Sample records for wa 2-500 kv

  1. Research Space Use Standards Policy 2.500

    E-Print Network [OSTI]

    Acton, Scott

    Research Space Use Standards Policy 2.500 Page 1 Research Space Use Standards Date: November: Department chairs and center directors who have research laboratory space assigned to their unit. Reason for Policy: This policy was developed to help address a research space shortage in the School of Medicine

  2. SunShot-funded Advanced Inverter Testing Enables 2,500 Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SunShot-funded Advanced Inverter Testing Enables 2,500 Solar Energy Systems to Connect to Hawaii's Electric Grid SunShot-funded Advanced Inverter Testing Enables 2,500 Solar Energy...

  3. WA_1995_001_US_AUTO_MATERIALS_PARTNERSHIPS_Waiver_of_Patent_...

    Office of Environmental Management (EM)

    WA1995001USAUTOMATERIALSPARTNERSHIPSWaiverofPatent.pdf WA1995001USAUTOMATERIALSPARTNERSHIPSWaiverofPatent.pdf WA1995001USAUTOMATERIALSPARTNERSHIPSWaiver...

  4. Results from ORNL characterization of ZrO2-500-AK2 - surrogate TRISO material

    SciTech Connect (OSTI)

    Kercher, Andrew K [ORNL; Hunn, John D [ORNL

    2005-06-01T23:59:59.000Z

    This document is a compilation of the characterization data for the TRISO-coated surrogate particles designated ZrO2-500-AK2 that was produced at Oak Ridge National Laboratory (ORNL) as part of the Advanced Gas Reactor Fuel Development and Qualification (AGR) program. The ZrO2-500-AK2 material contains nominally 500 {micro}m kernels of yttria-stabilized zirconia (YSZ) coated with all TRISO layers (buffer, inner pyrocarbon, silicon carbide, and outer pyrocarbon). The ZrO2-500-AK2 material was created for: (1) irradiation testing in the High Flux Isotope Reactor (HFIR) and (2) limited dissemination to laboratories as deemed appropriate to the AGR program. This material was created midway into a TRISO fuel development program to accommodate a sudden opportunity to perform irradiation testing on surrogate material. While the layer deposition processes were chosen based on the best technical understanding at the time, technical progress at ORNL has led to an evolution in the perceived optimal deposition conditions since the creation of ZrO2-500-AK2. Thus, ZrO2-500-AK2 contains a reasonable TRISO microstructure, but does differ significantly from currently produced TRISO surrogates and fuel at ORNL. In this document, characterization data of the ZrO2-500-AK2 surrogate includes: size, shape, coating thickness, and density.

  5. Type B Accident Investigation Board Report on the July 25, 1997, Contract Brush Cutter Injury on the Ashe-Marion #2 500 kV Line

    Broader source: Energy.gov [DOE]

    On July 25, 1997, at 1205 hours, a contract hand brush cutter was seriously injured when he felled a tree close to a Bonneville Power Administration energized transmission power line, located within a BPA transmission-line corridor.

  6. WA_1994010__SCHWITZER_U.S._INC_Waiver_of_Domestic_and_Foreig...

    Broader source: Energy.gov (indexed) [DOE]

    Publications WA1994007KYOCERAINDUSTRIALCERAMICSCORPORATIONWaivero.pdf WA1994011EATONCORPORATIONWaiverofDomesticandForeign.pdf WA02028TRANECOWaiverofDomesti...

  7. WA_02_021_H2GEN_INNOVATIONS_Waiver_of_Domestic_and_Foreign_P...

    Broader source: Energy.gov (indexed) [DOE]

    WA02046QUESTAAIRTECHNOLOGIESWaiverofDomesticandFor.pdf WA02055PRAXAIRWaiverofDomesticandForeignPatentRigh.pdf WA04034NUVERAFUELCELLSINCWaiver...

  8. WA_98_005_WESTINGHOUSE_POWER_GENERATION_A_FORMER_DIVISION_OF...

    Broader source: Energy.gov (indexed) [DOE]

    5WESTINGHOUSEPOWERGENERATIONAFORMERDIVISIONOF.pdf WA98005WESTINGHOUSEPOWERGENERATIONAFORMERDIVISIONOF.pdf WA98005WESTINGHOUSEPOWERGENERATIONAFORMERDIVISION...

  9. WA_98_006_WESTINGHOUSE_POWER_GENERATION_A_FORMER_DIVISION_OF...

    Broader source: Energy.gov (indexed) [DOE]

    6WESTINGHOUSEPOWERGENERATIONAFORMERDIVISIONOF.pdf WA98006WESTINGHOUSEPOWERGENERATIONAFORMERDIVISIONOF.pdf WA98006WESTINGHOUSEPOWERGENERATIONAFORMERDIVISION...

  10. WA_00_007_COMBUSTION_ENGINEERING_INC_Waiver_of_Domestic_and_...

    Broader source: Energy.gov (indexed) [DOE]

    07COMBUSTIONENGINEERINGINCWaiverofDomesticand.pdf WA00007COMBUSTIONENGINEERINGINCWaiverofDomesticand.pdf WA00007COMBUSTIONENGINEERINGINCWaiverofDomestica...

  11. WA_1994_034_AIR_PRODUCTS_AND_CHEMICALS_INC_Waiver_of_Domesti...

    Broader source: Energy.gov (indexed) [DOE]

    4034AIRPRODUCTSANDCHEMICALSINCWaiverofDomesti.pdf WA1994034AIRPRODUCTSANDCHEMICALSINCWaiverofDomesti.pdf WA1994034AIRPRODUCTSANDCHEMICALSINCWaiverofDom...

  12. WA_99_017_AIR_PRODUCTS_AND_CHEMICALS_Waiver_of_Domestic_and_...

    Broader source: Energy.gov (indexed) [DOE]

    9017AIRPRODUCTSANDCHEMICALSWaiverofDomesticand.pdf WA99017AIRPRODUCTSANDCHEMICALSWaiverofDomesticand.pdf WA99017AIRPRODUCTSANDCHEMICALSWaiverofDomesti...

  13. WA_1995_009_AIR_PRODUCTS_AND_CHEMICALS_INC_Waiver_of_Domesti...

    Broader source: Energy.gov (indexed) [DOE]

    9AIRPRODUCTSANDCHEMICALSINCWaiverofDomesti.pdf WA1995009AIRPRODUCTSANDCHEMICALSINCWaiverofDomesti.pdf WA1995009AIRPRODUCTSANDCHEMICALSINCWaiverofDomesti...

  14. WA_96_016_AIR_PRODUCTS_AND_CHEMICALS_INC_Waiver_of_Domestic_...

    Broader source: Energy.gov (indexed) [DOE]

    16AIRPRODUCTSANDCHEMICALSINCWaiverofDomestic.pdf WA96016AIRPRODUCTSANDCHEMICALSINCWaiverofDomestic.pdf WA96016AIRPRODUCTSANDCHEMICALSINCWaiverofDomest...

  15. WA_1995_014_AIR_PRODUCTS_AND_CHEMICALS_INC_Waiver_of_Domesti...

    Broader source: Energy.gov (indexed) [DOE]

    14AIRPRODUCTSANDCHEMICALSINCWaiverofDomesti.pdf WA1995014AIRPRODUCTSANDCHEMICALSINCWaiverofDomesti.pdf WA1995014AIRPRODUCTSANDCHEMICALSINCWaiverofDomest...

  16. WA_04_028_AIR_PRODUCTS_AND_CHEMICALS_Waiver_of_patent_Rights...

    Broader source: Energy.gov (indexed) [DOE]

    8AIRPRODUCTSANDCHEMICALSWaiverofpatentRights.pdf WA04028AIRPRODUCTSANDCHEMICALSWaiverofpatentRights.pdf WA04028AIRPRODUCTSANDCHEMICALSWaiverofpatentRigh...

  17. Geek-Up[3.4.2011]: 3,000+ MW and 2,500 Year-Old Greek Pottery

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration celebrates big windy milestone and researchers SLAC National Accelerator Laboratory study the surfaces of 2,500 year old Greek pottery -- all in this week's Geek-Up.

  18. WA_00_025_PRAXAIR_INC_Waiver_Request.pdf | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    25PRAXAIRINCWaiverRequest.pdf WA00025PRAXAIRINCWaiverRequest.pdf WA00025PRAXAIRINCWaiverRequest.pdf More Documents & Publications WA00001PRAXAIRINCWaiverofDo...

  19. KV-tOOJHfe Metallurgy Department

    E-Print Network [OSTI]

    »KV-tOOJHfe RisB-R-547 Metallurgy Department Progress Report for the Period 1 January to 31 December 1986 Risř National Laboratory, DK-4000 Roskilde, Denmark April 1987 #12;Risř-R-547 METALLURGY.B. BiIde-Sřrensen Abstract. The activities of the Metallurgy Department at Risř during 1986

  20. Advance Patent Waiver W(A)2005-006 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    W(A)2005-006 More Documents & Publications Advance Patent Waiver W(A)2008-022 WA04079PRAXAIRINCWaiverofPatentRightsUnderaSubcon.pdf Advance Patent Waiver W(A)2011-063...

  1. PO Box 2349 White Salmon, WA 98672

    E-Print Network [OSTI]

    PO Box 2349 White Salmon, WA 98672 509.493.4468 www.newbuildings.org COMMERCIAL ROOFTOP HVAC ENERGY from utility-sponsored field service measures on small (typically 3-10 tons) commercial rooftop unitary utility-funded RTU service programs. New Buildings Institute (NBI) staff has been managing the research

  2. WA_04_080_HYBRID_POWER_GENERATION_SYSTEMS_Waiver_of_Patent_R...

    Broader source: Energy.gov (indexed) [DOE]

    80HYBRIDPOWERGENERATIONSYSTEMSWaiverofPatentR.pdf WA04080HYBRIDPOWERGENERATIONSYSTEMSWaiverofPatentR.pdf WA04080HYBRIDPOWERGENERATIONSYSTEMSWaiverofPaten...

  3. WA_00_010_ROCKWELL_SCIENCE_CENTER_A_Subcontractor_of_SILICON...

    Broader source: Energy.gov (indexed) [DOE]

    NTERASubcontractorofSILICON.pdf More Documents & Publications WA03011ROCKWELLAUTOMATIONWaiverofPatentRightsUnder.pdf WA01034INGERSOLL-RANDENERGYSYSTEMSWaiverof...

  4. WA_96_004_GE_CORPORATE_RESEARCH_and_DEVELOPMENT_Waiver_of_Dome...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RATERESEARCHandDEVELOPMENTWaiverofDome.pdf More Documents & Publications WA1993012GENERALELECTRICCOMPANY--CORPORATERESEARCHAND.pdf WA1994013GENERALELECTRICCOMPANY...

  5. WA_03_021_DELPHI_AUTOMOTIVE_SYSTEMS_Waiver_of_Patent_Rights_...

    Broader source: Energy.gov (indexed) [DOE]

    1DELPHIAUTOMOTIVESYSTEMSWaiverofPatentRights.pdf WA03021DELPHIAUTOMOTIVESYSTEMSWaiverofPatentRights.pdf WA03021DELPHIAUTOMOTIVESYSTEMSWaiverofPatentRight...

  6. WA_04_082_DELPHI_AUTOMOTIVE_SYSTEMS_Waiver_of_Patent_Rights_...

    Broader source: Energy.gov (indexed) [DOE]

    82DELPHIAUTOMOTIVESYSTEMSWaiverofPatentRights.pdf WA04082DELPHIAUTOMOTIVESYSTEMSWaiverofPatentRights.pdf WA04082DELPHIAUTOMOTIVESYSTEMSWaiverofPatentRigh...

  7. WA_04_033_CARGILL_Waiver_of_Patent_Rights_to_CARGILL_DOWN_L.pdf...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    tentRightstoCARGILLDOWNL.pdf More Documents & Publications WA00022CARGILLDOWPOLYMERSLLCWaiverofDomesticandFo.pdf WA05022DOWCHEMICALCOMPANYWaiverofdomestica...

  8. WA_1993_003_EATON_CORPORATION_Waiver_of_Domestic_and_Foreign...

    Broader source: Energy.gov (indexed) [DOE]

    3003EATONCORPORATIONWaiverofDomesticandForeign.pdf WA1993003EATONCORPORATIONWaiverofDomesticandForeign.pdf WA1993003EATONCORPORATIONWaiverofDomesticandFor...

  9. WA_1994_011_EATON_CORPORATION_Waiver_of_Domestic_and_Foreign...

    Broader source: Energy.gov (indexed) [DOE]

    1EATONCORPORATIONWaiverofDomesticandForeign.pdf WA1994011EATONCORPORATIONWaiverofDomesticandForeign.pdf WA1994011EATONCORPORATIONWaiverofDomesticandForeign...

  10. WA_04_083_AIR_PRODUCTS_AND_CHEMICALS_Waiver_of_Patent_Rights...

    Broader source: Energy.gov (indexed) [DOE]

    83AIRPRODUCTSANDCHEMICALSWaiverofPatentRights.pdf WA04083AIRPRODUCTSANDCHEMICALSWaiverofPatentRights.pdf WA04083AIRPRODUCTSANDCHEMICALSWaiverofPatentRig...

  11. WA_04_025_AIR_LIQUIDE_AMERICA_Waiver_of_Patent_Rights_under_...

    Broader source: Energy.gov (indexed) [DOE]

    25AIRLIQUIDEAMERICAWaiverofPatentRightsunder.pdf WA04025AIRLIQUIDEAMERICAWaiverofPatentRightsunder.pdf WA04025AIRLIQUIDEAMERICAWaiverofPatentRightsund...

  12. WA_02_046_QUESTA_AIR_TECHNOLOGIES_Waiver_of_Domestic_and_For...

    Broader source: Energy.gov (indexed) [DOE]

    6QUESTAAIRTECHNOLOGIESWaiverofDomesticandFor.pdf WA02046QUESTAAIRTECHNOLOGIESWaiverofDomesticandFor.pdf WA02046QUESTAAIRTECHNOLOGIESWaiverofDomesticandF...

  13. WA_99_022_AIR_PRODUCTS_AND_CHEMICAL_Waiver_of_Domestic_and_F...

    Broader source: Energy.gov (indexed) [DOE]

    9022AIRPRODUCTSANDCHEMICALWaiverofDomesticandF.pdf WA99022AIRPRODUCTSANDCHEMICALWaiverofDomesticandF.pdf WA99022AIRPRODUCTSANDCHEMICALWaiverofDomestic...

  14. WA_02_015_AIR_PRODUCTS_AND_CHEMICALS_INC_Waiver_of_Patent_Ri...

    Broader source: Energy.gov (indexed) [DOE]

    15AIRPRODUCTSANDCHEMICALSINCWaiverofPatentRi.pdf WA02015AIRPRODUCTSANDCHEMICALSINCWaiverofPatentRi.pdf WA02015AIRPRODUCTSANDCHEMICALSINCWaiverofPatent...

  15. WA_04_063_AIR_PRODUCTS_AND_CHEMICALS_Waiver_of_Patent_Rights...

    Broader source: Energy.gov (indexed) [DOE]

    63AIRPRODUCTSANDCHEMICALSWaiverofPatentRights.pdf WA04063AIRPRODUCTSANDCHEMICALSWaiverofPatentRights.pdf WA04063AIRPRODUCTSANDCHEMICALSWaiverofPatentRig...

  16. WA_01_005__PRAXAIR_INC_Waiver_of_Domestic_and_Foreign_patent...

    Broader source: Energy.gov (indexed) [DOE]

    1005PRAXAIRINCWaiverofDomesticandForeignpatent.pdf WA01005PRAXAIRINCWaiverofDomesticandForeignpatent.pdf WA01005PRAXAIRINCWaiverofDomesticandForeign...

  17. WA_01_022_PRAXAIR_INC_AND_BP_AMOCO_Waiver_of_Domestic_and_Fo...

    Broader source: Energy.gov (indexed) [DOE]

    1022PRAXAIRINCANDBPAMOCOWaiverofDomesticandFo.pdf WA01022PRAXAIRINCANDBPAMOCOWaiverofDomesticandFo.pdf WA01022PRAXAIRINCANDBPAMOCOWaiverofDomestic...

  18. ,"Sumas, WA Natural Gas Pipeline Imports From Canada (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Sumas, WA...

  19. BayWa Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County, Florida: Energy ResourcesBayWa Group Jump to:

  20. EIS-0325: Schultz-Hanford Area Transmission Line Project, WA

    Broader source: Energy.gov [DOE]

    BPA proposes to construct a new 500-kilovolt (kV) transmission line in central Washington. This project would increase transmission system capacity north of Hanford.

  1. Advance Patent Waiver W(A)2010-028 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    W(A)2010-028 More Documents & Publications Advance Patent Waiver W(A)2009-028 Novel Materials for High Efficiency Direct Methanol Fuel Cells Advance Patent Waiver W(A)2008-019...

  2. Advance Patent Waiver W(A)2012-003 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Waiver W(A)2012-003 More Documents & Publications Advance Patent Waiver W(A)2013-019 Class Patent Waiver W(C)2012-003 WA02048EATONCORPORATIONWaviverofPatentRightsUnderA...

  3. waTer economics. environmenTand Policy

    E-Print Network [OSTI]

    Botea, Adi

    41 cenTre for waTer economics. environmenTand Policy "Men and nature must work hand in hand and public policy insights for the supply, demand, management, and governance of water CWEEP pronounced `sweep' as in to survey so as to obtain a whole and continuous view of the world #12;42 waTer is a cri

  4. WA_03_011_ROCKWELL_AUTOMATION_Waiver_of_Patent_Rights_Under_...

    Broader source: Energy.gov (indexed) [DOE]

    3011ROCKWELLAUTOMATIONWaiverofPatentRightsUnder.pdf WA03011ROCKWELLAUTOMATIONWaiverofPatentRightsUnder.pdf WA03011ROCKWELLAUTOMATIONWaiverofPatentRights...

  5. WA_04_007_OSHKOSH_TRUCK_CORP_Waiver_of_Patent_Rights_Under_N...

    Broader source: Energy.gov (indexed) [DOE]

    WaiverofPatentRightsUnderN.pdf More Documents & Publications WA03011ROCKWELLAUTOMATIONWaiverofPatentRightsUnder.pdf WA04008GENERALMOTORSCORPWaiverofPatentRi...

  6. WA_04_074_EATON_CORPORATION_Waiver_of_Domestic_and_Foreign_I...

    Broader source: Energy.gov (indexed) [DOE]

    74EATONCORPORATIONWaiverofDomesticandForeignI.pdf WA04074EATONCORPORATIONWaiverofDomesticandForeignI.pdf WA04074EATONCORPORATIONWaiverofDomesticandForeig...

  7. WA_02_048_EATON_CORPORATION_Waviver_of_Patent_Rights_Under_A...

    Broader source: Energy.gov (indexed) [DOE]

    48EATONCORPORATIONWaviverofPatentRightsUnderA.pdf WA02048EATONCORPORATIONWaviverofPatentRightsUnderA.pdf WA02048EATONCORPORATIONWaviverofPatentRightsUnde...

  8. WA_1994_017_GOLDEN_TECHNOLOGIES_COMPANY_Waiver_of_Domestic_a...

    Broader source: Energy.gov (indexed) [DOE]

    for An Advance Waiver of Domestic and Foreign Rights. January 10, 1995 WA1994011EATONCORPORATIONWaiverofDomesticandForeign.pdf WA1994014GOLDENTECHNOLOGIESCOMPA...

  9. WA_04_059_EATON_CORPORATION_Waiver_of_Patent_Rights_Under_a_...

    Broader source: Energy.gov (indexed) [DOE]

    59EATONCORPORATIONWaiverofPatentRightsUndera.pdf WA04059EATONCORPORATIONWaiverofPatentRightsUndera.pdf WA04059EATONCORPORATIONWaiverofPatentRightsUnder...

  10. WA_99_012_AIR_PRODUCTS_Waiver_of_Patent_Rights_Under_AN_NVO_...

    Broader source: Energy.gov (indexed) [DOE]

    2AIRPRODUCTSWaiverofPatentRightsUnderANNVO.pdf WA99012AIRPRODUCTSWaiverofPatentRightsUnderANNVO.pdf WA99012AIRPRODUCTSWaiverofPatentRightsUnderANNV...

  11. WA_00_001_PRAXAIR_INC_Waiver_of_Domestic_and_Foreign_Inventi...

    Broader source: Energy.gov (indexed) [DOE]

    01PRAXAIRINCWaiverofDomesticandForeignInventi.pdf WA00001PRAXAIRINCWaiverofDomesticandForeignInventi.pdf WA00001PRAXAIRINCWaiverofDomesticandForeignInve...

  12. WA_04_079_PRAXAIR_INC_Waiver_of_Patent_Rights_Under_a_Subcon...

    Broader source: Energy.gov (indexed) [DOE]

    04079PRAXAIRINCWaiverofPatentRightsUnderaSubcon.pdf WA04079PRAXAIRINCWaiverofPatentRightsUnderaSubcon.pdf WA04079PRAXAIRINCWaiverofPatentRightsUndera...

  13. WA_02_055_PRAXAIR_Waiver_of_Domestic_and_Foreign_Patent_Righ...

    Broader source: Energy.gov (indexed) [DOE]

    2055PRAXAIRWaiverofDomesticandForeignPatentRigh.pdf WA02055PRAXAIRWaiverofDomesticandForeignPatentRigh.pdf WA02055PRAXAIRWaiverofDomesticandForeignPaten...

  14. WA_03_024_PRAXAIR_Waiver_of_Domestic_and_Foreign_Invention_R...

    Broader source: Energy.gov (indexed) [DOE]

    24PRAXAIRWaiverofDomesticandForeignInventionR.pdf WA03024PRAXAIRWaiverofDomesticandForeignInventionR.pdf WA03024PRAXAIRWaiverofDomesticandForeignInventio...

  15. WA_00_018_PRAXAIR_Waive_of_Domestic_and_Foreign_Invention_Ri...

    Broader source: Energy.gov (indexed) [DOE]

    18PRAXAIRWaiveofDomesticandForeignInventionRi.pdf WA00018PRAXAIRWaiveofDomesticandForeignInventionRi.pdf WA00018PRAXAIRWaiveofDomesticandForeignInvention...

  16. WA_01_039_PRAXAIR_INC_Waiver_of_Domestic_and_Foreign_Patent_...

    Broader source: Energy.gov (indexed) [DOE]

    1039PRAXAIRINCWaiverofDomesticandForeignPatent.pdf WA01039PRAXAIRINCWaiverofDomesticandForeignPatent.pdf WA01039PRAXAIRINCWaiverofDomesticandForeignP...

  17. Computer Science & Engineering Box 352350 Seattle, WA 98195-2350

    E-Print Network [OSTI]

    Borenstein, Elhanan

    Seattle, WA Permit #62Jeff Heer will join us from Stanford University, where he is a faculty member, a Presidential Early Career Award for Scientists and Engineers, the IJCAI Computers and Thought Award

  18. Waltz Mill testing of 345-kV PPP cable

    SciTech Connect (OSTI)

    Burghardt, R.R. (Westinghouse Electric Corp., Ruffs Dale, PA (United States))

    1991-09-01T23:59:59.000Z

    A 345-kV PPP-insulated cable was subjected to a two-year accelerated life test program at the EPRI Waltz Mill Cable Test Facility. Testing started in November 1985 and was successfully completed in September 1988. The program included conductor temperatures ranging from 85{degrees}C to 105{degrees}C and line-to-line voltages from 362 kV to 474 kV. Cyclic testing was performed during 17 of the 24 months. Dissipation factor measurements were made throughout the program. The measurements indicated no deterioration of the cable or splices as a consequence of the high temperatures and voltages applied to them in this test program. 2 refs., 24 figs.

  19. RAPID/Roadmap/6-WA-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-baa <baWA-b <

  20. RAPID/Roadmap/6-WA-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-baa <baWA-b <d

  1. WA_00_013_GENECOR_INTERNATIONAL_Waiver_of_US_Competitiveness...

    Broader source: Energy.gov (indexed) [DOE]

    WaiverofUSCompetitiveness.pdf More Documents & Publications U.S. Biofuels Industry: Mind the Gap Advance Patent Waiver W(A)2008-045 WA01008NOVOZYMEBIOTECHWaiverofDomesti...

  2. Advance Patent Waiver W(A)2009-039 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Advance Patent Waiver W(A)2010-007 Advance Patent Waiver W(A)2012-034 Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion...

  3. Survey of Magnetic Fields Near BPA 230-kV and 500-kV Transmission Lines.

    SciTech Connect (OSTI)

    Perrin, Nancy; Aggarwal, Rajinder Pal; Bracken, T. Daniel

    1991-05-20T23:59:59.000Z

    The purpose of this study was to characterize typical levels and variability of 60Hz magnetic fields at the centerline and edge of right-of-way of Bonneville Power Administration (BPA) 230-kV and 500-kV transmission lines. This was accomplished by taking magnetic field measurements at over 800 spans in Oregon and Washington. The spans were sampled using a stratified random sampling procedure with region (East vs. West), voltage (230-kV vs 500-kV), and circuit configuration as strata. There were five different circuit configuration groups for each region/voltage category requiring a total of 200 strata. Magnetic field measurements were taken at 13 locations under each span using an EMDEX-C as a survey meter. Additional information recorded for each span included conductor height (at 10 locations), right-of-way width, longitudinal and lateral slope, time of day, vegetation, terrain, weather conditions, temperature, wind speed, span length and presence of other lines in the corridor. 9 refs., 17 figs., 26 tabs.

  4. EIS-0397: Lyle Falls Fish Passage Project, WA

    Broader source: Energy.gov [DOE]

    This EIS analyzes BPA's decision to modify funding to the existing Lyle Falls Fishway on the lower Klickitat River in Klickitat County, WA. The proposed project would help BPA meet its off-site mitigation responsibilities for anadromous fish affected by the development of the Federal Columbia River Power System and increase overall fish production in the Columbia Basin.

