Sample records for voltaic pv electricity

  1. Redesign of Electrical Installations to Maximize the Use of Photo Voltaic (PV) Cells at the End Use of Consumers in Kuwait

    E-Print Network [OSTI]

    Alatrash, J.; Mhaisen, N.; Ismail, Z.

    2010-01-01T23:59:59.000Z

    ) Photovoltaic PV 2010 1900 2 20 Photovoltaic PV2020 900 2 20 Table 2 gives the current price of Photovoltaic for Crystalline Silicon and Thin Films/Concentrators, while the price will be much reduced in the year 2020 as a result of using Thin Films... system was to meet a maximum demand load of 9710 MW in the year 2008, then the cost of one KW load was 19 475 /9710= 2005 US$/KW. By comparing this cost with the expected PV Photovoltaic in 2010 -given in Table 2 ? it is seems that the conventional...

  2. Impact of residential PV adoption on Retail Electricity Rates Desmond W.H. Cai a,n

    E-Print Network [OSTI]

    Low, Steven H.

    is the fraction of customers who adopt PV in any year based solely on the money saved by doing so in that year) solar cells has fallen below the retail price of grid electricity in some areas. A number of residential households with rooftop photo voltaic (PV) panels has grown rapidly over the past few years. This growth

  3. Lodi Electric Utility- PV Rebate Program

    Broader source: Energy.gov [DOE]

    Lodi Electric Utility offers rebates to its residential, commercial, industrial and municipal customers who install photovoltaic (PV) systems. The rebate program is funded with approximately $6...

  4. PV Fact Sheets Argument B1Some people state that "The external costs of PV electricity

    E-Print Network [OSTI]

    PV Fact Sheets Argument B1Some people state that "The external costs of PV electricity is much and the low one to thin-film cadmium telluride PV systems. Fossil fuel power plants PV displaces. 5.8 External

  5. November 21, 2000 PV Lesson Plan 3 PV Array Generating Electricity

    E-Print Network [OSTI]

    Oregon, University of

    November 21, 2000 PV Lesson Plan 3 ­ PV Array Generating Electricity Prepared for the Oregon in Arrays: Solar Cells Generating Electricity Lesson Plan Content: In this lesson, students will learn about electricity. Objectives: Students will learn to use a tool called PV WATTS to calculate the output of PV

  6. El Paso Electric Company- Solar PV Pilot Program

    Broader source: Energy.gov [DOE]

    '''''El Paso Electric's 2013 Solar PV Rebate program will reopen at 12:00 pm MST on February 1, 2013.'''''

  7. Wind and Solar-Electric (PV) Systems Exemption

    Broader source: Energy.gov [DOE]

    Minnesota excludes the value added by solar-electric (PV) systems installed after January 1, 1992 from real property taxation. In addition all real and personal property of wind-energy systems is...

  8. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    FERC) and the National Electrical Regulatory Corporation (Of Solar PV and CPV Onto The Electrical Grid By Steven Craig24† Electrical,†Controls†&†

  9. Minnesota Power- Solar-Electric (PV) Rebate Program

    Broader source: Energy.gov [DOE]

    Minnesota Power offers a rebate of $1,000 per kilowatt (kW) DC for grid-connected solar-electric (PV) systems, with a maximum award of $20,000 per customer or 60% installed costs per customer. This...

  10. November 21, 2000 PV Lesson Plan 2 Solar Electric Arrays

    E-Print Network [OSTI]

    Oregon, University of

    rating of a photovoltaic module is typically quoted as the power output of the module when the incidentNovember 21, 2000 PV Lesson Plan 2 ≠ Solar Electric Arrays Prepared for the Oregon Million Solar Roofs Coalition By Frank Vignola ≠ University of Oregon Solar Radiation Monitoring Lab John Hocken

  11. Distributed Solar PV for Electricity System Resiliency: Policy and Regulatory Considerations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01T23:59:59.000Z

    Distributed Solar PV systems have the potential of increasing the grid's resiliency to unforeseen events, such as extreme weather events and attacks. This paper presents the role that distributed PV can play in electric grid resiliency, introduces basic system design requirements and options, and discusses the regulatory and policy options for supporting the use of distributed PV for the purpose of increased electricity resiliency.

  12. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    the DC electric energy from the solar panels or modules intosolar energy available is subject to change with irradiance, temperature, and aging of PV panelsrooftop solar panels. While the renewable energy PV

  13. INTEGRATION OF HELIOCLIM-1 DATABASE INTO PV-GIS TO ESTIMATE SOLAR ELECTRICITY POTENTIAL IN AFRICA

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    INTEGRATION OF HELIOCLIM-1 DATABASE INTO PV-GIS TO ESTIMATE SOLAR ELECTRICITY POTENTIAL IN AFRICA T, the proper configuration of a PV system depends on the knowledge of solar resource, which, although generally service. The PV-GIS approach makes it possible to enhance the spatial resolution of the solar radiation

  14. Solar Works! In Seattle: Introduction to Solar Electric (PV)

    Broader source: Energy.gov [DOE]

    Presentation slides from residential PV workshop. Also covers general solar resource assessment, siting and financial incentives.

  15. Effect of geometrical configuration of radioactive sources on radiation intensity in beta-voltaic nuclear battery system: A preliminary result

    SciTech Connect (OSTI)

    Basar, Khairul, E-mail: khbasar@fi.itb.ac.id; Riupassa, Robi D., E-mail: khbasar@fi.itb.ac.id; Bachtiar, Reza, E-mail: khbasar@fi.itb.ac.id; Badrianto, Muldani D., E-mail: khbasar@fi.itb.ac.id [Nuclear Physics and Biophysics Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (Indonesia)

    2014-09-30T23:59:59.000Z

    It is known that one main problem in the application of beta-voltaic nuclear battery system is its low efficiency. The efficiency of the beta-voltaic nuclear battery system mainly depends on three aspects: source of radioactive radiation, interface between materials in the system and process of converting electron-hole pair to electric current in the semiconductor material. In this work, we show the effect of geometrical configuration of radioactive sources on radiation intensity of beta-voltaic nuclear battery system.

  16. Gainesville Regional Utilities- Solar-Electric (PV) System Rebate Program

    Broader source: Energy.gov [DOE]

    '''''NOTE: Application targets for fiscal year 2013 have been met for the GRU Solar PV Rebate Program. The next round of applications are scheduled to open on October 1, 2013 pending approval of...

  17. BATTERY-POWERED, ELECTRIC-DRIVE VEHICLES PROVIDING BUFFER STORAGE FOR PV CAPACITY VALUE

    E-Print Network [OSTI]

    Perez, Richard R.

    BATTERY-POWERED, ELECTRIC-DRIVE VEHICLES PROVIDING BUFFER STORAGE FOR PV CAPACITY VALUE Steven requirements that will result in a number of new battery-powered electric drive vehicles being sold beginning as vehicle-to-grid (V2G) power. In a recent press release, the Electric Power Research Institute speculates

  18. E-Print Network 3.0 - alpha-voltaic power source Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Albuquerque, New Mexico, January 2000 Miniaturized Radioisotope Solid State Power Sources Summary: for an alpha-voltaic or a hybrid thermoelectricalpha-voltaic power...

  19. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    in the design of larger PV plants. Chapter 2 will discussEdison central station PV plant at Hesperia, California,PV components. When a PV plant or installation is proposed

  20. Electricity storage for grid-connected household dwellings with PV panels

    SciTech Connect (OSTI)

    Mulder, Grietus; Six, Daan [Vlaamse Instelling voor Technologisch Onderzoek, Unit Energy Technology, Mol (Belgium); Ridder, Fjo De [Vrije Universiteit Brussel (Belgium)

    2010-07-15T23:59:59.000Z

    Classically electricity storage for PV panels is mostly designed for stand-alone applications. In contrast, we focus in this article on houses connected to the grid with a small-scale storage to store a part of the solar power for postponed consumption within the day or the next days. In this way the house owner becomes less dependent on the grid and does only pay for the net shortage of his energy production. Local storage solutions pave the way for many new applications like omitting over-voltage of the line and bridging periods of power-line black-out. Since 2009 using self-consumption of PV energy is publicly encouraged in Germany, which can be realised by electric storage. This paper develops methods to determine the optimal storage size for grid-connected dwellings with PV panels. From measurements in houses we were able to establish calculation rules for sizing the storage. Two situations for electricity storage are covered: - the storage system is an optimum to cover most of the electricity needs; - it is an optimum for covering the peak power need of a dwelling. After these calculation rules a second step is needed to determine the size of the real battery. The article treats the aspects that should be taken into consideration before buying a specific battery like lead-acid and lithium-ion batteries. (author)

  1. Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions

    E-Print Network [OSTI]

    Becker, Sarah; Andresen, Gorm B; Zeyer, Timo; Schramm, Stefan; Greiner, Martin; Jacobson, Mark Z

    2014-01-01T23:59:59.000Z

    Wind and solar PV generation data for the entire contiguous US are calculated, on the basis of 32 years of weather data with temporal resolution of one hour and spatial resolution of 40x40km$^2$, assuming site-suitability-based as well as stochastic wind and solar PV capacity distributions throughout the country. These data are used to investigate a fully renewable electricity system, resting primarily upon wind and solar PV power. We find that the seasonal optimal mix of wind and solar PV comes at around 80% solar PV share, owing to the US summer load peak. By picking this mix, long-term storage requirements can be more than halved compared to a wind only mix. The daily optimal mix lies at about 80% wind share due to the nightly gap in solar PV production. Picking this mix instead of solar only reduces backup energy needs by about 50%. Furthermore, we calculate shifts in FERC (Federal Energy Regulatory Commission)-level LCOE (Levelized Costs Of Electricity) for wind and solar PV due to their differing resour...

  2. Energy 101: Solar PV

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  3. Energy 101: Solar PV

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  4. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    with the growth of wind power and PV. TenneT is one ofApril 2011 has shown that wind power alone would extend thethe actual combination of wind power and PV has doubled the

  5. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    PV on WWT plant ponds can be a valuable energy efficiencyPV application for Waste Water Treatment (WWT) plants and its potential role in meeting Californiaís RPS and energy efficiency

  6. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    increasing levels of renewable energy production will resultpanels. While the renewable energy PV production that is on

  7. Thermal and electrical performance of a concentrating PV/Thermal collector: results from the ANU CHAPS collector

    E-Print Network [OSTI]

    Thermal and electrical performance of a concentrating PV/Thermal collector: results from the ANU CHAPS collector J.S. Coventry, E. Franklin and A. Blakers Centre for Sustainable Energy Systems 0506 E-mail: joe@faceng.anu.edu.au Abstract The combined heat and power solar (CHAPS) collector under

  8. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    solar PV and distributed generation. UTILITY RATE DESIGN ANDutility concerns that a high penetration of inverter-based solar energy systems along with other distributed generation

  9. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    adopted a program- the California Solar Initiative (CSI) -of the impact of the California Solar Initiative (CSI), andissues with rooftop solar PV in California are: 1) Utility

  10. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    paper .pdf [148] Solar PV Carousel Trackers For Buildingtrackers may experience a capacity factor benefit of between 25-30% (Campbell 2010b) in high solar

  11. Presented at the 21st European Photovoltaic Solar Energy Conference, Dresden,Germany, 4-8 September 2006 ENVIRONMENTAL IMPACTS OF PV ELECTRICITY GENERATION -

    E-Print Network [OSTI]

    2006 ENVIRONMENTAL IMPACTS OF PV ELECTRICITY GENERATION - A CRITICAL COMPARISON OF ENERGY SUPPLY, NY 11973, USA ABSTRACT: An overview is given of the environmental impacts of different PV in the assessment of environmental impacts from photovoltaic systems. In this paper we will give an overview

  12. PV PLANNER A DESIGN AND

    E-Print Network [OSTI]

    Delaware, University of

    PV PLANNER A DESIGN AND ANALYSIS TOOL FOR BUILDING INTEGRATED SOLAR ELECTRIC SYSTEMS FINAL PLANNER A DESIGN AND ANALYSIS TOOL FOR BUILDING INTEGRATED SOLAR ELECTRIC SYSTEMS Final Report A Renewable............................................................................................................................................26 3. ILLUSTRATIVE OUTPUTS FROM PV PLANNER FOR A BUILDING INTEGRATED (BIPV) PV APPLICATION

  13. PhotoVoltaic distributed generation for Lanai power grid real-time simulation and control integration scenario.

    SciTech Connect (OSTI)

    Robinett, Rush D., III; Kukolich, Keith (Opal RT Technologies, Montreal, Quebec, Canada); Wilson, David Gerald; Schenkman, Benjamin L.

    2010-06-01T23:59:59.000Z

    This paper discusses the modeling, analysis, and testing in a real-time simulation environment of the Lanai power grid system for the integration and control of PhotoVoltaic (PV) distributed generation. The Lanai Island in Hawaii is part of the Hawaii Clean Energy Initiative (HCEI) to transition to 30% renewable green energy penetration by 2030. In Lanai the primary loads come from two Castle and Cook Resorts, in addition to residential needs. The total peak load profile is 12470 V, 5.5 MW. Currently there are several diesel generators that meet these loading requirements. As part of the HCEI, Lanai has initially installed 1.2 MW of PV generation. The goal of this study has been to evaluate the impact of the PV with respect to the conventional carbon-based diesel generation in real time simulation. For intermittent PV distributed generation, the overall stability and transient responses are investigated. A simple Lanai 'like' model has been developed in the Matlab/Simulink environment (see Fig. 1) and to accommodate real-time simulation of the hybrid power grid system the Opal-RT Technologies RT-Lab environment is used. The diesel generators have been modelled using the SimPowerSystems toolbox swing equations and a custom Simulink module has been developed for the High level PV generation. All of the loads have been characterized primarily as distribution lines with series resistive load banks with one VAR load bank. Three-phase faults are implemented for each bus. Both conventional and advanced control architectures will be used to evaluate the integration of the PV onto the current power grid system. The baseline numerical results include the stable performance of the power grid during varying cloud cover (PV generation ramping up/down) scenarios. The importance of assessing the real-time scenario is included.

  14. C-Voltaics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis a city in Chittenden County, Vermont.Energy

  15. A Hierarchical Control Algorithm for Managing Electrical Energy Storage Systems in Homes Equipped with PV Power Generation

    E-Print Network [OSTI]

    Pedram, Massoud

    use their PV-based generation and controllable storage devices for peak shaving on their power demand controller should possess the ability of forecasting future PV-based power generation and load power consumption profiles for better performance. In this paper we present novel PV power generation and load power

  16. Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions

    E-Print Network [OSTI]

    Jacobson, Mark

    in order to follow the de- mand, wind and solar PV power output is largely determined by weather conditions Large-scale integration of renewable power generation Wind power generation Solar PV power generation Power transmission a b s t r a c t A future energy system is likely to rely heavily on wind and solar PV

  17. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    Electric Coordinating Council (WECC), the National RenewableSubstations Recommendations For WECC Transmission Expansioncoordinated with the CAISO and WECC. OTHER The target budget

  18. Considerations for PV Site Surveys

    E-Print Network [OSTI]

    Johnson, Eric E.

    and building codes determine how a solar-electric (photovoltaic; PV) system is installed. A site survey- grid system, if solar energy is not collected, then the electrical loads may not be supported withoutConsiderations for PV Site Surveys John Wiles Sponsored by the U.S. Department of Energy this loss

  19. Comparison of Pyranometers vs. PV Reference Cells for Evaluation of PV Array Performance

    SciTech Connect (OSTI)

    Dunn, L.; Gostein, M.; Emery, K.

