-bonded chains compared to other disubstituted ureas. Accordingly, BPU and BCPU were incorporated in MOFs as linkers through coordination of various Zn, Cu, and Ag transition metal salts, including Zn(ClO4)2, ZnSO4, Cu(NO3)2, Cu(CF3SO3)2, AgNO3 and AgSO3CH3. Structural analysis by single-crystal X-ray diffraction showed that these linkers are versatile anion binders, capable of chelate hydrogen bonding to all of the oxoanions explored. Anion binding by the urea functionalities was found to successfully compete with urea self-association in all cases except for that of charge-diffuse perchlorate. This research was sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy, under contract number DE-AC05-00OR22725 with Oak Ridge National Laboratory (managed by UT-Battelle, LLC), and performed at Oak Ridge National laboratory and Pacific Northwest National Laboratory (managed by Battelle for the U.S. Department of Energy under contract DE-AC05-76RL01830). This research was performed in part using the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research located at the Pacific Northwest National Laboratory.

  11. Method for bonding a transmission line to a downhole tool

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Fox, Joe (Spanish Fork, UT)

    2007-11-06

    An apparatus for bonding a transmission line to the central bore of a downhole tool includes a pre-formed interface for bonding a transmission line to the inside diameter of a downhole tool. The pre-formed interface includes a first surface that substantially conforms to the outside contour of a transmission line and a second surface that substantially conforms to the inside diameter of a downhole tool. In another aspect of the invention, a method for bonding a transmission line to the inside diameter of a downhole tool includes positioning a transmission line near the inside wall of a downhole tool and placing a mold near the transmission line and the inside wall. The method further includes injecting a bonding material into the mold and curing the bonding material such that the bonding material bonds the transmission line to the inside wall.

  12. Repairable chip bonding/interconnect process

    DOE Patents [OSTI]

    Bernhardt, A.F.; Contolini, R.J.; Malba, V.; Riddle, R.A.

    1997-08-05

    A repairable, chip-to-board interconnect process which addresses cost and testability issues in the multi-chip modules is disclosed. This process can be carried out using a chip-on-sacrificial-substrate technique, involving laser processing. This process avoids the curing/solvent evolution problems encountered in prior approaches, as well is resolving prior plating problems and the requirements for fillets. For repairable high speed chip-to-board connection, transmission lines can be formed on the sides of the chip from chip bond pads, ending in a gull wing at the bottom of the chip for subsequent solder. 10 figs.

  13. Repairable chip bonding/interconnect process

    DOE Patents [OSTI]

    Bernhardt, Anthony F. (Berkeley, CA); Contolini, Robert J. (Livermore, CA); Malba, Vincent (Livermore, CA); Riddle, Robert A. (Tracy, CA)

    1997-01-01

    A repairable, chip-to-board interconnect process which addresses cost and testability issues in the multi-chip modules. This process can be carried out using a chip-on-sacrificial-substrate technique, involving laser processing. This process avoids the curing/solvent evolution problems encountered in prior approaches, as well is resolving prior plating problems and the requirements for fillets. For repairable high speed chip-to-board connection, transmission lines can be formed on the sides of the chip from chip bond pads, ending in a gull wing at the bottom of the chip for subsequent solder.

  14. Special purpose revenue bonds: boon or bane

    SciTech Connect (OSTI)

    Taussig, R.A.

    1985-02-21

    Utilities are looking with increasing interest at the advantages offered by industrial development bonds (IDBs), a financing tool made available to investor-owned utilities through provision of federal law. IDBs are not without problems, however, particularly if regulatory agencies account for them improperly in rate cases. Regulatory agencies should allow returns based on the funds-used rather than the total-funds approach or the tariffs will not compensate investors adequately. The author examines both the risks to be avoided and the benefits when using IDBs.

  15. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    draws more than 200 students to Los Alamos National Laboratory April 16, 2015 NOTE TO EDITORS: Media are welcome to attend the awards ceremony from 9 a.m. to noon a.m., April 21 at...

  16. Chemically bonded phospho-silicate ceramics

    DOE Patents [OSTI]

    Wagh, Arun S. (Orland Park, IL); Jeong, Seung Y. (Westmont, IL); Lohan, Dirk (Chicago, IL); Elizabeth, Anne (Chicago, IL)

    2003-01-01

    A chemically bonded phospho-silicate ceramic formed by chemically reacting a monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and a sparsely soluble oxide, with a sparsely soluble silicate in an aqueous solution. The monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and sparsely soluble oxide are both in powder form and combined in a stochiometric molar ratio range of (0.5-1.5):1 to form a binder powder. Similarly, the sparsely soluble silicate is also in powder form and mixed with the binder powder to form a mixture. Water is added to the mixture to form a slurry. The water comprises 50% by weight of the powder mixture in said slurry. The slurry is allowed to harden. The resulting chemically bonded phospho-silicate ceramic exhibits high flexural strength, high compression strength, low porosity and permeability to water, has a definable and bio-compatible chemical composition, and is readily and easily colored to almost any desired shade or hue.

  17. Developing A Laser Shockwave Model For Characterizing Diffusion Bonded Interfaces

    SciTech Connect (OSTI)

    James A. Smith; Jeffrey M. Lacy; Barry H. Rabin

    2014-07-01

    12. Other advances in QNDE and related topics: Preferred Session Laser-ultrasonics Developing A Laser Shockwave Model For Characterizing Diffusion Bonded Interfaces 41st Annual Review of Progress in Quantitative Nondestructive Evaluation Conference QNDE Conference July 20-25, 2014 Boise Centre 850 West Front Street Boise, Idaho 83702 James A. Smith, Jeffrey M. Lacy, Barry H. Rabin, Idaho National Laboratory, Idaho Falls, ID ABSTRACT: The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) which is assigned with reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU. The new LEU fuel is based on a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to complete the fuel qualification process, the laser shock technique is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. The Laser Shockwave Technique (LST) is being investigated to characterize interface strength in fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However the deposition of laser energy into the containment layer on specimens surface is intractably complex. The shock wave energy is inferred from the velocity on the backside and the depth of the impression left on the surface from the high pressure plasma pulse created by the shock laser. To help quantify the stresses and strengths at the interface, a finite element model is being developed and validated by comparing numerical and experimental results for back face velocities and front face depressions with experimental results. This paper will report on initial efforts to develop a finite element model for laser shock.

  18. A Surprising Path for Proton Transfer Without Hydrogen Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Surprising Path for Proton Transfer Without Hydrogen Bonds Print Hydrogen bonds are found everywhere in chemistry and biology and are critical in DNA and RNA. A hydrogen bond results from the attractive dipolar interaction of a chemical group containing a hydrogen atom with a group containing an electronegative atom, such as nitrogen, oxygen, or fluorine, in the same or a different molecule. Conventional wisdom has it that proton transfer from one molecule to another can only happen via

  19. A Surprising Path for Proton Transfer Without Hydrogen Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Surprising Path for Proton Transfer Without Hydrogen Bonds Print Hydrogen bonds are found everywhere in chemistry and biology and are critical in DNA and RNA. A hydrogen bond results from the attractive dipolar interaction of a chemical group containing a hydrogen atom with a group containing an electronegative atom, such as nitrogen, oxygen, or fluorine, in the same or a different molecule. Conventional wisdom has it that proton transfer from one molecule to another can only happen via

  20. A Surprising Path for Proton Transfer Without Hydrogen Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Surprising Path for Proton Transfer Without Hydrogen Bonds Print Hydrogen bonds are found everywhere in chemistry and biology and are critical in DNA and RNA. A hydrogen bond results from the attractive dipolar interaction of a chemical group containing a hydrogen atom with a group containing an electronegative atom, such as nitrogen, oxygen, or fluorine, in the same or a different molecule. Conventional wisdom has it that proton transfer from one molecule to another can only happen via

  1. An unusual carbon-carbon bond cleavage reaction during phosphinothricin

    Office of Scientific and Technical Information (OSTI)

    biosynthesis (Journal Article) | SciTech Connect An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis Citation Details In-Document Search Title: An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis Natural products containing phosphorus-carbon bonds have found widespread use in medicine and agriculture. One such compound, phosphinothricin tripeptide, contains the unusual amino acid phosphinothricin attached to two alanine

  2. Energetics of Hydrogen Bond Network Rearrangements in Liquid Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print The unique chemical and physical properties of liquid water are thought to result from the highly directional hydrogen bonding (H-bonding) network structure and its associated dynamics. However, despite intense experimental and theoretical scrutiny, a complete description of this structure has been elusive. Recently, with the help of their novel liquid microjet apparatus, a University of California, Berkeley, group derived

  3. Energetics of Hydrogen Bond Network Rearrangements in Liquid Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print The unique chemical and physical properties of liquid water are thought to result from the highly directional hydrogen bonding (H-bonding) network structure and its associated dynamics. However, despite intense experimental and theoretical scrutiny, a complete description of this structure has been elusive. Recently, with the help of their novel liquid microjet apparatus, a University of California, Berkeley, group derived

  4. Energetics of Hydrogen Bond Network Rearrangements in Liquid Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print The unique chemical and physical properties of liquid water are thought to result from the highly directional hydrogen bonding (H-bonding) network structure and its associated dynamics. However, despite intense experimental and theoretical scrutiny, a complete description of this structure has been elusive. Recently, with the help of their novel liquid microjet apparatus, a University of California, Berkeley, group derived

  5. An unusual carbon-carbon bond cleavage reaction during phosphinothricin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biosynthesis (Journal Article) | SciTech Connect An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis Citation Details In-Document Search Title: An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis Natural products containing phosphorus-carbon bonds have found widespread use in medicine and agriculture. One such compound, phosphinothricin tripeptide, contains the unusual amino acid phosphinothricin attached to two alanine

  6. Energetics of Hydrogen Bond Network Rearrangements in Liquid Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print The unique chemical and physical properties of liquid water are thought to result from the highly directional hydrogen bonding (H-bonding) network structure and its associated dynamics. However, despite intense experimental and theoretical scrutiny, a complete description of this structure has been elusive. Recently, with the help of their novel liquid microjet apparatus, a University of California, Berkeley, group derived

  7. Energetics of Hydrogen Bond Network Rearrangements in Liquid Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print The unique chemical and physical properties of liquid water are thought to result from the highly directional hydrogen bonding (H-bonding) network structure and its associated dynamics. However, despite intense experimental and theoretical scrutiny, a complete description of this structure has been elusive. Recently, with the help of their novel liquid microjet apparatus, a University of California, Berkeley, group derived

  8. Energetics of Hydrogen Bond Network Rearrangements in Liquid Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print The unique chemical and physical properties of liquid water are thought to result from the highly directional hydrogen bonding (H-bonding) network structure and its associated dynamics. However, despite intense experimental and theoretical scrutiny, a complete description of this structure has been elusive. Recently, with the help of their novel liquid microjet apparatus, a University of California, Berkeley, group derived

  9. Energetics of Hydrogen Bond Network Rearrangements in Liquid Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print The unique chemical and physical properties of liquid water are thought to result from the highly directional hydrogen bonding (H-bonding) network structure and its associated dynamics. However, despite intense experimental and theoretical scrutiny, a complete description of this structure has been elusive. Recently, with the help of their novel liquid microjet apparatus, a University of California, Berkeley, group derived

  10. A Surprising Path for Proton Transfer Without Hydrogen Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Surprising Path for Proton Transfer Without Hydrogen Bonds Print Hydrogen bonds are found everywhere in chemistry and biology and are critical in DNA and RNA. A hydrogen bond results from the attractive dipolar interaction of a chemical group containing a hydrogen atom with a group containing an electronegative atom, such as nitrogen, oxygen, or fluorine, in the same or a different molecule. Conventional wisdom has it that proton transfer from one molecule to another can only happen via

  11. Using Qualified Energy Conservation Bonds for Public Building Upgrades:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing Energy Bills in the City of Philadelphia | Department of Energy Qualified Energy Conservation Bonds for Public Building Upgrades: Reducing Energy Bills in the City of Philadelphia Using Qualified Energy Conservation Bonds for Public Building Upgrades: Reducing Energy Bills in the City of Philadelphia Summarizes how the City of Philadelphia leveraged $6.25 million in qualified energy conservation bonds to upgrade the energy efficiency of city buildings. Author: Lawrence Berkeley

  12. Taking Advantage of Qualified Energy Conservation Bonds (QECBs) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advantage of Qualified Energy Conservation Bonds (QECBs) Taking Advantage of Qualified Energy Conservation Bonds (QECBs) This webinar, held on Sept. 22, 2010, provides information on Qualified Energy Conservation Bonds. Transcript PDF icon Presentation More Documents & Publications Aggregating QECB Allocations and Using QECBs to Support the Private Sector: A Case Study on Massachusetts Making it Easier to Complete Clean Energy Projects with Qualified Energy

  13. Tax-Exempt Bond Financing for Nonprofit Organizations and Industries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Tax-Exempt Bond Financing for Nonprofit Organizations and Industries Tax-Exempt Bond Financing for Nonprofit Organizations and Industries State-chartered bond authorities exist in every state. They include healthcare facility authorities, housing finance agencies, higher education facility authorities, and industrial development finance authorities. For those authorities, eligible projects include energy efficiency retrofits for existing facilities owned by eligible

  14. Microsoft Word - NMN292==CARES--2003 Refunding Bonds Official...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    service to eligible customers and to undertake certain other programs, such as fish and wildlife protection, mitigation and enhancement. The 2003 Bonds are special limited...

  15. Graphene Oxide Catalyzed C-H Bond Activation: The Importance...

    Office of Scientific and Technical Information (OSTI)

    Graphene Oxide Catalyzed C-H Bond Activation: The Importance Oxygen Functional Groups for Biaryl Construction Citation Details In-Document Search Title: Graphene Oxide Catalyzed ...

  16. Energetics of Hydrogen Bond Network Rearrangements in Liquid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print The unique chemical and physical properties of liquid water are thought to result from the highly...

  17. Structural and Mechanistic Insights into C-P Bond Hydrolysis...

    Office of Scientific and Technical Information (OSTI)

    Structural and Mechanistic Insights into C-P Bond Hydrolysis by Phosphonoacetate Hydrolase Citation Details In-Document Search Title: Structural and Mechanistic Insights into C-P ...

  18. Peer Exchange Call on Financing and Revenue: Bond Funding

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Peer Exchange Call on Financing and Revenue: Bond Funding, call slides and discussion summary, March 28, 2013.

  19. Microstructural Characteristics of HIP-bonded Monolithic Nuclear Fuels with a Diffusion Barrier

    SciTech Connect (OSTI)

    Jan-Fong Jue; Dennis D. Keiser, Jr.; Cynthia R. Breckenridge; Glenn A. Moore; Mitchell K. Meyer

    2014-05-01

    Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative (GTRI) is developing an advanced monolithic fuel to convert US high performance research reactors to low-enriched uranium. Hot-isostatic-press bonding was the single process down-selected to bond monolithic U-Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the UMo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between fuel meat, cladding, and diffusion barrier, as well as U10Mo fuel meat and Al6061 cladding were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are A typical Zr diffusion barrier of thickness 25 m Transverse cross section that exhibits relatively equiaxed grains with an average grain diameter of 10 m Chemical banding, in some areas more than 100 m in length, that is very pronounced in longitudinal (i.e., rolling) direction with Mo concentration varying from 713 wt% Decomposed areas containing plate-shaped low-Mo phase A typical Zr/cladding interaction layer of thickness 1-2 m A visible UZr2 bearing layer of thickness 1-2 m Mo-rich precipitates (mainly Mo2Zr, forming a layer in some areas) followed by a Mo-depleted sub-layer between the visible UZr2-bearing layer and the UMo matrix No excessive interaction between cladding and the uncoated fuel edge Cladding-to-cladding bonding that exhibits no cracks or porosity with second phases high in Mg, Si, and O decorating the bond line. Some of these attributes might be critical to the irradiation performance of monolithic U-10Mo nuclear fuel. There are several issues or concerns that warrant more detailed study, such as precipitation along cladding-to-cladding bond line, chemical banding, uncovered fuel-zone edge, and interaction layer between UMo fuel meat and zirconium. Future post-irradiation examination results will focus, among other things, on identifying in-reactor failure mechanisms and, eventually, directing further fresh fuel characterization efforts.

