Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vt wv southeast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

VT PowerPoint Template  

NLE Websites -- All DOE Office Websites (Extended Search)

EMBEDDED ACTIVE FIBER OPTIC SENSING EMBEDDED ACTIVE FIBER OPTIC SENSING NETWORK FOR STRUCTURAL HEALTH MONITORING IN HARSH ENVIRONMENTS DE-FE0007405 Anbo Wang, Cheng Ma Virginia Tech Center for Photonics Technology Blacksburg, VA 24061 awang@vt.edu, cma1@vt.edu http://photonics.ece.vt.edu/ 1 Advanced Research Sensor and Controls Project Review Meeting DOE NETL Morgantown, WV 03/12/2012 Outline * Motivation, Overview & Objectives * Background and Fundamentals of Proposed Technology * Project Scope and Work Plan 2 MOTIVATION AND OBJECTIVES 3 Motivation * Non-Destructive Evaluation (NDE) of structural health in advanced energy systems. Examples: * Ultra Supercritical (USC) systems: * Steam temperature 760 o C, pressure 5000 psi. * Integrated Gasification Combined Cycle (IGCC):

2

VT PowerPoint Template  

NLE Websites -- All DOE Office Websites (Extended Search)

DISTRIBUTED FIBER OPTIC SENSOR FOR DISTRIBUTED FIBER OPTIC SENSOR FOR ON-LINE MONITORING OF COAL GASIFIER REFRACTORY HEALTH DE-FE0005703 Anbo Wang, Cheng Ma Virginia Tech Center for Photonics Technology Blacksburg, VA 24061 awang@vt.edu, cma1@vt.edu http://photonics.ece.vt.edu/ 1 Advanced Research Sensor and Controls Project Review Meeting DOE NETL Morgantown, WV 03/12/2012 Outline * Motivation, Overview & Objectives * Background and Fundamentals of Proposed Technology * Project Scope and Work Plan * Project Progress 2 MOTIVATION AND OBJECTIVES 3 Motivation * Refractory health monitoring in slagging coal gasifiers: * Rapid corrosion of refractory materials. * High-temperature reducing environment. * Difficult to predict remaining refractory life. * Localized thinning, spallation, cracking.

3

VT PowerPoint Template  

NLE Websites -- All DOE Office Websites (Extended Search)

SINGLE-CRYSTAL SAPPHIRE OPTICAL SINGLE-CRYSTAL SAPPHIRE OPTICAL FIBER SENSOR DE-FC26-99FT40685 Anbo Wang, Gary Pickrell, Ke Wang, Cheng Ma, Brian Scott Virginia Tech Center for Photonics Technology Blacksburg, VA 24061 awang@vt.edu http://photonics.ece.vt.edu/ 1 Advanced Research Sensor and Controls Project Review Meeting DOE NETL Morgantown, WV 03/12/2012 Outline * Motivation & Objective * Background and Fundamentals of Proposed Technology * Project Scope and Work Plan * Project Progress 2 MOTIVATION AND OBJECTIVE 3 Motivation 4 * Temperature sensor for harsh-environments: * Coal gasifier (major focus of prior work). * Gas turbine. * Temperature measurement is critical for: * Gasifier start-up. * Process optimization. * Event/failure detection.

4

Category:Elkins, WV | Open Energy Information  

Open Energy Info (EERE)

Elkins, WV Elkins, WV Jump to: navigation, search Go Back to PV Economics By Location Media in category "Elkins, WV" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Elkins WV Harrison Rural Elec Assn Inc.png SVFullServiceRestauran... 59 KB SVQuickServiceRestaurant Elkins WV Harrison Rural Elec Assn Inc.png SVQuickServiceRestaura... 60 KB SVHospital Elkins WV Harrison Rural Elec Assn Inc.png SVHospital Elkins WV H... 57 KB SVLargeHotel Elkins WV Harrison Rural Elec Assn Inc.png SVLargeHotel Elkins WV... 57 KB SVLargeOffice Elkins WV Harrison Rural Elec Assn Inc.png SVLargeOffice Elkins W... 58 KB SVMediumOffice Elkins WV Harrison Rural Elec Assn Inc.png SVMediumOffice Elkins ... 59 KB SVMidriseApartment Elkins WV Harrison Rural Elec Assn Inc.png

5

Category:Charleston, WV | Open Energy Information  

Open Energy Info (EERE)

WV WV Jump to: navigation, search Go Back to PV Economics By Location Media in category "Charleston, WV" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Charleston WV Harrison Rural Elec Assn Inc.png SVFullServiceRestauran... 59 KB SVQuickServiceRestaurant Charleston WV Harrison Rural Elec Assn Inc.png SVQuickServiceRestaura... 60 KB SVHospital Charleston WV Harrison Rural Elec Assn Inc.png SVHospital Charleston ... 57 KB SVLargeHotel Charleston WV Harrison Rural Elec Assn Inc.png SVLargeHotel Charlesto... 57 KB SVLargeOffice Charleston WV Harrison Rural Elec Assn Inc.png SVLargeOffice Charlest... 58 KB SVMediumOffice Charleston WV Harrison Rural Elec Assn Inc.png SVMediumOffice Charles... 60 KB SVMidriseApartment Charleston WV Harrison Rural Elec Assn Inc.png

6

VT Nuclear Services ltd | Open Energy Information  

Open Energy Info (EERE)

VT Nuclear Services ltd Jump to: navigation, search Name: VT Nuclear Services ltd Place: Warrington, United Kingdom Zip: WA4 4BP Sector: Services Product: VT Nuclear Services...

7

Listing of Virginia Tech Internal Vendors VT Academic Enrichment & Excellence  

E-Print Network (OSTI)

& Wildlife VT Fisheries & Wildlife Copier Charges VT Forestry Vehicles Service Center VT FourDesign VT Fralin VT Soil Testing Lab Fertility Analysis for VCE Clients VT Stability Wind Tunnel VT Student Affairs

Buehrer, R. Michael

8

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Traci Rodosta Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Joshua Hull Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-0906 joshua.hull@netl.doe.gov Erik Westman Principal Investigator Virginia Polytechnic Institute and State University 100 Holden Hall Blacksburg, VA 24061 540-0231-7510 Fax: 540-231-4070 ewestman@vt.edu PROJECT DURATION Start Date End Date 12/01/2009 12/31/2012 COST Total Project Value $257,818 DOE/Non-DOE Share $248,441 / $9,377 Government funding for this project is provided in whole or in part through the American Recovery and Reinvestment Act. P R OJ E C T FAC T

9

DOE - Office of Legacy Management -- Reduction Pilot Plant - WV 01  

Office of Legacy Management (LM)

Reduction Pilot Plant - WV 01 Reduction Pilot Plant - WV 01 FUSRAP Considered Sites Site: REDUCTION PILOT PLANT (WV.01 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: International Nickel Company WV.01-1 Location: Cole Street at Alterizer Ave. , Huntington , West Virginia WV.01-2 Evaluation Year: 1987 WV.01-1 Site Operations: Manufactured powdered Nickel for use at Paducah and Portsmouth gaseous diffusion plants and Nickel plated a small quantity of Uranium slugs. WV.01-2 WV.01-1 Site Disposition: Eliminated - Limited quantities of radioactive material used on the site. Potential for residual radioactive material from AEC operations conducted at the site considered remote - confirmed by radiological survey. WV.01-1 WV.01-3

10

West Virginia Smart Grid Implementation Plan (WV SGIP) Project  

NLE Websites -- All DOE Office Websites (Extended Search)

WV DoE-NRCCE-APERC DRAFT February 16, 2009 WV DoE-NRCCE-APERC DRAFT February 16, 2009 1 West Virginia Smart Grid Implementation Plan (WV SGIP) Project APERC Report on Customer Complaints to WV PSC about Electric Power Service Ali Feliachi, Muhammad Choudhry, John Saymansky and Ed Sneckenberger February 16, 2009 Introduction APERC has appreciated that one of the most important sources for data on the consumer perspective of the current electric power grid in West Virginia would be the WV Public Service Commission (WV PSC). Thus, an email request was sent on December 19, 2008 to Byron Harris at the WV PSC to request any advice or approaches to determine customer and regulatory perspectives of the current electric power grid in WV. Customer Complaint Data Bryon Harris was able to provide a spreadsheet of customer complaints in West Virginia for

11

NETL: 2010 WV Science Bowl Information  

NLE Websites -- All DOE Office Websites (Extended Search)

2010 WV Science Bowl 2010 WV Science Bowl The U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) invites you to participate in one of the premier scientific events for high school students, the West Virginia High School Science Bowl 2010 on February 6, 2010. This will be NETL's 19th year sponsoring the high school competition. There is a change this year in the registration process from past years, all teams who are registering to complete, must do so through the National Science Bowl website. For those who are not familiar with the West Virginia Science Bowl here are some highlights: The competition is open to high school students (school, scouts, home school) from West Virginia. Complete eligibility requirements are located at the National Science Bowl website.

12

Category:Burlington, VT | Open Energy Information  

Open Energy Info (EERE)

VT VT Jump to: navigation, search Go Back to PV Economics By Location Media in category "Burlington, VT" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Burlington VT Central Vermont Pub Serv Corp.png SVFullServiceRestauran... 67 KB SVMidriseApartment Burlington VT Central Vermont Pub Serv Corp.png SVMidriseApartment Bur... 68 KB SVQuickServiceRestaurant Burlington VT Central Vermont Pub Serv Corp.png SVQuickServiceRestaura... 68 KB SVStandAloneRetail Burlington VT Central Vermont Pub Serv Corp.png SVStandAloneRetail Bur... 68 KB SVHospital Burlington VT Central Vermont Pub Serv Corp.png SVHospital Burlington ... 64 KB SVLargeHotel Burlington VT Central Vermont Pub Serv Corp.png SVLargeHotel Burlingto... 63 KB SVLargeOffice Burlington VT Central Vermont Pub Serv Corp.png

13

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Association of American Railroads Augusta Systems, Incorporated Southeast Regional Carbon Sequestration Partnership-Development Phase Cranfield Site and Citronelle Site...

14

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Collins Ferry Road Morgantown, WV 26507-0880 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Technical Coordinator, Ultra-Deepwater Resources Portfolio Office of Research and...

15

Guidelines for Vocal Tract Development Lab (VT Lab) team members to access the VT Lab WebSpace via the VT Lab website  

E-Print Network (OSTI)

Guidelines for Vocal Tract Development Lab (VT Lab) team members to access the VT Lab WebSpace via the VT Lab website The VTLab WebSpace is a new and improved mechanism for VT lab team members to share files. We are replacing the former Member Login section of our website with MyWeb Space (developed by Do

Vorperian, Houri K.

16

DOE - Office of Legacy Management -- The Carborundum Co Inc - WV 02  

Office of Legacy Management (LM)

The Carborundum Co Inc - WV 02 The Carborundum Co Inc - WV 02 FUSRAP Considered Sites Site: THE CARBORUNDUM CO., INC (WV.02 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: AMAX Inc WV.02-1 Location: Wood County , West Virginia WV.02-1 Evaluation Year: 1982 WV.02-1 Site Operations: Produced high-grade Zirconium metal for use in construction of nuclear reactors for the Navy circa late-1950s and 1960s; Conducted small scale Zirconium and Uranium testing in the mid-1970s. WV.02-2 Site Disposition: Eliminated - AEC/NRC licensed site. No Authority for cleanup under FUSRAP WV.02-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Thorium, Uranium WV.02-2 Radiological Survey(s): Yes WV.02-3 Site Status: Eliminated from further consideration under FUSRAP

17

Parallel MATLAB at VT Gene Cliff (AOE/ICAM -ecliff@vt.edu )  

E-Print Network (OSTI)

Parallel MATLAB at VT Gene Cliff (AOE/ICAM - ecliff@vt.edu ) Justin Krometis (ARC/ICAM - jkrometis Mathematics 1 / 35 #12;MATLAB Parallel Computing Introduction Programming Models Execution Example: Quadrature Conclusion 2 / 35 #12;INTRO: Parallel MATLAB Parallel MATLAB is an extension of MATLAB that takes advantage

Crawford, T. Daniel

18

West Virginia Smart Grid Implementation Plan (WV SGIP) Project  

NLE Websites -- All DOE Office Websites (Extended Search)

West Virginia Smart Grid Implementation Plan (WV SGIP) Project West Virginia Smart Grid Implementation Plan (WV SGIP) Project APERC Report on Assessment of As-Is Grid by Non-Utility Stakeholders Introduction One goal of this grid modernization project is to assess the current status of the electric power grid in West Virginia in order to define the potential to implement smart grid technologies. Thus, an initial task of this project was to define the current state or "As-Is" grid in West Virginia. Financial and time constraints prohibited the development and execution of formal surveys to solicit input from the various stakeholders. However attempts were made to obtain their input through informal questionnaires and meeting with focus groups. list of stakeholders which

19

VT Electric Services VTES 601 Energy Dr.  

E-Print Network (OSTI)

VT Electric Services Location VTES 601 Energy Dr. Blacskburg, VA 24061 (540) 231-6437 Office Hours Electric Services is to provide adequate, reliable and economical electric service to the buildings; Street & Sidewalk Illumination Annual Operating Budget $38 million (approx.) Electric Services

Buehrer, R. Michael

20

Parallel MATLAB at VT: Parallel For Loops  

E-Print Network (OSTI)

Parallel MATLAB at VT: Parallel For Loops John Burkardt (FSU) Gene Cliff (AOE/ICAM - ecliff Research Computing ICAM: Interdisciplinary Center for Applied Mathematics 1 / 72 #12;MATLAB Parallel Example ODE SWEEP Example FMINCON Example Conclusion 2 / 72 #12;INTRO: Parallel MATLAB Parallel MATLAB

Crawford, T. Daniel

Note: This page contains sample records for the topic "vt wv southeast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Parallel MATLAB at VT: Parallel For Loops  

E-Print Network (OSTI)

Parallel MATLAB at VT: Parallel For Loops John Burkardt (FSU) Gene Cliff (AOE/ICAM - ecliff Research Computing ICAM: Interdisciplinary Center for Applied Mathematics 1 / 71 #12;MATLAB Parallel Example ODE SWEEP Example FMINCON Example Conclusion 2 / 71 #12;INTRO: Parallel MATLAB Parallel MATLAB

Crawford, T. Daniel

22

Parallel MATLAB at VT: Parallel For Loops  

E-Print Network (OSTI)

Parallel MATLAB at VT: Parallel For Loops John Burkardt (FSU) Gene Cliff (AOE/ICAM - ecliff Research Computing ICAM: Interdisciplinary Center for Applied Mathematics 1 / 56 #12;Matlab Parallel ODE SWEEP Example MD Example Conclusion 2 / 56 #12;INTRO: Parallel Matlab In a previous lecture we

Crawford, T. Daniel

23

EVENT PROSPECTUS Southeast Conference  

E-Print Network (OSTI)

EVENT PROSPECTUS Southeast Conference on Positive Behavior Interventions and Support "CONFERENCE to CLASSROOM Connection" This year's conference offers two strands of training. TRACT 1. Foundations of PBIS be established. The most important goal of this conference is to positively change the educational environment

Hutcheon, James M.

24

VIRGINIA BUSINESS Advertising SupplementVIRGINIA BUSINESSVIRGINIA BUSINESS Advertising Supplement INNINNOOVATIVATIVATIVATIVATIVATIVATIVATIVATIVATIVATIVATIOwww.vt.edu  

E-Print Network (OSTI)

VIRGINIA BUSINESS Advertising SupplementVIRGINIA BUSINESSVIRGINIA BUSINESS Advertising Supplement.vt.edu Owww.vt.edu OOwww.vt.edu Owww.vt.edu ONN #12;VIRGINIA BUSINESS Advertising Supplement IDEASATWORK VT2-added byproducts and,in the process,reducing pollutants flowing into the Chesapeake Bay; and improving automated

Buehrer, R. Michael

25

VT Exchange Program in South Africa University of  

E-Print Network (OSTI)

VT Exchange Program in South Africa University of the Free State Jim McKenna jamckenn@vt.edu http://www.ufs.ac.za/ #12;Republic of South Africa South African Provinces Fly into Bloemfontein in the Free State #12;Kruger National Park #12;Travels in South Africa Cape Town & Stellenbosch #12;

Buehrer, R. Michael

26

Southeast Energy Efficiency Alliance's Building Energy Codes...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013...

27

Southeast Energy Efficiency Alliance Launches Finance Network...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southeast Energy Efficiency Alliance Launches Finance Network Southeast Energy Efficiency Alliance Launches Finance Network Photo of two hands holding dollar bills shaped like a...

28

Southeast Energy Efficiency Alliance Data Dashboard | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Data Dashboard Southeast Energy Efficiency Alliance Data Dashboard The data dashboard for Southeast Energy Efficiency Alliance, a partner in the Better Buildings Neighborhood...

29

Southeast Energy Efficiency Alliance Data Dashboard  

Energy.gov (U.S. Department of Energy (DOE))

The data dashboard for Southeast Energy Efficiency Alliance, a partner in the Better Buildings Neighborhood Program.

30

NREL: Wind Research - Ventera's VT 10 Turbine Testing and Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventera's VT 10 Turbine Testing and Results Ventera's VT 10 Turbine Testing and Results Ventera's VT10 wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL is testing Ventera's VT10 small wind turbine at the National Wind Technology Center (NWTC). The VT10 is a horizontal-axis downwind, three-bladed turbine rated at 10 kilowatts (kW). Its diameter is 6.7 meters, and it is mounted on a lattice tower with a hub height of 21.7 meters. The VT10 uses a single-phase, grid-connected, permanent-magnet generator that operates at 240 volts AC. Testing Summary The summary of the tests is listed below, along with the final reports. Cumulative Energy Production 3/22/2010: 0; 3/29/2010: 26; 3/31/2010: 74; 4/1/2010: 75; 4/2/2010: 174;

31

Southeast National Marine Renewable Energy Center (FAU) | Department...  

Office of Environmental Management (EM)

Southeast National Marine Renewable Energy Center (FAU) Southeast National Marine Renewable Energy Center (FAU) Southeast National Marine Renewable Energy Center (FAU)...

32

Southeast Cooler: Order (2013-CE-5331)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered Southeast Cooler Corp. to pay a $8,000 civil penalty after finding Southeast Cooler had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

33

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Technology Program Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Dawn Deel Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4133 dawn.deel@netl.doe.gov Sherry Mediati Business Contact California Energy Commission 1516 9th Street, MS 1 Sacramento, CA 95814 916-654-4204 smediati@energy.state.ca.us Mike Gravely Principal Investigator California Energy Commission 1516 Ninth Street, MS 43 Sacramento, CA 95814 916-327-1370 mgravely@energy.state.ca.us Elizabeth Burton Technical Director Lawrence Berkeley National Laboratory 1 Cyclotron Road, MS 90-1116 Berkeley, CA 94720 925-899-6397 eburton@lbl.gov West Coast Regional Carbon

34

File:EIA-Appalach6-WV-VA-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

Appalach6-WV-VA-BOE.pdf Appalach6-WV-VA-BOE.pdf Jump to: navigation, search File File history File usage Appalachian Basin, Southern West Virginia and Southwestern Virginia By 2001 BOE Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 17.02 MB, MIME type: application/pdf) Description Appalachian Basin, Southern West Virginia and Southwestern Virginia By 2001 BOE Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States West Virginia, Virginia File history Click on a date/time to view the file as it appeared at that time.

35

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Turbines Hydrogen Turbines CONTACTS Richard A. Dennis Technology Manager, Turbines National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4515 richard.dennis@netl.doe.gov Travis Shultz Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507-0880 304-285-1370 travis.shultz@netl.doe.gov Jacob A. Mills Principal Investigator Florida Turbine Technologies, Inc 1701 Military Trail Suite 110 Jupiter, FL 33458-7887 561-427-6349 jmills@fttinc.com PARTNERS None PROJECT DURATION Start Date End Date 06/28/2012 08/13/2015 COST Total Project Value $1,149,847 DOE/Non-DOE Share $1,149,847 / $0 AWARD NUMBER SC0008218 Air-Riding Seal Technology for Advanced Gas Turbine Engines-Florida Turbine

36

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Rodosta Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Darin Damiani Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4398 darin.damiani@netl.doe.gov Vivak Malhotra Principal Investigator Southern Illinois University Neckers 483A Mailcode: 4401 Carbondale, IL 62901 618-453-2643 Fax: 618-453-1056 vmalhotra@physics.siu.edu PARTNERS None Risk Assessment and Monitoring of Stored CO2 in Organic Rock under Non-Equilibrium Conditions Background Fundamental and applied research on carbon capture, utilization and storage (CCUS)

37

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

PO Box 880 PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea McNemar Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-2024 andrea.mcnemar@netl.doe.gov Charles D. Gorecki Technical Contact Senior Research Manager Energy & Environmental Research Center University of North Dakota 15 North 23 rd Street, Stop 9018 Grand Forks, ND 58202-9018 701-777-5355 cgorecki@undeerc.org Edward N. Steadman Deputy Associate Director for Research Energy & Environmental Research Center University of North Dakota 15 North 23 rd Street, Stop 9018 Grand Forks, ND 58202-9018 701-777-5279 esteadman@undeerc.org John A. Harju Associate Director for Research Energy & Environmental Research Center University of North Dakota

38

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

CONTACTS Joseph Stoffa Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-0285 joseph.stoffa@netl.doe.gov Xingbo Liu Principal Investigator Dept. MechanaWest Virginia University P.O. Box 6106 Morgantown, WV 26506-6106 304-293-3339 xingbo.liu@mail.wvu.edu Shailesh D. Vora Technology Manager, Fuel Cells National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-7515 shailesh.vora@netl.doe.gov PARTNERS None PROJECT DURATION Start Date End Date 08/31/2012 09/30/2015 COST Total Project Value $634,839 DOE/Non-DOE Share $499,953 / $134,886 AWARD NUMBER FE0009675 Fundamental Understanding of Oxygen Reduction and Reaction Behavior and Developing High Performance and Stable

39

File:EIA-Appalach6-WV-VA-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

Appalach6-WV-VA-GAS.pdf Appalach6-WV-VA-GAS.pdf Jump to: navigation, search File File history File usage Appalachian Basin, Southern West Virginia and Southwestern Virginia By 2001 Gas Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 18.09 MB, MIME type: application/pdf) Description Appalachian Basin, Southern West Virginia and Southwestern Virginia By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States West Virginia, Virginia File history Click on a date/time to view the file as it appeared at that time.

40

File:EIA-Appalach5-eastWV-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

Appalach5-eastWV-BOE.pdf Appalach5-eastWV-BOE.pdf Jump to: navigation, search File File history File usage Appalachian Basin, Eastern West Virginia and Western Maryland By 2001 BOE Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 17.26 MB, MIME type: application/pdf) Description Appalachian Basin, Eastern West Virginia and Western Maryland By 2001 BOE Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States West Virginia, Maryland File history Click on a date/time to view the file as it appeared at that time.

Note: This page contains sample records for the topic "vt wv southeast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Romanosky Romanosky Crosscutting Research Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4721 robert.romanosky@netl.doe.gov Richard Dunst Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6694 richard.dunst@netl.doe.gov Shizhong Yang Principal Investigator Southern University

42

Southeast Regional Carbon Sequestration Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Partnership Presented to: Regional Carbon Sequestration Partnerships Annual Review Meeting Development Phase Field Tests Pittsburgh, PA October 5, 2010 Presented by: Gerald R. Hill, Ph.D. Senior Technical Advisor Southern States Energy Board Acknowledgements  This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory.  Cost share and research support provided by SECARB/SSEB Carbon Management Partners Through innovations in energy and environmental policies, programs and technologies, the Southern States Energy Board enhances economic development and the quality of life in the South. - SSEB Mission Statement SSEB Carbon Management Program  Established 2003  Characterizing Southeast Region

43

SBOT WEST VIRGINIA NATIONAL ENERGY TECHNOLOGY LAB -WV POC Larry Sullivan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WEST VIRGINIA WEST VIRGINIA NATIONAL ENERGY TECHNOLOGY LAB -WV POC Larry Sullivan Telephone (412) 386-6115 Email larry.sullivan@netl.doe.gov ADMINISTATIVE / WASTE / REMEDIATION Facilities Support Services 561210 Employment Placement Agencies 561311 Temporary Help Services 561320 Professional Employer Organizations 561330 Document Preparation Services 561410 Security Guards and Patrol Services 561612 Security Systems Services (except Locksmiths) 561621 Janitorial Services 561720 Landscaping Services 561730 Hazardous Waste Treatment and Disposal 562211 Remediation Services 562910 Materials Recovery Facilities 562920 All Other Miscellaneous Waste Management Services 562998 CONSTRUCTION Industrial Building Construction 236210 Commercial and Institutional Building Construction 236220 Power and Communication Line and Related Structures Construction

44

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

R R &D FAC T S Natural Gas & Oil R&D CONTACTS George Guthrie Focus Area Lead Office of Research and Development National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Technical Coordinator Office of Research and Development National Energy Technology Laboratory 1450 Queen Avenue SW Albany, OR 97321-2152 541-967-5883 kelly.rose@netl.doe.gov PARTNERS Carnegie Mellon University Pittsburgh, PA Oregon State University Corvallis, OR Pennsylvania State University State College, PA University of Pittsburgh Pittsburgh, PA URS Corporation Pittsburgh, PA Virginia Tech Blacksburg, VA West Virginia University Morgantown, WV

45

Southeast Energy Efficiency Alliance Launches Finance Network  

Energy.gov (U.S. Department of Energy (DOE))

The Southeast Energy Efficiency Alliance (SEEA)a Better Buildings Residential Network member and Better Buildings Neighborhood Program partnerand the University of North Carolina at Chapel Hill Environmental Finance Center recently announced the launch of the Southeast Energy Efficiency Finance Network.

46

Southeast Propane AutoGas Development Program | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Southeast Propane AutoGas Development Program Southeast Propane AutoGas Development Program 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit...

47

Southeast Propane AutoGas Development Program | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. tiarravt065christopher2010p.pdf More Documents & Publications Southeast Propane AutoGas Development Program Southeast Propane AutoGas Development Program Technology...

48

Southeast Propane AutoGas Development Program | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation arravt065tijenkins2011p.pdf More Documents & Publications Southeast Propane AutoGas Development Program Southeast Propane AutoGas Development Program State of...

49

Reducing Industrial Energy Intensity in the Southeast Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Energy Intensity in the Southeast Project Fact Sheet Reducing Industrial Energy Intensity in the Southeast Project Fact Sheet This fact sheet contains details regarding...

50

Southeast Energy Efficiency Alliance Summary of Reported Data...  

Energy Savers (EERE)

Summary of Reported Data Southeast Energy Efficiency Alliance Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Southeast Energy...

51

State and Local Code Implementation: Southeast Region - 2014...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- 2014 BTO Peer Review Presenter: Lauren Westmoreland, Southeast Energy Efficiency Alliance View the Presentation State and Local Code Implementation: Southeast Region - 2014...

52

Microsoft Word - 2014 WVSB - WV HS letter (generic for PDF).docx  

NLE Websites -- All DOE Office Websites (Extended Search)

610 Collins Ferry Road, P.O. Box 880, Morgantown, WV 26507-0880 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940 610 Collins Ferry Road, P.O. Box 880, Morgantown, WV 26507-0880 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940 REPLY TO: Morgantown Office  steven.woodruff@netl.doe.gov  Voice (304) 285-4175  Fax (304) 285-0903  www.netl.doe.gov September 23, 2013 Dear Science Chair or Principal: On behalf of the Secretary of Energy, I am pleased to announce the opening of the 2014 National Science Bowl, a tournament-style academic competition challenging students in the fields of science and mathematics. In support of the National Science Bowl, the U.S. Dept of Energy's National Energy Technology Laboratory is once again proud to host the West Virginia Regional Science Bowl. The WVSB is one of many regional competitions held for high school teams across

53

VrnVtR^iTY OF CALIFOKKIA L  

NLE Websites -- All DOE Office Websites (Extended Search)

VrnVtR^iTY OF CALIFOKKIA VrnVtR^iTY OF CALIFOKKIA L a w r e n c s BadidUon L a b o r a t o r y B e r k e l e y , Calift^raia Contract rto "*'-740n-.e,ig~48 THE EARLY ANJ'IPROTON WORK Owen GharBDeriair. DecetDfter 15, 195.9 L i G A L N O T I C E - This report was prepared as an account ot <: I nor any person acUng on beliflU of the C DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product,

54

SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP THE UNITED  

NLE Websites -- All DOE Office Websites (Extended Search)

SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP THE UNITED S T A T E S 2012 ATLAS CARBON UTILIZATION AND STORAGE Southeast Regional Carbon Sequestration Partnership The Southeast Regional Carbon Sequestration Partnership (SECARB), managed by the Southern States Energy Board, represents a 13-state region, including Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, eastern Texas, and Virginia and portions of Kentucky and West Virginia. SECARB comprises more than 100 participants representing Federal and state governments, industry, academia, and nonprofit organizations. The primary goal of SECARB is to develop the necessary framework and infrastructure to conduct field tests of carbon storage technologies and to

55

The Regulatory Assistance Project 50 State Street, Suite 3 Montpelier, VT 05602  

E-Print Network (OSTI)

Loads to Resources (and Resources to Loads) 1. Targeted energy efficiency 2. Orient solar panels 3. Use State Street, Suite 3 Montpelier, VT 05602 Phone: 802-223-8199 web: www.raponline.org Resource MaterialsThe Regulatory Assistance Project 50 State Street, Suite 3 Montpelier, VT 05602 Phone: 802

California at Davis, University of

56

Southeast Energy Efficiency Alliance Summary of Reported Data  

Energy.gov (U.S. Department of Energy (DOE))

Summary of data reported by Better Buildings Neighborhood Program partner Southeast Energy Efficiency Alliance.