    2012-09-01T23:59:59.000Z

    As the photovoltaics (PV) industry has grown, the need for accurately monitoring the solar resource of PV power plants has increased. Historically, the PV industry has relied on thermopile pyranometers for irradiance measurements, and a large body of historical irradiance data taken with pyranometers exists. However, interest in PV reference devices is increasing. In this paper, we discuss why PV reference devices are better suited for PV applications, and estimate the typical uncertainties in irradiance measurements made with both pyranometers and PV reference devices. We assert that the quantity of interest in monitoring a PV power plant is the equivalent irradiance under the IEC 60904-3 reference solar spectrum that would produce the same electrical response in the PV array as the incident solar radiation. For PV-plant monitoring applications, we find the uncertainties in irradiance measurements of this type to be on the order of +/-5% for thermopile pyranometers and +/-2.4% for PV reference devices.

  20. Analysis and Design of Smart PV Module

    E-Print Network [OSTI]

    Mazumdar, Poornima

    2012-12-10T23:59:59.000Z

    This thesis explores the design of a smart photovoltaic (PV) module- a PV module in which PV cells in close proximity are electrically grouped to form a pixel and are connected to dc-dc converter blocks which reside embedded in the back pane...

  1. Gulf Power- Solar PV Program

    Broader source: Energy.gov [DOE]

    '''''All funding has currently been reserved and new applications are no longer being accepted. See Gulf Power's [http://www.gulfpower.com/renewable/solarElectricity.asp Solar PV] web site for more...

  2. Lassen Municipal Utility District- PV Rebate Program

    Broader source: Energy.gov [DOE]

    Lassen Municipal Utility District (LMUD) is providing incentives for its customers to purchase solar electric photovoltaic (PV) systems. Rebate levels will decrease annually over the life of the...

  3. Updating Interconnection Screens for PV System Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abraham Ellis, Roger Hill Sandia National Laboratories Tom Key, Kristen Nicole, Jeff Smith Electric Power Research Institute Updating Interconnection Screens for PV System...

  4. Development of an Approach to Compare the `Value' of Electrical and Thermal Output from a Domestic PV/Thermal System

    E-Print Network [OSTI]

    "Mandatory Renewable Energy Target" in Australia allows a unit of energy as solar hot water to be counted PV/Thermal System J.S. Coventry and K. Lovegrove Centre for Sustainable Energy Systems Australian National University Canberra 0200 ACT Australia E-mail: joe@faceng.anu.edu.au Abstract When considering

  5. High Efficiency Solar Power via Separated Photo and Voltaic Pathways

    SciTech Connect (OSTI)

    Michael J. Naughton

    2009-02-17T23:59:59.000Z

    This project demonstrates a novel nanostructured solar cell architecture capable of achieving high efficiency levels that is relatively simple and inexpensive to manufacture. The high efficiency will be achieved by the novel structure that separates the path of the photons from the path of the generated charge carriers. In this way, the photon path can be long for maximum light absorption, while the path for carriers can be short for maximum electronic energy harvesting. The combination of maximum light absorption coupled with maximum carrier harvesting is the basis for the expected high efficiency. The project will develop high efficiency solar cell prototypes utilizing this unique nanostructured architecture. The project addresses the fundamental limitation inherent in all current solar cell designs, and which opens a pathway to development for high efficiency solar cells at low cost. Realizing this goal will result in a levelized cost of electricity in the range of 10Ę/kWh, which would achieve the long-sought goal of making photovoltaic electricity cost competitive with fossil-fuel generated electricity without any governmental subsidies. This breakthrough would spur the already rapid growth in the photovoltaic industry to an explosive pace, with significant, widespread benefit to the national economy and the nationís energy security. The initial target of the program is to develop single-junction solar cells using ultrathin amorphous silicon with the performance approaching that of single crystal silicon cells.

  6. High Resolution PV Power Modeling for Distribution Circuit Analysis

    SciTech Connect (OSTI)

    Norris, B. L.; Dise, J. H.

    2013-09-01T23:59:59.000Z

    NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.

  7. City of Lompoc Utilities- PV Rebate Program

    Broader source: Energy.gov [DOE]

    City of Lompoc Utilities provides rebates to its electric customers who purchase and install photovoltaic (PV) systems. The rebate is $2.00 per watt-AC. The incentive amount may not exceed 50% the...

  8. Austin Energy- Commercial PV Incentive Program

    Broader source: Energy.gov [DOE]

    Austin Energy, a municipal utility, offers a production incentive to its commercial and multi-family residential customers for electricity generated by qualifying photovoltaic (PV) systems of up to...

  9. Merced Irrigation District- PV Buydown Program

    Broader source: Energy.gov [DOE]

    Merced Irrigation District (MID) offers its residential, commercial and non-profit customers a rebate for installing solar electric photovoltaic (PV) systems on their homes and offices. The rebate...

  10. backfed from utility-interactive PV inverters. This equation expresses this ratings requirement

    E-Print Network [OSTI]

    Johnson, Eric E.

    -interactive photovoltaic (PV) system and the electrical utility grid is an area of importance to PV system designers and installers. Due to the varying sizes of PV systems and configurations of existing service-entrance equipment, these connections vary significantly among PV systems. Differences in Section 690.64 of the 2005 and 2008 editions

  11. Quantify Degradation Rates and Mechanisms of PV Modules and Systems Installed in Florida Through Comprehensive Experimental and Theoretical Analysis (Poster)

    SciTech Connect (OSTI)

    Sorloaica-Hickman, N.; Davis, K.; Kurtz, S.; Jordan, D.

    2011-02-01T23:59:59.000Z

    The economic viability of photovoltaic (PV) technologies is inextricably tied to both the electrical performance and degradation rate of the PV systems, which are the generators of electrical power in PV systems. Over the past 15 years, performance data have been collected on numerous PV systems installed throughout the state of Florida and will be presented.

  12. Sandia National Laboratories: PV Valueģ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and PV industry sales staff. For appraisers, the inputs specific to PV in the Residential Green and Energy Efficient Addendum can be used as inputs to PV Value. Valuing a PV...

  13. Electricity Rate Structures and the Economics of Solar PV: Could Mandatory Time-of-Use Rates Undermine Californiaís Solar Photovoltaic Subsidies?

    E-Print Network [OSTI]

    Borenstein, Severin

    2007-01-01T23:59:59.000Z

    is the ďsoilingĒ e?ect: dirty solar panels absorb less solarinstalling solar photovoltaic panels at their homes orStudies of solar PV production over a panelís lifetime

  14. Stabilized PV system

    DOE Patents [OSTI]

    Dinwoodie, Thomas L. (Piedmont, CA)

    2002-12-17T23:59:59.000Z

    A stabilized PV system comprises an array of photovoltaic (PV) assemblies mounted to a support surface. Each PV assembly comprises a PV module and a support assembly securing the PV module to a position overlying the support surface. The array of modules is circumscribed by a continuous, belt-like perimeter assembly. Cross strapping, extending above, below or through the array, or some combination of above, below and through the array, secures a first position along the perimeter assembly to at least a second position along the perimeter assembly thereby stabilizing the array against wind uplift forces. The first and second positions may be on opposite sides on the array.

  15. Updating Technical Screens for PV Interconnection: Preprint

    SciTech Connect (OSTI)

    Coddington, M.; Ellis, A.; Lynn, K.; Razon, A.; Key, T.; Kroposki, B.; Mather, B.; Hill, R.; Nicole, K.; Smith, J.

    2012-08-01T23:59:59.000Z

    Solar photovoltaics (PV) is the dominant type of distributed generation (DG) technology interconnected to electric distribution systems in the United States, and deployment of PV systems continues to increase rapidly. Considering the rapid growth and widespread deployment of PV systems in United States electric distribution grids, it is important that interconnection procedures be as streamlined as possible to avoid unnecessary interconnection studies, costs, and delays. Because many PV interconnection applications involve high penetration scenarios, the process needs to allow for a sufficiently rigorous technical evaluation to identify and address possible system impacts. Existing interconnection procedures are designed to balance the need for efficiency and technical rigor for all DG. However, there is an implicit expectation that those procedures will be updated over time in order to remain relevant with respect to evolving standards, technology, and practical experience. Modifications to interconnection screens and procedures must focus on maintaining or improving safety and reliability, as well as accurately allocating costs and improving expediency of the interconnection process. This paper evaluates the origins and usefulness of the capacity penetration screen, offers potential short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen.

  16. Electric District No. 3- Solar Rebate Program

    Broader source: Energy.gov [DOE]

    Electric District No. 3 of Pinal County (ED3) provides incentives for their residential and business customers to invest in photovoltaics (PV). Residential and commercial customers installing PV...

  17. PV Incentive Program

    Broader source: Energy.gov [DOE]

    The New York State Energy Research and Development Authority (NYSERDA) provides an incentive eligible installers for the installation of approved, grid-connected photovoltaic (PV) systems. The base...

  18. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01T23:59:59.000Z

    in peak shaving by the battery and PV. Therefore, to satisfylow storage & 60% PV incentive Battery discharging BatteryElectricity input to battery Considering lower PV prices and

  19. Roles of core-shell and {delta}-ray kinetics in layered BN {alpha}-voltaic efficiency

    SciTech Connect (OSTI)

    Melnick, Corey [Mechanical Engineering Department, University of Michigan, Ann Arbor, Michigan 48109 (United States); Kaviany, Massoud [Mechanical Engineering Department, University of Michigan, Ann Arbor, Michigan 48109 (United States); Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Kim, Moo-Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of)

    2013-02-14T23:59:59.000Z

    {alpha}-voltaics harvest electron-hole pairs created as energetic {alpha} particles collide with and ionize electrons in a semiconductor, creating {delta}-rays. After ionization, charged pair production continues through {delta}-ray impact ionization events and the Auger relaxation of core-shell holes created through K-shell ionization events. Secondary ionization events are quantified using the TPP-2M model, the fraction of K-shell ionization events is determined using the energy-loss Coulomb-repulsion perturbed-stationary-state relativistic theory, and the relaxation of the resulting holes is treated with a fully ab initio approach using multiple Fermi golden rule calculations for ranges of carrier concentrations and temperatures. The limiting rate is 15 ns{sup -1} for small carrier concentrations and high temperatures, as compared to the radiative core-shell relaxation rate estimated here at 20 ns{sup -1}, indicating that Auger modes contribute significantly. Moreover, the K-shell ionization events are shown to dominate for low energy {alpha} particles and vanish for high energy ones. Thus, the efficiency loss due to energy dissipation in the fuel layer is mitigated, which is demonstrated by the analysis of a layered fuel-voltaic device with an efficiency from 20% to 14% for fuel layers between 5 and 10 {mu}m thick. The design of a {alpha}-voltaic integrated with a thermoelectric generator is suggested for improved efficiency and the system-level mitigation of radiation damage and geometric inefficiency.

  20. Development of a dispatchable PV peak shaving system. Final report on PV:BONUS Phase 2 activities

    SciTech Connect (OSTI)

    Ferguson, W.D. [Conectiv, Inc., Wilmington, DE (United States); Nigro, R.M. [Applied Energy Group, Inc., Hauppauge, NY (United States)

    1999-01-20T23:59:59.000Z

    In July 1993, the Delmarva Power and Light Company (now Conectiv, Inc.) was awarded a contract for the development of a Dispatchable Photovoltaic Peak Shaving System under the US Department of Energy PV:BONUS Program. The rationale for the dispatchable PV peak shaving system is based on the coincidence between the solar resource and the electrical load in question. Where poor coincidence exists, a PV array by itself does little to offset peak demands. However, with the addition of a relatively small amount of energy storage, the energy from the PV array can be managed and the value of the PV system increases substantially. In Phase 2, Delmarva Power continued the refinement of the system deployed in Phase 1. Four additional dispatchable PV peak shaving systems were installed for extended testing and evaluation at sites in Delaware, Maryland, Wisconsin and North Carolina. A second type of system that can be used to provide back-up power as well as peak shaving was also developed in Phase 2. This PV-UPS system used a packaging approach nearly identical to the PV peak shaving system, although there were significant differences in the design of the power electronics and control systems. Conceptually, the PV-UPS system builds upon the idea of adding value to PV systems by increasing functionality. A prototype of the PV-UPS system was installed in Delaware for evaluation near the end of the contract period.

  1. Sandia National Laboratories: PV Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    manufacturing consultation complete performance characterization of PV cells and photo sensors calibration of PV reference cells, reference modules, and solar instruments...

  2. Evaluation of Encapsulant Materials for PV Applications

    SciTech Connect (OSTI)

    Kempe, M.

    2010-01-01T23:59:59.000Z

    Encapsulant materials used in PV modules serve multiple purposes. They physically hold components in place, provide electrical insulation, optically couple superstrate materials (e.g., glass) to PV cells, protect components from mechanical stress by mechanically de-coupling components via strain relief, and protect materials from corrosion. To do this, encapsulants must adhere well to all surfaces, remain compliant, and transmit light after exposure to temperature, humidity, and UV radiation histories. Encapsulant materials by themselves do not completely prevent water vapour ingress [1-3], but if they are well adhered, they will prevent the accumulation of liquid water providing protection against corrosion as well as electrical shock. Here, a brief review of some of the polymeric materials under consideration for PV applications is provided, with an explanation of some of their advantages and disadvantages.

  3. Solar Resource and PV Systems Performance

    E-Print Network [OSTI]

    Solar Resource and PV Systems Performance at Selected Test Sites Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Cooperative Agreement No. DE-FC26-06NT42847 Hawai`i Distributed Energy Resource Technologies for Energy Security Task 8 Deliverable plus

  4. PV Solar Site Assessment (Milwaukee High School)

    Broader source: Energy.gov [DOE]

    The purpose of this assessment is to provide site-specific information on how a solar electric (also referred to as a photovoltaic, or PV) system would perform at your location, including information on estimated physical size, rated output, energy production, costs, financial incentives and mounting options. Site assessors are required to present unbiased information and may not recommend contractors or products.

  5. Design a PV-AF system using V2G Technology to Improve Power Quality

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    --PHEVs, PV-AF, Active filter, Battery scheme I. INTRODUCTION Plug in Hybrid Electrical Vehicles (PHEVsDesign a PV-AF system using V2G Technology to Improve Power Quality F. R. Islam, and H. R. Pota a photovoltaic shunt active filter (PV- AF) system to improve power quality of photovoltaic generation. A system

  6. PV VALUE(tm) User Manual v. 1.0

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Value(tm) User Manual v. 1.0 Jamie L. Johnson - Solar Power Electric(tm) Geoffrey T. Klise - Sandia National Laboratories 1312012 SAND2012-0682P Sandia National Laboratories...

  7. Grid integrated distributed PV (GridPV).

    SciTech Connect (OSTI)

    Reno, Matthew J.; Coogan, Kyle [Georgia Institute of Technology, Atlanta, GA

    2013-08-01T23:59:59.000Z

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function in the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  8. Large-Scale PV Integration Study

    SciTech Connect (OSTI)

    Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

    2011-07-29T23:59:59.000Z

    This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energyís electric grid system in southern Nevada. It analyzes the ability of NV Energyís generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

  9. September 16 ESTAP Webinar: Optimizing the Benefits of a PV with...

    Office of Environmental Management (EM)

    (PV) storage system with a battery. This webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery and Energy...