  20. National Nuclear Security Administration | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  1. Method of bonding single crystal quartz by field-assisted bonding

    DOE Patents [OSTI]

    Curlee, Richard M. (Tijeras, NM); Tuthill, Clinton D. (Edgewood, NM); Watkins, Randall D. (Albuquerque, NM)

    1991-01-01

    The method of producing a hermetic stable structural bond between quartz crystals includes providing first and second quartz crystals and depositing thin films of borosilicate glass and silicon on portions of the first and second crystals, respectively. The portions of the first and second crystals are then juxtaposed in a surface contact relationship and heated to a temperature for a period sufficient to cause the glass and silicon films to become electrically conductive. An electrical potential is then applied across the first and second crystals for creating an electrostatic field between the adjoining surfaces and causing the juxtaposed portions to be attracted into an intimate contact and form a bond for joining the adjoining surfaces of the crystals.

  2. Method of bonding single crystal quartz by field-assisted bonding

    DOE Patents [OSTI]

    Curlee, R.M.; Tuthill, C.D.; Watkins, R.D.

    1991-04-23

    The method of producing a hermetic stable structural bond between quartz crystals includes providing first and second quartz crystals and depositing thin films of borosilicate glass and silicon on portions of the first and second crystals, respectively. The portions of the first and second crystals are then juxtaposed in a surface contact relationship and heated to a temperature for a period sufficient to cause the glass and silicon films to become electrically conductive. An electrical potential is then applied across the first and second crystals for creating an electrostatic field between the adjoining surfaces and causing the juxtaposed portions to be attracted into an intimate contact and form a bond for joining the adjoining surfaces of the crystals. 2 figures.

  3. Bond-bending isomerism of Au2I3-: Competition between covalent bonding and aurophilicity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Wan -Lu; Liu, Hong -Tao; Jian, Tian; Lopez, Gary V.; Piazza, Zachary A.; Huang, Dao -Ling; Chen, Teng -Teng; Su, Jing; Yang, Ping; Chen, Xin; et al

    2015-10-13

    We report a joint photoelectron spectroscopy and theoretical investigation of the gaseous Au2I3– cluster, which is found to exhibit two types of isomers due to competition between Au–I covalent bonding and Au–Au aurophilic interactions. The covalent bonding favors a bent IAuIAuI– structure with an obtuse Au–I–Au angle (100.7°), while aurophilic interactions pull the two Au atoms much closer, leading to an acutely bent structure (72.0°) with an Au–Au distance of 3.08 Å. The two isomers are separated by a small barrier and are nearly degenerate with the obtuse isomer being slightly more stable. At low temperature, only the obtuse isomermore » is observed; distinct experimental evidence is observed for the co-existence of a combination of isomers with both acute and obtuse bending angles at room temperature. As a result, the two bond-bending isomers of Au2I3– reveal a unique example of one molecule being able to oscillate between different structures as a result of two competing chemical forces.« less

  4. National Competitiveness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Competitiveness The United States can achieve a better competitive position by introducing productivity and efficiency into its use of human and natural resources. The better we can compete in the national arena, the greater we can improve quality of life. NIF contributes to U.S. competitiveness significantly by training future generations of scientists. From tours of the facility to our highly competitive summer student program to collaborations with universities to our renowned post-doctoral

  5. Thermal Performance and Reliability of Bonded Interfaces | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ape028_devoto_2012_o.pdf More Documents & Publications Reliability of Bonded Interfaces Thermal Performance and Reliability of Bonded Interfaces Thermal Performance and Reliability

  6. Electrically conductive resinous bond and method of manufacture

    DOE Patents [OSTI]

    Snowden, Jr., Thomas M. (P.O. Box 4231, Clearwater, FL 33518); Wells, Barbara J. (865 N. Village Dr., Apt. 101B, St. Petersburg, FL 33702)

    1987-01-01

    A method of bonding elements together with a bond of high strength and good electrical conductivity which comprises: applying an unfilled polyimide resin between surfaces of the elements to be bonded, heat treating said unfilled polyimide resin in stages between a temperature range of about 40.degree. to 365.degree. C. to form a strong adhesive bond between said elements, applying a metal-filled polyimide resin overcoat between said elements so as to provide electrical connection therebetween, and heat treating said metal-filled polyimide resin with substantially the same temperature profile as the unfilled polyimide resin. The present invention is also concerned with an adhesive, resilient, substantially void free bonding combination for providing a high strength, electrically conductive adhesive attachment between electrically conductive elements which comprises a major amount of an unfilled polyimide resin and a minor amount of a metal-filled polyimide resin.

  7. Electrically conductive resinous bond and method of manufacture

    DOE Patents [OSTI]

    Snowden, T.M. Jr.; Wells, B.J.

    1985-01-01

    A method of bonding elements together with a bond of high strength and good electrical conductivity which comprises: applying an unfilled polyimide resin between surfaces of the elements to be bonded, heat treating said unfilled polyimide resin in stages between a temperature range of about 40 to 365/sup 0/C to form a strong adhesive bond between said elements, applying a metal-filled polyimide resin overcoat between said elements so as to provide electrical connection therebetween, and heat treating said metal-filled polyimide resin with substantially the same temperature profile as the unfilled polyimide resin. The present invention is also concerned with an adhesive, resilient, substantially void free bonding combination for providing a high strength, electrically conductive adhesive attachment between electrically conductive elements which comprises a major amount of an unfilled polyimide resin and a minor amount of a metal-filled polyimide resin.

  8. NATIONAL LABORATORY

    Office of Environmental Management (EM)

    , -QAlamos NATIONAL LABORATORY - - - Ut."., - - - memorandum Environmental Protection Division Water Quality & RCRA Group (ENV-RCRA) To/MS: From /MS: Phone/Fax: Symbol: Date: Davis Christensen, ADEP-LTP-PTS, J910 Mark Haagenstad, ENV-RCRA K404 41,// 5-2014 '11fI ENV-RCRA-12-0053 February 29,2012 SUBJECT: LEGACY TA-55 NITRATE SALT WASTES AT TA-54 - POTENTIAL APPLICABILITY OF RCRA DOOlID002ID003 WASTE CODES This memorandum was prepared in response to your request to provide ENV-RCRA's

  9. Time-Resolved Study of Bonding in Liquid Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time-Resolved Study of Bonding in Liquid Carbon Time-Resolved Study of Bonding in Liquid Carbon Print Wednesday, 28 September 2005 00:00 We are accustomed to observing carbon in its elemental form as a solid, ranging from the soft "lead" in pencils to the precious gemstone in diamond rings. While considerable attention has been focused on solid forms of carbon, the properties of liquid carbon are much more difficult to measure accurately. The very strong bonding between carbon atoms

  10. Wire bond vibration of forward pixel tracking detector of CMS

    SciTech Connect (OSTI)

    Atac, M.; Gobbi, B.; Kwan, S.; Pischalnikov, Y.; Spencer, E.; Sellberg, G.; Pavlicek, V.; /Fermilab

    2006-10-01

    Wire bonds of the Forward Pixel (FPix) tracking detectors are oriented in the direction that maximizes Lorentz Forces relative to the 4 Tesla field of the Compact Muon Solenoid (CMS) Detector's magnet. The CMS Experiment is under construction at the Large Hadron Collider at CERN, Geneva, Switzerland. We were concerned about Lorentz Force oscillating the wires at their fundamental frequencies and possibly fracturing or breaking them at their heels, as happened with the CDF wire bonds. This paper reports a study to understand what conditions break such bonds.

  11. Pollution-abatement revenue bonds as a source of finance

    SciTech Connect (OSTI)

    Bradley, J.F.; Christofi, P.

    1980-01-31

    The use of pollution-abatement revenue bonds, or environmental improvement bonds, is a comparatively new development in electric-utility financing. It has proven to be a convenient and relatively low-cost source of funds for certain kinds of required capital investment. The authors conducted a study of the extent to which, and manner in which, these instruments have been utilized by utilities, examining and analyzing the contents of 363 pollution-abatement revenue bond issues that appeared from 1971 to 1978. The report on their findings and on the benefits of this form of financing for utilities is presented.

  12. Hydrogen-Bond Networks: Strengths of Different Types of Hydrogen Bonds and An Alternative to the Low Barrier Hydrogen-Bond Proposal

    SciTech Connect (OSTI)

    Shokri, Alireza; Wang, Yanping; O'Doherty, George A.; Wang, Xue B.; Kass, Steven R.

    2013-11-27

    We report quantifying the strengths of different types of hydrogen bonds in hydrogen bond networks (HBNs) via measurement of the adiabatic electron detachment energy of the conjugate base of a small covalent polyol model compound (i.e., (HOCH2CH2CH(OH)CH2)2CHOH) in the gas phase and the pKa of the corresponding acid in DMSO. The latter result reveals that the hydrogen bonds to the charged center and those that are one solvation shell further away (i.e., primary and secondary) provide 5.3 and 2.5 pKa units of stabilization per hydrogen bond in DMSO. Computations indicate that these energies increase to 8.4 and 3.9 pKa units in benzene and that the total stabilizations are 16 (DMSO) and 25 (benzene) pKa units. Calculations on a larger linear heptaol (i.e., (HOCH2CH2CH(OH)CH2CH(OH)CH2)2CHOH) reveal that the terminal hydroxyl groups each contribute 0.6 pKa units of stabilization in DMSO and 1.1 pKa units in benzene. All of these results taken together indicate that the presence of a charged center can provide a powerful energetic driving force for enzyme catalysis and conformational changes such as in protein folding due to multiple hydrogen bonds in a HBN.

  13. Sandia National Laboratories | National Nuclear Security Administratio...

    National Nuclear Security Administration (NNSA)

    nuclear weapons Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge Sandia National Laboratories chemist Mark Allendorf, shown here at...

  14. National System Templates: Building Sustainable National Inventory...

    Open Energy Info (EERE)

    System Templates: Building Sustainable National Inventory Management Systems Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National System Templates: Building...

  15. National Security Science | Los National Alamos Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this Issue (pdf) In 2012 NSS received an NNSA Defense Programs AWARD OF EXCELLENCE National Security Science Mail Stop A142 Los Alamos National Laboratory Los Alamos, NM...

  16. Consent Order, Lawrence Livermore National National Security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issued to Lawrence Livermore National Security, LLC for deficiencies associated with the Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program On ...

  17. National Laboratory Impact Initiative

    Broader source: Energy.gov [DOE]

    The National Laboratory Impact Initiative supports the relationship between the Office of Energy Efficiency & Renewable Energy and the national laboratory enterprise.  The national laboratories...

  18. National Security Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science National Security Science Latest Issue:July 2015 past issues All Issues submit National Security Science Showcasing Los Alamos National Laboratory's work on nuclear...

  19. National Security Science Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science NSS Archive National Security Science Latest Issue:July 2015 past issues All Issues submit National Security Science Archive National Security Science magazine...

  20. Bonded Bracket Assmebly for Frameless Solar Panels

    SciTech Connect (OSTI)

    Murray, Todd; Jackson, Nick; Dupont, Luc; Moser, Jeff

    2013-01-30

    In February 2011 the US Department of Energy announced their new Sunshot Initiative. The Sunshot goal is to reduce the total cost of solar energy systems by about 75 percent before the end of the decade. The DOE estimated that a total installed cost of $$1 per watt for photovoltaic systems would be equivalent to 5-6/kilowatt hour (kWh) for energy available from the grid. The DOE also estimated that to meet the $1 per watt goal, PV module costs would need to be reduced to $ .50 per watt, balance of systems costs would need to be reduced to $.40 per watt, and power electronic costs would need to reach $.10 per watt. To address the BOS balance of systems cost component of the $1 per watt goal, the DOE announced a funding opportunity called (BOS-X) Extreme Balance of System Hardware Cost Reductions. The DOE identified eight areas within the total BOS costs: 1) installation labor, 2) installation materials, 3) installation overhead and profit, 4) tracker, 5) permitting and commissioning, 6) site preparation, 7) land acquisition, 8) sales tax. The BOS-X funding announcement requested applications in four specific topics;Topic 1: Transformational Building Integrated Photovoltaic (BIPV) Modules; Topic 2: Roof and Ground Mount Innovations; Topic 3: Transformational Photovoltaic System Designs; and Topic 4: Development of New Wind Load Codes for PV Systems.The application submitted by ARaymond Tinnerman reflected the requirements listed in Topic #2, Roof and Ground Mount Innovations. The goal of topic #2 was to develop technologies that would result in the extreme reduction of material and labor costs associated with applications that require physical connections and attachments to roof and ground mount structures. The topics researched in this project included component cost reduction, labor reduction, weight reduction, wiring innovations, and alternative material utilization. The project objectives included; 1) The development of an innovative quick snap bracket assembly that would be bonded to frameless PV modules for commercial rooftop installations; 2) The development of a composite pultruded rail to replace traditional racking materials; 3) In partnership with a roofing company, pilot the certification of a commercial roof to be solar panel compliant, eliminating the need for structural analysis and government oversight resulting in significantly decreased permitting costs; and 4) Reduce the sum of all cost impacts in topic #2 from a baseline total of $2.05/watt to $.34/watt.

  1. Low-Cost Financing with Clean Renewable Energy Bonds

    Broader source: Energy.gov [DOE]

    Contains information from the TAP Webcast on June 24, 2009 on clean renewable energy bonds from Claire Kreycik on feed-in tariffs, an economic resource for developing renewable energy.

  2. Time-Resolved Study of Bonding in Liquid Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time-Resolved Study of Bonding in Liquid Carbon Print We are accustomed to observing carbon in its elemental form as a solid, ranging from the soft "lead" in pencils to the...

  3. Aluminum for bonding Si-Ge alloys to graphite

    DOE Patents [OSTI]

    Eggemann, Robert V.

    1976-01-13

    Improved thermoelectric device and process, comprising the high-temperature, vacuum bonding of a graphite contact and silicon-germanium thermoelectric element by the use of a low void, aluminum, metallurgical shim with low electrical resistance sandwiched therebetween.

  4. Multilayer roll bonded aluminium foil: processing, microstructure and flow stress

    SciTech Connect (OSTI)

    Barlow, C.Y.; Nielsen, P.; Hansen, N

    2004-08-02

    Bulk aluminium has been produced by warm-rolling followed by cold-rolling of commercial purity (99% purity) aluminium foil. The bonding appeared perfect from observation with the naked eye, light and transmission electron microscopy. By comparison with bulk aluminium of similar purity (AA1200) rolled to a similar strain (90%RA), the roll-bonded metal showed a much higher density of high-angle grain boundaries, similar strength and improved thermal stability. This study has implications for a number of applications in relation to the processing of aluminium. Roll bonding is of interest as a method for grain size refinement; oxide-containing materials have increased strength, enhanced work-hardening behaviour, and exhibit alterations in recrystallisation behaviour. The behaviour of the hard oxide film is of interest in aluminium processing, and has been investigated by characterising the size and distribution of oxide particles in the roll-bonded samples.

  5. IRS Announces New Tribal Economic Development Bond Allocation Guidance

    Broader source: Energy.gov [DOE]

    Treasury and the IRS published new guidance today allocating Tribal Economic Development Bonds (TEDBs) for Tribes that have projects that are in the final stages of going to the market to receive financing.

  6. Time-Resolved Study of Bonding in Liquid Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lindenberg, O.R. Monteiro, Z. Chang, R.W. Lee, and R.W. Falcone, "Bonding in liquid carbon studied by time-resolved x-ray absorption spectroscopy," Phys. Rev. Lett. 94 057407 (2005...

  7. NMSLO Water Lease Damage Bond | Open Energy Information

    Open Energy Info (EERE)

    Water Lease Damage BondLegal Published NA Year Signed or Took Effect 2012 Legal Citation Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online...

  8. A Surprising Path for Proton Transfer Without Hydrogen Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9.0.2. To examine how the molecules were bonded, the team first created a gaseous molecular beam of methylated uracil monomers and dimers, then ionized them with vacuum...

