National Library of Energy BETA

Sample records for vortex core deformation

  1. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Wednesday, 25 November 2009 00:00 Magnetic...

  2. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in...

  3. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Wednesday, 25 November 2009 00:00 Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core

  4. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic

  5. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic

  6. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic

  7. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic

  8. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic

  9. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic

  10. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic

  11. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in nanometer-scale magnetic films. At the core of each vortex, the magnetization can point vertically up or down out of the film, thereby providing a possible new data storage...

  12. Resonant amplification of vortex-core oscillations by coherent...

    Office of Scientific and Technical Information (OSTI)

    Resonant amplification of vortex-core oscillations by coherent magnetic-field pulses Citation Details In-Document Search Title: Resonant amplification of vortex-core oscillations ...

  13. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Vortex Core Reversal by Low-Field Excitations Print In micrometer-sized magnetic thin films, the magnetization typically adopts an in-plane, circular configuration known as a magnetic vortex. At the vortex core, the magnetization turns sharply out of the plane, pointing either up or down. Magnetic data storage based on this binary phenomenon is an intriguing concept, but it would require the ability to flip the vortex cores on demand. Because these structures are highly stable, very

  14. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Vortex Core Reversal by Low-Field Excitations Print In micrometer-sized magnetic thin films, the magnetization typically adopts an in-plane, circular configuration known as a magnetic vortex. At the vortex core, the magnetization turns sharply out of the plane, pointing either up or down. Magnetic data storage based on this binary phenomenon is an intriguing concept, but it would require the ability to flip the vortex cores on demand. Because these structures are highly stable, very

  15. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Vortex Core Reversal by Low-Field Excitations Print In micrometer-sized magnetic thin films, the magnetization typically adopts an in-plane, circular configuration known as a magnetic vortex. At the vortex core, the magnetization turns sharply out of the plane, pointing either up or down. Magnetic data storage based on this binary phenomenon is an intriguing concept, but it would require the ability to flip the vortex cores on demand. Because these structures are highly stable, very

  16. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Vortex Core Reversal by Low-Field Excitations Print In micrometer-sized magnetic thin films, the magnetization typically adopts an in-plane, circular configuration known as a magnetic vortex. At the vortex core, the magnetization turns sharply out of the plane, pointing either up or down. Magnetic data storage based on this binary phenomenon is an intriguing concept, but it would require the ability to flip the vortex cores on demand. Because these structures are highly stable, very

  17. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Vortex Core Reversal by Low-Field Excitations Print In micrometer-sized magnetic thin films, the magnetization typically adopts an in-plane, circular configuration known as a magnetic vortex. At the vortex core, the magnetization turns sharply out of the plane, pointing either up or down. Magnetic data storage based on this binary phenomenon is an intriguing concept, but it would require the ability to flip the vortex cores on demand. Because these structures are highly stable, very

  18. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Vortex Core Reversal by Low-Field Excitations Print In micrometer-sized magnetic thin films, the magnetization typically adopts an in-plane, circular configuration known as a magnetic vortex. At the vortex core, the magnetization turns sharply out of the plane, pointing either up or down. Magnetic data storage based on this binary phenomenon is an intriguing concept, but it would require the ability to flip the vortex cores on demand. Because these structures are highly stable, very

  19. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Vortex Core Reversal by Low-Field Excitations Print In micrometer-sized magnetic thin films, the magnetization typically adopts an in-plane, circular configuration known as a magnetic vortex. At the vortex core, the magnetization turns sharply out of the plane, pointing either up or down. Magnetic data storage based on this binary phenomenon is an intriguing concept, but it would require the ability to flip the vortex cores on demand. Because these structures are highly stable, very

  20. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Vortex Core Reversal by Low-Field Excitations Magnetic Vortex Core Reversal by Low-Field Excitations Print Wednesday, 28 March 2007 00:00 In micrometer-sized magnetic thin films, the magnetization typically adopts an in-plane, circular configuration known as a magnetic vortex. At the vortex core, the magnetization turns sharply out of the plane, pointing either up or down. Magnetic data storage based on this binary phenomenon is an intriguing concept, but it would require the ability to

  1. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    millitesla (mT) to reverse the direction of a vortex core. ... and their possible application to data storage technologies. ... Is there a physical limit to how far this process can go? At ...

  2. Phase locking of vortex cores in two coupled magnetic nanopillars

    SciTech Connect (OSTI)

    Zhu, Qiyuan; Liu, Xianyin; Zheng, Qi; Zhang, Senfu; Wang, Jianbo; Liu, Qingfang

    2014-11-15

    Phase locking dynamics of the coupled vortex cores in two identical magnetic spin valves induced by spin-polarized current are studied by means of micromagnetic simulations. Our results show that the available current range of phase locking can be expanded significantly by the use of constrained polarizer, and the vortices undergo large orbit motions outside the polarization areas. The effects of polarization areas and dipolar interaction on the phase locking dynamics are studied systematically. Phase locking parameters extracted from simulations are discussed by theoreticians. The dynamics of vortices influenced by spin valve geometry and vortex chirality are discussed at last. This work provides deeper insights into the dynamics of phase locking and the results are important for the design of spin-torque nano-oscillators.

  3. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Mineral Deformation at Earth's Core-Mantle Boundary Print Wednesday, 31 August 2011 00:00 Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in

  4. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  5. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  6. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  7. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  8. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  9. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  10. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  11. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  12. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have...

  13. The universal criterion for switching a magnetic vortex core in soft magnetic nanodots

    SciTech Connect (OSTI)

    Lee, K.-S.; Kim, S.-K.; Yu, Y.-S.; Choi, Y.-S.; Guslienko, K. Y.; Jung, H.; Fischer, P.

    2008-10-01

    The universal criterion for ultrafast vortex core switching between core-up and -down vortex bi-states in soft magnetic nanodots was empirically investigated by micromagnetic simulations and combined with an analytical approach. Vortex-core switching occurs whenever the velocity of vortex core motion reaches a critical value, which is {nu}{sub c} = 330 {+-} 37 m/s for Permalloy, as estimated from numerical simulations. This critical velocity was found to be {nu}{sub c} = {eta}{sub c}{gamma} {radical}A{sub ex} with A{sub ex} the exchange stiffness, {gamma} the gyromagnetic ratio, and an estimated proportional constant {eta}{sub c} = 1.66 {+-} 0.18. This criterion does neither depend on driving force parameters nor on the dimension or geometry of the magnetic specimen. The phase diagrams for the vortex core switching criterion and its switching time with respect to both the strength and angular frequency of circular rotating magnetic fields were derived, which offer practical guidance for implementing vortex core switching into future solid state information storage devices.

  14. X-ray imaging of vortex cores in confined magnetic structures

    SciTech Connect (OSTI)

    Fischer, P.; Im, M.-Y.; Kasai, S.; Yamada, K.; Ono, T.; Thiaville, A.

    2011-02-11

    Cores of magnetic vortices in micron-sized NiFe disk structures, with thicknesses between 150 and 50 nm, were imaged and analysed by high resolution magnetic soft X-ray microscopy. A decrease of the vortex core radius was observed, from #24; ~38 to 18 nm with decreasing disk thickness. By comparing with full 3D micromagnetic simulations showing the well-known barrel structure, we obtained excellent agreement taking into account instrumental broadening and a small perpendicular anisotropy. The proven magnetic spatial resolution of better than 25 nm was sufficient to identify a negative dip close to the vortex core, originating from stray fields of the core. Magnetic vortex structures can serve as test objects for evaluating sensitivity and spatial resolution of advanced magnetic microscopy techniques.

  15. Full Core Multiphysics Simulation with Offline Mesh Deformation

    SciTech Connect (OSTI)

    Merzari, E.; Shemon, E. R.; Yu, Y.; Thomas, J. W.; Obabko, A.; Jain, Rajeev; Mahadevan, Vijay; Solberg, Jerome; Ferencz, R.; Whitesides, R.

    2015-12-21

    In this report, building on previous reports issued in FY13 we describe our continued efforts to integrate thermal/hydraulics, neutronics, and structural mechanics modeling codes to perform coupled analysis of a representative fast sodium-cooled reactor core. The focus of the present report is a full core simulation with off-line mesh deformation.

  16. Polarization-selective vortex-core switching by tailored orthogonal Gaussian-pulse currents

    SciTech Connect (OSTI)

    Jung, H.; Choi, Y. -S.; Yoo, M. -W.; Im, M. -Y.; Kim, S. -K.

    2010-10-13

    We experimentally demonstrate low-power-consumption vortex-core switching in magnetic nanodisks using tailored rotating magnetic fields produced with orthogonal and unipolar Gaussian-pulse currents. The optimal width of the orthogonal pulses and their time delay are found, from analytical and micromagnetic numerical calculations, to be determined only by the angular eigenfrequency {omega}{sub D} for a given vortex-state disk of polarization p, such that {sigma}=1/{omega}{sub D} and {Delta}t={pi}/2 p/{omega}{sub D} . The estimated optimal pulse parameters are in good agreement with the experimental results. This work lays a foundation for energy-efficient information recording in vortex-core cross-point architecture.

  17. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Although their practical realization is still far off, data storage systems based on this core-switching scheme could have several advantages, including high thermal stability,...

  18. Memory-bit selection and recording by rotating fields in vortex-core cross-point architecture

    SciTech Connect (OSTI)

    Yu, Y. -S.; Jung, H.; Lee, K. -S.; Fischer, P.; Kim, S. -K.

    2010-10-21

    In one of our earlier studies [Appl. Phys. Lett. 92, 022509 (2008)], we proposed a concept of robust information storage, recording and readout, which can be implementaed in nonvolatile magnetic random-access memories and is based on the energetically degenerated twofold ground states of vortex-core magnetizations. In the present study, we experimentally demonstrate reliable memory-bit selection and information recording in vortex-core cross-point architecture, specifically using a two-by-two vortex-state disk array. In order to efficiently switch a vortex core positioned at the intersection of crossed electrodes, two orthogonal addressing electrodes are selected, and then two Gaussian pulse currents of optimal pulse width and time delay are applied. Such tailored pulse-type rotating magnetic fields which occurs only at the selected intersection is prerequisite for a reliable memory-bit selection and low-power-consumption recording of information in the existing cross-point architecture.

  19. Ultra-fast magnetic vortex core reversal by a local field pulse

    SciTech Connect (OSTI)

    Rückriem, R.; Albrecht, M.; Schrefl, T.

    2014-02-03

    Magnetic vortex core reversal of a 20-nm-thick permalloy disk with a diameter of 100 nm was studied by micromagnetic simulations. By applying a global out-of-plane magnetic field pulse, it turned out that the final core polarity is very sensitive to pulse width and amplitude, which makes it hard to control. The reason for this phenomenon is the excitation of radial spin waves, which dominate the reversal process. The excitation of spin waves can be strongly suppressed by applying a local field pulse within a small area at the core center. With this approach, ultra-short reversal times of about 15 ps were achieved, which are ten times faster compared to a global pulse.

  20. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    many randomly oriented crystals), individual crystals deform preferentially along slip planes. This results in crystal rotations that lead to crystallographic preferred orientation...

  1. On the evolution of vortex rings with swirl

    SciTech Connect (OSTI)

    Naitoh, Takashi, E-mail: naitoh.takashi@nitech.ac.jp [Department of Engineering Physics, Electronics and Mechanics, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Okura, Nobuyuki, E-mail: ohkura@meijo-u.ac.jp [Department of Vehicle and Mechanical Engineering, Meijo University, 1-501 Shiogamaguchi Tempaku-ku, Nagoya 468-8502 (Japan); Gotoh, Toshiyuki, E-mail: gotoh.toshiyuki@nitech.ac.jp [Department of Scientific and Engineering Simulation, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Kato, Yusuke [Controller Business Unit Engineering Division 1, Engineering Department 3, Denso Wave Incorporated, 1 Yoshiike Kusagi Agui-cho, Chita-gun Aichi 470-2297 (Japan)

    2014-06-15

    A laminar vortex ring with swirl, which has the meridional velocity component inside the vortex core, was experimentally generated by the brief fluid ejection from a rotating outlet. The evolution of the vortex ring was investigated with flow visualizations and particle image velocimetry measurements in order to find the influence of swirling flow in particular upon the transition to turbulence. Immediately after the formation of a vortex ring with swirl, a columnar strong vortex along the symmetric axis is observed in all cases of the present experiment. Then the characteristic fluid discharging from a vortex ring with swirl referred to as peeling off appears. The amount of discharging fluid due to the peeling off increases with the angular velocity of the rotating outlet. We conjectured that the mechanism generating the peeling off is related to the columnar strong vortex by close observations of the spatio-temporal development of the vorticity distribution and the cutting 3D images constructed from the successive cross sections of a vortex ring. While a laminar vortex ring without swirl may develop azimuthal waves around its circumference at some later time and the ring structure subsequently breaks, the swirling flow in a vortex ring core reduces the amplification rate of the azimuthal wavy deformation and preserved its ring structure. Then the traveling distance of a vortex ring can be extended using the swirl flow under certain conditions.

  2. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to...

  3. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this...

  4. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Now, a Belgian-German-ALS collaboration has used high-resolution, time-resolved, magnetic x-ray microscopy to experimentally reveal the first step of the reversal process: the...

  5. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that store more data in a smaller area and access it faster while consuming less power, the data storage industry is ever on the lookout for new materials with new switching...

  6. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new materials with new switching mechanisms. Uncovered by basic research into the fundamentals of magnetism, one such candidate consists of miniscule magnetic vortices like...

  7. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uncovered by basic research into the fundamentals of magnetism, one such candidate consists of miniscule magnetic vortices like miniature magnetic whirlpools in nanometer-scale ...

  8. Magnetic vortex dynamics on a picosecond timescale in a hexagonal permalloy pattern

    SciTech Connect (OSTI)

    Shim, J.-H.; Kim, D.-H.; Mesler, B.; Moon, J.-H.; Lee, K.-J.; Anderson, E. H.; Fischer, P.

    2009-12-02

    We have observed a motion of magnetic vortex core in a hexagonal Permalloy pattern by means of Soft X-ray microscopy. Pump-probe stroboscopic observation on a picosecond timescale has been carried out after exciting a ground state vortex structure by an external field pulse of 1 ns duration. Vortex core is excited off from the center position of the hexagonal pattern but the analysis of the core trajectory reveals that the motion is nongyrotropic.

  9. X-ray imaging of Nonlinear Resonant Gyrotropic Magnetic Vortex...

    Office of Scientific and Technical Information (OSTI)

    X-ray imaging of Nonlinear Resonant Gyrotropic Magnetic Vortex Core Motion in Circular Permalloy Disks Citation Details In-Document Search Title: X-ray imaging of Nonlinear ...

  10. Distinct magnetic signatures of fractional vortex configurations in multiband superconductors

    SciTech Connect (OSTI)

    Silva, R. M. da; Domnguez, D.; Aguiar, J. Albino

    2014-12-08

    Vortices carrying fractions of a flux quantum are predicted to exist in multiband superconductors, where vortex core can split between multiple band-specific components of the superconducting condensate. Using the two-component Ginzburg-Landau model, we examine such vortex configurations in a two-band superconducting slab in parallel magnetic field. The fractional vortices appear due to the band-selective vortex penetration caused by different thresholds for vortex entry within each band-condensate, and stabilize near the edges of the sample. We show that the resulting fractional vortex configurations leave distinct fingerprints in the static measurements of the magnetization, as well as in ac dynamic measurements of the magnetic susceptibility, both of which can be readily used for the detection of these fascinating vortex states in several existing multiband superconductors.

  11. Observation of coupled vortex gyrations by 70-ps-time and 20-nm-space- resolved full-field magnetic transmission soft x-ray microscopy

    SciTech Connect (OSTI)

    Jung, Hyunsung; Yu, Young-Sang; Lee, Ki-Suk; Im, Mi-Young; Fischer, Peter; Bocklage, Lars; Vogel, Andreas; Bolte, Markus; Meier, Guido; Kim, Sang-Koog

    2010-09-01

    We employed time-and space-resolved full-field magnetic transmission soft x-ray microscopy to observe vortex-core gyrations in a pair of dipolar-coupled vortex-state Permalloy (Ni{sub 80}Fe{sub 20}) disks. The 70 ps temporal and 20 nm spatial resolution of the microscope enabled us to simultaneously measure vortex gyrations in both disks and to resolve the phases and amplitudes of both vortex-core positions. We observed their correlation for a specific vortex-state configuration. This work provides a robust and direct method of studying vortex gyrations in dipolar-coupled vortex oscillators.

  12. Magnetic vortex-antivortex dynamics on a picosecond timescale in a rectangular Permalloy pattern

    SciTech Connect (OSTI)

    Kim, D.-H.; Mesler-Lai, B.; Anderson, E.; Fischer, P.; Moon, J.-H.; Lee, K.-J.

    2009-06-25

    We report our experimental finding that there exists a pair of magnetic vortex and antivortex generated during an excited motion of a magnetic vortex core. Two vortices structure in 2 x 4 {micro}m{sup 2} rectangular Permalloy pattern is excited by an external field pulse of 1-ns duration, where each vortex is excited and followed by the vortex core splitting. X-ray microscopy with high spatiotemporal resolution enables us to observe a linking domain between two temporarily generated pairs of vortex-antivortex cores only surviving for several hundreds of picoseconds. The linking domain structure is found to depend on the combinational configuration of two original vortex cores, which is supported by micromagnetic simulations with a very good agreement.

  13. Vortex diode jet

    DOE Patents [OSTI]

    Houck, Edward D.

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  14. Improved vortex reactor system

    DOE Patents [OSTI]

    Diebold, James P.; Scahill, John W.

    1995-01-01

    An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

  15. Improved vortex reactor system

    DOE Patents [OSTI]

    Diebold, J.P.; Scahill, J.W.