  10. DOE High Performance Concentrator PV Project

    SciTech Connect (OSTI)

    McConnell, R.; Symko-Davies, M.

    2005-08-01T23:59:59.000Z

    Much in demand are next-generation photovoltaic (PV) technologies that can be used economically to make a large-scale impact on world electricity production. The U.S. Department of Energy (DOE) initiated the High-Performance Photovoltaic (HiPerf PV) Project to substantially increase the viability of PV for cost-competitive applications so that PV can contribute significantly to both our energy supply and environment. To accomplish such results, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices with the goal of enabling progress of high-efficiency technologies toward commercial-prototype products. We will describe the details of the subcontractor and in-house progress in exploring and accelerating pathways of III-V multijunction concentrator solar cells and systems toward their long-term goals. By 2020, we anticipate that this project will have demonstrated 33% system efficiency and a system price of $1.00/Wp for concentrator PV systems using III-V multijunction solar cells with efficiencies over 41%.

  11. Open PV Project: Unlocking PV Installation Data (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This brochure summarizes the Open PV Project, a collaborative effort of government, industry, and the public to compile a comprehensive database of PV installations in the United States. The brochure outlines the purpose and history of the project as well as the main capabilities and benefits of the online Open PV tool. The brochure also introduces how features of the tool are used, and it describes the sources and characteristics of Open PV's data and data collection processes.

  12. Energy 101: Solar PV | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar PV Energy 101: Solar PV Addthis Description Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel...

  13. Testing for PV Reliability (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Bansal, S.

    2014-09-01T23:59:59.000Z

    The DOE SUNSHOT workshop is seeking input from the community about PV reliability and how the DOE might address gaps in understanding. This presentation describes the types of testing that are needed for PV reliability and introduces a discussion to identify gaps in our understanding of PV reliability testing.

  14. Sensitivity of Rooftop PV Projections in the SunShot Vision Study to Market Assumptions

    SciTech Connect (OSTI)

    Drury, E.; Denholm, P.; Margolis, R.

    2013-01-01T23:59:59.000Z

    The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The SolarDS model was used to simulate rooftop PV demand for this study, based on several PV market assumptions--future electricity rates, customer access to financing, and others--in addition to the SunShot PV price projections. This paper finds that modeled PV demand is highly sensitive to several non-price market assumptions, particularly PV financing parameters.

  15. Battery Management for Grid-Connected PV Systems with a Battery

    E-Print Network [OSTI]

    Pedram, Massoud

    }@usc.edu ABSTRACT Photovoltaic (PV) power generation systems are one of the most promising renewable power sources-connected systems, Photovoltaic power, Electricity bill 1. INTRODUCTION The number and capacity of photovoltaic (PV for customers to save enough money with lower monthly electricity bills to compensate the initial cost

  16. Teksun PV Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place:Innovation & Solutions HomeTeksun PV Manufacturing

  17. Literature Review of Uncertainty of Analysis Methods (PV F-Chart Program), Report to the Texas Commission on Environmental Quality

    E-Print Network [OSTI]

    Haberl, J. S.; Cho, S.

    2004-01-01T23:59:59.000Z

    -792)....................................................................................................... 11 6.2 Example 2: Calculations of Monthly Electrical Output and Solar Fraction for a PV Power System Array Using the PV F-Chart Program of DOS Version 3.1. 14 7 References...: Calculations of Monthly Electrical Output and Solar Fraction for a PV Power System Array Using the PV F-Chart Program of DOS Version 3.1. This second example shows the selections of system, collector type and other parameters that are needed for the PV F...

  18. Characterizing Shading Losses on Partially Shaded PV Systems (Presentation)

    SciTech Connect (OSTI)

    Deline, C.

    2010-09-23T23:59:59.000Z

    Presentation on shaded PV power loss, practical issues with modeling shaded PV, and methods of implementing partially shaded PV modeling.

  19. How Can We Make PV Modules Safer?: Preprint

    SciTech Connect (OSTI)

    Wohlgemuth, J. H.; Kurtz, S. R.

    2012-06-01T23:59:59.000Z

    Safety is a prime concern for the photovoltaics (PV) industry. As a technology deployed on residential and commercial buildings, it is critical that PV not cause damage to the buildings nor harm the occupants. Many of the PV systems on buildings are of sufficiently high voltage (300 to 600 Volts dc) that they may present potential hazards. These PV systems must be safe in terms of mechanical damage (nothing falls on someone), shock hazard (no risk of electrical shock when touching an exposed circuit element), and fire (the modules neither cause nor promote a fire). The present safety standards (IEC 61730 and UL 1703) do a good job of providing for design rules and test requirements for mechanical, shock, and spread of flame dangers. However, neither standard addresses the issue of electrical arcing within a module that can cause a fire. To make PV modules, they must be designed, built, and installed with an emphasis on minimizing the potential for open circuits and ground faults. This paper provides recommendations on redundant connection designs, robust mounting methods, and changes to the safety standards to yield safer PV modules.

  20. EWEB- Solar Electric Program (Performance-Based Incentive)

    Broader source: Energy.gov [DOE]

    The Eugene Water and Electric Board's (EWEB) Solar Electric Program offers financial incentives for residential and commercial customers who generate electricity using solar photovoltaic (PV)...

  1. 3-Port Single-Stage PV & Battery Converter Improves Efficiency and Cost in Combined PV/Battery Systems

    SciTech Connect (OSTI)

    Bundschuh, Paul [Ideal Power

    2013-03-23T23:59:59.000Z

    Due to impressive cost reductions in recent years, photovoltaic (PV) generation is now able to produce electricity at highly competitive prices, but PVís inherent intermittency reduces the potential value of this energy. The integration of battery storage with PV will be transformational by increasing the value of solar. Utility scale systems will benefit by firming intermittency including PV ramp smoothing, grid support and load shifting, allowing PV to compete directly with conventional generation. For distributed grid-tied PV adding storage will reduce peak demand utility charges, as well as providing backup power during power grid failures. The largest long term impact of combined PV and battery systems may be for delivering reliable off-grid power to the billions of individuals globally without access to conventional power grids, or for billions more that suffer from daily power outages. PV module costs no longer dominate installed PV system costs. Balance-of-System (BOS) costs including the PV inverter and installation now contribute the majority of installed system costs. Battery costs are also dropping faster than installation and battery power converter systems. In each of these separate systems power converters have become a bottleneck for efficiency, cost and reliability. These bottlenecks are compounded in hybrid power conversion systems that combine separate PV and battery converters. Hybrid power conversion systems have required multiple power converters hardware units and multiple power conversion steps adding to efficiency losses, product and installation costs, and reliability issues. Ideal Power Converters has developed and patented a completely new theory of operation for electronic power converters using its indirect EnergyPacket Switchingô topology. It has established successful power converter products for both PV and battery systems, and its 3-Port Hybrid Converter is the first product to exploit the topologyís capability for the industryís first single-stage multi-port hybrid power converter. This unique low cost approach eliminates the hybrid power conversion bottlenecks when integrating batteries into PV systems. As result this product will significantly accelerate market adoption of these systems.

  2. Outdoor PV Degradation Comparison

    SciTech Connect (OSTI)

    Jordan, D. C.; Smith, R. M.; Osterwald, C. R.; Gelak, E.; Kurtz, S. R.

    2011-02-01T23:59:59.000Z

    As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output; may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined; accurately. At the Performance and Energy Rating Testbed (PERT) at the Outdoor Test Facility (OTF) at the; National Renewable Energy Laboratory (NREL) more than 40 modules from more than 10 different manufacturers; were compared for their long-term outdoor stability. Because it can accommodate a large variety of modules in a; limited footprint the PERT system is ideally suited to compare modules side-by-side under the same conditions.

  3. Sandia National Laboratories: PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch WelcomeSciencePrograms NuclearPublications AnnualNuclearPV

  4. Sandia National Laboratories: PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNoLong RangePILS Sandia'sAdvancedPV

  5. Sandia National Laboratories: PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNoLong RangePILS Sandia'sAdvancedPVFinancePV

  6. 2 IAEI NEWS November. December 2012 www.iaei.org pv systems in unusual locations

    E-Print Network [OSTI]

    Johnson, Eric E.

    the circulating pump. The combination of a PV- powered pump with a solar collector works well since bright sun they be permit- ted and inspected? Here are some examples of such systems. Electric Gate Openers PV-powered at night and during cloudy weather. Normally the prod- ucts are sold as a kit and installed by the building

  7. Energy and Society (ER100/PP184/ER200/PP284) Topics: PV, Wind, environmental justice

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Energy and Society (ER100/PP184/ER200/PP284) Topics: PV, Wind, environmental justice Due Nov. 21 [ER200/PP284] - 1 - 1. Comparing PV costs across the US [24 points] In this question we are going to compare the costs of generating electricity using solar energy in different parts of the United States. a

  8. Modeling and Simulation of Solar PV Arrays under Changing Illumination Conditions

    E-Print Network [OSTI]

    Lehman, Brad

    the amount of electric power that may be generated from the solar panel at time of use. To be specificModeling and Simulation of Solar PV Arrays under Changing Illumination Conditions Dzung D Nguyen shadows (a passing cloud) on the output power of solar PV arrays. Each solar array is composed of a matrix

  9. A 20-SUN HYBRID PV-THERMAL LINEAR MICRO-CONCENTRATOR SYSTEM FOR URBAN ROOFTOP APPLICATIONS

    E-Print Network [OSTI]

    A 20-SUN HYBRID PV-THERMAL LINEAR MICRO-CONCENTRATOR SYSTEM FOR URBAN ROOFTOP APPLICATIONS D Walter-mounted system couples the benefits of distributed PV electricity generation with the on-site generation of thermal energy in a temperature range of 60 to 220 ¬ļC. This is ideal for applications ranging from

  10. EPJ Photovoltaics 2, 20301 (2011) www.epj-pv.org

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    2011-01-01T23:59:59.000Z

    EPJ Photovoltaics 2, 20301 (2011) www.epj-pv.org DOI: 10.1051/epjpv/2011001 c Owned by the authors, published by EDP Sciences, 2011 EPJ PhotovoltaicsEPJ Photovoltaics Geometrical optimization and electrical online: 1 April 2011 Abstract This article investigates the optimal efficiency of a photovoltaic system

  11. European Photovoltaic Solar Energy Conference, Hamburg, Germany, 21-24 September 2009, 4CO.2.3 Quantitative analysis of PV-modules by electroluminescence images for

    E-Print Network [OSTI]

    the PV module series resistance. We call this method "voltage imaging of the PV module" (VIM to our VIM approach. Keywords: PV module, electroluminescence 1. Introduction In recent years imaging as disruptions of the electrical interconnectors [7, 8, 9]. In this work, we apply the VIM approach presented

  12. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect (OSTI)

    K. Anderson; M. Coddington; K. Burman; S. Hayter; B. Kroposki; and A. Watson

    2009-11-30T23:59:59.000Z

    The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in the five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to √?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?networks√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬Ě in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and less expensive distributed PV system interconnections. To assess ways to improve the interconnection process, NREL conducted a four-part study with support from DOE. The NREL team then compiled the final reports from each study into this report. In Section 1√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?PV Deployment Analysis for New York City√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?we analyze the technical potential for rooftop PV systems in the city. This analysis evaluates potential PV power production in ten Con Edison networks of various locations and building densities (ranging from high density apartments to lower density single family homes). Next, we compare the potential power production to network loads to determine where and when PV generation is most likely to exceed network load and disrupt network protection schemes. The results of this analysis may assist Con Edison in evaluating future PV interconnection applications and in planning future network protection system upgrades. This analysis may also assist other utilities interconnecting PV systems to networks by defining a method for assessing the technical potential of PV in the network and its impact on network loads. Section 2√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?A Briefing for Policy Makers on Connecting PV to a Network Grid√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?presents an overview intended for nontechnical stakeholders. This section describes the issues associated with interconnecting PV systems to networks, along with possible solutions. Section 3√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?Technical Review of Concerns and Solutions to PV Interconnection in New Y

  13. 2014 PV Performance Modeling Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 PV Performance Modeling Workshop Photo courtesy of Sempra Energy 8:00 AM to 9:00 PM Monday, May 5, 2014 At Biltmore Hotel, Santa Clara, California 512014 Agenda: Start Time...

  14. Sandia National Laboratories: PV Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bruce King 505.284.6571 bhking at sandia.gov Tagged with: Energy * photovoltaic * Photovoltaics * PV * Renewable Energy * SAND 2011-4654W * Solar Energy * Solar Research Comments...

  15. Pressure-equalizing PV assembly and method

    DOE Patents [OSTI]

    Dinwoodie, Thomas L.

    2004-10-26T23:59:59.000Z

    Each PV assembly of an array of PV assemblies comprises a base, a PV module and a support assembly securing the PV module to a position overlying the upper surface of the base. Vents are formed through the base. A pressure equalization path extends from the outer surface of the PV module, past the PV module, to and through at least one of the vents, and to the lower surface of the base to help reduce wind uplift forces on the PV assembly. The PV assemblies may be interengaged, such as by interengaging the bases of adjacent PV assemblies. The base may include a main portion and a cover and the bases of adjacent PV assemblies may be interengaged by securing the covers of adjacent bases together.

  16. PSCAD Modules Representing PV Generator

    SciTech Connect (OSTI)

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2013-08-01T23:59:59.000Z

    Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based on the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.

  17. Esthetically Designed Municipal PV System Maximizes Energy Production and Revenue Return

    Broader source: Energy.gov [DOE]

    In late 2008, the City of Sebastopol, CA installed a unique 42 kW grid-interactive photovoltaic (PV) system to provide electricity for pumps of the Sebastopol municipal water system. The resulting innovative Sun Dragon PV system, located in a public park, includes design elements that provide optimized electrical performance and revenue generation for the energy produced while also presenting an artistic and unique appearance to park visitors.

  18. Fault Current Contribution from Single-Phase PV Inverters

    SciTech Connect (OSTI)

    Keller, J.; Kroposki, B.; Bravo, R.; Robles, S.

    2011-01-01T23:59:59.000Z

    A significant increase in photovoltaic (PV) system installations is expected to come on line in the near future and as the penetration level of PV increases, the effect of PV may no longer be considered minimal. One of the most important attributions of additional PV is what effect this may have on protection systems. Protection engineers design protection systems to safely eliminate faults from the electric power system. One of the new technologies recently introduced into the electric power system are distributed energy resources (DER). Currently, inverter-based DER contributes very little to the power balance on all but a few utility distribution systems. As DER become prevalent in the distribution system, equipment rating capability and coordination of protection systems merit a closer investigation. A collaborative research effort between the National Renewable Energy Laboratory (NREL) and Southern California Edison (SCE) involved laboratory short-circuit testing single-phase (240 VAC) residential type (between 1.5 and 7kW) inverters. This paper will reveal test results obtained from these short-circuit tests.

  19. PV Validation and Bankability Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652 Srivastava, WSUEnergyPV Performance andPV

  20. PV Value | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil's Impact on2005-74Laboratories | Department ofPV Value PV

  1. Sandia National Laboratories: PV Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNoLong RangePILSResourcesPV Contacts PV

  2. Sandia National Laboratories: PV Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PV Systems ReliabilityWorkshops PV

  3. Moreno Valley Electric Utility- Solar Electric Incentive Program

    Broader source: Energy.gov [DOE]

    Moreno Valley Electric Utility provides rebates to its electric customers for the purchase of photovoltaic (PV) systems. System must be on the same premises as the customer to qualify. Systems 30...