  9. Advanced Materials and Manufacturing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials and Manufacturing Argonne researchers prepare silicon wafers for full-scale deposition testing of dielectric coatings for large area detectors. Argonne researchers prepare silicon wafers for full-scale deposition testing of dielectric coatings for large area detectors. Argonne's award-winning expertise in the creation and analysis of novel materials contributes to wide-ranging advances that improve industrial processes and manufactured products, saving energy and reducing waste. Many

  10. Time-Resolved Study of Bonding in Liquid Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time-Resolved Study of Bonding in Liquid Carbon Print We are accustomed to observing carbon in its elemental form as a solid, ranging from the soft "lead" in pencils to the precious gemstone in diamond rings. While considerable attention has been focused on solid forms of carbon, the properties of liquid carbon are much more difficult to measure accurately. The very strong bonding between carbon atoms that gives diamonds their hardness also makes carbon very difficult to melt,

  11. Time-Resolved Study of Bonding in Liquid Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time-Resolved Study of Bonding in Liquid Carbon Print We are accustomed to observing carbon in its elemental form as a solid, ranging from the soft "lead" in pencils to the precious gemstone in diamond rings. While considerable attention has been focused on solid forms of carbon, the properties of liquid carbon are much more difficult to measure accurately. The very strong bonding between carbon atoms that gives diamonds their hardness also makes carbon very difficult to melt,

  12. Time-Resolved Study of Bonding in Liquid Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time-Resolved Study of Bonding in Liquid Carbon Print We are accustomed to observing carbon in its elemental form as a solid, ranging from the soft "lead" in pencils to the precious gemstone in diamond rings. While considerable attention has been focused on solid forms of carbon, the properties of liquid carbon are much more difficult to measure accurately. The very strong bonding between carbon atoms that gives diamonds their hardness also makes carbon very difficult to melt,

  13. Time-Resolved Study of Bonding in Liquid Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time-Resolved Study of Bonding in Liquid Carbon Print We are accustomed to observing carbon in its elemental form as a solid, ranging from the soft "lead" in pencils to the precious gemstone in diamond rings. While considerable attention has been focused on solid forms of carbon, the properties of liquid carbon are much more difficult to measure accurately. The very strong bonding between carbon atoms that gives diamonds their hardness also makes carbon very difficult to melt,

  14. Time-Resolved Study of Bonding in Liquid Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time-Resolved Study of Bonding in Liquid Carbon Print We are accustomed to observing carbon in its elemental form as a solid, ranging from the soft "lead" in pencils to the precious gemstone in diamond rings. While considerable attention has been focused on solid forms of carbon, the properties of liquid carbon are much more difficult to measure accurately. The very strong bonding between carbon atoms that gives diamonds their hardness also makes carbon very difficult to melt,

  15. Time-Resolved Study of Bonding in Liquid Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time-Resolved Study of Bonding in Liquid Carbon Print We are accustomed to observing carbon in its elemental form as a solid, ranging from the soft "lead" in pencils to the precious gemstone in diamond rings. While considerable attention has been focused on solid forms of carbon, the properties of liquid carbon are much more difficult to measure accurately. The very strong bonding between carbon atoms that gives diamonds their hardness also makes carbon very difficult to melt,

  16. Method of making sintered ductile intermetallic-bonded ceramic composites

    DOE Patents [OSTI]

    Plucknett, K.; Tiegs, T.N.; Becher, P.F.

    1999-05-18

    A method of making an intermetallic-bonded ceramic composite involves combining a particulate brittle intermetallic precursor with a particulate reactant metal and a particulate ceramic to form a mixture and heating the mixture in a non-oxidizing atmosphere at a sufficient temperature and for a sufficient time to react the brittle intermetallic precursor and the reactant metal to form a ductile intermetallic and sinter the mixture to form a ductile intermetallic-bonded ceramic composite. 2 figs.

  17. Microbial cleavage of organic C-S bonds

    DOE Patents [OSTI]

    Kilbane, II, John J.

    1994-01-01

    A microbial process for selective cleavage of organic C--S bonds which may be used for reducing the sulfur content of sulfur-containing organic carbonaceous materials, Microorganisms of Rhodococcus rhodochrous and Bacillus sphaericus have been found which have the ability of selective cleavage of organic C--S bonds. Particularly preferred microorganisms are Rhodococcus rhodochrous strain ATCC 53968 and Bacillus sphaericus strain ATCC 53969 and their derivatives.

  18. Microbial cleavage of organic C-S bonds

    DOE Patents [OSTI]

    Kilbane, J.J. II.

    1994-10-25

    A microbial process is described for selective cleavage of organic C-S bonds which may be used for reducing the sulfur content of sulfur-containing organic carbonaceous materials. Microorganisms of Rhodococcus rhodochrous and Bacillus sphaericus have been found which have the ability of selective cleavage of organic C-S bonds. Particularly preferred microorganisms are Rhodococcus rhodochrous strain ATCC 53968 and Bacillus sphaericus strain ATCC 53969 and their derivatives.

  19. BN Bonded BN fiber article and method of manufacture

    DOE Patents [OSTI]

    Hamilton, Robert S. (Youngstown, NY)

    1981-08-18

    A boron nitride bonded boron nitride fiber article and the method for its manufacture which comprises forming a shaped article with a composition comprising a bonding compound selected from boron oxide and boric acid and a structural fiber selected from the group consisting of boron oxide, boron nitride and partially nitrided boron oxide fibers, heating the composition in an anhydrous gas to a temperature above the melting point of the compound and nitriding the resulting article in ammonia gas.

  20. Pressure-Induced Hydrogen Bond Symmetrization in Iron Oxyhydroxide (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Journal Article: Pressure-Induced Hydrogen Bond Symmetrization in Iron Oxyhydroxide Citation Details In-Document Search Title: Pressure-Induced Hydrogen Bond Symmetrization in Iron Oxyhydroxide Authors: Xu, Weiming ; Greenberg, Eran ; Rozenberg, Gregory Kh. ; Pasternak, Moshe P. ; Bykova, Elena ; Boffa-Ballaran, Tiziana ; Dubrovinsky, Leonid ; Prakapenka, Vitali ; Hanfland, Michael ; Vekilova, Olga Yu. ; Simak, Sergei I. ; Abrikosov, Igor A. [1] ; Link) [2] ;

  1. Deflagration Rates and Molecular Bonding Trends of Statically Compressed

    Office of Scientific and Technical Information (OSTI)

    Secondary Explosives (Conference) | SciTech Connect Deflagration Rates and Molecular Bonding Trends of Statically Compressed Secondary Explosives Citation Details In-Document Search Title: Deflagration Rates and Molecular Bonding Trends of Statically Compressed Secondary Explosives We discuss our measurements of the chemical reaction propagation rate as a function of pressure. Materials investigated have included CL-20, HMX, TATB, and RDX crystalline powders, LX-04, Comp B, and nitromethane.

  2. Disruption of Hydrogen Bonds between Major Histocompatibility Complex Class

    Office of Scientific and Technical Information (OSTI)

    II and the Peptide NTerminus Is Not Sufficient to Form a Human Leukocyte Antigen-DM Receptive State of Major Histocompatibility Complex Class II (Journal Article) | SciTech Connect Disruption of Hydrogen Bonds between Major Histocompatibility Complex Class II and the Peptide NTerminus Is Not Sufficient to Form a Human Leukocyte Antigen-DM Receptive State of Major Histocompatibility Complex Class II Citation Details In-Document Search Title: Disruption of Hydrogen Bonds between Major

  3. Method of making sintered ductile intermetallic-bonded ceramic composites

    DOE Patents [OSTI]

    Plucknett, Kevin (Sharnbrook, GB); Tiegs, Terry N. (Lenoir City, TN); Becher, Paul F. (Oak Ridge, TN)

    1999-01-01

    A method of making an intermetallic-bonded ceramic composite involves combining a particulate brittle intermetallic precursor with a particulate reactant metal and a particulate ceramic to form a mixture and heating the mixture in a non-oxidizing atmosphere at a sufficient temperature and for a sufficient time to react the brittle intermetallic precursor and the reactant metal to form a ductile intermetallic and sinter the mixture to form a ductile intermetallic-bonded ceramic composite.

  4. Intramolecular hydrogen bonding as a synthetic tool to induce chemical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    selectivity in acid catalyzed porphyrin synthesis Intramolecular hydrogen bonding as a synthetic tool to induce chemical selectivity in acid catalyzed porphyrin synthesis Authors: Megiatto, J. D., Patterson, D., Sherman, B. D., Moore, T. A., Gust, D., and Moore, A. L. Title: Intramolecular hydrogen bonding as a synthetic tool to induce chemical selectivity in acid catalyzed porphyrin synthesis Source: Chemical Communications Year: 2012 Volume: 48 Pages: 4558-4560 ABSTRACT: A straightforward

  5. Resonant bonding leads to low lattice thermal conductivity (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Resonant bonding leads to low lattice thermal conductivity Citation Details In-Document Search Title: Resonant bonding leads to low lattice thermal conductivity Authors: Lee, S Y ; Esfarjani, Keivan ; Luo, T. ; Zhou, J ; Tian, Z ; Chen, Gang Publication Date: 2014-04-28 OSTI Identifier: 1161924 DOE Contract Number: SC0001299; FG02-09ER46577 Resource Type: Journal Article Resource Relation: Journal Name: Nature Communications; Journal Volume: 5; Related Information:

  6. Chemical Bonding In Amorphous Si Coated-carbon Nanotube As Anodes...

    Office of Scientific and Technical Information (OSTI)

    Title: Chemical Bonding In Amorphous Si Coated-carbon Nanotube As Anodes For Li ion Batteries: A XANES Study The chemical bonding nature and its evolution upon electrochemical ...

  7. National Security Facility (NSF) | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security Facility (NSF) National Security Facility (NSF) Argonne National Laboratory's National Security Facility (NSF) is a flexible, state-of-the-art secure user facility that contains multiple national security networks, video teleconference capability, high-resolution graphics support, a fully powered and cooled data center, multi-level training facilities, and conferencing facilities. The NSF provides tools and resources to enable and strengthen connections between government

  8. National Postdoctoral Association | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Postdoctoral Association The National Postdoctoral Association (NPA) is a member-driven organization that provides a unique, national voice for postdoctoral scholars. Since 2003, we have taken on the ambitious agenda to enhance the quality of the postdoctoral experience in the U.S. We have assumed a leadership role in addressing the many issues confronting the postdoctoral community that are national in scope and requiring action beyond the local level. Read more. Argonne National Lab

  9. Bond-valence methods for pKa prediction. II. Bond-valence, electrostatic, molecular geometry, and solvation effects

    SciTech Connect (OSTI)

    Bickmore, Barry R.; Rosso, Kevin M.; Tadanier, Christopher J.; Bylaska, Eric J.; Doud, Darrin

    2006-08-15

    In a previous contribution, we outlined a method for predicting (hydr)oxy-acid and oxide surface acidity constants based on three main factors: bond valence, Me?O bond ionicity, and molecular shape. Here electrostatics calculations and ab initio molecular dynamics simulations are used to qualitatively show that Me?O bond ionicity controls the extent to which the electrostatic work of proton removal departs from ideality, bond valence controls the extent of solvation of individual functional groups, and bond valence and molecular shape controls local dielectric response. These results are consistent with our model of acidity, but completely at odds with other methods of predicting acidity constants for use in multisite complexation models. In particular, our ab initio molecular dynamics simulations of solvated monomers clearly indicate that hydrogen bonding between (hydr)oxo-groups and water molecules adjusts to obey the valence sum rule, rather than maintaining a fixed valence based on the coordination of the oxygen atom as predicted by the standard MUSIC model.

  10. Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory

    National Nuclear Security Administration (NNSA)

    Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory The Terascale Simulation Facility is a world-class supercomputing

  11. Thermal Performance and Reliability of Bonded Interfaces for Power Electronics Packaging Applications (Presentation)

    SciTech Connect (OSTI)

    Devoto, D.

    2013-07-01

    This presentation discusses the thermal performance and reliability of bonded interfaces for power electronics packaging applications.

  12. National Laboratory]; Chertkov, Michael [Los Alamos National...

    Office of Scientific and Technical Information (OSTI)

    Chertkov, Michael Los Alamos National Laboratory Construction and Facility Engineering; Energy Conservation, Consumption, & Utilization(32); Energy Planning, Policy, &...

  13. National Ignition Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    and Evaluation Inertial Confinement Fusion ICF Facilities National Ignition ... leading to demonstrate fusion ignition and thermonuclear burn in the laboratory. ...

  14. National Aeronautic and Space Administration | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Aeronautic and Space Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

  15. Sandia National Laboratories: National Security Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Weapons Defense Systems International, Homeland, & Nuclear Security Energy and Climate Facebook Twitter YouTube Flickr RSS Programs National Security Programs We strive to become the laboratory that the U.S. turns to first for technology solutions to the most challenging problems that threaten peace and freedom for our nation and the globe. At Sandia, national security is our business. We apply advanced science and engineering to help our nation and allies detect, repel, defeat, or

  16. Engineer, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Sandra Begay-Campbell Engineer, Sandia National Laboratories Sandra Begay-Campbell Sandra Begay-Campbell Role: Engineer, Sandia National Laboratories Award: Ely S. Parker Award Profile: Sandra Begay-Campbell, a Sandia National Laboratories engineer and a member of the Navajo Nation, was selected for the prestigious Ely S. Parker Award by the American Indian Science and Engineering Society at an honors banquet Oct. 31 in Portland, Ore. Begay-Campbell, who has worked at Sandia

  17. Lawrence Livermore National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration About Us / Our Operations / Acquisition and Project Management / M & O Support Department / Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory DE-AC52-07NA27344 Operated by Lawrence Livermore National Security, LLC BASIC Contract (Official) Modifications (Official) Funding Mods Available Upon Request Conformed Contract (Unofficial) LLNL Sec A (SF33) (pdf, 91KB) See Modifications Section under Conformed

  18. Metal-bonded, carbon fiber-reinforced composites

    DOE Patents [OSTI]

    Sastri, Suri A. (Lexington, MA); Pemsler, J. Paul (Lexington, MA); Cooke, Richard A. (Framingham, MA); Litchfield, John K. (Bedford, MA); Smith, Mark B. (Ipswich, MA)

    1996-01-01

    Metal bonded carbon fiber-reinforced composites are disclosed in which the metal and the composite are strongly bound by (1) providing a matrix-depleted zone in the composite of sufficient depth to provide a binding site for the metal to be bonded and then (2) infiltrating the metal into the matrix-free zone to fill a substantial portion of the zone and also provide a surface layer of metal, thereby forming a strong bond between the composite and the metal. The invention also includes the metal-bound composite itself, as well as the provision of a coating over the metal for high-temperature performance or for joining to other such composites or to other substrates.

  19. Metal-bonded, carbon fiber-reinforced composites

    DOE Patents [OSTI]

    Sastri, S.A.; Pemsler, J.P.; Cooke, R.A.; Litchfield, J.K.; Smith, M.B.

    1996-03-05

    Metal bonded carbon fiber-reinforced composites are disclosed in which the metal and the composite are strongly bound by (1) providing a matrix-depleted zone in the composite of sufficient depth to provide a binding site for the metal to be bonded and then (2) infiltrating the metal into the matrix-free zone to fill a substantial portion of the zone and also provide a surface layer of metal, thereby forming a strong bond between the composite and the metal. The invention also includes the metal-bound composite itself, as well as the provision of a coating over the metal for high-temperature performance or for joining to other such composites or to other substrates. 2 figs.

  20. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

    SciTech Connect (OSTI)

    Colby, Denise; Bergman, Robert; Ellman, Jonathan

    2010-05-13

    Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach that has seen widespread success involves the use of a proximal heteroatom that serves as a directing group for the selective functionalization of a specific C-H bond. In a survey of examples of heteroatom-directed Rh catalysis, two mechanistically distinct reaction pathways are revealed. In one case, the heteroatom acts as a chelator to bind the Rh catalyst, facilitating reactivity at a proximal site. In this case, the formation of a five-membered metallacycle provides a favorable driving force in inducing reactivity at the desired location. In the other case, the heteroatom initially coordinates the Rh catalyst and then acts to stabilize the formation of a metal-carbon bond at a proximal site. A true test of the utility of a synthetic method is in its application to the synthesis of natural products or complex molecules. Several groups have demonstrated the applicability of C-H bond functionalization reactions towards complex molecule synthesis. Target-oriented synthesis provides a platform to test the effectiveness of a method in unique chemical and steric environments. In this respect, Rh-catalyzed methods for C-H bond functionalization stand out, with several syntheses being described in the literature that utilize C-H bond functionalization in a key step. These syntheses are highlighted following the discussion of the method they employ.

  1. Nearly Equivalent Inter- and Intramolecular Hydrogen Bonding in

    Office of Scientific and Technical Information (OSTI)

    1,3,5-Triamino-2,4,6-trinitrobenzene at High Pressure (Journal Article) | SciTech Connect Nearly Equivalent Inter- and Intramolecular Hydrogen Bonding in 1,3,5-Triamino-2,4,6-trinitrobenzene at High Pressure Citation Details In-Document Search Title: Nearly Equivalent Inter- and Intramolecular Hydrogen Bonding in 1,3,5-Triamino-2,4,6-trinitrobenzene at High Pressure Authors: Manaa, M R ; Fried, L E Publication Date: 2011-10-24 OSTI Identifier: 1226974 Report Number(s): LLNL-JRNL-508473 DOE

  2. Methods and system for controlled laser-driven explosive bonding

    DOE Patents [OSTI]

    Rubenchik, Alexander M.; Farmer, Joseph C.; Hackel, Lloyd; Rankin, Jon

    2015-11-19

    A technique for bonding two dissimilar materials includes positioning a second material over a first material at an oblique angle and applying a tamping layer over the second martial. A laser beam is directed at the second material that generates a plasma at the location of impact on the second material. The plasma generates pressure that accelerates a portion of the second material to a very high velocity and towards the first material. The second material impacts the first material causing bonding of the two materials.