    1995-05-09

    An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

  16. Vortex Energy | Open Energy Information

    Open Energy Info (EERE)

    Vortex Energy Place: Germany Sector: Wind energy Product: German wind farm developer. References: Vortex Energy1 This article is a stub. You can help OpenEI by expanding it....

  17. Vortex Characterization for Engineering Applications

    SciTech Connect (OSTI)

    Jankun-Kelly, M; Thompson, D S; Jiang, M; Shannahan, B; Machiraju, R

    2008-01-30

    Realistic engineering simulation data often have features that are not optimally resolved due to practical limitations on mesh resolution. To be useful to application engineers, vortex characterization techniques must be sufficiently robust to handle realistic data with complex vortex topologies. In this paper, we present enhancements to the vortex topology identification component of an existing vortex characterization algorithm. The modified techniques are demonstrated by application to three realistic data sets that illustrate the strengths and weaknesses of our approach.

  18. The internal structure of a vortex in a two-dimensional superfluid with long healing length and its implications

    SciTech Connect (OSTI)

    Klein, Avraham; Aleiner, Igor L.; Agam, Oded

    2014-07-15

    We analyze the motion of quantum vortices in a two-dimensional spinless superfluid within Popov’s hydrodynamic description. In the long healing length limit (where a large number of particles are inside the vortex core) the superfluid dynamics is determined by saddle points of Popov’s action, which, in particular, allows for weak solutions of the Gross–Pitaevskii equation. We solve the resulting equations of motion for a vortex moving with respect to the superfluid and find the reconstruction of the vortex core to be a non-analytic function of the force applied on the vortex. This response produces an anomalously large dipole moment of the vortex and, as a result, the spectrum associated with the vortex motion exhibits narrow resonances lying within the phonon part of the spectrum, contrary to traditional view.

  19. Topological Hall conductivity of vortex and skyrmion spin textures

    SciTech Connect (OSTI)

    Jalil, M. B. A. Ghee Tan, Seng; Eason, Kwaku; Kong, Jian Feng

    2014-05-07

    We analyze the topological Hall conductivity experienced by conduction electrons whose spins are strongly coupled to axially symmetric spin textures, such as magnetic vortex and skyrmion of types I and II, theoretically by gauge theory, and numerically via micromagnetic simulations. The numerical results are in agreement with the theoretical predictions. Divergence between the two is seen when the vortex/skyrmion core radius is comparable or larger than the element size, and when the skyrmion configuration breaks down at high Dzyaloshinskii-Moriya interaction strength.

  20. NEUTRONIC REACTOR OPERATIONAL METHOD AND CORE SYSTEM

    DOE Patents [OSTI]

    Winters, C.E.; Graham, C.B.; Culver, J.S.; Wilson, R.H.

    1960-07-19

    Homogeneous neutronic reactor systems are described wherein an aqueous fuel solution is continuously circulated through a spherical core tank. The pumped fuel solution-is injected tangentially into the hollow spherical interior, thereby maintaining vigorous rotation of the solution within the tank in the form of a vortex; gaseous radiolytic decomposition products concentrate within the axial vortex cavity. The evolved gas is continuously discharged through a gas- outlet port registering with an extremity of the vortex cavity. and the solution stream is discharged through an annular liquid outlet port concentrically encircling the gas outlet by virtue of which the vortex and its cavity are maintained precisely axially aligned with the gas outlet. A primary heat exchanger extracts useful heat from the hot effluent fuel solution before its recirculation into the core tank. Hollow cylinders and other alternative core- tank configurations defining geometric volumes of revolution about a principal axis are also covered. AEC's Homogeneous Reactor Experiment No. 1 is a preferred embodiment.

  1. Variable residence time vortex combustor

    DOE Patents [OSTI]

    Melconian, Jerry O.

    1987-01-01

    A variable residence time vortex combustor including a primary combustion chamber for containing a combustion vortex, and a plurality of louvres peripherally disposed about the primary combustion chamber and longitudinally distributed along its primary axis. The louvres are inclined to impel air about the primary combustion chamber to cool its interior surfaces and to impel air inwardly to assist in driving the combustion vortex in a first rotational direction and to feed combustion in the primary combustion chamber. The vortex combustor also includes a second combustion chamber having a secondary zone and a narrowed waist region in the primary combustion chamber interconnecting the output of the primary combustion chamber with the secondary zone for passing only lower density particles and trapping higher density particles in the combustion vortex in the primary combustion chamber for substantial combustion.

  2. Fast nanoscale addressability of nitrogen-vacancy spins via coupling to a dynamic ferromagnetic vortex

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wolf, M. S.; Badea, R.; Berezovsky, J.

    2016-06-14

    The core of a ferromagnetic vortex domain creates a strong, localized magnetic field, which can be manipulated on nanosecond timescales, providing a platform for addressing and controlling individual nitrogen-vacancy centre spins in diamond at room temperature, with nanometre-scale resolution. Here, we show that the ferromagnetic vortex can be driven into proximity with a nitrogen-vacancy defect using small applied magnetic fields, inducing significant nitrogen-vacancy spin splitting. We also find that the magnetic field gradient produced by the vortex is sufficient to address spins separated by nanometre-length scales. By applying a microwave-frequency magnetic field, we drive both the vortex and the nitrogen-vacancymore » spins, resulting in enhanced coherent rotation of the spin state. Lastly, we demonstrate that by driving the vortex on fast timescales, sequential addressing and coherent manipulation of spins is possible on ~ 100 ns timescales.« less

  3. Modification of vortex dynamics and transport properties of transitional axisymmetric jets using zero-net-mass-flux actuation

    SciTech Connect (OSTI)

    nder, Asim; Meyers, Johan

    2014-07-15

    We study the near field of a zero-net-mass-flux (ZNMF) actuated round jet using direct numerical simulations. The Reynolds number of the jet Re{sub D} = 2000 and three ZNMF actuators are used, evenly distributed over a circle, and directed towards the main jet. The actuators are triggered in phase, and have a relatively low momentum coefficient of C{sub ?} = 0.0049 each. We study four different control frequencies with Strouhal numbers ranging from St{sub D} = 0.165 to St{sub D} = 1.32; next to that, also two uncontrolled baseline cases are included in the study. We find that this type of ZNMF actuation leads to strong deformations of the near-field jet region that are very similar to those observed for non-circular jets. At the end of the jet's potential core (x/D = 5), the jet-column cross section is deformed into a hexagram-like geometry that results from strong modifications of the vortex structures. Two mechanisms lead to these modifications, i.e., (i) self-deformation of the jet's primary vortex rings started by distortions in their azimuthal curvature by the actuation, and (ii) production of side jets by the development and subsequent detachment of secondary streamwise vortex pairs. Further downstream (x/D = 10), the jet transforms into a triangular pattern, as the sharp corner regions of the hexagram entrain fluid and spread. We further investigate the global characteristics of the actuated jets. In particular when using the jet preferred frequency, i.e., St{sub D} = 0.33, parameters such as entrainment, centerline decay rate, and mean turbulent kinetic energy are significantly increased. Furthermore, high frequency actuation, i.e., St{sub D} = 1.32, is found to suppress the mechanisms leading to large scale structure growth and turbulent kinetic energy production. The simulations further include a passive scalar equation, and passive scalar mixing is also quantified and visualized.

  4. Picture of the Week: Supercomputing the vortex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Supercomputing the vortex This computer simulation of vortex induced motion (VIM) from Los Alamos National Laboratory shows how ocean currents affect offshore oil rigs. The large size and complex physics of this problem requires advanced numerical simulations using supercomputers. April 12, 2015 Supercomputing the vortex x This computer simulation of vortex induced motion (VIM) from Los Alamos National Laboratory shows how ocean currents affect offshore oil rigs. Vortex shedding affects the

  5. Vortex lattices in a rotating Fermi superfluid in the BCS-BEC crossover with many Landau levels

    SciTech Connect (OSTI)

    Song, Tie-ling; Ma, C.R.; Ma, Yong-li

    2012-08-15

    We present an explicit analytical analysis of the ground state of vortex lattice structure, based on a minimization of the generalized Gross-Pitaevskii energy functional in a trapped rotating Fermi superfluid gas. By a Bogoliubov-like transformation we find that the coarse-grained average of the atomic density varies as inverted parabola in three dimensional cases; the Fermi superfluid in the BEC regime enters into the lowest Landau level at fast rotation, in which the vortices form an almost regular triangular lattice over a central region and the vortex lattice is expanded along the radial direction in the outer region; the fluid in the unitarity and BCS regimes occupies many low-lying Landau levels, in which a trapped gas with a triangular vortex lattice has a superfluid core surrounded by a normal gas. The calculation is qualitatively consistent with recent numerical and experimental data both in the vortex lattice structure and vortex numbers and in the density profiles versus the stirring frequency in the whole BCS-BEC crossover. - Highlights: Black-Right-Pointing-Pointer We present an analysis of vortex lattice in an interacting trapped rotating Fermi superfluid gas. Black-Right-Pointing-Pointer Decomposing the vortex from the condensate, we can explain the vortex lattice. Black-Right-Pointing-Pointer The calculation is consistent with numerical and experimental data. Black-Right-Pointing-Pointer It can characterize experimentally properties in different regimes of the BCS-BEC crossover.

  6. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thought to be necessary to accomplish this. At the ALS, a team of researchers from Germany, Belgium, and the U.S. has used time-resolved scanning transmission x-ray microscopy...

  7. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    At the ALS, a team of researchers from Germany, Belgium, and the U.S. has used ... R. Hertel (Research Centre Jlich, Germany); H. Brckl, K. Rott, and G. Reiss ...

  8. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Because these structures are highly stable, very strong magnetic fields of around half a tesla (approximately one-third the field of the strongest permanent magnet) were previously ...

  9. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    onoff). For magnetic media, binary digits (bits) have historically taken the form of grains of magnetic material in which all the spins are aligned. As we increase the number of...

  10. Electroelastic fields in artificially created vortex cores in...

    Office of Scientific and Technical Information (OSTI)

    GrantContract Number: FG02-07ER46417 Type: Publisher's Accepted Manuscript Journal Name: Applied Physics Letters Additional Journal Information: Journal Volume: 107; Journal ...

  11. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    these structures are highly stable, very strong magnetic fields of around half a tesla (approximately one-third the field of the strongest permanent magnet) were previously...

  12. Energy transfer between a passing vortex ring and a flexible plate in an ideal quiescent fluid

    SciTech Connect (OSTI)

    Hu, JiaCheng; Peterson, Sean D.; Porfiri, Maurizio

    2015-09-21

    Recent advancements in highly deformable smart materials have lead to increasing interest in small-scale energy harvesting research for powering low consumption electronic devices. One such recent experimental study by Goushcha et al. explored energy harvesting from a passing vortex ring by a cantilevered smart material plate oriented parallel to and offset from the path of the ring in an otherwise quiescent fluid. The present study focuses on modeling this experimental study using potential flow to facilitate optimization of the energy extraction from the passing ring to raise the energy harvesting potential of the device. The problem is modeled in two-dimensions with the vortex ring represented as a pair of counter-rotating free vortices. Vortex pair parameters are determined to match the convection speed of the ring in the experiments, as well as the imposed pressure loading on the plate. The plate is approximated as a Kirchhoff-Love plate and represented as a finite length vortex sheet in the fluid domain. The analytical model matches experimental measurements, including the tip displacement, the integrated force along the entire plate length as a function of vortex ring position, and the pressure along the plate. The potential flow solution is employed in a parametric study of the governing dimensionless parameters in an effort to guide the selection of plate properties for optimal energy harvesting performance. Results of the study indicate an optimal set of plate properties for a given vortex ring configuration, in which the time-scale of vortex advection matches that of the plate vibration.

  13. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activity in the study of vortex states in FM disks, there has been no direct observation of such states in an AFM microstructure, although theory predicts many interesting...

  14. Vortex Hydro Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Energy LLC Jump to: navigation, search Name: Vortex Hydro Energy LLC Address: 4870 West Clark Rd Suite 108 Place: Ypsilanti Zip: 48197 Region: United States Sector: Marine and...

  15. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    there has been no direct observation of such states in an AFM microstructure, although theory predicts many interesting and unique properties for the AFM vortex state. Recently, a...

  16. Vortex Oscillation Technology Ltd | Open Energy Information

    Open Energy Info (EERE)

    Oscillation Technology Ltd Jump to: navigation, search Name: Vortex Oscillation Technology Ltd Address: Volochaevskaya Street 40 b Flat 38 Place: Moscow Zip: 111033 Region: Russian...

  17. Spin transport in tilted electron vortex beams

    SciTech Connect (OSTI)

    Basu, Banasri; Chowdhury, Debashree

    2014-12-10

    In this paper we have enlightened the spin related issues of tilted Electron vortex beams. We have shown that in the skyrmionic model of electron we can have the spin Hall current considering the tilted type of electron vortex beam. We have considered the monopole charge of the tilted vortex as time dependent and through the time variation of the monopole charge we can explain the spin Hall effect of electron vortex beams. Besides, with an external magnetic field we can have a spin filter configuration.

  18. VORTEX CREEP AGAINST TOROIDAL FLUX LINES, CRUSTAL ENTRAINMENT, AND PULSAR GLITCHES

    SciTech Connect (OSTI)

    Ggercino?lu, Erbil; Alpar, M. Ali E-mail: alpar@sabanciuniv.edu

    2014-06-10

    A region of toroidally oriented quantized flux lines must exist in the proton superconductor in the core of the neutron star. This region will be a site of vortex pinning and creep. Entrainment of the neutron superfluid with the crustal lattice leads to a requirement of superfluid moment of inertia associated with vortex creep in excess of the available crustal moment of inertia. This will bring about constraints on the equation of state. The toroidal flux region provides the moment of inertia necessary to complement the crust superfluid with postglitch relaxation behavior fitting the observations.

  19. Vortex Hydro Energy Develops Transformational Technology to Harness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water ...

  20. EERE Success Story-Vortex Hydro Energy Develops Transformational...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents EERE Success Story-Vortex Hydro Energy Develops Transformational Technology to ...

  1. MHK Technologies/SeaUrchin Vortex Reaction Turbine | Open Energy...

    Open Energy Info (EERE)

    SeaUrchin Vortex Reaction Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SeaUrchin Vortex Reaction Turbine.jpg Technology Profile...

  2. Core Specialization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Core Specialization Core Specialization Core Specialization (CS) is a feature of the Cray operating system that allows the user to reserve one or more cores per node for handling system services, and thus reduce the effects of timing jitter due to interruptions from the operating system at the expense of (possibly) requiring more nodes to run an application. The specialized cores may also be used in conjunction with Cray's MPI asynchronous progress engine [1] to improve the overlap of

  3. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arenholz, A. Doran, A.T. Young, A. Scholl, C. Hwang, H.W. Zhao, J. Bokor, and Z.Q. Qiu, "Direct observation of imprinted antiferromagnetic vortex states in CoOFeAg(001) discs,"...

  4. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Antiferromagnetic Vortex States Print Magnetic materials are characterized by the ordering of electron spins, with nearest-neighbor spins parallel to each other in ferromagnetic (FM) materials and antiparallel to each other in antiferromagnetic (AFM) materials. As the size of a magnetic system is reduced to micron scale, it has been shown that the spins in an FM microstructure can curl around to form a magnetic vortex state. While there has been intensive activity in the study

  5. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Antiferromagnetic Vortex States Print Magnetic materials are characterized by the ordering of electron spins, with nearest-neighbor spins parallel to each other in ferromagnetic (FM) materials and antiparallel to each other in antiferromagnetic (AFM) materials. As the size of a magnetic system is reduced to micron scale, it has been shown that the spins in an FM microstructure can curl around to form a magnetic vortex state. While there has been intensive activity in the study

  6. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Antiferromagnetic Vortex States Print Magnetic materials are characterized by the ordering of electron spins, with nearest-neighbor spins parallel to each other in ferromagnetic (FM) materials and antiparallel to each other in antiferromagnetic (AFM) materials. As the size of a magnetic system is reduced to micron scale, it has been shown that the spins in an FM microstructure can curl around to form a magnetic vortex state. While there has been intensive activity in the study

  7. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Antiferromagnetic Vortex States Print Magnetic materials are characterized by the ordering of electron spins, with nearest-neighbor spins parallel to each other in ferromagnetic (FM) materials and antiparallel to each other in antiferromagnetic (AFM) materials. As the size of a magnetic system is reduced to micron scale, it has been shown that the spins in an FM microstructure can curl around to form a magnetic vortex state. While there has been intensive activity in the study

  8. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Antiferromagnetic Vortex States Print Magnetic materials are characterized by the ordering of electron spins, with nearest-neighbor spins parallel to each other in ferromagnetic (FM) materials and antiparallel to each other in antiferromagnetic (AFM) materials. As the size of a magnetic system is reduced to micron scale, it has been shown that the spins in an FM microstructure can curl around to form a magnetic vortex state. While there has been intensive activity in the study

  9. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Antiferromagnetic Vortex States Print Magnetic materials are characterized by the ordering of electron spins, with nearest-neighbor spins parallel to each other in ferromagnetic (FM) materials and antiparallel to each other in antiferromagnetic (AFM) materials. As the size of a magnetic system is reduced to micron scale, it has been shown that the spins in an FM microstructure can curl around to form a magnetic vortex state. While there has been intensive activity in the study

  10. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Antiferromagnetic Vortex States Direct Imaging of Antiferromagnetic Vortex States Print Wednesday, 28 September 2011 00:00 Magnetic materials are characterized by the ordering of electron spins, with nearest-neighbor spins parallel to each other in ferromagnetic (FM) materials and antiparallel to each other in antiferromagnetic (AFM) materials. As the size of a magnetic system is reduced to micron scale, it has been shown that the spins in an FM microstructure can curl around

  11. Vortex operators in gauge field theories

    SciTech Connect (OSTI)

    Polchinski, J.