  4. City of Palo Alto Utilities- PV Partners

    Broader source: Energy.gov [DOE]

    The City of Palo Alto Utilities (CPAU) PV Partners Program offers incentives to customers that install qualifying PV systems. The program, which has a budget of approximately $13 million over 10...

  5. City of Sunset Valley- PV Rebate Program

    Broader source: Energy.gov [DOE]

    The City of Sunset Valley offers rebates to local homeowners who install photovoltaic (PV) systems on their properties. The local rebate acts as an add-on to the PV rebates that are offered by...

  6. Creating dynamic equivalent PV circuit models with impedance spectroscopy for arc-fault modeling.

    SciTech Connect (OSTI)

    Johnson, Jay Dean; Kuszmaul, Scott S.; Strauch, Jason E.; Schoenwald, David Alan

    2011-06-01T23:59:59.000Z

    Article 690.11 in the 2011 National Electrical Code{reg_sign} (NEC{reg_sign}) requires new photovoltaic (PV) systems on or penetrating a building to include a listed arc fault protection device. Currently there is little experimental or empirical research into the behavior of the arcing frequencies through PV components despite the potential for modules and other PV components to filter or attenuate arcing signatures that could render the arc detector ineffective. To model AC arcing signal propagation along PV strings, the well-studied DC diode models were found to inadequately capture the behavior of high frequency arcing signals. Instead dynamic equivalent circuit models of PV modules were required to describe the impedance for alternating currents in modules. The nonlinearities present in PV cells resulting from irradiance, temperature, frequency, and bias voltage variations make modeling these systems challenging. Linearized dynamic equivalent circuits were created for multiple PV module manufacturers and module technologies. The equivalent resistances and capacitances for the modules were determined using impedance spectroscopy with no bias voltage and no irradiance. The equivalent circuit model was employed to evaluate modules having irradiance conditions that could not be measured directly with the instrumentation. Although there was a wide range of circuit component values, the complex impedance model does not predict filtering of arc fault frequencies in PV strings for any irradiance level. Experimental results with no irradiance agree with the model and show nearly no attenuation for 1 Hz to 100 kHz input frequencies.

  7. Research of PV Application on

    E-Print Network [OSTI]

    Netoff, Theoden

    that conforms to the MN Building code definition of a "townhouse". Single house prototype of the UMore Park stage, possible form of energy infrastructure in the future, attitude of developers and future dwellers-off, incentives and payback of PV, issues of shading effects and solution; (3) Case study of single solar house

  8. Innovations in Wind and Solar PV Financing

    SciTech Connect (OSTI)

    Cory, K.; Coughlin, J.; Jenkin, T.; Pater, J.; Swezey, B.

    2008-02-01T23:59:59.000Z

    There is growing national interest in renewable energy development based on the economic, environmental, and security benefits that these resources provide. Historically, greater development of our domestic renewable energy resources has faced a number of hurdles, primarily related to cost, regulation, and financing. With the recent sustained increase in the costs and associated volatility of fossil fuels, the economics of renewable energy technologies have become increasingly attractive to investors, both large and small. As a result, new entrants are investing in renewable energy and new business models are emerging. This study surveys some of the current issues related to wind and solar photovoltaic (PV) energy project financing in the electric power industry, and identifies both barriers to and opportunities for increased investment.

  9. Overview of Scientific Issues Involved in Selection of Polymers for PV Applications

    SciTech Connect (OSTI)

    Kempe, M.

    2011-01-01T23:59:59.000Z

    Encapsulant materials used in photovoltaic (PV) modules serve multiple purposes. They physically hold components in place, provide electrical insulation, reduce moisture ingress, optically couple superstrate materials (e.g., glass) to PV cells, protect components from mechanical stress by mechanically decoupling components via strain relief, and protect materials from corrosion. To do this, encapsulants must adhere well to all surfaces, remain compliant, and transmit light after exposure to temperature, humidity, and UV radiation histories. Here, a brief review of some of the polymeric materials under consideration for PV applications is provided, with an explanation of some of their advantages and disadvantages.

  10. Overview of Scientific Issues Involved in Selection of Polymers for PV Applications: Preprint

    SciTech Connect (OSTI)

    Kempe, M.

    2011-07-01T23:59:59.000Z

    Encapsulant materials used in photovoltaic (PV) modules serve multiple purposes. They physically hold components in place, provide electrical insulation, reduce moisture ingress, optically couple superstrate materials (e.g., glass) to PV cells, protect components from mechanical stress by mechanically de-coupling components via strain relief, and protect materials from corrosion. To do this, encapsulants must adhere well to all surfaces, remain compliant, and transmit light after exposure to temperature, humidity, and UV radiation histories. Here, a brief review of some of the polymeric materials under consideration for PV applications is provided, with an explanation of some of their advantages and disadvantages.

  11. Integrating Solar PV in Utility System Operations

    SciTech Connect (OSTI)

    Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

    2013-10-31T23:59:59.000Z

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with ďrealisticĒ PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with ďwell behavedĒ PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved relative to DA forecasts, but still imperfect. Finally, we represent decisions within the operating hour by schedulers and transmission system operators as real-time (RT) balancing. We simulate the DA and HA scheduling processes with a detailed unit-commitment (UC) and economic dispatch (ED) optimization model. This model creates a least-cost dispatch and commitment plan for the conventional generating units using forecasts and reserve requirements as inputs. We consider only the generation units and load of the utility in this analysis; we do not consider opportunities to trade power with neighboring utilities. We also do not consider provision of reserves from renewables or from demand-side options. We estimate dynamic reserve requirements in order to meet reliability requirements in the RT operations, considering the uncertainty and variability in load, solar PV, and wind resources. Balancing reserve requirements are based on the 2.5th and 97.5th percentile of 1-min deviations from the HA schedule in a previous year. We then simulate RT deployment of balancing reserves using a separate minute-by-minute simulation of deviations from the HA schedules in the operating year. In the simulations we assume that balancing reserves can be fully deployed in 10 min. The minute-by-minute deviations account for HA forecasting errors and the actual variability of the load, wind, and solar generation. Using these minute-by-minute deviations and deployment of balancing reserves, we evaluate the impact of PV on system reliability through the calculation of the standard reliability metric called Control Performance Standard 2 (CPS2). Broadly speaking, the CPS2 score measures the percentage of 10-min periods in which a balancing area is able to balance supply and demand within a specific threshold. Compliance with the North American Electric Reliability Corporation (NERC) reliability standards requires that the CPS2 score must exceed 90% (i.e., the balancing area must maintain adequate balance for 90% of the 10-min periods). The combination of representing DA forecast errors in the

  12. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect (OSTI)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2010-03-30T23:59:59.000Z

    Net metering has become a widespread policy in the U.S. for supporting distributed photovoltaics (PV) adoption. Though specific design details vary, net metering allows customers with PV to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption - in effect, compensating the PV generation at retail electricity rates (Rose et al. 2009). While net metering has played an important role in jump-starting the residential PV market in the U.S., challenges to net metering policies have emerged in a number of states and contexts, and alternative compensation methods are under consideration. Moreover, one inherent feature of net metering is that the value of the utility bill savings it provides to customers with PV depends heavily on the structure of the underlying retail electricity rate, as well as on the characteristics of the customer and PV system. Consequently, the value of net metering - and the impact of moving to alternative compensation mechanisms - can vary substantially from one customer to the next. For these reasons, it is important for policymakers and others that seek to support the development of distributed PV to understand both how the bill savings varies under net metering, and how the bill savings under net metering compares to other possible compensation mechanisms. To advance this understanding, we analyze the bill savings from PV for residential customers of California's two largest electric utilities, Pacific Gas and Electric (PG&E) and Southern California Edison (SCE). The analysis is based on hourly load data from a sample of 215 residential customers located in the service territories of the two utilities, matched with simulated hourly PV production for the same time period based on data from the nearest of 73 weather stations in the state.

  13. Grid Integrated Distributed PV (GridPV) Version 2.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Coogan, Kyle

    2014-12-01T23:59:59.000Z

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functio ns are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in th e OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function i n the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  14. Performance of a multifunctional PV/T hybrid solar window

    SciTech Connect (OSTI)

    Davidsson, Henrik; Perers, Bengt; Karlsson, Bjoern [Energy and Building Design, Lund University, P.O. Box 118, SE 221 00 Lund (Sweden)

    2010-03-15T23:59:59.000Z

    A building-integrated multifunctional PV/T solar window has been developed and evaluated. It is constructed of PV cells laminated on solar absorbers placed in a window behind the glazing. To reduce the cost of the solar electricity, tiltable reflectors have been introduced in the construction to focus radiation onto the solar cells. The reflectors render the possibility of controlling the amount of radiation transmitted into the building. The insulated reflectors also reduce the thermal losses through the window. A model for simulation of the electric and hot water production was developed. The model can perform yearly energy simulations where different features such as shading of the cells or effects of the glazing can be included or excluded. The simulation can be run with the reflectors in an active, up right, position or in a passive, horizontal, position. The simulation program was calibrated against measurements on a prototype solar window placed in Lund in the south of Sweden and against a solar window built into a single family house, Solgaarden, in Aelvkarleoe in the central part of Sweden. The results from the simulation shows that the solar window annually produces about 35% more electric energy per unit cell area compared to a vertical flat PV module. (author)

  15. Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions

    E-Print Network [OSTI]

    Darghouth, Naim

    2014-01-01T23:59:59.000Z

    schemes on power prices: The case of wind electricity inand Wind Penetration. IEEE Transactions on Power Systems 27,of wind (50%), PV (35%), and concentrating solar power (CSP,

  16. PV Ramping in a Distributed Generation Environment: A Study Using Solar Measurements; Preprint

    SciTech Connect (OSTI)

    Sengupta, M.; Keller, J.

    2012-06-01T23:59:59.000Z

    Variability in Photovoltaic (PV) generation resulting from variability in the solar radiation over the PV arrays is a topic of continuing concern for those involved with integrating renewables onto existing electrical grids. The island of Lanai, Hawaii is an extreme example of the challenges that integrators will face due to the fact that it is a small standalone grid. One way to study this problem is to take high-resolution solar measurements in multiple locations and model simultaneous PV production for various sizes at those locations. The National Renewable Energy Laboratory (NREL) collected high-resolution solar data at four locations on the island where proposed PV plants will be deployed in the near future. This data set provides unique insight into how the solar radiation may vary between points that are proximal in distance, but diverse in weather, due to the formation of orographic clouds in the center of the island. Using information about each proposed PV plant size, power output was created at high resolution. The team analyzed this output to understand power production ramps at individual locations and the effects of aggregating the production from all four locations. Hawaii is a unique environment, with extremely variable events occurring on a daily basis. This study provided an excellent opportunity for understanding potential worst-case scenarios for PV ramping. This paper provides an introduction to the datasets that NREL collected over a year and a comprehensive analysis of PV variability in a distributed generation scenario.

  17. Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab

    SciTech Connect (OSTI)

    da Silva, R.M.; Fernandes, J.L.M. [Department of Mechanical Engineering, Instituto Superior Tecnico, Lisbon (Portugal)

    2010-12-15T23:59:59.000Z

    The purpose of this work consists in thermodynamic modeling of hybrid photovoltaic-thermal (PV/T) solar systems, pursuing a modular strategy approach provided by Simulink/Matlab. PV/T solar systems are a recently emerging solar technology that allows for the simultaneous conversion of solar energy into both electricity and heat. This type of technology present some interesting advantages over the conventional ''side-by-side'' thermal and PV solar systems, such as higher combined electrical/thermal energy outputs per unit area, and a more uniform and aesthetical pleasant roof area. Despite the fact that early research on PV/T systems can be traced back to the seventies, only recently it has gained a renewed impetus. In this work, parametric studies and annual transient simulations of PV/T systems are undertaken in Simulink/Matlab. The obtained results show an average annual solar fraction of 67%, and a global overall efficiency of 24% (i.e. 15% thermal and 9% electrical), for a typical four-person single-family residence in Lisbon, with p-Si cells, and a collector area of 6 m{sup 2}. A sensitivity analysis performed on the PV/T collector suggests that the most important variable that should be addressed to improve thermal performance is the photovoltaic (PV) module emittance. Based on those results, some additional improvements are proposed, such as the use of vacuum, or a noble gas at low-pressure, to allow for the removal of PV cells encapsulation without air oxidation and degradation, and thus reducing the PV module emittance. Preliminary results show that this option allows for an 8% increase on optical thermal efficiency, and a substantial reduction of thermal losses, suggesting the possibility of working at higher fluid temperatures. The higher working temperatures negative effect in electrical efficiency was negligible, due to compensation by improved optical properties. The simulation results are compared with experimental data obtained from other authors and perform reasonably well. The Simulink modeling platform has been mainly used worldwide on simulation of control systems, digital signal processing and electric circuits, but there are very few examples of application to solar energy systems modeling. This work uses the modular environment of Simulink/Matlab to model individual PV/T system components, and to assemble the entire installation layout. The results show that the modular approach strategy provided by Matlab/Simulink environment is applicable to solar systems modeling, providing good code scalability, faster developing time, and simpler integration with external computational tools, when compared with traditional imperative-oriented programming languages. (author)

  18. PV output smoothing with energy storage.

    SciTech Connect (OSTI)

    Ellis, Abraham; Schoenwald, David Alan

    2012-03-01T23:59:59.000Z

    This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

  19. NRELźs PV Tools on the Web: Open PV Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NREL's PV Tools on the Web: The OpenPV Project NREL TAP Webinar Ted Quinby March 24, 2010 National Renewable Energy Laboratory Innovation for Our Energy Future Overview National...

  20. Sandia National Laboratories: PV Performance Modeling Collaborative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    being pursued in this collaborative include: PVPMC Website: (http:pvpmc.org) Matlab(tm) PV Performance Modeling Toolbox (PVLIB Toolbox can be downloaded on http:...

  1. Ensuring Quality of PV Modules: Preprint

    SciTech Connect (OSTI)

    Kurtz, S.; Wohlgemuth, J.; Hacke, P.; Kempe, M.; Sample, T.; Yamamichi, M.; Kondo, M.; Doi, T.; Otani, K.; Amano, J.

    2011-07-01T23:59:59.000Z

    Photovoltaic (PV) customers need to have confidence in the PV modules they purchase. Currently, no test can quantify a module's lifetime with confidence, but stress tests are routinely used to differentiate PV product designs. We suggest that the industry would be strengthened by using the wisdom of the community to develop a single set of tests that will help customers quantify confidence in PV products. This paper evaluates the need for quality assurance (QA) standards and suggests a path for creating these. Two types of standards are needed: 1) QA of the module design and 2) QA of the manufacturing process.

  2. CPS Energy- Solar PV Rebate Program

    Broader source: Energy.gov [DOE]

    CPS Energy, San Antonio's municipal utility, offers rebates to customers who install solar photovoltaic (PV) systems on their homes, schools, or businesses. There are four rebate "tiers" available...