  3. Bond Amendment, Security Clearances - January 1, 2008 | Department of

    Energy Savers [EERE]

    Energy Bond Amendment, Security Clearances - January 1, 2008 Bond Amendment, Security Clearances - January 1, 2008 January 1, 2008 In General.-Title III of the Intelligence Reform and Terrorism Prevention Act of 2004 (50 U.S.C. 435b) is amended by adding at the end the following new section: "SEC. 3002. SECURITY CLEARANCES; LIMITATIONS SEC. 1072. SECURITY CLEARANCES; LIMITATIONS. (a) In General.-Title III of the Intelligence Reform and Terrorism Prevention Act of 2004 (50 U.S.C. 435b)

  4. National Geothermal Student Competition

    Broader source: Energy.gov [DOE]

    The National Geothermal Student Competition will be an intercollegiate competition where student teams compete to advance the understanding of the potential for geothermal energy to supply a major component of the nations energy needs in the coming decades.

  5. Leadership | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Argonne integrates world-class science, engineering, and user facilities to deliver innovative research and technologies. We create new knowledge that addresses the scientific and societal needs of our nation. Peter B. Littlewood Peter B. Littlewood, Director, Argonne National Laboratory Director, Argonne National Laboratory Argonne National Laboratory Peter B. Littlewood is the Director of Argonne National Laboratory, one of the nation's largest science and engineering research

  6. First National Technology Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Technology First National Technology Center Center Dennis Hughes FMA, RPA, P.E. Lead Property Manager, First National Buildings, Inc. 2 First National Technology First National Technology Center Center First National of Nebraska, Inc. - $12 Billion Assets - 5,400 employees - 6.6 million customers in 50 states - 60 banking locations Nebraska, Colorado, Kansas, South Dakota,Texas, Illinois - Largest in house merchant processor in United States Top ten VISA® and MasterCard® processor Top

  7. National Transmission Grid Study

    Office of Environmental Management (EM)

    Grid Study U.S. Department of Energy The Honorable Spencer Abraham Secretary of Energy May 2002 ii National Transmission Grid Study National Transmission Grid Study i ii National Transmission Grid Study National Transmission Grid Study iii How This Study Was Conducted The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures

  8. Novel Chemically-Bonded Phosphate Ceramic Borehole Sealants (Ceramicretes) for Arctic Environments

    SciTech Connect (OSTI)

    Shirish Patil; Godwin A. Chukwu; Gang Chen; Santanu Khataniar

    2008-12-31

    Novel chemically bonded phosphate ceramic borehole sealant, i.e. Ceramicrete, has many advantages over conventionally used permafrost cement at Alaska North Slope (ANS). However, in normal field practices when Ceramicrete is mixed with water in blenders, it has a chance of being contaminated with leftover Portland cement. In order to identify the effect of Portland cement contamination, recent tests have been conducted at BJ services in Tomball, TX as well as at the University of Alaska Fairbanks with Ceramicrete formulations proposed by the Argonne National Laboratory. The tests conducted at BJ Services with proposed Ceramicrete formulations and Portland cement contamination have shown significant drawbacks which has caused these formulations to be rejected. However, the newly developed Ceramicrete formulation at the University of Alaska Fairbanks has shown positive results with Portland cement contamination as well as without Portland cement contamination for its effective use in oil well cementing operations at ANS.

  9. National Science Bowl Finals

    ScienceCinema (OSTI)

    None

    2010-09-01

    National Science Bowl finals and awards at the National Building Museum in Washington D.C. Monday 5/3/2010

  10. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    15 National Nuclear Security Administration FY 2013 PER Babcock & Wilcox Technical ... The National Nuclear Security Administration (NNSA) Production Office (NPO) took into ...

  11. National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Administration DOENV--325-Rev. lOa February 2015 Nevada National Security Site Waste Acceptance Criteria Prepared by U.S. Department of Energy National Nuclear ...

  12. National Nanotechnology Initiative

    Office of Science (SC) Website

    economic and national security of the United States, promoting scientific and technological innovation, and ensuring environmental cleanup of the national nuclear weapons complex. ...

  13. Process for protecting bonded components from plating shorts

    DOE Patents [OSTI]

    Tarte, Lisa A. (Livermore, CA); Bonde, Wayne L. (Pleasanton, CA); Carey, Paul G. (Mountain View, CA); Contolini, Robert J. (Pleasanton, CA); McCarthy, Anthony M. (Menlo Park, CA)

    2000-01-01

    A method which protects the region between a component and the substrate onto which the components is bonded using an electrically insulating fillet of photoresist. The fillet protects the regions from subsequent plating with metal and therefore shorting the plated conductors which run down the sides of the component and onto the substrate.

  14. Bonded polyimide fuel cell package and method thereof

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Jankowski, Alan; Graff, Robert T.; Bettencourt, Kerry

    2005-11-01

    Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.

  15. Method of preparation of bonded polyimide fuel cell package

    DOE Patents [OSTI]

    Morse, Jeffrey D. (Martinez, CA); Jankowski, Alan (Livermore, CA); Graff, Robert T. (Modesto, CA); Bettencourt, Kerry (Dublin, CA)

    2011-04-26

    Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.

  16. Broader National Security Missions | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Broader National Security ... Broader National Security Missions Learn more For 70 years, the Y-12 National Security Complex has transformed in response to changing national...

  17. Conceptual Design of a MEDE Treatment System for Sodium Bonded Fuel

    SciTech Connect (OSTI)

    Carl E. Baily; Karen A. Moore; Collin J. Knight; Peter B. Wells; Paul J. Petersen; Ali S. Siahpush; Matthew T. Weseman

    2008-05-01

    Unirradiated sodium bonded metal fuel and casting scrap material containing highly enriched uranium (HEU) is stored at the Materials and Fuels Complex (MFC) on the Idaho National Laboratory (INL). This material, which includes intact fuel assemblies and elements from the Fast Flux Test Facility (FFTF) and Experimental Breeder Reactor-II (EBR-II) reactors as well as scrap material from the casting of these fuels, has no current use under the terminated reactor programs for both facilities. The Department of Energy (DOE), under the Sodium-Bonded Spent Nuclear Fuel Treatment Record of Decision (ROD), has determined that this material could be prepared and transferred to an off-site facility for processing and eventual fabrication of fuel for commercial nuclear reactors. A plan is being developed to prepare, package and transfer this material to the DOE High Enriched Uranium Disposition Program Office (HDPO), located at the Y-12 National Security Complex in Oak Ridge, Tennessee. Disposition of the sodium bonded material will require separating the elemental sodium from the metallic uranium fuel. A sodium distillation process known as MEDE (Melt-Drain-Evaporate), will be used for the separation process. The casting scrap material needs to be sorted to remove any foreign material or fines that are not acceptable to the HDPO program. Once all elements have been cut and loaded into baskets, they are then loaded into an evaporation chamber as the first step in the MEDE process. The chamber will be sealed and the pressure reduced to approximately 200 mtorr. The chamber will then be heated as high as 650 C, causing the sodium to melt and then vaporize. The vapor phase sodium will be driven into an outlet line where it is condensed and drained into a receiver vessel. Once the evaporation operation is complete, the system is de-energized and returned to atmospheric pressure. This paper describes the MEDE process as well as a general overview of the furnace systems, as necessary, to complete the MEDE process.

  18. Lawrence Livermore National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration About Us / Our Locations / Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory The NNSA Lawrence Livermore National Laboratory (LLNL) is a design laboratory that is responsible for the safety and reliability of the nuclear explosives package in nuclear weapons. It supports surveillance, assessment, and refurbishment of the nuclear weapons stockpile. LLNL also possesses unique high-energy-density physics capabilities and scientific computing assets.

  19. Sandia National Laboratories | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    About Us / Our Locations / Sandia National Laboratories Sandia National Laboratories NNSA's Sandia National Laboratories are responsible for the development, testing, and production of specialized nonnuclear components and quality assurance and systems engineering for all of the United States' nuclear weapons. Sandia has locations in Albuquerque, NM; Livermore, CA; Kauai, HI; and Tonopah, NV. The labs are operated by Sandia Corporation. Visit our website Z-Machine Related News NNSA labs and

  20. Engineer, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Clifford Ho Engineer, Sandia National Laboratories Clifford Ho Clifford Ho Role: Engineer, Sandia National Laboratories Award: Asian American Engineer of the Year Profile: Clifford Ho, a Sandia engineer, has been selected by the Chinese Institute of Engineers - USA to receive the Asian American Engineer of the Year Award. The honor is presented each year to the nation's most outstanding Asian American engineers and scientists who make significant, lasting and global

  1. Researcher, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Paul Dodd Researcher, Sandia National Laboratories Paul Dodd Paul Dodd Role: Researcher, Sandia National Laboratories Award: Fellow of the Institute of Electrical & Electronics Engineers (IEEE) Profile: Paul Dodd, a Sandia National Laboratories researcher, has been named a Fellow of the Institute of Electrical & Electronics Engineers (IEEE) "for contributions to the understanding and simulation of single-event effects in microelectronic," according to a

  2. Sandia National Laboratories | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Operations / Acquisition and Project Management / M & O Support Department / Sandia National Laboratories Sandia National Laboratories Sandia National Laboratories DE-AC04-94AL85000 Operated by Sandia Corporation a Subsidiary of Lockheed Martin Corporation Contract Conformed 09/30/2015 to Modification 0588. View previous Sandia Contract and Mods (M081-A201). BASIC Contract (Official) Modifications (Official) Funding Mods Available Upon Request Conformed Contract (Updated 09/30/2015 to Mod

  3. Sandia National Laboratories | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Allison Davis Sandia National Laboratories Allison Davis Allison Davis Role: Sandia National Laboratories Award: NNSA Defense Programs Award of Excellence Profile: Two individuals and nine teams received the NNSA Defense Programs Awards of Excellence at ceremonies this year at Sandia National Laboratories in New Mexico and California. The NNSA Defense Programs Awards of Excellence were created in the early 1980s to give special recognition to those at the laboratories and plants directly

  4. Sandia National Laboratories | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Kevin Eklund Sandia National Laboratories Kevin Eklund Kevin Eklund Role: Sandia National Laboratories Profile: Two individuals and nine teams received the NNSA Defense Programs Awards of Excellence at ceremonies this year at Sandia National Laboratories in New Mexico and California. The NNSA Defense Programs Awards of Excellence were created in the early 1980s to give special recognition to those at the laboratories and plants directly associated with the stockpile modernization program. Today,

  5. National Nuclear Security Administration Los Alamos National

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Los Alamos National Security, LLC Fiscal Year 2014 Performance Evaluation Report (PER) NNSA Los Alamos Field Office Performance Period: October 2013 - September 2014 November 14, 2014 NA-LA November 14, 2014 Executive Summary This Performance Evaluation Report (PER) provides the assessment of Los Alamos National Security, LLC performance for the period of October 1, 2013 through September 30, 2014, as evaluated against the objectives defined in the Fiscal

  6. First National Technology Center

    Broader source: Energy.gov [DOE]

    Speaker presentation prepared by Dennis Hughes, a lead property manager with First National Buildings Inc.

  7. National Security Photo Gallery | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RFID Nuclear engineer Yung Liu, with Argonne National Laboratory examines data on his laptop from the radio frequency identification device developed at the laboratory. The...

  8. Lawrence Livermore National Laboratory | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Life Extension Program Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge SOLAR POWER PURCHASE FOR DOE LABORATORIES More about LLNL...

  9. Sandia National Laboratories: Sandia National Laboratories: Tonopah...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tonopah Test Range Tonopah Tonopah Test Range (TTR) is the testing range of choice for all national security missions. Sandia conducts operations at TTR in support of the...

  10. Pacific Northwest National Laboratory | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Laboratory Pacific Northwest National Laboratory NNSA & DOE Employees Use Tiny Smartphone Microscopes to Teach STEM Users discovered items the device could magnify, such as...

  11. Sandia National Laboratories: National Security Missions: Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programs Nuclear Weapons Stockpile Stewardship Ensuring the nation's nuclear weapons stockpile is safe, secure, and reliable. About Nuclear Weapons Since 1949, Sandia's scientists ...

  12. Sandia National Laboratories: National Security Missions: Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weapons Science & Technology National labs provide the science and technology to maintain and certify the nuclear stockpile in the absence of full-scale weapons testing. The ...

  13. National Supplemental Screening Program | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Supplemental Screening Program The National Supplemental Screening Program (NSSP) offers medical screenings at no charge for former U.S. Department of Energy (DOE) site workers who may have been exposed to hazardous substances at work. For more information, see the documents below. PDF icon Retiree_Benefits_NSSPbrochure.pdf PDF icon Retiree_Benefits_newtest.pdf PDF icon Retiree_Benefits_NSSPemployees

  14. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Defense Systems & Assessments: Accomplishments Accomplishments About Defense Systems & Assessments Program Areas Accomplishments Archives Cybersecurity Programs Accomplishments Protecting the nation Sandia lasers test and calibrate sensors on U.S. satellites Sandia's scientists and engineers have a significant impact on national security and continually deliver results, including these noteworthy successes from fiscal year 2012: AHW Launch Advanced Hypersonic Weapon test flight

  15. Chemist, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Chemist, Sandia National Laboratories | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply

  16. Cognitive Informatics, Pacific Northwest National Laboratory | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Cognitive Informatics, Pacific Northwest National Laboratory | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters

  17. Manager, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Sandia National Laboratories | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our

  18. Physicist, Lawrence Livermore National Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Physicist, Lawrence Livermore National Laboratory | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases

  19. Lawrence Berkeley National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Berkeley National Laboratory | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our

  20. National Nuclear Security Administration | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration National Nuclear Security Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs

  1. Previous Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Previous Sandia National Laboratories | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply

  2. Characterization of Fuel-Cladding Bond Strength Using Laser Shock

    SciTech Connect (OSTI)

    James A. Smith; David L. Cottle; Barry H. Rabin

    2014-04-01

    This paper describes new laser-based capabilities for characterization of fuel-cladding bond strength in nuclear fuels, and presents preliminary results obtained from studies on as-fabricated monolithic fuel consisting of uranium-10 wt.% molybdenum alloys clad in 6061 aluminum by hot isostatic pressing. Two complementary experimental methods are employed, laser-shock testing and laser-ultrasonic imaging. Measurements are spatially localized, non-contacting and require minimum specimen preparation, and are therefore ideally suited for applications involving radioactive materials, including irradiated materials. The theoretical principles and experimental approaches employed in characterization of nuclear fuel plates are described. The ability to measure layer thicknesses, elastic properties of the constituents, and the location and nature of laser-shock induced debonds is demonstrated, and preliminary bond strength measurement results are discussed.

  3. Bond strength and stress measurements in thermal barrier coatings

    SciTech Connect (OSTI)

    Gell, M.; Jordan, E.

    1995-12-31

    Thermal barrier coatings have been used extensively in aircraft gas turbines for more than 15 years to insulate combustors and turbine vanes from the hot gas stream. Plasma sprayed thermal barrier coatings (TBCs) provide metal temperature reductions as much as 300{degrees}F, with improvements in durability of two times or more being achieved. The introduction of TBCs deposited by electron beam physical vapor deposition (EB-PVD) processes in the last five years has provided a major improvement in durability and also enabled TBCs to be applied to turbine blades for improved engine performance. This program evaluates the bond strength of yttria stabilized zirconia coatings with MCrAlY and Pt-Al bond coats utilizing diffraction and fluorescence methods.

  4. Cold bond agglomeration of waste oxides for recycling

    SciTech Connect (OSTI)

    D`Alessio, G.; Lu, W.K.