  5. NAME: Eelgrass Restoration in Puget Sound LOCATION: Puget Sound, WA

    E-Print Network [OSTI]

    US Army Corps of Engineers

    NAME: Eelgrass Restoration in Puget Sound LOCATION: Puget Sound, WA ACRES: 3,700 acres of subtidal restoration efforts and to contribute to the Puget Sound Partnership's Action Agenda recovery goal of 20% more within the Puget Sound region of the Salish Sea: the Nisqually, Elwha, and Skokomish Rivers. These major

  6. carleton universityottaWa, canaDa international

    E-Print Network [OSTI]

    Dawson, Jeff W.

    carleton universityottaWa, canaDa international aDmissions 2014 #12;Carleton University provides high-quality education to students from Canada and around the world. We offer a wide range of programs and be a part of this extraordinary university! Wonderful country The United Nations consistently ranks Canada

  7. A 50 kV solid state multipulse kicker modulator

    SciTech Connect (OSTI)

    Walstrom, P. L. (Peter L.); Cook, E. G. (Edward G.)

    2003-01-01T23:59:59.000Z

    Performance requirements, design concepts, and test results for a prototype multipulse kicker modulator based on solid-state switches and a voltage-adding transformer topology are described. Tape-wound cores are stacked to form the transformer primary windings and a cylindrical pipe that passes through the circular inner diameters of the cores serves as the secondary winding of the step-up transformer. Boards containing MOSFET switches, trigger circuitry, and energy-storage capacitors plug into the core housings. A 50 kV prototype modulator that meets most of the facility requirements has been designed, fabricated, and tested at LLNL. More recent work has been concerned with designing and testing cores and boards with the full volt-second capability needed for 24-pulse operation. Results of the 50 kV prototype tests, preliminary tests of the full-volt-second cores and boards, and future development needs are described.

  8. CEBAF 200 kV Inverted Electron Gun

    SciTech Connect (OSTI)

    J.M. Grames, P.A. Adderley, J. Clark, J. Hansknecht, M. Poelker, M.L. Stutzman, R. Suleiman, K.E.L. Surles-Law

    2011-03-01T23:59:59.000Z

    Two DC high voltage GaAs photoguns have been built at Jefferson Lab based on a compact inverted insulator design. One photogun provides the polarized electron beam at CEBAF and operates at 130 kV bias voltage. The other gun is used for high average current lifetime studies at a dedicated test facility and has been operated at bias voltage up to 225 kV. The advantages of higher DC voltage for CEBAF include reduced space-charge emittance growth and the potential for prolonged photocathode lifetime. However, a consequence of operating at higher voltages is the increased likelihood of field emission or breakdown, both of which are unacceptable. Highlights of the R&D studies leading toward a production 200keV GaAs photogun for CEBAF will be presented.

  9. The design and construction of a 130 K.V. radio frequency Cockcroft Walton type generator

    E-Print Network [OSTI]

    Robba, William Augustus

    1951-01-01T23:59:59.000Z

    at 30 KV are rather expensive~ and a 500 KV generator of this type would cost several thousand dollars. Sesides thisc the rcgulaticu and efficienoy of suoh a generator leave such to be desired An exanple will nake this c3Alaro Lot v o 1$ f, Vi g x... ourrent~ voltage snd poser for various staok voltages, Steak Voltages (One Stags) 20 K+V+ 15KV 12 K+V+ 10 K Vo 7. $ K. V. 220 Rile 180 Rile 140 ILQs 120 RGs 100 Mile 1500 Stack Plate Current Plato Voltage Poser in Watts QS $0 Varies Set...

  10. Corona performance of a compact 230-kV line

    SciTech Connect (OSTI)

    Chartier, V.L.; Blair, D.E. [Bonneville Power Administration, Vancouver, WA (United States). Division of Laboratories; Easley, M.D.; Raczkowski, R.T. [Puget Sound Power and Light Co., Bellevue, WA (United States)

    1994-12-31T23:59:59.000Z

    Permitting requirements and the acquisition of new rights-of-way for transmission facilities has in recent years become increasingly difficult for most utilities, including Puget Sound Power and Light Company. In order to maintain a high degree of reliability of service while being responsive to public concerns regarding the siting of high voltage (HV) transmission facilities, Puget Power has found it necessary to more heavily rely upon the use of compact lines in franchise corridors. Compaction does, however, precipitant increased levels of audible noise (AN) and radio and TV interference (RI and TVI) due to corona on the conductors and insulator assemblies. Puget Power relies upon the Bonneville Power Administration (BPA) Corona and Field Effects computer program to calculate AN and RI for new lines. Since there was some question of the program`s ability to accurately represent quiet 230-kV compact designs, a joint project was undertaken with BPA to verify the program`s algorithms. Long-term measurements made on an operating Puget Power 230-kV compact line confirmed the accuracy of BPA`s AN model; however, the RI measurements were much lower than predicted by the BPA computer and other programs. This paper also describes how the BPA computer program can be used to calculate the voltage needed to expose insulator assemblies to the correct electric field in single test setups in HV laboratories.

  11. Corona performance of a compact 230-kV line

    SciTech Connect (OSTI)

    Chartier, V.L.; Blair, D.E. [Bonneville Power Administration, Vancouver, WA (United States). Division of Labs.] [Bonneville Power Administration, Vancouver, WA (United States). Division of Labs.; Easley, M.D.; Raczkowski, R.T. [Puget Sound Power and Light Co., Bellevue, WA (United States)] [Puget Sound Power and Light Co., Bellevue, WA (United States)

    1995-01-01T23:59:59.000Z

    Permitting requirements and the acquisition of new rights-of-way for transmission facilities has in recent years become increasingly difficult for most utilities, including Puget Sound Power and Light Company. In order to maintain a high degree of reliability of service while being responsive to public concerns regarding the siting of high voltage (HV) transmission facilities, Puget Power has found it necessary to more heavily rely upon the use of compact lines in franchise corridors. Compaction does, however, precipitate increased levels of audible noise (AN) and radio and TV interference (RI and TVI) due to corona on the conductors and insulator assemblies. Puget Power relies upon the Bonneville Power Administration (BPA) Corona and Field Effects computer program to calculate AN and RI for new lines. Since there was some question of the program`s ability to accurately represent quiet 230-kV compact designs, a joint project was undertaken with BPA to verify the program`s algorithms. Long-term measurements made on an operating Puget Power 230-kV compact line confirmed the accuracy of BPA`s AN model; however, the RI measurements were much lower than predicted by the BPA and other programs. This paper also describes how the BPA computer program can be used to calculate the voltage needed to expose insulator assemblies to the correct electric field in single test setups in HV laboratories.

  12. Wild Horse 69-kV transmission line environmental assessment

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    Hill County Electric Cooperative Inc. (Hill County) proposes to construct and operate a 69-kV transmission line from its North Gildford Substation in Montana north to the Canadian border. A vicinity project area map is enclosed as a figure. TransCanada Power Corporation (TCP), a Canadian power-marketing company, will own and construct the connecting 69-kV line from the international border to Express Pipeline`s pump station at Wild Horse, Alberta. This Environmental Assessment is prepared for the Department of Energy (DOE) as lead federal agency to comply with the requirements of the National Environmental Policy Act (NEPA), as part of DOE`s review and approval process of the applications filed by Hill County for a DOE Presidential Permit and License to Export Electricity to a foreign country. The purpose of the proposed line is to supply electric energy to a crude oil pump station in Canada, owned by Express Pipeline Ltd. (Express). The pipeline would transport Canadian-produced oil from Hardisty, Alberta, Canada, to Caster, Wyoming. The Express Pipeline is scheduled to be constructed in 1996--97 and will supply crude oil to refineries in Wyoming and the midwest.

  13. Oracle-Saguaro 115-kV Transmission Line Routine Maintenance Project...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oracle-Saguaro 115-kV Transmission Line Routine Maintenance Project, Mile 6 to Oracle Substation Categorical Exclusion Continuation Sheet Project Description Maintenance work at...

  14. EIS-0344: Grand Coulee-Bell 500 kV Transmission Line

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed action for the construction and operation of the proposed Grand Coulee-Bell 500-kV Transmission Line Project.

  15. WA_1993_022_NORTON_COMPANY_Waiver_of_Domestic_and_Foreign_Ri...

    Broader source: Energy.gov (indexed) [DOE]

    Golden Technologies Company, Inc. Request for An Advance Waiver of Domestic and Foreign Rights. January 10, 1995 WA1994011EATONCORPORATIONWaiverofDomesticandForeign...

  16. Climate Action Champions: Seattle, WA | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - AprilEvents CleanSeattle, WA Climate Action

  17. RAPID/Roadmap/5-WA-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, searcheWA-a < RAPID‎ |

  18. RAPID/Roadmap/1-WA-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas) Redirect pageNV-a <TX-aWA-a

  19. RAPID/Roadmap/19-WA-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |g <RAPID/Roadmap/19-WA-c

  20. RAPID/Roadmap/19-WA-e | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-e < RAPID‎ |

  1. RAPID/Roadmap/19-WA-f | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-e < RAPID‎

  2. RAPID/Roadmap/3-WA-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-b <ai <bb <

  3. RAPID/Roadmap/3-WA-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-b <ai <bb

  4. RAPID/Roadmap/3-WA-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-b <ai <bbd

  5. RAPID/Roadmap/3-WA-e | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-b <ai <bbde

  6. RAPID/Roadmap/4-WA-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-ba < RAPID‎a

  7. RAPID/Roadmap/6-WA-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-baa <ba

  8. RAPID/Roadmap/7-WA-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k <TX-c <WA-a

  9. CEBAF 200 kV Inverted Electron Gun

    SciTech Connect (OSTI)

    Grames, J M; Clark, J; Hansknecht, J; Poelker, M; Stutzman, M L; Suleiman, R; Surles-Law, K.E.L.; BastaniNejad, M

    2011-03-01T23:59:59.000Z

    Two DC high volt­age GaAs pho­to­guns have been built at Jef­fer­son Lab based on a com­pact in­vert­ed in­su­la­tor de­sign. One pho­to­gun pro­vides the po­lar­ized elec­tron beam at CEBAF and op­er­ates at 130 kV bias volt­age. The other gun is used for high av­er­age cur­rent life­time stud­ies at a ded­i­cat­ed test fa­cil­i­ty and has been op­er­at­ed at bias volt­age up to 225 kV. The ad­van­tages of high­er DC volt­age for CEBAF in­clude re­duced space-charge emit­tance growth and the po­ten­tial for pro­longed pho­to­cath­ode life­time. How­ev­er, a con­se­quence of op­er­at­ing at high­er volt­ages is the in­creased like­li­hood of field emis­sion or break­down, both of which are un­ac­cept­able. High­lights of the R&D stud­ies lead­ing to­ward a pro­duc­tion 200keV GaAs pho­to­gun for CEBAF will be pre­sent­ed.

  10. Proposal for the award of a blanket purchase contract for the supply, installation, commissioning and maintenance of electrical switchgear operating at 18kV and 3.3 kV

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    Proposal for the award of a blanket purchase contract for the supply, installation, commissioning and maintenance of electrical switchgear operating at 18kV and 3.3 kV

  11. Tungsten anode spectral model using interpolating cubic splines: Unfiltered x-ray spectra from 20 kV to 640 kV

    SciTech Connect (OSTI)

    Hernandez, Andrew M. [Biomedical Engineering Graduate Group, University of California Davis, Sacramento, California 95817 (United States)] [Biomedical Engineering Graduate Group, University of California Davis, Sacramento, California 95817 (United States); Boone, John M., E-mail: john.boone@ucdmc.ucdavis.edu [Departments of Radiology and Biomedical Engineering, Biomedical Engineering Graduate Group, University of California Davis, Sacramento, California 95817 (United States)

    2014-04-15T23:59:59.000Z

    Purpose: Monte Carlo methods were used to generate lightly filtered high resolution x-ray spectra spanning from 20 kV to 640 kV. Methods: X-ray spectra were simulated for a conventional tungsten anode. The Monte Carlo N-Particle eXtended radiation transport code (MCNPX 2.6.0) was used to produce 35 spectra over the tube potential range from 20 kV to 640 kV, and cubic spline interpolation procedures were used to create piecewise polynomials characterizing the photon fluence per energy bin as a function of x-ray tube potential. Using these basis spectra and the cubic spline interpolation, 621 spectra were generated at 1 kV intervals from 20 to 640 kV. The tungsten anode spectral model using interpolating cubic splines (TASMICS) produces minimally filtered (0.8 mm Be) x-ray spectra with 1 keV energy resolution. The TASMICS spectra were compared mathematically with other, previously reported spectra. Results: Using pairedt-test analyses, no statistically significant difference (i.e., p > 0.05) was observed between compared spectra over energy bins above 1% of peak bremsstrahlung fluence. For all energy bins, the correlation of determination (R{sup 2}) demonstrated good correlation for all spectral comparisons. The mean overall difference (MOD) and mean absolute difference (MAD) were computed over energy bins (above 1% of peak bremsstrahlung fluence) and over all the kV permutations compared. MOD and MAD comparisons with previously reported spectra were 2.7% and 9.7%, respectively (TASMIP), 0.1% and 12.0%, respectively [R. Birch and M. Marshall, “Computation of bremsstrahlung x-ray spectra and comparison with spectra measured with a Ge(Li) detector,” Phys. Med. Biol. 24, 505–517 (1979)], 0.4% and 8.1%, respectively (Poludniowski), and 0.4% and 8.1%, respectively (AAPM TG 195). The effective energy of TASMICS spectra with 2.5 mm of added Al filtration ranged from 17 keV (at 20 kV) to 138 keV (at 640 kV); with 0.2 mm of added Cu filtration the effective energy was 9 keV at 20 kV and 169 keV at 640 kV. Conclusions: Ranging from 20 kV to 640 kV, 621 x-ray spectra were produced and are available at 1 kV tube potential intervals. The spectra are tabulated at 1 keV intervals. TASMICS spectra were shown to be largely equivalent to published spectral models and are available in spreadsheet format for interested users by emailing the corresponding author (JMB)

  12. 130kV 130A High Voltage Switching Mode Power Supply for Neutral Injections – Control Issues and Algorithms

    E-Print Network [OSTI]

    130kV 130A High Voltage Switching Mode Power Supply for Neutral Injections – Control Issues and Algorithms

  13. Deuterium Retention in Beryllium Exposed to a 60kV Deuterium Beam ­ Consequences for Next Step Devices

    E-Print Network [OSTI]

    Deuterium Retention in Beryllium Exposed to a 60kV Deuterium Beam ­ Consequences for Next Step Devices

  14. 150-kV, 80-A SOLID STATE POWER SUPPLY FOR NEUTRAL BEAM INJECTION

    E-Print Network [OSTI]

    Owren, H.

    2011-01-01T23:59:59.000Z

    owned rig 150-kV, 80-A SOLID STATE POWER SUPPLY FOR NEUTRALpaper describes an all solid state power supply designed forment and arc power supplies are also solid state. With the

  15. A SCR SWITCHED CAPACITOR VOLTAGE REGULATOR FOR 150 kV NEUTRAL BEAM POWER SUPPLY

    E-Print Network [OSTI]

    Milnes, K.A.

    2011-01-01T23:59:59.000Z

    et a1. , "150-kV, 80-A Solid State Power Supply for Neutral100% solid state and provides 1% regulation at power levelssolid state high voltage re- gulator. The block diagram of the power

  16. A 25 KV/10A PULSER FOR DRIVING A HIGH-POWER PIERCE ELECTRON GUN

    E-Print Network [OSTI]

    of short-circuits. Since the current capability of the tetrode is of the order of 10 A in the case of a short-circuit, the limit of the charging voltage is up to a maximum of 25 kV. The pulsed system has.0 A current and 10.0 kV beam voltage. Key words hard-tube pulser, Pierce electron gun, microwave tube

  17. Quality Assurance Plan for site electrical replacements at substation line item subproject: 69 KV Substation

    SciTech Connect (OSTI)

    Ohler, C.K.

    1991-05-21T23:59:59.000Z

    The 69 KV Substation Project is based on the recognized need to provide a continuous, reliable source of power and to improve the firm capacity of the electrical service to all production facilities at Mound. The project consists of the following major element: 69 KV Substation: (1) Install a 69 KV Substation and associated equipment with two parallel 18 MVA transformers. (2) Install duct bank as required and provide 15 KV feeder cable from new substation to existing Substation 95 for connection to Mound`s existing primary distribution system. (3) Install duct bank for underground routing of the 15 KV feeder cable from Manhole 5C to the existing power house cable pit. (4) Reconfigure existing Dayton Power and Light Co. 15 KV switchgear in P Building. The purpose of this Quality Assurance Plan (QA Plan) is to assure that the objectives of the United States Department of Energy (D.O.E.) and EG&G Mound Applied Technologies, Miamisburg, Ohio (Mound) are met for this non-weapons project relative to health and safety, protection of the environment, reliability and continuity of operations, and documentation of quality efforts. This QA Plan identifies the activities and responsibilities which are necessary in the design, procurement, fabrication, installation, and start up of this project in order to meet these objectives.

  18. DOE Zero Energy Ready Home Case Study: TC Legend Homes, Bellingham, WA

    Broader source: Energy.gov [DOE]

    Case study of a DOE Zero Energy Ready home in Bellingham, WA, that achieves HERS 43 without PV or HERS 13 with 3.2 kW of PV.

  19. Advance Patent Waiver W(A)2010-007 | Department of Energy

    Office of Environmental Management (EM)

    0-007 Advance Patent Waiver W(A)2010-007 This document waives certain patent rights the Department of Energy (DOE) has to inventions conceived or first actually reduced to practice...

  20. Marys Lake 69/115-kV transmission line upgrade and substation expansion projects

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    Western Area Power Administration (Western) and the Platte River Power Authority (Platte River) propose to upgrade portions of the existing electric transmission and substation system that serves the Town of Estes Park, Colorado. The existing transmission lines between the Estes Power Plant Switchyard and the Marys Lake Substation include a 115,000 volt (115-kV) line and 69,000 volt (69-kV) line. Approximately one mile is a double-circuit 115/69-kV line on steel lattice structures, and approximately two miles consists of separate single-circuit 115-kV and a 69-kV lines, constructed on wood H-Frame structures. Both lines were constructed in 1951 by the US Bureau of Reclamation. The existing transmission lines are on rights-of-way (ROW) that vary from 75 feet to 120 feet and are owned by Western. There are 48 landowners adjacent to the existing ROW. All of the houses were built adjacent to the existing ROW after the transmission lines were constructed. Upgrading the existing 69-kV transmission line between the Marys Lake Substation and the Estes Power Plant Switchyard to 115-kV and expanding the Marys Lake Substation was identified as the most effective way in which to improve electric service to Estes Park. The primary purpose and need of the proposed project is to improve the reliability of electric service to the Town of Estes Park. Lack of reliability has been a historical concern, and reliability will always be less than desired until physical improvements are made to the electrical facilities serving Estes Park.

  1. 15-kV Single-Bias All-Optical ETO Thyristor A. Mojab and S.K. Mazumder

    E-Print Network [OSTI]

    Mazumder, Sudip K.

    15-kV Single-Bias All-Optical ETO Thyristor A. Mojab and S.K. Mazumder Laboratory for Energy 15 kV single bias and a current of 10 A. This ETO is completely controlled by two optical signals, one for the 15 kV SiC gate- turn-off (GTO) thyristor and the other one for a triggering low- voltage

  2. 16-12-12Web Archiv e (naf wa.org)-Hosted By Hurricane Electric -Resurrection Of Ex... 1/3naf wa.org/.../11052-resurrection-of -extinct-enzy mes-rev eals-ev olutionary -strategy -f or-the-inv enti...

    E-Print Network [OSTI]

    16-12-12Web Archiv e (naf wa.org)-Hosted By Hurricane Electric - Resurrection Of Ex... 1/3naf wa Archiv e (naf wa.org)-Hosted By Hurricane Electric - Resurrection Of Ex... naf wa.org/.../11052

  3. Waltz Mill testing of 765-kV paper-polypropylene-paper (PPP) cable

    SciTech Connect (OSTI)

    Burghardt, R.R. (Westinghouse Electric Corp., Ruffs Dale, PA (United States))

    1992-06-01T23:59:59.000Z

    A 765-kV PPP-insulated cable was subjected to a 27-month accelerated life test program at the EPRI Waltz Mill Cable Test Facility. Testing started in August 1981 and was successfully completed in January 1985. The program included conductor temperatures ranging from 85{degree}C to 105{degree}C and line-to-line voltages from 800 kV to 1050 kV. Cyclic testing was performed during 20 of the 27 months. Dissipation factor measurements were made throughout the program. The measurements indicated no deterioration of the cable or splices as a consequence of the high temperatures and voltages applied to them in this test program.

  4. Field Demonstration of a 24-kV Superconducting Cable at Detroit Edison

    SciTech Connect (OSTI)

    Kelley, Nathan; Corsaro, Pietro

    2004-12-01T23:59:59.000Z

    Customer acceptance of high temperature superconducting (HTS) cable technology requires a substantial field demonstration illustrating both the system's technical capabilities and its suitability for installation and operation within the utility environment. In this project, the world's first underground installation of an HTS cable using existing ductwork, a 120 meter demonstration cable circuit was designed and installed between the 24 kV bus distribution bus and a 120 kV-24 kV transformer at Detroit Edison's Frisbie substation. The system incorporated cables, accessories, a refrigeration system, and control instrumentation. Although the system was never put in operation because of problems with leaks in the cryostat, the project significantly advanced the state-of-the-art in the design and implementation of Warm Dielectric cable systems in substation applications. Lessons learned in this project are already being incorporated in several ongoing demonstration projects.

  5. Development of a thyristor valve for next generation 500kV HVDC transmission systems

    SciTech Connect (OSTI)

    Hasegawa, T. [Kansai Electric Power Co., Inc., Osaka (Japan)] [Kansai Electric Power Co., Inc., Osaka (Japan); Yamaji, K. [Shikoku Electric Power Co., Inc., Takamatsu (Japan)] [Shikoku Electric Power Co., Inc., Takamatsu (Japan); Irokawa, H. [Electric Power Development Co., Ltd., Tokyo (Japan)] [Electric Power Development Co., Ltd., Tokyo (Japan); Shirahama, H.; Tanaka, C.; Akabane, K.

    1996-10-01T23:59:59.000Z

    A high voltage thyristor valve is the basic component of an HVDC transmission system. Development of a 500kV valve for next generation HVDC transmission systems is described. First, the power loss of the valve is analyzed to decide a reasonable wafer size for the light triggered thyristor. From these results, a six inch diameter wafer size is selected. The light triggered thyristor, with ratings of 8kV and 3.5kA, is developed using the six inch wafer. The designing of the valve employing the thyristor and test results with the prototype valve prove that a 500kV valve can be realized by the design method.

  6. Development of 275kV gas cooled type gas-insulated power transformer

    SciTech Connect (OSTI)

    Kudo, A.; Nishitani, T.; Yoshikawa, T. (Mitsubishi Electric Corp., Ako (Japan)); Wan, C.T. (Hongkong Electric Co., Ltd. (Hong Kong))

    1993-01-01T23:59:59.000Z

    A world's first 275kV gas cooled type gas insulated power transformer with a low sound level ideal for urban area, which depends on SF6 gas alone for both insulation and cooling, was developed and has been put into commercial service since 1990 in Hong Kong. This paper presents the design philosophy, the principal technical items, the rating and the feature of 275kV 30MVA transformer, the performance test results, and the long term energization test result of the transformer.

  7. EIS-0107: Mead-Phoenix +500-kV Direct Current Transmission Line

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Western Area Power Administration (WAPA) prepared this statement to analyze the potential environmental and socioeconomic impacts arising from WAPA and regional project sponsors’ proposal to construct a 500 kilovolt (kV) alternating current (AC) transmission line with the capability to be upgraded later to 500kV direct current (DC), connecting the Westwing Substation, located north of Phoenix, Arizona, with a new McCullough II Substation, located approximately 14 miles west of Boulder City, Nevada. This statement modifies a previously prepared federal statement from which the participants' election to proceed had not occurred at the time this statement was prepared.

  8. ONION (Allium cepa, 47 cultivars) B.K. Schroeder, Washington State University (WSU), Pullman, Enterobacter bulb decay; Enterobacter cloacae WA 99164; T.D. Waters, WSU Franklin Co. Extension, Pasco WA

    E-Print Network [OSTI]

    Schroeder, Brenda K.

    , Enterobacter bulb decay; Enterobacter cloacae WA 99164; T.D. Waters, WSU Franklin Co. Extension, Pasco WA 99301 in storage in Washington State, 2008-2009. An onion bulb storage trial was completed to survey 47 storage to Enterobacter cloacae, causal agent of Enterobacter bulb decay. Seeds of each cultivar were planted near Pasco

  9. ONION (Allium cepa, 55 cultivars) B.K. Schroeder, Washington State University (WSU), Pullman, Enterobacter bulb decay; Enterobacter cloacae WA 99164; T. Waters, WSU Franklin Co. Extension, Pasco WA

    E-Print Network [OSTI]

    Schroeder, Brenda K.

    , Enterobacter bulb decay; Enterobacter cloacae WA 99164; T. Waters, WSU Franklin Co. Extension, Pasco WA 99301 for resistance to Enterobacter cloacae in storage, 2007-2008. An onion bulb storage trial was completed to survey for resistance to Enterobacter cloacae, causal agent of Enterobacter bulb decay. Seeds of each cultivar were

  10. EA-1665: Davis-Kingman 69-kV Transmission Line Rebuild Project, Arizona

    Broader source: Energy.gov [DOE]

    Western plans to rebuild a 26.6-mile-long portion of the existing 27.3-mile-long Davis–Kingman Tap 69-kV Transmission Line within the existing ROW in order to improve the reliability of the transmission service.