  3. NREL: Photovoltaics Research - PV News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz, Ph.D. Principal ScientistOutdoor TestPV

  4. Sunshine PV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpenSummerside WindSolar Energy JumpSunrainPV Jump to:

  5. Kenmos PV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 ClimateKamas,Kelsey NorthKenmec MechanicalKenmos PV Jump

  6. Sandia National Laboratories: PV Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNoLong RangePILSResourcesPV Contacts

  7. Sandia National Laboratories: PV Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNoLongAnalysisPVPublications PV Publications

  8. Sandia National Laboratories: PV Value

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PV Systems Reliability SandiaTech

  9. Sandia National Laboratories: PV bankability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PV Systems

  10. Sandia National Laboratories: PV concentrators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PV Systemsconcentrators Sandians Win

  11. Sandia National Laboratories: PV evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PV Systemsconcentrators Sandians

  12. Sandia National Laboratories: PV inverters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PV Systemsconcentrators

  13. Sandia National Laboratories: PV modules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PV Systemsconcentratorsmodulemodules

  14. Solar PV Project Financing: Regulatory and Legislative Challenges for Third-Party PPA System Owners

    SciTech Connect (OSTI)

    Kollins, K.; Speer, B.; Cory, K.

    2009-11-01T23:59:59.000Z

    Residential and commercial end users of electricity who want to generate electricity using on-site solar photovoltaic (PV) systems face challenging initial and O&M costs. The third-party ownership power purchase agreement (PPA) finance model addresses these and other challenges. It allows developers to build and own PV systems on customers? properties and sell power back to customers. However, third-party electricity sales commonly face five regulatory challenges. The first three challenges involve legislative or regulatory definitions of electric utilities, power generation equipment, and providers of electric services. These definitions may compel third-party owners of solar PV systems to comply with regulations that may be cost prohibitive. Third-party owners face an additional challenge if they may not net meter, a practice that provides significant financial incentive to owning solar PV systems. Finally, municipalities and cooperatives worry about the regulatory implications of allowing an entity to sell electricity within their service territories. This paper summarizes these challenges, when they occur, and how they have been addressed in five states. This paper also presents alternative to the third-party ownership PPA finance model, including solar leases, contractual intermediaries, standardized contract language, federal investment tax credits, clean renewable energy bonds, and waived monopoly powers.

  15. Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume III. Technical issues and design guidance

    SciTech Connect (OSTI)

    Schwinkendorf, W.E.

    1984-09-01T23:59:59.000Z

    This report provide appropriate guidance for addressing the major technical issues associated with the design and installation of a photovoltaic-thermal (PV-T) system. Nomographs are presented for developing preliminary sizing and costing, and issues associated with specific components and the overall design of the electrical and mechanical system are discussed. SAND82-7157/2 presents a review of current PV-T technology and operating systems and a study of potential PV-T applications. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

  16. Earth Coupling Options Its All About Site Specifics

    E-Print Network [OSTI]

    Relationship? IGSHAP-2013 #12;6 Geothermal & Other Renewable Wind Generators Photo Voltaic Both Generate + 1 Electric Energy = 5Units Heat Energy TO the BUILDING COP= 5.0 PV & WIND Electric4 Units FROM or "creep" disadvantage of "stored" heat or cold extremes for the following season 30 #12;Geographic

  17. Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    industry standards, it is recommended that the PV system be approved by Go Solar California. 4 PV Size and Performance The PV arrays must be installed in unshaded locations on...

  18. Solar Real-Time Pricing: Is Real-Time Electricity Pricing Beneficial...

    Energy Savers [EERE]

    to Solar PV in New York City? Solar Real-Time Pricing: Is Real-Time Electricity Pricing Beneficial to Solar PV in New York City? The goal of this study is to evaluate the...

  19. INTEGRATION OF PV IN DEMAND RESPONSE

    E-Print Network [OSTI]

    Perez, Richard R.

    INTEGRATION OF PV IN DEMAND RESPONSE PROGRAMS Prepared by Richard Perez et al. NREL subcontract response programs. This is because PV generation acts as a catalyst to demand response, markedly enhancing by solid evidence from three utility case studies. BACKGROUND Demand Response: demand response (DR

  20. Draft Transcript on Municipal PV Systems

    Broader source: Energy.gov [DOE]

    Webinar on navigating the legal, tax, and finance issues associated with the installation of Municipal PV Systems. The following agenda was developed based on Pat Boylston's experience assisting municipalities with their PV projects and the requests for information that the Solar America City technical team leads have received from many of the 25 Solar America Cities since the April 2008 meeting in Tucson.

  1. Overview of PV balance-of-systems technology: Experience and guidelines for utility ties in the United States of America

    SciTech Connect (OSTI)

    Bower, W. [Sandia National Labs., Albuquerque, NM (United States); Whitaker, C. [Endecon Engineering, San Ramon, CA (United States)

    1997-10-01T23:59:59.000Z

    The U.S. National Photovoltaic Program began in 1975 by supporting the development of terrestrial PV modules and hardware associated with grid-connected PV systems. Early PV-system demonstration programs were also supported and cost shared by the U.S. Department of Energy (DOE). A wide variety of PV systems were deployed, usually with utility participation. The early demonstration projects provided, and continue to provide, valuable PV system experience to utilities, designers and suppliers. As a result of experience gained, several important milestones in codes and standards pertaining to the design, installation and operation of photovoltaic (PV) systems have been completed. These code and standard activities were conducted through collaboration of participants from all sectors of the PV industry, utilities and the US DOE National Photovoltaic Program. Codes and standards that have been proposed, written, or modified include changes and additions for the 1999 National Electric Code{reg_sign} (NEC{reg_sign}), standards for fire and personnel safety, system testing, field acceptance, component qualification, and utility interconnection. Project authorization requests with the Institute of Electrical and Electronic Engineers (IEEE) have resulted in standards for component qualification and were further adapted for standards used to list PV modules and balance-of-system components. Industry collaboration with Underwriter Laboratories, Inc., with the American Society for Testing and Materials, and through critical input and review for international standards with the International Electrotechnical Commission have resulted in new and revised domestic and international standards for PV applications. Activities related to work on codes and standards through the International Energy Agency are also being supported by the PV industry and the US DOE. The paper shows relationships between activities in standards writing.

  2. California Solar Initiative- PV Incentives

    Broader source: Energy.gov [DOE]

    '''Pacific Gas and Electric (PG&E) and San Diego Gas and Electric (SDG&E) have reached their budget limits for residential rebates. Both utilities will continue accepting applications for...

  3. Agenda for the PV Module Reliability Workshop, February 26 -...

    Broader source: Energy.gov (indexed) [DOE]

    Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado This...

  4. axonopodis pv passiflorae: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    effective capacity of grid-connected PV power plants. The predicted and actual utility peak load reduction performance of PV power plants are compared for two case studies:...

  5. axonopodis pv citri: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    effective capacity of grid-connected PV power plants. The predicted and actual utility peak load reduction performance of PV power plants are compared for two case studies:...

  6. axonopodis pv malvacearum: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    effective capacity of grid-connected PV power plants. The predicted and actual utility peak load reduction performance of PV power plants are compared for two case studies:...

  7. Sandia National Laboratories: Sandia Will Host PV Bankability...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ateECEnergyComputational Modeling & SimulationSandia Will Host PV Bankability Workshop at Solar Power International (SPI) 2013 Sandia Will Host PV Bankability Workshop at Solar...

  8. Department of Veterans Affairs, FONSI - Rooftop solar PV power...

    Broader source: Energy.gov (indexed) [DOE]

    Rooftop solar PV power at Calverton National Cemetery Department of Veterans Affairs, FONSI - Rooftop solar PV power at Calverton National Cemetery An Environmental Assessment (EA)...

  9. Statistical and Domain Analytics Applied to PV Module Lifetime...

    Broader source: Energy.gov (indexed) [DOE]

    Degradation Science Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science Presented at the PV Module Reliability Workshop, February 26 - 27...

  10. Integrating Solar PV into Energy Services Performance Contracts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrating Solar PV into Energy Services Performance Contracts: Options for Local Governments Nationwide Integrating Solar PV into Energy Services Performance Contracts: Options...

  11. Rooftop PV system. Final technical progress report, Phase II

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    Under this four-year PV:BONUS Program, ECD and United Solar are developing and demonstrating two new lightweight flexible building integrated Photovoltaic (BIPV) modules specifically designed as exact replacements for conventional asphalt shingles and standing seam metal roofing. These modules can be economically and aesthetically integrated into new residential and commercial buildings, and address the even larger roofing replacement market. The modules are designed to be installed by roofing contractors without special training which minimizes the installation and balance of system costs. The modules will be fabricated from high-efficiency, multiple-junction a-Si alloy solar cells developed by ECD and United Solar. Under the Phase I Program, which ended in March 1994, we developed two different concept designs for rooftop PV modules: (1) the United Solar overlapping (asphalt shingle replacement) shingle-type modules and (2) the ECD metal roof-type modules. We also developed a plan for fabricating, testing and demonstrating these modules. Candidate demonstration sites for our rooftop PV modules were identified and preliminary engineering designs for these demonstrations were developed; a marketing study plan was also developed. The major objectives of the Phase II Program, which started in June 1994 was (1) to develop, test, and qualify these new rooftop modules; (2) to develop mechanical and electrical engineering specifications for the demonstration projects; and (3) to develop a marketing/commercialization plan.

  12. Analysis of the Impacts of Distribution-Connected PV Using High-Speed Data Sets: Preprint

    SciTech Connect (OSTI)

    Bank, J.; Mather, B.

    2013-03-01T23:59:59.000Z

    This paper, presented at the IEEE Green Technologies Conference 2013, utilizes information from high resolution data acquisition systems developed at the National Renewable Energy Laboratory and deployed on a high-penetration PV distribution system to analyze the variability of different electrical parameters. High-resolution solar irradiance data is also available in the same area which is used to characterize the available resource and how it affects the electrical characteristics of the study circuit. This paper takes a data-driven look at the variability caused by load and compares those results against times when significant PV production is present. Comparisons between the variability in system load and the variability of distributed PV generation are made.

  13. Long-Term Modeling of Solar Energy: Analysis of Concentrating Solar Power (CSP) and PV Technologies

    SciTech Connect (OSTI)

    Zhang, Yabei; Smith, Steven J.

    2007-08-16T23:59:59.000Z

    This report presents an overview of research conducted on solar energy technologies and their implementation in the ObjECTS framework. The topics covered include financing assumptions and selected issues related to the integration of concentrating thermal solar power (CSP) and photovoltaics PV technologies into the electric grid. A review of methodologies for calculating the levelized energy cost of capital-intensive technologies is presented, along with sensitivity tests illustrating how the cost of a solar plant would vary depending on financing assumptions. An analysis of the integration of a hybrid concentrating thermal solar power (CSP) system into the electric system is conducted. Finally a failure statistics analysis for PV plants illustrates the central role of solar irradiance uncertainty in determining PV grid integration characteristics.

  14. THE POTENTIAL OF SOLAR ELECTRIC

    E-Print Network [OSTI]

    Delaware, University of

    .5 Energy and the Costs of Production.............................................................5 2 and Local Energy Benefits of PV.......................................15 5. CONCLUSIONS AND DISCUSSIONTHE POTENTIAL OF SOLAR ELECTRIC APPLICATIONS FOR DELAWARE'S POULTRY FARMS FINAL REPORT

  15. Salem Electric- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Salem Electric offers a rebate to residential customers who install solar photovoltaic (PV) systems. Customers have the option of receiving a rebate or a [http://dsireusa.org/incentives/incentive...

  16. ELECTRIC

    Office of Legacy Management (LM)

    you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

  17. A photosynthetic-plasmonic-voltaic cell: Excitation of photosynthetic bacteria and current collection through a plasmonic substrate

    SciTech Connect (OSTI)

    Samsonoff, Nathan; Ooms, Matthew D.; Sinton, David [Department of Mechanical and Industrial Engineering, and Institute for Sustainable Energy, University of Toronto, Toronto M5S 3G8 (Canada)

    2014-01-27T23:59:59.000Z

    Excitation of photosynthetic biofilms using surface-confined evanescent light fields enables energy dense photobioreactors, while electrode-adhered biofilms can provide electricity directly. Here, we demonstrate concurrent light delivery and electron transport through a plasmonically excited metal film. Biofilms of cyanobacterium Synechococcus bacillaris on 50-nm gold films are excited via the Kretschmann configuration at ??=?670 nm. Cells show light/dark response to plasmonic excitation and grow denser biofilms, closer to the electrode surface, as compared to the direct irradiated case. Directly irradiated biofilms produced average electrical powers of 5.7??W/m{sup 2} and plasmonically excited biofilms produced average electrical powers of 5.8??W/m{sup 2}, with individual biofilms producing as much as 12??W/m{sup 2}.

  18. Energy and Society (ER100/PP184/ER200/PP284) Topics: PV, Wind, environmental justice

    E-Print Network [OSTI]

    Kammen, Daniel M.

    ? [2 points] ii. [ER200/PP286 only] Relative to using average utility rates, how could time-of-use (TOU. How might our results for the levelized cost of PV electricity differ if we were considering utility-scale installations instead of residential-scale rooftop installations? List and explain three other factors we would

  19. EXECUTIVE SUMMARY: RETHINKING STANDBY & FIXED COST CHARGES REGULATORY & RATE DESIGN PATHWAYS TO DEEPER SOLAR PV COST

    E-Print Network [OSTI]

    to be recovered through variable, volume-based charges per kilowatt-hour (kWh). At the same time, however, someEXECUTIVE SUMMARY: RETHINKING STANDBY & FIXED COST CHARGES REGULATORY & RATE DESIGN PATHWAYS TO DEEPER SOLAR PV COST REDUCTIONS The Current Terrain In recent years, electric utilities have experienced

  20. Experimental investigation and modeling of a direct-coupled PV/T air collector

    SciTech Connect (OSTI)

    Shahsavar, A.; Ameri, M. [Department of Mechanical Engineering, Faculty of Engineering, Shahid Bahonar University, Kerman (Iran, Islamic Republic of); Energy and Environmental Engineering Research Center, Shahid Bahonar University, Kerman (Iran, Islamic Republic of)

    2010-11-15T23:59:59.000Z

    Photovoltaic/thermal (PV/T) systems refer to the integration of photovoltaic and solar thermal technologies into one single system, in that both useful heat energy and electricity are produced. The impetus of this paper is to model a direct-coupled PV/T air collector which is designed, built, and tested at a geographic location of Kerman, Iran. In this system, a thin aluminum sheet suspended at the middle of air channel is used to increase the heat exchange surface and consequently improve heat extraction from PV panels. This PV/T system is tested in natural convection and forced convection (with two, four and eight fans operating) and its unsteady results are presented in with and without glass cover cases. A theoretical model is developed and validated against experimental data, where good agreement between the measured values and those calculated by the simulation model were achieved. Comparisons are made between electrical performance of the different modes of operation, and it is concluded that there is an optimum number of fans for achieving maximum electrical efficiency. Also, results show that setting glass cover on photovoltaic panels leads to an increase in thermal efficiency and decrease in electrical efficiency of the system. (author)

  1. PV1 model verification and validation

    E-Print Network [OSTI]

    Fuller, Frank H.

    1981-01-01T23:59:59.000Z

    The purpose of this document is 1) to describe, in detail, the theoretic foundation on which PV1 is based, 2) indicate the manner in which its theoretical foundation has been translated into a practical, useful tool for ...

  2. Austin Energy- Residential Solar PV Rebate Program

    Broader source: Energy.gov [DOE]

    Austin Energy's Solar Rebate Program offers a $1.50 per watt incentive to eligible residential who install photovoltaic (PV) systems on their homes. Rebates are limited to $15,000 per home...

  3. IID Energy- PV Solutions Rebate Program

    Broader source: Energy.gov [DOE]

    '''''IID accepted applications for the 2013 PV Solutions Program from Jan. 2, 2013 Ė Jan. 31, 2013. Winners were determined via lottery. The program is now closed for the remainder of 2013, but...