    1996-12-31

    Recycling of waste oxides has been an on-going challenge for integrated steel plants. The majority of these waste oxides are collected from the cleaning systems of ironmaking and steelmaking processes, and are usually in the form of fine particulates and slurries. In most cases, these waste materials are contaminated by oils and heavy metals and often require treatment at a considerable expense prior to landfill disposal. This contamination also limits the re-use or recycling potential of these oxides as secondary resources of reliable quality. However, recycling of some selected wastes in blast furnaces or steelmaking vessels is possible, but first requires agglomeration of the fine particulate by such methods as cold bond briquetting. Cold bond briquetting technology provides both mechanical compacting and bonding (with appropriate binders) of the particulates. This method of recycling has the potential to be economically viable and environmentally sustainable. The nature of the present study is cold bond briquetting of iron ore pellet fines with a molasses-cement-H{sub 2}O binder for recycling in a blast furnace. The inclusion of molasses is for its contribution to the green strength of briquettes. During the curing stage, significant gains in strength may be credited to molasses in the presence of cement. The interactions of cement (and its substitutes), water and molasses and their effects on the properties of the agglomerates during and after various curing conditions were investigated. Tensile strengths of briquettes made in the laboratory and subjected to experimental conditions which simulated the top part of a blast furnace shaft were also examined.

  5. Fluorinated diamond particles bonded in a filled fluorocarbon resin matrix

    DOE Patents [OSTI]

    Taylor, Gene W. (Los Alamos, NM); Roybal, Herman E. (Santa Fe, NM)

    1985-01-01

    A method of producing fluorinated diamond particles bonded in a filled fluorocarbon resin matrix. Simple hot pressing techniques permit the formation of such matrices from which diamond impregnated grinding tools and other articles of manufacture can be produced. Teflon fluorocarbon resins filled with Al.sub.2 O.sub.3 yield grinding tools with substantially improved work-to-wear ratios over grinding wheels known in the art.

  6. Fluorinated diamond particles bonded in a filled fluorocarbon resin matrix

    DOE Patents [OSTI]

    Taylor, G.W.; Roybal, H.E.

    1983-11-14

    A method of producing fluorinated diamond particles bonded in a filled fluorocarbon resin matrix. Simple hot pressing techniques permit the formation of such matrices from which diamond impregnated grinding tools and other articles of manufacture can be produced. Teflon fluorocarbon resins filled with Al/sub 2/O/sub 3/ yield grinding tools with substantially improved work-to-wear ratios over grinding wheels known in the art.

  7. Oxford Area Community School District (Michigan) Bonds Case Study

    Broader source: Energy.gov [DOE]

    Michigans Oxford Area Community School District entered into an energy savings performance contract and issued limited tax general obligation bonds to fund the up-front costs of almost $3 million of energy-related improvements. Case study is excerpted from Financing Energy Upgrades for K-12 School Districts: A Guide to Tapping into Funding for Energy Efficiency and Renewable Energy Improvements. Author: Merrian Borgeson and Mark Zimring

  8. Compacting Plastic-Bonded Explosive Molding Powders to Dense Solids

    SciTech Connect (OSTI)

    B. Olinger

    2005-04-15

    Dense solid high explosives are made by compacting plastic-bonded explosive molding powders with high pressures and temperatures for extended periods of time. The density is influenced by manufacturing processes of the powders, compaction temperature, the magnitude of compaction pressure, pressure duration, and number of repeated applications of pressure. The internal density variation of compacted explosives depends on method of compaction and the material being compacted.

  9. Hydrogen Adsorption Induces Interlayer Carbon Bond Formation in Supported

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Few-Layer Graphene | Stanford Synchrotron Radiation Lightsource Hydrogen Adsorption Induces Interlayer Carbon Bond Formation in Supported Few-Layer Graphene Friday, February 28, 2014 Among the allotropes of carbon, diamond has some of the most remarkable physical properties of any material in terms of hardness, stiffness, thermal conductivity, transparency and chemical inertness1. Graphite, which is the most thermodynamically stable form of carbon at room temperature and at ambient

  10. Cu-Cu direct bonding achieved by surface method at room temperature

    SciTech Connect (OSTI)

    Utsumi, Jun [Advanced Technology Research Center, Mitsubishi Heavy Industries, Ltd., 1-8-1 Sachiura, Kanazawa-ku, Yokohama 236-8515 (Japan); Ichiyanagi, Yuko, E-mail: yuko@ynu.ac.jp [Department of Physics, Graduate School of Engineering, Yokohama National University, Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan)

    2014-02-20

    The metal bonding is a key technology in the processes for the microelectromechanical systems (MEMS) devices and the semiconductor devices to improve functionality and higher density integration. Strong adhesion between surfaces at the atomic level is crucial; however, it is difficult to achieve close bonding in such a system. Cu films were deposited on Si substrates by vacuum deposition, and then, two Cu films were bonded directly by means of surface activated bonding (SAB) at room temperature. The two Cu films, with the surface roughness Ra about 1.3nm, were bonded by using SAB at room temperature, however, the bonding strength was very weak in this method. In order to improve the bonding strength between the Cu films, samples were annealed at low temperatures, between 323 and 473 K, in air. As the result, the Cu-Cu bonding strength was 10 times higher than that of the original samples without annealing.

  11. Gold-Stud Bump Bonding for HEP Applications (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: Gold-Stud Bump Bonding for HEP Applications Citation Details In-Document Search Title: Gold-Stud Bump Bonding for HEP Applications Authors: Tripathi, S.M. ; UC, Davis ...

  12. Vacuum fusion bonded glass plates having microstructures thereon

    DOE Patents [OSTI]

    Swierkowski, Steve P. (Livermore, CA); Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    2001-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  13. Bonding energies and long-range order in the trialuminides

    SciTech Connect (OSTI)

    Sparks, C.J.; Specht, E.D.; Ice, G.E.; Zschack, P.; Schneibel, J.

    1990-01-01

    The degree of long-range order in the trialuminides is determined by X-ray powder diffraction techniques. Long-range order exists to their melting points. For the binary trialuminides Al{sub 3}Ti, Al{sub 73}Ti{sub 27}, and Al{sub 3}Sc, the degree of long-range order is nearly perfect and is a measure of the lack of mixing of the aluminum atoms onto the sublattice occupied by either Ti or Sc. A calculation of the bond energy between neighboring pairs of atoms from the ordering (melting) temperature is made following the Bragg-Williams mean field theory approach. These bond energies compare favorably with more sophisticated calculations. Bond energies are found to be larger than the energy difference between the crystal structure forms DO{sub 22}, Ll{sub 2}, and DO{sub 23}, and therefore, more relevant to understanding the mechanical and chemical behavior of the trialuminides. Ordering or melting temperatures of these intermetallics reflect the strong Al-metal near-neighbor pair potentials and may provide insights to their brittle properties. 11 refs., 2 figs., 2 tabs.

  14. Performance and Reliability of Bonded Interfaces for High-Temperature Packaging (Presentation)

    SciTech Connect (OSTI)

    Devoto, D.

    2014-06-01

    This presentation reviews the status of the performance and reliability of bonded interfaces for high-temperature packaging.

  15. Zirconium Catalyst Follows a Low Energy Pathway for Carbon-Nitrogen Bond

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Formation | The Ames Laboratory Zirconium Catalyst Follows a Low Energy Pathway for Carbon-Nitrogen Bond Formation Chemists have synthesized a highly selective and highly efficient zirconium catalyst that makes new carbon-nitrogen bonds by adding a nitrogen-hydrogen bond to a carbon-carbon double bond. Nitrogen-containing chemicals are important as agrichemicals, pharmaceuticals, and specialty chemicals. These zirconium catalysts are expected to show greater tolerance to other functionality

  16. Zirconium Catalyst Follows a Low Energy Pathway for Carbon-Nitrogen Bond

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Formation | The Ames Laboratory Zirconium Catalyst Follows a Low Energy Pathway for Carbon-Nitrogen Bond Formation Chemists have synthesized a highly selective and highly efficient zirconium catalyst that makes new carbon-nitrogen bonds by adding a nitrogen-hydrogen bond to a carbon-carbon double bond. Nitrogen-containing chemicals are important as agrichemicals, pharmaceuticals, and specialty chemicals. These zirconium catalysts are expected to show greater tolerance to other functionality

  17. Los Alamos National Security, LLC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A (Rev. 2.0, 7/16/15) Page 1 of 2 BID BOND PAYMENT BOND (See instructions on second page.) DATE BOND EXECUTED (Must be same or later than date of subcontract.): PRINCIPAL (Legal name and business address): TYPE OF ORGANIZATION: (Check appropriate box.) Individual Partnership Joint Venture Corporation Other STATE OF INCORPORATION: SURETY(IES) (Name[s] and business address[es]): PENAL SUM OF BOND Million(s) Thousand(s) Hundred(s) Cents Subcontract Date: Subcontract #: OBLIGATION: We, the Principal

  18. Los Alamos National Security, LLC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Rev. 2.0, 7/16/15) Page 1 of 2 BID BOND PERFORMANCE BOND (See instructions on second page.) DATE BOND EXECUTED (Must be same or later than date of subcontract.): PRINCIPAL (Legal name and business address): TYPE OF ORGANIZATION: (Check appropriate box.) Individual Partnership Joint Venture Corporation Other STATE OF INCORPORATION: SURETY(IES) (Name[s] and business address[es]): PENAL SUM OF BOND Million(s) Thousand(s) Hundred(s) Cents Subcontract Date: Subcontract #: OBLIGATION: We, the

  19. Development and validation of bonded composite doubler repairs for commercial aircraft.

    SciTech Connect (OSTI)

    Roach, Dennis Patrick; Rackow, Kirk A.

    2007-07-01

    A typical aircraft can experience over 2,000 fatigue cycles (cabin pressurizations) and even greater flight hours in a single year. An unavoidable by-product of aircraft use is that crack, impact, and corrosion flaws develop throughout the aircraft's skin and substructure elements. Economic barriers to the purchase of new aircraft have placed even greater demands on efficient and safe repair methods. The use of bonded composite doublers offers the airframe manufacturers and aircraft maintenance facilities a cost effective method to safely extend the lives of their aircraft. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is now possible to bond a single Boron-Epoxy composite doubler to the damaged structure. The FAA's Airworthiness Assurance Center at Sandia National Labs (AANC), Boeing, and Federal Express completed a pilot program to validate and introduce composite doubler repair technology to the U.S. commercial aircraft industry. This project focused on repair of DC-10 fuselage structure and its primary goal was to demonstrate routine use of this repair technology using niche applications that streamline the design-to-installation process. As composite doubler repairs gradually appear in the commercial aircraft arena, successful flight operation data is being accumulated. These commercial aircraft repairs are not only demonstrating the engineering and economic advantages of composite doubler technology but they are also establishing the ability of commercial maintenance depots to safely adopt this repair technique. This report presents the array of engineering activities that were completed in order to make this technology available for widespread commercial aircraft use. Focused laboratory testing was conducted to compliment the field data and to address specific issues regarding damage tolerance and flaw growth in composite doubler repairs. Fatigue and strength tests were performed on a simulated wing repair using a substandard design and a flawed installation. In addition, the new Sol-Gel surface preparation technique was evaluated. Fatigue coupon tests produced Sol-Gel results that could be compared with a large performance database from conventional, riveted repairs. It was demonstrated that not only can composite doublers perform well in severe off-design conditions (low doubler stiffness and presence of defects in doubler installation) but that the Sol-Gel surface preparation technique is easier and quicker to carry out while still producing optimum bonding properties. Nondestructive inspection (NDI) methods were developed so that the potential for disbond and delamination growth could be monitored and crack growth mitigation could be quantified. The NDI methods were validated using full-scale test articles and the FedEx aircraft installations. It was demonstrated that specialized NDI techniques can detect flaws in composite doubler installations before they reach critical size. Probability of Detection studies were integrated into the FedEx training in order to quantify the ability of aircraft maintenance depots to properly monitor these repairs. In addition, Boeing Structural Repair and Nondestructive Testing Manuals were modified to include composite doubler repair and inspection procedures. This report presents the results from the FedEx Pilot Program that involved installation and surveillance of numerous repairs on operating aircraft. Results from critical NDI evaluations are reported in light of damage tolerance assessments for bonded composite doublers. This work has produced significant interest from airlines and aircraft manufacturers. The successful Pilot Program produced flight performance history to establish the durability of bonded composite patches as a permanent repair on commercial aircraft structures. This report discusses both the laboratory data and Pilot Program results from repair installations on operating aircraft to introduce composite doubler repairs into mainstream commercial aircraft use.

  20. Nevada National Security Site

    Broader source: Energy.gov [DOE]

    HISTORYIn 1950, President Truman established what is now known as the Nevada National Security Site (NNSS) to perform nuclear weapons testing activities.  In support of national defense initiatives...

  1. Sandia National Laboratories

    National Nuclear Security Administration (NNSA)

    feet underground.

    Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge http:www.nnsa.energy.govblogbay-area-national-labs-team-tackle-...

  2. National Geothermal Summit

    Broader source: Energy.gov [DOE]

    The Geothermal Energy Association (GEA) will be holding it’s fifth annual National Geothermal Summit on June 3-4 at the Grand Sierra Resort and Casino in Reno, NV. The National Geothermal Summit is...

  3. National Environmental Research Parks

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The National Environmental Research Parks are outdoor laboratories that provide opportunities for environmental studies on protected lands that act as buffers around Department of Energy (DOE) facilities. The research parks are used to evaluate the environmental consequences of energy use and development as well as the strategies to mitigate these effects. They are also used to demonstrate possible environmental and land-use options. The seven parks are: Fermilab National Environmental Research Park; Hanford National Environmental Research Park; Idaho National Environmental Research Park; Los Alamos National Environmental Research Park; Nevada National Environmental Research Park; Oak Ridge National Environmental Research Park; and Savannah River National Environmental Research Park. This document gives an overview of the events that led to the creation of the research parks. Its main purpose is to summarize key points about each park, including ecological research, geological characteristics, facilities, and available databases.

  4. nevada national security site

    National Nuclear Security Administration (NNSA)

    7%2A en Nevada National Security Site operator recognized for green fleet http:www.nnsa.energy.govblognevada-national-security-site-operator-recognized-green-fleet

    The...

  5. National Energy Education Summit

    Broader source: Energy.gov [DOE]

    The National Energy Education Summit is organized by the Council of Energy Research and Education Leaders (CEREL) and will serve as a first-of-its-kind national forum for energy educators, subject...

  6. National SCADA Testbed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Photovoltaic Systems Evaluation Laboratory PV Regional ... Facility Geomechanics and Drilling Labs National ... Health Monitoring Offshore Wind High-Resolution ...

  7. Management | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Sciences & Engineering Focus: Understanding & Control of Interfacial Processes Web Site Michael Thackeray Michael Thackeray (Deputy Director) Argonne National Laboratory...

  8. Alamos National Security, LLC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eleven nonprofit organizations receive community giving grants from Los Alamos National Security, LLC December 15, 2009 Los Alamos, New Mexico, December 15, 2009- Eleven local nonprofit organizations with projects supported by Los Alamos National Laboratory employee volunteers received $75,000 in Community Giving grants from Los Alamos National Security, LLC, the company that manages the Lab for the National Nuclear Security Administration. The organizations are located in Los Alamos, Española,

  9. National Hydropower Map

    Broader source: Energy.gov [DOE]

    High-resolution map produced by Oak Ridge National Laboratory showing hydropower resources throughout the United States.

  10. Seneca Nation- 2007 Project

    Broader source: Energy.gov [DOE]

    On the three territories of the Seneca Nation, there exist opportunities for energy development from both renewable and nonrenewable resources.

  11. National Geothermal Summit

    Broader source: Energy.gov [DOE]

    The Geothermal Energy Association hosts its annual National Geothermal Summit in Reno, Nevada, June 3-4, 2015.