  11. EA-2007: Groton-Ordway 115-kV Transmission Line, Groton, South Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration (Upper Great Plains Region) is preparing an EA that assesses the potential environmental impacts of a proposal to construct a new 115-kV transmission line that would connect Western’s existing Groton and Ordway Substations near Groton, South Dakota.

  12. A charge-pump 60kV modulator for the ISOLDE target extraction voltage

    E-Print Network [OSTI]

    Barlow, R A; Fowler, A; Gaudillet, H; Gharsa, T; Schipper, J

    2015-01-01T23:59:59.000Z

    The ISOLDE facility at CERN provides radioactive ion beams to a number of experimental stations. These ions are produced by a metal target, floating at 60 kV, which is impacted by a 1.4 GeV high intensity proton beam. The ions are then accelerated by a grounded extraction electrode to 60 keV, before transport to the experimental area. During proton beam impact extremely high ionisation of the volume around the target gives rise to significant leakage current which results in loss of charge on the effective target capacitance of approximately 6 nF. If short life-time isotopes are to be studied, the 60 kV must be re-established within a maximum of 10 ms. Recharging the target capacitance to 60 kV and to the required stability of better than 10-4 precludes a direct charging system and an alternative method of re-establishing the 60 kV is used. The present system [1], in operation since 1991, employs a resonant circuit which is triggered 35 µs prior to beam impact. This circuit transfers the charge on the effec...

  13. Modeling transport of disposed dredged material from placement sites in Grays Harbor, WA

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Modeling transport of disposed dredged material from placement sites in Grays Harbor, WA E- to mid- term dredge material management strategies for the Federal Navigation Project at Grays Harbor dredging quantities. However, the most heavily used dredged material placement sites lie in proximity

  14. U.S. NUclear WaSte techNical revieW Board

    E-Print Network [OSTI]

    technical context as important decisions are made on managing the nation's spent nuclear fuel and high, packaging, and transporting spent nuclear fuel and high-level radioactive waste is presented. The technicalU.S. NUclear WaSte techNical revieW Board Report to The U.S. Congress and The Secretary

  15. An International Pellet Ablation Database L.R. Baylor, A. Geraud*, W.A. Houlberg,

    E-Print Network [OSTI]

    An International Pellet Ablation Database L.R. Baylor, A. Geraud*, W.A. Houlberg, D. Frigione+, M of an international pellet ablation database (IPADBASE) that has been assembled to enable studies of pellet ablation theories that are used to describe the physics of an ablating fuel pellet in a tokamak plasma. The database

  16. Electrical impedance tomography and Calderon's Department of Mathematics, University of Washington, Seattle, WA 98195, USA

    E-Print Network [OSTI]

    Uhlmann, Gunther

    Electrical impedance tomography and Calder´on's problem G Uhlmann Department of Mathematics, University of Washington, Seattle, WA 98195, USA E-mail: gunther@math.washington.edu Abstract. We survey mathematical developments in the inverse method of Electrical Impedance Tomography which consists

  17. Proceedings of the Western Protective Relay Conference, Spokane, WA, 2006 New wide-area algorithms for

    E-Print Network [OSTI]

    - 1 - Proceedings of the Western Protective Relay Conference, Spokane, WA, 2006 New wide (for N-1 contingency) or with the help of Special Protection Schemes (SPS) or Remedial Action Schemes of the relay actions that may have resulted in the angle stability phenomenon. The concept of a real

  18. General Disposal Authority for State Government Information The State Records Office of WA

    E-Print Network [OSTI]

    Tobar, Michael

    ) consolidates and amends the GDAs for Administrative Records, Human Resource Management Records, and Financial and Record Categories covered 4 of 170 Reference Activity / Record Category Page 16 CHEQUE MANAGEMENT 37 17General Disposal Authority for State Government Information The State Records Office of WA

  19. 7900 SE 28th Street, Suite 200 Mercer, Island, WA 98040-2970

    E-Print Network [OSTI]

    7900 SE 28th Street, Suite 200 Mercer, Island, WA 98040-2970 v 206.236.7200 f 206.236.3019 www Administration. The Joint Proposal is a comprehensive settlement that will bring to an end the long costs, when the responsibility for reaching agreements with IPPs, is dispersed directly to the load

  20. Comment on the future of the Bonneville Power Administration Jim G. Likes, Thurston County, WA

    E-Print Network [OSTI]

    Comment on the future of the Bonneville Power Administration Jim G. Likes, Thurston County, WA Bonneville is a regional agency that markets federal hydropower and augments its power supply with market, everyday citizens, to pay illegally inflated power costs. Because of this, Bonneville should have the legal

  1. Natural Data Mining Techniques J. N. Kok and W.A. Kosters

    E-Print Network [OSTI]

    Kosters, Walter

    , enrichment of data (for example using external data bases), coding, data mining and reporting. In data support for their operations. A usual problem in the #12;eld of data mining is that the combinationNatural Data Mining Techniques J. N. Kok and W.A. Kosters Leiden Institute of Advanced Computer

  2. 4D-Polytopes and Their Dual Polytopes of the Coxeter Group $W(A_{4})$ Represented by Quaternions

    E-Print Network [OSTI]

    Mehmet Koca; Nazife Ozdes Koca; Mudhahir Al-Ajmi

    2011-02-06T23:59:59.000Z

    4-dimensional $A_{4}$ polytopes and their dual polytopes have been constructed as the orbits of the Coxeter-Weyl group $W(A_{4})$ where the group elements and the vertices of the polytopes are represented by quaternions. Projection of an arbitrary $W(A_{4})$ orbit into three dimensions is made using the subgroup $W(A_{3})$. A generalization of the Catalan solids for 3D polyhedra has been developed and dual polytopes of the uniform $A_{4}$ polytopes have been constructed.

  3. Design and Overview of 100 kV Bushing for the DNB Injector of ITER

    SciTech Connect (OSTI)

    Shah, Sejal; Bandyopadhyay, M.; Rotti, C.; Singh, M. J.; Roopesh, G.; Chakraborty, A. K. [ITER-India, Institute for Plasma Research, Gandhinagar-382025, Gujarat (India); Rajesh, S. [ITER-India, Institute for Plasma Research, Gandhinagar-382025, Gujarat (India); Microelectronics and Materials Physics Labs, P.O.Box 4500, FIN-90014 University of Oulu (Finland); Nishad, S.; Srusti, B. [DesignTech Systems Ltd, Banjara Hills, Hyderabad, Andhra Pradesh-500034 (India); Schunke, B.; Hemsworth, R.; Chareyre, J.; Svensson, L. [ITER Organisation, Route de Vinon, CS 90 046, 13067 St. Paul lez Durance Cedex (France)

    2011-09-26T23:59:59.000Z

    The 100 kV bushing is one of the most important and technologically challenging Safety Important Class (SIC) components of the Diagnostic Neutral Beam (DNB) injector of ITER. It forms interface between gas insulated electrical transmission line and torus primary vacuum and acts as a vacuum feedthrough of ITER. Design optimization has been carried out to meet the electric and structural requirements based on its classification. Unlike HNB bushing, single stage bushing is designed to provide 100 kV isolation. Finite Element Analysis (FEA) based optimization has been carried out for electrostatic and structural analysis. Manufacturing assembly sequence is studied and presented in this paper. However validation of the same is foreseen from manufacturer.

  4. Development of 500 kV DC PPLP-insulated oil-filled submarine cable

    SciTech Connect (OSTI)

    Fujimori, A. [Kansai Electric Power Co., Inc., Osaka (Japan)] [Kansai Electric Power Co., Inc., Osaka (Japan); Tanaka, T. [Electric Power Development Co., Ltd., Tokyo (Japan)] [Electric Power Development Co., Ltd., Tokyo (Japan); Takashima, H. [Shikoku Electric Power Co., Inc., Kagawa (Japan)] [Shikoku Electric Power Co., Inc., Kagawa (Japan); Imajo, T. [Central Research Inst. of Electric Power Industry, Tokyo (Japan)] [Central Research Inst. of Electric Power Industry, Tokyo (Japan); Hata, R. [Sumitomo Electric Industries, Ltd., Osaka (Japan)] [Sumitomo Electric Industries, Ltd., Osaka (Japan); Tanabe, T. [Furukawa Electric Co., Ltd., Tokyo (Japan)] [Furukawa Electric Co., Ltd., Tokyo (Japan); Yoshida, S. [Fujikura, Ltd., Tokyo (Japan)] [Fujikura, Ltd., Tokyo (Japan); Kakihana, T. [Hitachi Cable, Ltd., Tokyo (Japan)] [Hitachi Cable, Ltd., Tokyo (Japan)

    1996-01-01T23:59:59.000Z

    This paper outlines the development of a 500 kV DC oil-filled submarine cable capable of transmitting 2,800 MW with {+-} 500 kV 2800A bipole system. Polypropylene Laminated Paper (PPL) was employed as the insulation material, which is the worlds first application to DC cables. The conductor size is 3,000 mm{sup 2}, which is the largest size for submarine cables ever put into practical use. Through various fundamental and prototype tests, the cable proved to have excellent electrical characteristics for DC voltage as well as transient overvoltage. The cable and accessories are currently undergoing a long-term accelerated aging test as the final confirmation of their reliability and stability.

  5. EIS-0365: Imperial-Mexicali 230-kV Transmission Lines

    Broader source: Energy.gov [DOE]

    On February 27, 2001, Baja California Power, Inc. (hereafter referred to as Intergen), InterGen Aztec Energy, V.B.V., filed an application with DOE, Office of Fossil Energy, for a Presidential permit that would allow construction and connection of a double-circuit, 230-kV transmission line extending from the Imperial Valley Substation in California for a distance of about 6 mi (10 km) to a point west of Calexico at the U.S.-Mexico border.

  6. The varistor protected series capacitors at the 500 KV broadview substation

    SciTech Connect (OSTI)

    Barcus, J.M. (General Electric Co., Hudson Falls, NY (US)); Miske, S.A. Jr. (General Electric Co., Schenectady, NY (US)); Vitols, A.P. (General Electric Co., Pittsfield, MA (US)); Maynard, H.M. (Montana Power Co., Butte, MT (US)); Peterson, W.G. (Bonneville Power Admin., Portland, OR (US))

    1988-10-01T23:59:59.000Z

    Two 235 Mvar series capacitors have been successfully applied at the 500 kV Broadview substation of the Colstrip Transmission Project. The series capacitors have an overvoltage protection system based on metal oxide varistors. The system provides instantaneous bypass and reinsertion of the capacitors following external line section faults. The excellent performance of the equipment was demonstrated during staged fault tests performed in October, 1985. The banks have been in successful operation since January, 1986.

  7. A 6 kV arbitrary waveform generator for the Tevatron Electron Lens

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pfeffer, H.; Saewert, G.

    2011-11-01T23:59:59.000Z

    This paper reports on a 6 kV modulator built and installed at Fermilab to drive the electron gun anode for the Tevatron Electron Lens (TEL). The TEL was built with the intention of shifting the individual (anti)proton bunch tunes to even out the tune spread among all 36 bunches with the desire of improving Tevatron integrated luminosity. This modulator is essentially a 6 kV arbitrary waveform generator that enables the TEL to define the electron beam intensity on a bunch-by-bunch basis. A voltage waveform is constructed having a 7 {micro}s duration that corresponds to the tune shift requirements of amore »12-bunch (anti)proton beam pulse train. This waveform is played out for any one or all three bunch trains in the Tevatron. The programmed waveform voltages transition to different levels at time intervals corresponding to the 395 ns bunch spacing. Thus, complex voltage waveforms can be played out at a sustained rate of 143 kHz over the full 6 kV output range. This paper describes the novel design of the inductive adder topology employing five transformers. It describes the design aspects that minimize switching losses for this multi-kilovolt, high repetition rate and high duty factor application.« less

  8. Measurements on a FET based 1 MHz, 10 kV pulse generator

    SciTech Connect (OSTI)

    Wait, G.D.; Barnes, M.J.

    1995-08-01T23:59:59.000Z

    A prototype pulser, which incorporates thirty-two 1 kV Field-Effect Transistor (FET) modules, has been built and tested at TRIUMF. The pulser has been developed for application in a scheme for pulsed extraction from the TRIUMF 500 MeV cyclotron. Deflection of the beam will be provided by an electric field between a set of 1 in long deflector plates. The pulser generates a continuous, unipolar, pulse train at a fundamental frequency of approximately 1 MHz and a magnitude of 10 kV. The pulses have 38 ns rise and fall times and are stored on a low-loss coaxial cable which interconnects the pulse generator and the deflector plates. The circuit performance was evaluated with the aid of PSpice in the design stage and confirmed by measurements on the prototype. Temperature measurements have been performed on 1 kV FET modules under DC conditions and compared with temperatures under operating conditions to ensure that switching losses are acceptable. Results of various measurements are presented and compared with simulations.

  9. A 6 kV arbitrary waveform generator for the Tevatron Electron Lens

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pfeffer, H.; Saewert, G.

    2011-11-01T23:59:59.000Z

    This paper reports on a 6 kV modulator built and installed at Fermilab to drive the electron gun anode for the Tevatron Electron Lens (TEL). The TEL was built with the intention of shifting the individual (anti)proton bunch tunes to even out the tune spread among all 36 bunches with the desire of improving Tevatron integrated luminosity. This modulator is essentially a 6 kV arbitrary waveform generator that enables the TEL to define the electron beam intensity on a bunch-by-bunch basis. A voltage waveform is constructed having a 7 {micro}s duration that corresponds to the tune shift requirements of a 12-bunch (anti)proton beam pulse train. This waveform is played out for any one or all three bunch trains in the Tevatron. The programmed waveform voltages transition to different levels at time intervals corresponding to the 395 ns bunch spacing. Thus, complex voltage waveforms can be played out at a sustained rate of 143 kHz over the full 6 kV output range. This paper describes the novel design of the inductive adder topology employing five transformers. It describes the design aspects that minimize switching losses for this multi-kilovolt, high repetition rate and high duty factor application.

  10. Commonwealth Edison 345kV L.P.P. splicing school

    SciTech Connect (OSTI)

    Johnsen, D.P. [ComEd, Chicago, IL (United States)

    1996-11-01T23:59:59.000Z

    The ComEd splicing school was held in January 1995 to train the work force for the installation of the first 345kV High Pressure Fluid Filled pipe type L.P.P. (Laminated Paper Polypropylene) insulated cable on the ComEd system. Construction is nearing completion on ComEd`s 345kV underground transmission line 17723 between Burnham TSS 177 and Taylor TSS 153 located just south of the Chicago Loop. Continued development and construction of the down-town Chicago Area and the south Loop has established the need for this line to reinforce the transmission network serving this critical area. 345kV transmission Line 17723 is a combination of overhead facility and HPFF (High Pressure Fluid Filled) pipe type L.P.P. cable with a summer normal rating of 900 MVA and a summer emergency rating of 1,200 MVA. This paper describes the training facility, innovative changes in tooling and the results of the training exercises.

  11. Testing Buda-Lund hydro model on particle correlations and spectra in NA44, WA93 and WA98 heavy ion experiments

    E-Print Network [OSTI]

    A. Ster; T. Csorgo; B. Lorstad

    1998-09-28T23:59:59.000Z

    Analytic and numerical approximations to a hydrodynamical model describing longitudinally expanding, cylindrically symmetric, finite systems are fitted to preliminary NA44 data measured in 200 AGeV central $S + Pb$ reactions. The model describes the measured spectra and HBT radii of pions, kaons and protons, simultaneously. The source is characterized by a central freeze-out temperature of T_0 = 154 +/- 8 +/- 11 MeV, a "surface" temperature of T_r = 107 +/- 28 +/- 18 MeV and by a well-developed transverse flow, = 0.53 +/- 0.17 +/- 0.11. The transverse geometrical radius and the mean freeze-out time are found to be R_G = 5.4 +/- 0.9 +/- 0.7 fm and tau_0 = 5.1 +/- 0.3 +/- 0.3 fm/c, respectively. Fits to preliminary WA93 200 AGeV S + Au and WA98 158 AGeV Pb + Pb data dominated by pions indicate similar model parameters. The absolute normalization of the measured particle spectra together with the experimental determination of both the statistical and the systematic errors were needed to obtain successful fits.

  12. MEMBER'S CIRCLE $2,500 and above

    E-Print Network [OSTI]

    Sabatini, David M.

    The Paul LoGerfo Medical Research and Education Trust John C. McCormick Fred Meyer Skip and Lyerka Miller and Doreen Porush Drs. Stanley and Elise Rose Margaret Sand Stephen and Bessie Seiler L. Dennis and Susan R. Lynn Dr. and Mrs. Irwin R. Merkatz Albert Meyer and Irene Greif Alexandra and Matthew Murray Herbert

  13. EA-1855: Creston-Bell Rebuild Project, Spokane and Lincoln Counties, WA

    Broader source: Energy.gov [DOE]

    Draft Environmental Assessment DOE will prepare an EA to evaluate the potential environmental impacts from rebuilding the Creston-Bell No. 1 115-kV transmission line, including the replacement of wood poles and associated structural components and conductor and access road improvements. The 54-mile long, wood pole line extends from the Bonneville Power Administration (BPA) Creston substation to the BPA Bell substation near Spokane in Lincoln and Spokane Counties, Washington.

  14. Cost comparison of 138 kV relay at TSS Natoma

    SciTech Connect (OSTI)

    Whetter, A.J. [ComEd, Chicago, IL (United States)

    1996-10-01T23:59:59.000Z

    This paper compares the costs of retro-fitting an electro-mechanical directional comparison blocking scheme with a microprocessor based dual directional comparison and under-reaching direct transfer tripping scheme on an existing panel at a 138 kV substation. Comparison is between the material, fabrication, engineering, drafting, construction, and testing costs. The cost per function of each scheme will be defined and compared. The results of this comparison will demonstrate the advantages of the new microprocessor based schemes in material costs, labor costs, and cost per function.

  15. Failure evaluation of underground high voltage cables (115 kV) in Mazatlan, Sinaloa: Microscopic method

    SciTech Connect (OSTI)

    Valero-Huerta, M.A.; Ramirez-Delgado, R. [Lab. de Pruebas de Equipos y Materiales, Irapuato (Mexico)

    1995-11-01T23:59:59.000Z

    The present paper is a complete analysis of the failure which occurred to the 115 kV power cable installed between the Mazatlan Centro and Mazatlan Norte Substations. Laboratory analysis that established the causes of the failure are included. It was concluded that the failure of the cable was provoked by the entrance of sewage water to the screen, and due to the presence of anaerobic organisms, resulted in the formation of sulfidic acid, which caused the severe corrosion that can be observed in the screen. The resulting loss of conductivity provoked heating capable of melting the isolator until its rupture.

  16. Operating characteristics and modeling of the LLNL 100-kV electric gun

    SciTech Connect (OSTI)

    Osher, J.E.; Barnes, G.; Chau, H.H.; Lee, R.S.; Lee, C.; Speer, R.; Weingart, R.C.

    1989-06-01T23:59:59.000Z

    In the electric gun, the explosion of an electrically heated metal foil and the accompanying magnetic forces drive a thin flyer plate up a short barrel. Flyer velocities of up to 18 km/s make the gun useful for hypervelocity impact studies. The authors briefly review the technological evolution of the exploding-metal circuit elements that power the gun, describe the 100-kV electric gun designed at Lawrence Livermore National Laboratory (LLNL) in some detail, and present the general principles of electric gun operation. They compare the experimental performance of the LLNL gun with a simple model and with predictions of a magnetohydrodynamics code.

  17. Sidney-North Yuma 230-kV Transmission Line Project, Colorado and Nebraska

    SciTech Connect (OSTI)

    Not Available

    1991-06-01T23:59:59.000Z

    This report describes the need for a 230-kV overhead transmission line to supply power from Sidney, Nebraska to eastern Colorado. The alternative scenario compared to construction of the line is No Action. Rejected alternatives include underground lines and different routing paths, with a possible extension to the Sterling area. Both scenarios are evaluated for environmental effects, cost, and consequences for the eastern Colorado region. The proposed route is determined to be the environmentally preferred choice. 120 refs., 6 figs., 13 tabs. (MHB)

  18. KvH Projekt GmbH Co KG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii9969995°,I Jump to:Kumagai Gumi CoKuwaitKvH

  19. Commissioning and Operation of 130kV/130A Switched-Mode HV Power Supplies with the Upgraded JET Neutral Beam Injectors

    E-Print Network [OSTI]

    Commissioning and Operation of 130kV/130A Switched-Mode HV Power Supplies with the Upgraded JET Neutral Beam Injectors

  20. 1.9 kV AlGaN/GaN Lateral Schottky Barrier Diodes on Silicon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Mingda [University of Notre Dame, IN (United States); Song, Bo [Cornell University, Ithaca, NY (United States); Qi, Meng [University of Notre Dame, IN (United States); Hu, Zongyang [University of Notre Dame, IN (United States); Nomoto, Kazuki [University of Notre Dame, IN (United States); Yan, Xiaodong [University of Notre Dame, IN (United States); Cao, Yu [IQE, Westborough, MA (United States); Johnson, Wayne [IQE, Westborough, MA (United States); Kohn, Erhard [University of Notre Dame, IN (United States); Jena, Debdeep [Cornell University, Ithaca, NY (United States); Xing, Grace Huili [Cornell University, Ithaca, NY (United States)

    2015-04-01T23:59:59.000Z

    In this letter, we present AlGaN/GaN lateral Schottky barrier diodes on silicon with recessed anodes and dual field plates. A low specific on-resistance RON,SP (5.12 m?{center_dot}cm2), a low turn-on voltage (1.9 kV), were simultaneously achieved in devices with a 25 ?m anode/cathode separation, resulting in a power figure-of-merit (FOM) BV2/RON,SP of 727 MW{center_dot}cm2. The record high breakdown voltage of 1.9 kV is attributed to the dual field plate structure.

  1. A New 500-kV Ion Source Test Stand for HIF

    SciTech Connect (OSTI)

    Sangster, T.C.; Ahle, L.E.; Halaxa, E.F.; Karpenko, V.P.; Oldaker, M. E.; Mitchell, J.W.; Beck, D.N.; Bieniosek, F.M.; Henestroza, E.; Kwan, J.W.

    2000-10-05T23:59:59.000Z

    One of the most challenging aspects of ion beam driven inertial fusion energy is the reliable and efficient generation of low emittance, high current ion beams. The primary ion source requirements include a rise time of order 1-msec, a pulse width of at least 20-msec, a flattop ripple of less than 0.1% and a repetition rate of at least 5-Hz. Naturally, at such a repetition rate, the duty cycle of the source must be greater than 108 pulses. Although these specifications do not appear to exceed the state-of-the-art for pulsed power, considerable effort remains to develop a suitable high current ion source. Therefore, we are constructing a 500-kV test stand specifically for studying various ion source concepts including surface, plasma and metal vapor arc. This paper will describe the test stand design specifications as well as the details of the various subsystems and components.

  2. Malcolm, N. and Aggarwal, R.k. (2014) An Analysis of Reducing Back Flashover Faults with Surge Arresters on 69/138 kV Double

    E-Print Network [OSTI]

    McCusker, Guy

    Arresters on 69/138 kV Double Circuit Transmission Lines Due to Direct Lightning Strikes on the Shield Wires-EMTP, Back flashover faults, Lightning strokes, Surge arrester, Transmission lines. Abstract Back flashover causes of power interruptions on the double-circuit 69/138 kV overhead transmission lines in Jamaica

  3. EIS-0505: Vantage to Pomona Heights 230 kV Transmission Line Project, Yakima, Grant, Benton and Kittitas Counties, Washington

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management is preparing, with DOE’s Bonneville Power Administration (BPA) as a cooperating agency, an EIS that evaluates the potential environmental impacts of a proposal to construct a 60- to 67-mile long 230-kV transmission line. BPA’s proposed action is to interconnect the transmission line to an existing BPA substation.

  4. A novel voltage-gated potassium ion channel gene (Kv5.1): Molecular cloning and characterization

    SciTech Connect (OSTI)

    Beisel, K.W.; Lofton, N.C.; Kelley, P.M. Jr. [Boys Town National Research Hospital, Omaha, NE (United States)] [and others

    1994-09-01T23:59:59.000Z

    Voltage-activated potassium channels comprise a family of genes which play a role in the electrophysiological properties of neurosensory and neuronal tissue. We have recently identified a novel voltage-gated potassium ion channel (designated as Kv5.1) using the both RT-PCR with degenerative oligodeoxynucleotide primers and dideoxy sequence analyses. A full length sequence of the mature transcript was obtained by mRNA walking using gene-specific oligodeoxynucleotide primers. The deduced amino acid sequence suggested that this protein has six hydrophobic membrane spanning regions (S1-S6) and an ion-selective pore (P or H5) located between S5 and S6. This structural motif is found in other members of this gene family. Kv5.1 has an amino acid sequence homology of 55% with the Shab gene, Kv2.1, within the N-terminus and the membrane spanning regions. No sequence homology was found for the C-terminus. Northern analysis using mRNA isolated from a panel of rat tissues demonstrated that a 2.4 kb message was expressed in heart and cochlear tissue. Because of the low sequence homology and the unique tissue distribution, we have tentatively assigned the Kv5.1 gene as a new subfamily. Both the rat and human homologues were sequenced and the nucleotide and amino acid homologies were 88% and 96%, respectively. In the rat, the open reading frame encodes a 540-amino acid protein with a predicted molecular mass of 61,781 daltons. Interestingly, the human homologue is truncated by 83 residues in the C-terminus by a stop codon. We have recently isolated a human genomic {lambda} clone which contains the entire human gene and are now determining chromosomal location of Kv5.1 by in situ hybridization and PCR analysis of DNA from a panel of somatic cell hybrids.