  4. SMUD- PV Residential Retrofit Buy-Down

    Broader source: Energy.gov [DOE]

    SMUD offers an incentive of $0.20 per watt (W) AC to residential customers who install grid-connected photovoltaic (PV) systems. Customers do not have to contract directly with SMUD-approved...

  5. PV Module Reliability Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01T23:59:59.000Z

    This National Center for Photovoltaics sheet describes the capabilities of its PV module reliability research. The scope and core competencies and capabilities are discussed and recent publications are listed.

  6. Pacific Power- PV Rebate Program (California)

    Broader source: Energy.gov [DOE]

    Pacific Power is providing rebates to their customers who install photovoltaic (PV) systems on their homes and facilities. These rebates step down over time as key installation targets are met. As...

  7. PV Power Plants Conference USA 2012

    Broader source: Energy.gov [DOE]

    The 4th PV Power Plants conference will cover relevant topics for successful project development and sustainable business. This year's event will have an additional focus on certain distributed...

  8. Distributed PV Permitting and Inspection Processes

    Broader source: Energy.gov [DOE]

    This presentation summarizes case studies of the time and cost involved in the distributed PV permitting and inspection process in three Solar America Cities, Austin, Portland, and Salt Lake City.

  9. PV array simulator development and validation.

    SciTech Connect (OSTI)

    Kuszmaul, Scott S.; Gonzalez, Sigifredo; Lucca, Roberto (Ametek Programmable Power, San Diego, CA); Deuel, Don (Ametek Programmable Power, San Diego, CA)

    2010-06-01T23:59:59.000Z

    The ability to harvest all available energy from a photovoltaic (PV) array is essential if new system developments are to meet levelized cost of energy targets and achieve grid parity with conventional centralized utility power. Therefore, exercising maximum power point tracking (MPPT) algorithms, dynamic irradiance condition operation and startup and shutdown routines and evaluating inverter performance with various PV module fill-factor characteristics must be performed with a repeatable, reliable PV source. Sandia National Laboratories is collaborating with Ametek Programmable Power to develop and demonstrate a multi-port TerraSAS PV array simulator. The simulator will replicate challenging PV module profiles, enabling the evaluation of inverter performance through analyses of the parameters listed above. Energy harvest algorithms have traditionally implemented methods that successfully utilize available energy. However, the quantification of energy capture has always been difficult to conduct, specifically when characterizing the inverter performance under non-reproducible dynamic irradiance conditions. Theoretical models of the MPPT algorithms can simulate capture effectiveness, but full validation requires a DC source with representative field effects. The DC source being developed by Ametek and validated by Sandia is a fully integrated system that can simulate an IV curve from the Solar Advisor Model (SAM) module data base. The PV simulator allows the user to change the fill factor by programming the maximum power point voltage and current parameters and the open circuit voltage and short circuit current. The integrated PV simulator can incorporate captured irradiance and module temperature data files for playback, and scripted profiles can be generated to validate new emerging hardware embedded with existing and evolving MPPT algorithms. Since the simulator has multiple independent outputs, it also has the flexibility to evaluate an inverter with multiple MPPT DC inputs. The flexibility of the PV simulator enables the validation of the inverter's capability to handle vastly different array configurations.

  10. PV System Energy Evaluation Method (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2014-01-01T23:59:59.000Z

    This presentation describes a comparison of the "predicted" energy (based on historical weather data) with the "expected" energy (based on the measured weather data) to determine whether a PV system is performing as modeled in order to verify the accuracy of a model. A key factor in defining this energy test is determining the test boundary so that weather variations are not inadvertently included in what is considered to be PV system performance.

  11. Wind/PV Generation for Frequency Regulation and Oscillation Damping in the Eastern Interconnection

    SciTech Connect (OSTI)

    Liu, Yong [The University of Tennessee, Knoxville; Gracia, Jose R [ORNL; Hadley, Stanton W [ORNL; Liu, Yilu [ORNL

    2013-12-01T23:59:59.000Z

    This report presents the control of renewable energy sources, including the variable-speed wind generators and solar photovoltaic (PV) generators, for frequency regulation and inter-area oscillation damping in the U.S. Eastern Interconnection (EI). In this report, based on the user-defined wind/PV generator electrical control model and the 16,000-bus Eastern Interconnection dynamic model, the additional controllers for frequency regulation and inter-area oscillation damping are developed and incorporated and the potential contributions of renewable energy sources to the EI system frequency regulation and inter-area oscillation damping are evaluated.

  12. PVMaT cost reductions in the EFG high volume PV manufacturing line: Annual report, 5 August 1998--4 August 1999[PhotoVoltaic Manufacturing Technology, Edge-defined Film-fed Growth

    SciTech Connect (OSTI)

    Bathey, B.; Brown, B.; Cao, J.; Ebers, S.; Gonsiorawski, R.; Heath, B.; Kalejs, J.; Kardauskas, M.; Mackintosh, B.; Ouellette, M.; Piwczyk, B.; Rosenblum, M.; Southimath, B.

    1999-11-16T23:59:59.000Z

    This report describes work performed by ASE Americas researchers during the first year of this Photovoltaic Manufacturing Technology 5A2 program. Significant accomplishments in each of three task are as follows. Task 1--Manufacturing Systems: Researchers completed key node analysis, started statistical process control (SPC) charting, carried out design-of-experiment (DoE) matrices on the cell line to optimize efficiencies, performed a capacity and bottleneck study, prepared a baseline chemical waste analysis report, and completed writing of more than 50% of documentation and statistical sections of ISO 9000 procedures. A highlight of this task is that cell efficiencies in manufacturing were increased by 0.4%--0.5% absolute, to an average in excess of 14.2%, with the help of DoE and SPC methods. Task 2--Low-Cost Processes: Researchers designed, constructed, and tested a 50-cm-diameter, edge-defined, film-fed growth (EFG) cylinder crystal growth system to successfully produce thin cylinders up to 1.2 meters in length; completed a model for heat transfer; successfully deployed new nozzle designs and used them with a laser wafer-cutting system with the potential to decrease cutting labor costs by 75% and capital costs by 2X; achieved laser-cutting speeds of up to 8X and evaluation of this system is proceeding in production; identified laser-cutting conditions that reduce damage for both Q-switched Nd:YAG and copper-vapor lasers with the help of a breakthrough in fundamental understanding of cutting with these short-pulse-length lasers; and found that bulk EFG material lifetimes are optimized when co-firing of silicon nitride and aluminum is carried out with rapid thermal processing (RTP). Task 3--Flexible Manufacturing: Researchers improved large-volume manufacturing of 10-cm {times} 15-cm EFG wafers by developing laser-cutting fixtures, adapting carriers and fabricating adjustable racks for etching and rinsing facilities, and installing a high-speed data collection net work; initiated fracture studies to develop methods to reduce wafer breakage; and started a module field studies program to collect data on field failures to help identify potential manufacturing problems. New encapsulants, which cure at room temperature, are being tested to improve flexibility and provide higher yields for thin wafers in lamination.

  13. Capacity Value of PV and Wind Generation in the NV Energy System

    SciTech Connect (OSTI)

    Lu, Shuai; Diao, Ruisheng; Samaan, Nader A.; Etingov, Pavel V.

    2014-03-21T23:59:59.000Z

    Calculation of photovoltaic (PV) and wind power capacity values is important for estimating additional load that can be served by new PV or wind installations in the electrical power system. It also is the basis for assigning capacity credit payments in systems with markets. Because of variability in solar and wind resources, PV and wind generation contribute to power system resource adequacy differently from conventional generation. Many different approaches to calculating PV and wind generation capacity values have been used by utilities and transmission operators. Using the NV Energy system as a study case, this report applies peak-period capacity factor (PPCF) and effective load carrying capability (ELCC) methods to calculate capacity values for renewable energy sources. We show the connection between the PPCF and ELCC methods in the process of deriving a simplified approach that approximates the ELCC method. This simplified approach does not require generation fleet data and provides the theoretical basis for a quick check on capacity value results of PV and wind generation. The diminishing return of capacity benefit as renewable generation increases is conveniently explained using the simplified capacity value approach.

  14. High-Penetration PV Deployment in the Arizona Public Service System, Phase 1 Update: Preprint

    SciTech Connect (OSTI)

    Hambrick, J.; Narang, D.

    2012-06-01T23:59:59.000Z

    In an effort to better understand the impacts of high penetrations of photovoltaic generators on distribution systems, Arizona Public Service and its partners have begun work on a multi-year project to develop the tools and knowledge base needed to safely and reliably integrate high penetrations of utility- and residential-scale photovoltaics (PV). Building upon the APS Community Power Project -- Flagstaff Pilot, this project will analyze the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.3 MW of PV that will be installed on the feeder (both smaller units at homes as well as large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters are being designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models will be used to analyze the impacts of the PV on distribution circuit protection systems (including anti-islanding), predict voltage regulation and phase balance issues, and develop volt/var control schemes. This paper continues from a paper presented at the 2011 IEEE PVSC conference that introduces the project and describes some of the preliminary consideration, as well as project plans and early results. This paper gives a status update of the project and presents selected results from Phase 2 of the project. It discusses baseline feeder modeling, load allocation, data acquisition, utility-scale PV integration, preliminary model validation, and plans for future phases.

  15. On-grid PV implementation program. Phase I report, August 1994--January 1995

    SciTech Connect (OSTI)

    NONE

    1994-11-29T23:59:59.000Z

    Southern California Edison Company (Edison) is finalizing a Cooperative Agreement with the U.S. Department of Energy (DOE) to develop high value On-Grid applications for electricity from Photovoltaics (PV). Edison`s efforts are the result of Edison`s long-standing commitment to the pursuit of Renewable Energy. Edison has been a world leader in the development and use of PV. As the technology becomes more commercial, Edison has been actively seeking more applications for PV. After strenuous effort, Edison has now received approval to offer off-grid PV packages within its service territory. In addition, Edison has been very interested in finding high-value on-grid PV applications that may have the potential to become cost effective as PV applications increase and prices decline. Such high-value applications at Edison and other utilities will accelerate the price reductions, which in turn will increase the number of cost-effective applications, driving towards a market competitive with traditional sources of energy. Edison`s efforts build upon the work done by Pacific Gas & Electric (PG&E) at their Kerman substation, but goes much further than that effort. Edison submitted its original proposal to the DOE on June 30, 1993. A revised proposal was submitted on February 1, 1994, in response to a letter from the DOE`s Director of Solar Energy, Robert H. Annan. In a letter dated March 30, 1994, from Paul K. Kearns, Head of Contracting Activity for the DOE`s Golden Field Office, the DOE conditionally approved certain pre-award contract costs. The Cooperative Agreement with DOE was executed on August 16, 1994.

  16. An efficient method for visualization and growth of fluorescent Xanthomonas oryzae pv. oryzae in planta.

    E-Print Network [OSTI]

    Han, Sang-Wook; Park, Chang-Jin; Lee, Sang-Won; Ronald, Pamela C

    2008-01-01T23:59:59.000Z

    strains, plants and growth conditions Xanthomonas oryzae pv.Xanthomonas oryzae pv. oryzae. Mol Plant Microbe InteractOryzae sativa L. ) plants. X. oryzae pv. oryzae infection

  17. Holdover inoculum of Pseudomonas syringae pv. alisalensis from broccoli raab causes disease in subsequent plantings

    E-Print Network [OSTI]

    Cintas, N A; Koike, S T; Bunch, R A; Bull, C T

    2006-01-01T23:59:59.000Z

    about P. syringae pv. Plant Disease / August 2006 ABSTRACTsyringae pv. lachrymans in soil, plant debris, and thesyringae pv. tomato populations on field tomato plants.

  18. PV performance modeling workshop summary report.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Tasca, Coryne Adelle (SRA International, Inc., Fairfax, VA); Cameron, Christopher P.

    2011-05-01T23:59:59.000Z

    During the development of a solar photovoltaic (PV) energy project, predicting expected energy production from a system is a key part of understanding system value. System energy production is a function of the system design and location, the mounting configuration, the power conversion system, and the module technology, as well as the solar resource. Even if all other variables are held constant, annual energy yield (kWh/kWp) will vary among module technologies because of differences in response to low-light levels and temperature. A number of PV system performance models have been developed and are in use, but little has been published on validation of these models or the accuracy and uncertainty of their output. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a PV Performance Modeling Workshop in Albuquerque, New Mexico, September 22-23, 2010. The workshop was intended to address the current state of PV system models, develop a path forward for establishing best practices on PV system performance modeling, and set the stage for standardization of testing and validation procedures for models and input parameters. This report summarizes discussions and presentations from the workshop, as well as examines opportunities for collaborative efforts to develop objective comparisons between models and across sites and applications.

  19. Denton Municipal Electric- GreenSense Solar Rebate Program

    Broader source: Energy.gov [DOE]

    Denton Municipal Electric offers rebates to its electric customers for the installation of solar PV and solar water heating systems. The solar rebates are designed for residential and small...

  20. Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume II. PV-T state-of-the-art survey and site/application pair selection and analysis

    SciTech Connect (OSTI)

    Schwinkendorf, W.E.

    1984-09-01T23:59:59.000Z

    As part of a project to develop feasibility assessments, design procedures, and reference designs for total energy systems that could use actively cooled concentrating photovoltaic collectors, a survey was conducted to provide an overview of available photovoltaic-thermal (PV-T) technology. General issues associated with the design and installation of a PV-T system are identified. Electrical and thermal efficiencies for the line-focus Fresnel, the linear parabolic trough, and the point-focus Fresnel collectors are specified as a function of operating temperature, ambient temperature, and insolation. For current PV-T technologies, the line-focus Fresnel collector proved to have the highest thermal and electrical efficiencies, lowest array cost, and lowest land area requirement. But a separate feasibility analysis involving 11 site/application pairs showed that for most applications, the cost of the photovoltaic portion of a PV-T system is not recovered through the displacement of an electrical load, and use of a thermal-only system to displace the thermal load would be a more economical alternative. PV-T systems are not feasible for applications that have a small thermal load, a large steam requirement, or a high load return temperature. SAND82-7157/3 identifies the technical issues involved in designing a photovoltaic-thermal system and provides guidance for resolving such issues. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

  1. The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2013-01-01T23:59:59.000Z

    of electricity retail rates or on the private economics ofelectricity rates and hence the customer economics of residential, behind-the-meter PV. We calculate the private

  2. Updating Interconnection Screens for PV System Integration

    SciTech Connect (OSTI)

    Coddington, M.; Mather, B.; Kroposki, B.; Lynn, K.; Razon, A.; Ellis, A.; Hill, R.; Key, T.; Nicole, K.; Smith, J.

    2012-02-01T23:59:59.000Z

    This white paper evaluates the origins and usefulness of the capacity penetration screen, offer short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen. Short-term and longer-term alternatives approaches are offered as examples; however, specific modifications to screening procedures should be discussed with stakeholders and must ultimately be adopted by state and federal regulatory bodies.

  3. Solar PV Incentive Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage ¬Ľ SearchEnergyDepartmentScoping Study |4 SolarPV Incentive Programs Solar PV

  4. Sandia National Laboratories: PV_LIB Toolbox

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PVracks HelioVoltPV-TechPV_LIB Toolbox

  5. International PV QA Task Force's Proposed Comparative Rating System for PV Modules: Preprint

    SciTech Connect (OSTI)

    Wohlgemuth, J.; Kurtz, S.