  12. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Some of the nation's most powerful and sophisticated facilities for energy research Argonne National Laboratory is home to some of the nation's most powerful and sophisticated research facilities. As a U.S. Department of Energy national laboratory, Argonne offers access to the facilities listed below through a variety of arrangements. Advanced Powertrain Research Facility Center for Transportation Research Materials Engineering Research Facility Distributed Energy Research Center

  13. National Security, Weapons Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security, Weapons Science /science-innovation/_assets/images/icon-science.jpg National Security, Weapons Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. CoMuEx» Explosives Center» Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT) The Dual-Axis Radiographic Hydrodynamic Test Facility at LANL is part of the

  14. National User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National User Facilities Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Berkeley Lab's User Facilities-Engines of Discovery Berkeley Lab's User Facilities provide state-of-the-art resources for scientists across the nation and around the world. About 10,000 researchers a year use these facilities, representing nearly one third of the total for all Department of Energy

  15. Foreign-national Investigators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foreign-national Investigators Foreign National Investigators must have access to B174 shown on their badge. Foreign National Investigators must notify Beth Mariotti by e-mail of their first intended presence in B174. By September 2009, it is expected that there will be no restrictions on computer use by Foreign National Investigators at JLF. However, LLNL prohibits the use of personally-owned computers on-site

  16. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientists will codirect $14.5 million National Center for Systems Biology July 28, 2009 Lab contributes computer modeling, antibody engineering capabilities Los Alamos, New Mexico, July 28, 2009- Los Alamos National Laboratory scientists will codirect a new National Center for Systems Biology located at the University of New Mexico in Albuquerque. The new Spatiotemporal Modeling Center (STMC) is funded by a $14.5 million, five- year grant from the National Institute for General Medical Sciences

  17. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    participates in National Lab Day to increase awareness of science across the nation April 29, 2010 Events planned May 4-5 at Bradbury Science Museum LOS ALAMOS, New Mexico, April 29, 2010-Connecting teachers and students with scientists, engineers, mathematicians, and industry professionals across the country is the goal of National Lab Day, a year-round initiative spearheaded by President Obama. Los Alamos National Laboratory is joining other Department of Energy labs and several other

  18. National Renewable Energy Laboratory

    Office of Environmental Management (EM)

    DOE Tribal Energy Program Review Roger Taylor Manger State, Local & Tribal Integrated Application Group National Renewable Energy Laboratory November 5-8, 2007 Major DOE National Laboratories Brookhaven Brookhaven Pacific Northwest Pacific Northwest Lawrence Berkeley Lawrence Berkeley Lawrence Livermore Lawrence Livermore h h h h h INEL INEL National Renewable National Renewable Energy Laboratory Energy Laboratory Los Alamos Los Alamos Sandia Sandia Argonne Argonne Oak Ridge Oak Ridge

  19. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    N ti l T t ti National Transportation Stakeholders Forum Chicago, IL, May 26, 2010 Ahmad Al-Daouk Date and page number - 1 Director, National Security Department National Nuclear Security Administration Service Center - Albuquerque, NM National Transportation Stakeholders Forum OSRP * NNSA Contractors transporting in commerce, are required law to comply with applicable regulations required law to comply with applicable regulations (e.g. federal, local, tribal) * Great majority of NNSA shipments

  20. lasers. National Ignition Facility | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    target shot of fiscal year 2015 WASHINGTON - Last week, the National Ignition Facility (NIF) fired its 300th laser target shot in fiscal year (FY) 2015, meeting the year's goal...

  1. NATIONAL SECURITY TECHNOLOGIES - NEVADA NATIONAL SECURITY SITE

    National Nuclear Security Administration (NNSA)

    - NEVADA NATIONAL SECURITY SITE FISCAL YEARS 2009 THRU 2015 SMALL BUSINESS PROGRAM RESULTS & FORECAST CATEGORY Total Procurement Total SB Small Disad. Bus Woman-Owned SB Hub-Zone...

  2. National Security Science | Los National Alamos Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANSCE: Mission-Critical for National Security Nuclear Energy for Our Challenging Future The Invisible Neutron Threat Blasting Missiles Out of the Sky LANL and the Air Force: Partners in Excellence NSO Interns Explore the National Security Environment In the News Reflections Issue 3 2011 Try the Digital Version! Download this Issue (pdf) Louis Rosen Laboratory Senior Fellow Emeritus, Louis Rosen, was the driving force behind the conception and the development of the Los Alamos Neutron Science

  3. Lawrence Livermore National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory NNSA labs and sites get girls excited about engineering NNSA workers across the nuclear security enterprise took advantage of "Introduce a girl to engineering day" to instill hundreds of young women with excitement for science, technology, engineering, NNSA lab explores options to save Earth from asteroid impact The threat of potential earth impacts from space objects has been on

  4. Sandia National Laboratories | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Sandia National Laboratories Sandia National Laboratories NNSA labs and sites get girls excited about engineering NNSA workers across the nuclear security enterprise took advantage of "Introduce a girl to engineering day" to instill hundreds of young women with excitement for science, technology, engineering, NNSA lab stops bad guys from weaseling into critical infrastructure Weasels are adaptable, active predators known for being aggressive despite their small size, often threatening

  5. Researcher, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration David Haaland Researcher, Sandia National Laboratories David Haaland David Haaland Role: Researcher, Sandia National Laboratories Award: Fellows of the American Association for the Advancement of Science Profile: Sandia researchers David Haaland and David Myers have been elected Fellows of the American Association for the Advancement of Science. Election as a Fellow is an honor bestowed upon AAAS members by their peers. Haaland was cited for "distinguished contributions

  6. sandia national lab | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    national lab | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  7. CX-000268: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    High Efficiency, Low-Cost, Multijunction Solar Cells Based on Epitaxial Liftoff and Wafer Bonding; National Renewable Energy Laboratory Tracking Number 09-041CX(s) Applied: B3.6Date: 12/28/2009Location(s): IllinoisOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  8. Implementation of Section 1072 of the National Defense Authorization Act for Fiscal Year 2008

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-12

    This Notice provides guidance for implementing the mandates of Section 1072 of the National Defense Authorization Act for Fiscal Year 2008, commonly referred to as the Bond Amendment. Extended until 9-28-11 by DOE N 251.90 dated 9-28-10. Canceled by DOE O 472.2. Does not cancel other directives.

  9. Los Alamos National Security, LLC Los Alamos National Laboratory...

    Office of Environmental Management (EM)

    Security, LLC Los Alamos National Laboratory (LANL) Voluntary Protection Program (VPP) Assessment Los Alamos National Security, LLC Los Alamos National Laboratory (LANL) Voluntary...

  10. ECCENTRIC ROLLING OF POWDER AND BONDING AGENT INTO SPHERICAL PELLETS

    DOE Patents [OSTI]

    Patton, G. Jr.; Zirinsky, S.

    1961-06-01

    A machine is described for pelletizing powder and bonding agent into spherical pellets of high density and uniform size. In this device, the material to be compacted is added to a flat circular pan which is moved in a circular orbit in a horizontal plane about an axis displaced from that of the pan's central axis without rotating the pan about its central axis. This movement causes the material contained therein to roll around the outside wall of the container and build up pellets of uniform shape, size, and density.

  11. Fuel cell system with separating structure bonded to electrolyte

    DOE Patents [OSTI]

    Bourgeois, Richard Scott (Albany, NY); Gudlavalleti, Sauri (Albany, NY); Quek, Shu Ching (Clifton Park, NY); Hasz, Wayne Charles (Pownal, VT); Powers, James Daniel (Santa Monica, CA)

    2010-09-28

    A fuel cell assembly comprises a separating structure configured for separating a first reactant and a second reactant wherein the separating structure has an opening therein. The fuel cell assembly further comprises a fuel cell comprising a first electrode, a second electrode, and an electrolyte interposed between the first and second electrodes, and a passage configured to introduce the second reactant to the second electrode. The electrolyte is bonded to the separating structure with the first electrode being situated within the opening, and the second electrode being situated within the passage.

  12. Schneider National | Open Energy Information

    Open Energy Info (EERE)

    National Jump to: navigation, search Name: Schneider National Place: Denver, CO Website: www.schneidernational.com References: Schneider National1 Information About Partnership...

  13. Oneida Nation | Department of Energy

    Office of Environmental Management (EM)

    Oneida Nation Oneida Nation PDF icon Oneida Nation More Documents & Publications Confederated Tribes of the Umatilla Indian Reservation Shoshone-Bannock Tribes Pueblo de San Ildefonso

  14. National Laboratories - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratories Name Address City, State Ames Laboratory Ames Laboratory Ames, IA Argonne National Laboratory 9700 S. Cass Avenue Argonne, IL Brookhaven National...

  15. Los Alamos National Laboratory attracts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Los Alamos National Laboratory Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national...

  16. MCrAlY bond coat with enhanced Yttrium layer

    DOE Patents [OSTI]

    Jablonski, Paul D; Hawk, Jeffrey A

    2015-04-21

    One or more embodiments relates to an MCrAlY bond coat comprising an MCrAlY layer in contact with a Y--Al.sub.2O.sub.3 layer. The MCrAlY layer is comprised of a .gamma.-M solid solution, a .beta.-MAl intermetallic phase, and Y-type intermetallics. The Y--Al.sub.2O.sub.3 layer is comprised of Yttrium atoms coordinated with oxygen atoms comprising the Al.sub.2O.sub.3 lattice. Both the MCrAlY layer and the Y--Al.sub.2O.sub.3 layer have a substantial absence of Y--Al oxides, providing advantage in the maintainability of the Yttrium reservoir within the MCrAlY bulk. The MCrAlY bond coat may be fabricated through application of a Y.sub.2O.sub.3 paste to an MCrAlY material, followed by heating in a non-oxidizing environment.

  17. IMPACT OF CAPILLARY AND BOND NUMBERS ON RELATIVE PERMEABILITY

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2002-09-30

    Recovery and recovery rate of oil, gas and condensates depend crucially on their relative permeability. Relative permeability in turn depends on the pore structure, wettability and flooding conditions, which can be represented by a set of dimensionless groups including capillary and bond numbers. The effect of flooding conditions on drainage relative permeabilities is not well understood and is the overall goal of this project. This project has three specific objectives: to improve the centrifuge relative permeability method, to measure capillary and bond number effects experimentally, and to develop a pore network model for multiphase flows. A centrifuge has been built that can accommodate high pressure core holders and x-ray saturation monitoring. The centrifuge core holders can operate at a pore pressure of 6.9 MPa (1000 psi) and an overburden pressure of 17 MPa (2500 psi). The effect of capillary number on residual saturation and relative permeability in drainage flow has been measured. A pore network model has been developed to study the effect of capillary numbers and viscosity ratio on drainage relative permeability. Capillary and Reynolds number dependence of gas-condensate flow has been studied during well testing. A method has been developed to estimate relative permeability parameters from gas-condensate well test data.

  18. Workshops | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshops September 17-18, 2015 Argonne National Laboratory and the Interdisciplinary Consortium for Research and Education and Access in Science and Engineering (INCREASE) Argonne National Laboratory The goal of this partnership was to increase the participation in and diversity of the user base at Argonne's scientific user facilities by providing awareness of tools freely available at national laboratories. Within tailored conversations about writing competitive proposals, INCREASE members and

  19. Alamos National Laboratory's 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    $2 million pledged during Los Alamos National Laboratory's 2014 employee giving campaign December 17, 2013 "I Give Because..." theme focuses on unique role Lab plays in local communities LOS ALAMOS, N.M., Dec. 17, 2013-Nearly $2 million has been pledged by Los Alamos National Laboratory employees to United Way and other eligible nonprofit programs during the Laboratory's 2014 Employee Giving Campaign. Los Alamos National Security, LLC, which manages and operates the Laboratory for the

  20. Alamos National Security, LLC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30 nonprofit organizations to receive monetary donations from Los Alamos National Security, LLC June 25, 2012 Recognizing employee and retiree volunteer efforts LOS ALAMOS, NEW MEXICO, June 25, 2012-Nonprofit organizations will receive more than $180,000 from Los Alamos National Security, LLC during a recognition event beginning at 9:30 a.m. Thursday, June 28, at Fuller Lodge in downtown Los Alamos. LANS contributions are determined by the number of volunteer hours logged by Los Alamos National

  1. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mentoring Why mentoring? As one of the largest laboratories in the nation for science and engineering research, Argonne National Laboratory is home to some of the most prolific and well-renowned scientists and engineers. To maintain an environment that fosters innovative research, we are committed to ensuring the success of our major players on the frontlines of our research-our Postdoctoral Scientists. The Argonne National Laboratory has a long-standing reputation as a place that offers

  2. National Hydrogen Learning Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Keith Wipke, Sam Sprik, Jennifer Kurtz, Todd Ramsden, Chris Ainscough, Genevieve Saur February 6, 2012 DOE's Informational Webinar Series National Hydrogen Learning Demonstration Status This presentation does not contain any proprietary, confidential, or otherwise restricted information NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC v8 National Renewable Energy Laboratory 2

  3. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory 3 National Security Science July 2015 Films of the U.S. atmospheric nuclear tests provide breathtaking reminders of the power of nuclear weapons. Now a new project is salvaging and mining these deteriorating films for fresh-and crucial- scientific data about the weapons' yields. To understand why Lawrence Livermore National Laboratory nuclear weapons physicist Greg Spriggs is spearheading, in partnership with Los Alamos, an urgent search-and-rescue mission to

  4. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory i Table of Contents Letter from the Division Director 1 Innovation Prize Nominations 2 Innovation Prize Winner 5 About the Feynman Center for Innovation 6 Innovation Assets 7 Strategic Sponsored Work 8 National High Magnetic Field Laboratory 9 Licensing 10 SOLVE 11 Economic Development 12 STAR Cryoelectronics 13 Partnership 14 Verdesian Life Sciences 15 R&D 100 Awards 16 Federal Laboratory Consortium Awards 17 Los Alamos National Laboratory 1 As scientists and

  5. The National Mission | JCESR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The National Mission Faced with world energy consumption that is projected to double in the next 50 years, the federal government has set two national goals that require major improvements in energy storage science and technology: By 2025, produce 25 percent of all electricity consumed in the United States from solar and wind. By 2015, have 1 million all-electric, plug-in hybrid (PHEV) vehicles on the road. One million PHEVs recharging every night will place huge demand on the nation's

  6. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    24, 2001 NNSA Cites Los Alamos National Laboratory For Nuclear Safety Violations The Department of Energy's National Nuclear Security Administration (NNSA) has cited the University of California for violations of nuclear safety rules at the Los Alamos National Laboratory (LANL) in New Mexico. The University of California operates LANL for the NNSA. The violations are described in a Preliminary Notice of Violation (PNOV), which was issued on January 19, 2001. The violations stem from several

  7. National Electricity Delivery Division

    Office of Environmental Management (EM)

    (DOE) Office of Electricity Delivery and Energy Reliability (OE) National Electricity Delivery Division Julie Ann Smith, PhD September 24, 2015 The Federal Indian Trust Responsibility is a legal obligation under which the United States has charged itself with moral obligations of the highest responsibility and trust toward American Indian tribes. (Seminole Nation v. United States, 1942; Cherokee Nation v. Georgia, 1831). "When the trust responsibility is acknowledged and upheld by the

  8. National Renewable Energy Laboratory

    Office of Environmental Management (EM)

    8 Annual Review Roger Taylor November 17, 2008 National Renewable Energy Laboratory Innovation for Our Energy Future Major DOE National Laboratories Brookhaven Pacific Northwest Lawrence Berkeley Lawrence Livermore          INEL National Renewable Energy Laboratory Los Alamos Sandia Argonne Oak Ridge   Defense Program Labs  Office of Science Labs  Energy Efficiency and Renewable Energy Lab  Environmental Management Lab  Fossil Energy Lab NETL 

  9. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2015 Projects save taxpayer dollars, promote environmental stewardship, sustainability LOS ALAMOS, N.M., April 22, 2015-Nearly 400 Los Alamos National Laboratory employees on 32...

  10. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sustainability award October 14, 2010 LOS ALAMOS, New Mexico, October 14, 2010-Los Alamos National Laboratory recently received an Environmental Sustainability (EStar) ...

  11. National Women's History Month

    Broader source: Energy.gov [DOE]

    NATIONAL WOMEN’S HISTORY MONTH is an annual declared month that highlights the contributions of women to events in history and contemporary society.

  12. National Laboratory Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  13. National Laboratory Geothermal Publications

    Broader source: Energy.gov [DOE]

    You can find publications, including technical papers and reports, about geothermal technologies, research, and development at the following U.S. Department of Energy national laboratories.

  14. 2015 SACNAS National Conference

    Broader source: Energy.gov [DOE]

    Location: The Gaylord Conventiona Center at The National Harbor, Prince George's County, MD POC: Recruitment@doe.gov Website: 2015 SACNAS Conference

  15. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    ... Engineering and Math disciplines during a recent Graduate Opportunities Conference. ... engineers in the nation. * Native American Math Camp - NNSA partnered with the Los Alamos ...

  16. National Day of Remembrance

    ScienceCinema (OSTI)

    None

    2013-03-01

    Ames Laboratory observed the National Day of Remembrance for weapons workers from the Cold War era with a ceremony held Oct. 27, 2009 at the Ames Public Library.

  17. Resources | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Career Postdoctoral Factsheet: Before You Arrive Newsletters Professional Development Mentoring Resources Postdoctoral Society of Argonne LinkedIn Group National Postdoctoral...