    1980-07-01

    Several related aspects of the 't Hooft vortex operator are studied. The current picture of the vacuum of quantum chromodynamics, the idea of dual field theories, and the idea of the vortex operator are reviewed first. The Abelian vortex operator written in terms of elementary fields and the calculation of its Green's functions are considered. A two-dimensional solvable model of a Dirac string is presented. The expression of the Green's functions more neatly in terms of Wu and Yang's geometrical idea of sections is addressed. The renormalization of the Green's functions of two kinds of Abelian looplike operators, the Wilson loop and the vortex operator, is studied; for both operators only an overall multiplicative renormalization is needed. In the case of the vortex this involves a surprising cancellation. Next, the dependence of the Green's functions of the Wilson and 't Hooft operators on the nature of the vacuum is discussed. The cluster properties of the Green's functions are emphasized. It is seen that the vortex operator in a massive Abelian theory always has surface-like clustering. The form of Green's functions in terms of Feynman graphs is the same in Higgs and symmetric phases; the difference appears in the sum over all tadpole trees. Finally, systems having fields in the fundamental representation are considered. When these fields enter only weakly into the dynamics, a vortex-like operator is anticipated. Any such operator can no longer be local looplike, but must have commutators at long range. A U(1) lattice gauge theory with two matter fields, one singly charged (fundamental) and one doubly charged (adjoint), is examined. When the fundamental field is weakly coupled, the expected phase transitions are found. When it is strongly coupled, the operator still appears to be a good order parameter, a discontinuous change in its behavior leads to a new phase transition. 18 figures.

  12. Vortex and structural dynamics of a flexible cylinder in cross...

    Office of Scientific and Technical Information (OSTI)

    Vortex and structural dynamics of a flexible cylinder in cross-flow Citation Details In-Document Search Title: Vortex and structural dynamics of a flexible cylinder in cross-flow A ...

  13. EERE Success Story-Vortex Hydro Energy Develops Transformational

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Harness Energy from Water Currents | Department of Energy Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents EERE Success Story-Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents April 10, 2013 - 12:00am Addthis EERE is funding Vortex Hydro Energy to commercialize the Vortex Induced Vibration Aquatic Clean Energy (VIVACE) converter, which is a University of Michigan-patented marine and

  14. Halos in a deformed relativistic Hartree-Bogoliubov theory in continuum

    SciTech Connect (OSTI)

    Li Lulu; Meng Jie; Ring, P.; Zhao Enguang; Zhou Shangui

    2012-10-20

    In this contribution we present some recent results about neutron halos in deformed nuclei. A deformed relativistic Hartree-Bogoliubov theory in continuumhas been developed and the halo phenomenon in deformed weakly bound nuclei is investigated. These weakly bound quantum systems present interesting examples for the study of the interdependence between the deformation of the core and the particles in the halo. Magnesium and neon isotopes are studied and detailed results are presented for the deformed neutron-rich and weakly bound nuclei {sup 42}Mg. The core of this nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the existence of halos in deformed nuclei and for the occurrence of this decoupling effect are discussed.

  15. Neutron Scattering Studies of Vortex Matter in Type-II Superconductors

    SciTech Connect (OSTI)

    Xinsheng Ling

    2012-02-02

    The proposed program is an experimental study of the fundamental properties of Abrikosov vortex matter in type-II superconductors. Most superconducting materials used in applications such as MRI are type II and their transport properties are determined by the interplay between random pinning, interaction and thermal fluctuation effects in the vortex state. Given the technological importance of these materials, a fundamental understanding of the vortex matter is necessary. The vortex lines in type-II superconductors also form a useful model system for fundamental studies of a number of important issues in condensed matter physics, such as the presence of a symmetry-breaking phase transition in the presence of random pinning. Recent advances in neutron scattering facilities such as the major upgrade of the NIST cold source and the Spallation Neutron Source are providing unprecedented opportunities in addressing some of the longstanding issues in vortex physics. The core component of the proposed program is to use small angle neutron scattering and Bitter decoration experiments to provide the most stringent test of the Bragg glass theory by measuring the structure factor in both the real and reciprocal spaces. The proposed experiments include a neutron reflectometry experiment to measure the precise Q-dependence of the structure factor of the vortex lattice in the Bragg glass state. A second set of SANS experiments will be on a shear-strained Nb single crystal for testing a recently proposed theory of the stability of Bragg glass. The objective is to artificially create a set of parallel grain boundaries into a Nb single crystal and use SANS to measure the vortex matter diffraction pattern as a function of the changing angle between the applied magnetic field to the grain boundaries. The intrinsic merits of the proposed work are a new fundamental understanding of type-II superconductors on which superconducting technology is based, and a firm understanding of phases

  16. Core Specialization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the user to reserve one or more cores per node for handling system services, and thus reduce the effects of timing jitter due to interruptions from the operating system at the...

  17. Origin and dynamics of vortex rings in drop splashing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-09-04

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row ofmore » vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.« less

  18. Origin and dynamics of vortex rings in drop splashing

    SciTech Connect (OSTI)

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-09-04

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row of vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.

  19. Dynamics and efficiency of magnetic vortex circulation reversal...

    Office of Scientific and Technical Information (OSTI)

    Dynamics and efficiency of magnetic vortex circulation reversal Not Available Temp HTML Storage 2: Urbnek, Michal; Uhl, Vojtch; Lambert, Charles-Henri; Kan, Jimmy J.; ...

  20. Three-Dimensional Crystallization of Vortex Strings in Frustrated...

    Office of Scientific and Technical Information (OSTI)

    Three-Dimensional Crystallization of Vortex Strings in Frustrated Quantum Magnets Citation Details In-Document Search This content will become publicly available on August 31, 2016 ...

  1. Finned Tube With Vortex Generators For A Heat Exchanger.

    DOE Patents [OSTI]

    Sohal, Manohar S.; O'Brien, James E.

    2005-12-20

    A system for and method of manufacturing a finned tube for a heat exchanger is disclosed herein. A continuous fin strip is provided with at one pair of vortex generators. A tube is rotated and linearly displaced while the continuous fin strip with vortex generators is spirally wrapped around the tube.

  2. Finned Tube With Vortex Generators For A Heat Exchanger.

    DOE Patents [OSTI]

    Sohal, Monohar S.; O'Brien, James E.

    2004-09-14

    A system for and method of manufacturing a finned tube for a heat exchanger is disclosed herein. A continuous fin strip is provided with at least one pair of vortex generators. A tube is rotated and linearly displaced while the continuous fin strip with vortex generators is spirally wrapped around the tube.

  3. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    parallel to the boundary, which is just what seismologists observe. These results open new possibilities for modeling anisotropy evolution at extreme conditions, linking...

  4. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the ultrahigh pressures of the deep Earth at ALS Beamline 12.2.2 while conducting in situ x-ray diffraction experiments to probe changes in crystal orientations. Rocks Flow in the...

  5. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    consists mostly of oxygen, silicon, and magnesium, often in the form of magnesium silicate (MgSiO3). In the lower mantle, this magnesium silicate has a crystal structure known...

  6. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diffraction images were collected to document the evolution of pressure, differential stress, and texture. Inverse pole figures (IPFs) show the probability of finding the pole...

  7. Nanolaminate deformable mirrors

    DOE Patents [OSTI]

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2009-04-14

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  8. Nanolaminate deformable mirrors

    DOE Patents [OSTI]

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2010-04-06

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  9. Coupled particle dispersion by three-dimensional vortex structures

    SciTech Connect (OSTI)

    Troutt, T.R.; Chung, J.N.; Crowe, C.T.

    1996-12-31

    The primary objective of this research program is to obtain understanding concerning the role of three-dimensional vortex structures in the dispersion of particles and droplets in free shear flows. This research program builds on previous studies which focused on the nature of particle dispersion in large scale quasi two-dimensional vortex structures. This investigation employs time dependent experimental and numerical techniques to provide information concerning the particulate dispersion produced by three dimensional vortex structures in free shear layers. The free shear flows investigated include modified plane mixing layers, and modified plane wakes. The modifications to these flows involve slight perturbations to the initiation boundary conditions such that three-dimensional vortex structures are rapidly generated by the experimental and numerical flow fields. Recent results support the importance of these vortex structures in the particle dispersion process.

  10. Evolution of a vortex in glow discharge plasma

    SciTech Connect (OSTI)

    Soukhomlinov, V.S.; Sheverev, V.A.; Oetuegen, M.V.

    2005-05-01

    The evolution of a vortex in glow discharge plasma is studied analytically. Specifically, the mechanism of local energy deposition into the flow by the plasma is considered and its effect on the structure of an inviscid vortex is analyzed. The vortex is modeled by a set of Euler's equations while the energy transferred by the plasma into the gas is represented by Rayleigh mechanism. In this mechanism, the amount of heat addition is a function of local gas density. The analysis indicates that the plasma can have a considerable effect on the structure of a vortex. The inviscid calculations show that in a uniform discharge, a 1 cm vortex dies out in a fraction of a second.

  11. Ferroelectric nanostructure having switchable multi-stable vortex states

    DOE Patents [OSTI]

    Naumov, Ivan I.; Bellaiche, Laurent M.; Prosandeev, Sergey A.; Ponomareva, Inna V.; Kornev, Igor A.

    2009-09-22

    A ferroelectric nanostructure formed as a low dimensional nano-scale ferroelectric material having at least one vortex ring of polarization generating an ordered toroid moment switchable between multi-stable states. A stress-free ferroelectric nanodot under open-circuit-like electrical boundary conditions maintains such a vortex structure for their local dipoles when subject to a transverse inhomogeneous static electric field controlling the direction of the macroscopic toroidal moment. Stress is also capable of controlling the vortex's chirality, because of the electromechanical coupling that exists in ferroelectric nanodots.

  12. Partially segmented deformable mirror

    DOE Patents [OSTI]

    Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.

    1991-05-21

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.

  13. Partially segmented deformable mirror

    DOE Patents [OSTI]

    Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.

    1991-01-01

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.

  14. Fuel injection of coal slurry using vortex nozzles and valves

    DOE Patents [OSTI]

    Holmes, Allen B.

    1989-01-01

    Injection of atomized coal slurry fuel into an engine combustion chamber is achieved at relatively low pressures by means of a vortex swirl nozzle. The outlet opening of the vortex nozzle is considerably larger than conventional nozzle outlets, thereby eliminating major sources of failure due to clogging by contaminants in the fuel. Control fluid, such as air, may be used to impart vorticity to the slurry and/or purge the nozzle of contaminants during the times between measured slurry charges. The measured slurry charges may be produced by a diaphragm pump or by vortex valves controlled by a separate control fluid. Fluidic circuitry, employing vortex valves to alternatively block and pass cool slurry fuel flow, is disclosed.

  15. Alleviation of fuselage form drag using vortex flows: Final report

    SciTech Connect (OSTI)

    Wortman, A.

    1987-09-15

    The concept of using vortex generators to reduce the fuselage form drag of transport aircraft combines the outflow from the plane of symmetry which is induced by the rotational component of the vortex flow with the energization of the boundary layer to reduce the momentum thickness and to delay or eliminate flow separation. This idea was first advanced by the author in 1981. Under a DOE grant, the concept was validated in wind tunnel tests of approximately 1:17 scale models of fuselages of Boeing 747 and Lockheed C-5 aircraft. The search for the minimum drag involved three vortex generator configurations with three sizes of each in six locations clustered in the aft regions of the fuselages at the beginning of the tail upsweep. The local Reynolds number, which is referred to the length of boundary layer run from the nose, was approximately 10{sup 7} so that a fully developed turbulent boundary layer was present. Vortex generator planforms ranged from swept tapered, through swept straight, to swept reverse tapered wings whose semi-spans ranged from 50% to 125% of the local boundary layer thickness. Pitch angles of the vortex generators were varied by inboard actuators under the control of an external proportional digital radio controller. It was found that certain combinations of vortex generator parameters increased drag. However, with certain configurations, locations, and pitch angles of vortex generators, the highest drag reductions were 3% for the 747 and about 6% for the C-5, thus confirming the arguments that effectiveness increases with the rate of upsweep of the tail. Greatest gains in performance are therefore expected on aft loading military transports. 10 refs., 11 figs., 1 tab.

  16. Shape Determination for Deformed Cavities

    SciTech Connect (OSTI)

    Lee, Lie-Quan; Akcelik, Volkan; Chen, Sheng; Ge, Lixin; Li, Zenghai; Ng, Cho; Xiao, Liling; Ko, Kwok; Ghattas, Omar; /Texas U.

    2006-10-04

    A realistic superconducting RF cavity has its shape deformed comparing to its designed shape due to the loose tolerance in the fabrication process and the frequency tuning for its accelerating mode. A PDE-constrained optimization problem is proposed to determine the deformation of the cavity. A reduce space method is used to solve the PDE-constrained optimization problem where design sensitivities were computed using a continuous adjoint approach. A proof-of-concept example is given in which the deformation parameters of a single cavity-cell with two different types of deformation were computed.

  17. Wavevortex interactions in the nonlinear Schrdinger equation

    SciTech Connect (OSTI)

    Guo, Yuan Bhler, Oliver

    2014-02-15

    This is a theoretical study of wavevortex interaction effects in the two-dimensional nonlinear Schrdinger equation, which is a useful conceptual model for the limiting dynamics of superfluid quantum condensates at zero temperature. The particular wavevortex interaction effects are associated with the scattering and refraction of small-scale linear waves by the straining flows induced by quantized point vortices and, crucially, with the concomitant nonlinear back-reaction, the remote recoil, that these scattered waves exert on the vortices. Our detailed model is a narrow, slowly varying wavetrain of small-amplitude waves refracted by one or two vortices. Weak interactions are studied using a suitable perturbation method in which the nonlinear recoil force on the vortex then arises at second order in wave amplitude, and is computed in terms of a Magnus-type force expression for both finite and infinite wavetrains. In the case of an infinite wavetrain, an explicit asymptotic formula for the scattering angle is also derived and cross-checked against numerical ray tracing. Finally, under suitable conditions a wavetrain can be so strongly refracted that it collapses all the way onto a zero-size point vortex. This is a strong wavevortex interaction by definition. The conditions for such a collapse are derived and the validity of ray tracing theory during the singular collapse is investigated.

  18. Approaching isotropy in the vortex system of SmFeAs(O,F) at extreme...

    Office of Scientific and Technical Information (OSTI)

    vortex system of SmFeAs(O,F) at extreme magnetic fields Citation Details In-Document Search Title: Approaching isotropy in the vortex system of SmFeAs(O,F) at extreme magnetic ...

  19. Low Head, Vortex Induced Vibrations River Energy Converter

    SciTech Connect (OSTI)

    Bernitsas, Michael B.; Dritz, Tad

    2006-06-30

    Vortex Induced Vibrations Aquatic Clean Energy (VIVACE) is a novel, demonstrated approach to extracting energy from water currents. This invention is based on a phenomenon called Vortex Induced Vibrations (VIV), which was first observed by Leonardo da Vinci in 1504AD. He called it ‘Aeolian Tones.’ For decades, engineers have attempted to prevent this type of vibration from damaging structures, such as offshore platforms, nuclear fuel rods, cables, buildings, and bridges. The underlying concept of the VIVACE Converter is the following: Strengthen rather than spoil vortex shedding; enhance rather than suppress VIV; harness rather than mitigate VIV energy. By maximizing and utilizing this unique phenomenon, VIVACE takes this “problem” and successfully transforms it into a valuable resource for mankind.

  20. Vortex breakdown in closed containers with polygonal cross sections

    SciTech Connect (OSTI)

    Naumov, I. V. Dvoynishnikov, S. V.; Kabardin, I. K.; Tsoy, M. A.

    2015-12-15

    The vortex breakdown bubble in the confined flow generated by a rotating lid in closed containers with polygonal cross sections was analysed both experimentally and numerically for the height/radius aspect ratio equal to 2. The stagnation point locations of the breakdown bubble emergence and the corresponding Reynolds number were determined experimentally and in addition computed numerically by STAR-CCM+ CFD software for square, pentagonal, hexagonal, and octagonal cross section configurations. The flow pattern and the velocity were observed and measured by combining the seeding particle visualization and the temporal accuracy of laser Doppler anemometry. The vortex breakdown size and position on the container axis were determined for Reynolds numbers, ranging from 1450 to 2400. The obtained results were compared with the flow structure in the closed container of cubical and cylindrical configurations. It is shown that the measured evolution of steady vortex breakdown is in close agreement with the numerical results.

  1. Experimental investigation of magnetic anisotropy in spin vortex discs

    SciTech Connect (OSTI)

    Garraud, N. Arnold, D. P.

    2014-05-07

    We present experimental 2D vector vibrating sample magnetometer measurements to demonstrate the shape anisotropy effects occurring in micrometer-diameter supermalloy spin vortex discs. Measurements made for different disc sizes and orientations confirm the out-of-plane susceptibility is several orders of magnitude smaller than the in-plane susceptibility. These results validate with a high certitude that spin vortices with high diameter to thickness ratio retain in-plane-only magnetization, even when subjected to fields in the out-of-plane direction. These results contribute to further computational simulations of the dynamics of spin vortex structures in colloidal suspensions where external fields may be applied in any arbitrary direction.

  2. Vortex equations governing the fractional quantum Hall effect

    SciTech Connect (OSTI)

    Medina, Luciano

    2015-09-15

    An existence theory is established for a coupled non-linear elliptic system, known as “vortex equations,” describing the fractional quantum Hall effect in 2-dimensional double-layered electron systems. Via variational methods, we prove the existence and uniqueness of multiple vortices over a doubly periodic domain and the full plane. In the doubly periodic situation, explicit sufficient and necessary conditions are obtained that relate the size of the domain and the vortex numbers. For the full plane case, existence is established for all finite-energy solutions and exponential decay estimates are proved. Quantization phenomena of the magnetic flux are found in both cases.

  3. Supersymmetric q-deformed quantum mechanics

    SciTech Connect (OSTI)

    Traikia, M. H.; Mebarki, N.