    2014-10-01T23:59:59.000Z

    The International PV Quality Assurance Task Force is developing a rating system that provides comparative information about the relative durability of PV modules. Development of accelerated stress tests that can provide such comparative information is seen as a major step toward being able to predict PV module service life. This paper will provide details of the ongoing effort to determine the format of such an overall module rating system. The latest proposal is based on using three distinct climate zones as defined in IEC 60721-2-1 for two different mounting systems. Specific stresses beyond those used in the qualification tests are being developed for each of the selected climate zones.

  6. Redding Electric- Earth Advantage Rebate Program

    Broader source: Energy.gov [DOE]

    The Earth Advantage Rebate Program was designed to offer rebates to residential and business customers of Redding Electric Utility (REU) for solar PV, solar thermal, and geothermal heat pump...

  7. Property Tax Abatement for Solar Electric Systems

    Broader source: Energy.gov [DOE]

    In August 2008, North Carolina enacted legislation that exempts 80% of the appraised value of a "solar energy electric system" (also known as a photovoltaic, or PV, system) from property tax. For...

  8. axonopodis pv phaseoli: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control objective is to balance the power flow from the PV module to the battery and the load such that the PV power is utilized effectively and the battery is charged with three...

  9. NREL: Jobs and Economic Competitiveness - Solar PV Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar PV Manufacturing Cost Analysis Between 2000 and 2010 global shipments of PV cellsmodules grew 53% (compound annual growth rate CAGR). At the same time, the U.S. market...

  10. SunShot Presentation PV Module Reliabity Workshop Opening Session...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SunShot Presentation PV Module Reliabity Workshop Opening Session This PowerPoint slide deck was originally presented at the opening session of the 2013 NREL PV Module...

  11. Breakout Session: Getting in the Loop: PV Hardware Recycling...

    Broader source: Energy.gov (indexed) [DOE]

    Getting in the Loop: PV Hardware Recycling and Sustainability Breakout Session: Getting in the Loop: PV Hardware Recycling and Sustainability May 21, 2014 6:30PM to 7:30PM PDT...

  12. A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan; Stein, Joshua S

    2013-01-01T23:59:59.000Z

    power fluctuations: the pv plant as a low pass filter,"point sensor to the entire PV plant at each timescale isWVM Inputs WVM Outputs PV Plant Footprint Density of PV

  13. PV Performance and Reliability Validation Capabilities at Sandia...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance and Reliability Validation Capabilities at Sandia National Laboratories PV Performance and Reliability Validation Capabilities at Sandia National Laboratories This...

  14. Analyzing and simulating the variability of solar irradiance and solar PV powerplants

    E-Print Network [OSTI]

    Lave, Matthew S.

    2012-01-01T23:59:59.000Z

    WVM) for Solar PV Power Plants, Sustainable Energy, IEEESolar PV Power Plants," IEEE Transactions on Sustainable Energy,

  15. A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan; Stein, Joshua S

    2013-01-01T23:59:59.000Z

    simulating solar photovoltaic (PV) power plant output givenfor simulating the power output of a solar photovoltaic (PV)

  16. (Eigen Phoneme Space (Phoneme Vector : PV)

    E-Print Network [OSTI]

    Takiguchi, Tetsuya

    PCA , , ( ) 1 MFCC [1] PCA 2 2.1 [3] (Eigen Phoneme Space : EPS) PCA [2] PCA [3] PCA (EPS) (EPS) (Phoneme Vector : PV) Fig. 1 (EPS) /a/ /i/ ¬∑ ¬∑ ¬∑ PCA (EPS) 2.2 PCA PCA i Si Si = 1 N N t=1 (xi t - ¬Įxi )(xi

  17. PV Integration by Building Energy Management System

    E-Print Network [OSTI]

    Boyer, Edmond

    . However, to validate global control algorithms, a simulator capable of interoperating with energy[kWh]. Econs (k) Total energy consumed by the load [kWh]. E (i, k) Energy consumed by the service i duringPV Integration by Building Energy Management System Rim.Missaoui¬Ļ, Ghaith.Warkozek¬Ļ, Seddik. Bacha

  18. Experience Curves and Solar PV Fred Heutte, Senior Policy Associate

    E-Print Network [OSTI]

    Experience Curves and Solar PV Fred Heutte, Senior Policy Associate NW Energy Coalition September 3 resources costs as being ranges rather than fixed values. It is evident that the question of future solar PV small percentage of all resources at present, there is a strong sense that once solar PV reaches "grid

  19. A GUIDE TO PHOTOVOLTAIC (PV) SYSTEM DESIGN AND INSTALLATION

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION A GUIDE TO PHOTOVOLTAIC (PV) SYSTEM DESIGN AND INSTALLATION JUNE 2001 TO PHOTOVOLTAIC (PV) SYSTEM DESIGN AND INSTALLATION Prepared for: California Energy Commission Energy Technology installing photovoltaic (PV) systems under the Emerging Renewables Buydown Program. This is the first

  20. Results from measurements on the PV-VENT systems

    E-Print Network [OSTI]

    Results from measurements on the PV-VENT systems at Lundebjerg Solar Energy Centre Denmark Danish from measurements on the PV-VENT systems at Lundebjerg S√łren √?stergaard Jensen Solar Energy Centre with (Jensen, 2000a) Solar Energy Centre Denmark's (Danish Technological Institute) measuring work in the PV

  1. Interconnecting PV on New York City's Secondary Network

    E-Print Network [OSTI]

    Interconnecting PV on New York City's Secondary Network Distribution System K. Anderson, M #12;Technical Report Interconnecting PV on New York NREL/ TP-7A2-46902 City's Secondary Network of Concerns and Solutions to PV Interconnection in New York City 4.0 Utility Application Process Review 5

  2. Role of Polycrystalline Thin-Film PV Technologies in Competitive PV Module Markets: Preprint

    SciTech Connect (OSTI)

    von Roedern, B.; Ullal, H. S.

    2008-05-01T23:59:59.000Z

    This paper discusses the developments in thin-film PV technologies and provides an outlook on future commercial module efficiencies achievable based on today's knowledge about champion cell performance.

  3. are typically installed in conduit. Electrical metallic tubing (EMT) is commonly used, and, where allowed by local codes,

    E-Print Network [OSTI]

    Johnson, Eric E.

    . Photovoltaic systems require wiring methods not normally found in residential or commercial electrical systems and availability in the proper sizes (10, 12, and 14 AWG) for module interconnections. A new PV conductor--a single-conductor cable designated "PV Wire," "Photovoltaic Wire," "PV Cable," or "Photovoltaic Cable"--will be allowed

  4. Energy Fluxes optimization for PV integrated Rim.Missaoui, Ghaith.Warkozek, Seddik. Bacha, Stphane.Ploix.

    E-Print Network [OSTI]

    Boyer, Edmond

    capable both to satisfy the maximum available electrical energy constraint and to maximize user comfort-time simulation I. NOMENCLATURE t Sampling step time, [hour]. Sampling time of the anticipatory layer. i by the load [kWh]. E (i, k) Energy produced by the source i during period k [kWh]. Ppv PV power produced

  5. Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions

    E-Print Network [OSTI]

    Darghouth, Naim

    2014-01-01T23:59:59.000Z

    including geothermal, small hydro, and biogas, as well as noby biomass, 1.5% by small hydro, and 0.3% by PV. The pricebiomass, geothermal, and small hydro electricity generation

  6. City of Shasta Lake Electric Utility- PV Rebate Program

    Broader source: Energy.gov [DOE]

    '''''Note: This program is currently not accepting applications. Check the program web site for information regarding future solicitations. '''''...

  7. The added economic and environmental value of plug-in electric vehicles connected to commercial building microgrids

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    solar thermal, stationary batteries, thermal storage, andThe model allows the EV batteries to transfer electricity toPV, and stationary batteries as options, e) an everything

  8. NanoPV Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3Informationof Energy Calculator29NanoPV Corporation Jump to:

  9. Sandia National Laboratories: new PV technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine bladelifetime ismobile testnational electricitynew PV technology

  10. PV World Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County,PPP Equipment CorporationPV World Co Ltd Place:

  11. PV Manufacturing R&D Project -- Trends in the U.S. PV Industry

    SciTech Connect (OSTI)

    Brown, K. E.; Mitchell, R. L.; Bower, W. I.; King, R.

    2005-01-01T23:59:59.000Z

    To foster continued growth in the U.S. photovoltaic (PV) industry, the U.S. Department of Energy initiated the PV Manufacturing R&D (PVMR&D) Project--a partnership with U.S. PV industry participants to perform cost-shared manufacturing research and development. Throughout FY 2004, PVMR&D managed fourteen subcontracts across the industry. The impact of PVMR&D is quantified by reductions in direct module manufacturing costs, scale-up of existing PV production capacity, and accrual of cost savings to the public and industry. An analysis of public and industry investment shows that both recaptured funds by mid-1998 based on estimated manufacturing cost savings from PVMR&D participation. Since project inception, total PV manufacturing capacity has increased from 14 MW to 201 MW at the close of 2003, while direct manufacturing costs declined from $5.55/W to $2.49/W. These results demonstrate continued progress toward the overriding goals of the PVMR&D project.

  12. PVGIS approach for assessing the performances of the first PV grid-connected power plant in Morocco

    E-Print Network [OSTI]

    Barhdadi, Abdelfettah

    2012-01-01T23:59:59.000Z

    In this paper, we apply the PVGIS method for estimating the performance of the first grid-connected PV micro-power plant in Morocco. PVGIS approach provides analysis and assessment of in-site solar energy resources and predicts with good accuracy the potential of PV systems in term of electricity production. We find that annual total power generation of the micro-power is slightly higher than that initially expected at the installation stage and actually measured. The yearly predicted and measured power production values agree to about 2 %. However, individual monthly production can have larger discrepancy.

  13. Transparent building-integrated PV modules. Phase 1: Comprehensive report

    SciTech Connect (OSTI)

    NONE

    1998-09-28T23:59:59.000Z

    This Comprehensive Report encompasses the activities that have been undertaken by Kiss + Cathcart, Architects, in conjunction with Energy Photovoltaics, Incorporated (EPV), to develop a flexible patterning system for thin-film photovoltaic (PV) modules for building applications. There are two basic methods for increasing transparency/light transmission by means of patterning the PV film: widening existing scribe lines, or scribing a second series of lines perpendicular to the first. These methods can yield essentially any degree of light transmission, but both result in visible patterns of light and dark on the panel surface. A third proposed method is to burn a grid of dots through the films, independent of the normal cell scribing. This method has the potential to produce a light-transmitting panel with no visible pattern. Ornamental patterns at larger scales can be created using combinations of these techniques. Kiss + Cathcart, Architects, in conjunction with EPV are currently developing a complementary process for the large-scale lamination of thin-film PVs, which enables building integrated (BIPV) modules to be produced in sizes up to 48 in. x 96 in. Flexible laser patterning will be used for three main purposes, all intended to broaden the appeal of the product to the building sector: To create semitransparent thin-film modules for skylights, and in some applications, for vision glazing.; to create patterns for ornamental effects. This application is similar to fritted glass, which is used for shading, visual screening, graphics, and other purposes; and to allow BIPV modules to be fabricated in various sizes and shapes with maximum control over electrical characteristics.

  14. Real Power and Reactive Power Control of a Three-Phase Single-Stage-PV System and PV voltage Stability

    SciTech Connect (OSTI)

    Li, Huijuan [ORNL] [ORNL; Xu, Yan [ORNL] [ORNL; Adhikari, Sarina [ORNL] [ORNL; Rizy, D Tom [ORNL] [ORNL; Li, Fangxing [ORNL] [ORNL; Irminger, Philip [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Grid-connected photovoltaic (PV) systems with power electronic interfaces can provide both real and reactive power to meet power system needs with appropriate control algorithms. This paper presents the control algorithm design for a three-phase single-stage grid-connected PV inverter to achieve either maximum power point tracking (MPPT) or a certain amount of real power injection, as well as the voltage/var control. The switching between MPPT control mode and a certain amount of real power control mode is automatic and seamless. Without the DC-to-DC booster stage, PV DC voltage stability is an important issue in the control design especially when the PV inverter is operating at maximum power point (MPP) with voltage/var control. The PV DC voltage collapse phenomenon and its reason are discussed. The method based on dynamic correction of the PV inverter output is proposed to ensure PV DC voltage stability. Simulation results of the single-stage PV system during system disturbances and fast solar irradiation changes confirm that the proposed control algorithm for single-stage PV inverters can provide appropriate real and reactive power services and ensure PV DC voltage stability during dynamic system operation and atmospheric conditions.

  15. Maximizing the Value of Photovoltaic Installations on Schools in California: Choosing the Best Electricity Rates

    SciTech Connect (OSTI)

    Ong, S.; Denholm, P.

    2011-07-01T23:59:59.000Z

    Schools in California often have a choice between multiple electricity rate options. For schools with photovoltaic (PV) installations, choosing the right rate is essential to maximize the value of PV generation. The rate option that minimizes a school?s electricity expenses often does not remain the most economical choice after the school installs a PV system. The complex interaction between PV generation, building load, and rate structure makes determining the best rate a challenging task. This report evaluates 22 rate structures across three of California?s largest electric utilities--Pacific Gas and Electric Co. (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E)--in order to identify common rate structure attributes that are favorable to PV installations.

  16. NREL/SCE High Penetration PV Integration Project: FY13 Annual Report

    SciTech Connect (OSTI)

    Mather, B. A.; Shah, S.; Norris, B. L.; Dise, J. H.; Yu, L.; Paradis, D.; Katiraei, F.; Seguin, R.; Costyk, D.; Woyak, J.; Jung, J.; Russell, K.; Broadwater, R.

    2014-06-01T23:59:59.000Z

    In 2010, the National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed to analyze the impacts of high penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to benefit from the experience that SCE and the project team would gain during the installation of 500 megawatts (MW) of utility-scale PV systems (with 1-5 MW typical ratings) starting in 2010 and completing in 2015 within SCE's service territory through a program approved by the California Public Utility Commission (CPUC). This report provides the findings of the research completed under the project to date.

  17. Notice of Intent to Issue Funding Opportunity for Integrated PV and Energy Storage Systems

    Broader source: Energy.gov [DOE]

    As solar power plants proliferate, the variability and uncertainty of the solar resource poses challenges for integrating PV with electric power systems at both the distribution and bulk system levels. In response to these challenges, the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy (EERE) has issued a notice of intent (NOI) to release the SunShot Sustainable and Holistic IntegratioN of Energy storage and Solar (SHINES) funding opportunity. SHINES will enable the holistic design, development, and widespread sustainable deployment of low-cost, flexible, and reliable energy storage solutions, and will strive to successfully integrate these solutions into PV power plants. SHINES projects can also focus on demand response and load management to achieve target metrics.

  18. Tucson's Solar Experience: Developing PV with RFPs and PPAs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tucson's Solar Experience: Developing PV with RFPs and PPAs Bruce Plenk Solar Coordinator City of Tucson Office of Conservation and Sustainable Development DOE EERE- January 15,...