57

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Maira Reidpath Maira Reidpath Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304- 285-4140 maria.reidpath@netl.doe.gov Steven S.C. Chuang Principal Investigator The University of Akron Department of Chemical and Biomolecular Engineering 230 E. Buchtel Commons Akron, OH 44325 330-972-6993 schuang@uakron.edu PARTNERS None PROJECT DURATION Start Date End Date 09/01/2009 08/31/2013 COST Total Project Value $1,713,961 DOE/Non-DOE Share $1,370,977/$342,984 AWARD NUMBER Techno-Economic Analysis of Scalable Coal-Based Fuel Cells-University of Akron Background In this congressionally directed project, the University of Akron (UA) will develop a scalable coal fuel cell manufacturing process to a megawatt scale. UA has demonstrated the

58

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Maria Reidpath Maria Reidpath Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304- 285-4140 maria.reidpath@netl.doe.gov Bogdan Gurau Principal Investigator NuVant Systems, Inc. 130 N West Street Crown Point, IN 46307 219-644-3232 b.gurau@nuvant.com PARTNERS None PROJECT DURATION Start Date End Date 08/01/2009 05/31/2013 COST Total Project Value $1,142,481 DOE/Non-DOE Share $913,985 / $228,496 AWARD NUMBER Improved Flow-field Structures for Direct Methanol Fuel Cells-NuVant Systems, Inc. Background In this congressionally directed project, NuVant Systems, Inc. (NuVant) will improve the performance of direct methanol fuel cells (DMFCs) by designing anode flow-fields specifically for the delivery of liquid methanol. The goal is to deliver concentrated

59

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

FACTS FACTS Carbon Storage - ARRA - GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Robert Noll Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7597 robert.noll@netl.doe.gov Joseph Labuz Principal Investigator University of Minnesota 500 Pillsbury Drive SE Room 122 CivE 0851 Minneapolis, MN 55455 612-625-9060 jlabuz@umn.edu PARTNERS None PROJECT DURATION Start Date End Date 12/01/2009 11/30/2012 COST Total Project Value $299,568 DOE/Non-DOE Share $299,568 / $0 PROJECT NUMBER DE-FE0002020 Government funding for this project is provided in whole or in part through the

60

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

R& R& D FAC T S Natural Gas & Oil R&D CONTACTS George Guthrie Focus Area Lead Office of Research and Development National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Technical Coordinator Office of Research and Development National Energy Technology Laboratory 1450 Queen Avenue SW Albany, OR 97321-2152 541-967-5883 kelly.rose@netl.doe.gov PARTNERS Carnegie Mellon University Pittsburgh, PA Oregon State University Corvallis, OR Pennsylvania State University State College, PA University of Pittsburgh Pittsburgh, PA URS Corporation Pittsburgh, PA Virginia Tech Blacksburg, VA West Virginia University Morgantown, WV

Note: This page contains sample records for the topic "vt wv southeast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

PROJEC PROJEC T FAC TS Carbon Storage - ARRA - GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-1345 traci.rodosta@netl.doe.gov Robert Noll Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7597 robert.noll@netl.doe.gov Gordon Bierwagen Principal Investigator North Dakota State University P.O. Box 6050 Department 2760 Fargo, ND 58108-6050 701-231-8294 gordon.bierwagen@ndsu.edu PARTNERS None PROJECT DURATION Start Date 12/01/2009 End Date 11/30/2011 COST Total Project Value $298,949 DOE/Non-DOE Share $298,949 / $0 PROJECT NUMBER DE-FE0002054 Government funding for this project is provided in whole or in part through the

62

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

ARRA - GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Jose Castillo Principal Investigator San Diego State University 5500 Campanile Drive San Diego, CA 92122 619-594-7205 castillo@myth.sdsu.edu PARTNERS Sienna Geodynamics and Consulting, Inc. PROJECT DURATION Start Date End Date 12/01/2009 11/30/2012 COST Total Project Value $299,993 DOE/Non-DOE Share $299,993 / $0 PROJECT NUMBER DE-FE0002069 Government funding for this project is provided in whole or in part through the

63

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Briggs White Briggs White Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-5437 briggs.white@netl.doe.gov Jeff Stevenson Principal Investigator Pacific Northwest National Laboratory P.O. Box 999, MS K2-44 Richland, WA 99352 509-372-4697 jeff.stevenson@pnl.com PARTNERS Oak Ridge National Laboratory University of Connecticut PROJECT DURATION Start Date End Date 10/01/1999 09/30/2013 (annual continuations) COST Total Project Value $52,889,667 DOE/Non-DOE Share $52,889,667 / $0 AWARD NUMBER FWP40552 PR OJ E C T FAC T S Fuel Cells Low Cost Modular SOFC Development- Pacific Northwest National Laboratory Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) has a mission to advance energy options to fuel our economy, strengthen our security,

64

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Traci Rodosta Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Karen Kluger Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6667 karen.kluger@netl.doe.gov Gary Mavko Principal Investigator Stanford University 397 Panama Mall Stanford, CA 94305-2215 650-723-9438 Fax: 650-723-1188 mavko@stanford.edu PROJECT DURATION Start Date 12/01/2009 End Date 06/30/2013 COST Total Project Value $385,276 DOE/Non-DOE Share $295,777/ $89,499 Government funding for this project is provided in whole or in part through the American Recovery and Reinvestment Act. Rock Physics of Geologic Carbon Sequestration/Storage

65

Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Municipal Consortium 1 Municipal Consortium Southeast Region Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Municipal Consortium Southeast Region Workshop Materials on AddThis.com... Conferences & Meetings Presentations Publications

66

EIA - Natural Gas Pipeline System - Southeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Southeast Region Southeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southeast Region Overview | Transportation to Atlantic & Gulf States | Gulf of Mexico Transportation Corridor | Transportation to the Northern Tier | Regional Pipeline Companies & Links Overview Twenty-three interstate, and at least eight intrastate, natural gas pipeline companies operate within the Southeast Region (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee). Fifteen of the twenty-one interstate natural gas pipelines originate in the Southwest Region and receive most of their supplies from the Gulf of Mexico or from the States of Texas and/or Louisiana.

67

Renewable Energy in the South-East  

Energy.gov (U.S. Department of Energy (DOE))

Presentationgiven at the April 2012 Federal Utility Partnership Working Group (FUPWG) meetingcover renewable energy technologies that are well-suited to the U.S. Southeast's resources and climate.

68

Case Study: Southeast Volusia Habitat for Humanity  

Office of Energy Efficiency and Renewable Energy (EERE)

In August 2013, Southeast Volusia County Habitat for Humanity (VolusiaHabitat) completed its first U.S. Department of Energy (DOE) Zero EnergyReady Home in Edgewater, on the Atlantic coast of...

69

2011 Municipal Consortium Southeast Region Workshop Materials  

Energy.gov (U.S. Department of Energy (DOE))

This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Southeast Region Workshop, held in Tampa, FL, February 1718, 2011.

70

Albany, OR Anchorage, AK Morgantown, WV Pittsburgh, PA Sugar Land, TX Website: www.netl.doe.gov  

E-Print Network (OSTI)

Albany, OR · Anchorage, AK · Morgantown, WV · Pittsburgh, PA · Sugar Land, TX Website: www.netl-285-5437 briggs.white@netl.doe.gov Neil Nofziger Principal Investigator seM-coM company, Inc. 1040 North Westwood 304-285-4717 daniel.driscoll@netl.doe.gov PARTNERS University of Toledo Ceramatec, Inc. PROJECT

Azad, Abdul-Majeed

71

Southeast Regional Carbon Sequestration Partnership  

SciTech Connect

The Southeast Regional Carbon Sequestration Partnership's (SECARB) Phase I program focused on promoting the development of a framework and infrastructure necessary for the validation and commercial deployment of carbon sequestration technologies. The SECARB program, and its subsequent phases, directly support the Global Climate Change Initiative's goal of reducing greenhouse gas intensity by 18 percent by the year 2012. Work during the project's two-year period was conducted within a ''Task Responsibility Matrix''. The SECARB team was successful in accomplishing its tasks to define the geographic boundaries of the region; characterize the region; identify and address issues for technology deployment; develop public involvement and education mechanisms; identify the most promising capture, sequestration, and transport options; and prepare action plans for implementation and technology validation activity. Milestones accomplished during Phase I of the project are listed below: (1) Completed preliminary identification of geographic boundaries for the study (FY04, Quarter 1); (2) Completed initial inventory of major sources and sinks for the region (FY04, Quarter 2); (3) Completed initial development of plans for GIS (FY04, Quarter 3); (4) Completed preliminary action plan and assessment for overcoming public perception issues (FY04, Quarter 4); (5) Assessed safety, regulatory and permitting issues (FY05, Quarter 1); (6) Finalized inventory of major sources/sinks and refined GIS algorithms (FY05, Quarter 2); (7) Refined public involvement and education mechanisms in support of technology development options (FY05, Quarter 3); and (8) Identified the most promising capture, sequestration and transport options and prepared action plans (FY05, Quarter 4).

Kenneth J. Nemeth

2006-08-30T23:59:59.000Z

72

Southeast Regional Clean Energy Policy Analysis (Revised)  

NLE Websites -- All DOE Office Websites (Extended Search)

Southeast Regional Clean Southeast Regional Clean Energy Policy Analysis Revised Joyce McLaren Technical Report NREL/TP-6A20-49192 Revised April 2011 ERRATA SHEET NREL REPORT/PROJECT NUMBER: TP-6A20-49192 TITLE: Southeast Regional Clean Energy Policy Analysis AUTHOR(S): Joyce McLaren ORIGINAL PUBLICATION DATE: January 2011 DATE OF CORRECTIONS (MM/YYYY): 04/2011 The following figures and tables were replaced: Page vii, Figure ES-2 Page ix, Table ES-1 Page 12, Table 1 Page 20, Figure 10 Page 51, Table 11 Page 52, Figure 18 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401

73

Hurricane Ike Impacts Southeast Texas Wildland Fuels  

E-Print Network (OSTI)

where timberland fuels can be found. Storm damage can be found in the timberlands of many east Texas significant damage, possibly up to 50%. #12;There are two modifications to the wildland timber fuelsHurricane Ike Impacts On Southeast Texas Wildland Fuels October 16th 2008 Hurricane Ike made

74

SEEA SOUTHEAST CONSORTIUM FINAL TECHNICAL REPORT  

SciTech Connect

In 2010 the Southeast Energy Efficiency Alliance (SEEA) received a $20 million Energy Efficiency and Conservation Block Grant (EECBG) under the U.S. Department of Energys Better Building Neighborhood Program (BBNP). This grant, funded by the American Recovery and Reinvestment Act, also included sub-grantees in 13 communities across the Southeast, known as the Southeast Consortium. The objective of this project was to establish a framework for energy efficiency retrofit programs to create models for replication across the Southeast and beyond. To achieve this goal, SEEA and its project partners focused on establishing infrastructure to develop and sustain the energy efficiency market in specific localities across the southeast. Activities included implementing minimum training standards and credentials for marketplace suppliers, educating and engaging homeowners on the benefits of energy efficiency through strategic marketing and outreach and addressing real or perceived financial barriers to investments in whole-home energy efficiency through a variety of financing mechanisms. The anticipated outcome of these activities would be best practice models for program design, marketing, financing, data collection and evaluation as well as increased market demand for energy efficiency retrofits and products. The Southeast Consortiums programmatic impacts along with the impacts of the other BBNP grantees would further the progress towards the overall goal of energy efficiency market transformation. As the primary grantee SEEA served as the overall program administrator and provided common resources to the 13 Southeast Consortium sub-grantees including contracted services for contractor training, quality assurance testing, data collection, reporting and compliance. Sub-grantee programs were located in cities across eight states including Alabama, Florida, Georgia, Louisiana, North Carolina, South Carolina, Tennessee, Virginia and the U.S. Virgin Islands. Each sub-grantee program was designed to address the unique local conditions and population of its community. There was great diversity in programs design, types of financing and incentives, building stock characteristics, climate and partnerships. From 2010 through 2013, SEEA and its sub-grantee programs focused on determining best practices in program administration, workforce development, marketing and consumer education, financing, and utility partnerships. One of the common themes among programs that were most successful in each of these areas was strong partnerships and collaborations with people or organizations in the community. In many instances engaged partners proved to be the key to addressing barriers such as access to financing, workforce development opportunities and access to utility bill data. The most challenging barrier proved to be the act of building a market for energy efficiency where none previously existed. With limited time and resources, educating homeowners of the value in investing in energy efficiency while engaging electric and gas utilities served as a significant barrier for several programs. While there is still much work to be done to continue to transform the energy efficiency market in the Southeast, the programmatic activities led by SEEA and its sub-grantees resulted in 8,180 energy audits and 5,155 energy efficiency retrofits across the Southeast. In total the Southeast Consortium saved an estimated 27,915,655.93 kWh and generated an estimated $ 2,291,965.90 in annual energy cost savings in the region.

Block, Timothy [Southeast Energy Efficiency Alliance] [Southeast Energy Efficiency Alliance; Ball, Kia [Southeast Energy Efficiency Alliance] [Southeast Energy Efficiency Alliance; Fournier, Ashley [Southeast Energy Efficiency Alliance] [Southeast Energy Efficiency Alliance

2014-01-21T23:59:59.000Z

75

NETL: Carbon Storage - Southeast Regional Carbon Sequestration Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

Southeast Regional Carbon Sequestration Partnership Southeast Regional Carbon Sequestration Partnership MORE INFO Additional information related to ongoing SECARB efforts can be found on their website. The Southeast Regional Carbon Sequestration Partnership (SECARB), managed by the Southern States Energy Board (SSEB), represents a 13-State region, including Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Texas, and Virginia, and portions of Kentucky and West Virginia. SECARB is comprised of over 100 participants representing Federal and State governments, industry, academia, and non-profit organizations. Southeast Regional Carbon Sequestration Partnership Region Southeast Regional Carbon Sequestration Partnership Region The primary goal of SECARB is to develop the necessary framework and

76

Clean Cities: Southeast Florida Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Florida Clean Cities Coalition Florida Clean Cities Coalition The Southeast Florida Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Southeast Florida Clean Cities coalition Contact Information Christine Heshmati 954-985-4416 cheshmati@sfrpc.com Coalition Website Clean Cities Coordinator Christine Heshmati Photo of Christine Heshmati In 2010, Christine Heshmati became the Florida Gold Coast Clean Cities Coalition Coordinator, merging her background in transportation planning with that of professionals in the field of alternative fuels in order to add depth this Region's mission and goals. Heshmati has 22 years of transportation planning experience in Florida. Her background includes intergovernmental coordination, short range

77

Southeast Colorado Power Assn | Open Energy Information  

Open Energy Info (EERE)

Southeast Colorado Power Assn Southeast Colorado Power Assn Place Colorado Utility Id 17592 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes ISO Other Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Colorado Large Power Industrial Farm & Home/Single Phase - General Residential General Service Commercial General Service - Demand Commercial General Service - Standby Service Industrial General Service - Time of Day Commercial Heating and Water Heating Residential Industrial Large Power Industrial Irrigation & Water Pumping Commercial

78

Southeast Enertgy Efficiency Alliance's Building Energy Codes Project  

NLE Websites -- All DOE Office Websites (Extended Search)

SEEA's Building Energy Codes SEEA's Building Energy Codes Program Jenah Zweig Southeast Energy Efficiency Alliance (SEEA) jzweig@seealliance.org, 404-602-9663 April 2, 2013 Significant energy efficiency advancements are underway in the Southeast 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: The Southeast needs targeted energy codes adoption, implementation and compliance support Step 3: Compliance Step 2: Implementation Step 1: Adoption 3 | Building Technologies Office eere.energy.gov

79

Southeast Enertgy Efficiency Alliance's Building Energy Codes Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SEEA's Building Energy Codes SEEA's Building Energy Codes Program Jenah Zweig Southeast Energy Efficiency Alliance (SEEA) jzweig@seealliance.org, 404-602-9663 April 2, 2013 Significant energy efficiency advancements are underway in the Southeast 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: The Southeast needs targeted energy codes adoption, implementation and compliance support Step 3: Compliance Step 2: Implementation Step 1: Adoption 3 | Building Technologies Office eere.energy.gov

80

Clean Cities: Southeast Louisiana Clean Fuels Partnership coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Louisiana Clean Fuels Partnership Coalition Louisiana Clean Fuels Partnership Coalition The Southeast Louisiana Clean Fuels Partnership coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Southeast Louisiana Clean Fuels Partnership coalition Contact Information Rebecca Otte 504-483-8513 slcfp@norpc.org Coalition Website Clean Cities Coordinator Rebecca Otte Photo of Rebecca Otte Rebecca Otte is the Environmental Programs Coordinator at the Regional Planning Commission (RPC) which includes five parishes (counties) in southeast Louisiana: Orleans, Jefferson, Plaquemines, St. Bernard and St. Tammany. Otte has served as the coordinator for the Southeast Louisiana Clean Fuel Partnership since 2007. In addition, she manages the Brownfield

Note: This page contains sample records for the topic "vt wv southeast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

IEA Renewables in Southeast Asian Countries: Trends and Potentials | Open  

Open Energy Info (EERE)

Southeast Asian Countries: Trends and Potentials Southeast Asian Countries: Trends and Potentials Jump to: navigation, search Name IEA Renewables in Southeast Asian Countries: Trends and Potentials Agency/Company /Organization International Energy Agency Sector Energy Focus Area Renewable Energy, Biomass, Transportation Topics Market analysis, Policies/deployment programs Resource Type Publications Website http://www.iea.org/papers/2010 Country Indonesia, Thailand, Philippines, Vietnam, Singapore, Malaysia, Brunei, Cambodia, Laos, Myanmar UN Region South-Eastern Asia References IEA Renewables in Southeast Asian Countries: Trends and Potentials[1] "A main focus of the report investigates the potentials and barriers for scaling up market penetration of renewable energy technologies (RETs) in

82

Southeast Industrial Energy Alliance Save Energy Now Partnership...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Authority, the Southeast team's multifaceted approach to helping reduce industrial energy intensity in the region consisted of conducting energy assessments to teach...

83

ECPE/PHYS 4984: Nanotechnology Randy Heflin 1-4504 108 Robeson rheflin@vt.edu  

E-Print Network (OSTI)

ECPE/PHYS 4984: Nanotechnology Randy Heflin 1-4504 108 Robeson rheflin@vt.edu Stephane Evoy 1 of instructor Course Number: ECPE 4984 PHYS 4984 Transcript Title: SS: Nanotechnology II. Rationale of course/ECPE 4984: Nanotechnology Course pack, edited by S. Rayyan , W. Barnhart, J. R. Heflin, and S. Evoy

Heflin, Randy

84

VT-2014-00407.R1 1 Abstract--Simulation-based design optimization of an electric  

E-Print Network (OSTI)

of a motor design, thus confining its application to the early conceptual design stage. Practical electric analysis accuracy and efficiency, direct integration of a motor model into a system optimization model hasVT-2014-00407.R1 1 Abstract--Simulation-based design optimization of an electric vehicle (EV

Papalambros, Panos

85

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

and pricing to remain profitable? Conserving Energy in Greenhouses The Greenhouse Structure The first linewww.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences, 1890 Extension Program, Virginia State, Petersburg. publication 430-101 Dealing with the High Cost

Liskiewicz, Maciej

86

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

to be produced in greenhouses or even in the desert sands. Hydroponic techniques also allow for precise waterwww.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences is often defined as "the cultivation of plants in water." Research has since determined that many different

Liskiewicz, Maciej

87

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

the Chesapeake Bay, its tributaries, and other water bodies. How is reclaimed water produced? Reclaimed waterwww.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences Extension Program, Virginia State, Petersburg. publication 452-014 What is water reuse? Water reuse can

Liskiewicz, Maciej

88

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

-foot equals 325,851 gallons of water. activated carbon ­ A material produced by heating coal or woodwww.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences, 1890 Extension Program, Virginia State, Petersburg. publication 442-758 A Glossary of Water

Liskiewicz, Maciej

89

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

1 www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences.virginia.gov/consumers/faqs.shtml. This publication goes over the main points of the ten- ant rights, responsibilities, and remedies sections such as hallways, stairs, foyers and/or heat- ing facilities, hot water equipment, or any other essential facility

Liskiewicz, Maciej

90

Dynamic Vt SRAM : A Leakage Tolerant Cache Memory for Low Voltage Microprocessors  

E-Print Network (OSTI)

biasing is not implemented in our DTSRAM design. Fig. 2 shows the schematic of a DTSRAM cache line (DTSRAM) ar- chitecture to reduce the subthreshold leakage in cache mem- ories. The Vt of each cache line is controlled separately by means of body biasing. In order to minimize the energy and delay overhead, a cache

Kim, Chris H.

91

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

the extent of public sewers, developing them requires a means for on-site wastewater treatment and dispersal in establish- ing on-site wastewater treatment and disposal systems on nonideal soils, as described in On online through the Vir- ginia Cooperative Extension website (www.ext.vt.edu). Wastewater Treatment

Liskiewicz, Maciej

92

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

-ester is a scientific term for the biodiesel fuel produced when methanol is used in the biodiesel production process. CHwww.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences, and emissions. This pub- lication addresses producing one's own biodiesel fuel from waste oil, fats, and oilseed

Liskiewicz, Maciej

93

EIS-0224: Southeast Regional Wastewater Treatment Plant Facilities Improvements  

Energy.gov (U.S. Department of Energy (DOE))

"This EIS analyzes the Lake County Sanitation District joint venture with the geothermal industry, specifically the Northern California Power Agency, Calpine Corporation (Calpine), and Pacific Gas and Electric Company, to develop a plan for disposal of secondary-treated effluent from the Southeast Regional Wastewater Treatment Plant near the City of Clearlake, California, in the Southeast Geysers Geothermal Steam Field."

94

Sustainable sanitation in urban centres in Southeast Asia  

E-Print Network (OSTI)

In recent decades, poor sanitation services and water pollution have become more serious in the GreaterSustainable sanitation in urban centres in Southeast Asia Several cities in Southeast Asia have. As a result, untreated or poorly treated wastewater finds its way into nearby water bodies. A possible

Richner, Heinz

95

Southeast Region Combined Heat and Power Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southeast Region Combined Heat and Power Projects Southeast Region Combined Heat and Power Projects Southeast Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Southeast www.southeastCHPTAP.org Isaac Panzarella North Carolina State University 919-515-0354 ipanzarella@ncsu.edu Alabama View Energy and Environmental Analysis Inc.'s (EEA) database of all known CHP installations in Alabama. Arkansas Fourche Creek Wastewater Treatment Facility, Little Rock View EEA's database of all known CHP installations in Arkansas. Florida Howard F. Curren Advanced Wastewater Treatment Plant, Tampa Shands Hospital, Gainesville View EEA's database of all known CHP installations in Florida.

96

UNEP-Southeast Asia Climate Change Network | Open Energy Information  

Open Energy Info (EERE)

Asia Climate Change Network Asia Climate Change Network Jump to: navigation, search Logo: UNEP-Southeast Asia Climate Change Network Name UNEP-Southeast Asia Climate Change Network Agency/Company /Organization United Nations Environment Programme Partner Government of Finland Sector Climate Topics Policies/deployment programs Website http://hqweb.unep.org/climatec Country Brunei, Cambodia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, Vietnam UN Region South-Eastern Asia References UNEP-Southeast Asia Climate Change Network[1] UNEP-Southeast Asia Climate Change Network Screenshot "Working primarily through the UNFCCC National Climate Change Focal Points designated in each country and mobilizing other key actors, the Southeast Asia Climate Change Network (SEAN-CC) - a UNEP initiative funded by the

97

241Southeast Asian Studies, Vol. 3, No. 2, August 2014, pp.241253 Center for Southeast Asian Studies, Kyoto University  

E-Print Network (OSTI)

industrialization, trade and investment liberalization, and financial global- ization. As such, the assessment#12;241Southeast Asian Studies, Vol. 3, No. 2, August 2014, pp.241�253 �Center for Southeast Asian to be slight, if not inadequate. Even so, various studies in political economy and politics assessed

Takada, Shoji

98

Southeast Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Montana Montana Utility Id 17593 Utility Location Yes Ownership C NERC Location WECC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Three Phase Commercial Electric Heat Commercial Commercial Electric Heat Residential Residential Residential Residential Security Light 150 and 175 watt Lighting Security Light 400 watt Lighting Stock Water Well Residential Average Rates Residential: $0.1380/kWh Commercial: $0.1080/kWh Industrial: $0.0617/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Southeast_Electric_Coop,_Inc&oldid=411556

99

Renewable Energy in the South-East  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in the in the South-East Andy Walker Deb Beattie National Renewable Energy Laboratory Federal Utility Partnership Working Group Spring 2012 Jekyll Island, GA 2 Renewable Energy Technologies Photovoltaics Daylighting Biomass Heat/Power Concentrating Solar Heat/Power Solar Vent Air Preheat Solar Water Heating Wind Power Ground Source Heat Pump Landfill Gas PIX 18700 PIX 8727 PIX 1050 PIX 12132 PIX 18700 PIX 11913 PIX 17041 PIX 07096 PIX 3626 A Birthplace of the Solar Industry Workers assemble collectors at the Solar Water Heater Company in Miami, FL, 1936 In 1925, the Miami Herald listed the company as one of the seven largest construction companies in Miami By 1942 SHW was used by ½ of the population including 80% of all new homes in the Miami area.

100

Wind Energy Resource Atlas of Southeast China  

SciTech Connect

This wind energy resource atlas identifies the wind characteristics and distribution of the wind resource in two regions of southeast China. The first region is the coastal area stretching from northern Fujian south to eastern Guangdong and extending approximately 100 km inland. The second region is centered on the Poyang Lake area in northern Jiangxi. This region also includes parts of two other provinces-Anhui and Hubei-and extends from near Anqing in Anhui south to near Nanchang in Jiangxi. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications. We created the high-resolution (1-km2) maps in 1998 using a computerized wind resource mapping system developed at the National Renewable Energy Laboratory (NREL). The mapping system uses software known as a Geographical Information System (GIS).

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2002-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "vt wv southeast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Electric-spark hardening of VT3-1 titanium alloy with tungsten-free composite ceramics  

Science Journals Connector (OSTI)

The mass transfer and wear resistance of both monolayer and multilayer coatings on VT3-1 alloy are examined. The coatings are deposited by electrospark alloying (ESA) with composite titanium and zirconium refr...

I. A. Podchernyaeva; V. M. Panashenko

2007-09-01T23:59:59.000Z

102

U.S. DEPARTlVIENT OF ENERGY EERE PROJECT )'vtAHAGEMENT CENTER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

)'vtAHAGEMENT CENTER )'vtAHAGEMENT CENTER NEPA DETERl\ifINATION RECIPIENT:Colorado School of Mines Page 1 of2 STATE: CO PROJECT TITLE: Joint Inversion of Electrical and Seismic data for Fracture Characterization and Imaging of Fluid Flow in Geotllermal Systems Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE·PS36·08G098008 . DE·FG36·08G018195 GFO·G018195·002 0 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited to, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply

103

Southeast Resource Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Southeast Resource Recovery Biomass Facility Southeast Resource Recovery Biomass Facility Jump to: navigation, search Name Southeast Resource Recovery Biomass Facility Facility Southeast Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

104

Southeast Cooler: Proposed Penalty (2013-CE-5331) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Proposed Penalty (2013-CE-5331) Proposed Penalty (2013-CE-5331) Southeast Cooler: Proposed Penalty (2013-CE-5331) January 31, 2013 DOE alleged in a Notice of Proposed Civil Penalty that Southeast Cooler Corp. failed to certify walk-in cooler or freezer components as compliant with the energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Southeast Cooler: Proposed Penalty (2013-CE-5331) More Documents & Publications Southeast Cooler: Order (2013-CE-5331) Dade Engineering: Proposed Penalty (2013-CE-5316)

105

EA-1965: Florida Atlantic University Southeast National Marine Renewable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Florida Atlantic University Southeast National Marine 5: Florida Atlantic University Southeast National Marine Renewable Energy Center's Offshore Marine Hydrokinetic Technology Testing Project, Florida EA-1965: Florida Atlantic University Southeast National Marine Renewable Energy Center's Offshore Marine Hydrokinetic Technology Testing Project, Florida SUMMARY The Department of Energy (DOE), through its Wind and Water Power Technologies Office (WWPTO), is proposing to provide federal funding to Florida Atlantic University's South-East National Marine Renewable Energy Center (FAU SNMREC) to support the at sea testing of FAU SNMREC's experimental current generation turbine and the deployment and operation of their Small-Scale Ocean Current Turbine Test Berth, sited on the outer continental shelf (OCS) in waters off the coast of Ft Lauderdale, Florida.