    2012-06-27

    A supersymmetric q-deformed quantum mechanics is studied in the weak deformation approximation of the Weyl-Heisenberg algebra. The corresponding supersymmetric q-deformed hamiltonians and charges are constructed explicitly.

  4. Variable focal length deformable mirror

    SciTech Connect (OSTI)

    Headley, Daniel; Ramsey, Marc; Schwarz, Jens

    2007-06-12

    A variable focal length deformable mirror has an inner ring and an outer ring that simply support and push axially on opposite sides of a mirror plate. The resulting variable clamping force deforms the mirror plate to provide a parabolic mirror shape. The rings are parallel planar sections of a single paraboloid and can provide an on-axis focus, if the rings are circular, or an off-axis focus, if the rings are elliptical. The focal length of the deformable mirror can be varied by changing the variable clamping force. The deformable mirror can generally be used in any application requiring the focusing or defocusing of light, including with both coherent and incoherent light sources.

  5. Turbine component casting core with high resolution region

    DOE Patents [OSTI]

    Kamel, Ahmed; Merrill, Gary B.

    2014-08-26

    A hollow turbine engine component with complex internal features can include a first region and a second, high resolution region. The first region can be defined by a first ceramic core piece formed by any conventional process, such as by injection molding or transfer molding. The second region can be defined by a second ceramic core piece formed separately by a method effective to produce high resolution features, such as tomo lithographic molding. The first core piece and the second core piece can be joined by interlocking engagement that once subjected to an intermediate thermal heat treatment process thermally deform to form a three dimensional interlocking joint between the first and second core pieces by allowing thermal creep to irreversibly interlock the first and second core pieces together such that the joint becomes physically locked together providing joint stability through thermal processing.

  6. Vortex stabilized electron beam compressed fusion grade plasma

    SciTech Connect (OSTI)

    Hershcovitch, Ady

    2014-03-19

    Most inertial confinement fusion schemes are comprised of highly compressed dense plasmas. Those schemes involve short, extremely high power, short pulses of beams (lasers, particles) applied to lower density plasmas or solid pellets. An alternative approach could be to shoot an intense electron beam through very dense, atmospheric pressure, vortex stabilized plasma.

  7. Vortex Diode Analysis and Testing for Fluoride Salt-Cooled High-Temperature Reactors

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L; Elkassabgi, Yousri M.; De Leon, Gerardo I.; Fetterly, Caitlin N.; Ramos, Jorge A.; Cunningham, Richard Burns

    2012-02-01

    Fluidic diodes are presently being considered for use in several fluoride salt-cooled high-temperature reactor designs. A fluidic diode is a passive device that acts as a leaky check valve. These devices are installed in emergency heat removal systems that are designed to passively remove reactor decay heat using natural circulation. The direct reactor auxiliary cooling system (DRACS) uses DRACS salt-to-salt heat exchangers (DHXs) that operate in a path parallel to the core flow. Because of this geometry, under normal operating conditions some flow bypasses the core and flows through the DHX. A flow diode, operating in reverse direction, is-used to minimize this flow when the primary coolant pumps are in operation, while allowing forward flow through the DHX under natural circulation conditions. The DRACSs reject the core decay heat to the environment under loss-of-flow accident conditions and as such are a reactor safety feature. Fluidic diodes have not previously been used in an operating reactor system, and therefore their characteristics must be quantified to ensure successful operation. This report parametrically examines multiple design parameters of a vortex-type fluidic diode to determine the size of diode needed to reject a particular amount of decay heat. Additional calculations were performed to size a scaled diode that could be tested in the Oak Ridge National Laboratory Liquid Salt Flow Loop. These parametric studies have shown that a 152.4 mm diode could be used as a test article in that facility. A design for this diode is developed, and changes to the loop that will be necessary to test the diode are discussed. Initial testing of a scaled flow diode has been carried out in a water loop. The 150 mm diode design discussed above was modified to improve performance, and the final design tested was a 171.45 mm diameter vortex diode. The results of this testing indicate that diodicities of about 20 can be obtained for diodes of this size. Experimental

  8. Core Drilling Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE)

    Tank Farms workers demonstrate core drilling capabilities for Hanford single-shell tanks. Core drilling is used to determine the current condition of each tank to assist in the overall assessment...

  9. Core Design Applications

    Energy Science and Technology Software Center (OSTI)

    1995-07-12

    CORD-2 is intended for core desigh applications of pressurized water reactors. The main objective was to assemble a core design system which could be used for simple calculations (such as frequently required for fuel management) as well as for accurate calculations (for example, core design after refueling).

  10. Finite Deformation of Magnetoelastic Film

    SciTech Connect (OSTI)

    Barham, Matthew Ian

    2011-05-31

    A nonlinear two-dimensional theory is developed for thin magnetoelastic lms capable of large deformations. This is derived directly from three-dimensional theory. Signi cant simpli cations emerge in the descent from three dimensions to two, permitting the self eld generated by the body to be computed a posteriori. The model is specialized to isotropic elastomers with two material models. First weak magnetization is investigated leading to a free energy where magnetization and deformation are un-coupled. The second closely couples the magnetization and deformation. Numerical solutions are obtained to equilibrium boundary-value problems in which the membrane is subjected to lateral pressure and an applied magnetic eld. An instability is inferred and investigated for the weak magnetization material model.

  11. Pressurized water nuclear reactor system with hot leg vortex mitigator

    DOE Patents [OSTI]

    Lau, Louis K. S.

    1990-01-01

    A pressurized water nuclear reactor system includes a vortex mitigator in the form of a cylindrical conduit between the hot leg conduit and a first section of residual heat removal conduit, which conduit leads to a pump and a second section of residual heat removal conduit leading back to the reactor pressure vessel. The cylindrical conduit is of such a size that where the hot leg has an inner diameter D.sub.1, the first section has an inner diameter D.sub.2, and the cylindrical conduit or step nozzle has a length L and an inner diameter of D.sub.3 ; D.sub.3 /D.sub.1 is at least 0.55, D.sub.2 is at least 1.9, and L/D.sub.3 is at least 1.44, whereby cavitation of the pump by a vortex formed in the hot leg is prevented.

  12. Biofunctionalized magnetic vortex microdisks for targeted cancer cell destruction.

    SciTech Connect (OSTI)

    Kim, D.-H.; Rozhkova, E. A.; Ulasov, I. V.; Bader, S. D.; Rajh, T.; Lesniak, M. S.; Novosad, V.; Univ. of Chicago Pritzker School of Medicine

    2010-01-01

    Nanomagnetic materials offer exciting avenues for probing cell mechanics and activating mechanosensitive ion channels, as well as for advancing cancer therapies. Most experimental works so far have used superparamagnetic materials. This report describes a first approach based on interfacing cells with lithographically defined microdiscs that possess a spin-vortex ground state. When an alternating magnetic field is applied the microdisc vortices shift, creating an oscillation, which transmits a mechanical force to the cell. Because reduced sensitivity of cancer cells toward apoptosis leads to inappropriate cell survival and malignant progression, selective induction of apoptosis is of great importance for the anticancer therapeutic strategies. We show that the spin-vortex-mediated stimulus creates two dramatic effects: compromised integrity of the cellular membrane, and initiation of programmed cell death. A low-frequency field of a few tens of hertz applied for only ten minutes was sufficient to achieve {approx}90% cancer-cell destruction in vitro.

  13. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    SciTech Connect (OSTI)

    Grillo, Vincenzo; Mafakheri, Erfan; Frabboni, Stefano

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  14. NETL: SOFC Core Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Core Technology Core Technology-This key technology conducts applied research and development on technologies - exclusive of the cell components - that improve the cost, performance, robustness, reliability, and endurance of SOFC stack or balance-of-plant (BOP) technology. Projects in the Core Technology portfolio focus on interconnects and seals, identify and mitigate stack-related degradation, develop computational tools and models, and conduct laboratory- and bench-scale testing to improve

  15. Approaching isotropy in the vortex system of SmFeAs(O,F) at extreme...

    Office of Scientific and Technical Information (OSTI)

    Approaching isotropy in the vortex system of SmFeAs(O,F) at extreme magnetic fields ... Sponsoring Org: NSF Country of Publication: United States Language: English Subject: ...

  16. Method and apparatus for enhancing vortex pinning by conformal crystal arrays

    DOE Patents [OSTI]

    Janko, Boldizsar; Reichhardt, Cynthia; Reichhardt, Charles; Ray, Dipanjan

    2015-07-14

    Disclosed is a method and apparatus for strongly enhancing vortex pinning by conformal crystal arrays. The conformal crystal array is constructed by a conformal transformation of a hexagonal lattice, producing a non-uniform structure with a gradient where the local six-fold coordination of the pinning sites is preserved, and with an arching effect. The conformal pinning arrays produce significantly enhanced vortex pinning over a much wider range of field than that found for other vortex pinning geometries with an equivalent number of vortex pinning sites, such as random, square, and triangular.

  17. CORE - Performance Feedback System

    Energy Science and Technology Software Center (OSTI)

    2009-10-02

    CORE is an architecture to bridge the gaps between disparate data integration and delivery of disparate information visualization. The CORE Technology Program includes a suite of tools and user-centered staff that can facilitate rapid delivery of a deployable integrated information to users.

  18. Internal core tightener

    DOE Patents [OSTI]

    Brynsvold, Glen V.; Snyder, Jr., Harold J.

    1976-06-22

    An internal core tightener which is a linear actuated (vertical actuation motion) expanding device utilizing a minimum of moving parts to perform the lateral tightening function. The key features are: (1) large contact areas to transmit loads during reactor operation; (2) actuation cam surfaces loaded only during clamping and unclamping operation; (3) separation of the parts and internal operation involved in the holding function from those involved in the actuation function; and (4) preloaded pads with compliant travel at each face of the hexagonal assembly at the two clamping planes to accommodate thermal expansion and irradiation induced swelling. The latter feature enables use of a "fixed" outer core boundary, and thus eliminates the uncertainty in gross core dimensions, and potential for rapid core reactivity changes as a result of core dimensional change.

  19. Sidewall core gun

    SciTech Connect (OSTI)

    Colle, E.A. Jr.; Yates, D.N. Jr.; Brieger, E.F.

    1986-09-02

    An apparatus is described for taking core samples from the sidewall of a borehole in a well, the apparatus comprising: a string of drill pipe; at least one gun housing connected to the downhole end of the drill string; at least one coring bullet radially disposed within the gun housing, the coring bullet arranged for securing formation samples from the sidewall of the borehole; a charge assembly for propelling the coring bullet toward the sidewall, the charge assembly comprising: a detonatable cord having a diameter substantially in the range of approximately 0.125 to 0.150 inches extending generally axially through the housing from the uphole to the downhole end thereof; at least one cartridge assembly disposed within the housing between the cord and the bullet; the cartridge assembly including a pyrotechnic charge for propelling the bullet, a cable connecting the coring bullet to the housing, whereby the bullet may be retrieved from the sidewall.

  20. Plastic Deformations in Complex Plasmas

    SciTech Connect (OSTI)

    Durniak, C.; Samsonov, D.

    2011-04-29

    Complex plasmas are macroscopic model systems of real solids and liquids, used to study underdamped dynamics and wave phenomena. Plastic deformations of complex plasma crystals under slow uniaxial compression have been studied experimentally and numerically. It is shown that the lattice becomes locally sheared and that this strain is relaxed by shear slips resulting in global uniform compression and heat generation. Shear slips generate pairs of dislocations which move in opposite directions at subsonic speeds.

  1. Bluff Body Flow Simulation Using a Vortex Element Method

    SciTech Connect (OSTI)

    Anthony Leonard; Phillippe Chatelain; Michael Rebel

    2004-09-30

    Heavy ground vehicles, especially those involved in long-haul freight transportation, consume a significant part of our nation's energy supply. it is therefore of utmost importance to improve their efficiency, both to reduce emissions and to decrease reliance on imported oil. At highway speeds, more than half of the power consumed by a typical semi truck goes into overcoming aerodynamic drag, a fraction which increases with speed and crosswind. Thanks to better tools and increased awareness, recent years have seen substantial aerodynamic improvements by the truck industry, such as tractor/trailer height matching, radiator area reduction, and swept fairings. However, there remains substantial room for improvement as understanding of turbulent fluid dynamics grows. The group's research effort focused on vortex particle methods, a novel approach for computational fluid dynamics (CFD). Where common CFD methods solve or model the Navier-Stokes equations on a grid which stretches from the truck surface outward, vortex particle methods solve the vorticity equation on a Lagrangian basis of smooth particles and do not require a grid. They worked to advance the state of the art in vortex particle methods, improving their ability to handle the complicated, high Reynolds number flow around heavy vehicles. Specific challenges that they have addressed include finding strategies to accurate capture vorticity generation and resultant forces at the truck wall, handling the aerodynamics of spinning bodies such as tires, application of the method to the GTS model, computation time reduction through improved integration methods, a closest point transform for particle method in complex geometrics, and work on large eddy simulation (LES) turbulence modeling.

  2. Thermal barrier and support for nuclear reactor fuel core

    DOE Patents [OSTI]

    Betts, Jr., William S.; Pickering, J. Larry; Black, William E.

    1987-01-01

    A thermal barrier/core support for the fuel core of a nuclear reactor having a metallic cylinder secured to the reactor vessel liner and surrounded by fibrous insulation material. A top cap is secured to the upper end of the metallic cylinder that locates and orients a cover block and post seat. Under normal operating conditions, the metallic cylinder supports the entire load exerted by its associated fuel core post. Disposed within the metallic cylinder is a column of ceramic material, the height of which is less than that of the metallic cylinder, and thus is not normally load bearing. In the event of a temperature excursion beyond the design limits of the metallic cylinder and resulting in deformation of the cylinder, the ceramic column will abut the top cap to support the fuel core post.

  3. Core shroud corner joints

    DOE Patents [OSTI]

    Gilmore, Charles B.; Forsyth, David R.

    2013-09-10

    A core shroud is provided, which includes a number of planar members, a number of unitary corners, and a number of subassemblies each comprising a combination of the planar members and the unitary corners. Each unitary corner comprises a unitary extrusion including a first planar portion and a second planar portion disposed perpendicularly with respect to the first planar portion. At least one of the subassemblies comprises a plurality of the unitary corners disposed side-by-side in an alternating opposing relationship. A plurality of the subassemblies can be combined to form a quarter perimeter segment of the core shroud. Four quarter perimeter segments join together to form the core shroud.

  4. Mixing characteristics of compressible vortex rings interacting with normal shock waves

    SciTech Connect (OSTI)

    Cetegen, B.M. . Mechanical Engineering Dept.); Hermanson, J.C. )

    1995-01-01

    Current interest in the interaction between compressible vortical flows and shock waves is largely motivated by the need to promote rapid, loss-effective mixing and combustion of hydrogen and hydrocarbon fuels for supersonic combustor applications. The instability mechanisms and mixing enhancement arising from the interaction of a compressible vortex ring with a normal shock wave were studied in a colinear, dual-shock tube. This flow geometry simulates features of the interaction of a shock wave with a jet containing streamwise vorticity, a configuration of significant interest for supersonic combustion applications. Flow visualization and quantitative concentration measurements were performed by planar laser Rayleigh scattering. For a given primary shock strength, interfacial instability is more evident in a weak vortex ring than in a strong vortex ring. In all cases, the identity of the vortex ring is lost after a sufficiently long time of interaction. The probability density function of the mixed fluid changes rapidly from a bimodal distribution to a single peak upon processing by a shock wave. The most probable concentration decreases with time, indicating a rapid increase in mixing and dilution of the vortex fluid. The mixing enhancement is most rapid for the case of a strong vortex ring interacting with a strong shock wave, somewhat slower for a weak vortex ring and a strong shock wave, and significantly slower for the case of a strong vortex ring and a weaker shock wave. These observations are consistent with the earlier numerical predictions.

  5. Interaction of Josephson Junction and Distant Vortex in Narrow Thin-Film Superconducting Strips

    SciTech Connect (OSTI)

    Kogan, V. G.; Mints, R. G.

    2014-01-31

    The phase difference between the banks of an edge-type planar Josephson junction crossing the narrow thin-film strip depends on wether or not vortices are present in the junction banks. For a vortex close to the junction this effect has been seen by Golod, Rydh, and Krasnov [Phys. Rev. Lett. 104, 227003 (2010)], who showed that the vortex may turn the junction into ? type. It is shown here that even if the vortex is far away from the junction, it still changes the 0 junction to a ? junction when situated close to the strip edges. Within the approximation used, the effect is independent of the vortex-junction separation, a manifestation of the topology of the vortex phase which extends to macroscopic distances of superconducting coherence.

  6. Vortex nozzle for segmenting and transporting metal chips from turning operations

    DOE Patents [OSTI]

    Bieg, L.F.

    1993-04-20

    Apparatus for collecting, segmenting and conveying metal chips from machining operations utilizes a compressed gas driven vortex nozzle for receiving the chip and twisting it to cause the chip to segment through the application of torsional forces to the chip. The vortex nozzle is open ended and generally tubular in shape with a converging inlet end, a constant diameter throat section and a diverging exhaust end. Compressed gas is discharged through angled vortex ports in the nozzle throat section to create vortex flow in the nozzle and through an annular inlet at the entrance to the converging inlet end to create suction at the nozzle inlet and cause ambient air to enter the nozzle. The vortex flow in the nozzle causes the metal chip to segment and the segments thus formed to pass out of the discharge end of the nozzle where they are collected, cleaned and compacted as needed.

  7. Core assembly storage structure

    DOE Patents [OSTI]

    Jones, Jr., Charles E.; Brunings, Jay E.