  5. To appear in: Proc. CVPR'94, Seattle, WA Global Surface Reconstruction by Purposive Control of Observer Motion

    E-Print Network [OSTI]

    Jepson, Allan D.

    To appear in: Proc. CVPR'94, Seattle, WA Global Surface Reconstruction by Purposive Control Department University of Wisconsin Madison, Wisconsin 53706 Abstract What real-time, qualitative viewpoint-control markings, building a global model of an arbitrary object, or recognizing an object? In this paper we

  6. Measurements of Turbulence at Two Tidal Energy Sites in Puget Sound, WA

    SciTech Connect (OSTI)

    Thomson, Jim; Polagye, Brian; Durgesh, Vibhav; Richmond, Marshall C.

    2012-06-05T23:59:59.000Z

    Field measurements of turbulence are pre- sented from two sites in Puget Sound, WA (USA) that are proposed for electrical power generation using tidal current turbines. Rapidly sampled data from multiple acoustic Doppler instruments are analyzed to obtain statistical mea- sures of fluctuations in both the magnitude and direction of the tidal currents. The resulting turbulence intensities (i.e., the turbulent velocity fluctuations normalized by the harmonic tidal currents) are typically 10% at the hub- heights (i.e., the relevant depth bin) of the proposed turbines. Length and time scales of the turbulence are also analyzed. Large-scale, anisotropic eddies dominate the energy spectra, which may be the result of proximity to headlands at each site. At small scales, an isotropic turbulent cascade is observed and used to estimate the dissipation rate of turbulent kinetic energy. Data quality and sampling parameters are discussed, with an emphasis on the removal of Doppler noise from turbulence statistics.

  7. Low stored energy 100 kV regulator for ion sources at LANSCE

    SciTech Connect (OSTI)

    Jacobson, E.G.; Haffner, R.L.; Ingalls, W.B.; Meyer, B.J.; Stelzer, J.E.

    1998-12-31T23:59:59.000Z

    To minimize accelerating column damage caused by uncontrolled energy release during arc-downs, it is desirable to minimize the available stored electrical energy. For the Los Alamos Neutron Science Center (LANSCE) H{sup {minus}} ion sources, the stored energy includes, in addition to the charge in the power supply output capacitance, the charge on the electronics racks. They are supported and insulated from ground by PVC pipe and have a capacitance to ground of approximately 900 pf. In 1988 (LANSCE) personnel designed a high-voltage current source using a low-stored-energy power supply and planar triode with the goal of eliminating uncontrolled release of charge stored in the power supply. Construction and testing were performed intermittently as resources permitted until 1993. When work on the Short Pulse Spallation Source (SPSS) started on the LANSCE Ion Source Test Stand (ISTS) it was recognized that a higher current power supply would be needed and work resumed on the regulator circuitry. A 120 kV power supply having low output capacitance, and a planar triode have been used to supply 40 mA, 120 Hz, 12% duty-factor current for the ISTS beam. The triode`s cathode current is controlled by circuitry operating both at power-supply voltage level and at ground level via a fiber optic link. Voltage droop is approximately 600 V during the 1 ms beam pulse. The authors present the status of the regulator and its special challenges.

  8. Performance characteristics of the Atlas 60 kV, 60 kJ plastic capacitors

    SciTech Connect (OSTI)

    Reass, W.; Bennet, G.; Bowman, D.; Lopez, E.; Monroe, M.; Parsons, W.

    1997-12-01T23:59:59.000Z

    This paper provides the performance data of Atlas plastic capacitors as supplied by Maxwell Technologies and Aerovox Corporation. The fiberglass cases at 13 inches high by 29 inches wide and 28 inches in depth with a 2 inch by 18 inch bushing on each end. Two styles of the 33.5uF capacitors have been evaluated for Atlas use, a conventional paper-foil and a self-healing metalized-paper and plastic dielectric design. A test program to capacitor failure, is being used to evaluate capacitor lifetime at full voltage (60 kV) and a nominal 15% reversal. With the Atlas parameters, peak currents of {approximately} 340 kA are realized. In anticipation of faults, capacitors are capable, specified, and tested for 700 kA performance. Accurate methods are also utilized to determine capacitor inductance, less than 20 nH. The results of the various capacitor testing programs will be presented in addition to future directives for their R and D efforts.

  9. The 345 kV underground/underwater Long Island Sound cable project

    SciTech Connect (OSTI)

    Grzan, J.; Hahn, E.I. (New York Power Authority, White Plains, NY (United States)); Casalaina, R.V.; Kansog, J.O.C. (Ebasco Services Inc., Lyndhurst, NJ (United States))

    1993-07-01T23:59:59.000Z

    A high voltage underground/underwater cable system was installed to increase the transmission capacity from the mainland of New York to Long Island. In terms of weight and diameter, the self-contained, fluid-filled (SCFF) cable used for the underwater portion of the project is the largest underwater cable in the world. The use of high-pressure, fluid-filled (HPFF) pipe-type cable on the land portion represents the largest application of paper-polypropylene-paper (PPP) insulated cable in the United States. State-of-the-art technologies were implemented in the use of fiber optic cables for relay protection and SCADA/RTU, temperature monitoring and leak detection systems, SF[sub 6] gas-insulated substations, and underwater cable laying and embedment techniques. This paper discusses the design and installation of a 750 MVA, 43 km (26.6 mi), 345 kV underground/underwater electric transmission system installed by the New York Power Authority (NYPA).

  10. Development and laboratory testing of a 138-kV PPP-insulated joint for commercial application

    SciTech Connect (OSTI)

    Walldorf, S.P. (MAC Products, Inc., Kearny, NJ (US)); Chu, H.; Elbadaly, H. (Consolidated Edison Co. of New York, Inc., New York, NY (USA))

    1990-04-01T23:59:59.000Z

    This paper describes the design, development and laboratory testing of a high voltage PPP (paper polypropylene/paper laminate) insulated joint for commercial application on 138-kV PPP-insulated cable. The design approach taken is conservative and addresses the typical variations in field conditions and in skill and workmanship of the splicing. Joint construction details, including choice of connector, taping structure, and joint mechanical reinforcement, are discussed. The test criteria are described and results are presented.

  11. EA-1679: Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project, Grant and Okanogon Counties, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates potential environmental impacts from the construction and operation of six new 500-kV overhead transmission lines to replace six existing underground lines at Grand Coulee Dam. DOE’s Bonneville Power Administration (BPA), a cooperating agency, was asked by the U. S. Department of the Interior’s Bureau of Reclamation to design and construct the proposed new transmission lines. A Finding of No Significant Impact was issued by BPA in December 2011.

  12. EIS-0025: Miles City-New Underwood 230-kV Electrical Transmission Line, Montana, North Dakota, and South Dakota

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Western Area Power Administration prepared this statement to assess the environmental and socioeconomic implications of its proposed action to construct a 3.28-mile, 230-kV transmission line between Miles City and Baker, Montana , Hettinger, North Dakota , and New Underwood , South Dakota , in Custer and Fallon Counties in Montana, Adams , Bowman , and Slope Counties in North Dakota and Meade, Pennington, and Perkins Counties in South Dakota.

  13. Heavy duty insulator assemblies for 500-kV bulk power transmission line with large diameter octagonalbundled conductor

    SciTech Connect (OSTI)

    Tsujimoto, K.; Hayase, I.; Hirai, J.; Inove, M.; Naito, K.; Yukino, T.

    1982-11-01T23:59:59.000Z

    This paper describes the design procedure and the results of field tests on mechanical performances of insulator assemblies newly developed to support octagonal-bundled conductors for 500-kV bulk power transmission. Taking account of conductor-motion-induced peak tensile load, fatigue, torsional torque and others, a successful design has been achieved in two prototype assemblies for such heavy mechanical duties as encountered during conductor galloping or swing. This has been proved throughout three years of the field tests.

  14. Development and practical operation of perfluorocarbon immersed 275kV transformers with compressed SF6 gas insulation

    SciTech Connect (OSTI)

    Hiraishi, K.; Uwano, Y.; Shirakura, K.; Gotanda, Y.; Endoo, K. [Hitachi Ltd. (Japan)] [Hitachi Ltd. (Japan); Higaki, M. [Kyushu Kyoritu Univ., Kitakyushu (Japan)] [Kyushu Kyoritu Univ., Kitakyushu (Japan); Horikoshi, M.; Mizuno, K.; Hora, H. [Chubu Electric Power Co., Inc., Nagoya (Japan)] [Chubu Electric Power Co., Inc., Nagoya (Japan)

    1995-04-01T23:59:59.000Z

    A perfluorocarbon (PFC) immersed 275kV transformer with compressed SF6 gas insulation has been under development. This paper clarified the AC partial discharge inception voltage and time characteristics of PFC immersed insulation and also clarified that a prototype 275kV 100MVA three phase transformer could be worked without any trouble during the long-term over voltage test. This prototype proved that it had the AC partial discharge inception strength of higher than 1.5 times of the AC test voltage and the lightning impulse breakdown strength of 1.5 times of the test voltage. A 275kV 250MVA three phase transformer was developed and practically operated at the outdoor substation of Chubu Electric Power Co., Inc. This transformer has been successfully operated until now and the detailed internal inspection of the transformer was carried out after one year and 9 months of the successful practical operation and no significant abnormal condition was recognized.

  15. Environmental Assessment of the Gering-Stegall 115-kV Transmission Line Consolidation Project, Scotts Bluff County, Nebraska

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    The Department of Energy (DOE), Western Area Power Administration (Western) proposes to consolidate segments of two transmission lines near the Gering Substation in Gering, Nebraska. The transmission lines are both located in Scotts Bluff County, Nebraska. The transmission lines are both located in Scotts Bluff County, Nebraska, within the city of Gering. Presently, there are three parallel 115-kilovolt (kV) transmission lines on separate rights-of-way (ROW) that terminate at the Gering Substation. The project would include dismantling the Archer-Gering wood-pole transmission line and rebuilding the remaining two lines on single-pole steel double circuit structures. The project would consolidate the Gering-Stegall North and Gering-Stegall South 115-kV transmission lines on to one ROW for a 1.33-mile segment between the Gering Substation and a point west of the Gering Landfill. All existing wood-pole H-frame structures would be removed, and the Gering-Stegall North and South ROWs abandoned. Western is responsible for the design, construction, operation, and maintenance of the line. Western prepared an environmental assessment (EA) that analyzed the potential environmental impacts of the proposed construction, operation, and maintenance of the 115-kV transmission line consolidation. Based on the analyses in the EA, the DOE finds that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA).

  16. Big George to Carter Mountain 115-kV transmission line project, Park and Hot Springs Counties, Wyoming. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The Western Area Power Administration (Western) is proposing to rebuild, operate, and maintain a 115-kilovolt (kV) transmission line between the Big George and Carter Mountain Substations in northwest Wyoming (Park and Hot Springs Counties). This environmental assessment (EA) was prepared in compliance with the National Environmental Policy Act (NEPA) and the regulations of the Council on Environmental Quality (CEQ) and the Department of Energy (DOE). The existing Big George to Carter Mountain 69-kV transmission line was constructed in 1941 by the US Department of Interior, Bureau of Reclamation, with 1/0 copper conductor on wood-pole H-frame structures without an overhead ground wire. The line should be replaced because of the deteriorated condition of the wood-pole H-frame structures. Because the line lacks an overhead ground wire, it is subject to numerous outages caused by lightning. The line will be 54 years old in 1995, which is the target date for line replacement. The normal service life of a wood-pole line is 45 years. Under the No Action Alternative, no new transmission lines would be built in the project area. The existing 69-kV transmission line would continue to operate with routine maintenance, with no provisions made for replacement.

  17. EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposal to provide financial assistance for a project proposed by NRG Energy, Inc (NRG). DOE selected NRG’s proposed W.A. Parish Post-Combustion CO2 Capture and Sequestration Project for a financial assistance award through a competitive process under the Clean Coal Power Initiative Program. NRG would design, construct and operate a commercial-scale carbon dioxide (CO2) capture facility at its existing W.A. Parish Generating Station in Fort Bend County, Texas; deliver the CO2 via a new pipeline to the existing West Ranch oil field in Jackson County, Texas, for use in enhanced oil recovery operations; and demonstrate monitoring techniques to verify the permanence of geologic CO2 storage.

  18. EIS-0005-FS: Bonneville Power Administration Proposed FY 1979 Program, Facility Location on Supplement, Southwest Oregon Area Service, Buckley-Summer Lake 500 kV Line, Supplemental

    Broader source: Energy.gov [DOE]

    This Bonneville Power Administration document assesses the environmental impacts of constructing transmission facilities, which will coordinate with the Midpoint-Malin 500-kV line to be constructed by the Pacific Power and Light (PP&L) Company. The proposed action includes the construction of the 1.56-mile Buckley-Summer Lake 500-kV transmission line; the proposed Buckley Substation near Maupin, Oregon; and the proposed Summer Lake Substation near Silver Lake, Oregon.

  19. Solid-State Fault Current Limiter Development : Design and Testing Update of a 15kV SSCL Power Stack

    SciTech Connect (OSTI)

    Dr. Ram Adapa; Mr. Dante Piccone

    2012-04-30T23:59:59.000Z

    ABSTRACT The Solid-State Fault Current Limiter (SSCL) is a promising technology that can be applied to utility power delivery systems to address the problem of increasing fault currents associated with load growth. As demand continues to grow, more power is added to utility system either by increasing generator capacity or by adding distributed generators, resulting in higher available fault currents, often beyond the capabilities of the present infrastructure. The SSCL is power-electronics based equipment designed to work with the present utility system to address this problem. The SSCL monitors the line current and dynamically inserts additional impedance into the line in the event of a fault being detected. The SSCL is based on a modular design and can be configured for 5kV through 69kV systems at nominal current ratings of 1000A to 4000A. Results and Findings This report provides the final test results on the development of 15kV class SSCL single phase power stack. The scope of work included the design of the modular standard building block sub-assemblies, the design and manufacture of the power stack and the testing of the power stack for the key functional tests of continuous current capability and fault current limiting action. Challenges and Objectives Solid-State Current Limiter technology impacts a wide spectrum of utility engineering and operating personnel. It addresses the problems associated with load growth both at Transmission and Distribution class networks. The design concept is pioneering in terms of developing the most efficient and compact power electronics equipment for utility use. The initial test results of the standard building blocks are promising. The independent laboratory tests of the power stack are promising. However the complete 3 phase system needs rigorous testing for performance and reliability. Applications, Values, and Use The SSCL is an intelligent power-electronics device which is modular in design and can provide current limiting or current interrupting capabilities. It can be applied to variety of applications from distribution class to transmission class power delivery grids and networks. It can also be applied to single major commercial and industrial loads and distributed generator supplies. The active switching of devices can be further utilized for protection of substation transformers. The stress on the system can be reduced substantially improving the life of the power system. It minimizes the voltage sag by speedy elimination of heavy fault currents and promises to be an important element of the utility power system. DOE Perspective This development effort is now focused on a 15kV system. This project will help mitigate the challenges of increasing available fault current. DOE has made a major contribution in providing a cost effective SSCL designed to integrate seamlessly into the Transmission and Distribution networks of today and the future. Approach SSCL development program for a 69kV SSCL was initiated which included the use of the Super GTO advanced semiconductor device which won the 2007 R&D100 Award. In the beginning, steps were identified to accomplish the economically viable design of a 69kV class Solid State Current Limiter that is extremely reliable, cost effective, and compact enough to be applied in urban transmission. The prime thrust in design and development was to encompass the 1000A and the 3000A ratings and provide a modular design to cover the wide range of applications. The focus of the project was then shifted to a 15kV class SSCL. The specifications for the 15kV power stack are reviewed. The design changes integrated into the 15kV power stack are discussed. In this Technical Update the complete project is summarized followed by a detailed test report. The power stack independent high voltage laboratory test requirements and results are presented. Keywords Solid State Current Limiter, SSCL, Fault Current Limiter, Fault Current Controller, Power electronics controller, Intelligent power-electronics Device, IED

  20. OPERATIONAL RESULTS OF THE SPALLATION NEUTRON SOURCE (SNS) POLYPHASE CONVERTER-MODULATOR FOR THE 140 KV KLYSTRON RF SYSTEMS

    SciTech Connect (OSTI)

    W.A. REASS; J.D. DOSS; ET AL

    2001-06-01T23:59:59.000Z

    This paper describes the first operational results of the 140 kV, 1 MW average, 11 MW peak, zero-voltage-switching, 20 kHz polyphase bridge, boost converter-modulator for klystron pulse application. The DC-DC converter derives the buss voltages from a standard 13.8 kV to 2100 Y substation cast-core transformer. Energy storage and filtering is provided by self-clearing metallized hazy polypropylene traction capacitors. Three ''H-Bridge'' Insulated Gate Bipolar Transistor (IGBT) switching networks are used to generate the polyphase 20 kHz transformer primary drive waveforms. The 20 kHz drive waveforms are chirped the appropriate duration to generate the desired klystron pulse width. Pulse-Width Modulation (PWM) of the individual 20 kHz pulses is utilized to provide regulated output waveforms with adaptive feedforward and feedback techniques. The boost transformer design utilizes amorphous nanocrystalline material that provides the required low core loss at design flux levels and switching frequencies. Resonant shunt peaking is used on the transformer secondary to boost output voltage and resonate transformer leakage inductance. With the appropriate transformer leakage inductance and peaking capacitance, zero-voltage-switching of the IGBT's is attained, minimizing switching losses. Reviews of these design parameters and an examination of the first operational results will be performed.

  1. Operational results of the spallation neutron source (SNS) polyphase converter-modulator for the 140 KV klystron RF system

    SciTech Connect (OSTI)

    Reass, W. A. (William A.); Doss, James D.; Gribble, R. F. (Robert F.); Lynch, M. T. (Michael T.); Rees, D. E. (Daniel E.); Tallerico, P. J. (Paul J.); Borovina, D. L.

    2001-01-01T23:59:59.000Z

    This paper describes the first operational results of the 140 kV, 1 MW average, 11 MW peak, zero-voltageswitching, 20 kHz polyphase bridge, boost converter-modulator for klystron pulse application. The DC-DC converter derives the buss voltages from a standard 13.8 kV to 2100 Y substation cast-core transformer. Energy storage and filtering is provided by self-clearing metallized hazy polypropylene traction capacitors. Three 'H-Bridge' Insulated Gate Bipolar Transistor (IGBT) switching networks are used to generate the polyphase 20 kHz transformer primary drive waveforms. The 20 kHz drive waveforms are chirped the appropriate duration to generate the desired klystron pulse width. Pulse-Width Modulation (PWM) of the individual 20 kHz pulses is utilized to provide regulated output waveforms with adaptive feedforward and feedback techniques. The boost transformer design utilizes amorphous nanocrystalline material that provides the required low core loss at design flux levels and switching frequencies. Resonant shunt peaking is used on the transformer secondary to boost output voltage and resonate transformer leakage inductance. With the appropriate transformer leakage inductance and peaking capacitance, zero-voltage-switching of the IGBT's is attained, minimizing switching losses. Reviews of these design parameters and an examination of the first operational results will be performed.

  2. Arrival time and magnitude of airborne fission products from the Fukushima, Japan, reactor incident as measured in Seattle, WA, USA

    E-Print Network [OSTI]

    Leon, J Diaz; Knecht, A; Miller, M L; Robertson, R G H; Schubert, A G

    2011-01-01T23:59:59.000Z

    We report results of air monitoring started due to the recent natural catastrophe on March 11, 2011 in Japan and the severe ensuing damage to the Fukushima nuclear reactor complex. On March 17-18, 2011 we detected the first arrival of the airborne fission products 131-I, 132-I, 132-Te, 134-Cs, and 137-Cs in Seattle, WA, USA, by identifying their characteristic gamma rays using a germanium detector. The highest detected activity to date is <~32 mBq/m^3 of 131-I.

  3. Branching of the W(H4) Polytopes and Their Dual Polytopes under the Coxeter Groups W(A4) and W(H3) Represented by Quaternions

    E-Print Network [OSTI]

    Mehmet Koca; Nazife Ozdes Koca; Mudhahir Al-Ajmi

    2011-06-15T23:59:59.000Z

    4-dimensional H4 polytopes and their dual polytopes have been constructed as the orbits of the Coxeter-Weyl group W(H4) where the group elements and the vertices of the polytopes are represented by quaternions. Projection of an arbitrary W(H4) orbit into three dimensions is made preserving the icosahedral subgroup W(H3) and the tetrahedral subgroup W(A3), the latter follows a branching under the Coxeter group W(A4) . The dual polytopes of the semi-regular and quasi-regular H4 polytopes have been constructed.

  4. Development of 500-kV AC cable employing laminar insulation of other than conventional cellulosic paper. Final report

    SciTech Connect (OSTI)

    Bahder, G.; Eager, G.S. Jr.; Walker, J.J.; Dima, A.F.

    1980-09-01T23:59:59.000Z

    The results of an investigation to develop a 500 kV ac laminar dielectric power cable and joint having insulation with lower losses than conventional cellulosic paper insulation are presented. Background information is presented on proposed low-loss synthetic and composite synthetic/cellulosic paper insulations. From these studies, fibrous polypropylene paper tape and cellulosic paper-polypropylene film-cellulosic paper composite paper (PPP) were chosen. Extensive testing of hand-wrapped cable models fabricated with each type of tape served to eliminate the fibrous polypropylene paper tape from further consideration. Cable model tests indicate that the PPP tape is satisfactory for insulation in 500 kV ac cable, and that oil impregnants now used in conventional cellulosic paper insulated cables are unsuitable, but that silicone oil with an additive is satisfactory for PPP tapes. Laboratory data indicate that it may be necessary with the PPP tapes to use a significantly lower viscosity impregnating oil which has a greater tendency to drain from pipe-type cables than conventional oil. This may require a modification of the moisture seal. Four final pipe-type cables having a conventional moisture seal were manufactured for possible future field testing. The dielectric loss of the final cables is one-fifth that of conventional cellulosic paper insulated cables. The estimated installed cost per MVA-mile of the PPP insulated cable, neglecting losses, is higher than cellulosic insulated cables impregnated with conventional mineral oil. However, the capacitance of the cable insulated with PPP tape is 25% lower than conventional cable, and therefore, the reactance necessary to compensate for the cable charging current is significantly reduced.

  5. Type A Accident Investigation Report on the June 25, 1997, Contractor Inspector Fatality on the Satsop-Aberdeen #2 & #3 230 kV Line

    Broader source: Energy.gov [DOE]

    On June 27, 1997, I established a Type-A Accident Investigation Board to investigate the June 25, 1997 fatal contractor accident which occurred on BPA?s Satsop-Aberdeen #2 and #3 230-kV transmission lines right-of-way.

  6. Increasing the reliability of the shutdown of 500 - 750-kV overhead lines equipped with shunt reactors in an unsuccessful three-phase automatic repeated closure cycle

    SciTech Connect (OSTI)

    Kuz'micheva, K. I.; Merzlyakov, A. S.; Fokin, G. G. [JSC 'R and D Center at Federal Grid Company of the United Power System' (Russian Federation)

    2013-05-15T23:59:59.000Z

    The reasons for circuit-breaker failures during repeated disconnection of 500 - 750 kV overhead lines with shunt reactors in a cycle of unsuccessful three-phase automatic reconnection (TARC) are analyzed. Recommendations are made for increasing the operating reliability of power transmission lines with shunt reactors when there is unsuccessful reconnection.

  7. Type A Accident Investigation Board Report of the April 25, 1997, Contractor Fatality on the Olympia-White River #1 230 kV Line

    Broader source: Energy.gov [DOE]

    On April 25, 1997, at approximately 1510 hours, a lineman for Great Southwestern Construction Inc. was fatally electrocuted when he came in direct contact with a deenergized 230-kilovolt (kV) transmission power line conductor which contained an induced voltage.

  8. International Conference on Advanced Robotics ICAR 2005 July 2005, Seattle WA Abstract--Integrating human and robot into a single system

    E-Print Network [OSTI]

    Rosen, Jacob

    The 12th International Conference on Advanced Robotics ­ ICAR 2005 ­ July 2005, Seattle WA Abstract to the fine manipulation joints (the wrist). An inverted phenomenon was observed during fine manipulation) and functions as a human- amplifier. Its joints and links correspond to those of the human body, and its

  9. Arrival time and magnitude of airborne fission products from the Fukushima, Japan, reactor incident as measured in Seattle, WA, USA

    E-Print Network [OSTI]

    J. Diaz Leon; D. A. Jaffe; J. Kaspar; A. Knecht; M. L. Miller; R. G. H. Robertson; A. G. Schubert

    2011-08-23T23:59:59.000Z

    We report results of air monitoring started due to the recent natural catastrophe on 11 March 2011 in Japan and the severe ensuing damage to the Fukushima Dai-ichi nuclear reactor complex. On 17-18 March 2011, we registered the first arrival of the airborne fission products 131-I, 132-I, 132-Te, 134-Cs, and 137-Cs in Seattle, WA, USA, by identifying their characteristic gamma rays using a germanium detector. We measured the evolution of the activities over a period of 23 days at the end of which the activities had mostly fallen below our detection limit. The highest detected activity amounted to 4.4 +/- 1.3 mBq/m^3 of 131-I on 19-20 March.

  10. Development of a 33 kV, 20 A long pulse converter modulator for high average power klystron

    SciTech Connect (OSTI)

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam [Pulsed High Power Microwave Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, M.P. (India)] [Pulsed High Power Microwave Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, M.P. (India)

    2014-05-15T23:59:59.000Z

    Research, design, and development of high average power, long pulse modulators for the proposed Indian Spallation Neutron Source are underway at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of long pulse modulator capable of delivering 33 kV, 20 A at 5 Hz repetition rate has been designed and developed. Three Insulated Gate Bipolar Transistors (IGBT) based switching modules driving high frequency, high voltage transformers have been used to generate high voltage output. The IGBT based switching modules are shifted in phase by 120° with respect to each other. The switching frequency is 25 kHz. Pulses of 1.6 ms pulse width, 80 ?s rise time, and 70 ?s fall time have been achieved at the modulator output. A droop of ±0.6% is achieved using a simple segmented digital droop correction technique. The total fault energy transferred to the load during fault has been measured by conducting wire burn tests and is found to be within 3.5 J.