106

Improving communication skills in the Southeast Asian health care context  

Science Journals Connector (OSTI)

The aim of these two PhD thesis are to develop a guideline on doctor-patient communication skills based on cultural characteristics of Southeast Asian context and to develop communication skills training for n...

Mora Claramita; Astrid Pratidina Susilo

2014-12-01T23:59:59.000Z

107

Observations onSchistosoma intercalatum in south-east gabon  

Science Journals Connector (OSTI)

Observations were made in the field and laboratory to determine the strain characteristics ofSchistosoma intercalatum in south-east Gabon. For an isolate from Franceville, data...S. intercalatum as known from sou...

D. S. Brown; C. Sarfati; V. R. Southgate; G. C. Ross

1984-01-01T23:59:59.000Z

108

Toward a Mesoscale Observation Network in Southeast Asia  

Science Journals Connector (OSTI)

The current weather observation network in Southeast Asia is unable to support the accurate monitoring and prediction of the region's predominantly convective weather. Establishing a multisensor mesoscale observation network comprising automated ...

Tieh-Yong Koh; Chee-Kiat Teo

2009-04-01T23:59:59.000Z

109

Southeast Texas Region Regional Public Transportation Coordination Plan  

E-Print Network (OSTI)

in the southeast Texas region include local, regional, and state entities that provide transportation, medical, workforce, and aging and disability assistance services. The SETRPC acts as the lead planning partner for the southeast Texas region. Established... opportunities for Texas Workforce Development Board clientele. Operational Projects Several of the recommendations already listed provide means to explore, plan, and implement improvements that will enhance the operational effectiveness of the transit...

Southeast Texas Regional Planning Commission

110

Southeast Regional Clean Energy Policy Analysis (Revised)  

SciTech Connect

More than half of the electricity produced in the southeastern states is fuelled by coal. Although the region produces some coal, most of the states depend heavily on coal imports. Many of the region's aging coal power facilities are planned for retirement within the next 20 years. However, estimates indicate that a 20% increase in capacity is needed over that time to meet the rapidly growing demand. The most common incentives for energy efficiency in the Southeast are loans and rebates; however, total public spending on energy efficiency is limited. The most common state-level policies to support renewable energy development are personal and corporate tax incentives and loans. The region produced 1.8% of the electricity from renewable resources other than conventional hydroelectricity in 2009, half of the national average. There is significant potential for development of a biomass market in the region, as well as use of local wind, solar, methane-to-energy, small hydro, and combined heat and power resources. Options are offered for expanding and strengthening state-level policies such as decoupling, integrated resource planning, building codes, net metering, and interconnection standards to support further clean energy development. Benefits would include energy security, job creation, insurance against price fluctuations, increased value of marginal lands, and local and global environmental paybacks.

McLaren, J.

2011-04-01T23:59:59.000Z

111

Multi-University Southeast INIE Consortium  

SciTech Connect

2 Project Summary: The Multi-University Southeast INIE Consortium (MUSIC) was established in response to the US Department of Energys (DOE) Innovations in Nuclear Infrastructure and Education (INIE) program. MUSIC was established as a consortium composed of academic members and national laboratory partners. The members of MUSIC are the nuclear engineering programs and research reactors of Georgia Institute of Technology (GIT), North Carolina State University (NCSU), University of Maryland (UMD), University of South Carolina (USC), and University of Tennessee (UTK). The University of Florida (UF), and South Carolina State University (SCSU) were added to the MUSIC membership in the second year. In addition, to ensure proper coordination between the academic community and the nations premier research and development centers in the fields of nuclear science and engineering, MUSIC created strategic partnerships with Oak Ridge National Laboratory (ORNL) including the Spallation Neutron Source (SNS) project and the Joint Institute for Neutron Scattering (JINS), and the National Institute of Standards and Technology (NIST). A partnership was also created with the Armed Forces Radiobiology Research Institute (AFRRI) with the aim of utilizing their reactor in research if funding becomes available. Consequently, there are three university research reactors (URRs) within MUSIC, which are located at NCSU (1-MW PULSTAR), UMD (0.25-MW TRIGA) and UF (0.10-MW Argonaut), and the AFRRI reactor (1-MW TRIGA MARK F). The overall objectives of MUSIC are: a) Demonstrate that University Research Reactors (URR) can be used as modern and innovative instruments of research in the basic and applied sciences, which include applications in fundamental physics, materials science and engineering, nondestructive examination, elemental analysis, and contributions to research in the health and medical sciences, b) Establish a strong technical collaboration between the nuclear engineering faculty and the MUSIC URRs. This will be achieved by involving the faculty in the development of state-of-the-art research facilities at the URRs and subsequently, in the utilization of these facilities, c) Facilitate the use of the URRs by the science and engineering faculty within the individual institutions and by the general community of science and engineering, d) Develop a far-reaching educational component that is capable of addressing the needs of the nuclear science and engineering community. Specifically, the aim of this component will be to perform public outreach activities, contribute to the active recruitment of the next generation of nuclear professionals, strengthen the education of nuclear engineering students, and promote nuclear engineering education for minority students.

Ayman Hawari; Nolan Hertel; Mohamed Al-Sheikhly; Laurence Miller; Abdel-Moeze Bayoumi; Ali Haghighat; Kenneth Lewis

2010-12-29T23:59:59.000Z

112

Southeast Colorado Power Association - Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southeast Colorado Power Association - Energy Efficiency Rebate Southeast Colorado Power Association - Energy Efficiency Rebate Program Southeast Colorado Power Association - Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Manufacturing Water Heating Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Water Heater (Fossil Fuel to Electric): $200, plus $25 lifetime warranty bonus Water Heater (Electric to Electric): $1 per gallon, plus $50 six year warranty bonus Refrigerators/Freezers: $50 Clothes Washers: $50 Dishwashers: $40 Motors: $10 per HP Motors (Wiring Assistance): $1.50 per HP Radiant Heater: $4.00 per KW Air-Source Heat Pump: $150 - $175/ton; bonus of $150 for Energy Star rating

113

Dickie B. Revera Galveston Laboratory. Southeast Fisheries Science Center  

E-Print Network (OSTI)

SeNice. NOAA. Galveston. Texas 7755 J-5997 Donna J. Shaver Padre Island National Seashore. National. Galveston. Texas 77553 Charles w. Caillouet Jr. Marcel J. Duronslet Galveston Laboratory. Southeast Fisheries Science Center National Marine Fisheries SeNice. NOAA. Galveston. Texas 7755 J-5997 Manuscript

114

THE FLORA OF THE SERPENTINE BARRENS OF SOUTHEAST PENNSYLVANIA  

Science Journals Connector (OSTI)

...Square, at places north and southwest of West Chester, while isolated patches exist south of Bryn Mawr and north-west of M edia. There seems no doubt but that all the serpentines in southeast Pennsyl-vania are altered igneous rocks, either pyr-oxenites...

John W. Harshberger

1903-09-11T23:59:59.000Z

115

Southeast Community College Wind Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Jump to: navigation, search Name Southeast Community College Wind Project Facility Southeast Community College Sector Wind energy Facility Type Community Wind Location NE Coordinates 40.814625°, -96.600151° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.814625,"lon":-96.600151,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

116

Southeast, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Southeast, New York: Energy Resources Southeast, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.3917065°, -73.6300729° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3917065,"lon":-73.6300729,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

117

recovery (EOR). Conducted by the Southeast Regional Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

recovery (EOR). Conducted by the Southeast Regional Carbon recovery (EOR). Conducted by the Southeast Regional Carbon Sequestration Partnership (SECARB), one of seven DOE Regional Carbon Sequestration Partnerships (RCSPs), the "Anthropogenic Test" uses CO 2 from the newly constructed post-combustion CO 2 -capture facility at Alabama Power's 2,657-megawatt (MW) Barry Electric Generating Plant. Located in southwest Alabama, the project will help demonstrate the feasibility of carbon capture, utilization, and storage (CCUS) by diverting a small amount of flue gas from Plant Barry (equivalent to amount produced when generating 25 MW of electricity) and capturing it using Mitsubishi Heavy Industries' advanced amine process to produce a nearly pure stream of CO

118

Geographical Distribution of Biomass Carbon in Tropical Southeast Asian  

NLE Websites -- All DOE Office Websites (Extended Search)

Geographical Distribution of Biomass Carbon in Tropical Southeast Asian Geographical Distribution of Biomass Carbon in Tropical Southeast Asian Forests: A Database (NDP-068) DOI: 10.3334/CDIAC/lue.ndp068 data Data PDF PDF Appendix A is reprint of Brown et al. paper in Geocarto International, Vol. 8; copyright 1993 Geocarto International Centre and reprinted with kind permission from the publisher) image Contributors Sandra Brown1 Louis R. Iverson2 Anantha Prasad2 Department of Natural Resources and Environmental Sciences University of Illinois Urbana, Illinois 1Present address: Winrock International, Arlington, Virginia 2Present address: United States Forest Service, Northeast Research Station, Delaware, Ohio Prepared by Tammy W. Beaty, Lisa M. Olsen, Robert M. Cushman, and Antoinette L. Brenkert Carbon Dioxide Information Analysis Center

119

Sierra Vista Southeast, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Southeast, Arizona: Energy Resources Southeast, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.460592°, -110.217428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.460592,"lon":-110.217428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

120

Record of Decision and Floodplain Statement of Findings: Western Greenbrier Co-Production Demonstration Project, Rainelle, Greenbrier County, WV (DOE/EIS-0361) (04/29/08)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

14 Federal Register 14 Federal Register / Vol. 73, No. 83 / Tuesday, April 29, 2008 / Notices DEPARTMENT OF ENERGY Record of Decision and Floodplain Statement of Findings: Western Greenbrier Co-Production Demonstration Project, Rainelle, Greenbrier County, WV AGENCY: Office of Fossil Energy, U.S. Department of Energy (DOE). ACTION: Record of Decision (ROD) and Floodplain Statement of Findings. SUMMARY: DOE has decided to implement the Proposed Action alternative, identified as the preferred alternative, in the Western Greenbrier Co-Production Demonstration Project, Final Environmental Impact Statement (DOE/EIS-0361; November 2007) (FEIS). That alternative is to provide approximately $107.5 million (up to 50% of the development costs) to Western Greenbrier Co-Generation, LLC

Note: This page contains sample records for the topic "vt wv southeast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

SOFC Anode Interaction with Trace Coal Syngas Species U.S. Dept of Energy, National Energy Technology Laboratory, Morgantown, WV 26507  

NLE Websites -- All DOE Office Websites (Extended Search)

SOFC Anode Interaction with Trace Coal Syngas Species SOFC Anode Interaction with Trace Coal Syngas Species U.S. Dept of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 Gregory Hackett, Kirk Gerdes, Randall Gemmen Phone: (304)285-5279, Gregory.Hackett@NETL.DOE.GOV Utilization of coal as a fuel source for highly efficient integrated gasification fuel cell (IGFC) power generation facilities is technologically and environmentally attractive. IGFC plants are expected to offer the highest efficiency coal gasification processes, even when carbon capture and storage systems are included in the design. One element of IGFC research at the National Energy Technology Laboratory is the investigation of syngas cleanup processes for these integrated systems. Of particular interest are the effects of trace elements naturally contained in

122

Environmental siting suitability analysis for commercial scale ocean renewable energy| A southeast Florida case study.  

E-Print Network (OSTI)

?? This thesis aims to facilitate the siting and implementation of Florida Atlantic University Southeast National Marine Renewable Energy Center (FAU SNMREC) ocean current energy (more)

Mulcan, Amanda

2015-01-01T23:59:59.000Z

123

Evolution of the optical properties of biomass-burning aerosol during the 2003 southeast Australian bushfires  

Science Journals Connector (OSTI)

During January and February 2003, drought conditions led to major bushfires across southeast Australia, causing considerable damage. We have examined aerosol optical depth (AOD) data...

Radhi, Majed; Box, Michael A; Box, Gail P; Gupta, Pawan; Christopher, Sundar A

2009-01-01T23:59:59.000Z

124

Southeast Interstate Low-Level Radioactive Waste Management Compact (multi-state)  

Energy.gov (U.S. Department of Energy (DOE))

The Southeast Interstate Low-Level Radioactive Waste Management Compact is administered by the Compact Commission. The Compact provides for rotating responsibility for the region's low-level...

125

E-Print Network 3.0 - anambra state southeast Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

The University Of Montana Summary: and Southeast Asia, including the states of India, Nepal, Bhutan, Tibet, Sri Lanka, Bangladesh, Myanmar (Burma... - 1 - 2010-2011 Course...

126

Climate Extremes in the Southeast United States: Observed Variability, Spatial Classification, and Related Planning.  

E-Print Network (OSTI)

??Spatial and temporal trends in temperature and precipitation extremes were investigated for the Southeast United States for the period 1948 to 2012 using 27 extreme (more)

Powell, Emily J.

2014-01-01T23:59:59.000Z

127

South-East Asian prospects for nuclear power  

Science Journals Connector (OSTI)

South-East Asia's strong economic growth of recent decades is expected to endure the requirement of increasing amounts of energy as well as the corresponding capital investments. The development of a nuclear power industry has been considered for some time in several states, but concrete government action is yet to follow. Decisions to launch nuclear power programmes would be facilitated if and when the international nuclear energy scene becomes more conducive, especially if countries in other regions either revive or adopt nuclear power programmes within the next few years for reasons such as mitigation of greenhouse gas emissions, security of supply or lower electricity costs.

Budi Sudarsono; Daniel Weisser

2008-01-01T23:59:59.000Z

128

1857 Slip on the San Andreas Fault Southeast of Cholame, California  

Science Journals Connector (OSTI)

...Fault Southeast of Cholame, California by James J. Lienkaemper Abstract Sieh and Jahns...channel 110 m southeast of Twisselmann Ranch creepmeter. Incision probably since cattle...23, 170 174. Arrowsmith, R., K. McNally, and J. Davis (1997). Potential for...

James J. Lienkaemper

129

The form, distribution and mobility of arsenic in soils contaminated by arsenic trioxide, at sites in southeast USA  

E-Print Network (OSTI)

trioxide, at sites in southeast USA Li Yang, and Rona J.industrial sites in southeastern USA are contaminated with

Yang, Li; Donahoe, Rona J.

2005-01-01T23:59:59.000Z

130

U.S. DOE Southeast Clean Energy Application Center  

SciTech Connect

Between 2010 and 2013, the U.S. Department of Energy (DOE) funded the Southeast Clean Energy Application Center (SE-CEAC), co-located at the North Carolina Solar Center at NC State University (NCSU) and at Mississippi State University. The SE-CEAC was one of eight regional CEACs established to promote and assist in transforming the market for combined heat and power (CHP), district energy (DE) and waste heat to power (WHP) throughout the U.S. CHP locates power generation at the point of demand and makes productive use of the residual thermal energy for process and space heating in factories and businesses, thus lowering the cost of meeting electricity and heat requirements and increasing energy efficiency. The overall goal of the SE-CEAC was to support end-user implementation and overall market transformation for CHP and related clean energy technologies. Five objectives were targeted to achieve the goal: 1. Market Analysis and Information Dissemination 2. Outreach and Education for Potential CHP End-users 3. Policy Support for State and Regional Stakeholders 4. Technical Assistance to Support CHP Deployment 5. Collaboration with DOE and other CEACs Throughout the project, the CEACs provided key services of education and outreach, technical assistance and market analysis in support of project objectives. These services were very effective at achieving key objectives of assisting prospective CHP end-users and informing policy makers, utilities and others about the benefits of CHP. There is a marked increase in the awareness of CHP technologies and applications as an energy resource among end-users, policymakers, utility regulators, electric utilities and natural gas utilities in the Southeast region as a result. At the end of 2013, a number of best-practice policies for CHP were applied or under consideration in various Southeast states. The SE-CEAC met its targets for providing technical assistance with over 50 analyses delivered for 412 MW of potential end-users CHP applications. Of these 50 MW of projects were under consideration at the end of 2013 based on SE-CEAC technical assistance findings.

Panzarella, Isaac; Mago, Pedro; Kalland, Stephen

2013-12-31T23:59:59.000Z

131

Residential Retrofits in the Southeast: A Performance Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Retrofits in Residential Retrofits in the Southeast: A Performance Update Roderick K. Jackson Ph.D Oak Ridge National Laboratory for Building America Stakeholder Meeting 3/1/2012 2 Managed by UT-Battelle for the U.S. Department of Energy Project Goals 1. Can we retrofit existing homes to achieve energy savings of more than 30% 2. Can we cost effectively retrofit existing homes to achieve energy savings of more than 30% 3. Will homeowners pay for retrofits that achieve energy savings of more than 30% 4. Will reality (i.e. utility bills) match the projected energy savings * In the event any of the answers to questions 1-4 is NO, what are obstacles to YES 3 Managed by UT-Battelle for the U.S. Department of Energy Project Overview Nine homes received retrofits with projected source energy

132

Southeast European Regional Electricity Market Analysis | Open Energy  

Open Energy Info (EERE)

Electricity Market Analysis Electricity Market Analysis Jump to: navigation, search Name Southeast European Regional Electricity Market analysis Agency/Company /Organization Argonne National Laboratory Partner United States Agency for International Development, Montgomery Watson Harza Sector Energy Topics Market analysis, Background analysis Website http://www.dis.anl.gov/news/Ba UN Region "Western & Eastern Europe" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

133

Wind Energy Resource Atlas of Southeast China (CD-ROM)  

SciTech Connect

This wind energy resource atlas identifies the wind characteristics and distribution of the wind resource in two regions of southeast China. The first region is the coastal area stretching from northern Fujian south to eastern Guangdong and extending approximately 100 km inland. The second region is centered on the Poyang Lake area in northern Jiangxi. This region also includes parts of two other provinces-Anhui and Hubei-and extends from near Anqing in Anhui south to near Nanchang in Jiangxi. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications. We created the high-resolution (1-km2) maps in 1998 using a computerized wind resource mapping system developed at the National Renewable Energy Laboratory (NREL). The mapping system uses software known as a Geographical Information System (GIS).

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2002-11-01T23:59:59.000Z

134

Published by the IEEE CS n 1536-1268/08/$25.00 2008 IEEE PERVASIVE computing Education & TrainingEditor: Scott F. Midkiff n Virginia Tech n midkiff@vt.edu  

E-Print Network (OSTI)

& TrainingEditor: Scott F. Midkiff n Virginia Tech n midkiff@vt.edu As a field, computer science faces (www. scribblerrobot.com)withacustomIPRE EdITor'S InTro An exciting new initiative at Georgia Tech at midkiff@vt.edu. --Scott Midkiff QuICk FACTS Course: Computer Science 1 (CS1) Level: undergraduate

Guzdial, Mark

135

A LOW COST MULTI-BAND/MULTI-MODE RADIO FOR PUBLIC SAFETY S.M. Hasan (Virginia Tech, Blacksburg, VA, U.S.A., hasan@vt.edu); P. Balister  

E-Print Network (OSTI)

A LOW COST MULTI-BAND/MULTI-MODE RADIO FOR PUBLIC SAFETY S.M. Hasan (Virginia Tech, Blacksburg, VA, U.S.A., hasan@vt.edu); P. Balister (Virginia Tech, Blacksburg, VA, U.S.A., balister@vt.edu); K. Lee

Ellingson, Steven W.

136

Three-dimensional anatomy of a geothermal field, Coso, Southeast-Central  

Open Energy Info (EERE)

anatomy of a geothermal field, Coso, Southeast-Central anatomy of a geothermal field, Coso, Southeast-Central California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Three-dimensional anatomy of a geothermal field, Coso, Southeast-Central California Details Activities (1) Areas (1) Regions (0) Abstract: This paper reviews geophysical and seismological imaging in the Coso geothermal field, located in southeast-central California. The Coso geothermal production area covers approximately 6X10 km 2 . Although regional seismicity is addressed, as it sheds light on the magma, or heat, sources in the field, the primary focus of this paper is on the main production area. Three-dimensional inversions for P- and S- wave velocity variations, distribution of attenuation, and anisotropy are presented side-by-side so that anomalies can be compared spatially in a direct

137

Historic Land Use and Carbon Estimates for South and Southeast Asia:  

NLE Websites -- All DOE Office Websites (Extended Search)

Historic Land Use and Carbon Estimates for South and Southeast Asia: Historic Land Use and Carbon Estimates for South and Southeast Asia: 1880-1980 (1994) (NDP-046) DOI: 10.3334/CDIAC/lue.ndp046 data Data PDF PDF Contributors J. F. Richards and E. P. Flint Description This data base contains estimates of land use change and the carbon content of vegetation for South and Southeast Asia for the years 1880, 1920, 1950, 1970, and 1980. These data were originally collected for climate modelers so they could reduce the uncertainty associated with the magnitude and time course of historical land use change and of carbon release. For this data base, South and Southeast Asia is defined as encompassing nearly 8 × 106 km2 of the earth's land surface and includes the countries of India, Sri Lanka, Bangladesh, Myanmar (Burma), Thailand, Laos, Kampuchea (Cambodia),

138

Significant influences of global mean temperature and ENSO on extreme rainfall in Southeast Asia  

Science Journals Connector (OSTI)

This study investigates the changes in annual and seasonal maximum daily rainfall (RX1day) in Southeast Asia, obtained from gauge-based gridded precipitation data, to address the increasing concerns about climate change in the region. First, the ...

Marcelino Q. Villafuerte II; Jun Matsumoto

139

CO2 Supermarket Refrigeration Systems for Southeast Asia and the USA  

SciTech Connect

This paper presents a comparative analysis of the annual energy consumption of these refrigeration systems in eighty eight cities from all climate zones in Southeast Asia. Also, the performance of the CO2 refrigeration systems is compared to the baseline R404A multiplex direct expansion (DX) system. Finally, the overall performance of the CO2 refrigeration systems in various climatic conditions in Southeast Asia is compared to that in the United States. For the refrigeration systems investigated, it was found that the Transcritical Booster System with Bypass Compressor (TBS-BC) performs better or equivalent to the R404A multiplex DX system in the northern regions of Southeast Asia (China and Japan). In the southern regions of Southeast Asia (India, Bangladesh, Burma), the R404A multiplex DX system and the Combined Secondary Cascade (CSC) system performs better than the TBS-BC.

Sharma, Vishaldeep [ORNL; Fricke, Brian A [ORNL; Bansal, Pradeep [ORNL

2014-01-01T23:59:59.000Z

140

Accurate ocean tide modeling in southeast Alaska and large tidal dissipation around Glacier Bay  

Science Journals Connector (OSTI)

An accurate prediction of ocean tides in southeast Alaska is developed using a...et al.... (2000). The model bathymetry dominates the model skill. We re-estimate tidal energy dissipation in the Alaska Panhandle a...

Daisuke Inazu; Tadahiro Sato; Satoshi Miura; Yusaku Ohta

2009-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "vt wv southeast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Interdecadal changes in summertime tropical cyclone precipitation over Southeast China during 19602009  

Science Journals Connector (OSTI)

This study examines the changes in tropical cyclone (TC) precipitation and the associated contributing factors over Southeast China during 19602009. Climatologically, TC rainfall accounts for approximately 2040% of the total rainfall over ...

Richard C. Y. Li; Wen Zhou

142

Characteristics of convective cells over the coastal regions of southeast Texas  

E-Print Network (OSTI)

Vertical profiles of radar reflectivity and cloud-to-ground lightning characteristics associated with convective cells were analyzed for mesoscate systems occurring over the coastal regions of southeast Texas during the spring and summer months...

Robinson, Michael

2012-06-07T23:59:59.000Z

143

Upper-Ocean Processes under the Stratus Cloud Deck in the Southeast Pacific Ocean  

Science Journals Connector (OSTI)

The annual mean heat budget of the upper ocean beneath the stratocumulus/stratus cloud deck in the southeast Pacific is estimated using Simple Ocean Data Assimilation (SODA) and an eddy-resolving Hybrid Coordinate Ocean Model (HYCOM). Both are ...

Yangxing Zheng; George N. Kiladis; Toshiaki Shinoda; E. Joseph Metzger; Harley E. Hurlburt; Jialin Lin; Benjamin S. Giese

2010-01-01T23:59:59.000Z

144

Hydrographic characterization of southeast Arabian Sea during the wane of southwest monsoon and spring intermonsoon  

Science Journals Connector (OSTI)

Seasonal variation of the hydrography along the southeast Arabian Sea is described using data collected onboard FORV Sagar Sampada in SeptemberOctober 2003 (later phase of Southwest monsoon, SWM) and MarchAp...

K. G. Vimal Kumar; P. K. Dinesh Kumar

2008-05-01T23:59:59.000Z

145

Transportation Barriers to Employment: Southeast Asian Welfare Recipients in Los Angeles and Fresno Counties  

E-Print Network (OSTI)

35%) and much higher than for Hispanic households (24%).two adults in Hispanic and white households and less thanHispanic White and African American families, Southeast Asian households

Blumenberg, Evelyn

2005-01-01T23:59:59.000Z

146

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University, 2013  

E-Print Network (OSTI)

, Petersburg. VT/0813/BSE-90P Publication 426-125 What Is Rainwater Harvesting? Rainwater harvesting (RWH), also known as rainwater harvesting systems or cisterns, are devices that inter- cept, divert, store management practice (BMP) for treatment of urban stormwater. Because of its dual purpose and benefit, RWH

Liskiewicz, Maciej

147

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University, 2013  

E-Print Network (OSTI)

the likelihood of nitrogen loss via ammonia volatilization. In addition to gaseous losses, water percolating, Petersburg. VT/0813/CSES-52P Publication CSES-52P What Are Nitrogen Stabilizers? The recent increase in fertilizer costs, especially nitro- gen fertilizers, has resulted in technologies that may improve nitrogen

Liskiewicz, Maciej

148

APA Citation Style for a Bibliography/Works Cited Page Zerby, C. (2002). Devil's details: A history of footnotes. Montpelier, VT: Invisible  

E-Print Network (OSTI)

from subscription database) May, E. R. (2005, May 23). When government writes history. New Republic, 30 ________________________________________________________________ Book Zerby, C. (2002). Devil's details: A history of footnotes. Montpelier, VT: Invisible Cities Press-129. ________________________________________________________________ Journal Article (continuous pagination, full text from subscription database) Elliott, S. N., Huai, N

Kasman, Alex

149

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University, 2013  

E-Print Network (OSTI)

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences, Petersburg. Publication ANR-50P Introduction Family forest owners ask themselves many questions about owners ask is whether they should certify their forests. This publication can help forest owners

Liskiewicz, Maciej

150

Virginia Seafood Agricultural Research and Extension Center102SKingSt.,Hampton,VA23669757-727-4861www.arec.vaes.vt.edu/virginia-seafood Physical Resources  

E-Print Network (OSTI)

Virginia Seafood Agricultural Research and Extension Center102SKingSt.,Hampton,VA23669·757-727-4861·www.arec.vaes.vt.edu/virginia-seafood Physical Resources Land and Facilities Description Land Specialist, Muscle food safety and quality Safety and quality of seafood, beef, poultry, and pork products

Virginia Tech

151

Virginia Seafood Agricultural Research and Extension Center102SKingSt.,Hampton,VA23669757/727-4861www.arec.vaes.vt.edu/virginia-seafood Physical Resources  

E-Print Network (OSTI)

Virginia Seafood Agricultural Research and Extension Center102SKingSt.,Hampton,VA23669·757/727-4861·www.arec.vaes.vt.edu/virginia-seafood Physical Resources Land and Facilities Description Land and quality Safety and quality of seafood, beef, poultry, and pork products. HACCP and bilingual training

Liskiewicz, Maciej

152

Suggested Courses for ME Students Interested in Green Engineering Please see http://www.eng.vt.edu/green/ for information on the Green Engineering minor.  

E-Print Network (OSTI)

for increasing efficiencies (energy storage, batteries, green building, conservation). Options for transportationSuggested Courses for ME Students Interested in Green Engineering Please see http://www.eng.vt.edu/green/ for information on the Green Engineering minor. Required Courses: ME 4015-4016 ­ Engineering Design and Project (6

Virginia Tech

153

Abstract 476: Mammary tumors in lipocalin-2 deficient MMTV-PyVT mice grow faster but show decreased metastasis to lung  

Science Journals Connector (OSTI)

...Mammary tumors in lipocalin-2 deficient MMTV-PyVT mice grow faster but show decreased metastasis to lung Heiman Chow 1 Pengcheng Fan 1 Aimin Xu 1 Wen Laun Wendy Hsiao 2 Yu Wang 1 1Department of Pharmacology and Pharmacy, The University of Hong Kong...