  18. SANDIA NATIONAL LABORATORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impacts on Sandia and the Nation 2 SANDIA NATIONAL LABORATORIES 3 LDRD Impacts on Sandia and the Nation For further information, contact: Wendy R. Cieslak Senior Manager, Science, Technology, and Engineering Strategic Initiatives wrciesl@sandia.gov (505) 844-8633 or Henry R. Westrich LDRD Program Manager hrwestr@sandia.gov 505-844-9092 LDRD Impacts on Sandia and the Nation ABOUT THE COVER: Images from some of the case studies in this brochure: a near-UV light- emitting diode (LED), a cell

  19. 2015 APPA National Conference

    Broader source: Energy.gov [DOE]

    The American Public Power Association (APPA) is hosting their national conference that covers the political, economic, and technological trends shaping the electric utility industry.

  20. National RES Las Vegas

    Broader source: Energy.gov [DOE]

    RES Las Vegas is another multifaceted event from The National Center which will feature unparalleled access to respected tribal leaders, members of congress, federal agency representatives, state...

  1. National Energy Awareness Month

    Broader source: Energy.gov [DOE]

    October is National Energy Awareness Month. It's also a chance to talk about our country’s energy security and its clean energy future.

  2. Seneca Nation- 2014 Project

    Broader source: Energy.gov [DOE]

    The Seneca Nation of Indians (SNI) will install one 1.8-megawatt (MW) wind turbine on tribal common lands near Lake Erie in New York.

  3. Awards | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance Award, 2013 (with two other researchers) U.S. Department of Energy Vehicle Technologies Office R&D Award, 2013 Argonne National Laboratory Distinguished...

  4. Transportation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the environmental impact of our vehicles. Some of the most exciting new vehicle technologies are being ushered along by research conducted at Argonne National Laboratory....

  5. Los alamos national laboratory

    National Nuclear Security Administration (NNSA)

    hosted representatives from 11StatesParties to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) and one representative from the United Nations Office for...

  6. Sandia National Laboratories: Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report Initial assessment of an airborne Ku-band polarimetric SAR. Raynal, Ann Marie; Doerry, Armin Walter Feb. 2013 Sandia National Laboratories (SNL-NM), Albuquerque, NM...

  7. Careers | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    identity, genetic information, marital status, national origin, pregnancy, race, religion, sexual orientation, veteran status or any other characteristic protected by law. EEO...

  8. Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Sandia National Laboratories Utility-Scale Grid-Tied PV Inverter Reliability Technical Workshop Phillips Technology Institute Collaboration Center Albuquerque, New Mexico...

  9. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    70th anniversary app for iPhone, iPads June 5, 2013 LOS ALAMOS, N.M., June 4, 2013-Los Alamos National Laboratory has launched its first app for iPhones and iPads as part of the Laboratory's yearlong celebration of 70 years serving the nation. The free application is available from the Apple Store (search for Los Alamos National Lab). The app enables users to learn more about the Laboratory's national security mission, cutting edge research, unique history, top-flight scientists and the many

  10. Energy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Having reliable, clean and affordable energy sources is a matter of urgent national ... alternative energy sources - including nuclear, solar, and biofuels - are all critical ...

  11. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009 Lab contributes computer modeling, antibody engineering capabilities Los Alamos, New Mexico, July 28, 2009- Los Alamos National Laboratory scientists will codirect a new...

  12. National Power Transformer Reserve

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Request for Information National Power Transformer Reserve Department of Energy Offce of Electricity Delivery and Energy ... Infrastructure, April 2015 Reference 2: United States ...

  13. Lawrence Berkeley National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to see violent explosions of dying stars "on demand," Saul Perlmutter of Lawrence Berkeley National Laboratory led a team to the surprising discovery that the expansion of the...

  14. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    short-pulse laser, scientists from Los Alamos, the Technical University of Darmstadt, Germany, and Sandia National Laboratories focus high-intensity light on an ultra-thin...

  15. Nitrogen-tuned bonding mechanism of Li and Ti adatom embedded graphene

    SciTech Connect (OSTI)

    Lee, Sangho; Chung, Yong-Chae, E-mail: yongchae@hanyang.ac.kr

    2013-09-15

    The effects of nitrogen defects on the bonding mechanism and resultant binding energy between the metal and graphene layer were investigated using density functional theory (DFT) calculations. For the graphitic N-doped graphene, Li adatom exhibited ionic bonding character, while Ti adatom showed features of covalent bonding similar to that of pristine graphene. However, in the cases of pyridinic and pyrrolic structures, partially covalent bonding characteristic occurred around N atoms in the process of binding with metals, and this particular bond formation enhanced the bond strength of metal on the graphene layer as much as it exceeded the cohesive energy of the metal bulk. Thus, Li and Ti metals are expected to be dispersed with atomic accuracy on the pyridinic and pyrrolic N-doped graphene layers. These results demonstrate that the bonding mechanism of metalgraphene complex can change according to the type of N defect, and this also affects the binding results. - Graphical abstract: Display Omitted - Highlights: Nitrogen defects changed the bonding mechanism between metal and graphene. Bonding character and binding results were investigated using DFT calculations. Covalent bonding character occurred around pyridinic and pyrrolic N-doped graphene. Pyridinic and pyrrolic N atoms are effective for metal dispersion on the graphene.

  16. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Defense Systems & Assessments: Accomplishments Top Archives About Defense Systems & Assessments Program Areas Accomplishments Archives Cybersecurity Programs Archives Sandia's scientists and engineers have a significant impact on national security and continually deliver results. View our previous accomplishments: 2011 Archives: View our 2011 Accomplishments 2010 Archives: View our 2010 Accomplishments

  17. Sandia National Laboratories Contract Competition | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Contract Competition | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our

  18. Sandia National Laboratory Performance Evaluations | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Performance Evaluations | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for

  19. NATIONAL IGNITION FACILITY | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NATIONAL IGNITION FACILITY American Fusion News Category: National Ignition Facility Link: NATIONAL IGNITION FACILITY

  20. Kaw Nation- 2002 Project

    Broader source: Energy.gov [DOE]

    The study will assess the feasibility of a commercial wind facility on lands selected and owned by the Kaw Nation adjacent to the vacant Chilocco Indian School campus. The Kaw Nation will examine the potential for integration of the wind facility into a redevelopment plan for the property.

  1. Sandia National Laboratories: Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Bioscience Investigating cellular and biomolecular processes for bioenergy and biodefense. Computing and information science Developing essential tools for solving the world's most difficult problems. Engineering science Applying predictive simulation to engineering design and decision-making. Materials science Leading the nation in the knowledge of materials engineering, processing, and aging. Nanodevices and microsystems Developing and delivering custom microsystems and national

  2. Fuel Fabrication Capability WBS 01.02.01.05 - HIP Bonding Experiments Final Report

    SciTech Connect (OSTI)

    Dickerson, Patricia O'Donnell; Summa, Deborah Ann; Liu, Cheng; Tucker, Laura Arias; Chen, Ching-Fong; Aikin, Beverly; Aragon, Daniel Adrian; Beard, Timothy Vance; Montalvo, Joel Dwayne; Pena, Maria Isela; Dombrowski, David E.

    2015-06-10

    The goals of this project were to demonstrate reliable, reproducible solid state bonding of aluminum 6061 alloy plates together to encapsulate DU-10 wt% Mo surrogate fuel foils. This was done as part of the CONVERT Fuel Fabrication Capability effort in Process Baseline Development . Bonding was done using Hot Isotatic Pressing (HIP) of evacuated stainless steel cans (a.k.a HIP cans) containing fuel plate components and strongbacks. Gross macroscopic measurements of HIP cans prior to HIP and after HIP were used as part of this demonstration, and were used to determine the accuracy of a finitie element model of the HIP bonding process. The quality of the bonding was measured by controlled miniature bulge testing for Al-Al, Al-Zr, and Zr-DU bonds. A special objective was to determine if the HIP process consistently produces good quality bonding and to determine the best characterization techniques for technology transfer.

  3. Federal oversight of alternative bond systems under SMCRA (Surface Mining Control and Reclamation Act)

    SciTech Connect (OSTI)

    Beier, A.E.; McElfish, J.M. Jr.

    1989-01-01

    The 1977 Surface Mining Control and Reclamation Act (SMCRA) requires mine operators to post reclamation bonds before mining begins. The Federal Office of Surface Mining Reclamation and Enforcement (OSMRE) has approved alternative bond systems in seven states. These systems, rather than requiring bond amounts at the full cost of reclamation, require operators to submit only a flat rate, acreage specific bond. Additional reclamation costs should be covered by a supplemental fund composed generally of permit fees, taxes, or penalties. In many cases, alternative bond systems fail to ensure that funds will be available to reclaim coal mined land in the event of operator default, as required by SMCRA. OSMRE needs to take a more active role in oversight of existing state alternative bond systems to ensure that reclamation occurs.

  4. Idaho National Laboratory

    Broader source: Energy.gov [DOE]

    The Snake River Geothermal Consortium (SRGC) is a research partnership focused on advancing geothermal energy. Hosted by the Idaho National Laboratory (INL), SRGC proposes establishing FORGE as a resource for technology development, deployment, and validation. Their team includes members from national laboratories, universities, industry, and state and federal agencies. The technical team consists of members from Baker Hughes, the Center for Advanced Energy Studies (CAES) – Idaho National Laboratory, University of Idaho, Idaho State University, Boise State University, University of Wyoming - Campbell Scientific, Chena Power, Geothermal Resources Group, Idaho Department of Water Resources, Idaho Geologic Survey, Lawrence Livermore National Laboratory, Mink GeoHydro, National Renewable Energy Laboratory, University of Oklahoma, University of Utah, U.S. Geothermal, and the U.S. Geological Survey (USGS).

  5. Method of making bonded or sintered permanent magnets

    DOE Patents [OSTI]

    McCallum, R. William (Ames, IA); Dennis, Kevin W. (Ames, IA); Lograsso, Barbara K. (Ames, IA); Anderson, Iver E. (Ames, IA)

    1995-11-28

    An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density.

  6. Method of making bonded or sintered permanent magnets

    DOE Patents [OSTI]

    McCallum, R.W.; Dennis, K.W.; Lograsso, B.K.; Anderson, I.E.

    1993-08-31

    An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density.

  7. Method of making bonded or sintered permanent magnets

    DOE Patents [OSTI]

    McCallum, R.W.; Dennis, K.W.; Lograsso, B.K.; Anderson, I.E.

    1995-11-28

    An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density. 14 figs.

  8. Neutron Compton Scattering as a Probe of Hydrogen Bonded (and other)

    Office of Scientific and Technical Information (OSTI)

    Systems (Technical Report) | SciTech Connect Technical Report: Neutron Compton Scattering as a Probe of Hydrogen Bonded (and other) Systems Citation Details In-Document Search Title: Neutron Compton Scattering as a Probe of Hydrogen Bonded (and other) Systems One of the two major themes of the proposal was to study quantum coherence in stressed hydrogen bond networks. Our experiments on double wall carbon nanotubes and two versions of Nafion, together with earlier work on water confined in

  9. Graphene Oxide Catalyzed C-H Bond Activation: The Importance Oxygen

    Office of Scientific and Technical Information (OSTI)

    Functional Groups for Biaryl Construction (Journal Article) | SciTech Connect Graphene Oxide Catalyzed C-H Bond Activation: The Importance Oxygen Functional Groups for Biaryl Construction Citation Details In-Document Search Title: Graphene Oxide Catalyzed C-H Bond Activation: The Importance Oxygen Functional Groups for Biaryl Construction A heterogeneous, inexpensive and environment-friendly carbon catalytic system was developed for the C-H bond arylation of benzene resulting in the

  10. Neutron Compton Scattering as a Probe of Hydrogen Bonded (and other)

    Office of Scientific and Technical Information (OSTI)

    Systems (Technical Report) | SciTech Connect Technical Report: Neutron Compton Scattering as a Probe of Hydrogen Bonded (and other) Systems Citation Details In-Document Search Title: Neutron Compton Scattering as a Probe of Hydrogen Bonded (and other) Systems One of the two major themes of the proposal was to study quantum coherence in stressed hydrogen bond networks. Our experiments on double wall carbon nanotubes and two versions of Nafion, together with earlier work on water confined in

  11. The active site of hen egg-white lysozyme: flexibility and chemical bonding

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect The active site of hen egg-white lysozyme: flexibility and chemical bonding Citation Details In-Document Search Title: The active site of hen egg-white lysozyme: flexibility and chemical bonding Chemical bonding at the active site of lysozyme is analyzed on the basis of a multipole model employing transferable multipole parameters from a database. Large B factors at low temperatures reflect frozen-in disorder, but therefore prevent a meaningful free

  12. Effect of Superalloy Substrate and Bond Coating on TBC Lifetime

    SciTech Connect (OSTI)

    Pint, Bruce A; Haynes, James A; Zhang, Ying

    2010-01-01

    Several different single-crystal superalloys were coated with different bond coatings to study the effect of composition on the cyclic oxidation lifetime of an yttria-stabilized zirconia (YSZ) top coating deposited by electron beam physical vapor deposition from a commercial source. Three different superalloys were coated with a 7 {micro}m Pt layer that was diffused into the surface prior to YSZ deposition. One of the superalloys, N5, was coated with a low activity, Pt-modified aluminide coating and Pt-diffusion coatings with 3 and 7 {micro}m of Pt. Three coatings of each type were furnace cycled to failure in 1 h cycles at 1150 C to assess average coating lifetime. The 7 {micro}m Pt diffusion coating on N5 had an average YSZ coating lifetime >50% higher than a Pt-modified aluminide coating on N5. Without a YSZ coating, the Pt-modified aluminide coating on N5 showed the typical surface deformation during cycling, however, the deformation was greatly reduced when constrained by the YSZ coating. The 3 {micro}m Pt diffusion coating had a similar average lifetime as the Pt-modified aluminide coating but a much wider scatter. The Pt diffusion bond coating on superalloy X4 containing Ti exhibited the shortest YSZ coating lifetime, this alloy-coating combination also showed the worst alumina scale adhesion without a YSZ coating. The third generation superalloy N6 exhibited the longest coating lifetime with a 7 {micro}m Pt diffusion coating.

  13. national labs | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    labs | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  14. Sandia National Laboratories: National Security Missions: International

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Homeland and Nuclear Security: Homeland Defense and Force Protection Defense & Force Protection HDPF We design and implement advanced systems for intrusion detection and denial. We anticipate new threats and develop responses and countermeasures. We field technologies for protecting security forces and military personnel. We are committed to providing a Center of Excellence for Physical Security to support the DOE and DOD in ensuring the security of the nation's nuclear arsenal and

  15. Sandia National Laboratories: National Security Missions: International

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Homeland and Nuclear Security: Remote Sensing and Verification Remote Sensing and Verification Remote Sensing and Verification Image We extend Sandia's 60-year heritage in nuclear detonation detection to develop, deliver, and provide mission expertise for advanced remote sensing systems to monitor worldwide activities of consequence to national security. We design and build satellite sensor payloads and ground-based systems for the detection of nuclear detonations. We develop and evaluate

  16. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Defense Systems & Assessments: About Us Defense Systems About Defense Systems & Assessments Program Areas Accomplishments Cybersecurity Programs About Defense Systems & Assessments soldier silhouetted by a sunset Defense Systems & Assessments supports guardians of peace and freedom on the battlefield and in the laboratory by applying engineering, science, and technology solutions to deter, detect, defeat, and defend threats to our national security. We analyze and exploit the

  17. National Ignition Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home / About

  18. National Security Campus | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home / About

  19. national security campus | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    campus | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  20. sandia national labs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    labs | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  1. Lawrence Livermore National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Laboratories | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs

  2. National Ignition Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  3. National Science Bowl | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Science Bowl | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  4. Researcher, Lawrence Livermore National Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs

  5. Researcher, Lawrence Livermore National Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs

  6. Researcher, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA

  7. national security | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  8. sandia national laboratory | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    laboratory | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  9. Sandia National Laboratory | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home / Field

  10. The Bond Between CO and Cp?3U in Cp?3U(CO) involves Backbondingfrom...

    Office of Scientific and Technical Information (OSTI)

    The origin of the large difference between the stretching frequencies in free (2143 cm-1) ... Subject: 37; ADDUCTS; BONDING; ELECTRONS; ORIGIN; URANIUM uranium orbitals backbonding ...

  11. Carbon Disclosure Project Webinar: Climate Change: A Challenge for Bond Analysts

    Broader source: Energy.gov [DOE]

    Hosted by the Carbon Disclosure Project, this webinar will cover climate change and how its impacts can present significant risks for municipalities and municipal bond investors.

  12. Making it Easier to Complete Clean Energy Projects with Qualified Energy Conservation Bonds (QECBs)

    Broader source: Energy.gov [DOE]

    This webinar, held on July 19, 2012, provides information on how to complete clean energy projects with qualified energy conservation bonds.