  11. Seasonal Patterns of Melatonin, Cortisol, and Progesterone Secretion in Female Lambs Raised Beneath a 500-kV Transmission Line.

    SciTech Connect (OSTI)

    Lee, Jack M.

    1992-06-01T23:59:59.000Z

    Although several kinds of biological effects of electric and magnetic fields have been reported from laboratory studies, few have been independently replicated. When this study was being planned, the suppression of nighttime melatonin in rodents was thought to represent one of the strongest known effects of these fields. The effect had been replicated by a single laboratory for 60-Hz electric fields, and by multiple laboratories for d-c magnetic fields. The primary objective of this study was to determine whether the effect of electric and magnetic fields on melatonin would also occur in sheep exposed to a high voltage transmission line. The specific hypothesis tested by this experiment was as follows: The electrical environment produced by a 60-Hz, 500-kV transmission line causes a depression in nocturnal melatonin in chronically exposed female lambs. This may mimic effects of pinealectomy or constant long-day photoperiods, thus delaying the onset of reproductive cycles. Results of the study do not provide evidence to support the hypothesis. Melatonin concentrations in the sheep exposed to the transmission line showed the normal pattern of low daytime and high nighttime serum levels. As compared to the control group, there were no statistically significant group differences in the mean amplitude, phase, or duration of the nighttime melatonin elevation.

  12. J.C. Hillesheim, F.I. Parra,M. Barnes, N.A. Crocker, H. Meyer, W.A. Peebles, R. Scannell, A. Thornton, and the MAST Team

    E-Print Network [OSTI]

    J.C. Hillesheim, F.I. Parra,M. Barnes, N.A. Crocker, H. Meyer, W.A. Peebles, R. Scannell, A, 4 H. Meyer, 1 W.A. Peebles, 4 R. Scannell, 1 A. Thornton, 1 and the MAST Team 1 1 CCFE, Culham rotation on collisionality in MAST J. C. Hillesheim,1, F.I. Parra,2, 1 M. Barnes,3 N.A. Crocker,4 H. Meyer

  13. Environmental Assessment for Central Power and Light Company`s proposed Military Highway-CFE tie 138/69-kV transmission line project Brownsville, Cameron County, Texas

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    Central Power and Light Company (CPL) intends to upgrade its existing transmission line ties with the Commision Federal de Electricidad (CFE) system in Mexico. CPL currently has a single 69-kilovolt (kV) transmission line in the Brownsville area which connects CPL`s system with the system of CFE. This existing line runs between the Brownsville Switching Station, located on Laredo Road in Brownsville, Cameron County, Texas, and an existing CFE 69-kV line at the Rusteberg Bend of the Rio Grande in Cameron County. Under current conditions of need, the existing 69-kV line does not possess sufficient capability to engage in appropriate power exchanges. Therefore, CPL is proposing to build a new line to link up with CFE. This proposed line would be a double-circuit line, which would (1) continue (on a slightly relocated route) the existing 69-kV tie from CPL`s Brownsville Switching Station to CFE`s facilities, and (2) add a 138-kV tie from the Military Highway Substation, located on Military Highway (US Highway 281), to CFE`s facilities. The proposed 138/69-kV line, which will be constructed and operated by CPL, will be built primarily on steel single-pole structures within an average 60-foot (ft) wide right-of-way (ROW). It will be approximately 6900--9200 ft (1.3--1.7 miles) in length, depending on the alternative route constructed.

  14. Microbial community changes during sustained Cr(VI) reduction at the 100H site in Hanford, WA

    SciTech Connect (OSTI)

    Chakraborty, Romy; Brodie, Eoin L; Faybishenko, Boris; Piceno, Yvette M; Tom, Lauren; Choudhuri, Swati; Beller, Harry R; Liu, Jenny; Torok, Tamas; Joyner, Dominique C; Joachimiak, Marcin P; Zhou, Aifen; Van Nostrand, Joy D; Zhou, Joe; Long, Phil E; Newcomer, Darrell R; Andersen, Gary L; Hazen, Terry C.

    2010-05-17T23:59:59.000Z

    Hexavalent Chromium is a widespread contaminant found in soil, sediment, and groundwater. In order to stimulate microbially-mediated reduction of Cr(VI), a poly-lactate compound (HRC) was injected into the Chromium-contaminated aquifer at the Hanford (WA) 100H site in 2004. Cr(VI) concentrations rapidly declined to below the detection limit and remained so for more than three years after injection. Based on the results of the bacterial community composition using high-density DNA 16S rRNA gene microarrays, we observed the community to transition through denitrifying, ironreducing and sulfate-reducing populations. As a result, we specifically focused isolation efforts on three bacterial species that were significant components of the community. Positive enrichments in defined anaerobic media resulted in the isolation of an iron-reducing Geobacter metallireducens-like isolate, a sulfate-reducing Desulfovibrio vukgaris-like strain and a nitrate-reducing Pseudomonas stutzeri-like isolate among several others. All of these isolates were capable of reducing Cr(VI) anoxically and have been submitted for genome sequencing to JGI. To further characterize the microbial, and geochemical mechanisms associated with in situ Cr(VI) reduction at the site, additional HRC was injected in 2008. The goal was to restimulate the indigenous microbial community and to regenerate the reducing conditions necessary for continued Cr(VI) bio-immobilization in the groundwater. Analysis of the microbial populations post-injection revealed that they recovered to a similar density as after the first injection in 2004. In this study, we present the results from our investigation into microbially-mediated Cr(VI) reduction at Hanford, and a comparison of the microbial community development following two HRC injections four years apart.

  15. Development of 230-kV high-pressure, gas-filled, pipe-type cable system: Model test program phase

    SciTech Connect (OSTI)

    Silver, D.A. (Pirelli Cable Corp., Florham Park, NJ (USA))

    1990-09-01T23:59:59.000Z

    The objective of this project was the development of a 230 kV high-pressure gas-filled (HPGF) pipe-type cable employing paper or laminate of paper-polypropylene-paper (PPP) insulation pressurized with N{sub 2} gas or a blend of 15% SF{sub 6}/85% N{sub 2} gas. Heretofore, HPGF pipe-type cables have been restricted to 138 kV ratings due to technical difficulties in achieving higher voltage ratings. In view of the high cost of manufacturing and testing a large number of full size cables, cable models with 2 mm (80 mils) and 2.5 mm (100 mils) wall thicknesses of insulation enclosed in a test fixture capable of withstanding a test pressure of 2070 kPa (300 psig) and high electrical stresses were employed for dissipation factor versus voltage measurements and for ac and impulse breakdown tests at rated and emergency operating temperatures. In addition, a 36 cm (14 in) full wall cable model enclosed in a pressure vessel was utilized for transient pressure response tests. The results of this investigation attest tot he technical feasibility of the design and manufacture of a 230 kV HPGF pipe-type cable employing paper or PPP insulation pressurized with 100% N{sub 2} gas or a blend of 15% SF{sub 6}/85% N{sub 2} gas for operation under normal and 100 hour emergency conditions at conductor temperatures of 85{degree} and 105{degree}C, respectively. The manufacture of a full size PPP insulated cable pressurized with a blend of 15% SF{sub 6}/85% N{sub 2} gas employing pre-impregnated PPP insulating tapes and an annular conductor based on the design stresses defined in this report is recommended for laboratory evaluation and extended life tests. 11 refs., 45 figs., 11 tabs.

  16. Image-Guided Radiotherapy (IGRT) for Prostate Cancer Comparing kV Imaging of Fiducial Markers With Cone Beam Computed Tomography (CBCT)

    SciTech Connect (OSTI)

    Barney, Brandon M., E-mail: barney.brandon@mayo.ed [Department of Radiation Oncology, Mayo Clinic, Rochester, MN (United States); Lee, R. Jeffrey [Department of Radiation Oncology, Intermountain Medical Center, Salt Lake City, UT (United States); Handrahan, Diana [Department of Statistics, Intermountain Medical Center, Salt Lake City, UT (United States); Welsh, Keith T.; Cook, J. Taylor; Sause, William T. [Department of Radiation Oncology, Intermountain Medical Center, Salt Lake City, UT (United States)

    2011-05-01T23:59:59.000Z

    Purpose: To present our single-institution experience with image-guided radiotherapy comparing fiducial markers and cone-beam computed tomography (CBCT) for daily localization of prostate cancer. Methods and Materials: From April 2007 to October 2008, 36 patients with prostate cancer received intensity-modulated radiotherapy with daily localization by use of implanted fiducials. Orthogonal kilovoltage (kV) portal imaging preceded all 1244 treatments. Cone-beam computed tomography images were also obtained before 286 treatments (23%). Shifts in the anterior-posterior (AP), superior-inferior (SI), and left-right (LR) dimensions were made from kV fiducial imaging. Cone-beam computed tomography shifts based on soft tissues were recorded. Shifts were compared by use of Bland-Altman limits of agreement. Mean and standard deviation of absolute differences were also compared. A difference of 5 mm or less was acceptable. Subsets including start date, body mass index, and prostate size were analyzed. Results: Of 286 treatments, 81 (28%) resulted in a greater than 5.0-mm difference in one or more dimensions. Mean differences in the AP, SI, and LR dimensions were 3.4 {+-} 2.6 mm, 3.1 {+-} 2.7 mm, and 1.3 {+-} 1.6 mm, respectively. Most deviations occurred in the posterior (fiducials, 78%; CBCT, 59%), superior (79%, 61%), and left (57%, 63%) directions. Bland-Altman 95% confidence intervals were -4.0 to 9.3 mm for AP, -9.0 to 5.3 mm for SI, and -4.1 to 3.9 mm for LR. The percentages of shift agreements within {+-}5 mm were 72.4% for AP, 72.7% for SI, and 97.2% for LR. Correlation between imaging techniques was not altered by time, body mass index, or prostate size. Conclusions: Cone-beam computed tomography and kV fiducial imaging are similar; however, more than one-fourth of CBCT and kV shifts differed enough to affect target coverage. This was even more pronounced with smaller margins (3 mm). Fiducial imaging requires less daily physician input, is less time-consuming, and is our preferred method for prostate image-guided radiotherapy.

  17. Development of NS-TACSR with extremely suppressed aeolian noise and its application to 500 kV overhead transmission lines

    SciTech Connect (OSTI)

    Tsujimoto, K.; Furukawa, S. (Kansai Electric Power Co., Inc., Osaka (Japan)); Shimojima, K.; Yamamoto, K. (Hitachi Cable, Ltd., Hitachi (JP))

    1991-10-01T23:59:59.000Z

    Recently in Japan, with the unprecedented advance of residential area development in the suburbs of large cities, it has become quite difficult to secure the routes of EHV transmission lines from nuclear power plants in remote places to the suburbs of large cities, urging resolution of environmental problems related to transmission lines. In Japan, aerodynamic sound produced by conductors and insulators frequently caused noise problems. Having an opportunity of constructing a 500 kV transmission line through a residential are, we made a research to resolve this noise problem. This paper describes the characteristics of aeolian noise and preventive measures against it.

  18. Case Study of the Failure of two 13.8kV Control & Metering Transformers that caused significant Equipment Damage

    SciTech Connect (OSTI)

    Dreifuerst, G R; Chew, D B; Mangonon, H L; Swyers, P W

    2011-08-25T23:59:59.000Z

    The degradation and failure of cast-coil epoxy windings within 13.8kV control power transformers and metering potential transformers has been shown to be dangerous to both equipment and personnel, even though best industrial design practices were followed. Accident scenes will be examined for two events at a U.S. Department of Energy laboratory. Failure modes will be explained and current design practices discussed with changes suggested to prevent a recurrence and to minimize future risk. New maintenance philosophies utilizing partial discharge testing of the transformers as a prediction of end-of-life will be examined.

  19. E v e n t s & T o p i c s i n R e n e wa b l e E n...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    v e n t s & T o p i c s i n R e n e wa b l e E n e r g y & t h e E n v i r o n me n t i s s p o n s o r e d b y t h e P h o t o s y n t h e t i c A n t e n n a R e s e a r c h Ce n...

  20. SEATILE, WA October 1972

    E-Print Network [OSTI]

    'lnpml"nL. in r " arch in the fishery sciences, including hiology, tpchnology, and ngin ring. The publications al'P writtpn bv scientisL and oth r staff meml){'rs of the 'ational ceanic and Atmosph 'ric Administration.' for oth r scipnlific and t(> hnieal publications in the marine sciences. Individual copi s ar a

  1. 20121114 Riverton drinking wa...

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertown Arsenal' TO:Sherwood,DOEWhere

  2. Proposed amendment to presidential permit PP-63 and associated modifications to 500 kV international transmission line, Forbes, Minnesota to Manitoba, Canada. [Forbes Substation

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    This Addendum to the Final Environmental Assessment for the Proposed Amendment to Presidential Permit PP-63 and Associated Modifications to 500 kV International Transmission Line: Forbes, Minnesota to Manitoba, Canada (DOE/EA-587) addresses Northern States Power Company's (NSP) proposed expansion of the Forbes Substation. The applicant has requested that the expansion take place on the west side of the substation, within the existing property line, instead of on the north side as originally proposed. All of the proposed construction would take place on property already owned by NSP. DOE has reviewed the environmental impacts associated with this minor modification and has determined that the conclusions reached in the environmental assessment and Finding of No Significant Impact prepared in connection with NSP's original amendment request remain valid.

  3. Felix Bildhauer & Roland Schfer (eds.), Proceedings of the 9th Web as Corpus Workshop (WaC-9) @ EACL 2014, pages 2935, Gothenburg, Sweden, April 26 2014. c 2014 Association for Computational Linguistics

    E-Print Network [OSTI]

    Linguistics {bs,hr,sr}WaC ­ Web corpora of Bosnian, Croatian and Serbian Nikola Ljubesi´c University of Zagreb of top-level-domain web corpora of Bosnian, Croatian and Serbian. For constructing the corpora we use the process of building web corpora of Bosnian, Croatian and Serbian by crawling the .ba, .hr and .rs TLDs

  4. UW School of Oceanography Box 357940 206-543-5062 UW EH&S Radiation Safety Section Box 354400 201 Hall Health Seattle WA 98195-4400 206-543-0463

    E-Print Network [OSTI]

    jeopardize future work on Oceanographic research vessels. Initials Required 9. Radiation Protection ProgramUW School of Oceanography Box 357940 206-543-5062 UW EH&S Radiation Safety Section Box 354400 201-543-5062 UW EH&S Radiation Safety Section Box 354400 201 Hall Health Seattle WA 98195-4400 206

  5. UW EH&S Radiation Safety Section Box 354400 201 Hall Health Seattle WA 98195-4400 206-543-0463 *Your Social Security Number (SSN) is requested to better track and coordinate your records within our

    E-Print Network [OSTI]

    to the best of my knowledge. I agree to conform to the Rules and Regulations for Radiation Protection WAC-246 of Radiation Protection: Where When Instructor Duration b) Radioactivity Measurement StandardizationUW EH&S Radiation Safety Section Box 354400 201 Hall Health Seattle WA 98195-4400 206

  6. 1/28/09 3:40 PMBloomberg Printer-Friendly Page Page 1 of 2http://www.bloomberg.com/apps/news?pid=20670001&refer=science&sid=atoTqDydLoWA

    E-Print Network [OSTI]

    1/28/09 3:40 PMBloomberg Printer-Friendly Page Page 1 of 2http://www.bloomberg.com/apps/news?pidhttp://www.bloomberg.com/apps/news?pid=20670001&refer=science&sid=atoTqDydLoWA list of genes that may

  7. NOx emissions retrofit at Reliant Energy, W.A. Parish Generating Station, Unit 7: Achieving 0.15 lb/MBtu

    SciTech Connect (OSTI)

    Gessner, T.M.; Hoh, R.H.; Ray, B.; Dorazio, T.; Jennings, P.; Sikorski, K.

    1999-07-01T23:59:59.000Z

    The current Clean Air Act (CAA), Title 1 regulations require States to develop implementation plans (SIPs) which address NO{sub x} emissions as part of the ozone non-attainment requirements. The EPA has recommended NO{sub x} limits of 0.15 lb/MBtu for utility boilers. In this paper, Reliant Energy and ABB C-E Services, Inc. will discuss a project where 0.15 lb NO{sub x}/MBtu can be achieved with the TFS 2000{trademark} R firing system and highly reactive Powder River Basin (PRB) fuels. Reliant Energy will retrofit their W.A. Parish Unit 7 with this system in the first quarter of 1999. This is part of Reliant Energy's drive to lower NO{sub x} emissions and meet future air quality requirements at the W.Q. Parish station.

  8. Proposed amendment for Presidential Permit PP-63 and associated modifications to 500 kV international transmission line, Forbes, Minnesota to Manitoba, Canada Northern States Power Company. Final Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-02-01T23:59:59.000Z

    Northern States Power Company, (NSP), a Minnesota investor owned utility has applied to the Office of Fossil Energy, United States Department of Energy, to amend Presidential Permit PP-63 to allow for alterations to the 500 kV transmission line and as sedated facilities currently regulated by this permit. The alterations proposed for the 500 kV line owned by NSP are part of a long term effort sponsored by NSP to upgrade the existing NSP transmission system to allow for increased exchange of electricity with the Manitoba Hydro-Electric Board. Presidential Permit PP-63 authorized NSP to construct, connect, operate and maintain a 500 kV line at the United States/Canadian border approximately seven-and-a-half miles west of Warroad in Roseau County, Minnesota. This line connects with a 500 kV line owned and operated by the Manitoba Hydro-Electric Board (MHEB), which extends from Dorsey, Manitoba, Canada to the United States/Canadian border. NSP proposes to increase the electricity transfer capability of this transmission facility by constructing a new 80-acre substation on the existing 500 kV line in Roseau County, Minnesota, and upgrading the existing substation at Forbes, Minnesota. The proposed Roseau substation would contain two 41.5 ohm series capacitor banks. In addition, static VAR compensators are to be installed at the existing Forbes Substation. Approximately 5 acres would be added to the 30-acre Forbes site to house the additional equipment. No new lines would enter or exit the facility. NSP proposes to place the new Roseau Substation in service in May 1993 and to complete the upgrading of the Forbes Substation in March 1994. The primary, initial purpose of these modifications is to enable NSP to import 400 megawatts of electric power from MHEB during the summer months to meet peak electrical demand in the Minneapolis-St. Paul area. It is expected that this power transfer would begin in 1993.

  9. Microsoft PowerPoint - SpringOpsCallHandout23May13 [Compatibility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 500kV Line; and BPA-Grizzly-Malin 2 500kV Line * 3200 MW: 523 HE 09 to HE 17 due to CISO-Cottonwood CB 352 * 4250 MW: 523 HE 18 to 524 HE 17 due to CISO-Round Mountain-Table...

  10. Operation of Lanzhou all permanent electron cyclotron resonance ion source No. 2 on 320 kV platform with highly charged ions

    SciTech Connect (OSTI)

    Lu, W., E-mail: luwang@impcas.ac.cn [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, J. Y.; Kang, L.; Liu, H. P.; Li, H.; Li, J. D.; Sun, L. T.; Ma, X. W. [Institute of Modern Physics, CAS, Lanzhou 730000 (China)] [Institute of Modern Physics, CAS, Lanzhou 730000 (China)

    2014-02-15T23:59:59.000Z

    The 320 kV platform for multi-discipline research with highly charged ions is a heavy ion beam acceleration instrument developed by Institute of Modern Physics, which is dedicated to basic scientific researches such as plasma, atom, material physics, and astrophysics, etc. The platform has delivered ion beams of 400 species for 36?000 h. The average operation time is around 5000 h/year. With the beams provided by the platform, lots of outstanding progresses were made in various research fields. The ion source of the platform is an all-permanent magnet electron cyclotron resonance ion source, LAPECR2 (Lanzhou All Permanent ECR ion source No. 2). The maximum axial magnetic fields are 1.28 T at injection and 1.07 T at extraction, and the radial magnetic field is up to 1.21 T at the inner wall of the plasma chamber. The ion source is capable to produce low, medium, and high charge state gaseous and metallic ion beams, such as H{sup +}, {sup 40}Ar{sup 8+}, {sup 129}Xe{sup 30+}, {sup 209}Bi{sup 33+}, etc. This paper will present the latest result of LAPECR2 and the routine operation status for the high voltage platform.

  11. 2.3-MW Medium-Voltage, Three-Level Wind Energy Inverter Applying a Unique Bus Structure and 4.5-kV Si/SiC Hybrid Isolated Power Modules: Preprint

    SciTech Connect (OSTI)

    Erdman, W.; Keller, J.; Grider, D.; VanBrunt, E.

    2014-11-01T23:59:59.000Z

    A high-efficiency, 2.3-MW, medium-voltage, three-level inverter utilizing 4.5-kV Si/SiC (silicon carbide) hybrid modules for wind energy applications is discussed. The inverter addresses recent trends in siting the inverter within the base of multimegawatt turbine towers. A simplified split, three-layer laminated bus structure that maintains low parasitic inductances is introduced along with a low-voltage, high-current test method for determining these inductances. Feed-thru bushings, edge fill methods, and other design features of the laminated bus structure provide voltage isolation that is consistent with the 10.4-kV module isolation levels. Inverter efficiency improvement is a result of the (essential) elimination of the reverse recovery charge present in 4.5-kV Si PIN diodes, which can produce a significant reduction in diode turn-off losses as well as insulated-gate bipolar transistor (IGBT) turn-on losses. The hybrid modules are supplied in industry-standard 140 mm x 130 mm and 190 mm x 130 mm packages to demonstrate direct module substitution into existing inverter designs. A focus on laminated bus/capacitor-bank/module subassembly level switching performance is presented.

  12. Characterization of the environmental fate of Bacillus thuringiensis var. kaurstaki (Btk) after pest eradication efforts in Seattle, WA and Fairfax county, VA

    SciTech Connect (OSTI)

    Ticknor, Lawrence [Los Alamos National Laboratory; Van Cuyk, Sheila M [Los Alamos National Laboratory; Deshpande, Alina [Los Alamos National Laboratory; Omberg, Kristin M [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Understanding the fate of biological agents in the environment will be critical to recovery and restoration efforts after a biological attack. Los Alamos National Laboratory (LANL) is conducting experiments in the Seattle, WA and Fairfax County, VA areas to study agent fate in urban environments. As part of their gypsy moth suppression efforts, Washington State and Fairfax County have sprayed Bacillus thuringiensis var. kurstaki (Btk), a common organic pesticide for decades. Many of the spray zones have been in or near urban areas. LANL has collected surface and bulk samples from historical Seattle spray zones to characterize how long Btk persists at detectable levels in the environment, and how long it remains viable in different environmental matrices. This work will attempt to address three questions. First, how long does the agent remain viable at detectable levels? Second, what is the approximate magnitude and duration of resuspension? And third, does the agent transport into buildings? Data designed to address the first question will be presented. Preliminary results indicate Btk remains viable in the environment for at least two years.

  13. Utah_wa_correctional_facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict SolarJohn Keeler,Washington

  14. SunShot-funded Advanced Inverter Testing Enables 2,500 Solar Energy Systems

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski -BlueprintThis document details the frequently1 1.69 4.97to

  15. Proposed Amendment to Presidential Permit PP-63 and Associated Modifications to 500-kV International Transmission Line: Forbes, Minnesota to Manitoba, Canada, Northern States Power Company. Addendum to the final Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    This Addendum to the Final Environmental Assessment for the Proposed Amendment to Presidential Permit PP-63 and Associated Modifications to 500 kV International Transmission Line: Forbes, Minnesota to Manitoba, Canada (DOE/EA-587) addresses Northern States Power Company`s (NSP) proposed expansion of the Forbes Substation. The applicant has requested that the expansion take place on the west side of the substation, within the existing property line, instead of on the north side as originally proposed. All of the proposed construction would take place on property already owned by NSP. DOE has reviewed the environmental impacts associated with this minor modification and has determined that the conclusions reached in the environmental assessment and Finding of No Significant Impact prepared in connection with NSP`s original amendment request remain valid.

  16. Proposed amendment to presidential permit PP-63 and associated modifications to 500 kV international transmission line, Forbes, Minnesota to Manitoba, Canada. Addendum to the final environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    This Addendum to the Final Environmental Assessment for the Proposed Amendment to Presidential Permit PP-63 and Associated Modifications to 500 kV International Transmission Line: Forbes, Minnesota to Manitoba, Canada (DOE/EA-587) addresses Northern States Power Company`s (NSP) proposed expansion of the Forbes Substation. The applicant has requested that the expansion take place on the west side of the substation, within the existing property line, instead of on the north side as originally proposed. All of the proposed construction would take place on property already owned by NSP. DOE has reviewed the environmental impacts associated with this minor modification and has determined that the conclusions reached in the environmental assessment and Finding of No Significant Impact prepared in connection with NSP`s original amendment request remain valid.

  17. Type B Accident Investigation Board Report on the July 25, 1997...

    Broader source: Energy.gov (indexed) [DOE]

    July 25, 1997, Contract Brush Cutter Injury on the Ashe-Marion 2 500 kV Line Type B Accident Investigation Board Report on the July 25, 1997, Contract Brush Cutter Injury on the...

  18. Microsoft Word - Peninsula_Light_Co_L0308_Mod_CX_and_EnvCkLt...

    Broader source: Energy.gov (indexed) [DOE]

    proposes a modification to a tap line that would interconnect Peninsula Light Company (PLC) into BPA's Shelton-Kitsap 2 115-kV transmission line in Mason County, WA. The...