Heiman Chow; Pengcheng Fan; Aimin Xu; Wen Laun Wendy Hsiao; Yu Wang

2011-01-10T23:59:59.000Z

154

Pre-convective environmental conditions indicative of non-tornadic severe thunderstorm winds over Southeast Florida  

E-Print Network (OSTI)

PRE-CONVECTIVE ENVIRONMENTAL CONDITIONS INDICATIVE OF NON-TORNADIC SEVERE THUNDERSTORM WINDS OVER SOUTHEAST FLORIDA A Thesis by JEFFREY MICHAEL WILHELM Submitted to the Graduate College of Texas ARM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1987 Major Subject: Meteorology PRE-CONVECTIVE ENVIRONMENTAL CONDITIONS INDICATIVE OF NON-TORNADIC SEVERE THUNDERSTORM WINDS OVER SOUTHEAST FLORIDA A Thesis by JEFFREY MICHAEL WILHELM Approved...

Wilhelm, Jeffrey Michael

2012-06-07T23:59:59.000Z

155

An advertising and evaluation study of farm supply stores in a region of Southeast Texas  

E-Print Network (OSTI)

AN ADVERTISING AND EVALUATION STUDY OF FARM SUPPLY STORES IN A REGION OF SOUTHEAST TEXAS A Professional Paper by Dana M. Dueitt Submitted to the College of Agriculture of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE (NON-THESIS) March, 1988 Agricultural Economics AN ADVERTISING AND EVALUATION STUDY FARM SUPPLY STORES IN A REGION OF SOUTHEAST TEXAS A Professional Paper by Dana M. Dueitt Approved as to style and content by...

Dueitt, Dana M.

2012-06-07T23:59:59.000Z

156

U.S . DEPART]\.1ENT OF ENERGY EERE PROJECT T'....IANACiE!vtENT CENTER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

S S . DEPART]\.1ENT OF ENERGY EERE PROJECT T'....IANACiE!vtENT CENTER NEPA DETERl\HNATION RECI PI ENT:Amonix, Inc. STATE: CA PROJECT Low Cost High Concentration Photovoltaic Power Systems for Utility Power Generation - Sandia site TITLE: Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE-PS36-06G 096034 DE-FC36-07G017042 GFO-G017042-006 G017042 Based on my review of the information concerning the proposed action, as N EPA Compliance Officer (authorized under DOE Order 451.1 A), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: 85.1 Actions to conserve energy, demonstrate potential energy conservation , and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical

157

A Morphometric Analysis Of The Submarine Volcanic Ridge South-East Of Pico  

Open Energy Info (EERE)

Morphometric Analysis Of The Submarine Volcanic Ridge South-East Of Pico Morphometric Analysis Of The Submarine Volcanic Ridge South-East Of Pico Island, Azores Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Morphometric Analysis Of The Submarine Volcanic Ridge South-East Of Pico Island, Azores Details Activities (0) Areas (0) Regions (0) Abstract: A region of crustal extension, the Azores Plateau contains excellent examples of submarine volcanic edifices constructed over a wide range of ocean depths along the Pico Ridge. Using bathymetric data and Towed Ocean Bottom Instrument (TOBI) side-scan sonar imagery, we measured the dimensions (diameter, height, slopes), shape, and texture of these volcanic edifices to further understanding of the geometric development of a submarine ridge. Our analysis and interpretation of the measurement and

158

Institute of Energy for South-East Europe | Open Energy Information  

Open Energy Info (EERE)

South-East Europe South-East Europe Jump to: navigation, search Name Institute of Energy for South-East Europe Address Αlex. Soutsou 3 Place Athens, Greece Zip 10671 Phone number +30.210.3628457 Coordinates 37.9773425°, 23.737251° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9773425,"lon":23.737251,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

159

Southeast Cooler Corp. Respondent BEFORE THE U.S. DEPARTMENT OF ENERGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southeast Cooler Corp. Southeast Cooler Corp. Respondent BEFORE THE U.S. DEPARTMENT OF ENERGY WASHINGTON, D.C. 20585 ) ) ) ) ) ) ORDER Case Number: 2013-CE-5331 By the General Counsel, U.S. Department of Energy: I. In this Order, I adopt the attached Compromise Agreement entered into between the U.S. Department of Energy ("DOE") and Southeast Cooler Corp. ("Respondent"). The Compromise Agreement resolves the case initiated to pursue a civil penalty for violations of the compliance certification requirements located at 10 C.P.R.§§ 429.12 and 429.53. 2. DOE and Respondent have negotiated the terms of the Compromise Agreement that resolve this matter. A copy of the Compromise Agreement is attached hereto and incorporated by reference. 3. After reviewing the terms of the Compromise Agreement and evaluating the facts

160

Cost-effective conservation: calculating biodiversity and logging trade-offs in Southeast Asia  

E-Print Network (OSTI)

LETTER Cost-effective conservation: calculating biodiversity and logging trade-offs in Southeast and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA Keywords Biodiversity conservation; birds-off between economic interests and biodiversity conservation. Here, we provide an empirical examination

Vermont, University of

Note: This page contains sample records for the topic "vt wv southeast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

High-temperature deformation in the Neoproterozoic transpressional Ribeira belt, southeast Brazil  

E-Print Network (OSTI)

High-temperature deformation in the Neoproterozoic transpressional Ribeira belt, southeast Brazil^ncias da Universidade de Sa~o Paulo, Rua do Lago 562, Cep: 05508-080, Sa~o Paulo, SP, Brazil b Laboratoire Geologia, Universidade Federal de Ouro Preto, 35400-000, Ouro Pre^to, MG, Brazil Received 5 April 2001

Bascou, Jérôme

162

Upper-mantle dynamics revealed by helium isotope variations along the southeast Indian ridge  

Science Journals Connector (OSTI)

... present helium isotope data for MORB glasses recovered along ?5,800?km of the southeast Indian ridge, and develop an approach to quantitatively relate spatial variations in geochemical and geophysical ... quantitatively relate spatial variations in geochemical and geophysical parameters at the Earth's surface. A point-to- ...

D. W. Graham; J. E. Lupton; F. J. Spera; D. M. Christie

2001-02-08T23:59:59.000Z

163

An Assessment of Trends in the Extent of Swidden in Southeast Asia  

E-Print Network (OSTI)

An Assessment of Trends in the Extent of Swidden in Southeast Asia Dietrich Schmidt-Vogt & Stephen) Hum Ecol (2009) 37:269­280 DOI 10.1007/s10745-009-9239-0 D. Schmidt-Vogt School of Environment@ait.ac.th S. J. Leisz (*) Department of Anthropology, Colorado State University, Fort Collins 80523, USA e

Richner, Heinz

164

Rotenone, a natural chemical produced by legumi-nous plants native to Southeast Asia and South  

E-Print Network (OSTI)

Forum Rotenone, a natural chemical produced by legumi- nous plants native to Southeast Asia and South America,has traditionally been used by indigenous subsistence fishers in the fresh and marine employ it in quantities of up to hundreds of metric tons to eliminate alien species to help conserve

Bermingham, Eldredge

165

Notice of Intent to prepare an Environmental Impact Statement for the Western Greenbrier Co-Production Demonstration Project, Rainelle, WV and Notice of Floodplain/Wetlands Involvement (6/3/03)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11 11 Federal Register / Vol. 68, No. 106 / Tuesday, June 3, 2003 / Notices Dated: May 27, 2003. Judge Eric Andell, Deputy Under Secretary for Safe and Drug- Free Schools. [FR Doc. 03-13836 Filed 6-2-03; 8:45 am] BILLING CODE 4000-01-P DEPARTMENT OF ENERGY Notice of Intent To Prepare an Environmental Impact Statement for the Western Greenbrier Co-Production Demonstration Project, Rainelle, WV and Notice of Floodplain/Wetlands Involvement AGENCY: Department of Energy. ACTION: Notice of Intent to prepare an Environmental Impact Statement and Notice of Floodplain/Wetlands Involvement. SUMMARY: The U.S. Department of Energy (DOE) announces its intent to prepare an Environmental Impact Statement (EIS) pursuant to the National Environmental Policy Act (NEPA), the

166

Real-Time PCR Detection of Pathogenic Microorganisms in Roof-Harvested Rainwater in Southeast Queensland, Australia  

Science Journals Connector (OSTI)

...state government has announced the Home Water Wise Rebate Scheme, which provides rebates to Southeast Queensland residents who install...Queensland Government. 2007. Home waterwise rebate scheme. http://www.nrw.qld.gov.au...

W. Ahmed; F. Huygens; A. Goonetilleke; T. Gardner

2008-07-11T23:59:59.000Z

167

Real-Time PCR Detection of Pathogenic Microorganisms in Roof-Harvested Rainwater in Southeast Queensland, Australia  

Science Journals Connector (OSTI)

...the Queensland state government has announced the Home Water Wise Rebate Scheme, which provides rebates to Southeast Queensland...We also thank Col Christiansen, Barry Hood, Cara Beal, Alison Vieritz, Colleen Morris, Godfrey Rod, Geoff Bosch, and Mary...

W. Ahmed; F. Huygens; A. Goonetilleke; T. Gardner

2008-07-11T23:59:59.000Z

168

Spatial characteristics of the difference between MISR and MODIS aerosol optical depth retrievals over mainland Southeast Asia  

E-Print Network (OSTI)

autoregressive (SAR) model Spatial clustering Data assimilation Mainland Southeast Asia The difference between satellite, aerosol products generated using data from these two sensors often exhibit noticeable differences Resolution Imaging Spectroradiometer (MODIS) aboard the NASA Earth Observation System's Terra satellite

Shi, Tao

169

Mean Structure and diurnal cycle of Southeast Atlantic boundary layer clouds: Insights from satellite observations and multiscale modeling framework simulations  

Science Journals Connector (OSTI)

The mean structure and diurnal cycle of Southeast (SE) Atlantic boundary layer clouds are described with satellite observations and multi-scale modeling framework (MMF) simulations during austral spring (September-November). Hourly resolution ...

David Painemal; Kuan-Man Xu; Anning Cheng; Patrick Minnis; Rabindra Palikonda

170

Influence of cultural practices on yield, quality and disease control of 'Chenin Blanc' grapes in Southeast Texas  

E-Print Network (OSTI)

INFLUENCE OF CULTURAL PRACTICES ON YIELD, QUALITY AND DISEASE CONTROL OF 'CHENIN BLANC' GRAPES IN SOUTHEAST TEXAS A Thesis by IVA SUZANNE WILSON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... on Yield, Quality and Disease Control of 'Chenin Blanc' Grapes in Southeast Texas. (December 1989) Iva Suzanne Wilson, B. S. , Southwest Texas State University Co-Chair of Advisory Committee: J. Dan Hanna George Ray McEachern Canopy management...

Wilson, Iva Suzanne

1989-01-01T23:59:59.000Z

171

The stratigraphy and environment of deposition of productive Wilcox clays in west central Freestone and southeast Limestone Counties, Texas  

E-Print Network (OSTI)

THE STRATIGRAPHY AND ENVIRONMENT OF DEPOSITION OF PRODUCTIVE WILCOX CLAYS IN WEST CENTRAL FREESTONE AND SOUTHEAST LIMESTONE COUNTIES, TEXAS A Thesis by STEPHANIE ANNE SHELVEY Submitted to the Graduate College of Texas ARM University... in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1986 Major Subject: Geology THE STRATIGRAPHY AND ENVIRONMENT OF DEPOSITION OF PRODUCTIVE WILCOX CLAYS IN WEST CENTRAL FREESTONE AND SOUTHEAST LIMESTONE COUNTIES, TEXAS A...

Shelvey, Stephanie Anne

2012-06-07T23:59:59.000Z

172

Bear Creek: a case study in locating historic site remains in southeast Texas  

E-Print Network (OSTI)

, and Robert and Elaine Burden, for traipsing through the southeast Texas jungle and making it out alive. I further acknowledge the contributions of Phil Wise and Scott Garrett, lease holders and tour guides, and Kenneth Speckmaier for sharing the history... tasks may be time consuming and costly to a project, the more thorough the results, the smoother the survey operates. In terms of historic resources in particular, archival research may be the most crucial approach for locating historic sites especially...

Stahman, Andrea Renee

2006-04-12T23:59:59.000Z

173

Traces of fission products in southeast Spain after the Fukushima nuclear accident  

Science Journals Connector (OSTI)

Traces of 131I, 134Cs and 137Cs were measured after the Fukushima nuclear accident between 23 March and 13 April 2011 in southeast Spain. The movement of the radioactive cloud toward southeast Spain was reconstructed based on the backward and forward trajectory cluster analyses. Polar maritime air masses which had originated over North America transported the radioactive plume toward the southeast Spain. Aerosols, rainwater, vegetables and cheese were analyzed to determine the radioactive risk. The highest concentrations of 131I, 134Cs and 137Cs in air samples were 2.630.12mBq/m3; 0.100.03mBq/m3; 0.090.02mBq/m3, respectively. After precipitation on April 3rd, the maximum concentrations of 131I, 134Cs and 137Cs were detected in rainwater samples, 1.100.16mBq/L; 0.0220.003mBq/L; 0.050.03mBq/L, respectively. As a consequence, 131I was transferred to the human food chain, and found in chard and goat cheese, 0.970.20Bq/kg and 0.520.08Bq/kg, respectively. The traces of 131I, 134Cs and 137Cs detected in the different samples were so low, that there is no impact on human health or the environment in Spain after the Fukushima nuclear accident.

F. Piero Garca; M.A. Ferro Garca

2012-01-01T23:59:59.000Z

174

An investigation of rainfall characteristics and patterns in the Mekong Delta of Southeast Asia  

E-Print Network (OSTI)

'k%***'Aeee**ee***IHt*ee* * * * 37 98 15 * 150 PERCENT TIME BOTH HAD SAME AMTS 0. 69 Bl 14. 553 B5 ~ 53. 573 B9 = 0. 900 CI = 0. 432 40 1. 0 C 0 . 8 T . 7 I N G N C Y Month: JULY I N D E 2 X . 1 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 Distance... of Commit e) (Head of D p tment) (Member) (Member) ABSTRACT An Investigation of Rainfall Characteristics and Patterns in the Mekong Delta of Southeast Asia (August 1972) Frank J. Klein, Jr. , B. B. A. , St. Mary's University Directed by: Professor...

Klein, Frank J

2012-06-07T23:59:59.000Z

175

Roost dynamics and site fidelity of snow geese wintering in southeast Texas  

E-Print Network (OSTI)

on the Texas coast. 10 HIRRIS SASTROP 8AYOU 0 BASTROP BAY REFUGE BOUNDARY CHRISTMAS BAY SALT LAKE Q a p~ ga Fig. 2. Brazoria National Wildlife Refuge. S4+ 8p 4~O yyy py y Qlly eyo goo%. flOyD DOffo olVEyf eyo ~ly & yff Cpfy4~ Cyy Cyyp... Institute and State Oniversity Chair of Advisory Committee: Dr. R. Douglas Slack Roost dynamics and site fidelity of lesser snow geese (Chen caerulescens caerulescens) wintering in southeast Texas were investigated at Brazoria and San Bernard National...

Jennings, Ann Fortenberry

1990-01-01T23:59:59.000Z

176

Southeast Asia applied geophysics workshop: Geoscientists without borders Lee M. Liberty*, Spencer H. Wood, Emily A. Hinz, and Dylan Mikesell, Boise State University, Fongsaward  

E-Print Network (OSTI)

Southeast Asia applied geophysics workshop: Geoscientists without borders Lee M. Liberty*, Spencer in need using applied geophysics projects as a means to benefit people and the environment around the world. Our project was developed to educate and connect local geophysicists and students in Southeast

Barrash, Warren

177

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Morgantown, WV Remove Odor Control System Located at the Southeast Exterior Corner of NETL Morgantown Building 17 Remove the existing odor control system including all duct work,...

178

wvBLACK DIAMONDS table of contents  

E-Print Network (OSTI)

'RE ON THE WEB! www.mine.cemr.wvu.edu Statler College of Engineering and Mineral Resources DEPARTMENT OF MINING

Mohaghegh, Shahab

179

wvBLACK DIAMONDS table of contents  

E-Print Network (OSTI)

with mining! WE'RE ON THE WEB! www.mine.cemr.wvu.edu College of Engineering and Mineral Resources DEPARTMENT

Mohaghegh, Shahab

180

A new calanoid copepod (Spinocalanidae) swarming at a cold seep site on the Gabon continental margin (Southeast Atlantic)  

E-Print Network (OSTI)

A new calanoid copepod (Spinocalanidae) swarming at a cold seep site on the Gabon continental Regab on the Gabon continental margin (Southeast Atlantic) at a depth of 3151-3155 m. After description Gabon (Atlantique sud-est). Des femelles, des mâles et des copépodites V mâles de Methanocalanus

Ivanenko, Viatcheslav N.

Note: This page contains sample records for the topic "vt wv southeast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

An unknown active fault revealed by microseismicity in the south-east Francoise Courboulex, Christophe Larroque, Anne Deschamps, Celine Gelis,  

E-Print Network (OSTI)

oceanic basin (Figure 1). The southern French Alps are part of the broad plate boundary zone between in the south-east of France in December 2000, about 15 km north of the densely populated cities of the French between the southern French Alps and the Ligurian Basin, several faults are supposed to be seismogenic (e

Vallée, Martin

182

Real-Time PCR Detection of Pathogenic Microorganisms in Roof-Harvested Rainwater in Southeast Queensland, Australia  

Science Journals Connector (OSTI)

...announced the Home Water Wise Rebate Scheme, which provides rebates to Southeast Queensland...in Brisbane, within 1 to 4 days after a rain...tanks sampled ranged from 500 to 10,000 liters...hydrophila 2.51 pg, 25.1 fg 500, 5 6 6 (100), 6...

W. Ahmed; F. Huygens; A. Goonetilleke; T. Gardner

2008-07-11T23:59:59.000Z

183

Fire weather simulation skill by the Weather Research and Forecasting (WRF) model over south-east Australia  

E-Print Network (OSTI)

values were driven mainly by WRF errors in wind speed simulation. However, in both cases the qualityFire weather simulation skill by the Weather Research and Forecasting (WRF) model over south-east Australia from 1985 to 2009 has been simulated using the Weather Research and Forecasting (WRF) model

Evans, Jason

184

Supporting document for the Southeast Quadrant historical tank content estimate report for SY-tank farm  

SciTech Connect

Historical Tank Content Estimate of the Southeast Quadrant provides historical evaluations on a tank by tank basis of the radioactive mixed wastes stored in the underground double-shell tanks of the Hanford 200 East and West Areas. This report summarizes historical information such as waste history, temperature profiles, psychrometric data, tank integrity, inventory estimates and tank level history on a tank by tank basis. Tank Farm aerial photos and in-tank photos of each tank are provided. A brief description of instrumentation methods used for waste tank surveillance are included. Components of the data management effort, such as Waste Status and Transaction Record Summary, Tank Layer Model, Supernatant Mixing Model, Defined Waste Types, and Inventory Estimates which generate these tank content estimates, are also given in this report.

Brevick, C.H.; Gaddis, L.A.; Consort, S.D. [Westinghouse Hanford Co., Richland, WA (United States)

1995-12-31T23:59:59.000Z

185

INDEPENDENT VERIFICATION OF THE CENTRAL CAMPUS AND SOUTHEAST LABORATORY COMPLEX BUILDING SLABS AT OAK RIDGE NATIONAL LABORATORY, OAK RIDGE, TENNESSEE  

SciTech Connect

Oak Ridge Associated Universities/Oak Ridge Institute for Science and Education (ORAU/ORISE) has completed the independent verification survey of the Central Campus and Southeast Lab Complex Building Slabs. The results of this effort are provided. The objective of this verification survey was to provide independent review and field assessment of remediation actions conducted by SEC, and to independently assess whether the final radiological condition of the slabs met the release guidelines.

Weaver, Phyllis C.

2012-07-24T23:59:59.000Z

186

Evaluation of Forecasted Southeast Pacific Stratocumulus in the NCAR, GFDL and ECMWF Models  

SciTech Connect

We examine forecasts of Southeast Pacific stratocumulus at 20S and 85W during the East Pacific Investigation of Climate (EPIC) cruise of October 2001 with the ECMWF model, the Atmospheric Model (AM) from GFDL, the Community Atmosphere Model (CAM) from NCAR, and the CAM with a revised atmospheric boundary layer formulation from the University of Washington (CAM-UW). The forecasts are initialized from ECMWF analyses and each model is run for 3 days to determine the differences with the EPIC field data. Observations during the EPIC cruise show a stable and well-mixed boundary layer under a sharp inversion. The inversion height and the cloud layer have a strong and regular diurnal cycle. A key problem common to the four models is that the forecasted planetary boundary layer (PBL) height is too low when compared to EPIC observations. All the models produce a strong diurnal cycle in the Liquid Water Path (LWP) but there are large differences in the amplitude and the phase compared to the EPIC observations. This, in turn, affects the radiative fluxes at the surface. There is a large spread in the surface energy budget terms amongst the models and large discrepancies with observational estimates. Single Column Model (SCM) experiments with the CAM show that the vertical pressure velocity has a large impact on the PBL height and LWP. Both the amplitude of the vertical pressure velocity field and its vertical structure play a significant role in the collapse or the maintenance of the PBL.

Hannay, C; Williamson, D L; Hack, J J; Kiehl, J T; Olson, J G; Klein, S A; Bretherton, C S; K?hler, M

2008-01-24T23:59:59.000Z

187

Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx  

SciTech Connect

We evaluate a regional-scale simulation with the WRF-Chem model for the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), which sampled the Southeast Pacific's persistent stratocumulus deck. Evaluation of VOCALS-REx ship-based and aircraft observations focuses on analyzing how aerosol loading affects marine boundary layer (MBL) dynamics and cloud microphysics. We compare local time series and campaign averaged longitudinal gradients, and highlight differences in model simulations with (W) and without wet (NW) deposition processes. The higher aerosol loadings in the NW case produce considerable changes in MBL dynamics and cloud microphysics, in accordance with the established conceptual model of aerosol indirect effects. These include increase in cloud albedo, increase in MBL and cloud heights, drizzle suppression, increase in liquid water content, and increase in cloud lifetime. Moreover, better statistical representation of aerosol mass and number concentration improves model fidelity in reproducing observed spatial and temporal variability in cloud properties, including top and base height, droplet concentration, water content, rain rate, optical depth (COD) and liquid water path (LWP). Together, these help to quantify confidence in WRF-Chem's modeled aerosol-cloud interactions, while identifying structural and parametric uncertainties including: irreversibility in rain wet removal; overestimation of marine DMS and sea salt emissions and accelerated aqueous sulfate conversion. Our findings suggest that WRF-Chem simulates marine cloud-aerosol interactions at a level sufficient for applications in forecasting weather and air quality and studying aerosol climate forcing, including the reliability required for policy analysis and geo-engineering applications.

Saide, Pablo; Spak, S. N.; Carmichael, Gregory; Mena-Carrasco, M. A.; Yang, Qing; Howell, S. G.; Leon, Dolislager; Snider, Jefferson R.; Bandy, Alan R.; Collett, Jeffrey L.; Benedict, K. B.; de Szoeke, S.; Hawkins, Lisa; Allen, Grant; Crawford, I.; Crosier, J.; Springston, S. R.

2012-03-30T23:59:59.000Z

188

VT_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Metadata also available as Metadata: IdentificationInformation DataQualityInformation SpatialDataOrganizationInformation SpatialReferenceInformation EntityandAttributeI...

189

Monitoring needs in the U.S. southeast: Impact of dioxins and other industrial wastes and wildlife  

SciTech Connect

The US southeast is a center for forest industry activities and over 180 pulp and paper mills have been reported from Tennessee, North and South Carolina, Georgia, Florida, Alabama, Mississippi, Arkansas and Louisiana. Many of these facilities emit bleached kraft mill effluents (BKMEs) into receiving waters. Contaminants present in these mill effluents and in other industrial activities known to adversely affect wildlife and fisheries resources include chlorinated phenolics, dioxins, furans and resin acids. Tennessee and North Carolina have issued fish consumption advisories for specific areas and a fishery has been closed in Arkansas. The extent of injury to wildlife resources from dioxins and other effluents from mill and industrial waste is not presently known. However, preliminary studies indicate effects on biota at several localities. Bioaccumulation of dioxins from mill effluents has been documented in channel catfish (Ictalurus punctatus) (1--2 ppt) and soft-shelled turtles (Trionyx ferox) (17--31 ppt) from pulp/paper mill effluent in St. Joseph`s and Perdido Bays, Florida; reproductive abnormalities were noted in female Gambusia (sp.) exposed to mill effluent. In Jacksonville, Arkansas abnormalities > 10% were noted in fish and reproduction of wood duck (Aix sponsa) was impaired downstream from a chemical plant. Further work is needed to define mill and industrial facilities in the southeast and to monitor adverse effects on fish and wildlife resources.

Glooschenko, V. [National Biological Survey, Atlanta, GA (United States); Brim, M. [USFWS, Panama City, FL (United States); Augspurger, T. [USFWS, Raleigh, NC (United States)

1994-12-31T23:59:59.000Z

190

Mathematics/Geosciences Building Renovation Limits Access and Parking The Southeast entrance to the Mathematics/Geosciences Building and 20 parking spaces in the  

E-Print Network (OSTI)

Mathematics/Geosciences Building Renovation Limits Access and Parking The Southeast entrance to the Mathematics/Geosciences Building and 20 parking spaces in the Administration Visitor Lot will be closed, and in the Administration Visitor Lot, through August. The Mathematics/Geosciences Building renovation includes considerable

Barrash, Warren

191

The provenance, variety, and deposition of sediment and the formation of dunes in the eastern Rub' al-Khali, southeast Arabia  

E-Print Network (OSTI)

.A.E. and Oman, up to 80 km inland from the Persian Gulf, active dunes are underlain by carbonate on the Arabian steppe and in the Persian Gulf region (Fig. 2). They define the shape of dunes and manage between late May and early July (Edgell, 2006). Traveling southeast along the Persian Gulf, the Shamal

Wilson, Mark A.

192

EA-1965: Florida Atlantic University Southeast National Marine Renewable Energy Centers Offshore Marine Hydrokinetic Technology Testing Project, Florida  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy (DOE), through its Wind and Water Power Technologies Office (WWPTO), is proposing to provide federal funding to Florida Atlantic Universitys South-East National Marine Renewable Energy Center (FAU SNMREC) to support the at sea testing of FAU SNMRECs experimental current generation turbine and the deployment and operation of their Small-Scale Ocean Current Turbine Test Berth, sited on the outer continental shelf (OCS) in waters off the coast of Ft Lauderdale, Florida. SNMREC would demonstrate the test berth site readiness by testing their pilot-scale experimental ocean current turbine unit at that location. The Bureau of Ocean Energy Management (BOEM) conducted an Environmental Assessment to analyze the impacts associated with leasing OCS lands to FAU SNMREC, per their jurisdictional responsibilities under the Outer Continental Shelf Lands Act. DOE was a cooperating agency in this process and based on the EA, DOE issued a Finding of No Significant Impact.

193

A high-resolution and multi-year emissions inventory for biomass burning in Southeast Asia during 20012010  

Science Journals Connector (OSTI)

Abstract Biomass burning (BB) emissions from forest fires, agricultural waste burning, and peatland combustion contain large amounts of greenhouse gases (e.g., CO2, CH4, and N2O), which significantly impact ecosystem productivity, global atmospheric chemistry, and climate change. With the help of recently released satellite products, biomass density based on satellite and observation data, and spatiotemporal variable combustion factors, this study developed a new high-resolution and multi-year emissions inventory for BB in Southeast Asia (SEA) during 20012010. The 1-km grid was effective for quantifying emissions from small-sized fires that were frequently misinterpreted by coarse grid data due to their large smoothed pixels. The average annual BB emissions in SEA during 20012010 were 277Gg SO2, 1125Gg NOx, 55,388Gg CO, 3831Gg NMVOC, 553Gg NH3, 324Gg BC, 2406Gg OC, 3832Gg CH4, 817,809Gg CO2, and 99Gg N2O. Emissions were high in western Myanmar, Northern Thailand, eastern Cambodia, northern Laos, and South Sumatra and South Kalimantan of Indonesia. Emissions from forest burning were the dominant contributor to the total emissions among all land types. The spatial pattern of BB emissions was consistent with that of the burned areas. In addition, BB emissions exhibited similar temporal trends from 2001 to 2010, with strong interannual and intraannual variability. Interannual and intraannual emission peaks were seen during 2004, 2007, 2010, and JanuaryMarch and AugustOctober, respectively.