    1988-01-01

    A structure for the storage of core assemblies from a liquid metal-cooled nuclear reactor. The structure comprises an enclosed housing having a substantially flat horizontal top plate, a bottom plate and substantially vertical wall members extending therebetween. A plurality of thimble members extend downwardly through the top plate. Each thimble member is closed at its bottom end and has an open end adjacent said top plate. Each thimble member has a length and diameter greater than that of the core assembly to be stored therein. The housing is provided with an inlet duct for the admission of cooling air and an exhaust duct for the discharge of air therefrom, such that when hot core assemblies are placed in the thimbles, the heat generated will by convection cause air to flow from the inlet duct around the thimbles and out the exhaust duct maintaining the core assemblies at a safe temperature without the necessity of auxiliary powered cooling equipment.

  8. Nuclear core positioning system

    DOE Patents [OSTI]

    Garkisch, Hans D.; Yant, Howard W.; Patterson, John F.

    1979-01-01

    A structural support system for the core of a nuclear reactor which achieves relatively restricted clearances at operating conditions and yet allows sufficient clearance between fuel assemblies at refueling temperatures. Axially displaced spacer pads having variable between pad spacing and a temperature compensated radial restraint system are utilized to maintain clearances between the fuel elements. The core support plates are constructed of metals specially chosen such that differential thermal expansion produces positive restraint at operating temperatures.

  9. 2000 BTS Core Databook

    Buildings Energy Data Book [EERE]

    0 BTS CORE DATABOOK 2000 BTS CORE DATABOOK OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY * U.S. DEPARTMENT OF ENERGY This version is dated: August 7, 2000 DISCLAIMER This document was designed for the internal use of the United States Department of Energy. This document was also designed to be occasionally updated and, therefore, this copy may not reflect the most current version. This document was prepared as account of work sponsored by an agency of the United States Government. Neither the

  10. MCNP LWR Core Generator

    SciTech Connect (OSTI)

    Fischer, Noah A.

    2012-08-14

    The reactor core input generator allows for MCNP input files to be tailored to design specifications and generated in seconds. Full reactor models can now easily be created by specifying a small set of parameters and generating an MCNP input for a full reactor core. Axial zoning of the core will allow for density variation in the fuel and moderator, with pin-by-pin fidelity, so that BWR cores can more accurately be modeled. LWR core work in progress: (1) Reflectivity option for specifying 1/4, 1/2, or full core simulation; (2) Axial zoning for moderator densities that vary with height; (3) Generating multiple types of assemblies for different fuel enrichments; and (4) Parameters for specifying BWR box walls. Fuel pin work in progress: (1) Radial and azimuthal zoning for generating further unique materials in fuel rods; (2) Options for specifying different types of fuel for MOX or multiple burn assemblies; (3) Additional options for replacing fuel rods with burnable poison rods; and (4) Control rod/blade modeling.

  11. Emergency core cooling system

    DOE Patents [OSTI]

    Schenewerk, William E.; Glasgow, Lyle E.

    1983-01-01

    A liquid metal cooled fast breeder reactor provided with an emergency core cooling system includes a reactor vessel which contains a reactor core comprising an array of fuel assemblies and a plurality of blanket assemblies. The reactor core is immersed in a pool of liquid metal coolant. The reactor also includes a primary coolant system comprising a pump and conduits for circulating liquid metal coolant to the reactor core and through the fuel and blanket assemblies of the core. A converging-diverging venturi nozzle with an intermediate throat section is provided in between the assemblies and the pump. The intermediate throat section of the nozzle is provided with at least one opening which is in fluid communication with the pool of liquid sodium. In normal operation, coolant flows from the pump through the nozzle to the assemblies with very little fluid flowing through the opening in the throat. However, when the pump is not running, residual heat in the core causes fluid from the pool to flow through the opening in the throat of the nozzle and outwardly through the nozzle to the assemblies, thus providing a means of removing decay heat.

  12. Core Values | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Core Values What we do and how we do it is determined by our core values. Our core values are how we operate and what we value most. They are the qualities that define our culture...

  13. Formation Flying and Deformable Instruments

    SciTech Connect (OSTI)

    Rio, Yvon

    2009-05-11

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  14. Decay of helical Kelvin waves on a quantum vortex filament

    SciTech Connect (OSTI)

    Van Gorder, Robert A.

    2014-07-15

    We study the dynamics of helical Kelvin waves moving along a quantum vortex filament driven by a normal fluid flow. We employ the vector form of the quantum local induction approximation (LIA) due to Schwarz. For an isolated filament, this is an adequate approximation to the full Hall-Vinen-Bekarevich-Khalatnikov dynamics. The motion of such Kelvin waves is both translational (along the quantum vortex filament) and rotational (in the plane orthogonal to the reference axis). We first present an exact closed form solution for the motion of these Kelvin waves in the case of a constant amplitude helix. Such solutions exist for a critical wave number and correspond exactly to the Donnelly-Glaberson instability, so perturbations of such solutions either decay to line filaments or blow-up. This leads us to consider helical Kelvin waves which decay to line filaments. Unlike in the case of constant amplitude helical solutions, the dynamics are much more complicated for the decaying helical waves, owing to the fact that the rate of decay of the helical perturbations along the vortex filament is not constant in time. We give an analytical and numerical description of the motion of decaying helical Kelvin waves, from which we are able to ascertain the influence of the physical parameters on the decay, translational motion along the filament, and rotational motion, of these waves (all of which depend nonlinearly on time). One interesting finding is that the helical Kelvin waves do not decay uniformly. Rather, such waves decay slowly for small time scales, and more rapidly for large time scales. The rotational and translational velocity of the Kelvin waves depend strongly on this rate of decay, and we find that the speed of propagation of a helical Kelvin wave along a quantum filament is large for small time while the wave asymptotically slows as it decays. The rotational velocity of such Kelvin waves along the filament will increase over time, asymptotically reaching a finite

  15. Molten core retention assembly

    DOE Patents [OSTI]

    Lampe, Robert F.

    1976-06-22

    Molten fuel produced in a core overheating accident is caught by a molten core retention assembly consisting of a horizontal baffle plate having a plurality of openings therein, heat exchange tubes having flow holes near the top thereof mounted in the openings, and a cylindrical, imperforate baffle attached to the plate and surrounding the tubes. The baffle assembly is supported from the core support plate of the reactor by a plurality of hanger rods which are welded to radial beams passing under the baffle plate and intermittently welded thereto. Preferably the upper end of the cylindrical baffle terminates in an outwardly facing lip to which are welded a plurality of bearings having slots therein adapted to accept the hanger rods.

  16. Origami-enabled deformable silicon solar cells

    SciTech Connect (OSTI)

    Tang, Rui; Huang, Hai; Liang, Hanshuang; Liang, Mengbing; Tu, Hongen; Xu, Yong; Song, Zeming; Jiang, Hanqing; Yu, Hongyu

    2014-02-24

    Deformable electronics have found various applications and elastomeric materials have been widely used to reach flexibility and stretchability. In this Letter, we report an alternative approach to enable deformability through origami. In this approach, the deformability is achieved through folding and unfolding at the creases while the functional devices do not experience strain. We have demonstrated an example of origami-enabled silicon solar cells and showed that this solar cell can reach up to 644% areal compactness while maintaining reasonable good performance upon cyclic folding/unfolding. This approach opens an alternative direction of producing flexible, stretchable, and deformable electronics.

  17. CORE SATURATION BLOCKING OSCILLATOR

    DOE Patents [OSTI]

    Spinrad, R.J.

    1961-10-17

    A blocking oscillator which relies on core saturation regulation to control the output pulse width is described. In this arrangement an external magnetic loop is provided in which a saturable portion forms the core of a feedback transformer used with the thermionic or semi-conductor active element. A first stationary magnetic loop establishes a level of flux through the saturation portion of the loop. A second adjustable magnet moves the flux level to select a saturation point giving the desired output pulse width. (AEC)

  18. 2012 ROCK DEFORMATION: FEEDBACK PROCESSES IN ROCK DEFORMATION GORDON RESEARCH CONFERENCE, AUGUST 19-24, 2012

    SciTech Connect (OSTI)

    Kelemen, Peter

    2012-08-24

    Topics covered include: Failure At High Confining Pressure; Fluid-assisted Slip, Earthquakes & Fracture; Reaction-driven Cracking; Fluid Transport, Deformation And Reaction; Localized Fluid Transport And Deformation; Earthquake Mechanisms; Subduction Zone Dynamics And Crustal Growth.

  19. Fast chirality reversal of the magnetic vortex by electric current

    SciTech Connect (OSTI)

    Lim, W. L. Liu, R. H.; Urazhdin, S.; Tyliszczak, T.; Erokhin, S. G.; Berkov, D.

    2014-12-01

    The possibility of high-density information encoding in magnetic materials by topologically stable inhomogeneous magnetization configurations such as domain walls, skyrmions, and vortices has motivated intense research into mechanisms enabling their control and detection. While the uniform magnetization states can be efficiently controlled by electric current using magnetic multilayer structures, this approach has proven much more difficult to implement for inhomogeneous states. Here, we report direct observation of fast reversal of magnetic vortex by electric current in a simple planar structure based on a bilayer of spin Hall material Pt with a single microscopic ferromagnetic disk contacted by asymmetric electrodes. The reversal is enabled by a combination of the chiral Oersted field and spin current generated by the nonuniform current distribution in Pt. Our results provide a route for the efficient control of inhomogeneous magnetization configurations by electric current.

  20. Gas turbine engine combustor can with trapped vortex cavity

    DOE Patents [OSTI]

    Burrus, David Louis; Joshi, Narendra Digamber; Haynes, Joel Meier; Feitelberg, Alan S.

    2005-10-04

    A gas turbine engine combustor can downstream of a pre-mixer has a pre-mixer flowpath therein and circumferentially spaced apart swirling vanes disposed across the pre-mixer flowpath. A primary fuel injector is positioned for injecting fuel into the pre-mixer flowpath. A combustion chamber surrounded by an annular combustor liner disposed in supply flow communication with the pre-mixer. An annular trapped dual vortex cavity located at an upstream end of the combustor liner is defined between an annular aft wall, an annular forward wall, and a circular radially outer wall formed therebetween. A cavity opening at a radially inner end of the cavity is spaced apart from the radially outer wall. Air injection first holes are disposed through the forward wall and air injection second holes are disposed through the aft wall. Fuel injection holes are disposed through at least one of the forward and aft walls.

  1. Electromagnetic pump stator core

    DOE Patents [OSTI]

    Fanning, Alan W.; Olich, Eugene E.; Dahl, Leslie R.

    1995-01-01

    A stator core for supporting an electrical coil includes a plurality of groups of circumferentially abutting flat laminations which collectively form a bore and perimeter. A plurality of wedges are interposed between the groups, with each wedge having an inner edge and a thicker outer edge. The wedge outer edges abut adjacent ones of the groups to provide a continuous path around the perimeter.

  2. NUCLEAR REACTOR CORE DESIGN

    DOE Patents [OSTI]

    Mahlmeister, J.E.; Peck, W.S.; Haberer, W.V.; Williams, A.C.

    1960-03-22

    An improved core design for a sodium-cooled, graphitemoderated nuclear reactor is described. The improved reactor core comprises a number of blocks of moderator material, each block being in the shape of a regular prism. A number of channels, extending the length of each block, are disposed around the periphery. When several blocks are placed in contact to form the reactor core, the channels in adjacent blocks correspond with each other to form closed conduits extending the length of the core. Fuel element clusters are disposed in these closed conduits, and liquid coolant is forced through the annulus between the fuel cluster and the inner surface of the conduit. In a preferred embodiment of the invention, the moderator blocks are in the form of hexagonal prisms with longitudinal channels cut into the corners of the hexagon. The main advantage of an "edge-loaded" moderator block is that fewer thermal neutrons are absorbed by the moderator cladding, as compared with a conventional centrally loaded moderator block.

  3. Enhancement of vortex induced forces and motion through surface roughness control

    DOE Patents [OSTI]

    Bernitsas, Michael M.; Raghavan, Kamaldev

    2011-11-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to increase Vortex Induced Forces and Motion. Enhancement is needed in such applications as harnessing of clean and renewable energy from ocean/river currents using the ocean energy converter VIVACE (Vortex Induced Vibration for Aquatic Clean Energy).

  4. Vortex motion of dust particles due to non-conservative ion drag...

    Office of Scientific and Technical Information (OSTI)

    in a plasma This content will become publicly available on February 12, 2017 Title: Vortex motion of dust particles due to non-conservative ion drag force in a plasma Authors: ...

  5. Stochastic formation of magnetic vortex structures in asymmetric disks triggered by chaotic dynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Im, Mi-Young; Lee, Ki-Suk; Vogel, Andreas; Hong, Jung-Il; Meier, Guido; Fischer, Peter

    2014-12-17

    The non-trivial spin configuration in a magnetic vortex is a prototype for fundamental studies of nanoscale spin behaviour with potential applications in magnetic information technologies. Arrays of magnetic vortices interfacing with perpendicular thin films have recently been proposed as enabler for skyrmionic structures at room temperature, which has opened exciting perspectives on practical applications of skyrmions. An important milestone for achieving not only such skyrmion materials but also general applications of magnetic vortices is a reliable control of vortex structures. However, controlling magnetic processes is hampered by stochastic behaviour, which is associated with thermal fluctuations in general. Here we showmore » that the dynamics in the initial stages of vortex formation on an ultrafast timescale plays a dominating role for the stochastic behaviour observed at steady state. Our results show that the intrinsic stochastic nature of vortex creation can be controlled by adjusting the interdisk distance in asymmetric disk arrays.« less

  6. Hopper Multi-Core FAQ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hopper Multi-Core FAQ Hopper Multi-Core FAQ Q. How is Hopper Different than Franklin? A. The new Hopper Phase-II system will have 24 cores per node. Franklin had only four. Q. What else is different? A. There is less memory per core. Hopper has 1.3 GB / core rather than 2.0 GB / core on Franklin. A code using MPI on Hopper may be more likely to exhaust available memory, causing an error. Additionally, Hopper's memory hierarchy is "deeper" and more non-uniform than Franklin's and this

  7. Electromagnetic pump stator core

    DOE Patents [OSTI]

    Fanning, A.W.; Olich, E.E.; Dahl, L.R.

    1995-01-17

    A stator core for supporting an electrical coil includes a plurality of groups of circumferentially abutting flat laminations which collectively form a bore and perimeter. A plurality of wedges are interposed between the groups, with each wedge having an inner edge and a thicker outer edge. The wedge outer edges abut adjacent ones of the groups to provide a continuous path around the perimeter. 21 figures.

  8. Toroidal core winder

    DOE Patents [OSTI]

    Potthoff, Clifford M.

    1978-01-01

    The disclosure is directed to an apparatus for placing wire windings on a toroidal body, such as a transformer core, having an orifice in its center. The apparatus comprises a wire storage spool, a wire loop holding continuous belt maintained in a C-shaped loop by a belt supporting structure and provision for turning the belt to place and tighten loops of wire on a toroidal body, which is disposed within the gap of the C-shaped belt loop.

  9. Variable depth core sampler

    DOE Patents [OSTI]

    Bourgeois, Peter M.; Reger, Robert J.

    1996-01-01

    A variable depth core sampler apparatus comprising a first circular hole saw member, having longitudinal sections that collapses to form a point and capture a sample, and a second circular hole saw member residing inside said first hole saw member to support the longitudinal sections of said first hole saw member and prevent them from collapsing to form a point. The second hole saw member may be raised and lowered inside said first hole saw member.

  10. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.

    1996-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  11. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1994-04-05

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.

  12. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1996-06-11

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figs.

  13. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.

    1994-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  14. Variable depth core sampler

    DOE Patents [OSTI]

    Bourgeois, P.M.; Reger, R.J.

    1996-02-20

    A variable depth core sampler apparatus is described comprising a first circular hole saw member, having longitudinal sections that collapses to form a point and capture a sample, and a second circular hole saw member residing inside said first hole saw member to support the longitudinal sections of said first hole saw member and prevent them from collapsing to form a point. The second hole saw member may be raised and lowered inside said first hole saw member. 7 figs.

  15. GEOS-CORE

    SciTech Connect (OSTI)

    2014-06-24

    GEOS-CORE is a code that integrates open source Libraries for linear algebra and I/O with two main LLNL-written components: (i) a set of standard finite, discrete, and discontinuous displacement element physics solvers for resolving Darcy fluid flow, explicit mechanics, implicit mechanics, and fluid-mediated fracturing, including resolution of physical behaviors both implicitly and explicitly, and (ii) a MPI-based parallelization implementation for use on generic HPC distributed memory architectures. The resultant code can be used alone for linearly elastic and quasistatic damage problems; problems involving hydraulic fracturing, where the mesh topology is dynamically changed; and general granular materials behavior. The key application domain is for low-rate stimulation and fracture control in subsurface reservoirs (e.g., enhanced geothermal sites and unconventional shale gas stimulation). GEOS-CORE also has interfaces to call external libraries for, e.g., material models and equations fo state; however, LLNL-developed EOS and material models, beyond the aforementioned linear elastic and quasi-static damage models, will not be part of the current release. GEOS-CORE's secondary applications include granular materials behavior under different load paths.

  16. GEOS-CORE

    Energy Science and Technology Software Center (OSTI)

    2014-06-24

    GEOS-CORE is a code that integrates open source Libraries for linear algebra and I/O with two main LLNL-written components: (i) a set of standard finite, discrete, and discontinuous displacement element physics solvers for resolving Darcy fluid flow, explicit mechanics, implicit mechanics, and fluid-mediated fracturing, including resolution of physical behaviors both implicitly and explicitly, and (ii) a MPI-based parallelization implementation for use on generic HPC distributed memory architectures. The resultant code can be used alone formore » linearly elastic and quasistatic damage problems; problems involving hydraulic fracturing, where the mesh topology is dynamically changed; and general granular materials behavior. The key application domain is for low-rate stimulation and fracture control in subsurface reservoirs (e.g., enhanced geothermal sites and unconventional shale gas stimulation). GEOS-CORE also has interfaces to call external libraries for, e.g., material models and equations fo state; however, LLNL-developed EOS and material models, beyond the aforementioned linear elastic and quasi-static damage models, will not be part of the current release. GEOS-CORE's secondary applications include granular materials behavior under different load paths.« less

  17. Constitutive relationships for elastic deformation of clay rock: Data Analysis

    SciTech Connect (OSTI)

    Liu, H.H.; Rutqvist, J.; Birkholzer, J.T.