  19. Progress on the 140 KV, 10 Megawatt Peak, 1 Megawatt Average Polyphase Quasi-Resonant Bridge, Boost Converter/Modulator for the Spallation Neutron Source (SNS) Klystron Power System

    E-Print Network [OSTI]

    Reass, W A; Gribble, R F; Lynch, M T; Tallerico, P J; Reass, William A.; Doss, James D.; Gribble, Robert F.; Lynch, Michael T.; Tallerico, Paul J.

    2000-01-01T23:59:59.000Z

    This paper describes electrical design and operational characteristics of a zero-voltage-switching 20 kHz polyphase bridge, boost converter/modulator for klystron pulse application. The DC-DC converter derives the buss voltages from a standard 13.8 kV to 2300 Y substation cast-core transformer. Energy storage and filtering is provided by self-clearing metallized hazy polypropylene traction capacitors. Three "H-Bridge" IGBT switching networks are used to generate the polyphase 20 kHz transformers primary drive waveforms. The 20 kHz drive waveforms are chirped the appropriate duration to generate the desired klystron pulse width. PWM (pulse width modulation) of the individual 20 kHz pulses is utilized to provide regulated output waveforms with adaptive feedforward and feedback techniques. The boost transformer design utilizes amorphous nanocrystalline material that provides the required low core loss at design flux levels and switching frequencies. Resonant shunt peaking is used on the transformer secondary to ...

  20. Draft environmental impact statement for construction and operation of the proposed Bangor Hydro-Electric Company`s second 345-kV transmission tie line to New Brunswick

    SciTech Connect (OSTI)

    NONE

    1993-10-01T23:59:59.000Z

    This Draft Environmental Impact Statement (DEIS) was prepared by the US Department of Energy (US DOE). The proposed action is the issuance of Presidential Permit PP-89 by DOE to Bangor Hydro-Electric Company to construct and operate a new international transmission line interconnection to New Brunswick, Canada that would consist of an 83.8 mile (US portion), 345-kilovolt (kV) alternating current transmission line from the US-Canadian border at Baileyville, Maine to an existing substation at Orrington, Maine. The principal environmental impacts of the construction and operation of the transmission line would be incremental in nature and would include the conversion of forested uplands (mostly commercial timberlands) and wetlands to right-of-way (small trees, shrubs, and herbaceous vegetation). The proposed line would also result in localized minor to moderate visual impacts and would contribute a minor incremental increase in the exposure of some individuals to electromagnetic fields. This DEIS documents the purpose and need for the proposed action, describes the proposed action and alternatives considered and provides a comparison of the proposed and alternatives routes, and provides detailed information on analyses of the environmental consequences of the proposed action and alternatives, as well as mitigative measures to minimize impacts.

  1. Soil inorganic carbon storage pattern in China , S H A O Q I A N G WA N G *, J I Y U A N L I U *, G U I R U I Y U *, W E N J U A N Z H A N G *2

    E-Print Network [OSTI]

    Nacional de San Luis, Universidad

    Soil inorganic carbon storage pattern in China N A M I *1 , S H A O Q I A N G WA N G *, J I Y U A N San Luis, Argentina Abstract Soils with pedogenic carbonate cover about 30% (3.44 Â 106 km2 ) of China (1979­1992), total soil inorganic carbon (SIC) storage in China was estimated to be 53.3 Ć 6.3 PgC (1 Pg

  2. 2 I E E E S o f t wa r E Pu b l i s h e d b y t h e I EEE C o m p u t e r S o c i e t y 0 74 0 -74 5 9 / 0 9 / $ 2 5 . 0 0 2 0 0 9 I E E E The bazaar has three major advantages over

    E-Print Network [OSTI]

    and Prosumers End-user development (EUD) aims to enable end users "at some point to create, modify, or extend engineering superscript #12;September/October 2009 I E E E S o f t wa r E 3 the bazaar: the prosumer. A prosumer serves as producer and consumer. If appropriate, the pro- sumer produces the goods he or she and

  3. 500-kV Central Ferry Substation ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substation Y Y Central Ferry Substation T u c a n n o n R i v e r S n a k e R i v e r 12 U V 127 U V 127 U V 260 U V 261 12 Starbuck Starbuck W h i t m a n W h i t m a...

  4. Un total de 2.500 alumnos participan en los Cursos de Verano de la Universidad de Alicante

    E-Print Network [OSTI]

    Escolano, Francisco

    se le han unido, progresivamente otras, como la Escuela de Negocios de París �DHEC, la Universidad incorporado, además, dos nuevos cursos internacionales: Sports, Leisure and Recreation in Spain and the USA

  5. B&W Y-12 donates $2,500 to MMC Hospitality House | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumni AlumniFederalAshleymonthlyAwardsComplex Responds

  6. B&W Y-12 donates $2,500 to local Girl Scouts summer camp program | Y-12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumni AlumniFederalAshleymonthlyAwardsComplex

  7. art Phones ha versity of Wa

    E-Print Network [OSTI]

    Queitsch, Christine

    nts a potentia ed smart pho icer (CISO) e secure the sm ss code or PI e or PIN with one to lock au of the CISO bile work force d to importa ty application y, integrity, an y business, th er the followin ccess

  8. EIS-0346: Salmon Creek Project, WA

    Broader source: Energy.gov [DOE]

    This EIS analyzes BPA's proposal to fund activities that would restore sufficient water flows to Salmon Creek and rehabilitate its streambed as necessary to provide adequate passage for summer steelhead (Oncorhynchus mykiss) and possibly spring chinook (O. tshawytscha).

  9. Sumas, WA LNG Imports from Canada

    Gasoline and Diesel Fuel Update (EIA)

    12,530 7,769 9,768 6,016 10,409 3,547 1996-2014 Pipeline Prices 5.55 4.81 4.47 3.87 4.02 5.05 1996...

  10. 212 Union Ave, SE Olympia, WA 98501

    E-Print Network [OSTI]

    , the nation, and nations around the world begin to document and seek to reduce the amount of greenhouse gas Plan base case scenario, Northwest sources are expected to emit 71 million tons by 2024. An important

  11. Sumas, WA Natural Gas Exports to Canada

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndiaFeet)6Feet)3Year12,530 7,769

  12. Classroom Vocabulary Classroom Vocabulary [msamiati wa darasani

    E-Print Network [OSTI]

    ] [wall clock] [map / maps] [air conditioner / air conditioners] [picture / pictures] [drawing / drawings

  13. WA-TRIBE-STILLAGUAMISH TRIBE OF INDIANS

    Broader source: Energy.gov (indexed) [DOE]

    to and from the tribal medical, dental, behavioral health and massage clinics. Often the demand-response requests that come to STTS are for one to three passengers at a time;...

  14. Category:Seattle, WA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo BackLocation Media in categorySRMLWA

  15. RECIPIENT:WA Department of Commerce STATE: WA PROJECT Van Dyk...

    Broader source: Energy.gov (indexed) [DOE]

    A9 Information gathering (including, but not limited to, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such...

  16. RECIPIENT:WA Dept. of Commerce STATE: WA PROJECT SEP ARRA SIRTI...

    Broader source: Energy.gov (indexed) [DOE]

    A9 Information gathering (including, but not limited to, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such...

  17. Microsoft PowerPoint - SpringOpsCallHandout30May13.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R A T I O N Transmission Updates COI N>S * 4250 MW: 528 HE 07 to 601 HE 19 due to CISO-Round Mountain- Table Mountain 2 500kV Line Capacitor Bank 4 at Round Mountain * 4500...

  18. Microsoft PowerPoint - SpringOpsCallHandout13June13 [Compatibility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    S T R A T I O N Transmission Updates COI N>S * 4300 MW: 610 HE 08 to 613 HE 19 due to CISO-Malin-Round Mountain 2 500kV Series Cap Bank 2 BP&C at Round Mountain * 4500 MW: 613...

  19. Microsoft PowerPoint - SpringOpsCallHandout16May13 [Compatibility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    line and Grizzly-Malin 2 500KV line. NW GEN * 3200 MW: 523 HE 10 to 523 HE 17 due to CISO-Cottonwood CB 352 * 4250 MW: 523 HE 18 to 524 HE 24 CISO Round Mountain-Table...

  20. North Steens 230kV Transmission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jumpsource History View New PagesRiver Shores,North

  1. Alvey-Fairview No.1, 230 kV Rebuild

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta Fe Metro

  2. upper 2,500 m of the ocean. Below that depth, deep waters pre-sumably originating from the southern ocean were present. In

    E-Print Network [OSTI]

    Paytan, Adina

    mass spectrometry C-14 ages measured in planktonic foraminifera: Paleoceanographic implications system: Will man-made CO2 upset the current balance? Science, 278, 1582­1588. Broecker, W.S., and Maier, 57­84. Laj, C., Kissel, C., Mazaud, A., Michel, E., Muscheler, R., and Beer, J., 2002. Geomagnetic

  3. Advance Patent Waiver W(A)2010-049

    Broader source: Energy.gov [DOE]

    This is a request by PRAXAIR, INC for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-07NT43088

  4. Advance Patent Waiver W(A)2010-055

    Broader source: Energy.gov [DOE]

    This is a request by SUN POWER CORPORATIO for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0002066

  5. Advance Patent Waiver W(A)2013-019

    Broader source: Energy.gov [DOE]

    This is a request by CREE, INC. for a DOE waiver of domestic and foreign patent rights under agreement NGB-3-23028-01.

  6. Advance Patent Waiver W(A)2011-050

    Broader source: Energy.gov [DOE]

    This is a request by EMERSON ELECTRIC for a DOE waiver of domestic and foreign patent rights under agreement DE-FE0004000.

  7. Transit-Oriented Communities: a Blueprint for Bellingham, WA.

    E-Print Network [OSTI]

    Zaferatos, Nicholas C.

    to plan implementation), Sustainable Design Studio (exploring green building technologies and environmental challenges we currently face--including climate change, air quality concerns, water scarcity, food of the participating classes further build upon the planning concepts developed in planning studio. The program

  8. Advance Patent Waiver W(A)2008-031

    Broader source: Energy.gov [DOE]

    This is a request by Novozymes North America for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-07NT43084

  9. Advance Patent Waiver W(A)2008-042

    Broader source: Energy.gov [DOE]

    This is a request by Novozymes Inc. for a DOE waiver of domestic and foreign patent rights under agreement DE-FC36-0BG01BOBO

  10. Advance Patent Waiver W(A)2012-002

    Broader source: Energy.gov [DOE]

    This is a request by NOVOZYMES NORTH AMERICA, INC. for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-FE0007741.

  11. Advance Patent Waiver W(A)2012-024

    Broader source: Energy.gov [DOE]

    This is a request by SIEMENS ENERGY, INC. for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-EE0005493.

  12. Gaseous Detonation-Driven Fracture of Tubes Tong Wa Chao

    E-Print Network [OSTI]

    never asked for anything back. First is Professor Wolfgang Knauss, who guided me in the solid to be consistent with fracture under mixed-mode loading. High-speed movies of the fracture events and blast wave

  13. Issaquah Highlands Zero Energy Affordable Housing (WA) - YWCA

    SciTech Connect (OSTI)

    Tom, Vincent; DeRobbio, Wendy; Hall, Linda

    2012-04-30T23:59:59.000Z

    The YWCA Family Village at Issaquah, Net Zero Energy Approach Project provides a compelling model for how the nation can seriously respond to the critical need for affordable housing while advancing environmental standards and reducing economic inequities. Affordable housing developments for vulnerable members of the community and in today's workforce cannot overlook issues, such as climate impact, energy security and water conservation. This project's advanced building design was based on the goal of creating a 100 year building that could achieve net zero energy usage if funding had been available to support the final pieces of energy generation. The team worked closely with community stakeholders to ensure the baseline components of high quality and efficient building envelopes along with efficient systems were in place to set the stage for future incorporation of energy generating systems such as solar panels. As built, these 146 homes, large child care center and community services areas are proving the value of investing upfront for the benefit of future generations by reducing ongoing utility and maintenance costs with an eye toward environmental stewardship and community/resident education. The DOE award helped fund two critical energy conservation features for the YWCA Family Village at Issaquah campus: 1) super-insulated roof assembly with a continuous air barrier and 2) domestic hot water preheat system. The roof system at the YWCA Family Village at Issaquah project was built to include 6" of Polyiso rigid insulation (R-38) on top of the roof sheathing to provide a super-insulated roof in line with the other green features of the project. Placing the rigid insulation on top of the roof sheathing allows the building to have a continuous layer of insulation and provides a continuous air barrier. The domestic hot water preheat system includes flat panel arrays on roofs of the buildings that heat the water using solar power, which reduces the amount of heating needed from the gas-fired boilers. The flat-plate panels on the roof of the building heats the water using solar power. A heat exchanger transfers heat from water warmed by the panels to potable water for the units. The warmed potable water mixes with the tap water supply to create hot water for the buildings. This boost of water warmed by the solar panels reduces the heating costs for eh project by reducing the need to heat the water via gas-fired boilers. Both of these energy upgrades were chosen because they significantly improve the energy efficiency for the life of the building and are reducing monthly utility costs for both the residents and the owners. Since the owner is a not-for-profit dedicated to long-term ownership and serving households with very-low and low-incomes, the costs savings will ultimately benefit current and future residents as the dollars saved will either be realized directly by the resident or be invested in the project. Technically, the design of these systems is easily understood and the principles could be applied to other projects. The incremental costs depend largely on the existing market rate of the components-none of which are considered "cutting edge" so a market does currently exist.

  14. Advance Patent Waiver W(A)2005-004

    Broader source: Energy.gov [DOE]

    This is a request by ALSTO for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-03NT41986.

  15. Advance Patent Waiver W(A)2011-048

    Broader source: Energy.gov [DOE]

    This is a request by ADA-ES for a DOE waiver of domestic and foreign patent rights under agreement DE-FE0004343.

  16. Advance Patent Waiver W(A)2013-015

    Broader source: Energy.gov [DOE]

    This is a request by Caterpillar Inc for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0005980.

  17. Advance Patent Waiver W(A)2013-027

    Broader source: Energy.gov [DOE]

    This is a request by ELECTRICORE INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0005968

  18. Advance Patent Waiver W(A)2013-018

    Broader source: Energy.gov [DOE]

    This is a request by General Motors, LLC for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0006082.

  19. [Interview]: Alexandre Shvartsburg, Pacific Northwest National Laboratory, Richland, WA, USA

    SciTech Connect (OSTI)

    Shvartsburg, Alexandre A.

    2012-12-01T23:59:59.000Z

    Q1. What are your main research activities in ion mobility mass spectrometry (past or present)? My early efforts focused on the structural characterization of atomic (carbon and semiconductor) clusters. After the production of bulk fullerenes, many hoped that other nanoclusters discovered in the gas phase could also coalesce into new materials. As these studies required accurate and robust mobility calculations for any ion geometry, I strived to build the needed theory and implement it in the Mobcal software widely employed today. Since 2004, I have been developing methods and novel applications of differential IMS (FAIMS) at PNNL. The principal achievement has been raising the resolving power by over tenfold (up to ~400 for multiply-charged peptides) using elevated fields, helium and hydrogen-rich buffers, and extended filtering times. This performance broadly allows previously unthinkable separations of very similar species, for example sequence inversions and post-translational modification localization isomers of peptides (including “middle-down” peptides such as histone tails), lipid regioisomers, and even isotopomers. Another major direction is investigating the dipole alignment of larger proteins, which creates an exceptionally strong FAIMS effect that is a potential tool for structural biology. Q2: What have been the most significant instrumentation or applications developments in the history of ion mobility - mass spectrometry? In 1995 when I started graduate research at Northwestern, only two groups worldwide worked with IMS/MS and “the literature” meant papers by Bowers (UCSB). Well-wishers counseled me to “learn something useful like HPLC, as IMS would never have real utility”. This booklet showcases the scale of change since. First, the practical IMS/ToF platforms for complex biological analyses demonstrated by Clemmer have turned IMS/MS from an esoteric physical chemistry technique into a powerful analytical tool. By commercializing the IMS/ToF technology in Synapt instruments, Waters has greatly increased its impact via expanded number and diversity of applications. Concurrently, Guevremont at Canadian NRC has perfected FAIMS coupled to MS, deployed it for real-world bio and environmental analyses, and widely distributed it in the Ionalytics Selectra system (subsequently installed on Thermo MS platforms). The latest breakthrough is ultra-FAIMS by Owlstone, where extreme fields allow numerous qualitatively new separations and operational modes that we just begin to explore. Q3: Where do you see ion mobility - mass spectrometry making the most impact in the next 5 years? Any predictions for where the field will go? Sciences dealing with perturbations in media (such as optics or acoustics) at some point shift from the linear to nonlinear paradigm, where propagation depends on the magnitude of perturbation or its driving force. While the linear part remains industrially important (e.g., eyewear and architectural glass for optics), frontline research moves to nonlinear phenomena. IMS is undergoing that transition now with the rise of FAIMS, which should continue as the fundamental understanding improves, new modalities and applications emerge, and more instrumentation is introduced by vendors. Modifying and augmenting FAIMS separations through vapor dopants that render ion mobilities less linear is becoming routine. I expect this area to advance, extending to more specific interactions and to complexation with solution additives. Another route to higher separation power is integrating FAIMS with conventional IMS; proliferation of both technologies would make such 2-D platforms common. Along with mass spectrometry and conventional IMS, FAIMS will address increasingly large macromolecules, including proteins and their complexes.

  20. Advance Patent Waiver W(A)2010-031

    Broader source: Energy.gov [DOE]

    This is a request by CHRYSLER CORPORATION for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0003347

  1. Advance Patent Waiver W(A)2008-021

    Broader source: Energy.gov [DOE]

    This is a request by CARGILL, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FC36-07GO17055

  2. Advance Patent Waiver W(A)2011-024

    Broader source: Energy.gov [DOE]

    This is a request by SCHWEITZER ENGINEERING LAB INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-OE0000538.

  3. Advance Patent Waiver W(A)2011-023

    Broader source: Energy.gov [DOE]

    This is a request by SCHWEITZER ENGINEERING LAB INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-OE0000537.

  4. Advance Patent Waiver W(A)2008-022

    Broader source: Energy.gov [DOE]

    This is a request by ABENGOA BIOENERGY BIOMASS OF KANSAS, LLC for a DOE waiver of domestic and foreign patent rights under agreement DE-FC3607017028

  5. Advance Patent Waiver W(A)2005-053

    Broader source: Energy.gov [DOE]

    This is a request by ALLEGHENY TECHNLOGIES WAH CHANG DIVISION for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-05NT42513.

  6. EIS-0467: Hanford Site Natural Gas Pipeline, Richland, WA

    Broader source: Energy.gov [DOE]

    DOE has postponed preparation of this EIS to better align the completion of the EIS with planned future operations of facilities on Hanford’s Central Plateau (such as Hanford’s Waste Treatment and Immobilization Plant).

  7. Advance Patent Waiver W(A)2009-004

    Broader source: Energy.gov [DOE]

    This is a request by SCHLUMBERGER TECHNOLOGY CORP for a DOE waiver of domestic and foreign patent rights under agreement DE-FG36-08GO18182

  8. Advance Patent Waiver W(A)2009-069

    Broader source: Energy.gov [DOE]

    This is a request by ENVIRON INTERNATIOAL CORPORATION for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0000069

  9. Isotopic Studies of Contaminant Transport at the Hanford Site, WA

    E-Print Network [OSTI]

    Christensen, J.N.; Conrad, M.E.; DePaolo, D.J.; Dresel, P.E.

    2008-01-01T23:59:59.000Z

    High precision Th-230/Th- 232 and U-234/U-238 measurements using energy-filtered ICP magnetic sector multiple collector mass spectrometry.

  10. Advance Patent Waiver W(A)2006-019

    Broader source: Energy.gov [DOE]

    This is a request by NALCO CHEMICAL CORPORATION for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-06FT42721

  11. Advance Patent Waiver W(A)2011-026

    Broader source: Energy.gov [DOE]

    This is a request by US SYNTHETIC CORPORATION for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0003633.

  12. Advance Patent Waiver W(A)2008-026

    Broader source: Energy.gov [DOE]

    This is a request by Siemens Power Generation for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-98FT40343

  13. Advance Patent Waiver W(A)2005-055

    Broader source: Energy.gov [DOE]

    This is a request by SIEMEN for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-05NT42646.

  14. Advance Patent Waiver W(A)2005-054

    Broader source: Energy.gov [DOE]

    This is a request by SIEMEN for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-05NT42444.

  15. Advance Patent Waiver W(A)2012-028

    Broader source: Energy.gov [DOE]

    This is a request by SIEMENS ENERGY, INC. for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-FE0005666.

  16. Advance Patent Waiver W(A)2011-032

    Broader source: Energy.gov [DOE]

    This is a request by SIEMENS ENERGY, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FE0003714.

  17. Advance Patent Waiver W(A)2008-028

    Broader source: Energy.gov [DOE]

    This is a request by INEOS USA LLC for a DOE waiver of domestic and foreign patent rights under agreement DE-FG36-04GO14315

  18. Advance Patent Waiver W(A)2010-026

    Broader source: Energy.gov [DOE]

    This is a request by INEOS USA LLC for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0002883

  19. Advance Patent Waiver W(A)2008-035

    Broader source: Energy.gov [DOE]

    This is a request by POET RESEARCH, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FC36-08GO88033

  20. Advance Patent Waiver W(A)2011-065

    Broader source: Energy.gov [DOE]

    This is a request by OWENS CORNING for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0005338.

  1. Advance Patent Waiver W(A)2010-003

    Broader source: Energy.gov [DOE]

    This is a request by GENERAL ELECTRICC GLOBAL RESEARCH for a DOE waiver of domestic and foreign patent rights under agreement DE-FE0000784

  2. Advance Patent Waiver W(A)2010-062

    Broader source: Energy.gov [DOE]

    This is a request by PARKER HANNIFIN CORPORATION for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0000296

  3. Advance Patent Waiver W(A)2006-032

    Broader source: Energy.gov [DOE]

    This is a request by HONEYWELL INTERNATIONAL, INC. for a DOE waiver of domestic and foreign patent rights under agreement UNKNOWN

  4. Advance Patent Waiver W(A)2013-007

    Broader source: Energy.gov [DOE]

    This is a request by CA TCHLIGHT ENERGY, LLC for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0005974.

  5. Advance Patent Waiver W(A)2010-065

    Broader source: Energy.gov [DOE]

    This is a request by DRESSER WAUKESHA for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0004016

  6. Advance Patent Waiver W(A)2013-022

    Broader source: Energy.gov [DOE]

    This is a request by 3M COMPANY for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0005795.

  7. Advance Patent Waiver W(A)2013-006

    Broader source: Energy.gov [DOE]

    This is a request by PRINCIPLE POWER, INC for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0005987.

  8. Advance Patent Waiver W(A)2013-003

    Broader source: Energy.gov [DOE]

    This is a request by UNITED TECHNOLOGIES CORPORATION for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0006108.

  9. Advance Patent Waiver W(A)2006-029

    Broader source: Energy.gov [DOE]

    This is a request by GENSCAPE, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-06NT42795

  10. Arc magmatism at different crustal levels, North Cascades, WA

    E-Print Network [OSTI]

    Shea, Erin Kathleen McLaren

    2014-01-01T23:59:59.000Z

    The mechanisms of magma ascent and emplacement inferred from study of intrusive complexes have long been the subject of intense debate. Current models favor incremental construction, but much of this work has been focused ...

  11. Advance Patent Waiver W(A)2013-005

    Broader source: Energy.gov [DOE]

    This is a request by STATOIL WIND US LLC for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0005988.

  12. UNITED STATES Pesticides Peril Ocean Life, Scientists Wa rn

    E-Print Network [OSTI]

    Studies Aid Pollution Control NOAA Supports Salt-Marsh Research in Georgia Satellites Meas ure Sea-Surface Tempera- ture in U,S.-Mexico Survey Chesapeake Bay Hard Crabs Will Be Scarce This Summer VIMS Studies and James H. Redman Disease in the Lives of Fish - The Role of Pollution Is Now Being Assessed, by Rich- ard

  13. Advance Patent Waiver W(A)2011-013

    Broader source: Energy.gov [DOE]

    This is a request by UNITED TECHNOLOGIES RESEARCH CENTER for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0003953.

  14. EA-1949: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA

    Broader source: Energy.gov [DOE]

    This EA analyzes the potential environmental effects of a proposal by the Public Utility District No. 1 of Snohomish County, Washington to construct and operate the Admiralty Inlet Tidal Project. The proposed 680-kilowatt project would be located on the east side of Admiralty Inlet in Puget Sound, Washington, about 1 kilometer west of Whidbey Island, entirely within Island County, Washington. The Federal Energy Regulatory Commission (FERC) is the lead agency. The DOE NEPA process for this project has been canceled.

  15. Advance Patent Waiver W(A)2007-020

    Broader source: Energy.gov [DOE]

    This is a request by GENERAL ELECTRIC for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-06NT42950

  16. Advance Patent Waiver W(A)2010-036

    Broader source: Energy.gov [DOE]

    This is a request by GE GLOBAL RESEARCH for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0003251

  17. Advance Patent Waiver W(A)2011-062

    Broader source: Energy.gov [DOE]

    This is a request by ABENGOA SOLAR INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FC36-08GO18038.

  18. Advance Patent Waiver W(A)2005-049

    Broader source: Energy.gov [DOE]

    This is a request by AMERICAN AIR LIQUIDE for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-02NT41586.

  19. Advance Patent Waiver W(A)2011-070

    Broader source: Energy.gov [DOE]

    This is a request by CASCADE ENGINEERING INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0005440.