Yusheng Shi; Yasushi Yamaguchi

2014-01-01T23:59:59.000Z

194

Improving the Usability of Integrated Assessment for Adaptation Practice: Insights from the U.S. Southeast Energy Sector  

SciTech Connect

Energy systems comprise a key sector of the U.S. economy, and one that has been identified as potentially vulnerable to the effects of climate variability and change. However, understanding of adaptation processes in energy companies and private entities more broadly is limited. It is unclear, for example, the extent to which energy companies are well-served by existing knowledge and tools emerging from the impacts, adaptation and vulnerability (IAV) and integrated assessment modeling (IAM) communities and/or what experiments, analyses, and model results have practical utility for informing adaptation in the energy sector. As part of a regional IAM development project, we investigated available evidence of adaptation processes in the energy sector, with a particular emphasis on the U.S. Southeast and Gulf Coast region. A mixed methods approach of literature review and semi-structured interviews with key informants from energy utilities was used to compare existing knowledge from the IAV community with that of regional stakeholders. That comparison revealed that much of the IAV literature on the energy sector is climate-centric and therefore disconnected from the more integrated decision-making processes and institutional perspectives of energy utilities. Increasing the relevance of research and assessment for the energy sector will necessitate a greater investment in integrated assessment and modeling efforts that respond to practical decision-making needs as well as greater collaboration between energy utilities and researchers in the design, execution, and communication of those efforts.

de Bremond, Ariane; Preston, Benjamin; Rice, Jennie S.

2014-10-01T23:59:59.000Z

195

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Houston, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL R&D Tackles Technological NETL R&D Tackles Technological Challenges of the Williston Basin's Bakken Formation Recent development of the Bakken Formation in the Williston Basin of western North Dakota and eastern Montana is a good example of persistent analysis of geologic data and adaptation of new completion technologies overcoming the challenges posed by unconventional reservoirs. However, as with most unconventional plays, as Bakken development continues, questions regarding

196

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 s o l u b i li t y at r o o m temperature. CO 2 solubility testing of the most prom- ising eutectic combinations was completed. The results indicate that increasing the...

197

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

412-386-7343 Hunaid.Nulwala@contr.netl.doe.gov David Luebke Technical Co-ordinator for Carbon Capture National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940...

198

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage Research Carbon capture and storage (CCS) is a key component of the U.S. carbon management portfolio. Numerous studies have shown that CCS can account for up to 55...

199

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Membranes for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical component of realistic strategies for arresting the rise in...

200

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Solvents for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical com- ponent of realistic strategies for arresting the rise in...

Note: This page contains sample records for the topic "vt wv southeast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbents for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical component of realistic strategies for arresting the rise in...

202

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos National Laboratory Pacific Northwest National Laboratory Princeton University Carbon Capture Simulation Initiative The Carbon Capture Simulation Initiative (CCSI) is a...

203

P O Box 6004 Morgantown, WV 26506-6004  

E-Print Network (OSTI)

Miller, Veterans Advocate at (304)293-8262 or email tdmiller@mail.wvu.edu Those needing to renew benefits

Mohaghegh, Shahab

204

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Midwest Regional Carbon Sequestration Partnership - Development Phase Large-Scale Field Project Background The U.S. Department of Energy Regional Carbon Sequestration Partnership...

205

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Non-Thermal Plasma for Fossil Energy Related Applications Background The U.S. Department of Energy is investigating various non-thermal plasma tech- nologies for their catalytic...

206

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. industry in a complementary research program designed to develop and demonstrate oil and natural gas drilling and production methodologies in ultra-deep formations. This...

207

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer at NETL Carbon capture, quantum mechanical simulations, integrated gasification, and clean power-words like these mean the future of energy to NETL's in-house...

208

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

estimates could result in a 4 - 6% gain in overall system efficiency. Rotating Detonation Combustion (RDC) capitalizes on this cycle and offers potential as a drop in...

209

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Engineering 304-285-4685 madhava.syamlal@netl.doe.gov David Miller Technical Director Carbon Capture Simulation Initiative 412-386-6555 david.miller@netl.doe.gov RESEARCH...

210

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

needs of advanced power systems. Industries that utilize natural gas, gasifier syngas, biogas, landfill gas, or any type of fuel gas can benefit from knowing the composition of the...

211

West Virginia Smart Grid Implementation Plan (WV SGIP) Project  

NLE Websites -- All DOE Office Websites (Extended Search)

views on the following: 1) whether the electric power utilities have shown interests in upgrading their distribution service equipment, etc., 2) whether the state regulatory...

212

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

of feedstock, gasifier geometry and flow conditions. Using palladium sorbents for high temperature capture of mercury and other trace elements in flue gases is also under...

213

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Solvents for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical component of realistic strategies for arresting the rise in...

214

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

541-967-5885 david.alman@netl.doe.gov David Hopkinson Technical Portfolio Lead Carbon Capture 304-285-4360 david.hopkinson@netl.doe.gov OTHER PARTNERS Energy Frontiers Research...

215

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Membranes for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical com- ponent of realistic strategies for arresting the rise in...

216

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

541-967-5885 david.alman@netl.doe.gov David Hopkinson Technical Portfolio Lead Carbon Capture 304-285-4360 david.hopkinson@netl.doe.gov Figure 1: Film made from a...

217

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

science to ensure safe, essentially permanent carbon sequestration; develop reliable measurement, monitoring and verification technologies acceptable to permitting agencies;...

218

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

can simulate reservoirs that are multi-layered, exhibit dip, and have variable thickness, rock porosity, and rock permeability. The reservoirs can have fractures that open and...

219

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment Partnership Initiative The National Risk Assessment Partnership (NRAP) is a DOE initiative that harnesses core capabilities developed across the National Laboratory...

220

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

to offshore hydrocarbon production and the recovery of unconventional resources like shale gas, estimating CO 2 storage potential in various types of geologic formations, and...

Note: This page contains sample records for the topic "vt wv southeast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

these emissions can negatively impact air quality. The environmental risks of shale gas and shale oil development may be very different from that of conventional oil and gas...

222

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

of carbon dioxide in tight formations. Benefits Production of natural gas from hydraulically-fractured shales surrounding horizontal wells is a relatively recent and...

223

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

waters with geologic media such as confining layers and fossil fuels (e.g., coal, oil shale, natural gas bearing formations); and unconventional fossil fuel extraction...

224

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

AND DEVELOPMENT Cynthia Powell Director 514-967-5803 cynthia.powell@netl.doe.gov Kelly Rose Technical Portfolio Lead Offshore Resources 541-967-5883 kelly.rose@netl.doe.gov...

225

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

AND DEVELOPMENT Cynthia Powell Director 541-967-5803 cynthia.powell@netl.doe.gov Kelly Rose Technical Portfolio Lead Offshore Resources 541-967-5883 kelly.rose@netl.doe.gov...

226

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Portfolio Lead Carbon Storage 412-386-4962 angela.goodman@netl.doe.gov Kelly Rose Technical Portfolio Lead Offshore Resources 541-967-5883 kelly.rose@netl.doe.gov...

227

Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Portfolio Lead National Risk Assessment Program 304-285-4688 grant.bromhal@netl.doe.gov Kelly Rose Technical Portfolio Lead Offshore Resources 541-967-5883 kelly.rose@netl.doe.gov...

228

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological and Environmental Sciences Division 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Acting Geology Team Lead Office of Research and Development National Energy...

229

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Acting Geology Team Lead Office of Research and Development National Energy...

230

Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cochrans Mill Road Pittsburgh, PA 15236-0940 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose EDX Coordinator Office of Research and Development National Energy Technology...

231

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Technical Coordinator National Energy Technology Laboratory 1450 Queen Ave SW...

232

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

REARCH AND DEVELOPMENT Cynthia Powell Director 541-967-5803 cynthia.powell@netl.doe.gov Kelly Rose Technical Portfolio Lead Offshore Resources 541-967-5883 kelly.rose@netl.doe.gov...

233

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Portfolio Lead National Risk Assessment Program 304-285-4688 grant.bromhal@netl.doe.gov Kelly Rose Technical Portfolio Lead Offshore Resources 541-967-5883 kelly.rose@netl.doe.gov...

234

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Analytical Simulation Tool for CO2 Storage Capacity Estimation and Uncertainty Quantification Background The overall goal of the Department of Energy's (DOE) Carbon...

235

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting (MVA) and...

236

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

potential risks associated with oil and gas resources in shale reservoirs that require hydraulic fracturing or other engineering measures to produce. The major areas of focus...

237

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

related impacts to human health and the natural environment, and induced seismicity from hydraulic fracturing. Project Description Through collaboration with its research...

238

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

related impacts to human health and the natural environment, and induced seismicity from hydraulic fracturing. Project Description Through collaboration with its Regional...

239

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geomechanical Impacts of Shale Gas Activities Background Hydraulic fracturing of gas shale is the injection of large volumes of fluid at high pressures in low permeability shale to...

240

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deleterious Events Associated with Drilling and Production Background Increasingly, offshore domestic oil and natural gas activities are associated with remote and challenging...

Note: This page contains sample records for the topic "vt wv southeast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

routes responsible for the observed catalytic effects. Such efforts will allow for the optimization of plasma systems so that they may be incorporated into a broad range of...

242

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

number of individual break-through tasks in diverse number of areas. These range from identification of new materials for gas capture, storage or separation to optimization of...

243

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

and material interactions that impact environmental and resource issues related to oil, gas, and CO2 storage development. However, studying the wide variety of subsurface...

244

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

EOR Field Project - Development Phase Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The...

245

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Services Vecta Oil & Gas, Ltd. Washington State University Big Sky Regional Carbon Sequestration Partnership-Kevin Dome Development Phase Project Background The U.S....

246

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Southwestern United States Carbon Sequestration Training Center Background The focus of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance...

247

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

to 200 o C for combustion is inefficient from both a cost and net electricity perspective. Hydrophobic solvents could be operated at higher temperatures and minimize...

248

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

heat in a combustion process while producing a concentrated CO 2 stream to facilitate carbon capture. Chemical looping research efforts can be categorized as: modeling tool...

249

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

that are difficult or impossible to measure, such as coal jet penetration into a gasifier. This system provides the capabilities for running modeling tools at various scales...

250

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

and implementing a Sponsorship Development Program that allows SECARB-Ed to be self-sustaining after the initial three-year period by establishing an advisory board, developing...

251

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

priations) to the FutureGen Industrial Alliance (Alliance) to build FutureGen 2.0-a clean coal repowering program and CO 2 pipeline and storage network. The FutureGen 2.0 Program...

252

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

from Fossil Energy R&D 1 Bezdek, R. Wendling, R., The Return on Investment of the Clean Coal Technology Program in the USA. Energy Policy, Vol. 54, March 2013, pp. 104-112 2...

253

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust...

254

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

R&D 070, November 2011, rev 1114 Research facilities include the Severe Environment Corrosion Erosion Research Facility (SECERF) for assessing materials performance in a variety...

255

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

can affect permeability and porosity (flow properties), depending on the amount of sorptiondesorption. If the geological formations of interest are deep and have high...

256

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

well and post- placement. Foamed cement stability depends on time evolution of the gas bubble-size distribution (BSD) and varies as it is pumped and placed in the well. Unstable...

257

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

or particles. * High-definition, high-speed video capabilities: - Detailed information on bubble hydrodynamics. - Unprecedented resolution of hydrate surface morphology. * Provide...

258

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

changes in CO 2 -water inter- facial tension. * Experimental CO 2 injection tests in pore micro-models and parallel network model simulations demonstrate that the sweep efficiency...

259

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

pollutants and CO 2 . Oxy-fuel combustion of hydrocarbon fuel (coal, natural-gas, biomass) generates denitrified combustion gas comprising dominantly CO 2 and H 2 O. The...

260

P O Box 6004 Morgantown, WV 26506-6004  

E-Print Network (OSTI)

-5242 Fax: (304) 293-4890 Email: finaid@mail.wvu.edu We're on the Web! www.finaid.wvu.edu 2010-2011 STUDENT

Mohaghegh, Shahab

Note: This page contains sample records for the topic "vt wv southeast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

P O Box 6004 Morgantown, WV 26506-6004  

E-Print Network (OSTI)

% of students complete online at www.fafsa.gov Please consider using FAFSA on the Web. There is a FAFSA worksheet that can be downloaded from the FAFSA web site. The Financial Aid Office will also have a supply

Mohaghegh, Shahab

262

P O Box 6004 Morgantown, WV 26506-6004  

E-Print Network (OSTI)

're on the Web! www.finaid.wvu.edu 2009-2010 STUDENT AID REPORT Once you submit your FAFSA to the federal

Mohaghegh, Shahab

263

P O Box 6004 Morgantown, WV 26506-6004  

E-Print Network (OSTI)

-5242 Fax: (304) 293-4890 Email: finaid@mail.wvu.edu We're on the Web! www.finaid.wvu.edu 2011-2012 STUDENT

Mohaghegh, Shahab

264

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

for the same amount of energy produced, thereby facilitating a reduction in greenhouse gas emissions. When combined, oxy-combustion comes with an efficiency loss, so it will...

265

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

near 276 MPa. Therefore, the per turbed-chain statistical associating fluid theory (PC-SAFT) model was used to calculate the fluid density, which is an input into the improved...

266

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

of meeting such a challenge is the combination of a high temperature fuel cell and a gas turbine with a gasifier or reformer. This hybrid technology has been studied...

267

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's...

268

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

are used to characterize the fundamental properties of unconventional natural gas and oil reservoirs, ultra-deepwater and frontier-region reservoirs, and reservoirs that offer...

269

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

being developed for geologic carbon storage are focused on five storage types: (1) oil and natural gas reservoirs; (2) saline formations; (3) unmineable coal seams; (4)...

270

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Performance Project Research programs initiated by the U.S. Department of Energy (DOE) to achieve increased efficiency and reduced emissions are expected to result in the...

271

Albany, OR * Archorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

S Materials Science Fuels Gasification will likely be the cornerstone of future energy and chemical processes due to its flexibility to accommodate numerous feedstocks such as...

272

A feasibility study of ECBM recovery and CO2 storage for a producing CBM field in Southeast Qinshui Basin, China  

Science Journals Connector (OSTI)

Abstract This paper presents a geo-engineering and economic analysis of the potential for enhanced coalbed methane (ECBM) recovery and CO2 storage in the South Shizhuang CBM Field, Southeast Qinshui Basin, China. We construct a static model using the well log and laboratory data and then upscale this model to use in dynamic simulations. We history match field water and gas rates using the dynamic model. The parameters varied during the history match include porosity and permeability. Using the history matched dynamic model, we make predictions of CBM and ECBM recoveries for various field developments. We build a techno-economic model that calculates the incremental nominal net present value (NPV) of the ECBM incremental recovery and CO2 storage over the CBM recovery. We analyse how the NPV is affected by well spacing, CH4 price, carbon credit and the type of coal. Our analyses suggest that 300m is the optimum well spacing for the study area under the current CH4 price in China and with a zero carbon credit. Using this well spacing, we predict the recoveries for different injection gas compositions of CO2 and N2 and different injection starting times. The results show that gas injection yields incremental CBM production whatever the composition of the injected gas. Pure CO2 injection yields highest ECBM for low swelling coals while flue gas injection gives highest ECBM for high swelling coals. However, the differences in recoveries are small. Injection can be economically viable depending on the CH4 price and the carbon credit. At current prices and no carbon credit, flue gas injection is commercial. At higher CH4 prices and/or with the introduction of carbon credits, co-optimisation could be commercially viable. High carbon credits favour injecting pure CO2 rather than other gases because this stores more CO2. Injecting CO2 at late stage increases CO2 storage but decreases the project's NPV. High-swelling coals require about $20/tonnes additional carbon credit.

Fengde Zhou; Wanwan Hou; Guy Allinson; Jianguang Wu; Jianzhong Wang; Yildiray Cinar

2013-01-01T23:59:59.000Z

273

Southeast Idaho Area Links  

NLE Websites -- All DOE Office Websites (Extended Search)

KLCE 97.3 (208) 523-3722 KPKY 94.9 (208) 233-1133 KRXK 1230 (208) 529-6926 Parks and Recreation Craters of the Moon National Monument (208) 527-1300 Grand Targhee Resort (800)...

274

Fitzroy, Bailey, Southeast Iceland  

Science Journals Connector (OSTI)

...offered by the Met Office, which continues to be a science-based organization...meteorological science, from hand-drawn...growth of the Met Office from its small...individuals, the science and the events...history of the Met Office provides fascinating...

2013-01-01T23:59:59.000Z

275

Southeast Idaho History  

NLE Websites -- All DOE Office Websites (Extended Search)

Area Attractions and Events Area Geography Area History Area Links Driving Directions Idaho Falls Attractions and Events INL History INL Today Research Park Sagebrush Steppe...

276

Southeast Idaho Geography  

NLE Websites -- All DOE Office Websites (Extended Search)

Area Attractions and Events Area Geography Area History Area Links Driving Directions Idaho Falls Attractions and Events INL History INL Today Research Park Sagebrush Steppe...

277

Southeast Idaho Attractions  

NLE Websites -- All DOE Office Websites (Extended Search)

Area Attractions and Events Area Geography Area History Area Links Driving Directions Idaho Falls Attractions and Events INL History INL Today Research Park Sagebrush Steppe...

278

Southeast Idaho Area Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Area Attractions and Events Area Geography Area History Area Links Driving Directions Idaho Falls Attractions and Events INL History INL Today Research Park Sagebrush Steppe...

279

Highgate Springs, VT LNG Imports from Canada  

Annual Energy Outlook 2012 (EIA)

Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2008 2009 2010 2011 2012...

280

Kandidatexamensarbete i fysik Valbara projekt VT2014  

E-Print Network (OSTI)

in a nuclear reactor. In order to study this phenomenon, the diffusion coefficients of the system have and the related issues occurring in a nuclear reactor. They will develop their programming skills in C or C (polsson@kth.se) Generation IV reactors are designed in order to increase the burnup and decrease

Haviland, David

Note: This page contains sample records for the topic "vt wv southeast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

www.ictas.vt.edu NEW HORIZONS  

E-Print Network (OSTI)

-1996, Felker worked in senior engineering positions at Kenetech Windpower. As manager of engineering modeling

Crawford, T. Daniel

282

www.ictas.vt.edu NEW HORIZONS  

E-Print Network (OSTI)

.S. Department of Energy SunShot Initiative calls for an aggressive reduction in the overall systems costs by 75 are impressive, much work remains in addressing the challenges toward fully realizing the SunShot goal. The talk of the U.S. Department of Energy (DOE) SunShot Initiative. At DOE, he sets the science and technology

Crawford, T. Daniel

283

Scholars from northeast Brazil, Costa Rica, southeast Mexico, Nicaragua, Italy, and the United States gathered for a think-tank international week April 18-22, 2011 to examine Latin America's equity-gap challenges using a community engagement  

E-Print Network (OSTI)

Scholars from northeast Brazil, Costa Rica, southeast Mexico, Nicaragua, Italy, and the United. The keynote address--Brazil's Unified Health System May Promote Social Inequality: Paradox or dialectic/northeastern Brazil constitute nadirs of economic and health inequality. The stunting rates among children

Liu, Taosheng

284

Red grouper is an economically important species of the southeast United States and in particular the Gulf of Mexico. Red grouper are highly territorial and often remain at the same site for long periods of  

E-Print Network (OSTI)

Red grouper is an economically important species of the southeast United States and in particular the Gulf of Mexico. Red grouper are highly territorial and often remain at the same site for long periods of time. We now know Red grouper are also engineering marvels for their ability to modify habitat through

Watson, Craig A.

285

Modelling of long-range transport of Southeast Asia biomass-burning aerosols to Taiwan and their radiative forcings over East Asia  

SciTech Connect

Biomass burning is a major source of aerosols and air pollutants during the springtime in Southeast Asia. At Lulin mountain background station (elevation 2862 m) in Taiwan, the concentrations of carbon monoxide (CO), ozone (O3) and particulate matter particles with diameter less than 10 ?m (PM10), were measured around 150-250 ppb, 40-60 ppb, and 10-30?g/m3, respectively at spring time (February-April) during 2006 and 2009, which are about 2~3 times higher than those in other seasons. Observations and simulation results indicate that the higher concentrations during the spring time are clearly related to biomass burning plumes transported from the Indochina Peninsula of Southeast Asia. The spatial distribution of high aerosols optical depth (AOD) were identified by the satellite measurement and Aerosol Robotic Network (AERONET) ground observation, and could be reasonably captured by the WRF-Chem model during the study period of 15-18 March, 2008. AOD reached as high as 0.8-1.0 in Indochina ranging from 10 to 22N and 95 to 107E. Organic carbon (OC) is a major contributor of AOD over Indochina according to simulation results. The contributor of AOD from black carbon (BC) is minor when compared with OC over the Indochina. However, the direct absorption radiative forcing of BC in the atmosphere could reach 35-50 W m-2, which is about 8-10 times higher than that of OC. The belt shape of radiation reduction at surface from Indochina to Taiwan could be as high 20-40 W m-2 during the study period. The implication of the radiative forcing from biomass burning aerosols and their impact on the regional climate in East Asia is our major concern.

Lin, Chuan-Yao; Zhao, Chun; Liu, Xiaohong; Lin, Neng-Huei; Chen, Wei-Nei

2014-10-12T23:59:59.000Z

286

U.S. Energy Information Administration | Annual Energy Outlook...  

Annual Energy Outlook 2012 (EIA)

Supply Model Regions Atlantic WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA VT...

287

F-7 U.S. Energy Information Administration | Annual Energy Outlook...  

Annual Energy Outlook 2012 (EIA)

2014 Regional maps Figure F6. Coal supply regions WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI...

288

F-5 U.S. Energy Information Administration | Annual Energy Outlook...  

Gasoline and Diesel Fuel Update (EIA)

Supply Model Regions Atlantic WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA VT...

289

U.S. Energy Information Administration | Annual Energy Outlook...  

Annual Energy Outlook 2012 (EIA)

East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI...

290

U.S. Energy Information Administration | Annual Energy Outlook...  

Annual Energy Outlook 2012 (EIA)

2013 Regional maps Figure F6. Coal supply regions WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI...

291

padd map  

U.S. Energy Information Administration (EIA) Indexed Site

for Defense Districts AK HI WA OR CA NV AZ MT WY CO UT ID ND SD NE KS OK MO MN WI MI IL IN OH KY TN IA NM TX AR LA AL MS WV VA NC SC GA FL ME NH VT NY PA NJ MD DE MA CT RI...

292

U.S. Energy Information Administration | Annual Energy Outlook...  

Gasoline and Diesel Fuel Update (EIA)

2012 Regional maps Figure F6. Coal supply regions WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI...

293

Microsoft Word - figure_99.doc  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production." IN OH TN WV VA KY MD PA NY VT NH MA CT ME RI DE DC NC SC GA FL NJ AL MS LA MO AR TX NM OK CO KS UT AZ WY NE IL IA MN WI ND SD ID MT WA OR NV CA HI AK MI Gulf...

294

U.S. Energy Information Administration | Annual Energy Outlook...  

Gasoline and Diesel Fuel Update (EIA)

AZ OR CA HI V MT WY ID UT CO IV OK IA KS MO IL IN KY TN WI MI OH NE SD MN ND II NM TX MS AL AR LA III NJ CT VT ME RI MA NH FL GA SC NC WV MD DE VA NY PA I PAD District I - East...

295

Instructions for completing Form W-4VT Who must complete Form W-4VT  

E-Print Network (OSTI)

is different from the federal W-4. This would include employees anticipating Child Tax Credit, Hope Credit, or other federal credits which do not pass through to Vermont income tax and employees who are in civil- tional allowances for Federal tax because of an anticipated child credit or education credit, do

Simaan, Nabil

296

Wind energy resources analysis of Western Greece coast in terms of sustainable environmental indicators and towards their community-based exploitation in South-East Europe  

Science Journals Connector (OSTI)

Wind energy resources in the Ionian-Adriatic coast of South-East Europe were analyzed. Status of wind energy development in the countries of Greece Albania Montenegro Bosnia-Herzegovina and Croatia and regions of moderate and high wind potential at their west coasts were reviewed. The feasibility of the application of specific wind turbine generators with lower cut-in cut-out and rated speeds in moderate wind fields was investigated. The wind speed and direction as well as the availability the duration and the diurnal variation of several coastal sites in Western Greece were assessed and the results were statistically analyzed as time-series or with the Weibull probability distribution function. The mean wind power densities were less than 200?W?m?2 at 10?m suggesting the limiting suitability of the sites for the usual wind energy applications. However further technical-economical analysis revealed that the recent technological turbine improvements with lower cut-in and rated speeds make wind power viable even at moderate wind fields. Environmental indicators like energy payback period and avoided greenhouse emissions were determined to be significant for the utilization of wind energy resources in these coastal areas. Since the region is important for sea-related activities the implementation of wind energy applications in the frame of cross-border cooperation should be prioritized.

2013-01-01T23:59:59.000Z

297

Investigations of Bull Trout (Salvelinus Confluentus), Steelhead Trout (Oncorhynchus Mykiss), and Spring Chinook Salmon (O. Tshawytscha) Interactions in Southeast Washington Streams. Final Report 1992.  

SciTech Connect

The goal of this two year study was to determine if supplementation with hatchery reared steelhead trout (Oncorhynchus mykiss) and spring chinook salmon (O. tshawytscha) negatively impacted wild native bull trout (Salvelinus confluentus) through competitive interactions. Four streams with varying levels of fish supplementation activity were sampled in Southeast Washington. Tasks performed during this study were population density, relative abundance, microhabitat utilization, habitat availability, diet analysis, bull trout spawning ground surveys, radio telemetry of adult bull trout, and growth analysis. Results indicate that bull trout overlapped geographically with the supplemented species in each of the study streams suggesting competition among species was possible. Within a stream, bull trout and the supplemented species utilized dissimilar microhabitats and microhabitat utilization by each species was the same among streams suggesting that there was no shifts in microhabitat utilization among streams. The diet of bull trout and O. mykiss significantly overlapped in each of the study streams. The stream most intensely supplemented contained bull trout with the slowest growth and the non-supplemented stream contained bull trout with the fastest growth. Conversely, the stream most intensely supplemented contain steelhead with the fastest growth and the non-supplemented stream contained steelhead with the slowest growth. Growth indicated that bull trout may have been negatively impacted from supplementation, although other factors may have contributed. At current population levels, and current habitat quantity and quality, no impacts to bull trout as a result of supplementation with hatchery reared steelhead trout and spring chinook salmon were detected. Project limitations and future research recommendations are discussed.

Underwood, Keith D.

1995-01-01T23:59:59.000Z

298

Southeast Asia and Kyoto University  

E-Print Network (OSTI)

, Kyoto University opened its ASEAN Center in Bangkok, Thailand (p.11), the latest development in over

Takada, Shoji

299

Renewable Energy in the Southeast  

Energy.gov (U.S. Department of Energy (DOE))

Presentationgiven at the April 2012 Federal Utility Partnership Working Group (FUPWG) meetingdiscusses drivers, considerations, and opportunities for renewable energy in the southeastern United States.

300

Long-term Follow-up Results of a Multi-institutional Phase 2 Study of Concurrent Chemoradiation Therapy for Locally Advanced Cervical Cancer in East and Southeast Asia  

SciTech Connect

Purpose: To report the long-term survival and toxicity of a multi-institutional phase 2 study of concurrent chemoradiation therapy (CCRT) for locally advanced cervical cancer in east and southeast Asia. Methods and Materials: Ten institutions from 8 Asian countries participated in the study. Between April 2003 and March 2006, 120 patients (60 with bulky stage IIB and 60 with stage IIIB) were treated with CCRT. Radiation therapy consisted of pelvic external beam radiation therapy and either high-dose-rate or low-dose-rate intracavitary brachytherapy. Five cycles of weekly cisplatin (40 mg/m{sup 2}) were administered during the course of radiation therapy. Treatment results were evaluated by the rates of local control, overall survival, and late toxicities. Results: Median follow-up was 63.7 months, and the follow-up rate at 5 years was 98%. The 5-year local control and overall survival rates for all patients were 76.8% and 55.1%, respectively. The 5-year rates of major late toxicities of the rectum and bladder were 7.9% and 0%, respectively. Conclusions: The long-term results have suggested that CCRT is safe and effective for patients with locally advanced cervical cancer in east and southeast Asia. However, further efforts are needed to improve overall survival.