    2011-04-15

    Geological repositories have been considered a feasible option worldwide for storing high-level nuclear waste. Clay rock is one of the rock types under consideration for such purposes, because of its favorable features to prevent radionuclide transport from the repository. Coupled hydromechanical processes have an important impact on the performance of a clay repository, and establishing constitutive relationships for modeling such processes are essential. In this study, we propose several constitutive relationships for elastic deformation in indurated clay rocks based on three recently developed concepts. First, when applying Hooke's law in clay rocks, true strain (rock volume change divided by the current rock volume), rather than engineering strain (rock volume change divided by unstressed rock volume), should be used, except when the degree of deformation is very small. In the latter case, the two strains will be practically identical. Second, because of its inherent heterogeneity, clay rock can be divided into two parts, a hard part and a soft part, with the hard part subject to a relatively small degree of deformation compared with the soft part. Third, for swelling rock like clay, effective stress needs to be generalized to include an additional term resulting from the swelling process. To evaluate our theoretical development, we analyze uniaxial test data for core samples of Opalinus clay and laboratory measurements of single fractures within macro-cracked Callovo-Oxfordian argillite samples subject to both confinement and water reduced swelling. The results from this evaluation indicate that our constitutive relationships can adequately represent the data and explain the related observations.

  18. Flexible, liquid core light guide with focusing and light shaping attachments

    DOE Patents [OSTI]

    Wojcik, R.F.; Majewski, S.; Zorn, C.J.; Kross, B.

    1999-04-20

    A liquid light guide system for ultraviolet light is disclosed that has a light shaping arrangement for the emitted light, a stable liquid core and sheath and reliable and effective end closures. The end closures include a metal crimping arrangement that utilizes two layers of deformable materials to prevent cracking of endplugs. 19 figs.

  19. Flexible, liquid core light guide with focusing and light shaping attachments

    DOE Patents [OSTI]

    Wojcik, Randolph Frank; Majewski, Stanislaw; Zorn, Carl John; Kross, Brian

    1999-01-01

    A liquid light guide system for ultraviolet light is disclosed that has a light shaping arrangement for the emitted light, a stable liquid core and sheath and reliable and effective end closures. The end closures include a metal crimping arrangement that utilizes two layers of deformable materials to prevent cracking of endplugs.

  20. Core Analysis | Open Energy Information

    Open Energy Info (EERE)

    Area 1992 K-Ar Dates Of Hydrothermal Clays From Core Hole Vc-2B, Valles Caldera, New Mexico And Their Relation To Alteration In A Large Hydrothermal System Core Analysis At...

  1. Selenium semiconductor core optical fibers

    SciTech Connect (OSTI)

    Tang, G. W.; Qian, Q. Peng, K. L.; Wen, X.; Zhou, G. X.; Sun, M.; Chen, X. D.; Yang, Z. M.

    2015-02-15

    Phosphate glass-clad optical fibers containing selenium (Se) semiconductor core were fabricated using a molten core method. The cores were found to be amorphous as evidenced by X-ray diffraction and corroborated by Micro-Raman spectrum. Elemental analysis across the core/clad interface suggests that there is some diffusion of about 3 wt % oxygen in the core region. Phosphate glass-clad crystalline selenium core optical fibers were obtained by a postdrawing annealing process. A two-cm-long crystalline selenium semiconductor core optical fibers, electrically contacted to external circuitry through the fiber end facets, exhibit a three times change in conductivity between dark and illuminated states. Such crystalline selenium semiconductor core optical fibers have promising utility in optical switch and photoconductivity of optical fiber array.

  2. Uncommon Deformation Mechanisms during Fatigue-Crack Propagation...

    Office of Scientific and Technical Information (OSTI)

    Uncommon Deformation Mechanisms during Fatigue-Crack Propagation in Nanocrystalline Alloys Prev Next Title: Uncommon Deformation Mechanisms during Fatigue-Crack Propagation ...

  3. STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS...

    Office of Scientific and Technical Information (OSTI)

    STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS Anter El-Azab 36 MATERIALS SCIENCE dislocation dynamics; mesoscale deformation of metals; crystal mechanics...

  4. Evaluating Deformation-Induced Rotation in a Polycrystal During...

    Office of Scientific and Technical Information (OSTI)

    Title: Evaluating Deformation-Induced Rotation in a Polycrystal During In Situ Tensile Deformation using EBSD. Abstract not provided. Authors: Carroll, Jay ; Clark, Blythe ; Boyce, ...

  5. Temperature Dependence of Dynamic Deformation in FCC Metals,...

    Office of Scientific and Technical Information (OSTI)

    Temperature Dependence of Dynamic Deformation in FCC Metals, Aluminum and Invar Citation Details In-Document Search Title: Temperature Dependence of Dynamic Deformation in FCC ...

  6. Deformation Processes in Block Copolymer Toughened Epoxies (Journal...

    Office of Scientific and Technical Information (OSTI)

    Deformation Processes in Block Copolymer Toughened Epoxies Citation Details In-Document Search Title: Deformation Processes in Block Copolymer Toughened Epoxies Authors:...

  7. Modeling fluid flow in deformation bands with stabilized localization...

    Office of Scientific and Technical Information (OSTI)

    Modeling fluid flow in deformation bands with stabilized localization mixed finite elements. Citation Details In-Document Search Title: Modeling fluid flow in deformation bands...

  8. Simulating Wavefront Correction via Deformable Mirrors at X-Ray...

    Office of Scientific and Technical Information (OSTI)

    Conference: Simulating Wavefront Correction via Deformable Mirrors at X-Ray Beamlines Citation Details In-Document Search Title: Simulating Wavefront Correction via Deformable ...

  9. Low-emission vortex combustion of biomass and fossil fuel

    SciTech Connect (OSTI)

    Finker, F.Z.; Kubischkin, I.B.; Akhmedov, D.B.

    1995-11-01

    The article introduces the results of development and industrial experience of low-emission vortex combustion technology (LEVC) of biomass and fossil fuel in industrial and utility boilers in Russian timber and paper industries and Polish power plants. The LEVC technology is based on aerodynamics method of multiple circulation of gases and fuel in the furnaces. LEVC technology accumulates the advantages of conventional and fluidized bed combustion technology. Existing boilers could be easily retrofitted for the application of LEVC technology without requiring major investment. The repowering of boiler with LEVC was the result the reduction NOx emission to the level 170g/GJ without installation additional flue gas cleaning equipment and it gave the opportunity for an injection of sulfur sorbent in the furnace. The authors discussed Russian-Polish experiment on utility boiler retrofitted with the application of LEVC. As the result the efficiency of the boiler increased in 2%. The reduction of the emission is: NOx-40%, SO2-17%.

  10. Electron vortex magnetic holes: A nonlinear coherent plasma structure

    SciTech Connect (OSTI)

    Haynes, Christopher T. Burgess, David; Sundberg, Torbjorn; Camporeale, Enrico

    2015-01-15

    We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is some initial perpendicular temperature anisotropy at the structure location. The properties of these structures (scale size, trapped population, etc.) are able to explain the observed properties of magnetic holes in the terrestrial plasma sheet. EVMHs may also contribute to turbulence properties, such as intermittency, at short scale lengths in other astrophysical plasmas.

  11. Dynamics of vortex dipoles in anisotropic Bose-Einstein condensates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Goodman, Roy H.; Kevrekidis, P. G.; Carretero-González, R.

    2015-04-14

    We study the motion of a vortex dipole in a Bose-Einstein condensate confined to an anisotropic trap. We focus on a system of ODEs describing the vortices' motion, which is in turn a reduced model of the Gross-Pitaevskii equation describing the condensate's motion. Using a sequence of canonical changes of variables, we reduce the dimension and simplify the equations of motion. In this study, we uncover two interesting regimes. Near a family of periodic orbits known as guiding centers, we find that the dynamics is essentially that of a pendulum coupled to a linear oscillator, leading to stochastic reversals inmore » the overall direction of rotation of the dipole. Near the separatrix orbit in the isotropic system, we find other families of periodic, quasi-periodic, and chaotic trajectories. In a neighborhood of the guiding center orbits, we derive an explicit iterated map that simplifies the problem further. Numerical calculations are used to illustrate the phenomena discovered through the analysis. Using the results from the reduced system, we are able to construct complex periodic orbits in the original, PDE, mean-field model for Bose-Einstein condensates, which corroborates the phenomenology observed in the reduced dynamical equations.« less

  12. Dynamics of vortex dipoles in anisotropic Bose-Einstein condensates

    SciTech Connect (OSTI)

    Goodman, Roy H.; Kevrekidis, P. G.; Carretero-González, R.

    2015-04-14

    We study the motion of a vortex dipole in a Bose-Einstein condensate confined to an anisotropic trap. We focus on a system of ODEs describing the vortices' motion, which is in turn a reduced model of the Gross-Pitaevskii equation describing the condensate's motion. Using a sequence of canonical changes of variables, we reduce the dimension and simplify the equations of motion. In this study, we uncover two interesting regimes. Near a family of periodic orbits known as guiding centers, we find that the dynamics is essentially that of a pendulum coupled to a linear oscillator, leading to stochastic reversals in the overall direction of rotation of the dipole. Near the separatrix orbit in the isotropic system, we find other families of periodic, quasi-periodic, and chaotic trajectories. In a neighborhood of the guiding center orbits, we derive an explicit iterated map that simplifies the problem further. Numerical calculations are used to illustrate the phenomena discovered through the analysis. Using the results from the reduced system, we are able to construct complex periodic orbits in the original, PDE, mean-field model for Bose-Einstein condensates, which corroborates the phenomenology observed in the reduced dynamical equations.

  13. Automated Core Design

    SciTech Connect (OSTI)

    Kobayashi, Yoko; Aiyoshi, Eitaro

    2005-07-15

    Multistate searching methods are a subfield of distributed artificial intelligence that aims to provide both principles for construction of complex systems involving multiple states and mechanisms for coordination of independent agents' actions. This paper proposes a multistate searching algorithm with reinforcement learning for the automatic core design of a boiling water reactor. The characteristics of this algorithm are that the coupling structure and the coupling operation suitable for the assigned problem are assumed and an optimal solution is obtained by mutual interference in multistate transitions using multiagents. Calculations in an actual plant confirmed that the proposed algorithm increased the convergence ability of the optimization process.

  14. OpenStudio Core

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OpenStudio Core 2014 Building Technologies Office Peer Review Dr. Larry Brackney, larry.brackney@nrel.gov National Renewable Energy Laboratory Oliver Davis, oliver@concept3d.com concept3D Inc. Project Summary Timeline: Key Partners: Start date: Q1 FY10 Planned end date: Ongoing w/ Frequent Off-Ramping of Components Key Milestones: 1. V1.1 (Cloud) - 9/27/2013 2. V1.2 (Refrigeration) - 12/20/2013 3. V1.3 (HVAC/Refrigeration) - 3/28/2014 Budget: Total DOE $ to date: $7,655,000 * Total Cost Share to

  15. Deformable mirror for short wavelength applications

    DOE Patents [OSTI]

    Chapman, Henry N.; Sweeney, Donald W.

    1999-01-01

    A deformable mirror compatible with short wavelength (extreme ultraviolet) radiation that can be precisely controlled to nanometer and subnanometer accuracy is described. Actuators are coupled between a reaction plate and a face plate which has a reflective coating. A control system adjusts the voltage supplied to the actuators; by coordinating the voltages supplied to the actuators, the reflective surface of the mirror can be deformed to correct for dimensional errors in the mirror or to produce a desired contour.

  16. PROCESS FOR JACKETING A CORE

    DOE Patents [OSTI]

    Last, G.A.

    1960-07-19

    A process is given for enclosing the uranium core of a nuclear fuel element by placing the core in an aluminum cup and closing the open end of the cup over the core. As the metal of the cup is brought together in a weld over the center of the end of the core, it is extruded inwardly as internal projection into a central recess in the core and outwardly as an external projection. Thus oxide inclusions in the weld of the cup are spread out into the internal and external projections and do not interfere with the integrity of the weld.

  17. NEUTRONIC REACTOR CORE

    DOE Patents [OSTI]

    Thomson, W.B.; Corbin, A. Jr.

    1961-07-18

    An improved core for a gas-cooled power reactor which admits gas coolant at high temperatures while affording strong integral supporting structure and efficient moderation of neutrons is described. The multiplicities of fuel elements constituting the critical amassment of fissionable material are supported and confined by a matrix of metallic structure which is interspersed therebetween. Thermal insulation is interposed between substantially all of the metallic matrix and the fuel elements; the insulation then defines the principal conduit system for conducting the coolant gas in heat-transfer relationship with the fuel elements. The metallic matrix itseif comprises a system of ducts through which an externally-cooled hydrogeneous liquid, such as water, is circulated to serve as the principal neutron moderant for the core and conjointly as the principal coolant for the insulated metallic structure. In this way, use of substantially neutron transparent metals, such as aluminum, becomes possible for the supporting structure, despite the high temperatures of the proximate gas. The Aircraft Nuclear Propulsion program's "R-1" reactor design is a preferred embodiment.

  18. Core fluctuations test. Revision 1

    SciTech Connect (OSTI)

    Betts, W.S.

    1987-06-01

    Fluctuations were first encountered in the Fort St. Vrain reactor early in cycle 1 operation, during the initial rise from 40% to 70% power. Subsequent in-core tests and operation throughout cycles 1 and 2 demonstrated that fluctuations were repeatable, occurring at core pressure drops of between 2.5 psi and 4.0 psi, and that in each instance their characteristics were very similar. Subsequently, tests and analysis were done to understand the core fluctuation phenomenon. These efforts also lead to a design fix which stopped these fluctuations in the FSV reactor core. This fix required that keys be used in addition to the keys in the core support floor which already existed. This report outlines a test plan to validate that core fluctuations will not occur in the MHTGR core. 2 refs., 12 figs., 3 tabs.

  19. Category:Core Analysis | Open Energy Information

    Open Energy Info (EERE)

    Analysis page? For detailed information on Core Analysis as exploration techniques, click here. Category:Core Analysis Add.png Add a new Core Analysis Technique Pages in...

  20. OTEC cold water pipe design for problems caused by vortex-excited oscillations

    SciTech Connect (OSTI)

    Griffin, O. M.

    1980-03-14

    Vortex-excited oscillations of marine structures result in reduced fatigue life, large hydrodynamic forces and induced stresses, and sometimes lead to structural damage and to diestructive failures. The cold water pipe of an OTEC plant is nominally a bluff, flexible cylinder with a large aspect ratio (L/D = length/diameter), and is likely to be susceptible to resonant vortex-excited oscillations. The objective of this report is to survey recent results pertaining to the vortex-excited oscillations of structures in general and to consider the application of these findings to the design of the OTEC cold water pipe. Practical design calculations are given as examples throughout the various sections of the report. This report is limited in scope to the problems of vortex shedding from bluff, flexible structures in steady currents and the resulting vortex-excited oscillations. The effects of flow non-uniformities, surface roughness of the cylinder, and inclination to the incident flow are considered in addition to the case of a smooth cyliner in a uniform stream. Emphasis is placed upon design procedures, hydrodynamic coefficients applicable in practice, and the specification of structural response parameters relevant to the OTEC cold water pipe. There are important problems associated with in shedding of vortices from cylinders in waves and from the combined action of waves and currents, but these complex fluid/structure interactions are not considered in this report.

  1. Transition between vortex rings and MAP solutions for electrically charged magnetic solutions

    SciTech Connect (OSTI)

    Wong, Khai-Ming; Soltanian, Amin; Teh, Rosy

    2014-03-05

    We consider the bifurcation and transition of axially symmetric monopole-antimonopole pair (MAP) and vortex ring solutions in the presence of electric charge for the SU(2) Yang-Mills-Higgs field theory. Here we investigate the properties of MAP/vortex ring solutions with n = 3,? = 0.65, for different Higgs field strength ?. For ? < 4.93, there is only one fundamental branch of vortex ring solution, but at the critical value of ?{sub b} = 4.93, branching happens and 2 sets of new solutions appeared. The new branch with less energy is a full MAP solution while the branch with higher energy contains MAP at the beginning and separation between poles of MAP on the z-axis reduces gradually and at another critical value of ?{sub t} = 14.852, they merge together at z = 0. Beyond this point the solutions change to the vortex ring solutions and a transitions between MAP and vortex ring solutions happens at this branch.

  2. HTTF Core Stress Analysis

    SciTech Connect (OSTI)

    Brian D. Hawkes; Richard Schultz

    2012-07-01

    In accordance with the need to determine whether cracking of the ceramic core disks which will be constructed and used in the High Temperature Test Facility (HTTF) for heatup and cooldown experiments, a set of calculation were performed using Abaqus to investigate the thermal stresses levels and likelihood for cracking. The calculations showed that using the material properties provided for the Greencast 94F ceramic, cracking is predicted to occur. However, this modeling does not predict the size or length of the actual cracks. It is quite likely that cracks will be narrow with rough walls which would impede the flow of coolant gases entering the cracks. Based on data recorded at Oregon State University using Greencast 94F samples that were heated and cooled at prescribed rates, it was concluded that the likelihood that the cracks would be detrimental to the experimental objectives is small.