  20. Advance Patent Waiver W(A)2009-060

    Broader source: Energy.gov [DOE]

    This is a request by PARKER HANNIFIN CORPORATION for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0000412

  1. Advance Patent Waiver W(A)2010-034

    Broader source: Energy.gov [DOE]

    This is a request by LUMINATION, LLC for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0003232

  2. Advance Patent Waiver W(A)2011-049

    Broader source: Energy.gov [DOE]

    This is a request by DOW CHEMICAL COMPANY for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0003916.

  3. Advance Patent Waiver W(A)2012-029

    Broader source: Energy.gov [DOE]

    This is a request by ALCOA COMMERICAL WINDOWS, LLC for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-EE0004012.

  4. Advance Patent Waiver W(A)2011-052

    Broader source: Energy.gov [DOE]

    This is a request by 3M COMPANY for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0000456.

  5. Advance Patent Waiver W(A)2012-030

    Broader source: Energy.gov [DOE]

    This is a request by SRI INTERNATIONAL for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-FE0000896.

  6. Advance Patent Waiver W(A)2011-001

    Broader source: Energy.gov [DOE]

    This is a request by PRAXAIR, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FE0004908.

  7. Advance Patent Waiver W(A)2012-027

    Broader source: Energy.gov [DOE]

    This is a request by DAIMIER TRUCKS NORTH AMERICA for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-EE0003348.

  8. Publications aWaRds,publications,pRoceedings,

    E-Print Network [OSTI]

    Davis, Lloyd M.

    : Christian G. Parigger, Alexander C. Woods, and Mohammad R. Rezaee, "Atomic Hydrogen and Molecular Carbon, S. R. Mishra, J. A. Johnson, "Rare earth doped downshifting glass ceramics for photovoltaic

  9. Advance Patent Waiver W(A)2011-002

    Broader source: Energy.gov [DOE]

    This is a request by APPLIED MATERIALS, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0003838.

  10. Advance Patent Waiver W(A)2013-014

    Broader source: Energy.gov [DOE]

    This is a request by W.R GRACE AND CO for a DOE waiver of domestic and foreign patent rights under agreement DE- EE0005991.

  11. Advance Patent Waiver W(A)2011-008

    Broader source: Energy.gov [DOE]

    This is a request by CERAMATEC, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0000395.

  12. Advance Patent Waiver W(A)2005-031

    Broader source: Energy.gov [DOE]

    This is a request by OSRAM SYLVANIA PRODUCTS, INC for a DOE waiver of domestic and foreign patent rights under agreement DE-FG36-05GO85042.

  13. Advance Patent Waiver W(A)2008-005

    Broader source: Energy.gov [DOE]

    This is a request by AMERICAN SUPERCONDUCTOR CORPORATION for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-07NT43243

  14. Advance Patent Waiver W(A)2008-043

    Broader source: Energy.gov [DOE]

    This is a request by AMERICAN SUPERCONDUCTOR CORPORATION for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-07NT43240

  15. Advance Patent Waiver W(A)2006-005

    Broader source: Energy.gov [DOE]

    This is a request by AIR PRODUCTS & CHEMICALS for a DOE waiver of domestic and foreign patent rights under agreement DE-FG36-05GO85026

  16. Advance Patent Waiver W(A)2011-046

    Broader source: Energy.gov [DOE]

    This is a request by ALSTOM GRID INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-OE0000551.

  17. Advance Patent Waiver W(A)2011-037

    Broader source: Energy.gov [DOE]

    This is a request by DELPHI AUTOMOTIVE SYSTEMS, LLC for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0000478.

  18. Advance Patent Waiver W(A)2009-064

    Broader source: Energy.gov [DOE]

    This is a request by ROLLS ROYCE FUEL SYSTEMS for a DOE waiver of domestic and foreign patent rights under agreement DE-FE0000303

  19. Advance Patent Waiver W(A)2007-022

    Broader source: Energy.gov [DOE]

    This is a request by SIEMENS for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-02NT41247

  20. Advance Patent Waiver W(A)2005-062

    Broader source: Energy.gov [DOE]

    This is a request by UNITED TECHNOLOGIES CORPORATION for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-05NT42626.

  1. Advance Patent Waiver W(A)2010-054

    Broader source: Energy.gov [DOE]

    This is a request by UNITED TECHNOLOGIE for a DOE waiver of domestic and foreign patent rights under agreement DE-NT003894

  2. Advance Patent Waiver W(A)2010-019

    Broader source: Energy.gov [DOE]

    This is a request by PRAXAIR, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FC36-08GO18063

  3. Advance Patent Waiver W(A)2012-016

    Broader source: Energy.gov [DOE]

    This is a request by LINDE, INC. for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-FE0007453.

  4. Advance Patent Waiver W(A)2011-018

    Broader source: Energy.gov [DOE]

    This is a request by ESOLAR for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0003595.

  5. Advance Patent Waiver W(A)2013-008

    Broader source: Energy.gov [DOE]

    This is a request by GENERAL MOTORS LLC for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0005969.

  6. Advance Patent Waiver W(A)2012-033

    Broader source: Energy.gov [DOE]

    This is a request by GE-GLOBAL RESEARCH for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-OE000593.

  7. Advance Patent Waiver W(A)2012-020

    Broader source: Energy.gov [DOE]

    This is a request by CLIPPER WINDPOWER LLC for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-EE0005141.

  8. Advance Patent Waiver W(A)2012-031

    Broader source: Energy.gov [DOE]

    This is a request by SRI INTERNATIONAL for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-NT0005578.

  9. Advance Patent Waiver W(A)2010-033

    Broader source: Energy.gov [DOE]

    This is a request by ROLLS ROYCE FUEL SYSTEMS for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-08NT01911

  10. Title: Advance Patent Waiver W(A)2011-041

    Broader source: Energy.gov [DOE]

    This is a request by GENERAL MOTOR for a DOE waiver of domestic and foreign patent rights under agreement DE-AC36-08GO28308.

  11. Advance Patent Waiver W(A)2012-032

    Broader source: Energy.gov [DOE]

    This is a request by EATON CORPORATION for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-EE0005665.

  12. Advance Patent Waiver W(A)2008-046

    Broader source: Energy.gov [DOE]

    This is a request by EATON CORPORATION for a DOE waiver of domestic and foreign patent rights under agreement DE-FG36-08GO18131

  13. Advance Patent Waiver W(A)2007-005

    Broader source: Energy.gov [DOE]

    This is a request by EATON CORPORATION for a DOE waiver of domestic and foreign patent rights under agreement DE-FG36-06GO16054

  14. Advance Patent Waiver W(A)2011-030

    Broader source: Energy.gov [DOE]

    This is a request by EATON CORPORATION for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0003911.

  15. Advance Patent Waiver W(A)2012-025

    Broader source: Energy.gov [DOE]

    This is a request by EATON CORPORATION for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-OE0000592.

  16. Advance Patent Waiver W(A)2011-027

    Broader source: Energy.gov [DOE]

    This is a request by VARIAN ASSOCIATES, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0004737.

  17. Advance Patent Waiver W(A)2009-020

    Broader source: Energy.gov [DOE]

    This is a request by PRAXAIR, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-NT0005341

  18. Advance Patent Waiver W(A)2010-024

    Broader source: Energy.gov [DOE]

    This is a request by EASTMAN CHEMICAL COMPANY for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-05NT42469

  19. Advance Patent Waiver W(A)2009-048

    Broader source: Energy.gov [DOE]

    This is a request by GENERAL ELECTRIC COMPANY for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-08NT0005310

  20. Advance Patent Waiver W(A)2009-002

    Broader source: Energy.gov [DOE]

    This is a request by JOHNSON MATTNEY FUEL CELLS INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FG36-07GO17019

  1. Advance Patent Waiver W(A)2009-009

    Broader source: Energy.gov [DOE]

    This is a request by BAKER HUGHES for a DOE waiver of domestic and foreign patent rights under agreement DE-FG08-GO18186

  2. Advance Patent Waiver W(A)2005-016

    Broader source: Energy.gov [DOE]

    This is a request by BAKER HUGHES INTERNATIONAL for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-05NT15488.

  3. Station Processing for a Low Frequency Array in WA

    E-Print Network [OSTI]

    Ellingson, Steven W.

    for the remote station, minus 2 kW for cooling (considered "infrastructure"). #12;Station Processing Requirements stations (regardless of role as remote or core) (yes; remote stations can be "less" not "different") 2 (yes: 2-3 for core, 1 for remote) 6. Cost: TBD. (Prorated cost of ~US$500 per dual-pol element

  4. Advance Patent Waiver W(A)2005-025

    Broader source: Energy.gov [DOE]

    This is a request by G.E. NUCLEAR ENERGY for a DOE waiver of domestic and foreign patent rights under agreement DE-FC07-05ID14635

  5. Advance Patent Waiver W(A)2005-027

    Broader source: Energy.gov [DOE]

    This is a request by WESTINGHOUSE ELECTRIC CORPORATION for a DOE waiver of domestic and foreign patent rights under agreement DE-FC07-05ID14636.

  6. Advance Patent Waiver W(A)2005-023

    Broader source: Energy.gov [DOE]

    This is a request by HEADWATER for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-04NT42448.

  7. Advance Patent Waiver W(A)2010-042

    Broader source: Energy.gov [DOE]

    This is a request by UNIVERSITY OF NORTH DAKOTA for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-08NT43291

  8. Advance Patent Waiver W(A)2005-058

    Broader source: Energy.gov [DOE]

    This is a request by ASTRONAUTICS CORPORATION for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-03NT1948.

  9. Advance Patent Waiver W(A)2005-060

    Broader source: Energy.gov [DOE]

    This is a request by SHELL SOLAR INDUSTRIES, LP for a DOE waiver of domestic and foreign patent rights under agreement DE-AC36-98GO10337.

  10. Advance Patent Waiver W(A)2010-012

    Broader source: Energy.gov [DOE]

    This is a request by CRAY, INC. for a DOE waiver of domestic and foreign patent rights under agreement B580786

  11. Advance Patent Waiver W(A)2005-051

    Broader source: Energy.gov [DOE]

    This is a request by SOUTHERN COMPANY SERVICE for a DOE waiver of domestic and foreign patent rights under agreement DE-FC02-05CH11327.

  12. 18130 Midvale Ave. N., Suite C Shoreline, WA 98133

    E-Print Network [OSTI]

    proposals are borrowed from the customer ideas and from the ideas of Save Our Wild Salmon, and Northwest Energy Coalition. Long-Term Vision We encourage Bonneville to take a long-term vision. We have been sized systems are the best value as they are responsive to specific needs. Long term energy planning

  13. FITCH RATES ENERGY NORTHWEST (WA) ELECTRIC REV REF BONDS 'AA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SECURITY Energy Northwest (ENW) bonds are secured by payments from the Bonneville Power Administration (Bonneville). Bonneville's payment to ENW is made as an operating...

  14. Advance Patent Waiver W(A)2007-002

    Broader source: Energy.gov [DOE]

    This is a request by HONEYWELL INTERNATIONAL, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-06NT42947

  15. Advance Patent Waiver W(A)2005-032

    Broader source: Energy.gov [DOE]

    This is a request by HONEYWELL INTERNATIONAL, INC for a DOE waiver of domestic and foreign patent rights under agreement DE-FC36-02AL67624.

  16. Advance Patent Waiver W(A)2011-036

    Broader source: Energy.gov [DOE]

    This is a request by HONEYWELL LABORATORIES for a DOE waiver of domestic and foreign patent rights under agreement DE-OE0000544.

  17. Advance Patent Waiver W(A)2010-057

    Broader source: Energy.gov [DOE]

    This is a request by HONEYWELL INTERNATIONAL, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0003840

  18. Advance Patent Waiver W(A)2005-005

    Broader source: Energy.gov [DOE]

    This is a request by HONEYWELL, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-00OR22809.

  19. EIS-0467: Hanford Site Natural Gas Pipeline, Richland, WA | Department...

    Broader source: Energy.gov (indexed) [DOE]

    evaluate the environmental impacts of a proposal to enter into a contract with a licensed natural gas supplier in Washington State to construct, operate, and maintain a natural gas...

  20. EIS-0244: Plutonium Finishing Plant Stabilization, Hanford Site, Richland, WA

    Broader source: Energy.gov [DOE]

    This EIS evaluates the impacts on the human environment of: Stabilization of residual, plutonium-bearing materials at the PFP Facility to a form suitable for interim storage at the PFP Facility. Immobilization of residual plutonium-bearing materials at the PFP Facility. Removal of readily retrievable, plutonium-bearing materials left behind in process equipment, process areas, and air and liquid waste management systems as a result of historic uses.

  1. Advance Patent Waiver W(A)2011-058

    Broader source: Energy.gov [DOE]

    This is a request by GENERAL ELECTRIC CO. for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0005143.

  2. EIS-0189: Tank Waste Remediation System (TWRS), Richland, WA (Programmatic)

    Broader source: Energy.gov [DOE]

    This environmental impact statement evaluates the Department of Energy (DOE)'s, in cooperation with the Washington State Department of Ecology (Ecology), decisions on how to properly manage and dispose of Hanford Site tank waste and encapsulated cesium and strontium to reduce existing and potential future risk to the public, Site workers, and the environment. The waste includes radioactive, hazardous, and mixed waste currently stored in 177 underground storage tanks, approximately 60 other smaller active and inactive miscellaneous underground storage tanks (MUSTs), and additional Site waste likely to be added to the tank waste, which is part of the tank farm system. In addition, DOE proposes to manage and dispose of approximately 1,930 cesium and strontium capsules that are by-products of tank waste. The tank waste and capsules are located in the 200 Areas of the Hanford Site near Richland, Washington.

  3. Advance Patent Waiver W(A)2005-017

    Broader source: Energy.gov [DOE]

    This is a request by OSRA for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-05NT42341.

  4. Advance Patent Waiver W(A)2010-020

    Broader source: Energy.gov [DOE]

    This is a request by HALOTECHNICS, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FC36-08GO18144

  5. EIS-0330: Wallula Power Project, Walla Walla County, WA

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposal to construct, operate, maintain, and decontaminate and decommission two depleted uranium hexafluoride (DUF 6) conversion facilities, at Portsmouth, Ohio, and Paducah, Kentucky.

  6. Sumas, WA Liquefied Natural Gas Imports (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndiaFeet)6Feet)3Year Jan1363(Million

  7. Sumas, WA Natural Gas Imports by Pipeline from Canada

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndiaFeet)6Feet)3Year12,530

  8. Advance Patent Waiver W(A)2011-072

    Broader source: Energy.gov [DOE]

    This is a request by GE GLOBAL RESEARCHH CENTER for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0005344.

  9. Hanford, WA Selected as Plutonium Production Facility | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office ofDepartment ofrAdministrationNational|HSEMC

  10. File:INL-geothermal-wa.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,SizeEthiopiametstak.pdf Jump to:nv.pdf Jump100

  11. Petra Nova - W.A. Parish Project | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO Overview OCHCO OCHCOControlGuide to a BalancedPersonnel Security

  12. Microsoft Word - WA Parish_MAP_Final.docx

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the National NuclearRegulation;I07 AnnualMicrosoft WordW.A.

  13. RAPID/Roadmap/15-WA-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, search RAPIDaUT-ab <

  14. RAPID/Roadmap/3-WA-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, searche <c <caca <

  15. Microsoft Word - WA Parish_MAP_Final.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625 FINALOptimizationForArticle

  16. C:\Temp_jhd\spacers\spacers_wa_2014.prn

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r k C o . C l a r24 TITLE 5-GOVERNMENTI

  17. BayWa Sunways JV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/CuriumAguaBBB UmwelttechnikBarloventoSunways JV

  18. DOE - Office of Legacy Management -- Hanford Engineer Works - WA 01

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizonaBuffalo -ElkGuterl Specialty Steel -Hanford

  19. RAPID/Roadmap/11-WA-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas) Redirecta <

  20. RAPID/Roadmap/11-WA-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas) Redirecta <b < RAPID‎ |

  1. RAPID/Roadmap/11-WA-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas) Redirecta <b < RAPID‎ |c

  2. RAPID/Roadmap/12-WA-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-a < RAPID‎ |TX-a

  3. RAPID/Roadmap/12-WA-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-a < RAPID‎ |TX-ab <

  4. RAPID/Roadmap/13-WA-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-a < RAPID‎ID-a

  5. RAPID/Roadmap/14-WA-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ | Roadmap Jump to:b <

  6. RAPID/Roadmap/14-WA-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ | Roadmap Jump to:b

  7. RAPID/Roadmap/14-WA-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ | Roadmap Jump to:bd <

  8. RAPID/Roadmap/14-WA-e | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ | Roadmap Jump to:bd <e

  9. RAPID/Roadmap/15-WA-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ | Roadmap JumpTX-a <a <

  10. RAPID/Roadmap/18-WA-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ | RoadmapHI-ac <8-UT-ba

  11. RAPID/Roadmap/18-WA-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ | RoadmapHI-ac <8-UT-bab

  12. RAPID/Roadmap/19-WA-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |g < RAPID‎

  13. RAPID/Roadmap/19-WA-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |g <

  14. RAPID/Roadmap/19-WA-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |g

  15. RAPID/Roadmap/8-WA-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-kc <

  16. RAPID/Roadmap/9-WA-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-kcFD-i <kOR-aa

  17. RAPID/Roadmap/9-WA-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-kcFD-i <kOR-aab

  18. RAPID/Roadmap/9-WA-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-kcFD-i <kOR-aabc

  19. EA-1551: Montana Alberta Tie Ltd. (MATL) 230-KV Transmission Line

    Broader source: Energy.gov [DOE]

    DOE started to prepare, jointly with the Montana Department of Environmental Quality (MDEQ), an EA that would also serve as a state EIS. The document would evaluate the potential environmental impacts of a proposed international transmission line that would cross the U.S.-Canada border in northwest Montana. Based on comments received on the DOE Draft EA/MDEQ Draft EIS, DOE cancelled preparation of the EA and announced preparation of DOE/EIS-0399 (of the same title).

  20. EIS-0301: NRG Energy Services, Inc., Arizona-Baja California 500 kV Transmission Line

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve NRG Energy, Inc. (NRG) for a Presidential permit to construct a 500,000-volt transmission line originating at the switchyard of the Palo Verde Nuclear Generating Station near Phoenix, Arizona, and extending approximately 177 miles to the southwest, where it would cross the United States (U.S.) border with Mexico in the vicinity of Calexico, California.

  1. Abstract Number #10041 A 150kV/300A/1s COAXIAL BLUMLEIN PULSER

    E-Print Network [OSTI]

    . They consist of pieces of transmission lines charged in parallel , which discharge synchronously in series generators made of pieces of transmission lines and normally used in a great variety of applications

  2. Gain Measurement of Antennas using RFID Pavel V. Nikitin and K.V. S. Rao

    E-Print Network [OSTI]

    Hochberg, Michael

    modulation [4-6], using fixed impedance loads [7], and special small battery operated RF transceivers [8 impedance) and could not be replaced with an arbitrary 50 Ohm antenna. Here, we propose a method to measure includes the effect of impedance mismatch for a particular load (chip assembly). First, a measurement

  3. 2008. The Cartographic Section, Dept. of Geography, UWO /#19-09/kv To Spencer Hall

    E-Print Network [OSTI]

    Lennard, William N.

    Perth Hall University Child Care Centre UWO Books Plus Platt's Lane Estates TD Waterhouse Stadium Wind 367363357 UNIVERSITY PLATT'SLANE LAMBTON OXFORD KENT UNIVERSITY PERTH SARNIA ROAD BURNLEA WALK BRESCIALANE's University College at UWO HURON WINDERMERE ROAD GLENMORE ELGIN WESTERN ROAD PLATT'SLANE UNIVERSITY HILL

  4. ETM (Distribution Network Automation on 10 kV cable line stations...

    Open Energy Info (EERE)

    will be equipped by RTUs, to provide remote observability and remote control. The communication (connection) is established via GSM network. References "EU Smart Grid...

  5. DESIGN AND PSPICE SIMULATION OF A 150KV/300A/1S COAXIAL PULSE GENERATOR

    E-Print Network [OSTI]

    that contributes to the power loss of the device and the requirement of long lengths of lines for operation, reducing the output current and, thus, contributing less to the overall power loss of the device

  6. ac 66-1100 kv: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    limits. The models are used to estimate the benefits of electricity locational marginal pricing (LMP) that arise from de Gispert, Adri 403 www.eprg.group.cam.ac.uk...

  7. Aalborg Universitet Line Differential Protection Scheme Modelling for Underground 420 kV Cable Systems

    E-Print Network [OSTI]

    Bak, Claus Leth

    alternating current) cable system, a detailed approach to EMTDC/PSCAD modelling of protective relays configuration of the protective relaying. The present paper describes modelling methodology on the basis differential protection, XLPE HVAC cable, EMTDC/PSCAD relay model, SIPROTEC 4 7SD522, 7SD610. 1. Introduction

  8. Gating Currents from Kv7 Channels Carrying Neuronal Hyperexcitability Mutations in the Voltage-Sensing Domain

    E-Print Network [OSTI]

    Bezanilla, Francisco

    unable to provide a detailed assessment of the structural rearrangements underlying channel gating.2 channels both functionally and structurally, were used for these experiments. The data obtained showed activation of gating-pore currents at depolarized potentials. These results reveal that distinct molecular

  9. High speed transfer switch with 50 kA and 50 kV

    SciTech Connect (OSTI)

    Reass, W.A.; Kasik, R.J.; Wilds, W.A.

    1989-01-01T23:59:59.000Z

    This paper gives the mechanical design and electrical parameters of a pneumatically operated transfer switch. This design is used to switch 3-second 50-kA current pulses, and is easily capable of 75 kA operation (2 {times} 10{sup 10} I{sup 2}t); with water-cooled versions capable of 20 kA continuously. Although the switch is not specifically designed to make or break 50 kA, it is provided with auxiliary Elkonite arcing contacts have proven their value in protecting the main electrodes even under repetitive (50 kA) fault conditions. Included in this presentation will be the results of extensive life testing and associated criteria. 6 figs., 1 tab.

  10. Revised Biological Assessment for the Carrizo-Midway 230kV Reconductor...

    Broader source: Energy.gov (indexed) [DOE]

    (CAISO) has determined that transmission upgrades will be required to deliver the energy generated by proposed the Topaz Solar Farm Project on the Carrizo Plain....

  11. Microsoft Word - Deering Lake-Eckley 115-kV Transmission Line...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    window washing, lawn mowing, trash collection, painting, and snow removal). Routine maintenance activities, corrective (that is, repair), preventive, and predictive, are...

  12. EIS-0159: Flatiron-Erie 115-kV Transmission Line

    Broader source: Energy.gov [DOE]

    "The Western Area Power Administration proposes to build 27 new wood H-frame structures along the line, to replace or modify 45 of the existing structures and to remove 11 of them."

  13. Bouse Hills Pumping Plant to Harcuvar 115-kV Transmission Line

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    areas, and other water sources that are vital in a region); and X (vii) Tundra, coral reefs, or rain forests.; or X (5) Involve genetically engineered organisms, synthetic...

  14. Mead-Liberty 345-kV Transmission Line Access Road Maintenance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    areas, and other water sources that are vital in a region); and X (vii) Tundra, coral reefs, or rain forests.; or X (5) Involve genetically engineered organisms, synthetic...

  15. International 345 kV transmission line to Highgate, Vermont: environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1985-02-01T23:59:59.000Z

    The action under consideration is the issuance of a Presidential permit to the Vermont Electric Power Company, Inc. (VELCO) for the construction, operation, maintenance and connection of a facility that will cross the United States-Canada border for international transmission of electric energy. The proposed transmission facilities will consist of a 7.5 mile, alternating current (ac) transmission line and a 200 MW back-to-back direct current (dc) converter terminal station. None of the facilities will involve any polluting emissions. The construction and maintenance of the proposed converter terminal station and transmission facilities will have little or no impact on the geologic features of the region. The transmission line will have little or no effect on agricultural land. Impacts on commercial forestry in the area will be minimal. The proposed route will require clearing about 36 acres of forest. The proposed transmission line and converter terminal site will have no effect on recreational activities, mining activites, residential, commercial, or industrial land use. The proposed corridor will have a minimal impact on area terrestrial wildlife and plant communities. The proposed project will have little or no impact on future population distribution, the operation of local services, employment and economic benefit, or housing in either Franklin or Highgate. 16 references, 3 figures. (ACR)

  16. ESS 2012 Peer Review - 15 kV Phase Leg Power Modules with SiC...

    Broader source: Energy.gov (indexed) [DOE]

    +1 703 996 8200 43670 Trade Center Pl 155; Dulles VA 20166 September 27, 2012 Acknowledgement: The authors thank Dr. Imre Gyuk for funding this work and Dr. Stan Atcitty for...

  17. Development and interrupting tests on 250KV 8KA HVDC circuit breaker

    SciTech Connect (OSTI)

    Tokuyama, S.; Arimatsu, K.; Hirata, K.; Kato, Y.; Yoshioka, Y.

    1985-09-01T23:59:59.000Z

    This paper describes the circuit and component selections, development and equivalent circuit test results on an HVDC circuit breaker for an HVDC transmission line. A puffer type SF/sub 6/ gas interrupter for AC circuit breakers is utilized for interrupting DC current with injection of high-frequency inverse current from a commutating capacitor precharged to HVDC line voltage. Also, the effectiveness of application of the HVDC breaker to an HVDC system with two parallel transmission lines is demonstrated through the EMTP simulation.

  18. Space charge measurements downwind from a monopolar 500 KV HVDC test line

    SciTech Connect (OSTI)

    Carter, P.J.; Johnson, G.B. (General Electric Co., EPRI-High Voltage Transmission, Research Center, Lenox, MA (US))

    1988-10-01T23:59:59.000Z

    One quantity that helps describe the electrical environment in the vicinity of a HVDC line is space charge, a quantity that consists of charged air ions and charged aerosols. This paper describes measurements made at the Electric Power Research Institute's High Voltage Transmission Research Center (HVTRC) in Lenox, MA to determine the concentration of space charge present downwind of a HVDC test line and the influence of wind on the space charge level. The instrumentation used to make the measurements of space charge downwind of the line is also described.