Kato, Shingo, E-mail: s_kato@saitama-med.ac.jp [Department of Radiation Oncology, International Medical Center, Saitama Medical University, Saitama (Japan); National Institute of Radiological Sciences of Japan, Chiba (Japan); Ohno, Tatsuya [Gunma University Heavy Ion Medical Center, Gunma University, Gunma (Japan); Thephamongkhol, Kullathorn; Chansilpa, Yaowalak [Division of Radiation Oncology, Department of Radiology, Siriraj Hospital, Faculty of Medicine, Mahidol University, Bangkok (Thailand); Cao, Jianping [School of Radiation Medicine and Public Health, Soochow University, Soochow (China); Xu, Xiaoting [Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Soochow (China); Devi, C. R. Beena; Swee, Tang Tieng [Department of Radiotherapy and Oncology, Hospital Umum Sarawak, Kuching (Malaysia); Calaguas, Miriam J.C. [Department of Radiation Oncology, St. Luke's Medical Center, Quezon City, the Philippines (Philippines); Reyes, Rey H. de los [Department of Obstetrics and Gynecology, Dr Jose R. Reyes Memorial Medical Center, Manila, the Philippines (Philippines); Cho, Chul-Koo [Department of Radiation Oncology, Korea Cancer Center Hospital, Seoul (Korea, Republic of); Dung, To Anh [Department of Breast and Gynecology Radiotherapy, National Cancer Institute, Hanoi (Viet Nam); Supriana, Nana [Department of Radiation Therapy, Faculty of Medicine, University of Indonesia, Dr Cipto Mangunkusumo General Hospital, Jakarta (Indonesia); Erawati, Dyah [Division of Radiotherapy, Dr Soetomo General Hospital, Surabaya (Indonesia); Mizuno, Hideyuki [National Institute of Radiological Sciences of Japan, Chiba (Japan); Nakano, Takashi [Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma (Japan); Tsujii, Hirohiko [National Institute of Radiological Sciences of Japan, Chiba (Japan)

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "vt wv southeast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Impact of natural and anthropogenic aerosols on stratocumulus and precipitation in the Southeast Pacific: A regional modeling study using WRF-Chem  

SciTech Connect

Cloud-system resolving simulations with the chemistry version of the Weather Research and Forecasting (WRF-Chem) model are used to quantify the impacts of regional anthropogenic and oceanic emissions on changes in aerosol properties, cloud macro- and microphysics, and cloud radiative forcing over the Southeast Pacific (SEP) during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) (15 OctNov 16, 2008). The effects of oceanic aerosols on cloud properties, precipitation, and the shortwave forcing counteract those of anthropogenic aerosols. Despite the relatively small changes in Na concentrations (2-12%) from regional oceanic emissions, their net effect (direct and indirect) on the surface shortwave forcing is opposite and comparable or even larger in magnitude compared to those of regional anthropogenic emissions over the SEP. Two distinct regions are identified in the VOCALS-REx domain. The near-coast polluted region is characterized with strong droplet activation suppression of small particles by sea-salt particles, the more important role of the first than the second indirect effect, low surface precipitation rate, and low aerosol-cloud interaction strength associated with anthropogenic emissions. The relatively clean remote region is characterized with large contributions of Cloud Condensation Nuclei (CCN, number concentration denoted by NCCN) and droplet number concentrations (Nd) from non-local sources (lateral boundaries), a significant amount of surface precipitation, and high aerosol-cloud interactions under a scenario of five-fold increase in anthropogenic emissions. In the clean region, cloud properties have high sensitivity (e.g., 13% increase in cloud-top height and a 9% surface albedo increase) to the moderate increase in CCN concentration (?Nccn = 13 cm-3; 25%) produced by a five-fold increase in regional anthropogenic emissions. The increased anthropogenic aerosols reduce the precipitation amount over the relatively clean remote ocean. The reduction of precipitation (as a cloud water sink) more than doubles the wet scavenging timescale, resulting in an increased aerosol lifetime in the marine boundary layer. Therefore, the aerosol impacts on precipitation are amplified by the positive feedback of precipitation on aerosol. The positive feedback ultimately alters the cloud micro- and macro-properties, leading to strong aerosol-cloud-precipitation interactions. The higher sensitivity of clouds to anthropogenic aerosols over this region is also related to a 16% entrainment rate increase due to anthropogenic aerosols. The simulated aerosol-cloud-precipitation interactions are stronger at night over the clean marine region, while during the day, solar heating results in more frequent decoupling, thinner clouds, reduced precipitation, and reduced sensitivity to anthropogenic emissions. The simulated high sensitivity to the increased anthropogenic emissions over the clean region suggests that the perturbation of the clean marine environment with anthropogenic aerosols may have a larger effect on climate than that of already polluted marine environments.

Yang, Qing; Gustafson, William I.; Fast, Jerome D.; Wang, Hailong; Easter, Richard C.; Wang, Minghuai; Ghan, Steven J.; Berg, Larry K.; Leung, Lai-Yung R.; Morrison, H.

2012-09-28T23:59:59.000Z

302

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

on Local and Regional Air on Local and Regional Air Quality Impacts of Oil and Natural Gas Development Goal The NETL research effort in improving the assessment of impacts to air quality from oil and gas exploration and production activities has the following goals: (1) using NETL's mobile air monitoring laboratory, conduct targeted on-site measurements of emissions from oil and gas production activities that may impact the environment and (2) use collected data in atmospheric chemistry and transport models to further understanding of local and regional air quality impacts. Background The development of shale gas and shale oil resources requires horizontal drilling and multi-stage hydraulic fracturing, two processes that have been known for many years but have only recently become common practice. In addition, fugitive atmospheric

303

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of the Carbon Sequestration Evaluation of the Carbon Sequestration Potential of the Cambro Ordovician Strata of the Illinois and Michigan Basins Background Carbon capture and storage (CCS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strand- plain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef.

304

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Products and Chemicals, Inc.: Air Products and Chemicals, Inc.: Demonstration of CO2 Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production Background Carbon dioxide (CO2) emissions from industrial processes, among other sources, are linked to global climate change. Advancing development of technologies that capture and store or beneficially reuse CO2 that would otherwise reside in the atmosphere for extended periods is of great importance. Advanced carbon capture, utilization and storage (CCUS) technologies offer significant potential for reducing CO2 emissions and mitigating global climate change, while minimizing the economic impacts of the solution. Under the Industrial Carbon Capture and Storage (ICCS) program, the U.S. Department

305

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Filtration to Improve Single Filtration to Improve Single Crystal Casting Yield-Mikro Systems Background Single crystal (SX) nickel superalloys are a primary material choice for gas turbine hot gas path component castings because of their high resistance to deformation at elevated temperatures. However, the casting yields of these components need to be improved in order to reduce costs and encourage more widespread use within the gas turbine industry. Low yields have been associated with a number of process-related defects common to the conventional casting of SX components. One innovative improvement, advanced casting filter designs, has been identified as a potential path toward increasing the yield rates of SX castings for high-temperature gas turbine applications. Mikro Systems, Inc. (Mikro) proposes to increase SX casting yields by developing

306

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Siemens Energy Siemens Energy Background Siemens Energy, along with numerous partners, has an ongoing U.S. Department of Energy (DOE) program to develop hydrogen turbines for coal-based integrated gasification combined cycle (IGCC) power generation that will improve efficiency, reduce emissions, lower costs, and allow for carbon capture and storage (CCS). Siemens Energy is expanding this program for industrial applications such as cement, chemical, steel, and aluminum plants, refineries, manufacturing facilities, etc., under the American Recovery and Reinvestment Act (ARRA). ARRA funding will be utilized to facilitate a set of gas turbine technology advancements that will improve the efficiency, emissions, and cost performance of turbines for industrial CCS. ARRA industrial technology acceleration,

307

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Design of Advanced Engineering Design of Advanced Hydrogen-Carbon Dioxide Palladium and Palladium/Alloy Composite Membrane Separations and Process Intensification Background Technologies for pre-combustion carbon dioxide (CO2) capture and economical hydrogen (H2) production will contribute to the development of a stable and sustainable U.S. energy sector. The integrated gasification combined cycle (IGCC) system can produce synthesis gas (syngas) that can be used to produce electricity, hydrogen, fuels, and/or chemicals from coal and coal/biomass-mixtures in an environmentally responsible manner. The water-gas shift (WGS) reaction is a key part of this process for production of H2. The application of H2 separation technology can facilitate the production of high-purity H2 from gasification-based systems, as well as allow for process

308

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhancement of SOFC Cathode Electro- Enhancement of SOFC Cathode Electro- chemical Performance Using Multi-Phase Interfaces- University of Wisconsin Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. The electrochemical performance of SOFCs can be substantially influenced by

309

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Materials Design of Computational Materials Design of Castable SX Ni-based Superalloys for IGT Blade Components-QuesTek Innovations Background Higher inlet gas temperatures in industrial gas turbines (IGTs) enable improved thermal efficiencies, but creep-the tendency of materials to deform gradually under stress-becomes more pronounced with increasing temperature. In order to raise inlet temperatures of IGTs, turbine blade materials are required to have superior creep rupture resistance. Nickel (Ni)-based single crystal (SX) blades have higher creep strength in comparison with directionally solidified blades and are widely used in aerospace engines. However, their use in IGTs, which require larger-size castings (two to three times the size needed in aerospace applications), is limited

310

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Combined Pressure, Temperature Combined Pressure, Temperature Contrast, and Surface-Enhanced Separation of Carbon Dioxide (CO 2 ) for Post-Combustion Carbon Capture Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Carbon Capture Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The Carbon Capture R&D Program portfolio of carbon dioxide (CO 2 ) emissions control tech- nologies and CO 2 compression is focused on advancing technological options for new and existing coal-fired

311

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Conductivity, High Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Environments-University of Connecticut Background Improved turbine materials are needed to withstand higher component surface temperatures and water vapor content for successful development and deployment of integrated gasification combined cycle (IGCC) power plants. Thermal barrier coatings (TBCs) in particular are required to have higher surface temperature capability, lower thermal conductivity, and resistance to attack at high temperature by contaminants such as calcium-magnesium-alumina-silicate (CMAS) and water vapor. There is also a concurrent need to address cost and availability issues associated with rare earth elements used in all low thermal conductivity TBCs.

312

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Uncertainties in Model Reducing Uncertainties in Model Predictions via History Matching of CO2 Migration and Reactive Transport Modeling of CO2 Fate at the Sleipner Project, Norwegian North Sea Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is todevelop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations

313

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular Separations Using Micro- Molecular Separations Using Micro- Defect Free Ultra-Thin Films Background Current methods for separating carbon dioxide (CO 2 ) from methane (CH 4 ) in fuel gas streams are energy and cost-intensive. Molecular sieve membrane development for carbon capture has been pursued for several decades because of the potential these membranes have for high selectivity while using less energy than cryogenic separation methods and greater flux (permselectivity) than is possible from polymeric membranes. However, the adoption of molecular sieve membrane technology has been hindered by high production costs and the micro-defect fissures that always accompany this type of membrane when fabricated using conventional techniques. The Department of Energy's (DOE) National Energy Technology Laboratory (NETL), has

314

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization of the South Characterization of the South Georgia Rift Basin for Source Proximal CO 2 Storage Background Carbon capture, utilization and storage (CCUS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Conventional

315

File:EIA-Appalach5-eastWV-LIQ.pdf | Open Energy Information  

Open Energy Info (EERE)

Eastern West Virginia and Western Maryland By 2001 Liquids Reserve Class Eastern West Virginia and Western Maryland By 2001 Liquids Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 18.6 MB, MIME type: application/pdf) Description Appalachian Basin, Eastern West Virginia and Western Maryland By 2001 Liquids Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States West Virginia, Maryland File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:41, 20 December 2010 Thumbnail for version as of 17:41, 20 December 2010 6,600 × 5,100 (18.6 MB) MapBot (Talk | contribs) Automated bot upload

316

File:EIA-Appalach6-WV-VA-LIQ.pdf | Open Energy Information  

Open Energy Info (EERE)

LIQ.pdf LIQ.pdf Jump to: navigation, search File File history File usage Appalachian Basin, Southern West Virginia and Southwestern Virginia By 2001 Liquids Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 18.77 MB, MIME type: application/pdf) Description Appalachian Basin, Southern West Virginia and Southwestern Virginia By 2001 Liquids Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States West Virginia, Virginia File history Click on a date/time to view the file as it appeared at that time.

317

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Scale Liquids Production Laboratory Scale Liquids Production and Assessment: Coal and Biomass to Drop-In Fuels Background A major problem with the production of liquid fuels from coal is that the production process and subsequent combustion of the fuel generate excessive greenhouse gases over the entire production and usage lifecycle. Adding lignocellulosic biomass (as a raw feed material) along with coal has the potential to reduce lifecycle greenhouse gas emissions to below those of petroleum products. Altex Technologies Corporation (Altex) has developed an innovative thermo-chemical process capable of converting coal and biomass to transportation fuel ready for blending. The Department of Energy (DOE) National Energy Technology Laboratory (NETL) has partnered with Altex to

318

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Capture and Storage Training Carbon Capture and Storage Training Background Carbon capture, utilization, and storage (CCUS) technologies offer great potential for mitigating carbon dioxide (CO2) emissions emitted into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications will require a drastically expanded workforce trained in CCUS related disciplines, including geologists, engineers, scientists, and technicians. Training to enhance the existing CCUS workforce and to develop new professionals can be accomplished through focused educational initiatives in the CCUS technology area. Key educational topics include simulation and risk assessment; monitoring, verification, and accounting (MVA); geology-related

319

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Andrea Dunn Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Marte Gutierrez Principal Investigator Colorado School of Mines 1600 Illinois Street Golden, CO 80401 303-273-3468 Fax: 303-273-3602 mgutierr@mines.edu PROJECT DURATION Start Date 12/01/2009 End Date 5/31/2013 COST Total Project Value $297,505 DOE/Non-DOE Share $297,505 / $0 Government funding for this project is provided in whole or in part through the American Recovery and Reinvestment Act. Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Background Fundamental and applied research on carbon capture, utilization and storage (CCUS)

320

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Efficiency Molten Bed Oxy- Coal Combustion with Low Flue Gas Recirculation Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO 2 ) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO 2 capture. Additionally, the program looks to accomplish this while maintaining near

Note: This page contains sample records for the topic "vt wv southeast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Characteristics of Gasification Characteristics of Coal/Biomass Mixed Fuels Background Domestically abundant coal is a primary energy source and when mixed with optimum levels of biomass during the production of liquid fuels may have lower carbon footprints compared to petroleum fuel baselines. Coal and biomass mixtures are converted via gasification into synthesis gas (syngas), a mixture of predominantly carbon monoxide and hydrogen, which can be subsequently converted to liquid fuels by Fischer-Tropsch chemistry. The Department of Energy (DOE) is supporting research focused on using coal and biomass to produce clean and affordable power, fuels and chemicals. The DOE's National Energy Technology Laboratory (NETL) is partnering with Leland Stanford Junior

322

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbonaceous Chemistry for Carbonaceous Chemistry for Computational Modeling (C3M) Description C3M is chemistry management software focused on computational modeling of reacting systems. The primary function of C3M is to provide direct links between r e l i a b l e s o u r c e s o f k i n e t i c information (kinetic modeling soft- ware, databases, and literature) and commonly used CFD software su ch as M FIX , FLUEN T, an d BARRACUDA with minimal effort from the user. C3M also acts as a virtual kinetic laboratory to allow a CFD practitioner or researcher to evaluate complex, large sets of kinetic expressions for reliability and suitability and can interact with spreadsheet and process models. Once the chemical model is built within C3M, the software also allows the user to directly export

323

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase III Xlerator Program: Electro-deposited Phase III Xlerator Program: Electro-deposited Mn-Co Alloy Coating for Solid Oxide Fuel Cell Interconnects-Faraday Technology Background Based on preliminary cost analysis estimates, Faraday Technology has shown that its FARADAYIC TM electrodeposition process for coating interconnects is cost competitive. Funding from the American Recovery and Reinvestment Act (ARRA) under the Small Business Innovation Research (SBIR) Phase III Xlerator Program will be directed toward developing, optimizing, and validating the FARADAYIC process as an effective and economical manufacturing method for coating interconnect materials with a manganese-cobalt (Mn-Co) alloy for use in solid oxide fuel cell (SOFC) stacks. This project is managed by the U.S. Department of Energy (DOE) National Energy

324

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology to Mitigate Syngas Technology to Mitigate Syngas Cooler Fouling Background Coal gasification, in conjunction with integrated gasification combined cycle (IGCC) power production, is under development to increase efficiency and reduce greenhouse gas emissions associated with coal-based power production. However, coal gasification plants have not achieved their full potential for superior performance and economics due to challenges with reliability and availability. In particular, performance of the syngas cooler located downstream of the gasifier has been an issue. The syngas cooler is a fire tube heat exchanger located between the gasifier and the gas turbine. The purpose of the syngas cooler is to cool the raw syngas from the gasifier and recover heat. Although

325

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Processing and Evaluation of Next Processing and Evaluation of Next Generation Oxygen Carrier Materials for Chemical Looping Combustion Background The Department of Energy (DOE) supports research towards the development of efficient and inexpensive CO 2 capture technologies for fossil fuel based power generation. The Department of Energy Crosscutting Research Program (CCR) serves as a bridge between basic and applied research. Projects supported by the Crosscutting Research Program conduct a range of pre-competitive research focused on opening new avenues to gains in power plant efficiency, reliability, and environmental quality by research in materials and processes, coal utilization science, sensors and controls, and computational energy science. Within the CCR, the University Coal Research (UCR) Program sponsors

326

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Studies to Enable Robust, Studies to Enable Robust, Reliable, Low Emission Gas Turbine Combustion of High Hydrogen Content Fuels-University of Michigan Background The University of Michigan will perform experimental and computational studies which can provide an improved and robust understanding of the reaction kinetics and other fundamental characteristics of combustion of high hydrogen content (HHC) fuels that are vital to advancing HHC turbine design and to making coal gasification power plants environmentally sustainable and cost- competitive. The scope of work includes Rapid Compression Facility (RCF) studies of HHC ignition delay times and hydroxyl radical (OH) time-histories, flame speeds, and flammability limits. A range of temperatures, pressures, and test gas mixture compositions will

327

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Rick Dunst Rick Dunst Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 MS 922-273C Pittsburgh, PA 15236-0940 412-386-6694 richard.dunst@netl.doe.gov Felicia Manciu Principal Investigator University of Texas at El Paso 500 West University Avenue El Paso, TX 79968-8900 915-747-5715 fsmanciu@utep.edu PROJECT DURATION Start Date 01/15/2009 End Date 12/15/2013 COST Total Project Value $249,546 DOE/Non-DOE Share $249,546 / $0

328

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Considerations and Environmental Considerations and Cooling Strategies for Vane Leading Edges in a Syngas Environment- University of North Dakota Background Cooling airfoil leading edges of modern first stage gas turbine vanes presents a con- siderable challenge due to the aggressive heat transfer environment and efficiency penalties related to turbine hot gas path cooling. This environment is made more complex when natural gas is replaced by high hydrogen fuels (HHF) such as synthesis gas (syngas) derived from coal gasification with higher expected levels of impurities. In this project the University of North Dakota (UND) and The Ohio State University (OSU) will explore technology opportunities to improve the reliability of HHF gas turbines by analyzing the effects

329

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Low-Cost Process for Alternative Low-Cost Process for Deposition of MCrAlY Bond Coats for Advanced Syngas/Hydrogen Turbine Applications-Tennessee Technological University Background One of the material needs for the advancement of integrated gasification combined cycle (IGCC) power plants is the development of low-cost effective manufacturing processes for application of coating architectures with enhanced performance and durability in coal derived synthesis gas (syngas)/hydrogen environments. Thermal spray technologies such as air plasma spray (APS) and high-velocity oxy-fuel (HVOF) are currently used to fabricate thermal barrier coating (TBC) systems for large land- based turbine components. In this research Tennessee Technological University (TTU) will develop metal chromium-aluminum-yttrium (MCrAlY; where M = nickel [Ni], cobalt

330

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-Fueled Pressurized Chemical Solid-Fueled Pressurized Chemical Looping with Flue-Gas Turbine Combined Cycle for Improved Plant Efficiency and CO2 Capture Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO2) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to accomplish this while

331

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Hafnia-Based Nanostructured Hafnia-Based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology- University of Texas at El Paso Background Thermal barrier coatings (TBCs) are protective layers of low thermal conductivity ceramic refractory material that protect gas turbine components from high temperature exposure. TBCs improve efficiency by allowing gas turbine components to operate at higher temperatures and are critical to future advanced coal-based power generation systems. Next generation gas turbine engines must tolerate fuel compositions ranging from natural gas to a broad range of coal-derived synthesis gasses (syngas) with high hydrogen content. This will require TBCs to withstand surface temperatures much higher than those currently experienced by standard materials. In this project the University of Texas at El Paso (UTEP)

332

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Utilization of Coal Syngas in High Direct Utilization of Coal Syngas in High Temperature Fuel Cells-West Virginia University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/ NETL is leading the research, development, and demonstration SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. West Virginia University's (WVU) project will establish the tolerance limits of contaminant

333

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

and Geotechnical Site and Geotechnical Site Investigations for the Design of a CO2 Rich Flue Gas Direct Injection and Storage Facility in an Underground Mine in the Keweenaw Basalts Background Fundamental and applied research on carbon capture, utilization and storage (CCUS) technologies is necessary in preparation for future commercial deployment. These technologies offer great potential for mitigating carbon dioxide (CO2) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCUS technical and non-technical disciplines that are currently under-represented in the United States. Education and training

334

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

National Risk Assessment Partnership National Risk Assessment Partnership The Need for Quantitative Risk Assessment for Carbon Utilization and Storage Carbon utilization and storage-the injection of carbon dioxide (CO2) into permanent underground and terrestrial storage sites-is an important part of our nation's strategy for managing CO2 emissions. Several pilot- to intermediate-scale carbon storage projects have been performed in the U.S. and across the world. However, some hurdles still exist before carbon storage becomes a reality in the U.S. at a large scale. From a technical point of view, carbon storage risk analysis is complicated by the fact that all geologic storage sites are not created equally. Every potential site comes with an individual set of characteristics, including type of storage formation, mineral make-

335

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Model Development-LG Fuel Model Development-LG Fuel Cell Systems Background In this congressionally directed project, LG Fuel Cell Systems Inc. (LGFCS), formerly known as Rolls-Royce Fuel Cell Systems (US) Inc., is developing a solid oxide fuel cell (SOFC) multi-physics code (MPC) for performance calculations of their fuel cell structure to support product design and development. The MPC is based in the computational fluid dynamics software package STAR-CCM+ (from CD-adapco) which has been enhanced with new models that allow for coupled simulations of fluid flow, porous flow, heat transfer, chemical, electrochemical and current flow processes in SOFCs. Simulations of single cell, five-cell, substrate and bundle models have been successfully validated against experimental data obtained by LGFCS. The MPC is being

336

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

of the Highest- of the Highest- Priority Geologic Formations for CO 2 Storage in Wyoming Background Carbon capture and storage (CCS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strand- plain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef.

337

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment of Factors Influencing Assessment of Factors Influencing Effective CO2 Storage Capacity and Injectivity in Eastern Gas Shales Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

338

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Reflection Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both

339

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Dry Sorbent Technology Dry Sorbent Technology for Pre-Combustion CO 2 Capture Background An important component of the Department of Energy (DOE) Carbon Capture Program is the development of carbon capture technologies for power systems. Capturing carbon dioxide (CO 2 ) from mixed-gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and practical CO 2 loading volumes. Current technologies that are effective at separating CO 2 from typical CO 2 -containing gas mixtures, such as coal-derived shifted synthesis gas (syngas), are both capital and energy intensive. Research and development is being conducted to identify technologies that will provide improved economics and

340

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Turbine Thermal Gas Turbine Thermal Performance-Ames Laboratory Background Developing turbine technologies to operate on coal-derived synthesis gas (syngas), hydrogen fuels, and oxy-fuels is critical to the development of advanced power gener-ation technologies such as integrated gasification combined cycle and the deployment of near-zero-emission type power plants with capture and separation of carbon dioxide (CO 2 ). Turbine efficiency and service life are strongly affected by the turbine expansion process, where the working fluid's high thermal energy gas is converted into mechanical energy to drive the compressor and the electric generator. The most effective way to increase the efficiency of the expansion process is to raise the temperature of the turbine's

Note: This page contains sample records for the topic "vt wv southeast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Statistical Analysis of CO2 Exposed Wells Statistical Analysis of CO2 Exposed Wells to Predict Long Term Leakage through the Development of an Integrated Neural-Genetic Algorithm Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

342

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological Sequestration Geological Sequestration Consortium-Development Phase Illinois Basin - Decatur Project Site Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The purpose of these partnerships is to determine the best regional approaches for permanently storing carbon dioxide (CO2) in geologic formations. Each RCSP includes stakeholders comprised of state and local agencies, private companies, electric utilities, universities, and nonprofit organizations. These partnerships are the core of a nationwide network helping to establish the most suitable technologies, regulations, and infrastructure needs for carbon storage. The partnerships include more than 400 distinct organizations, spanning 43 states

343

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

CONTACT CONTACT Cathy Summers Director, Process Development Division National Energy Technology Laboratory 1450 Queen Ave., SW Albany, OR 97321-2198 541-967-5844 cathy.summers@netl.doe.gov An Integrated Approach To Materials Development Traditional trial-and-error method in materials development is time consuming and costly. In order to speed up materials discovery for a variety of energy applications, an integrated approach for multi-scale materials simulations and materials design has

344

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Simulations of the Large Scale Simulations of the Mechanical Properties of Layered Transition Metal Ternary Compounds for FE Power Systems Background The U.S. Department of Energy (DOE) promotes the advancement of computational capabilities to develop materials for advanced fossil energy power systems. The DOE's National Energy Technology Laboratory (NETL) Advanced Research (AR) Program is working to enable the next generation of Fossil Energy (FE) power systems. The goal of

345

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigations and Investigations and Rational Design of Durable High- Performance SOFC Cathodes- Georgia Institute of Technology Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/ NETL is leading the research, development, and demonstration of solid SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. Cathode durability is critical to long-term SOFC performance for commercial deployment.