  3. 2001 BTS Core Databook

    Buildings Energy Data Book [EERE]

    1 BTS CORE DATABOOK OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY U.S. DEPARTMENT OF ENERGY This version is dated: November 30, 2001 REVISED data tables on the web site that have been changed since November 30, 2001 include tables: 5.6.7 5.6.8 5.6.9 5.10.8 5.10.9 5.10.10 5.10.11 5.10.12 5.10.13 5.10.14 5.10.15 5.10.16 5.10.17 5.10.18 NEW data tables on the web site that have been added since July 13, 2001 include tables: 5.6.14 5.9.7 5.9.8 5.9.9 REVISED data tables on the web site that have

  4. Estimating dispersion from a tornado vortex and mesocyclone

    SciTech Connect (OSTI)

    Weber, A.H.; Hunter, C.H.

    1996-06-01

    Atmospheric dispersion modeling is required to ensure that a postulated breach in radionuclide storage containers at the Savannah River Site (SRS) from a tornado strike of Fujita-scale intensity F2 or higher will not result in an unacceptable dose to individuals. Fujita-scale tornado descriptions are included in Appendix A of this report. Dispersion models previously used at SRS for estimating dispersion following a tornado strike were developed by D.W. Pepper in 1975 (DP-1387, Dispersion of Small Particles) and H.R. Haynes and D.W. Taylor in 1983 (DPST-82-982, Estimating Doses from Tornado Winds). Research conducted in 1983 on the formation and evolution of tornadic thunderstorms has lead to a more complete understanding of the tornado vortex and associated persistent updraft and downdraft regions within the parent thunderstorm. To ensure that appropriate, contemporary methods are used for safety analysis, the Pepper model and the Haynes and Taylor model were evaluated with respect to current knowledge of circulations within tornadic thunderstorms. Pepper`s model is complex numerically but contains most of the desired physical parameterizations. Haynes and Taylor`s model is used with the Puff-Plume model (an emergency response model on the Weather INformation and Display System at SRS) and has provisions for radionuclide deposition and rainout. Haynes and Taylor assumed heavy rain following the tornado for a period of ten minutes, followed by a lighter rain for another ten minutes, then no rain for the period when the material is transported to 100 km downwind. However, neither model incorporates the effects of a nearby thunderstorm downdraft.

  5. Vortex combustor for low NOx emissions when burning lean premixed high hydrogen content fuel

    DOE Patents [OSTI]

    Steele, Robert C.; Edmonds, Ryan G.; Williams, Joseph T.; Baldwin, Stephen P.

    2009-10-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  6. Vortex combustor for low NOX emissions when burning lean premixed high hydrogen content fuel

    DOE Patents [OSTI]

    Steele, Robert C; Edmonds, Ryan G; Williams, Joseph T; Baldwin, Stephen P

    2012-11-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  7. Reduction of vortex induced forces and motion through surface roughness control

    DOE Patents [OSTI]

    Bernitsas, Michael M; Raghavan, Kamaldev

    2014-04-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to decrease/suppress Vortex Induced Forces and Motion. Suppression is required when fluid-structure interaction becomes destructive as in VIM of flexible cylinders or rigid cylinders on elastic support, such as underwater pipelines, marine risers, tubes in heat exchangers, nuclear fuel rods, cooling towers, SPAR offshore platforms.

  8. Audit of Departmental Integrated Standardized Core Accounting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AUDIT OF DEPARTMENTAL INTEGRATED STANDARDIZED CORE ACCOUNTING SYSTEM (DISCAS) OPERATIONS ... OF DEPARTMENTAL INTEGRATED STANDARDIZED CORE ACCOUNTING SYSTEM (DISCAS) OPERATIONS AT ...

  9. Core Values Postcard | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Core Values Postcard Document Number: NA Effective Date: 092014 File (public): PDF icon PrintCoreValuesPostcard...

  10. HMX Cooling Core Optimization Software

    Energy Science and Technology Software Center (OSTI)

    2006-08-31

    The Software consists of code which is used to determine the optimal configuration of an HMX cooling core in a heat exchanger.

  11. Effects of Combustion-Induced Vortex Breakdown on Flashback Limits of Syngas-Fueled Gas Turbine Combustors

    SciTech Connect (OSTI)

    Ahsan Choudhuri

    2011-03-31

    Turbine combustors of advanced power systems have goals to achieve very low pollutants emissions, fuel variability, and fuel flexibility. Future generation gas turbine combustors should tolerate fuel compositions ranging from natural gas to a broad range of syngas without sacrificing operational advantages and low emission characteristics. Additionally, current designs of advanced turbine combustors use various degrees of swirl and lean premixing for stabilizing flames and controlling high temperature NOx formation zones. However, issues of fuel variability and NOx control through premixing also bring a number of concerns, especially combustor flashback and flame blowout. Flashback is a combustion condition at which the flame propagates upstream against the gas stream into the burner tube. Flashback is a critical issue for premixed combustor designs, because it not only causes serious hardware damages but also increases pollutant emissions. In swirl stabilized lean premixed turbine combustors onset of flashback may occur due to (i) boundary layer flame propagation (critical velocity gradient), (ii) turbulent flame propagation in core flow, (iii) combustion instabilities, and (iv) upstream flame propagation induced by combustion induced vortex breakdown (CIVB). Flashback due to first two foregoing mechanisms is a topic of classical interest and has been studied extensively. Generally, analytical theories and experimental determinations of laminar and turbulent burning velocities model these mechanisms with sufficient precision for design usages. However, the swirling flow complicates the flashback processes in premixed combustions and the first two mechanisms inadequately describe the flashback propensity of most practical combustor designs. The presence of hydrogen in syngas significantly increases the potential for flashback. Due to high laminar burning velocity and low lean flammability limit, hydrogen tends to shift the combustor operating conditions towards

  12. Single-vortex pinning and penetration depth in superconducting NdFeAsO1-xFx

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Jessie T.; Kim, Jeehoon; Huefner, Magdalena; Ye, Cun; Kim, Stella; Canfield, Paul C.; Prozorov, Ruslan; Auslaender, Ophir M.; Hoffman, Jennifer E.

    2015-10-12

    We use a magnetic force microscope (MFM) to investigate single vortex pinning and penetration depth in NdFeAsO1-xFx, one of the highest-Tc iron-based superconductors. In fields up to 20 Gauss, we observe a disordered vortex arrangement, implying that the pinning forces are stronger than the vortex-vortex interactions. We measure the typical force to depin a single vortex, Fdepin ≃ 4.5 pN, corresponding to a critical current up to Jc ≃ 7×105 A/cm2. As a result, our MFM measurements allow the first local and absolute determination of the superconducting in-plane penetration depth in NdFeAsO1-xFx, λab = 320 ± 60 nm, which ismore » larger than previous bulk measurements.« less

  13. Stable Vortex-Bright-Soliton Structures in Two-Component Bose-Einstein Condensates

    SciTech Connect (OSTI)

    Law, K. J. H.; Kevrekidis, P. G.; Tuckerman, Laurette S.

    2010-10-15

    We report the numerical realization of robust two-component structures in 2D and 3D Bose-Einstein condensates with nontrivial topological charge in one component. We identify a stable symbiotic state in which a higher-dimensional bright soliton exists even in a homogeneous setting with defocusing interactions, due to the effective potential created by a stable vortex in the other component. The resulting vortex-bright-solitons, generalizations of the recently experimentally observed dark-bright solitons, are found to be very robust both in the homogeneous medium and in the presence of external confinement.

  14. Decoherence of spin-deformed bosonic model

    SciTech Connect (OSTI)

    Dehdashti, Sh.; Mahdifar, A.; Bagheri Harouni, M.; Roknizadeh, R.

    2013-07-15

    The decoherence rate and some parameters affecting it are investigated for the generalized spin-boson model. We consider the spin-bosonic model when the bosonic environment is modeled by the deformed harmonic oscillators. We show that the state of the environment approaches a non-linear coherent state. Then, we obtain the decoherence rate of a two-level system which is in contact with a deformed bosonic environment which is either in thermal equilibrium or in the ground state. By using some recent realization of f-deformed oscillators, we show that some physical parameters strongly affect the decoherence rate of a two-level system. -- Highlights: •Decoherence of the generalized spin-boson model is considered. •In this model the environment consists of f-oscillators. •Via the interaction, the state of the environment approaches non-linear coherent states. •Effective parameters on decoherence are considered.

  15. Boundary effects on Zircaloy-4 cladding deformation in LOCA simulation tests. [PWR; BWR

    SciTech Connect (OSTI)

    Longest, A.W.; Chapman, R.H.; Crowley, J.L.

    1982-01-01

    Deformation behavior of Zircaloy-4 cladding under simulated loss-of-coolant accident (LOCA) conditions is being investigated in the Multirod Burst Test (MRBT) program in single rod and multirod tests. In these tests, internally-pressurized unirradiated Zircaloy-4 tubes containing internal electrical heaters are heated to failure in a low-pressure, superheated-steam environment (200 < Re < 800). The results provide a data base for evaluating deformation and blockage models employed with design-basis accident sequences to assess LWR core coolability for licensing purposes. Results of a recent 8 X 8 test indicate that models derived from smaller test arrays may not be representative of the behavior in large arrays, particularly for those temperature ranges in which large deformation can be expected. Two MRBT LOCA simulation tests conducted under the same nominal conditions (approx. 10 K/s heating rate from approx. 340/sup 0/C to failure at approx. 770/sup 0/C) were examined to determine the effects of array size and boundary conditions on deformation.

  16. COVERING A CORE BY EXTRUSION

    DOE Patents [OSTI]

    Karnie, A.J.

    1963-07-16

    A method of covering a cylindrical fuel core with a cladding metal ms described. The metal is forced between dies around the core from both ends in two opposing skirts, and as these meet the ends turn outward into an annular recess in the dics. By cutting off the raised portion formed by the recess, oxide impurities are eliminated. (AEC)

  17. Heat recuperator having ceramic core

    SciTech Connect (OSTI)

    Kohnken, K.H.

    1987-08-25

    This patent describes a recuperator comprising a ceramic heat-exchanger core within a housing, the core having six faces, two solid and four having openings for the flow of gas therethrough, the improvement comprising a layer of intumescent material disposed between a solid face and the housing.

  18. Structure and deformation behavior of Armco iron subjected to severe plastic deformation

    SciTech Connect (OSTI)

    Valiev, R.Z.; Rauch, E.F.; Baudelet, B.; Ivanisenko, Yu.V.

    1996-12-01

    Structural evolutions in an Armco iron subjected to severe plastic deformation by torsion under high pressure are analyzed with conventional and high resolution electron microscopes. The substructure observed at low strains appears to shrink with increasing deformation and transforms at very high strains into grain boundaries. The resulting grain size decreases down to a constant submicrometric value. Meanwhile, the material strength, as revealed by micro hardness measurements, levels out. Dislocation densities and internal stress levels are used to discuss the structural transformations. Hydrostatic pressure and deformation temperature are believed to modify the steady-state stress level and structural size by impeding the recovery processes involving diffusion.

  19. Idaho Cleanup Core Project(ICP-Core) Contract

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Core / Fluor Idaho, LLC Contract No. DE-EM0004083 Modifications You are here: DOE-ID Home > Contracts, Financial Assistance & Solicitations > ICP-Core Contract > ICP-Core Basic Contract Blue Line Link to free copy of Acrobat Reader Some of the documents on this page are in the Adobe PDF format. The Adobe Reader is required to access them. If you do not currently have the Acrobat Reader, you may download the Reader FREE by clicking on the icon on the left. Please note that URL

  20. Transient Non Lin Deformation in Fractured Rock

    SciTech Connect (OSTI)

    Sartori, Enrico

    1998-10-14

    MATLOC is a nonlinear, transient, two-dimensional (planer and axisymmetric), thermal stress, finite-element code designed to determine the deformation within a fractured rock mass. The mass is modeled as a nonlinear anistropic elastic material which can exhibit stress-dependent bi-linear locking behavior.

  1. Deformation and Forming of Joined Materials

    SciTech Connect (OSTI)

    Carsley, John; Hovanski, Yuri; Clarke, Kester D.; Krajewski, Paul E.

    2014-09-23

    Introductory article to a set of invited papers from the TMS committee on shaping and forming. This paper introduces a set of papers that were prepared to discussing the deformation and forming of joined materials, and to announce an upcoming symposium at the 2015 MS&T meeting in Columbus Ohio.

  2. Joining of advanced materials by superplastic deformation

    DOE Patents [OSTI]

    Goretta, Kenneth C.; Routbort, Jules L.; Gutierrez-Mora, Felipe

    2005-12-13

    A method for utilizing superplastic deformation with or without a novel joint compound that leads to the joining of advanced ceramic materials, intermetallics, and cermets. A joint formed by this approach is as strong as or stronger than the materials joined. The method does not require elaborate surface preparation or application techniques.

  3. Model the Deformation and Failure of Solids

    Energy Science and Technology Software Center (OSTI)

    2001-10-19

    EMU models the deformation and failure of solids based on a reformulated theory of continuum mechanics known as the Peridynamic model. This approach allows dynamic fracture and other failure mechanisms to be simulated with a minimum of mesh effeces and without a need for supplementary kinetic relations for crack growth. Penetration by a rigid projectile is also included in the code.

  4. Joining of advanced materials by superplastic deformation

    DOE Patents [OSTI]

    Goretta, Kenneth C.; Routbort, Jules L.; Gutierrez-Mora, Felipe

    2008-08-19

    A method for utilizing superplastic deformation with or without a novel joint compound that leads to the joining of advanced ceramic materials, intermetallics, and cermets. A joint formed by this approach is as strong as or stronger than the materials joined. The method does not require elaborate surface preparation or application techniques.

  5. Dynamics of vortex structure formation during the evolution of modulation instability of dark solitons

    SciTech Connect (OSTI)

    Mironov, V. A.; Smirnov, A. I. Smirnov, L. A.

    2011-01-15

    The nonlinear stage of modulation instability of dark solitons is studied analytically and numerically. We propose an asymptotic description of the dynamics of these solitons in terms of their local velocity and the curvature of the lines at which solitons are concentrated. The features of the destruction of dark solitons (in particular, the formation of vortex structures from them) are analyzed.

  6. Bent core liquid crystal elastomers

    SciTech Connect (OSTI)

    Verduzco, R.; DiMasi, E.; Luchette, P.; Ho Hong, S.; Harden, J.; Palffy-Muhoray, P.; Kilbey II, S.M.; Sprunt, S.; Gleeson, G.T. Jakli, A.

    2010-07-28

    Liquid crystal (LC) elastomers with bent-core side-groups incorporate the properties of bent-core liquid crystals in a flexible and self-supporting polymer network. Bent-core liquid crystal elastomers (BCEs) with uniform alignment were prepared by attaching a reactive bent-core LC to poly(hydrogenmethylsiloxane) and crosslinking with a divinyl crosslinker. Phase behavior studies indicate a nematic phase over a wide temperature range that approaches room temperature, and thermoelastic measurements show that these BCEs can reversibly change their length by more than a factor of two upon heating and cooling. Small-angle X-ray scattering studies reveal multiple, broad low-angle peaks consistent with short-range smectic C order of the bent-core side groups. A comparison of these patterns with predictions of a Landau model for short-range smectic C order shows that the length scale for smectic ordering in BCEs is similar to that seen in pure bent-core LCs. The combination of rubber elasticity and smectic ordering of the bent-core side groups suggests that BCEs may be promising materials for sensing, actuating, and other advanced applications.

  7. VIPAR - Vortex Inflation PARachute Code Ver. 1.0

    Energy Science and Technology Software Center (OSTI)

    2001-11-01

    VIPAR is a 3-D fluid mechanics code for predicting flow past bluff bodies whose surfaces can be assumed to be made up of shell elements that are simply connected. Version 1.0 of the code contains several first order algorithms, which we are already in the process of replacing with higher order ones. These enhancements will appear in the next version of VIPAR. The present code contains a motion generator, which can be used to producemore » large class of rigid body motions. The present code has also been fully coupled to a structural dynamics code in which the geometry undergoes large time dependent deformations. Initial surface geometry is generated from triangular shell elements using a code such as Patran and is written into an Exodusll data base file for subsequent input into VIPAR. Surface and wake variable information is output into two Exodusll files which can be processed and viewed using software such as EnSight.« less

  8. Locality and rapidity of the ultra-large elastic deformation...

    Office of Scientific and Technical Information (OSTI)

    Locality and rapidity of the ultra-large elastic deformation of Nb nanowires in a NiTi phase-transforming matrix Title: Locality and rapidity of the ultra-large elastic deformation ...

  9. Deformation potentials of CdSe quantum dots

    SciTech Connect (OSTI)

    Li, Jingbo; Wang, Lin-Wang

    2004-06-02

    The size dependent deformation potentials of CdSe quantum dots are studied by first principle and semi-empirical pseudopotentials calculations. They find that the amplitude of the quantum dot deformation potential is only slightly larger than the bulk value, and this increase is mostly caused by the off {Lambda} point deformation potentials in the bulk, which are larger in amplitude than the {Lambda} point deformation potential.

  10. Powder metallurgy processing and deformation characteristics of bulk multimodal nickel

    SciTech Connect (OSTI)

    Farbaniec, L.; Dirras, G.; Krawczynska, A.; Mompiou, F.; Couque, H.; Naimi, F.; Bernard, F.; Tingaud, D.

    2014-08-15

    Spark plasma sintering was used to process bulk nickel samples from a blend of three powder types. The resulting multimodal microstructure was made of coarse (average size ? 135 ?m) spherical microcrystalline entities (the core) surrounded by a fine-grained matrix (average grain size ? 1.5 ?m) or a thick rim (the shell) distinguishable from the matrix. Tensile tests revealed yield strength of ? 470 MPa that was accompanied by limited ductility (? 2.8% plastic strain). Microstructure observation after testing showed debonding at interfaces between the matrix and the coarse entities, but in many instances, shallow dimples within the rim were observed indicating local ductile events in the shell. Dislocation emission and annihilation at grain boundaries and twinning at crack tip were the main deformation mechanisms taking place within the fine-grained matrix as revealed by in-situ transmission electron microscopy. Estimation of the stress from loop's curvature and dislocation pile-up indicates that dislocation emission from grain boundaries and grain boundary overcoming largely contributes to the flow stress. - Highlights: Bulk multi-modal Ni was processed by SPS from a powder blend. Ultrafine-grained matrix or rim observed around spherical microcrystalline entities Yield strength (470 MPa) and ductility (2.8% plastic strain) were measured. Debonding was found at the matrix/microcrystalline entity interfaces. In-situ TEM showed twinning, dislocation emission and annihilation at grain boundaries.