  13. Liquid Metal Bond for Improved Heat Transfer in LWR Fuel Rods

    SciTech Connect (OSTI)

    Donald Olander

    2005-08-24

    A liquid metal (LM) consisting of 1/3 weight fraction each of Pb, Sn, and Bi has been proposed as the bonding substance in the pellet-cladding gap in place of He. The LM bond eliminates the large AT over the pre-closure gap which is characteristic of helium-bonded fuel elements. Because the LM does not wet either UO2 or Zircaloy, simply loading fuel pellets into a cladding tube containing LM at atmospheric pressure leaves unfilled regions (voids) in the bond. The HEATING 7.3 heat transfer code indicates that these void spaces lead to local fuel hot spots.

  14. EIS-0306: Treatment and Management of Sodium-Bonded Spent Nuclear Fuel

    Broader source: Energy.gov [DOE]

    DOE prepared a EIS that evaluated the potential environmental impacts of treatment and management of DOE-owned sodium bonded spent nuclear fuel.

  15. Thermal barrier and overlay coating systems comprising composite metal/metal oxide bond coating layers

    DOE Patents [OSTI]

    Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL); Vance, Steven J. (Orlando, FL)

    2001-01-01

    The present invention generally describes multilayer coating systems comprising a composite metal/metal oxide bond coat layer. The coating systems may be used in gas turbines.

  16. Alamos National Security, LLC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    40 nonprofit organizations to receive monetary donations from Los Alamos National Security, LLC June 10, 2013 Employees and retirees perform 270,000 volunteer hours LOS ALAMOS, N.M., June 10, 2013-Nonprofit organizations will receive more than $180,000 from Los Alamos National Security (LANS), LLC during a recognition event beginning at 9:30 a.m. June 12, at Fuller Lodge in downtown Los Alamos. LANS contributions are determined by the number of volunteer hours logged by Los Alamos National

  17. DOE National Cleanup Workshops

    Broader source: Energy.gov [DOE]

    DOE, in cooperation with the Energy Communities Alliance and the Energy Facility Contractors Group, held the first DOE National Cleanup Workshop Sept. 29 and 30, 2015, in the Washington, D.C. area. The workshop brought together senior DOE executives, officials from DOE sites, industry executives, and other stakeholders to discuss EMs progress in the cleanup of the environmental legacy of the nations Manhattan Project and Cold War nuclear weapons program. The workshop focused on major cleanup successes planned for the next two years, contract and project management improvement, efforts to develop new cleanup technologies, and more.

  18. IDAHO NATIONAL LABORATORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Idaho National Laboratory (INL) You are here: DOE-ID Home > Inside ID > Brief History Site History The Idaho National Laboratory (INL), an 890-square-mile section of desert in southeast Idaho, was established in 1949 as the National Reactor Testing Station. Initially, the missions at the INL were the development of civilian and defense nuclear reactor technologies and management of spent nuclear fuel. Fifty-two reactors—most of them first-of-a-kind—were built, including the Navy’s

  19. Foreign National New Hires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foreign Nationals Foreign National New Hires All foreign nationals including students and postdocs must complete this process. Contact (505) 667-4451, Option 6 Email The new-hire process, including the official pre-arrival period, does not begin until you receive and accept your written offer letter. Pre-Arrival New Hire Process Benefit Options New Employee App For your convenience, download the New Employee App from iTunes (IOS devices) or Google Play (Android devices). You can access new hire

  20. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    remembers former director Harold Agnew September 30, 2013 Manhattan Project pioneer was LANL director from 1970-1979 LOS ALAMOS, N.M., Sept. 30, 2013-Los Alamos National Laboratory Director Charlie McMillan today remembered Harold Agnew as a national treasure who transformed the Laboratory into what it is in the 21st century. "His contributions to the Laboratory made us the institution we are today," McMillan said. "It was his vision - decades ago - that recognized that national

  1. Nevada National Security Site

    National Nuclear Security Administration (NNSA)

    National Security Site Proud Past, Exciting Future Nevada National Security Site Pre-Proposal Meeting November 19, 2015 Agenda * 8:30 am Welcome * 9:00 am Overview of NNSS and NFO * 10:00 am Break * 10:30 am NNSS Video * 11:00 am Questions * 11:30 am Lunch * 1:00 pm Solicitation Overview * 2:15 pm Break * 2:45 pm Questions * 4:00 pm Conclusion The Nevada National Security Site * Large geographically diverse outdoor laboratory - 1,360 square miles of federally owned and controlled land -

  2. Sandia National Laboratories

    National Nuclear Security Administration (NNSA)

    National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582 P. ENERGY U.S. DEPARTMENT OF Albuquerque N e w M e x i c o Sandia Mountains Q Q ApproximatelyQ8,800QacresQQ ofQDOE-ownedQandQQ permittedQland Q Q LocatedQwithinQtheQQ KirtlandQAirQForceQQ

  3. Argonne X-rays validate quantum magnetism model | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory X-rays validate quantum magnetism model May 20, 2015 Tweet EmailPrint Scientists at the U.S. Department of Energy's Argonne National Laboratory and Max Planck Institute for Solid State Research in Stuttgart, Germany have validated a theorized model of quantum magnetism by observing it firsthand in a honeycomb lattice. The research is featured in an article titled "Direct evidence for dominant bond-directional interactions in a honeycomb lattice iridate Na2IrO3" published

  4. Los Alamos National Laboratory

    Broader source: Energy.gov [DOE]

    HISTORYLos Alamos National Laboratory (LANL) is located in Los Alamos County in north central New Mexico (NM). LANL, founded in 1943 during World War II as Project Y, served as a secret facility...

  5. AISES National Conference

    Office of Energy Efficiency and Renewable Energy (EERE)

    The AISES National Conference is a one-of-a-kind, three day event convening graduate, undergraduate, and high school junior and senior students, teachers, workforce professionals, corporate and...

  6. National Synchrotron Light Source

    ScienceCinema (OSTI)

    None

    2010-01-08

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  7. BROADER National Security Missions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Chips (U) Uranium Trioxide (UO 3 ) UO 2 (NO 3 ) 2 Ur anyl Nitrate Ammonium Uranyl Carbonate (NH 4 ) 2 UO 2 (CO 3 ) 4 DEVELOP NEW NATIONAL SECURITY MISSIONS Y-12 has...

  8. Sandia National Laboratories- Fallon

    Broader source: Energy.gov [DOE]

    The Fallon FORGE team seeks to establish and manage a well characterized and highly instrumented field test site dedicated to advancing EGS research, enabling the broader engineering and science community to accelerate the deployment of EGS. The team is working in partnership with the U.S. Department of Defense to reduce our Nations dependency on fossil fuels and to safeguard the military readiness for the United States. Prior geothermal exploration at the proposed site has identified attractive temperatures but sub-commercial permeabilities have prevented conventional geothermal development in the area. Led by Sandia National Laboratories, the Fallon FORGE team is strongly committed to the underground R&D laboratory and includes: Lawrence Berkeley National Laboratory, U.S. Navy & the U.S. Navy Geothermal Program Office, Ormat Nevada, Inc., U.S. Geological Survey (Menlo Park, California), University of Nevada, Reno (UNR), GeothermEx / Schlumberger, and Itasca Consulting Group, Inc.

  9. Brookhaven National Laboratory

    Broader source: Energy.gov [DOE]

    Site OverviewThe Brookhaven National Laboratory (BNL) was established in 1947 by the Atomic Energy Commission (AEC) (predecessor to U.S. Department of Energy [DOE]). Formerly Camp Upton, a U.S....

  10. sandia national laboratory

    National Nuclear Security Administration (NNSA)

    %2A en Sandia National Laboratories http:nnsa.energy.govaboutusourlocationssandia

    Page...

  11. national security campus

    National Nuclear Security Administration (NNSA)

    1%2A en National Security Campus http:nnsa.energy.govaboutusourlocationsnsc

    Page...

  12. National Cybersecurity Awareness Month

    Broader source: Energy.gov [DOE]

    The White House has designated October as National Cybersecurity Awareness Month (NCSAM) in which the Department of Energy (DOE) joins the Department of Homeland Security (DHS) and others across...

  13. Alamos National Security, LLC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security, LLC during a recognition event beginning at 9 a.m. Wednesday at Fuller Lodge in downtown Los Alamos. The monetary donations are being made to the nonprofits...

  14. lasers. National Ignition Facility

    National Nuclear Security Administration (NNSA)

    data for NNSA's science-based Stockpile Stewardship Program in the area of high-energy-density physics, a scientific field of direct relevance to nuclear deterrence and national...

  15. National Certification Standard

    Broader source: Energy.gov [DOE]

    This project will create a national certification standard for all primary personnel involved in the installation of geothermal heat pump (GHP) systems; including drillers; plumbers; electricians; heating and air conditioning specialists; engineers and architects.

  16. Pawnee Nation- 2006 Project

    Broader source: Energy.gov [DOE]

    The primary goal of this project is to move the energy vision of the Pawnee Nation forward by conducting specific data collection and analysis tasks to assess the viable options available to Pawnee to meet future energy needs sustainable.

  17. National Energy Codes Conference

    Broader source: Energy.gov [DOE]

    Join us in Nashville, TN March 23-26, 2015 for the National Energy Codes Conference! Additional details, including registration information, a preliminary agenda, the application for the Jeffrey A...

  18. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous devices teams showcase skills at Robot Rodeo June 24-27 June 18, 2014 Bomb squads compete in timed scenarios at Los Alamos National Laboratory LOS ALAMOS, N.M., June 19,...

  19. Sandia National Laboratories:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Out the door: DOE aims to expand lab ties to private sector Todd Dunivan wins NM Distinguished Public Service Award All in: Total commitment to nation, community marks career...

  20. Argonne National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE)

    HISTORYThe Argonne National Laboratory (ANL) site is approximately 27 miles southwest of downtown Chicago in DuPage County, Illinois.  The 1,500 acre ANL site is completely surrounded by the 2,240...

  1. SANDIA NATIONAL LABORATORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    who require access must be United States citizens, or foreign nationals who are legal aliens or have the required authorization to perform work in the Unites States. CS31 -...

  2. NATIONAL TRAFFIC SAFETY SUMMIT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to prosecution (cradle to grave) in four short days. NATIONAL TRAFFIC SAFETY SUMMIT 152 Woody Road Jackson, GA 30233 (877) 468-2392 www.ncea314.com The Accreditation Commission For...

  3. Sandia National Laboratories

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Sandia National Laboratories (SNL) is comprised of 2,820 acres within the boundaries of the 118 square miles Kirtland Air Force Base, and is located 6.5 miles east of downtown Albuquerque, New...

  4. National Science Bowl

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) National Science Bowl is a nationwide academic competition that tests students' knowledge in all areas of science. High school and middle school students are...

  5. Chickasaw Nation- 2010 Project

    Broader source: Energy.gov [DOE]

    Under this project, the Chickasaw Nation, Division of Commerce (CNDC) will upgrade old, inefficient lighting systems throughout CNDC to new, energy saving systems. This will be the first step in a...

  6. Los Alamos National Laboratory's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    takes part in Blue Star Museums program May 16, 2012 Free admission for active duty military, their family members LOS ALAMOS, New Mexico, May 16, 2012-Los Alamos National...

  7. National/International Standards

    Broader source: Energy.gov [DOE]

    CNS and staff are recognized experts within their areas of technical responsibilities. An important aspect of this recognition is the contribution made by CNS staff to advance collaboration and the nuclear safety experience at the national and international level.

  8. CASL - Idaho National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for advanced NE R&D Integration of LWR Sustainability system analysis tools with CASL in-core tools Advanced fuel performance code Learn More Idaho National Laboratory INL Core...

  9. Diesel prices flat nationally

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices flat nationally The U.S. average retail price for on-highway diesel fuel remained the same from a week ago at 3.98 a gallon on Monday, based on the weekly price...

  10. Diesel prices increase nationally

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices increase nationally The U.S. average retail price for on-highway diesel fuel rose to 3.91 a gallon on Monday. That's up 1.3 cents from a week ago, based on the...

  11. Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PHOTOVOLTAIC ARRAY PERFORMANCE MODEL D. L. King, W. E. Boyson, J. A. Kratochvil Sandia National Laboratories Albuquerque, New Mexico 87185-0752 2 SAND2004-3535 Unlimited Release Printed August 2004 Photovoltaic Array Performance Model David L. King, William E. Boyson, Jay A. Kratochvil Photovoltaic System R&D Department Sandia National Laboratories P. O. Box 5800 Albuquerque, New Mexico 87185-0752 Abstract This document summarizes the equations and applications associated with the

  12. SANDIA NATIONAL LABORATORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009 Highlights 2 SANDIA NATIONAL LABORATORIES From the Chief Technology O cer The Laboratory Directed Research and Development (LDRD) program is the sole discretionary research and development (R&D) investment program at Sandia. LDRD provides the opportunity for our technical sta to contribute to our Nation's future, to our collective ability to address and nd solutions to a range of daunting scienti c and technological challenges. The results of their work will shape the course of science

  13. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    record neutron beam at Los Alamos National Laboratory July 10, 2012 New method has potential to advance materials measurement LOS ALAMOS, New Mexico, July 10, 2012-Using a one-of-a-kind laser system at Los Alamos National Laboratory, scientists have created the largest neutron beam ever made by a short-pulse laser, breaking a world record. Neutron beams are usually made with particle accelerators or nuclear reactors and are commonly used in a wide variety of scientific research, particularly in

  14. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economic development in Northern New Mexico focus of new podcast from Los Alamos National Laboratory November 25, 2013 Podcast part of Lab's new multi-channel effort to better engage with the community LOS ALAMOS, N.M., Nov. 27, 2013-Podcasts and webinars are among the new communications tools being rolled out by Los Alamos National Laboratory's Community Programs Office to reach a broader audience. The first podcast discusses economic development and the Northern New Mexico 20/20 Campaign, a

  15. National Laboratory's Weapons Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    McMillan to lead Los Alamos National Laboratory's Weapons Program July 28, 2009 Los Alamos, New Mexico, July 28, 2009- Charles McMillan has been appointed the new principal associate director for Weapons Programs at Los Alamos National Laboratory. McMillan succeeds Glenn Mara, who recently retired. McMillan has been the Laboratory's associate director for weapons physics. In his new capacity, he will provide oversight and direction for the nuclear weapons program at Los Alamos to accomplish the

  16. Nevada National Security Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 24, 2014 Cultural Artifacts Cross Eras at the Nevada National Security Site It is well known that the Nevada National Security Site (NNSS) is home to many artifacts from the Cold War. Few people may be aware of the older important cultural resources that exist throughout the site as well. Artifacts ranging from hundreds to thousands of years old are part of the NNSS cultural inventory. The NNSS' Cultural Resources Management Program has documented tools and dwellings associated with

  17. 2012 National Electricity Forum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy U.S. Department of Energy National Electric Transmission Congestion Study Workshop - December 6, 2011 National Electric Transmission Congestion Study Workshop - December 6, 2011 Hilton Philadelphia Airport, 4509 Island Avenue, Philadelphia, PA 19153 Hilton Philadelphia Airport, 4509 Island Avenue, Philadelphia, PA 19153 Agenda Agenda 8:00 am - 9:00 am Registration 9:00 am - 9:20 am DOE Welcome and Presentation David Meyer, US Department of Energy, Session Moderator

  18. Seneca Nation- 2003 Project

    Broader source: Energy.gov [DOE]

    Through a process of strategic planning and evaluation, the Seneca will pursue energy resource efficiency and development to secure energy self-sufficiency. The Seneca Nation, one of the Six Nations of the Iroquois Confederacy, holds title to three distinct territories in western New York. On the Seneca's three territories, comprising 30,984 acres, there exists opportunities for wind power, hydropower, and biomass power.

  19. through Los Alamos National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area schools get new computers through Los Alamos National Laboratory, IBM partnership May 8, 2009 LOS ALAMOS, New Mexico, May 8, 2009-Thanks to a partnership between Los Alamos National Laboratory and IBM, Northern New Mexico schools are recipients of fully loaded desktop and laptop computers. Officials from the Laboratory's Community Programs Office, the Española School Board, and elected officials including Española Mayor Joseph Maestas recently dedicated the technology center at Española

  20. Collaboration | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaboration Collaboration Argonne National Laboratory, The University of Chicago, and other institutions engaged in systems, synthetic, and structural biology are performing their research at the Advanced Protein Characterization Facility (APCF). Three of the largest research projects are as follows: The Midwest Center for Structural Genomics (MCSG), a component of the Protein Structure Initiative (PSI), is supported by a grant from the National Institutes of Health (NIH). The MCSG has