  19. EIS-0078: Jonesboro-Hergett 161-kV Transmission Line

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Southwestern Power Administration developed this statement to assess the environmental and socioeconomic impacts of a 161-kilovolt transmission line in Craighead County, Arkansas, including its proposed and alternate routes.

  20. EIS-0399: Montana Alberta Tie Ltd. (MATL) 230-KV Transmission Line

    Broader source: Energy.gov [DOE]

    DOE, jointly with the Montana Department of Environmental Quality (MDEQ), prepared an EIS that evaluated the potential environmental impacts of a proposed international transmission line that would cross the U.S.-Canada border in northwest Montana.

  1. EIS-0103: New England/Hydro-Quebec 450-kV Direct Current Transmission Line Interconnection

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration prepared this statement to evaluate the environmental impacts of the construction, maintenance and operation of a 57-mile transmission line from Monroe, New Hampshire, to the U.S./Canadian border for the purpose of economic exchange of power and increased reliability.

  2. EIS-0100: Liberty-Coolidge 230-kV Transmission Line, Arizona

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Western Area Power Administration prepared this statement to assess the potential environmental and socioeconomic implications of various alternatives associated with an upgrade of electrical transmission capability between the Liberty and Coolidge Substations.

  3. EIS-0112: Rifle to San Juan 345-kV Transmission Line and Associated Facilities

    Broader source: Energy.gov [DOE]

    The U.S. Department of Agriculture - Rural Electrification Administration developed this statement to evaluate the environmental impacts of the Colorado-Ute Electric Association Inc. and the U.s. Department of Energy's Western Area Power Administration (WAPA) constructing and operating a 345-kilovolt transmission line from Rifle, Colorado, to the San Juan Generating Station near Farmington, New Mexico. WAPA served as a cooperating agency in the preparation of this statement and adopted it on 10/30/1984. WAPA assumed the lead role for project implementation after issuance of the final statement.

  4. EIS-0118: Proposed Eugene-Medford 500-kV Transmission Line

    Broader source: Energy.gov [DOE]

    The U.S. Department of Interior developed this statement to assess the environmental impact of a proposed 500-kilovolt transmission line linking Eugene and Medford, Oregon, that would cross through public lands. The Bonneville Power Administration (BPA) would provide service to the proposed line and is a cooperating agency in the statement. BPA adopted the EIS on 7/10/1985.

  5. EIS-0129: New England/Hydro-Quebec 450 kV Transmission Line Interconnection- Phase II

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration issued this EIS to explore the impacts of amending Presidential Permit PP-76 to allow the Vermont Electrical Company to operate at power levels above those stipulated in the permit and to build additional transmission facilities to distribute the increased power.

  6. EIS-0011: New Melones 230-kV Electrical Transmission Line, Central Valley Project, California

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Western Area Power Administration prepared this statement to evaluate the environmental impacts of proposed development of an electrical transmission system for the New Melones Power Plant.

  7. EIS-0505: Vantage to Pomona Heights 230 kV Transmission Line Project;

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised FindingDepartmentDepartmentStatement | Department ofDepartmentDepartment

  8. Back-to-Back Energization of a 60kV Cable Network -Inrush Currents Phenomenon

    E-Print Network [OSTI]

    Silva, Filipe Faria Da

    is with the Institute of Energy Technology, Aalborg University, 9220 Aalborg, Demark (e-mail: clb@iet.aau.dk). M. Lind was supported by ENV: Elforsyningen Nordvendsyssel F. F. da Silva is a PhD student at the Institute of Energy Technology, Aalborg University, 9220 Aalborg, Denmark (e-mail: ffs@iet.aau.dk). C. L. Bak

  9. EIS-0091: Garrison-Spokane 500-kV Transmission Project

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Bonneville Power Administration (BPA) developed this statement to evaluate the environmental impacts of constructing between 254 and 271 miles of 500-kilovolt transmission line across western Montana and northern Idaho to the Spokane area in order to reinforce a section of the BPA electric power grid and to permit reliable integration of 1,240 megawatts of power produced by Colstrip Units 3 and 4, for use in Montana and throughout the Northwest.

  10. Cameron to Milford-138kV Transmission Line | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermits Manual Jump to:(RECP) inCounty, Texas:Cameron to

  11. Further Notice of 230kV Circuit Planned Outages | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies ProgramOutfittedof6 * September 2005Further Notice

  12. Notification of Planned 230kV Outage at Potomac River Generating Station

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O N N789266 FederalJuly 6, 2006

  13. Notification of Planned 230kV Outage at Potomac River Generating Station |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O N N789266 FederalJuly 6,

  14. Notification of Planned 230kV Outage at Potomac River Generating Station |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O N N789266 FederalJuly

  15. Notification of Planned 230kV Outage at Potomac River Generating Station |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O N N789266 FederalJulyDepartment

  16. Notification of Planned 230kV Outage at Potomac River Generating Station |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O N N789266

  17. Notification of Planned 230kV Outage at Potomac River Generating Station |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIREofNewsletterEnergySeptember 16,

  18. Notification of Planned 230kV Outage at Potomac River Generating Station |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIREofNewsletterEnergySeptember 16,Department of

  19. Notification of Planned 230kV Outage at Potomac River Generating Station |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIREofNewsletterEnergySeptember 16,Department ofDepartment

  20. Notification of Planned 230kV Outage at Potomac River Generating Station |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIREofNewsletterEnergySeptember 16,Department

  1. 0.4 kV remote control (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Projectsource HistorykV remote control (Smart Grid

  2. 220 kV SSSC device for power flow control (Smart Grid Project) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind ProjectsourceInformationColorado School of Home

  3. Docket No. EO-05-01: Further Notice of 230kV Circuit Planned Outages |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T ADRAFTJanuary 2004April 2015 <Department of

  4. ETM (Distribution Network Automation on 10 kV cable line stations) (Smart

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, NewDyerTier2 Submit

  5. Docket No. EO-05-01: Further Notice of 230kV Circuit Planned Outages |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy | DepartmenttheFebruary 13, 2013 meeting

  6. EIS-0119: Decommissioning of Eight Surplus Production Reactors at the Harford Site, Richland, WA

    Broader source: Energy.gov [DOE]

    This EIS presents analyses of potential environmental impacts of decommissioning the eight surplus production reactors at the Hanford Site near Richland, Washington.

  7. Remediation of Hylebos Waterway (Tacoma, WA): A common sense approach to determining contaminated sediment volumes

    SciTech Connect (OSTI)

    Fuglevand, P. [Dalton, Olmsted and Fuglevand, Inc., Bothell, WA (United States); Revelas, G.; Striplin, B.; Striplin, P. [Striplin Environmental Associates, Inc., Olympia, WA (United States)

    1995-12-31T23:59:59.000Z

    Hylebos Waterway is a three mile long industrial waterway located in Commencement Bay, Washington. A CERCLA program RI/FS, conducted in the mid-1980`s, found that surface sediments (0--2 cm) were contaminated with chlorinated organics, PAHs, and metals. An ongoing pre-remedial design effort, initiated in 1993, is evaluating natural recovery and four sediment confinement options for sediments that exceed programmatic sediment quality objectives: confined aquatic disposal, near-shore disposal, upland disposal, and in-place capping. The first three confinement options require dredging of contaminated sediments which, in turn, requires accurate determination of the three dimensional distribution of contaminated sediments. To place a maximum depth boundary on the sediment sampling approach, isopach maps were created by contouring the difference between the deepest historic dredging depth and current depth along the entire waterway. These isopach maps revealed the pattern of post-industrial sediment deposition in the waterway. For example, in some areas, little or no sediment accumulation had occurred in the navigation channel. Conversely, significant accumulation had occurred along some channel edges and in near-shore areas as the result of deposition, bank sloughing and historic dredging/filling activities. The isopach maps were used to place a lower depth boundary on waterway-wide sediment contamination and to establish the maximum core sampling depth required to reach ``native`` sediments, i.e., those below the deepest historic dredging depth and believed to be uncontaminated. Subsequent geo-technical and chemical analyses of the core samples confirmed the accuracy of the isopach approach. The data generated from this sampling effort are being used to estimate the areas and volumes of subtidal sediments requiring remedial action.

  8. EIS-0212: Safe Interim Storage of Hanford Tank Wastes, Hanford Site, Richland, WA

    Broader source: Energy.gov [DOE]

    This environmental impact statement asseses Department of Energy and Washington State Department of Ecology maintanence of safe storage of high-level radioactive wastes currently stored in the older single-shell tanks, the Watchlist Tank 101-SY, and future waste volumes associated with tank farm and other Hanford facility operations, including a need to provide a modern safe, reliable, and regulatory-compliant replacement cross-site transfer capability. The purpose of this action is to prevent uncontrolled releases to the environment by maintaining safe storage of high-level tank wastes.

  9. EIS-0378: Port Angeles-Juan de Fuca Transmission Project, WA

    Broader source: Energy.gov [DOE]

    This EIS assesses DOE decision to approve the Sea Breeze Transmission project for a Presidential permit for through DOE's Office of Electricity Delivery and Energy Reliability and for approval for interconnection into the federal transmission system through the Bonneville Power Administration (BPA).

  10. EIS-0364: Decommissioning of the Fast Flux Test Facility, Hanford Site, Richland, WA

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) announces its intent to prepare an Environmental Impact Statement (EIS), pursuant to the National Environmental Policy Act of 1969 (NEPA), on proposed decommissioning of the Fast Flux Test Facility (FFTF) at the Hanford Site, Richland, Washington.

  11. WA-RD 451.1 September 1999 BMP's for Stormwater Runoff in Confined Spaces

    E-Print Network [OSTI]

    pollutant removal and hydraulic efficiency. The overall objectives of this project are to provide data the effectiveness of BMPs which use a combination of filter media in vaults or existing medians. Such data snow and ice require the application of large amounts of sand and gravel. Pretreatment or pre

  12. AIAA Applied Aerodynamics Conference, 7th, Seattle, WA, July 31-Aug. 2, 1989, Technical Papers

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The present conference discusses the comparative aerodynamic behavior of half-span and full-span delta wings, TRANAIR applications to engine/airframe integration, a zonal approach to V/STOL vehicle aerodynamics, an aerodynamic analysis of segmented aircraft configurations in high-speed flight, unstructured grid generation and FEM flow solvers, surface grid generation for flowfields using B-spline surfaces, the use of chimera in supersonic viscous calculations for the F-15, and hypersonic vehicle forebody design studies. Also discussed are the aerothermodynamics of projectiles at hypersonic speeds, flow visualization of wing-rock motion in delta wings, vortex interaction over delta wings at high alpha, the analysis and design of dual-rotation propellers, unsteady pressure loads from plunging airfoils, the effects of riblets on the wake of an airfoil, inverse airfoil design with Navier-Stokes methods, flight testing for a 155-mm base-burn projectile, experimental results on rotor/fuselage aerodynamic interactions, the high-alpha aerodynamic characteristics of crescent and elliptic wings, and the effects of free vortices on lifting surfaces.

  13. DOE Zero Energy Ready Home Case Study TC Legend, Seattle, WA...

    Energy Savers [EERE]

    has SIP walls and roof, R-20 XPS under the slab, triple-pane windows, an air to water heat pump for radiant heat, and balanced ventilation with timer -controlled fans to bring in...

  14. Contaminant Mass Balance for Sinclair and Dyes Inlets, Puget Sound, WA

    SciTech Connect (OSTI)

    Crecelius, Eric A.; Johnston, Robert K.; Leather, Jim; Guerrero, Joel; Miller, Martin C.; Brandenberger, Jill M.

    2003-04-03T23:59:59.000Z

    Sinclair Inlet and Dyes Inlets have historically received contaminates from military installations, industrial activities, municipal outfalls, and other nonpoint sources. For the purpose of determining a ?total maximum daily load? (TMDL) of contaminants for the Inlets, a contaminant mass balance for the sediments is being developed. Sediment cores and traps were collected from depositional areas of the Inlets and surface sediment grabs were collected from fluvial deposits associated with major drainage areas into the Inlets. All sediment samples were screened using X-Ray fluorescence (XRF) for metals, UV fluorescence for organics (PAHs), and immunoassay for PCBs. A subset of split-samples was analyzed using ICP/MS for metals and GC/MS for phthalates, PAHs, and PCBs. Sediment cores were age-dated using radionuclides to determine the sedimentation rate and the history of sediment contamination. Streams and storm water outfalls were sampled in both the wet and dry seasons to assess loading from the watershed. Seawater samples collected from the marine waters of the Inlets and boundary passages to central Puget Sound were used to estimate the exchange of contaminates with central Puget Sound. The historical trends from the cores indicate that contamination was at a maximum in the middle of the 1900s and decreased significantly by the late 1900s. The thickness of the contaminated sediment is in the range of 30 to 50 cm.

  15. DfcfctooWa g T~mTTrt^ /H\\ Ris-R-536

    E-Print Network [OSTI]

    laboratory, DK 4000 Roskilde, Denmark #12;Equivalent circuits, the Rayieigh-Ritz method, Mindlin plate theory equations 15 3. METHODS FOR ANALYSIS OF PIEZOELECTRIC VIBRATIONS 17 3.1. Direct solution 18 3.2. Equivalent circuits 24 3.3. Mindlin plate theory 30 3.4. The Rayleigh-Ritz method 31 3.5. Finite element method 34 4

  16. 1 | Society WA | Bianca Ambrose-Oji | 10/09/2013 Social Research: Society

    E-Print Network [OSTI]

    and emerging approaches such as citizen science. Employment: Skills and employment issues as they relate collection in citizen science projects? FC funded. www.forestry.gov.uk/fr/INFD-8J3BKM Bianca Ambrose, motivations and behaviour around phytosanitary risk and tree health issues, including: social science support

  17. Proceedings ASCE International Water Resources Engineering Conference August 8-12, 1999, Seattle, WA

    E-Print Network [OSTI]

    Wells, Scott A.

    and flood control. Eutrophic conditions are caused by increased water temperatures due to lack of shadingProceedings ASCE International Water Resources Engineering Conference August 8-12, 1999, Seattle and Columbia Rivers. It is a eutrophic water body susceptible to algae blooms and crashes and periods of high p

  18. AAAI-13, Bellevue, WA, USA, July 14-18, 2013 The Effects of Performance-Contingent

    E-Print Network [OSTI]

    Chen, Yiling

    ) Payment in each task = Base payment + Bonus or + + ? #12;Experiment Treatments Four bonus levels: 4 cents cents-16 cents, 32 cents-32 cents Treatments with increasing bonus: 4 cents-8 cents, 4 cents-16 cents, 4 cents-32 cents Treatments with decreasing bonus: 8 cents-4 cents, 16 cents-4 cents, 32 cents-4

  19. Advance Patent Waiver W(A)2010-037 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    has to inventions conceived or first actually reduced to practice by ALCATEL-LUCENT USA INC. under agreement DE-EE0002895, as the DOE has determined that granting such a...

  20. Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA

    SciTech Connect (OSTI)

    Dean, L.N. [Advanced Sciences, Inc., (United States)

    1994-02-01T23:59:59.000Z

    Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D&D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project.

  1. EA-1933: Yakama Nation Drop 4 Hydropower Project, Yakama Nation Reservation, WA

    Broader source: Energy.gov [DOE]

    DOE is a cooperating agency with the Department of the Interior's Bureau of Indian Affairs as a lead agency for the preparation of an EA to evaluate the potential environmental impacts of a proposal by the Confederated Tribes and Bands of the Yakama Nation Department of Natural Resources to install an inline turbine on the Wapato Irrigation Project (WIP) Main Canal to generate approximately one megawatt of supplemental hydroelectric power. The Main Canal is a non-fish bearing irrigation canal within the WIP water conveyance system. The project site is located two miles southwest of Harrah, Washington.

  2. Measurement of Fukushima Aerosol Debris in Sequim and Richland, WA and Ketchikan, AK

    SciTech Connect (OSTI)

    Miley, Harry S.; Bowyer, Ted W.; Engelmann, Mark D.; Eslinger, Paul W.; Friese, Judah I.; Greenwood, Lawrence R.; Haas, Derek A.; Hayes, James C.; Keillor, Martin E.; Kiddy, Robert A.; Kirkham, Randy R.; Landen, Jonathan W.; Lepel, Elwood A.; Lidey, Lance S.; Litke, Kevin E.; Morris, Scott J.; Olsen, Khris B.; Thompson, Robert C.; Valenzuela, Blandina R.; Woods, Vincent T.; Biegalski, Steven R.

    2013-05-01T23:59:59.000Z

    Aerosol collections were initiated at several locations by PNNL shortly after the Great East Japan Earthquake of May 2011. Aerosol samples were transferred to laboratory high-resolution gamma spectrometers for analysis. Similar to treaty monitoring stations operating across the Northern hemisphere, iodine and other isotopes which could be volatilized at high temperature were detected. Though these locations are not far apart, they have significant variations with respect to water, mountain-range placement, and local topography. Variation in computed source terms will be shown to bound the variability of this approach to source estimation.

  3. WA_00_015_COMPAQ_FEDERAL_LLC_Waiver_Domestic_and_Foreign_Pat.pdf |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment(GATE)ActionSolar Water Heat WaterDepartment

  4. WA_01_018_IBM_Waiver_of_Governement_US_and_Foreign_Patent_Ri.pdf |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment(GATE)ActionSolar Water Heat

  5. WA_04_047_CATERPILLAR_INC_Waiver_of_Patent_Rights_to_Inventi.pdf |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment(GATE)ActionSolar Water HeatDepartment of

  6. WA_04_069__EATON_CORPORATION_Waiver_of_Domestic_and_Foreign_.pdf |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment(GATE)ActionSolar Water HeatDepartment

  7. WA_97_027_GENERAL_ATOMICS__CORPORATION_Waiver_of_Domestic_an.pdf |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment(GATE)ActionSolar Water

  8. Price of Sumas, WA Liquefied Natural Gas Imports (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)ThousandThousandDollars per(NominalCubic

  9. Price of Sumas, WA Liquefied Natural Gas Imports (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)ThousandThousandDollars

  10. Price of Sumas, WA Liquefied Natural Gas Imports from Canada (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)ThousandThousandDollarsThousand Cubic

  11. Price of Sumas, WA Liquefied Natural Gas Imports from Canada (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)ThousandThousandDollarsThousand

  12. Sumas, WA Liquefied Natural Gas Imports from Canada (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndiaFeet)6Feet)3Year

  13. Sumas, WA Natural Gas Pipeline Exports to Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndiaFeet)6Feet)3Year12,530Cubic

  14. Sumas, WA Natural Gas Pipeline Exports to Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndiaFeet)6Feet)3Year12,530CubicCubic

  15. Sumas, WA Natural Gas Pipeline Exports to Canada (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand

  16. Sumas, WA Natural Gas Pipeline Imports From Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) Decade Year-0 Year-1 Year-2 Year-3

  17. Sumas, WA Natural Gas Pipeline Imports From Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) Decade Year-0 Year-1 Year-2 Year-3Cubic

  18. Sumas, WA Natural Gas Pipeline Imports From Canada (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) Decade Year-0 Year-1 Year-2

  19. New Issue: Moody's assigns Aa1 to Energy Northwest's (WA) Columbia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilverNephelineNeural probeNeutrons

  20. WA_1994_015_YORK_INTERNATIONAL_CORPORATION_Waiver_of_Domesti...

    Broader source: Energy.gov (indexed) [DOE]

    TIONALCORPORATIONWaiverofDomesti.pdf More Documents & Publications The Future of Absorption Technology in America: A Critical Look at the Impact of Building, Cooling, Heating,...

  1. Fisher & Paykel Appliances: ENERGY STAR Referral (WA42T26GW1) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy June 6-7, 2013 MeetingEA #February

  2. New Whole-House Solutions Case Study: New Tradition Homes, Vancouver, WA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForumEngines |New TechnologyNelson Construction

  3. New Whole-House Solutions Case Study: Quadrant Homes, Kent, WA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForumEngines |New TechnologyNelson

  4. New Whole-House Solutions Case Study: Schneider Homes, Inc., Burien, WA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForumEngines |New TechnologyNelsonWith designSchneider

  5. File:06-WA-b - Washington Construction Storm Water Permit.pdf | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf Jump to:-FD-a -NVBSundryNotice (2).pdf Jump to: navigation,6 -Information

  6. File:EIA-Eastern-OR-WA-BOE.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of thisAppalach3-eastPA-BOE.pdf,600 Ă—6,600

  7. File:EIA-Eastern-OR-WA-gas.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of thisAppalach3-eastPA-BOE.pdf,600 Ă—6,6001,650 Ă—

  8. File:EIA-Eastern-OR-WA-liquids.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of thisAppalach3-eastPA-BOE.pdf,600 Ă—6,6001,650

  9. Advance Patent Waiver W(A)2002-023 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2 ofEmergencyAcrobatBetter BuildingsEnergyAdvance

  10. Advance Patent Waiver W(A)2006-028 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2 ofEmergencyAcrobatBetter BuildingsEnergyAdvanceby

  11. Advance Patent Waiver W(A)2008-006 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2 ofEmergencyAcrobatBetter

  12. Advance Patent Waiver W(A)2012-021 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2 ofEmergencyAcrobatBetterby USEC, INC. under agreement

  13. Advance Patent Waiver W(A)2013-013 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2 ofEmergencyAcrobatBetterby USEC, INC. under

  14. Advance Patent Waiver W(A)2010-006 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 20103-03 AUDITProductsletter No.10-006 Advance Patent

  15. DOE Zero Energy Ready Home Case Study: Clifton View Homes, Coupeville, WA,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department ofDepartment of EnergyCustom Home |RI | Department of

  16. DOE Zero Energy Ready Home Case Study: Dwell Development, Seattle, WA,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department ofDepartment of EnergyCustom Home |RI | Department ofWASystems

  17. DOE Zero Energy Ready Home Case Study: TC Legend Homes, Bellingham, WA |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department ofDepartment of EnergyCustom Home

  18. DOE Zero Energy Ready Home Case Study: TC Legend, Seattle, WA, Custom Home

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department ofDepartment of EnergyCustom Home| Department of Energy TC

  19. W.A. Parish Post-Combustion CO{sub 2} Capture and Sequestration Project

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item youThe DiscoveryFuelsOffice

  20. DOE Zero Energy Ready Home Case Study 2013: Clifton View Homes, Coupeville, WA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials | DepartmentEnergy Clifton View Homes

  1. DOE Zero Energy Ready Home Case Study 2013: Dwell Development, Seattle, WA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials | DepartmentEnergy Clifton View

  2. DOE Zero Energy Ready Home Case Study 2013: TC Legend, Seattle, WA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials | DepartmentEnergyNew TowninvitesTC

  3. DOE Zero Energy Ready Home Case Study 2014: Clifton View Homes, Leganza Residence, Greenbank, WA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials | DepartmentEnergyNewLLC CustomLeganza

  4. DOE Zero Energy Ready Home Case Study 2014: TC Legend Homes, Montlake Modern, Seattle, WA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials | DepartmentEnergyNewLLCHealthyNear

  5. DOE Zero Ready Home Case Study: Clifton View Homes, Kaltenbach Residence, Clinton, WA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials |Production | Zero Energy ReadyBPCKaltenbach

  6. DOE Zero Ready Home Case Study: TC Legend Homes, Cedarwood, Bellingham, WA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials |Production | ZeroSterling Brook Custom

  7. Sumas, WA Natural Gas Pipeline Exports to Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan FebDecadeDecade21 Louisiana LouisianaCubic Feet)

  8. Sumas, WA Natural Gas Pipeline Exports to Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan FebDecadeDecade21 Louisiana LouisianaCubic Feet)Year

  9. Sumas, WA Natural Gas Pipeline Imports From Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan FebDecadeDecade21 Louisiana LouisianaCubicCubic

  10. Sumas, WA Natural Gas Pipeline Imports From Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan FebDecadeDecade21 Louisiana LouisianaCubicCubicYear Jan

  11. WA_00_022_CARGILL_DOW_POLYMERS_LLC_Waiver_of_Domestic_and_Fo.pdf |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report |to 40% Whole-House2007

  12. WA_01_003_SOLAR_TURBINES_Waive_of_Domestic_and_Foreign_Paten.pdf |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report |to 40% Whole-House2007Department of Energy

  13. WA_02_034_BP_SOLAR_INTERNATIONAL_LLC_Waiver_of_Domestic_and_.pdf |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report |to 40% Whole-House2007Department ofDepartment of

  14. WA_03_010_SHELL_SOLAR_INDUSTRIES_Waiver_of_Domestic_and_Fore.pdf |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report |to 40% Whole-House2007Department ofDepartment

  15. WA_05_022_DOW_CHEMICAL_COMPANY_Waiver_of_domestic_and_Foreig.pdf |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report |to 40% Whole-House2007DepartmentDepartment of

  16. WA_06_016_BP_SOLAR_INTERNATIONAL_Waiver_of_Patent_Rights_Und.pdf |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report |to 40% Whole-House2007DepartmentDepartment

  17. WA_1993_033_GOLDEN_PHOTON_INC_Waiver_of_Domestic_and_Foreign.pdf |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report |to 40%

  18. WA_1995_030_GOLDEN_PHOTON_INC_Waiver_of_Domestic_and_Foreign.pdf |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report |to 40%Department of Energy

  19. WA_96_012_ALLIEDSIGNAL_INC_CERAMIC_COMPONENTS_Waiver_of_Dome.pdf |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report |to 40%Department of EnergyDepartment of

  20. WA_98_001_REYNOLDS_METALS_COMPANY_Waiver_of_Domestic_and_For.pdf |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report |to 40%Department of