346

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxygen Carriers for Coal-Fueled Oxygen Carriers for Coal-Fueled Chemical Looping Combustion Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently under-represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who

347

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Supercritical Carbon Dioxide Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressurized Oxy-combustion in Conjunction with Cryogenic Compression Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO2) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to accomplish this while maintaining near

348

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological & Environmental Sciences Geological & Environmental Sciences Subsurface Experimental Laboratories Autoclave and Core Flow Test Facilities Description Researchers at NETL study subsurface systems in order to better characterize and understand gas-fluid-rock and material interactions that impact environmental and resource issues related to oil, gas, and CO2 storage development. However, studying the wide variety of subsurface environments related to hydrocarbon and CO2 systems requires costly and technically challenging tools and techniques. As a result, NETL's Experimental Laboratory encompasses multi-functional, state-of-the-art facilities that perform a wide spectrum of geological studies providing an experimental basis for modeling of various subsurface phenomena and processes. This includes, but is not

349

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Durability of Turbine Components through Trenched Film Cooling and Contoured Endwalls-University of Texas at Austin Background Gas turbine operation utilizing coal-derived high hydrogen fuels (synthesis gas, or syngas) requires new cooling configurations for turbine components. The use of syngas is likely to lead to degraded cooling performance resulting from rougher surfaces and partial blockage of film cooling holes. In this project the University of Texas at Austin (UT) in cooperation with The Pennsylvania State University (Penn State) will investigate the development of new film cooling and endwall cooling designs for maximum performance when subjected to high levels of contaminant depositions. This project was competitively selected under the University Turbine Systems Research

350

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Single-Crystal Sapphire Optical Fiber Single-Crystal Sapphire Optical Fiber Sensor Instrumentation for Coal Gasifiers Background Accurate temperature measurement inside a coal gasifier is essential for safe, efficient, and cost-effective operation. However, current sensors are prone to inaccurate readings and premature failure due to harsh operating conditions including high temperatures (1,200-1,600 degrees Celsius [°C]), high pressures (up to 1000 pounds per square inch gauge [psig]), chemical corrosiveness, and high flow rates, all of which lead to corrosion, erosion, embrittlement, and cracking of gasifier components as well as sensor failure. Temperature measurement is a critical gasifier control parameter because temperature is a critical factor influencing the gasification and it leads to impacts in efficiency and

351

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Unraveling the Role of Transport, Unraveling the Role of Transport, Electrocatalysis, and Surface Science in the SOFC Cathode Oxygen Reduction Reaction-Boston University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture The electrochemical performance of SOFCs can be substantially influenced by

352

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Swirl Injectors for Hydrogen Gas Low-Swirl Injectors for Hydrogen Gas Turbines in Near-Zero Emissions Coal Power Plants-Lawrence Berkeley National Laboratory Background The U.S. Department of Energy Hy(DOE) Lawrence Berkeley National Laboratory (LBNL) is leading a project in partnership with gas turbine manufacturers and universities to develop a robust ultra-low emission combustor for gas turbines that burn high hydrogen content (HHC) fuels derived from gasification of coal. A high efficiency and ultra-low emissions HHC fueled gas turbine is a key component of a near-zero emis- sions integrated gasification combined cycle (IGCC) clean coal power plant. This project is managed by the DOE National Energy Technology Laboratory (NETL). NETL is researching advanced turbine technology with the goal of producing reliable,

353

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of a Coal-Based Demonstration of a Coal-Based Transport Gasifier Background Coal is an abundant and indigenous energy resource and currently supplies almost 38 percent of the United States' electric power. Demand for electricity, vital to the nation's economy and global competitiveness, is projected to increase by almost 28 percent by 2040. The continued use of coal is essential for providing an energy supply that supports sustainable economic growth. Unfortunately, nearly half of the nation's electric power generating infrastructure is more than 30 years old and in need of substantial refurbishment or replacement. Additional capacity must also be put in service to keep pace with the nation's ever-growing demand for electricity. It is in the public interest

354

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Foamed Wellbore Cement Foamed Wellbore Cement Stability under Deep Water Conditions Background Foamed cement is a gas-liquid dispersion that is produced when an inert gas, typically nitrogen, is injected into a conventional cement slurry to form microscopic bubbles. Foamed cements are ultralow-density systems typically employed in formations that are unable to support annular hydrostatic pressure exerted by conventional cement slurries. More recently, the use of foamed cement has expanded into regions with high-stress environments, for example, isolating problem formations typical in the Gulf of Mexico. In addition to its light-weight application, foamed cement has a unique resistance to temperature and pressure-induced stresses. Foamed cement exhibits superior fluid

355

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale Computational Design and Scale Computational Design and Synthesis of Protective Smart Coatings for Refractory Metal Alloys Background The goal of the University Coal Research (UCR) Program within the Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to further the understanding of coal utilization. Since the program's inception in 1979, its primary objectives have been to (1) improve understanding of the chemical and physical processes involved in the conversion and utilization of coal so it can be used in an environmentally acceptable manner, (2) maintain and upgrade the coal research capabilities of and facilities at U.S. colleges and universities, and (3) support the education of students in the area of coal science. The National Energy Technology Laboratory's Office of Coal and Power Systems supports

356

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion of CO2 in Commercial Conversion of CO2 in Commercial Materials using Carbon Feedstocks Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the Core R&D CO2 Use and Re-use Technology Area and focuses on developing pathways

357

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Experimental and Chemical Kinetics Experimental and Chemical Kinetics Study of the Combustion of Syngas and High Hydrogen Content Fuels- Pennsylvania State University Background Pennsylvania State University is teaming with Princeton University to enhance scientific understanding of the underlying factors affecting combustion for turbines in integrated gasification combined cycle (IGCC) plants operating on synthesis gas (syngas). The team is using this knowledge to develop detailed, validated combustion kinetics models that are useful to support the design and future research and development needed to transition to fuel flexible operations, including high hydrogen content (HHC) fuels derived from coal syngas, the product of gasification of coal. This project also funda- mentally seeks to resolve previously reported discrepancies between published ex-

358

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Coating Issues in Coal-Derived Synthesis Coating Issues in Coal-Derived Synthesis Gas/Hydrogen-Fired Turbines-Oak Ridge National Laboratory Background The Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) is leading research on the reliable operation of gas turbines when fired with synthesis gas (syngas) and hydrogen-enriched fuel gases with respect to firing temperature and fuel impurity levels (water vapor, sulfur, and condensable species). Because syngas is derived from coal, it contains more carbon and more impurities than natural gas. In order to achieve the desired efficiency, syngas-fired systems need to operate at very high temperatures but under combustion conditions necessary to reduce nitrogen oxide (NO X ) emissions. ORNL's current project is focused on understanding the performance of high-

359

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Diode Laser Cladding of High Diode Laser Cladding of High Temperature Alloys Used in USC Coal- Fired Boilers Background The Advanced Research (AR) Materials Program addresses materials requirements for all fossil energy systems, including materials for advanced power generation and coal fuels technologies. Examples of these technologies include coal gasification, heat engines such as turbines, combustion systems, fuel cells, hydrogen production, and carbon capture

360

File:EIA-Appalach5-eastWV-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

Eastern West Virginia and Western Maryland By 2001 Gas Reserve Class Eastern West Virginia and Western Maryland By 2001 Gas Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 18.18 MB, MIME type: application/pdf) Description Appalachian Basin, Eastern West Virginia and Western Maryland By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States West Virginia, Maryland File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:41, 20 December 2010 Thumbnail for version as of 17:41, 20 December 2010 6,600 × 5,100 (18.18 MB) MapBot (Talk | contribs) Automated bot upload

Note: This page contains sample records for the topic "vt wv southeast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Processes Electrochemical Processes for CO2 Capture and Conversion to Commodity Chemicals Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the

362

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Preparation and Testing of Corrosion- Preparation and Testing of Corrosion- and Spallation-Resistant Coatings- University of North Dakota Background The life of turbine components is a significant issue in gas fired turbine power systems. In this project the University of North Dakota (UND) will advance the maturity of a process capable of bonding oxide-dispersion strengthened alloy coatings onto nickel-based superalloy turbine parts. This will substantially improve the lifetimes and maximum use temperatures of parts with and without thermal barrier coatings (TBCs). This project is laboratory research and development and will be performed by UND at their Energy & Environmental Research Center (EERC) facility and the Department of Mechanical Engineering. Some thermal cycle testing will occur at Siemens Energy

363

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Assessment Model for Predicting Integrated Assessment Model for Predicting Potential Risks to Groundwater and Surface Water Associated with Shale Gas Development Background The EPAct Subtitle J, Section 999A-999H established a research and development (R&D) program for ultra-deepwater and unconventional natural gas and other petroleum resources. This legislation identified three program elements to be administered by a consortium under contract to the U.S. Department of Energy. Complementary research performed by the National Energy Technology Laboratory's (NETL) Office of Research and Development (ORD) is a fourth program element of this cost-shared program. NETL was also tasked with managing the consortium: Research Partnership to Secure Energy for America (RPSEA). Historically, the Complementary R&D Program being carried out by NETL's ORD has focused

364

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of Enabling Spar-Shell Demonstration of Enabling Spar-Shell Cooling Technology in Gas Turbines - Florida Turbine Technologies Background The Florida Turbine Technologies (FTT) spar-shell gas turbine airfoil concept has an internal structural support (the spar) and an external covering (the shell). This concept allows the thermal-mechanical and aerodynamic requirements of the airfoil design to be considered separately, thereby enabling the overall design to be optimized for the harsh environment these parts are exposed to during operation. Such optimization is one of the major advantages of the spar-shell approach that is not possible with today's conventional monolithic turbine components. The proposed design integrates a novel cooling approach based on Advanced Recircu-

365

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos National Laboratory - Los Alamos National Laboratory - Advancing the State of Geologic Sequestration Technologies towards Commercialization and Pre-Combustion Capture Goals Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop technologies to capture, separate, and store carbon dioxide (CO 2 ) to aid in reducing greenhouse gas (GHG) emissions without adversely influencing energy use or hindering economic growth. Carbon capture and sequestration (CCS) - the capture of CO 2 from large point sources and subsequent injection into deep geologic formations for permanent storage - is one option that is receiving considerable attention. NETL is devoted to improving geologic carbon sequestration technology by funding research projects aimed at removing barriers to commercial-scale

366

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid Oxide Fuel Cell Cathodes: Solid Oxide Fuel Cell Cathodes: Unraveling the Relationship among Structure, Surface Chemistry, and Oxygen Reduction-Boston University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture The Boston University (BU) project was competitively selected to acquire the fundamental

367

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials for Robust Repair Materials for Robust Repair of Leaky Wellbores in CO2 Storage Formations Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

368

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-fired Pressurized Fluidized Bed Oxy-fired Pressurized Fluidized Bed Combustor Development and Scale-up for New and Retrofit Coal-fired Power Plants Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy-combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO2) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to

369

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantification Quantification of Wellbore Leakage Risk Using Non-Destructive Borehole Logging Techniques Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the

370

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Research Storage Research Carbon capture and storage (CCS) is a key component of the U.S. carbon management portfolio. Numerous studies have shown that CCS can account for up to 55 percent of the emissions reductions needed to stabilize and ultimately reduce atmospheric concentrations of CO 2 . NETL's Carbon Storage Program is readying CCS technologies for widespread commercial deployment by 2020. The program's goals are:

371

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration Sequestration Training and Research Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO2). Carbon capture and storage (CCS) technologies offer great potential for reducing CO2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS specialties that are currently under- represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who possess the skills required for implementing and deploying CCS technologies.

372

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Gulf of Mexico Miocene CO Gulf of Mexico Miocene CO 2 Site Characterization Mega Transect Background Carbon capture and storage (CCS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Conventional storage types are porous permeable clastic or carbonate rocks that have

373

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Leads Collaborative Effort DOE Leads Collaborative Effort to Quantify Environmental Changes that Coincide with Shale Gas Development Background DOE's National Energy Technology Laboratory (NETL) is leading a joint industry/ government research project to document environmental changes that occur during the lifecycle of shale gas development. The research plan calls for one year of environmental monitoring before development takes place to establish baseline conditions and account for seasonal variations. Monitoring then will continue through the different stages of unconventional shale gas development including: road and pad construction, drilling, and hydraulic fracturing, and for at least one year of subsequent production operations. The study will take place at a Range Resources-Appalachia

374

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

General Electric General Electric Background GE Power & Water, along with GE Global Research Center, has an ongoing U.S. Depart- ment of Energy (DOE) program to develop gas turbine technology for coal-based integrated gasification combined cycle (IGCC) power generation that will improve efficiency, reduce emissions, lower costs, and allow for carbon capture and storage (CCS). GE is broadening this development effort, along with expanding applicability to industrial applications such as refineries and steel mills under the American Recovery and Reinvestment Act (ARRA). ARRA funding will be utilized to facilitate a set of gas turbine technology advancements that will improve the efficiency, emissions, and cost performance of turbines with industrial CCS. ARRA industrial technology acceleration,

375

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Livermore National Laboratory Livermore National Laboratory - Advancing the State of Geologic Sequestration Technologies towards Commercialization Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop carbon capture and storage (CCS) technologies to capture, separate, and store carbon dioxide (CO 2 ) in order to reduce green-house gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO 2 by injecting and permanently storing it in underground geologic formations. NETL is working to advance geologic carbon sequestration technology by funding research projects that aim to accelerate deployment and remove barriers to commercial-scale carbon sequestration. Lawrence Livermore National Laboratory

376

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

r r oj e c t Fac t s Advanced Research Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High Temperature and Dynamic Gas Pressure in Harsh Environments Background Securing a sustainable energy economy by developing affordable and clean energy from coal and other fossil fuels is central to the mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). To further this mission, NETL funds research and development of novel sensors that can function under the

377

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Fuel Turbo Machinery Oxy-Fuel Turbo Machinery Development for Energy Intensive Industrial Applications-Clean Energy Systems Background Clean Energy Systems (CES), with support from Siemens Energy and Florida Turbine Technologies (FTT), has an ongoing U.S. Department of Energy (DOE) program to develop an oxy-fuel combustor for highly efficient near zero emission power plants. CES is expanding this development for an industrial-scale, oxy-fuel reheat combustor- equipped intermediate-pressure oxy-fuel turbine (IP-OFT) under the American Recovery and Reinvestment Act (ARRA). Through the design, analysis, and testing of a modified Siemens SGT-900 gas turbine, the team will demonstrate a simple-cycle oxy-fuel system. ARRA funding is accelerating advancement in OFT technology for

378

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Passive Wireless Acoustic Wave Sensors Passive Wireless Acoustic Wave Sensors for Monitoring CO 2 Emissions for Geological Sequestration Sites Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO 2 ) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO 2 into underground formations that have the ability to securely contain the CO

379

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Criteria for Flame- Criteria for Flame- holding Tendencies within Premixer Passages for High Hydrogen Content Fuels-University of California, Irvine Background The gas turbine community must develop low emissions systems while increasing overall efficiency for a widening source of fuels. In this work, the University of California, Irvine (UCI) will acquire the fundamental knowledge and understanding to facilitate the development of robust, reliable, and low emissions combustion systems with expanded high hydrogen content (HHC) fuel flexibility. Specifically, understanding flashback and the subsequent flameholding tendencies associated with geometric features found within combustor fuel/air premixers will enable the development of design guides to estimate flame holding tendencies for lean, premixed emission combustion systems

380

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Combining Space Geodesy, Seismology, Combining Space Geodesy, Seismology, and Geochemistry for MVA of CO2 in Sequestration Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO2) leakage at CO2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO2, with a high level of confidence that the CO2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both

Note: This page contains sample records for the topic "vt wv southeast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Analytical Simulation Tool for Enhanced Analytical Simulation Tool for CO2 Storage Capacity Estimation and Uncertainty Quantification Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

382

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactive Transport Models with Reactive Transport Models with Geomechanics to Mitigate Risks of CO2 Utilization and Storage Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

383

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

a Prototype Commercial a Prototype Commercial Gasifier Sensor Background Integrated gasification combined cycle (IGCC) technology has the potential to improve the efficiency and environmental performance of fossil fuel based electric power production. During the IGCC process, coal and/or biomass is gasified at high temperature and pressure to form synthesis gas (syngas), a mixture of hydrogen, carbon monoxide, carbon dioxide, and small amounts of contaminants such as hydrogen sulfide. The syngas can be used to produce power, chemicals, and/or fuels. The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Gasification Technologies Program is focused on enhancing the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of

384

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase III Xlerator Program: Rapid Phase III Xlerator Program: Rapid Commercialization of Advanced Turbine Blades for IGCC Power Plants-Mikro Systems Background Mikro Systems, Inc. is developing their proprietary TOMO SM manufacturing technology to produce turbine blades with significantly improved internal cooling geometries that are beyond current manufacturing state-of-the-art, thus enabling higher operating temperatures. Funding from the American Recovery and Reinvestment Act (ARRA) under the Small Business Innovation Research (SBIR) Phase III Xlerator Program will be directed towards accelerating commercial adoption of TOMO SM technology by leading turbine manufacturers through the demonstration of superior manufacturability, cost, and performance. Ultimately, this technology will lead to improved efficiency

385

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Non-Thermal Plasma for Fossil Energy Non-Thermal Plasma for Fossil Energy Related Applications Background The U.S. Department of Energy is investigating various non-thermal plasma tech- nologies for their catalytic properties related to fossil energy conversion and carbon dioxide decomposition. Non-thermal plasma is an ionized gas comprised of a mixture of charged particles (electrons, ions), active chemical radicals (O 3 , O, OH), and highly excited species that are known to accelerate reforming reactions in

386

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Training Toward Advanced 3-D Seismic Training Toward Advanced 3-D Seismic Methods for CO 2 Monitoring, Verification, and Accounting Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effective- ness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO 2 ) to reduce greenhouse gas (GHG) emissions without adversely af fecting energy use or hindering economic grow th. Geologic carbon storage involves the injection of CO 2 into underground formations that have the ability to securely contain the CO

387

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Cathode Surface Chemistry and Cathode Surface Chemistry and Optimization Studies-Carnegie Mellon University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. Carnegie Mellon University's (CMU) project was selected to acquire the fundamental knowledge and understanding that will facilitate research and development to enhance

388

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

a Coal-Biomass to Liquids a Coal-Biomass to Liquids Plant in Southern West Virginia Background Concerns regarding global supplies of oil, energy security, and climate change have generated renewed interest in alternative energy sources. The production of liquid fuels from coal provides an option for reducing petroleum use in the U.S. transportation sector and enhancing national and economic security by decreasing the nation's reliance on foreign oil. Two basic methods can be employed to produce liquid fuels

389

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Creep-Fatigue-Environment Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultrasupercritical Coal Power Plants Background The U.S. Department of Energy (DOE) promotes the advancement of computational capabilities to develop materials for advanced fossil energy power systems. The DOE's National Energy Technology Laboratory (NETL) Advanced Research (AR) Program is working to enable the next generation of Fossil Energy (FE) power systems. One goal of the AR Materials Program is to conduct research leading to a scientific understanding of high-performance materials capable of service in the hostile environments associated with advanced ultrasupercritical (A-USC) coal-fired power plants. A-USC plants will increase coal-fired power plant efficiency by allowing operation

390

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL's Fluid Chemistry Analysis NETL's Fluid Chemistry Analysis Capacity Background Establishing the geochemistry of surface and ground waters requires an arsenal of techniques devoted to determining the constituents these waters contain and the environment in which they exist. Many standard techniques have been developed over the years, and new ones continue to be explored as more complex matrices and harsher environments are encountered. Deep geologic storage of carbon dioxide and the development of unconventional oil and gas resourses are two areas of current concern where the study of geochemical processes is challenging due to the complex nature of the natural samples, and where routine analytical techniques are being pushed to their limits. The facilities at NETL include both conventional and cutting-edge instrumentation

391

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

29,759 29,759 PROJECT NUMBER FWP-2012.03.03 Task 3 Conversion and Fouling Background Coal and biomass gasification is an approach to cleaner power generation and other uses of these resources. Currently, the service life of gasifiers does not meet the performance needs of users. Gasifiers fail to achieve on-line availability of 85-95 percent in utility applications and 95 percent in applications such as chemical production. The inability to meet these goals has created a potential roadblock to widespread acceptance and commercialization of advanced gasification technologies. Gasifier output is a hot gas mixture consisting primarily of hydrogen and carbon monoxide (CO), known as synthesis gas (syngas). The syngas cooler is one of the key components identified as negatively impacting gasifier availability. Ash originating from impurities

392

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Compact Eye-safe Scanning Differential Compact Eye-safe Scanning Differential Absorption LIDAR (DIAL) for Spatial Mapping of Carbon Dioxide for MVA at Geologic Carbon Sequestration Sites Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that

393

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Energy California Project Hydrogen Energy California Project Background A need exists to further develop carbon management technologies that capture and store or beneficially reuse carbon dioxide (CO 2 ) that would otherwise be emitted into the atmosphere from coal-based electric power generating facilities. Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and mitigating global climate change, while minimizing the economic impacts of the solution. Under the Clean Coal Power Initiative (CCPI) Round 3 program, the U.S. Department of Energy (DOE) is providing financial assistance, including funding under the American Recovery and Reinvestment Act (ARRA) of 2009, to industry to demonstrate the commercial viability of technologies that will capture CO

394

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulation of CO Simulation of CO 2 Leakage and Caprock Remediation Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the environment, and can provide the basis for establishing carbon credit trading markets

395

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Pressure Membrane Contactors for Pressure Membrane Contactors for CO 2 Capture Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Carbon Capture Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The Carbon Capture R&D Program portfolio of carbon dioxide (CO 2 ) emissions control technologies and CO 2 compression is focused on advancing technological options for new and existing coal- fired power plants in the event of carbon constraints. Post-combustion separation and capture of CO

396

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Shizhong Yang Shizhong Yang Principal Investigator Department of computer science/LoNI southern University and a&M college Baton rouge, Louisiana 70813 225-771-2060 shizhong_yang@subr.edu PROJECT DURATION Start Date End Date 06/01/2012 05/31/2015 COST Total Project Value $200,000 DOE/Non-DOE Share $200,000 / $0 Novel Nano-Size Oxide Dispersion Strengthened Steels Development through Computational and Experimental Study Background Ferritic oxide dispersion strengthened (oDs) steel alloys show promise for use at higher temperatures than conventional alloys due to their high-temperature oxidation resistance and dislocation creep properties. the development of oDs alloys with nanoscale powders of transition metal oxides (yttrium and chromium) dispersed in

397

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Power Initiative (CCPI 3) Clean Coal Power Initiative (CCPI 3) NRG Energy: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project Background Additional development and demonstration is needed to improve the cost and efficiency of carbon management technologies that capture and store carbon dioxide (CO 2 ) that would otherwise be emitted from coal-based electric power generating facilities. Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and mitigating global climate change, while minimizing the economic impacts of the solution. The U.S. Department of Energy (DOE) is providing financial assistance through the Clean Coal Power Initiative (CCPI) Round 3, which includes funding from the American Recovery and Reinvestment Act (ARRA), to demonstrate the commercial viability

398

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiocarbon as a Reactive Tracer for Radiocarbon as a Reactive Tracer for Tracking Permanent CO2 Storage in Basaltic Rocks Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

399

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Degradation of TBC Systems in Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems- University of Pittsburgh Background The conditions inside integrated gasification combined cycle (IGCC) systems, such as high steam levels from hydrogen firing, high carbon dioxide steam mixtures in oxy- fired systems, and different types of contaminants, introduce complexities associated with thermal barrier coating (TBC) durability that are currently unresolved. In this work the University of Pittsburgh will team with Praxair Surface Technologies (PST) to deter- mine the degradation mechanisms of current state-of-the-art TBCs in environments consisting of deposits and gas mixtures that are representative of gas turbines using coal-derived synthesis gas (syngas).

400

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Alloys for High-Temperature Low-Cost Alloys for High-Temperature SOFC Systems Components - QuesTek Innovations Background One of the key opportunities for cost reduction in a solid oxide fuel cell (SOFC) system is the set of balance of plant (BOP) components supporting the fuel cell itself, including the heat exchanger and air/fuel piping. These represent about half of the overall cost of the system. A major enabling technological breakthrough is to replace incumbent nickel-based superalloys in high-temperature BOP components with low-cost ferritic stainless steel. However, the ferritic alloys are unsuitable for SOFC application without additional coatings due to the inherent volatile nature of the alloy's chromium oxide (Cr2O3) element, which tends to poison the fuel cell's cathode

Note: This page contains sample records for the topic "vt wv southeast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Southwestern United States Carbon Southwestern United States Carbon Sequestration Training Center Background Carbon capture, utilization, and storage (CCUS) technologies offer great potential for mitigating carbon dioxide (CO2) emissions emitted into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications will require a drastically expanded workforce trained in CCUS related disciplines, including geologists, engineers, scientists, and technicians. Training to enhance the existing CCUS workforce and to develop new professionals can be accomplished through focused educational initiatives in the CCUS technology area. Key educational topics include simulation and risk assessment; monitoring, verification,

402

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Beneficial Use of CO2 in Precast Beneficial Use of CO2 in Precast Concrete Products Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the Core R&D CO2 Use and Re-use Technology Area and focuses on developing pathways

403

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Barrier Coatings for Thermal Barrier Coatings for Operation in High Hydrogen Content Fueled Gas Turbines-Stony Brook University Background Traditional thermal barrier coatings (TBCs) based on yttria-stabilized zirconia (YSZ) will likely not be suitable in gas turbines used in integrated gasification combined cycle (IGCC) power plants. This is due to higher operating temperatures that will not only affect phase stability and sintering but will accelerate corrosive degradation phenomena. Coatings provide a framework to combat degradation issues and provide performance improvements needed for higher temperature environments. The Center for Thermal Spray Research (CTSR) at Stony Brook University, in partnership with its industrial Consortium for Thermal Spray Technology, is investigating science and

404

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling for IGCC Turbine Cooling for IGCC Turbine Blades-Mikro Systems Background Turbine blade and vane survivability at higher operating temperatures is the key to improving turbine engine performance for integrated gasification combined cycle (IGCC) power plants. Innovative cooling approaches are a critical enabling technology to meet this need. Mikro Systems, Inc. is applying their patented Tomo-Lithographic Molding (TOMO) manufacturing technology to produce turbine blades with significantly improved internal cooling geometries that go beyond the current manufacturing state-of-the-art to enable higher operating temperatures. This project addresses two important aspects. First is the need to increase the quality and reliability of the core manufacturing process capability to

405

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Dynamics in Multi-Nozzle Combustion Dynamics in Multi-Nozzle Combustors Operating on High- Hydrogen Fuels-Pennsylvania State University Background Combustion dynamics is a major technical challenge to the development of efficient, low emission gas turbines. Current information is limited to single-nozzle combustors operating on natural gas and neglects combustors with configurations expected to meet operability requirements using a range of gaseous fuels such as coal derived synthesis gas (syngas). In this project, Pennsylvania State University (Penn State) in collaboration with Georgia Institute of Technology (Georgia Tech) will use multiple-nozzle research facilities to recreate flow conditions in an actual gas turbine to study complicated interactions between flames that can aggravate the combustion dynamics in syngas-

406

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Summit Texas Clean Energy, LLC: Texas Summit Texas Clean Energy, LLC: Texas Clean Energy Project: Pre-Combustion CO 2 Capture and Sequestration Background A need exists to further develop carbon management technologies that capture and store, or beneficially reuse, carbon dioxide (CO 2 ) that would otherwise be emitted into the atmosphere from coal-based electric power generating facilities. Carbon capture and storage (CCS) technologies offer the potential to significantly reduce CO 2 emissions and mitigate the anthropogenic contribution to global climate change, while substantially reducing or minimizing the economic impacts of the solution. Under Round 3 of the Clean Coal Power Initiative (CCPI), the U.S. Department of Energy (DOE) is providing up to $450 million in co-funded financial assistance to industry,

407

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Solar-Based Catalytic Efficiency Solar-Based Catalytic Structure for CO2 Reforming Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the Core R&D CO2 Use and Re-use Technology Area and focuses on developing pathways

408

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE-WRI Cooperative Research and DOE-WRI Cooperative Research and Development Program for Fossil Energy- Related Resources Background Our nation's demand for cleaner and more efficient fossil energy production will increase during the coming decades, necessitating the development of new energy technologies to achieve energy independence in an environmentally responsible manner. The University of Wyoming (UW) Research Corporation's Western Research Institute (WRI) has been supporting the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) and its mission of developing fossil energy and related environmental technologies for over two decades. Federal funding for these research efforts has usually been provided through congressionally mandated cooperative agreements, with cost share

409

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Unconventional Resources Unconventional Resources Background Natural gas and crude oil provide two-thirds of our Nation's primary energy supply and will continue to do so for at least the next several decades, as the Nation transitions to a more sustainable energy future. The natural gas resource estimated to exist within the United States has expanded significantly, but because this resource is increasingly harder to locate and produce, new technologies are required to extract it. Under the Energy Policy Act of 2005, the National Energy Technology Laboratory is charged with developing a complementary research program supportive of improving safety and minimizing the environmental impacts of activities related to unconventional natural gas and other petroleum resource exploration and production technology

410

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Staged, High-Pressure Oxy-Combustion Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-up Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available CO2 capture and storage significantly reduces efficiency of the power cycle. The aim of the ACS program is to develop advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to accomplish this while maintaining near zero emissions of other flue gas pollutants.

411

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid Oxide Fuel Cells Operating on Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels- Pennsylvania State University Background In this congressionally directed project, the Earth and Mineral Science (EMS) Energy Institute at Pennsylvania State University (PSU) focuses on the development of fuel processors, reforming catalysts, and chemical sorbents to support the production of electricity from anaerobic digester gas (ADG) and ultra-low sulfur diesel (ULSD) via solid-oxide fuel cells (SOFCs). PSU will use the fuel processors, reforming catalysts, and chemical sorbents developed under this work to transform and clean ADG and ULSD into a syngas stream suitable as a feedstock for SOFCs. This project is managed by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), whose mission is to advance energy options to fuel

412

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid Oxide Fuel Cell Cathode Enhancement Solid Oxide Fuel Cell Cathode Enhancement Through a Vacuum-assisted Infiltration- Materials and Systems Research, Inc. Background Solid oxide fuel cell (SOFC) technology promises to provide an efficient method to generate electricity from coal-derived synthesis gas (syngas), biofuels, and natural gas. The typical SOFC composite cathode (current source) possesses excellent performance characteristics but is subject to chemical stability issues at elevated temperatures both during manufacturing and power generation. Costs attributed to the cathode and its long-term stability issues are a current limitation of SOFC technologies. These must be addressed before commercial SOFC power generation can be realized. Materials and Systems Research, Inc. (MSRI) will develop a vacuum-assisted infiltration

413

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Study of the Durability of Doped Study of the Durability of Doped Lanthanum Manganite and Cobaltite Based Cathode Materials under "Real World" Air Exposure Atmospheres- University of Connecticut Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO

414

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Comprehensive Comprehensive Monitoring Techniques to Verify the Integrity of Geological Storage Reservoirs Containing Carbon Dioxide Background Research aimed at monitoring the long-term storage stability and integrity of carbon dioxide (CO2) stored in geologic formations is one of the most pressing areas of need if geological storage is to become a significant factor in meeting the United States' stated objectives to reduce greenhouse gas emissions. The most promising geologic formations under consideration for CO2 storage are active and depleted oil and gas formations, brine formations, and deep, unmineable coal seams. Unfortunately, the long-term CO2 storage capabilities of these formations are not yet well understood. Primary Project Goal The goal of this effort is to develop

415

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

SO SO 2 -Resistent Immobilized Amine Sorbents for CO 2 Capture Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently under-represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who

416

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies for Monitoring Technologies for Monitoring CO 2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic

417

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitoring and Numerical Modeling of Monitoring and Numerical Modeling of Shallow CO 2 Injection, Greene County, Missouri Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO 2 ). Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS specialties that are currently under- represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who possess the

418

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Tagging Carbon Dioxide to Enable Tagging Carbon Dioxide to Enable Quantitative Inventories of Geological Carbon Storage Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both

419

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoporous, Metal Carbide, Surface Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations Background Both coal and biomass are readily available in the U.S. and can be thermally processed to produce hydrogen and/or power. The produced hydrogen can be sent directly to a fuel cell or hydrogen turbines for efficient and environmentally clean power generation. More efficient hydrogen production processes need to be developed before coal and biomass can become economically viable sources of hydrogen. To meet this need, the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is partnering with the Colorado School of Mines and Pall Corporation to develop nanoporous metal carbide surface diffusion membranes for use in high temperature

420

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigation on Flame Characteristics Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently underrepresented in the United States. Education and training activities

Note: This page contains sample records for the topic "vt wv southeast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Object Optimization Approaches Object Optimization Approaches for the Design of Carbon Geological Sequestration Systems Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO 2 ). Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS specialties that are currently under- represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who possess

422

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensors and Control Sensors and Control CONTACTS Ben Chorpening Sensors & Controls Technical Team Coordinator 304-285-4673 benjamin.chorpening@netl.doe.gov Steven Woodruff Principal Investigator 304-285-4175 steven.woodruff@netl.doe.gov Michael Buric Co-Principal Investigator 304-285-2052 michael.buric@netl.doe.gov Raman Gas Composition Sensor System for Natural Gas and Syngas Applications Goal The goal of this project is to develop and test a Raman laser spectroscopy system for responsive gas composition monitoring, and to transfer the technology to industry for commercial implementation. The instrument provides state-of-the-art improvement of reduced size and increased sensitivity and sample rate to facilitate the process control

423

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Joining of Advanced Joining of Advanced High-Temperature Materials Background To remain economically competitive, the coal-fired power generation industry needs to increase system efficiency, improve component and system reliability, and meet ever tightening environmental standards. In particular, cost-effective improvements in thermal efficiency are particularly attractive because they offer two potential benefits: (1) lower variable operating cost via increased fuel utilization (fuel costs represent over 70 percent of the variable operating cost of a fossil fuel-fired power plant) and (2) an economical means of reducing carbon dioxide (CO2) and other emissions. To achieve meaningful gains, steam pressure and temperature must be increased to

424

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Basin-Scale Leakage Risks from Geologic Basin-Scale Leakage Risks from Geologic Carbon Sequestration: Impact on Carbon Capture and Storage Energy Market Competitiveness Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the

425

Jointly sponsored by the WV Geriatric Education Center and CAMC Health Education and Research Institute  

E-Print Network (OSTI)

! Light refreshments will be provided! FOR QUESTIONS AND TO PRE-REGISTER, PLEASE CALL HANNA AT 347 in accordance with the essentials and standards of the Accreditation Council for Continuing Medical Education continuing medical education for physicians. DISCLOSURE It is the policy of the CAMC Health Education

Mohaghegh, Shahab

426

A Windows based project management application for NASA WV Space Grant Consortium using SQL server.  