  11. Core Values | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Core Values Core Values People - People are our most important resource. We respect and use our experience and skills and appreciate our diversity. Business Excellence - We are fiscally responsible and actively pursue best business practices. Safety - We protect our human and material resources and promote safe work practices within the office and at our sites. Communication - We take full advantage of our virtual organization's strengths and share information freely across all levels of the

  12. GreenCore Capital | Open Energy Information

    Open Energy Info (EERE)

    GreenCore Capital Jump to: navigation, search Logo: GreenCore Capital Name: GreenCore Capital Address: 10509 Vista Sorrento Parkway Place: San Diego, California Zip: 92121 Region:...

  13. Biaxially textured articles formed by plastic deformation

    DOE Patents [OSTI]

    Goyal, Amit

    2001-01-01

    A method of preparing a biaxially textured article comprises the steps of providing a metal preform, coating or laminating the preform with a metal layer, deforming the layer to a sufficient degree, and rapidly recrystallizing the layer to produce a biaxial texture. A superconducting epitaxial layer may then be deposited on the biaxial texture. In some embodiments the article further comprises buffer layers, electromagnetic devices or electro-optical devices.

  14. Vertical deformation at western part of Sumatra

    SciTech Connect (OSTI)

    Febriyani, Caroline Prijatna, Kosasih Meilano, Irwan

    2015-04-24

    This research tries to make advancement in GPS signal processing to estimate the interseismic vertical deformation field at western part of Sumatra Island. The data derived by Continuous Global Positioning System (CGPS) from Badan Informasi Geospasial (BIG) between 2010 and 2012. GPS Analyze at Massachusetts Institute of Technology (GAMIT) software and Global Kalman Filter (GLOBK) software are used to process the GPS signal to estimate the vertical velocities of the CGPS station. In order to minimize noise due to atmospheric delay, Vienna Mapping Function 1 (VMF1) is used as atmospheric parameter model and include daily IONEX file provided by the Center for Orbit Determination in Europe (CODE) as well. It improves GAMIT daily position accuracy up to 0.8 mm. In a second step of processing, the GLOBK is used in order to estimate site positions and velocities in the ITRF08 reference frame. The result shows that the uncertainties of estimated displacement velocity at all CGPS stations are smaller than 1.5 mm/yr. The subsided deformation patterns are seen at the northern and southern part of west Sumatra. The vertical deformation at northern part of west Sumatra indicates postseismic phase associated with the 2010 and 2012 Northern Sumatra earthquakes and also the long-term postseismic associated with the 2004 and 2005 Northern Sumatra earthquakes. The uplifted deformation patterns are seen from Bukit Tinggi to Seblat which indicate a long-term interseismic phase after the 2007 Bengkulu earthquake and 2010 Mentawai earthquake. GANO station shows a subsidence at rate 12.25 mm/yr, indicating the overriding Indo-Australia Plate which is dragged down by the subducting Southeast Asian Plate.

  15. SU-E-J-104: Evaluation of Accuracy for Various Deformable Image Registrations with Virtual Deformation QA Software

    SciTech Connect (OSTI)

    Han, S; Kim, K; Kim, M; Jung, H; Ji, Y; Choi, S; Park, S

    2015-06-15

    Purpose: The accuracy of deformable image registration (DIR) has a significant dosimetric impact in radiation treatment planning. We evaluated accuracy of various DIR algorithms using virtual deformation QA software (ImSimQA, Oncology System Limited, UK). Methods: The reference image (Iref) and volume (Vref) was first generated with IMSIMQA software. We deformed Iref with axial movement of deformation point and Vref depending on the type of deformation that are the deformation1 is to increase the Vref (relaxation) and the deformation 2 is to decrease the Vref (contraction) .The deformed image (Idef) and volume (Vdef) were inversely deformed to Iref and Vref using DIR algorithms. As a Result, we acquired deformed image (Iid) and volume (Vid). The DIR algorithms were optical flow (HS, IOF) and demons (MD, FD) of the DIRART. The image similarity evaluation between Iref and Iid was calculated by Normalized Mutual Information (NMI) and Normalized Cross Correlation (NCC). The value of Dice Similarity Coefficient (DSC) was used for evaluation of volume similarity. Results: When moving distance of deformation point was 4 mm, the value of NMI was above 1.81 and NCC was above 0.99 in all DIR algorithms. Since the degree of deformation was increased, the degree of image similarity was decreased. When the Vref increased or decreased about 12%, the difference between Vref and Vid was within ±5% regardless of the type of deformation. The value of DSC was above 0.95 in deformation1 except for the MD algorithm. In case of deformation 2, that of DSC was above 0.95 in all DIR algorithms. Conclusion: The Idef and Vdef have not been completely restored to Iref and Vref and the accuracy of DIR algorithms was different depending on the degree of deformation. Hence, the performance of DIR algorithms should be verified for the desired applications.

  16. Shock wave absorber having a deformable liner

    DOE Patents [OSTI]

    Youngdahl, C.K.; Wiedermann, A.H.; Shin, Y.W.; Kot, C.A.; Ockert, C.E.

    1983-08-26

    This invention discloses a shock wave absorber for a piping system carrying liquid. The absorber has a plastically deformable liner defining the normal flow boundary for an axial segment of the piping system, and a nondeformable housing is spaced outwardly from the liner so as to define a gas-tight space therebetween. The flow capacity of the liner generally corresponds to the flow capacity of the piping system line, but the liner has a noncircular cross section and extends axially of the piping system line a distance between one and twenty times the diameter thereof. Gas pressurizes the gas-tight space equal to the normal liquid pressure in the piping system. The liner has sufficient structural capacity to withstand between one and one-half and two times this normal liquid pressures; but at greater pressures it begins to plastically deform initially with respect to shape to a more circular cross section, and then with respect to material extension by circumferentially stretching the wall of the liner. A high energy shock wave passing through the liner thus plastically deforms the liner radially into the gas space and progressively also as needed in the axial direction of the shock wave to minimize transmission of the shock wave beyond the absorber.

  17. Creep Deformation of Allvac 718Plus

    SciTech Connect (OSTI)

    Hayes, Robert W.; Unocic, Raymond R.; Nasrollahzadeh, Maryam

    2014-11-11

    The creep deformation behavior of Allvac 718Plus was studied over the temperature range 650° to 732°C at initial applied stress levels ranging from 517 to 655 MPa. Over the entire experimental temperature stress regime this alloy exhibits Class M type creep behavior with all creep curves exhibiting a decelerating strain rate with strain or time throughout primary creep. However, unlike pure metals or simple solid solution alloys this gamma prime strengthened superalloy does not exhibit steady state creep. Rather, primary creep is instantly followed by a long duration of accelerating strain rate with strain or time. These creep characteristics are common amongst the gamma prime strengthened superalloys. Allvac 718Plus also exhibits a very high temperature dependence of creep rate. Detailed TEM examination of the deformation structures of selected creep samples reveals dislocation mechanisms similar to those found in high volume fraction gamma prime strengthened superalloys. Strong evidence of microtwinning is found in several of the deformation structures. The presence of microtwinning may account for the strong temperature dependence of creep rate observed in this alloy. In addition, due to the presence of Nb and thus, grain boundary delta phase, matrix dislocation activity which is not present in non Nb bearing superalloys occurs in this alloy. The creep characteristics and dislocation mechanisms are presented and discussed in detail.

  18. The equilibrium vortex melting transition in YBa{sub 2}Cu{sub 3}O{sub 7}

    SciTech Connect (OSTI)

    Crabtree, G.W.; Welp, U.; Kwok, W.K.; Fendrich, J.A.; Veal, B.W.

    1996-10-01

    The dynamic and thermodynamic experimental evidence supporting first order vortex melting in clean crystals of YBa{sub 2}Cu{sub 3}O{sub 7} is reviewed.

  19. Core Competency Worksheets for Significant Cybersecurity Roles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Core Competency Worksheets for Significant Cybersecurity Roles Core Competency Worksheets for Significant Cybersecurity Roles shutterstock1703802jpg.jpg The OCIO has developed ...

  20. General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation

    SciTech Connect (OSTI)

    Van Gorder, Robert A.

    2014-06-15

    In his study of superfluid turbulence in the low-temperature limit, Svistunov [Superfluid turbulence in the low-temperature limit, Phys. Rev. B 52, 3647 (1995)] derived a Hamiltonian equation for the self-induced motion of a vortex filament. Under the local induction approximation (LIA), the Svistunov formulation is equivalent to a nonlinear dispersive partial differential equation. In this paper, we consider a family of rotating vortex filament solutions for the LIA reduction of the Svistunov formulation, which we refer to as the 2D LIA (since it permits a potential formulation in terms of two of the three Cartesian coordinates). This class of solutions holds the well-known Hasimoto-type planar vortex filament [H. Hasimoto, Motion of a vortex filament and its relation to elastica, J. Phys. Soc. Jpn. 31, 293 (1971)] as one reduction and helical solutions as another. More generally, we obtain solutions which are periodic in the space variable. A systematic analytical study of the behavior of such solutions is carried out. In the case where vortex filaments have small deviations from the axis of rotation, closed analytical forms of the filament solutions are given. A variety of numerical simulations are provided to demonstrate the wide range of rotating filament behaviors possible. Doing so, we are able to determine a number of vortex filament structures not previously studied. We find that the solution structure progresses from planar to helical, and then to more intricate and complex filament structures, possibly indicating the onset of superfluid turbulence.

  1. A new reversal mode in exchange coupled antiferromagnetic/ferromagnetic disks: distorted viscous vortex

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gilbert, Dustin A.; Ye, Li; Varea, Aïda; Agramunt-Puig, Sebastià; del Valle, Nuria; Navau, Carles; López-Barbera, José Francisco; Buchanan, Kristen S.; Hoffmann, Axel; Sánchez, Alvar; et al

    2015-04-28

    Magnetic vortices have generated intense interest in recent years due to their unique reversal mechanisms, fascinating topological properties, and exciting potential applications. In addition, the exchange coupling of magnetic vortices to antiferromagnets has also been shown to lead to a range of novel phenomena and functionalities. Here we report a new magnetization reversal mode of magnetic vortices in exchange coupled Ir20Mn80/Fe20Ni80 microdots: distorted viscous vortex reversal. In contrast to the previously known or proposed reversal modes, the vortex is distorted close to the interface and viscously dragged due to the uncompensated spins of a thin antiferromagnet, which leads to unexpectedmore » asymmetries in the annihilation and nucleation fields. These results provide a deeper understanding of the physics of exchange coupled vortices and may also have important implications for applications involving exchange coupled nanostructures.« less

  2. Large amplitude spin torque vortex oscillations at zero external field using a perpendicular spin polarizer

    SciTech Connect (OSTI)

    Dussaux, A.; Rache Salles, B.; Jenkins, A. S.; Bortolotti, P.; Grollier, J.; Cros, V.; Fert, A.; Khvalkovskiy, A. V.; Kubota, H.; Fukushima, A.; Yakushiji, K.; Yuasa, S.

    2014-07-14

    We investigate the microwave response of a spin transfer vortex based oscillator in a magnetic tunnel junction with an in-plane reference layer combined with a spin valve with an out-of-plane magnetization spin polarizing layer. The main advantage of this perpendicular spin polarizer is to induce a large spin transfer force even at zero magnetic field, thus leading to a record emitted power (up to 0.6 μW) associated to a very narrow spectral linewidth of a few hundreds of kHz. The characteristics of this hybrid vortex based spin transfer nano-oscillator obtained at zero field and room temperature are of great importance for applications based on rf spintronic devices as integrated and tunable microwave source and/or microwave detector.

  3. On the momentum of solitons and vortex rings in a superfluid

    SciTech Connect (OSTI)

    Pitaevskii, L. P.

    2014-12-15

    This paper is devoted to the calculation of the momentum of localized excitations, such as solitons and vortex rings, moving in a superfluid. The direct calculation of the momentum by integration of the mass flux density results in a badly-converging integral. I suggest a method for the renormalization of the integral with the explicit separation of a term related to the vortex line. This term can be calculated explicitly and gives the main contribution for the rings whose size is large compared to the healing length. I compare my method with the Jones and Roberts prescription for renormalization. I investigate the case of a uniform superfluid, and that of a superfluid in a cylindrical trap. I discuss the calculation of the jump in the phase of the order parameter and obtain a simple estimate for this jump.

  4. Weakening of the Stratospheric Polar Vortex by Arctic Sea-Ice Loss

    SciTech Connect (OSTI)

    Kim, Baek-Min; Son, Seok-Woo; Min, Seung-Ki; Jeong, Jee-Hoon; Kim, Seong-Joong; Zhang, Xiangdong; Shim, Taehyoun; Yoon, Jin-Ho

    2014-09-02

    Successive cold winters of severely low temperatures in recent years have had critical social and economic impacts on the mid-latitude continents in the Northern Hemisphere. Although these cold winters are thought to be partly driven by dramatic losses of Arctic sea ice, the mechanism that links sea ice loss to cold winters remains a subject of debate. Here, by conducting observational analyses and model experiments, we show how Arctic sea ice loss and cold winters in extra-polar regions are dynamically connected through the polar stratosphere. We find that decreased sea ice cover during early winter months (November-December), especially over the Barents-Kara seas, enhance the upward propagation of planetary-scale waves with wavenumbers of 1 and 2, subsequently weakening the stratospheric polar vortex in mid-winter (January- February). The weakened polar vortex preferentially induces a negative phase of Arctic Oscillation at the surface, resulting in low temperatures in mid-latitudes.

  5. A new reversal mode in exchange coupled antiferromagnetic/ferromagnetic disks: distorted viscous vortex

    SciTech Connect (OSTI)

    Gilbert, Dustin A.; Ye, Li; Varea, Aïda; Agramunt-Puig, Sebastià; del Valle, Nuria; Navau, Carles; López-Barbera, José Francisco; Buchanan, Kristen S.; Hoffmann, Axel; Sánchez, Alvar; Sort, Jordi; Liu, Kai; Nogués, Josep

    2015-04-28

    Magnetic vortices have generated intense interest in recent years due to their unique reversal mechanisms, fascinating topological properties, and exciting potential applications. In addition, the exchange coupling of magnetic vortices to antiferromagnets has also been shown to lead to a range of novel phenomena and functionalities. Here we report a new magnetization reversal mode of magnetic vortices in exchange coupled Ir20Mn80/Fe20Ni80 microdots: distorted viscous vortex reversal. In contrast to the previously known or proposed reversal modes, the vortex is distorted close to the interface and viscously dragged due to the uncompensated spins of a thin antiferromagnet, which leads to unexpected asymmetries in the annihilation and nucleation fields. These results provide a deeper understanding of the physics of exchange coupled vortices and may also have important implications for applications involving exchange coupled nanostructures.

  6. A vortex panel method for calculating aircraft downwash on parachute trajectories

    SciTech Connect (OSTI)

    Fullerton, T.L.; Strickland, J.H.; Sundberg, W.D.

    1991-01-01

    This paper presents a discussion of a methodology of the paneled-wing method for calculating aircraft-induced wake velocities. This discussion will include a description of how an aircraft and its wake are represented by finite length vortex filaments, how the strength and location of these filaments are determined based upon aircraft characteristics and trajectory data, and how the induced velocity values are determined once the location and strength of the vortex filaments are known. Examples will be presented showing comparisons between induced velocity values calculated using both the paneled-wing method and Strickland's lifting line method. Comparison is also made between calculated results from the paneled-wing method and wind tunnel data collected in the wake of a scale model aircraft. Additional examples will show the effect of including aircraft downwash calculations in a trajectory analysis for a parachute-retarded store delivered via aircraft. 3 refs., 12 figs.

  7. Laws of convective vortex formation behind a flame front during its propagation in a tube

    SciTech Connect (OSTI)

    Abrukov, S.A.; Samsonov, V.P.

    1986-05-01

    This paper examines laws and conditions of convective vortex formation in combustion products during the propagation of a slow, stable flame in a vertical, half-open tube. The main element of the experimental unit was the reaction tube and weightless conditions were created in a freely falling container holding the reaction tube. Propane-air and CO-air mixtures were used. The structure of the flow behind the flame front was studied by the interferometric method. Frames are show from an interference film illustrating the typical pattern of vortex formation behind the flame front when the flame propagates upward at a velocity of 7 cm/sec. Analyses of the interferograms shows that the flame is stable before the vortices appear and that the flow of combustion products is laminar.

  8. Reactor core isolation cooling system

    DOE Patents [OSTI]

    Cooke, F.E.

    1992-12-08

    A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom. 1 figure.

  9. Reactor core isolation cooling system

    DOE Patents [OSTI]

    Cooke, Franklin E.

    1992-01-01

    A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom.

  10. Magnetic vortex crystal formation in the antidot complement of square artificial spin ice

    SciTech Connect (OSTI)

    Araujo, C. I. L. de Silva, R. C.; Ribeiro, I. R. B.; Nascimento, F. S.; Felix, J. F.; Ferreira, S. O.; Moura-Melo, W. A.; Pereira, A. R.; Ml, L. A. S.

    2014-03-03

    We have studied ferromagnetic nickel thin films patterned with square lattices of elongated antidots that are negative analogues of square artificial spin ice. Micromagnetic simulations and direct current magnetic moment measurements reveal in-plane anisotropy of the magnetic hysteresis loops, and the formation of a dense array of magnetic vortices with random polarization and chirality. These multiply-connected antidot arrays could be superior to lattices of disconnected nanodisks for investigations of vortex switching by applied electric current.