E-Print Network (OSTI)

??The NASA West Virginia Space Grant Consortium (WVSGC) is a group of West Virginia academic institutions, with industrial partners, which have joined together under the (more)

Bogum, Naveen K.

2010-01-01T23:59:59.000Z

427

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface-Modified Electrodes: Enhancing Surface-Modified Electrodes: Enhancing Performance Guided by In-Situ Spectroscopy and Microscopy- Stanford University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. The electrochemical performance of SOFCs can be substantially influenced by mass and

428

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Eddy Simulation Modeling of Large Eddy Simulation Modeling of Flashback and Flame Stabilization in Hydrogen-Rich Gas Turbines using a Hierarchical Validation Approach- University of Texas at Austin Background The focus of this project is the development of advanced large eddy simulation (LES)-based combustion modeling tools that can be used to design low emissions combustors burning high hydrogen content fuels. The University of Texas at Austin (UT) will develop models for two key topics: (1) flame stabilization, lift- off, and blowout when fuel-containing jets are introduced into a crossflow at high pressure, and (2) flashback dynamics of lean premixed flames with detailed description of flame propagation in turbulent core and near-wall flows. The jet- in-crossflow (JICF) configuration is widely used for rapid mixing of reactants

429

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient Efficient Regeneration of Physical and Chemical Solvents for CO 2 Capture Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently under-represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who

430

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Scale CO2 Injection and Commercial Scale CO2 Injection and Optimization of Storage Capacity in the Southeastern United States Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

431

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbine Thermal Management-NETL-RUA Turbine Thermal Management-NETL-RUA Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is researching advanced turbine technology with the goal of producing reliable, affordable, and environmentally friendly electric power in response to the nation's increasing energy challenges. With the Hydrogen Turbine Program, NETL is leading the research, development, and demonstration of technologies to achieve power production from high-hydrogen-content fuels derived from coal that is clean, efficient, and cost-effective, and minimizes carbon dioxide (CO 2 ) emissions, and will help maintain the nation's leadership in the export of gas turbine equipment. The NETL Regional University Alliance (RUA) is an applied research collaboration that

432

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Scoping Studies to Evaluate the Benefits Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low Rank Coal in Integrated Gasification Combined Cycle Background Gasification of coal or other solid feedstocks (biomass, petroleum coke, etc.) produces synthesis gas (syngas), which can be cleaned and used to produce electricity and a variety of commercial products that support the U.S. economy, decrease U.S. dependence on oil imports, and meet current and future environmental emission standards. The major challenge is cost, which needs to be reduced to make integrated gasification combined cycle (IGCC) technology competitive. An IGCC plant combines a combustion turbine operating on a gasified fuel stream--syngas--with a steam turbine to capture what would otherwise be waste heat. Currently, the estimated cost of power from IGCC is higher than

433

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Reliability and Durability of Materials Reliability and Durability of Materials and Components for SOFCs - Oak Ridge National Laboratory Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) has a mission to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. Oak Ridge National Laboratory's (ORNL) project was selected to acquire the fundamental

434

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

SOFC Protection Coatings Based on a SOFC Protection Coatings Based on a Cost-Effective Aluminization Process- NexTech Materials Background To make solid oxide fuel cell (SOFC) systems easier to manufacture and reduce costs, less expensive stainless steels have been substituted into the stack design as alternatives to ceramic interconnects. Stainless has also been substituted for high-cost, nickel-based superalloys in balance of plant (BOP) components. For successful implementation of these steels, protective coatings are necessary to protect the air-facing metal surfaces from high-temperature corrosion/oxidation and chromium (Cr) volatilization. NexTech Materials Ltd. (NexTech) will develop an aluminide diffusion coating as a low- cost alternative to conventional aluminization processes and evaluate the ability of the

435

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Patricia Rawls Patricia Rawls Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 412-386-5882 patricia.rawls@netl.doe.gov Sankaran Sundaresan Principal Investigator Princeton University Department of Chemical Engineering Princeton, NJ 08544 609-258-4583 sundar@princeton.edu PROJECT DURATION Start Date 10/01/2011 End Date 09/30/2014 COST Total Project Value $420,366 DOE/Non-DOE Share $300,000 / $120,366 Implementation and Refinement

436

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Methanol Economy Methanol Economy Background Fossil fuels such as coal, oil, and natural gas are composed of hydrocarbons with varying ratios of carbon and hydrogen. Consumption of hydrocarbons derived from fossil fuels is integral to modern day life in the U.S. Hydrocarbons are used as fuels and raw materials in the transportation sector and in many industrial production processes including chemicals, petrochemicals, plastics, pharmaceuticals, agrochemicals, and rubber.

437

,"North Troy, VT Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:16:23 PM" "Back to Contents","Data 1: North...

438

Winter 2009 A Newsletter of  

E-Print Network (OSTI)

, Southeast District Office; and A. Uzel, King and Queen County. www.ext.vt.edu Virginia Cooperative Extension, associate director. The Living Well editorial board, co-chaired by C. Sprenger, Augusta County and E County; J. Henderson, Amelia County; A. Jewell, Lancaster County; and K. Poff, Shenandoah and Frederick

Liskiewicz, Maciej

439

Delivered by Ingenta to: Southeast University  

E-Print Network (OSTI)

of America Science of Advanced Materials Vol. 4, pp. 727­733, 2012 (www.aspbs.com/sam) Effect of Annealing,4­6 appear as an alternative to produce electricity at low cost, environmental benign, and less the Fukushima nuclear plant catastrophe. The energy conver- sion process in DSCs is composed of injection

Cao, Guozhong

440

Coal development plans in southeast Asia  

SciTech Connect

The author reviews coal production and consumption over recent years in Indonesia, Thailand and the Philippines. Projections of coal supply and demand for these countries to 1995 are also shown. Over-ambitious plans have been announced during the past 5 years, which have mostly been revised downwards. An attempt is made to provide realistic figures.

Lootens, D.J.

1985-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "vt wv southeast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Praxair extending hydrogen pipeline in Southeast Texas  

SciTech Connect

This paper reports that Praxair Inc., an independent corporation created by the spinoff of Union Carbide Corp.'s Linde division, is extending its high purity hydrogen pipeline system from Channelview, Tex., to Port Arthur, Tex. The 70 mile, 10 in. extension begins at a new pressure swing adsorption (PSA) purification unit next to Lyondell Petrochemical Co.'s Channelview plant. The PSA unit will upgrade hydrogen offgas from Lyondell's methanol plant to 99.99% purity hydrogen. The new line, advancing at a rate of about 1 mile/day, will reach its first customer, Star Enterprise's 250,000 b/d Port Arthur refinery, in September.

Not Available

1992-08-24T23:59:59.000Z

442

Stephania Bolden NMFS Southeast Regional Office  

E-Print Network (OSTI)

Habitat #12;7 rivers with reproducing populations and their adjacent estuarine areas #12;PCE #1 = Abundant substrate #12;PCE #2 = Riverine spawning sites - substrates suitable for egg deposition and development clay PCE #3 = Riverine aggregation areas - resting, holding, and staging areas PCE #4 = Flow regime

443

Nationwide: Southeast Propane Autogas Development Program Brings...  

Energy Savers (EERE)

future expansion of propane vehicles. Project participants will reduce 3.9 million gasoline gallon equivalents and 7.8 million pounds of greenhouse gas emissions annually....

444

Retrofitting the Southeast: The Cool Energy House  

SciTech Connect

The Consortium for Advanced Residential Buildings has provided the technical engineering and building science support for a highly visible demonstration home in connection with the National Association of Home Builders' International Builders Show. The two previous projects, the Las Vegas net-zero ReVISION House and the 2011 VISION and ReVISION Houses in Orlando, met goals for energy efficiency, cost effectiveness, and information dissemination through multiple web-based venues. This project, which was unveiled at the 2012 International Builders Show in Orlando on February 9, is the deep energy retrofit Cool Energy House (CEH). The CEH began as a mid-1990s two-story traditional specification house of about 4,000 ft2 in the upscale Orlando suburb of Windermere.

Zoeller, W.; Shapiro, C.; Vijayakumar, G.; Puttagunta, S.

2013-02-01T23:59:59.000Z

445

Nitrogen fixation by clover in Southeast Texas  

E-Print Network (OSTI)

'f 1' ~i*u L. ), md N h* r 1 f clover (Trifolium vesiculosum Savi) were included in the experiment. Inoculation treatments of white clover included applying a peat base inoculum to seeds at planting with the use of wate as a sticking agent... to inoculation. They were inoculated with a peat base inoculum with the aid of gum arabic as the adhesive. ACKNOWLEDGEMENTS The author would like to express deepest gratitude to those assisting in work involved with this thesis. Special thanks go to my wife...

Waggoner, James Alan

2012-06-07T23:59:59.000Z

446

Climate and Societies in Southeast Asia  

Science Journals Connector (OSTI)

Climate relates to many sectors of human society and economy. Climate itself is variable in time and space as are human affairs. That climate is a potent factor in the development of human affairs cannot be ga...

K. U. Sirinanda

1997-01-01T23:59:59.000Z

447

Late Ordovician brachiopod communities of southeast China  

Science Journals Connector (OSTI)

...studies (Wang and Jin 1964; Rong and Han...Platform; B, Zhe-Xi Slope; C, Zhe-Wan...part of the Zhe-Xi Slope (loc. 10...their communities (Jin and Zhan 2001). The Ordovician...534. a Wang Yu, Jin Yu-gan . 1964. Brachiopods...Yi-ting, Zhou Xiao-ping, Shi Gui-jun...

Ren-bin Zhan; Jia-yu Rong; Jisuo Jin; L.R.M. Cocks

448

Southeast Regional Alternative Fuels Market Initiatives Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31, 2015 - 30% Complete * BUDGET - Total Project Funding: 580,900 * DOE: 500,000 * Cost Share: 80,900 - FY13 Funding 290,000 - FY14 Funding 210,000 - 104,139 spent (18%...

449

Southeast Regional Clean Energy Policy Analysis  

Office of Energy Efficiency and Renewable Energy (EERE)

This report covers the states that largely fall into the Southeastern Reliability Corporation (SERC) region: Alabama, Arkansas, Georgia, Louisiana, Kentucky, Missouri, Mississippi, North Carolina, South Carolina, and Tennessee.

450

Southeast Regional Carbon Sequestration Partnership (SECARB)  

SciTech Connect

Work during the first six months of the project mainly concentrated on contracts execution and collection of data to characterize the region and input of that data into the geographical information system (GIS) system. Data was collected for source characterization, transportation options and terrestrial options. In addition, discussions were held to determine the extent of the geologic information that would be needed for the project. In addition, activities associated with the regulatory, permitting and safety issues were completed. Outreach activities are in the formative stages.

Kathryn A. Baskin

2004-03-31T23:59:59.000Z

451

Microsoft PowerPoint - How To Do Business with DOE Charleston WV Nov 14 2011 BOS.pptx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Small and Disadvantaged Business Utilization (OSDBU) Office of Small and Disadvantaged Business Utilization (OSDBU) Presenter: Nickolas A. Demer Senior Procurement Analyst Business Opportunities Session Charleston, West Virginia November 14, 2011 EVOLUTION OF DOE EVOLUTION OF DOE EVOLUTION OF DOE EVOLUTION OF DOE Manhattan Project - August 1941 - Development of nuclear energy warheads Atomic Energy Act of 1946 - Established the Atomic Energy Commission (AEC) - Established the Atomic Energy Commission (AEC) - Civilian control of atomic energy weapons Atomic Energy Act of 1954 - Empowered AEC to also regulate commercial nuclear power industry 2 EVOLUTION OF DOE EVOLUTION OF DOE EVOLUTION OF DOE EVOLUTION OF DOE Energy Reorganization Act of 1974 - Established Energy Research and Development Administration (ERDA) to manage R&D for nuclear

452

Feasibility study of wood-fired cogeneration at a Wood Products Industrial Park, Belington, WV. Phase II  

SciTech Connect

Customarily, electricity is generated in a utility power plant while thermal energy is generated in a heating/cooling plant; the electricity produced at the power plant is transmitted to the heating/cooling plant to power equipments. These two separate systems waste vast amounts of heat and result in individual efficiencies of about 35%. Cogeneration is the sequential production of power (electrical or mechanical) and thermal energy (process steam, hot/chilled water) from a single power source; the reject heat of one process issued as input into the subsequent process. Cogeneration increases the efficiency of these stand-alone systems by producing these two products sequentially at one location using a small additional amount of fuel, rendering the system efficiency greater than 70%. This report discusses cogeneration technologies as applied to wood fuel fired system.

Vasenda, S.K.; Hassler, C.C.

1992-06-01T23:59:59.000Z

453

NGA98fin5.vp  

Gasoline and Diesel Fuel Update (EIA)

8 8 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 1998 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 1998 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost and Quality of Fuels for Electric Plants," and Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental

454

C:\ANNUAL\VENTCHAP.V8\NGAla1109.vp  

Gasoline and Diesel Fuel Update (EIA)

2000 2000 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-99.99 10.00-11.99 12.00+ 19. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 2000 (Dollars per Thousand Cubic Feet) Figure 20. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 2000 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost and Quality of Fuels for Electric Plants," and Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural

455

Microsoft Word - Figure_18_19.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 0.00-2.49 2.50-4.49 4.50-6.49 6.50-8.49 8.50-10.49 10.50+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK MD 0.00-2.49 2.50-4.49 4.50-6.49 6.50-8.49 8.50-10.49 10.50+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK Figure 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 2004 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Power Consumers, 2004 (Dollars per Thousand Cubic Feet) Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Note: States where the electric power price has been withheld (see Table 23) are included in the $0.00-$2.49 price category.

456

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

49 49 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK MD 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK Figure 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 2003 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Power Consumers, 2003 (Dollars per Thousand Cubic Feet) Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Note: States where the electric power price has been withheld (see Table 23) are included in the $0.00-$1.99 price category.

457

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

9 9 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Note: Commercial prices include natural gas delivered for use as vehicle fuel. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 16. Average Price of Natural Gas Delivered to U.S. Residential Consumers, 1999 (Dollars per Thousand Cubic Feet) Figure

458

C:\ANNUAL\VENTCHAP.V8\NGA.VP  

Gasoline and Diesel Fuel Update (EIA)

8 8 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Note: Commercial prices include natural gas delivered for use as vehicle fuel. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 16. Average Price of Natural Gas Delivered to U.S. Residential Consumers, 1997 (Dollars per Thousand Cubic Feet) Figure

459

NGA98fin5.vp  

Gasoline and Diesel Fuel Update (EIA)

1998 1998 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Note: Commercial prices include natural gas delivered for use as vehicle fuel. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 16. Average Price of Natural Gas Delivered to U.S. Residential Consumers, 1998 (Dollars per Thousand Cubic Feet) Figure

460

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

9 9 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 1999 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 1999 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost and Quality of Fuels for Electric Plants," and Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental

Note: This page contains sample records for the topic "vt wv southeast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

C:\ANNUAL\VENTCHAP.V8\NGAla1109.vp  

Gasoline and Diesel Fuel Update (EIA)

Energy Energy Information Administration / Natural Gas Annual 2000 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Note: Commercial prices include natural gas delivered for use as vehicle fuel. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ 17. Average Price of Natural Gas Delivered to U.S. Residential

462

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

. · Make garden and landscape maintenance easier. Organic mulches also · Improve the soil's condition and Landscape Fabrics Bonnie Appleton , Extension Horticulturist Kathy Kauffman, Graduate Student, Hampton Roads. Match the mulch type and size to the landscape situation. Why Mulch? The term "mulch" refers

Liskiewicz, Maciej

463

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

trees. choose the right cultivar for your landscape Crapemyrtles are low-maintenance and easy to grow Tech. the appeal of crapemyrtle One of Virginia's most popular yet mistreated landscape plants to stunning multi- colored bark, and unique winter architecture that makes this plant exceed most landscape

Liskiewicz, Maciej

464

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

. The idea of having someone else responsible for fertilization and pest control of the home lawn appeals are at capacity, our groundwater is at risk from chemi- cal pollution and the need to utilize our yardwastes. This national treasure is in danger from pollutants entering the many streams and rivers that empty into it

Liskiewicz, Maciej

465

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

is Sprouting Damage Measured? A "falling-number test" measures alpha-amylase activ- ity within a grain sample. Alpha-amylase is an enzyme thatbreaksdownstarchwithingerminatingseeds.Starch breakdown is desirable if the seed has been planted and needs to produce a seedling; however, alpha-amylase activity in PHS ­ where

Liskiewicz, Maciej

466

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

outbreaks of Rhizoctonia brown patch often justify preventive fungicide applications before the symptoms of disease appear. 3 The fungus causing spring dead spot is active during the fall and winter, after., Crop and Soil Environmental Sciences, Virginia Tech Eric Day, Entomology, Virginia Tech David Mc

Liskiewicz, Maciej

467

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

, caused by the fungus, Puccinia malvacearum, is the most common disease of hollyhock. Under favorable environmental conditions, the disease spreads rapidly from leaf to leaf. Older leaves are usually killed of the fungus are produced in the pustules. Shortly after the pustules form, bright yellow-orange spots with red

Liskiewicz, Maciej

468

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

is a disease caused by the fungus Phakopsora pachyrhizi. The disease causes numerous lesions to appear- bean crop? If ASR moves into Virginia, it is manageable. Cor- rect fungicide selection and application with fungicide application; therefore, soybean profitability may decrease. How much yield loss from aSR can farm

Liskiewicz, Maciej

469

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

blaming could be better spent on working to understand your feelings. Damage to Self-Esteem Feeling good can cause physical and emotional damage. The first step to accepting feelings is to sort out into a rage that may erupt in damaging emotional outbursts or be unleashed on family members. Unchecked anger

Liskiewicz, Maciej

470

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

, coal mining became the region's economic mainstay. After the virgin timber cut, the Appalachian forest to Pennsylvania and Ohio. Today, coal and timber ­ natural resources produced in centralAppalachia ­ make and commercially valuable natural resources ­ especially timber and coal. A huge amount of virgin timber was cut

Liskiewicz, Maciej

471

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

.C. by Egyp- tians who maintained clipped boxwood hedges. Boxwoods are very useful, attractive garden and land

Liskiewicz, Maciej

472

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

deep into the over- burden to extract soil water that is inaccessible to more shallow-rooted species research conducted at the Powell River Project Research and Education Center site. Sericea Lespedeza in the early days of mined-land reclamation. Sericea has a long, deep tap- root that is capable of penetrating

Liskiewicz, Maciej

473

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

, with fuel ethanol play- ing an important role in this transition. Fuel ethanol can be blended with gasoline regarding fuel ethanol. Glossary Gasohol ­ A mixture of gasoline and ethanol. E10 ­ A gasohol blend of 10 percent ethanol and 90 percent gasoline, by volume E85 ­ A gasohol blend of 85 percent ethanol and 10

Liskiewicz, Maciej

474

The Regulatory Assistance Project 50 State Street, Suite 3 Montpelier, VT 05602  

E-Print Network (OSTI)

on a recent RAP paper: What Lies Beyond Capacity Markets? for the Pacific Northwest Demand Response Project at operational scale 3 #12;Capacity markets: The temptation of the familiar Capacity markets: investment one problem can create others Capacity markets can work at cross purposes with a market that needs

475

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

of alternative systems such as solar or wind. If there is already electrical service within 1500 feet if pastured during daylight hours. Required Watering Space, Flow Rate, and Reserve Capacity There are two, the flow rate is low, then storage capacity must be pro- #12;2 vided. In other words, providing a trickle

Liskiewicz, Maciej

476

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

, and application of manure, fertilizer, biosolids (treated sewage sludge), and other materials containing plant, 1890 Extension Program, Virginia State, Petersburg. publication 442-052 Land Application of Broiler for growing crops. Land application of poultry litter on farms has been the mainstay of effective and safe

Liskiewicz, Maciej

477

IEEE Transactions on Vehicular Technology VT_2007_00627 1 Energy Efficient Video Transmission over a  

E-Print Network (OSTI)

system that minimizes the total energy consumption. We propose the Multi-User Based Energy efficient the RF energy and the analog circuit energy, which account for a large part of the energy consumption efficient optimal smoothing algorithm for reducing the RF front-end energy consumption as well as the peak

Kambhampati, Subbarao

478

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

the public and utility company employees who service the lines, and to insure safe, reliable electrical inappropriate mature heights, or erecting utility lines where tall trees already exist, greatly increases methods for existing utility line/street tree conflicts, such as natural, lateral, and directional pruning

Liskiewicz, Maciej

479

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

be no wildlife. When you boil down all the technology of forestry and wildlife, you inevitably wind up dealing, 1890 Extension Program, Virginia State, Petersburg. publication 420-138 Wildlife and Forest Ecology of timber and wildlife. Land with abundant game may be leased to hunting clubs for as much or even more than

Liskiewicz, Maciej

480

Institute for Critical Technology and Applied Sciencewww.ictas.vt.edu  

E-Print Network (OSTI)

, primarily, for the testing of wind turbine blade aeroacoustics and for research into flow generated noise by flows is an important component of the environmental impact of everything from wind turbines to aircraft SERIES P U R S U I N G T H E I M P R O B A B L E The Virginia Tech Stability Wind Tunnel: A Black Swan

Crawford, T. Daniel

Note: This page contains sample records for the topic "vt wv southeast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

the P 2 O 5 content to actual phosphorous content, multiply the given weight by 0.43. To convert K 2 O, hydrogen, and oxygen come from air and/or water. Nitrogen, phosphorous and potassium are considered

Liskiewicz, Maciej

482

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

is a container that is sunk into the ground so that its rim is flush with the soil surface. Insects and other five minutes. Circular Pitfall Trap A circular pitfall trap consists of a permanent 32- ounce cup sunk

Liskiewicz, Maciej

483

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

and brick veneer, stucco or expandable foam insulation (EFIS) that is below the grade level. This is a major

Liskiewicz, Maciej

484

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

, Horticulture, Virginia Tech Lettuce Environmental Preferences LIGHT: Sunny, tolerates shade; prefers shade, Retired Extension Specialist, Horticulture, Virginia Tech Alan McDaniel, Extension Specialist, but not waterlogged; frequent, light waterings Culture PLANTING: Seed leaf or butterhead types as soon as soil can

Liskiewicz, Maciej

485

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

Garden Diane Relf, Extension Specialist, Environmental Horticulture, Virginia Tech Alan McDaniel, Extension Specialist, Horticulture, Virginia Tech Weeds Are Not All Bad The most common definition of a weed, and light. They grow faster than cul- tured vegetables and are very effective in their repro- duction

Liskiewicz, Maciej

486

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

Hightower, Undergraduate, Department of Horticulture, Virginia Tech Diane Relf, Extension Specialist, Consumer Horticulture, Virginia Tech Kate Dobbs, Information Officer, Consumer Horticulture, Virginia Tech; tolerant of most soils, full sun, or light shade; and they do not require fertilizer. They can be grown

Liskiewicz, Maciej

487

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

are the leadingcausesoffailureincaringforgiftplants.These plants are grown in greenhouses, where the night- time temperatures are cool, light Diane Relf, Extension Specialist, Environmental Horticulture, Virginia Tech Elizabeth Ball, Program Support Technician, Virginia Tech I mproper water and light,and excessive heat

Liskiewicz, Maciej

488

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

the United States, interest in fish farming for profit or as a hobby has increased in the past few years, prospective fish farmers question if similar opportunities exist in Virginia's fresh waters. The prospects for fish farming in Virginia range from very good to poor depending on the objectives (com- mercial

Liskiewicz, Maciej

489

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

, 1890 Extension Program, Virginia State, Petersburg. publication 420-720 What Is Fee-fishing? Fee-fishing, or pay-fishing as the name implies, is buy- ing the right to fish in a private pond, lake, or stream. These are excellent places to practice your fishing skills and teach children the fine art of fishing. Fee-fishing

Liskiewicz, Maciej

490

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

Extension Program, Virginia State, Petersburg. publication 420-897 Introduction Fish farming is an ancient practice that can provide many profitable opportunities today. The raising and selling of fish on a commercial basis has proven to be economically successful throughout the United States. In Virginia, fish

Liskiewicz, Maciej

491

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

which are similar in description and life cycle. While small numbers of these organisms on a fish gen and ultimately, death of fish. Small fish and fry are espe- cially susceptible, and mortality can occur quickly if undiagnosed. How does Trichodina spp. affect the fish? Trichodina spp. cause irritation by feeding on the epi

Liskiewicz, Maciej

492

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

University, Virginia State University, and the U.S. Department of Agriculture cooperating. Rick D. Rudd the displacement of native plants, and ultimately, native habitats and ecosystems, due to invasive exotic plants. The label will tell you which species are affected by the active ingredient in an herbicide. Some chemicals

Liskiewicz, Maciej

493

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

University, Virginia State University, and the U.S. Department of Agriculture cooperating. Rick D. Rudd require- ments, only a small percentage of all land management activities in Virginia are ever affected in 1973 to conserve threatened and endan- gered plants, wildlife, and fish and the ecosystems on which

Liskiewicz, Maciej

494

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

of aquaculture in the state, as well as across the region and country, demands attention to both environmental ensure final product qual- ity, safety, and environmental sustainability. GAqPs include considerations Selection Proper site selection takes into account environmental resources as well as access to industrial

Liskiewicz, Maciej

495

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

to remember that recycled sand can still serve as a source of environmental contamination because the organic of these organisms in U.S. dairy herds. However, controlling environmental pathogens remains a daunt- ing task. Environmental streptococci and Enterococcus spp. are bacteria with similar biochemical and structural

Liskiewicz, Maciej

496

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

the system. When Should Shock Chlorination Be Used? Bacterial contamination in water cannot be seen, tasted, or smelled by human senses, and health-related symptoms caused by bacterial contamination can occur some time or if another obvious means of water contamination is pres- ent in your area. Virginia Household Water Quality

Liskiewicz, Maciej

497

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

water contaminated with pathogens can cause intestinal infections such as typhoid, dysentery, cholera, and cisterns is the sole responsibility of the owner. Sources of Bacterial Contamination Bacterial contamination can come from a variety of sources, including sewage, animal waste, and decay- ing dead animals

Liskiewicz, Maciej

498

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

Professor of Crop and Soil Environmental Sciences, Virginia Tech Greg Evanylo, Associate Professor of Crop and Soil Environmental Sciences, Virginia Tech Pat Hipkins, Research Associate of Entomology, Virginia Tech, therefore, is often forgotten. In fact, until recent incidents of groundwater contamination, little

Liskiewicz, Maciej

499

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

been thought of as environmentally sound landscapes, preserving green spaces that otherwise could have contaminant of groundwater. Nitrogenous fertilizers applied to turfgrass can pose a threat to groundwater if not applied correctly. There are a number of factors, environmental and otherwise, involved in a proper

Liskiewicz, Maciej

500

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

importance. In particular, the use of inorganic bedding (sand) will reduce the environmental contamination of environmental contamination as organic matter accumulates in the bedding material. How Can You Prevent of these organisms in U.S. dairy herds. However, the control of environmental pathogens remains a daunting task

Liskiewicz, Maciej