  19. Novel Control and Harmonics Impact of PV Solar Farms.

    E-Print Network [OSTI]

    Das, Byomakesh

    2012-01-01T23:59:59.000Z

    ??This thesis presents a novel application of Photovoltaic (PV) solar system inverter, both during night and day, as a dynamic reactive power compensator STATCOM. ThisÖ (more)

  20. Large-scale Solar PV Investment Planning Studies.

    E-Print Network [OSTI]

    Muneer, Wajid

    2011-01-01T23:59:59.000Z

    ??In the pursuit of a cleaner and sustainable environment, solar photovoltaic (PV) power has been established as the fastest growing alternative energy source in theÖ (more)

  1. Study on PID Resistance of HIT PV Modules

    Broader source: Energy.gov (indexed) [DOE]

    2013 Photovoltaic Module Reliability Workshop NREL, Golden, CO February 26-27, 2013 Study on PID resistance of HIT PV modules Tasuku Ishiguro 1 , Hiroshi Kanno 1 , Mikio...

  2. Pallets of PV: Communities Purchase Solar and Drive Down Costs...

    Open Energy Info (EERE)

    A Community Guide to Collective Purchasing of Residential PV Systems." Northwest Sustainable Energy for Economic Development (Northwest SEED), May. Groups: OpenEI Community...

  3. Sandia National Laboratories: Sandian Presents on PV Failure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) On December 15, 2014, in Computational Modeling & Simulation, Energy, Facilities, News, News & Events,...

  4. Overview of the PV Module Model in PVWatts (Presentation)

    SciTech Connect (OSTI)

    Marion, B.

    2010-09-22T23:59:59.000Z

    Overview of the PV module model. PVWatts module power estimates were compared with those using the Sandia model for three modules and data sets.

  5. Weathering Performance of PV Backsheets | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2013, Golden, Colorado pvmrw13ps5arkemalefebvre.pdf More Documents & Publications Accelerated Laboratory Tests Using Simultaneous UV, Temperature, and Moisture for PV...

  6. The Open PV Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec do Brasil EnergiaSurPV Project (Redirected from

  7. The Open PV Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec do Brasil EnergiaSurPV Project (Redirected from

  8. Sandia National Laboratories: flexible PV substrate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluating wind-turbine/radar impacts SandiafasterpolymersPV

  9. Sandia National Laboratories: high PV deployment level

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluatingfull moduleresources gridstandby positionshigh PV

  10. Sandia National Laboratories: increase PV deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine blade manufacturing the viability offuel efficiencyPV

  11. Sandia National Laboratories: intrgrate PV into tents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine blade manufacturing therenewables Sandia,internalintrgrate PV

  12. Gansu PV Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard" form. To create aGAInformationPV Co Ltd

  13. Generation PV Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard" form. To createResearchEnergy Inc Jump to:PV

  14. Sandia National Laboratories: PV Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNoLong RangePILSResourcesPV ContactsAnalysis

  15. Sandia National Laboratories: PV Performance Modeling Collaborative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNoLongAnalysisPV Performance Modeling

  16. Sandia National Laboratories: PV Performance Modeling Collaborative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNoLongAnalysisPV Performance

  17. Sandia National Laboratories: PV Program Disclaimer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNoLongAnalysisPV

  18. Sandia National Laboratories: PV Regional Test Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNoLongAnalysisPVPublications PV

  19. Sandia National Laboratories: PV Systems Reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PV Systems Reliability Sandia recognizes

  20. Sandia National Laboratories: PV Systems Reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PV Systems Reliability Sandia

  1. Sandia National Laboratories: PV Tech Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PV Systems Reliability SandiaTech Power

  2. Sandia National Laboratories: PV Value Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PV Systems Reliability SandiaTechValue

  3. Sandia National Laboratories: PV Value¬ģ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PV Systems Reliability

  4. Sandia National Laboratories: PV array monitoring strategies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PV Systems ReliabilityWorkshops

  5. Sandia National Laboratories: PV module development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PV Systemsconcentratorsmodule

  6. Sandia National Laboratories: PV performance model validation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PV

  7. Sandia National Laboratories: PV plant performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PV

  8. Sandia National Laboratories: PV power plant monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PV

  9. Sandia National Laboratories: PV system monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PVracks HelioVolt Modulesmonitoring PV

  10. Sandia National Laboratories: PV-Tech magazine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PVracks HelioVoltPV-Tech magazine

  11. Sandia National Laboratories: accelerating PV technology integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Release Wave EnergyLinksZ Newsaccelerating PV technology

  12. Development of a Dispatchable PV Peak Shainv System. PV: Bonus Program - Phase 1 Report. Volume 1

    SciTech Connect (OSTI)

    None

    1995-10-01T23:59:59.000Z

    This report summarizes the work performed by Delmarva Power and Light and its subcontractors in Phase 1 of the US Department of Energy's PV:BONUS Program. The purpose of the program is to develop products and systems for buildings which utilize photovoltaic (N) technology. Beginning with a cooperative research effort with the University of Delaware's Center for Energy and Environmental Policy Research Delmarva Power developed and demonstrated the concept of Dispatchable PV Peak Shaving. This concept and the system which resulted horn the development work are unique from other grid-connected PV systems because it combines a PV, battery energy storage, power conversion and control technologies into an integrated package. Phase 1 began in July 1993 with the installation of a test and demonstration system at Delmarva's Northern Division General Office building near Newark, Delaware. Following initial testing throughout the summer and fall of 1993, significant modifications were made under an amendment to the DOE contract. Work on Phase 1 concluded in the early spring of 1995. Significant progress towards the goal of commercializing the system was made during Phase 1, and is summarized. Based on progress in Phase 1, a proposal to continue the work in Phase 2 was submitted to the US DOE in May 1995. A contract amendment and providing funds for the Phase 2 work is expected in July 1995.

  13. AC PV Modules Take a standard DC PV module and connect a microinverter

    E-Print Network [OSTI]

    Johnson, Eric E.

    modules. These inverters range in power from 700 watts up to 1 megawatt. DC maximum system voltages can and up to 13 inverters for the 210 W version to be installed on the same AC output cable. home power 136, and secure a listing to UL1741 for a pre-assembled module/inverter device, and you have an AC PV module

  14. PV AND GRID RELIABILITY: AVAILABILITY OF PV POWER DURING CAPACITY SHORTFALLS

    E-Print Network [OSTI]

    Perez, Richard R.

    from a stream of actual load and PV output data: (1) The effective load carrying capability (ELCC output was simulated using high-resolution satellite cloud cover data [7]. The results are reported; (3) the solar load controller's (SLC) minimum temperature adjustment [6], is an other indirect

  15. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    E-Print Network [OSTI]

    Darghouth, Naim Richard

    2013-01-01T23:59:59.000Z

    by biomass, 1.5% by small hydro, and 0.3% by PV. The pricebiomass, geothermal, and small hydro electricity generation

  16. La Plata Electric Association- Renewable Generation Rebate Program

    Broader source: Energy.gov [DOE]

    La Plata Electric Association (LPEA) offers a one-time rebate, not to exceed the cost of the system, to residential and small commercial customers who install a photovoltaic (PV), wind or...

  17. Silicon Valley Power- Solar Electric Buy Down Program

    Broader source: Energy.gov [DOE]

    Silicon Valley Power (SVP) offers incentives for the installation of new grid-connected solar electric (photovoltaic, or PV) systems. Incentive levels will step down over the life of the program as...

  18. Trico Electric Cooperative- SunWatts Incentive Program

    Broader source: Energy.gov [DOE]

    Through the SunWatts Program, Trico Electric Cooperative offers residential and business customers a rebate for installing photovoltaic (PV) systems and solar water heaters. The up-front rebate for...

  19. The Market Value and Cost of Solar Photovoltaic Electricity Production

    E-Print Network [OSTI]

    Borenstein, Severin

    2008-01-01T23:59:59.000Z

    the premium value of solar PV power to 0%-20% again. Whilepower to that location. While few dispute that the direct cost of electricity from the currently available solar

  20. Duncan Valley Electric Cooperative- SunWatts Rebate Program (Arizona)

    Broader source: Energy.gov [DOE]

    Duncan Valley Electric Cooperative is providing rebates to for the purchase of renewable energy systems through its SunWatts program. Photovoltaic (PV) and wind energy systems 10 kilowatts (kW) or...

  1. Grid tied PV system energy smoothing.

    SciTech Connect (OSTI)

    Barrett, Keith Phillip; Gonzalez, Sigifredo; Hund, Thomas D.

    2010-06-01T23:59:59.000Z

    Grid-tied PV energy smoothing was implemented by using a valve regulated lead-acid (VRLA) battery as a temporary energy storage device to both charge and discharge as required to smooth the inverter energy output from the PV array. Inverter output was controlled by the average solar irradiance over the previous 1h time interval. On a clear day the solar irradiance power curve is offset by about 1h, while on a variable cloudy day the inverter output power curve will be smoothed based on the average solar irradiance. Test results demonstrate that this smoothing algorithm works very well. Battery state of charge was more difficult to manage because of the variable system inefficiencies. Testing continued for 30-days and established consistent operational performance for extended periods of time under a wide variety of resource conditions. Both battery technologies from Exide (Absolyte) and East Penn (Advanced Valve Regulated Lead-Acid) proved to cycle well at a partial state of charge over the time interval tested.

  2. Grid-tied PV battery systems.

    SciTech Connect (OSTI)

    Barrett, Keith Phillip; Gonzalez, Sigifredo; Hund, Thomas D.

    2010-09-01T23:59:59.000Z

    Grid tied PV energy smoothing was implemented by using a valve regulated lead-acid (VRLA) battery as a temporary energy storage device to both charge and discharge as required to smooth the inverter energy output from the PV array. Inverter output was controlled by the average solar irradiance over the previous 1h time interval. On a clear day the solar irradiance power curve is offset by about 1h, while on a variable cloudy day the inverter output power curve will be smoothed based on the average solar irradiance. Test results demonstrate that this smoothing algorithm works very well. Battery state of charge was more difficult to manage because of the variable system inefficiencies. Testing continued for 30-days and established consistent operational performance for extended periods of time under a wide variety of resource conditions. Both battery technologies from Exide (Absolyte) and East Penn (ALABC Advanced) proved to cycle well at a Partial state of charge over the time interval tested.

  3. Step-Stress Accelerated Degradation Testing (SSADT) for Photovoltaic (PV) Devices and Cells (Presentation)

    SciTech Connect (OSTI)

    Lee, J.; Elmore, R.; Suh, C.; Jones, W.

    2010-10-01T23:59:59.000Z

    Presentation on step-stress accelerated degradation testing (SSADT) for photovoltaics (PV). Developed are a step-stress degradation test (SSADT) for PV reliability tests and a lifetime prediction model for PV products.

  4. PID-free C-Si PV Module Using Novel Chemically-Tempered Glass...

    Broader source: Energy.gov (indexed) [DOE]

    PID-free C-Si PV Module Using Novel Chemically-Tempered Glass PID-free C-Si PV Module Using Novel Chemically-Tempered Glass Presented at the PV Module Reliability Workshop,...

  5. Comparison Between TRNSYS Software Simulation and PV F-Chart Program on Photovoltaic System

    E-Print Network [OSTI]

    Haberl, J. S.; Baltazar, J. C.; Mao, C.

    2012-01-01T23:59:59.000Z

    This report covers the comparisons of Photovoltaic System by TRNSYS simulation and PV F-Chart program to test TRNSYS simulation accuracy. The report starts with the Photovoltaic (PV) (PV) System introduction in Section one which is followed...

  6. Power Systems Engineering Research Center Modeling, Analysis and Deployment of High PV

    E-Print Network [OSTI]

    Van Veen, Barry D.

    and equipment using GIS data, loads using AMI data and PV systems using measured PV output from extensive data electronics and grid integration of renew- able resources mainly solar PV and wind. Dr. Ayyanar received

  7. Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term

    E-Print Network [OSTI]

    Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections November 2012 #12;Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections David Feldman1 , Galen Barbose2 , Robert Margolis1 , Ryan Wiser2 , Na√Įm Darghouth2 , and Alan Goodrich1 1 National Renewable Energy

  8. Integrating PV into Performance Contracts: Barriers and Trends

    E-Print Network [OSTI]

    Delaware, University of

    value chain includes the technology's value as a peak-shaving and load management tool, as a sourceIntegrating PV into Performance Contracts: Barriers and Trends Wilson Rickerson Center for Energy incorporated photovoltaic (PV) systems as part of an overall building energy service strategy. This paper

  9. The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects...

    Office of Environmental Management (EM)

    Solar Photovoltaic (PV) Projects The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects Data courtesy of National Renewable Energy Lab. Chart by Daniel Wood. View...

  10. Linkage to Previous International PV Module QA Task Force Workshops; Proposal for Rating System (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Wohlgemuth, J.; Sample, T.; Yamamichi, M.; Kondo, M.

    2013-05-01T23:59:59.000Z

    This presentation gives the historical background of the creation of the International PV QA Task Force as an introduction to the PV Module Reliability Workshop.

  11. A Comparison of Key PV Backsheet and Module Properties from Fielded...

    Broader source: Energy.gov (indexed) [DOE]

    of Key PV Backsheet and Module Properties from Fielded Module Exposures and Accelerated Test Conditions A Comparison of Key PV Backsheet and Module Properties from Fielded...

  12. A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan; Stein, Joshua S

    2013-01-01T23:59:59.000Z

    Model (WVM) for Solar PV Power Plants Matthew Lave, Jansolar photovoltaic (PV) power plant output given a singleproduce a simulated power plant output. The WVM is validated

  13. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A.

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    pathovar; pv. ), which demonstrate distinct host plantcampestris pv. malvacearum avr genes. Mol Plant Microbepv. vesicatoria, which is responsible for bacterial spot in tomato and pepper plants.

  14. Technology and Climate Trends in PV Module Degradation: Preprint

    SciTech Connect (OSTI)

    Jordan, D. C.; Wohlgemuth, J. H.; Kurtz, S. R.

    2012-10-01T23:59:59.000Z

    To sustain the commercial success of photovoltaic (PV) technology it is vital to know how power output decreases with time. Unfortunately, it can take years to accurately measure the long-term degradation of new products, but past experience on older products can provide a basis for prediction of degradation rates of new products. An extensive search resulted in more than 2000 reported degradation rates with more than 1100 reported rates that include some or all IV parameters. In this paper we discuss how the details of the degradation data give clues about the degradation mechanisms and how they depend on technology and climate zones as well as how they affect current and voltage differently. The largest contributor to maximum power decline for crystalline Si technologies is short circuit current (or maximum current) degradation and to a lesser degree loss in fill factor. Thin-film technologies are characterized by a much higher contribution from fill factor particularly for humid climates. Crystalline Si technologies in hot & humid climates also display a higher probability to show a mixture of losses (not just short circuit current losses) compared to other climates. The distribution for the module I-V parameters (electrical mismatch) was found to change with field exposure. The distributions not only widened but also developed a tail at the lower end, skewing the distribution.

  15. Technology and Climate Trends in PV Module Degradation (Presentation)

    SciTech Connect (OSTI)

    Jordan, D.; Wohlgemuth, J.; Kurtz, S.

    2012-10-01T23:59:59.000Z

    To sustain the commercial success of photovoltaic (PV) technology it is vital to know how power output decreases with time. Unfortunately, it can take years to accurately measure the long-term degradation of new products, but past experience on older products can provide a basis for prediction of degradation rates of new products. An extensive search resulted in more than 2000 reported degradation rates with more than 1100 reported rates that include some or all IV parameters. In this presentation we discuss how the details of the degradation data give clues about the degradation mechanisms and how they depend on technology and climate zones as well as how they affect current and voltage differently. The largest contributor to maximum power decline for crystalline Si technologies is short circuit current (or maximum current) degradation and to a lesser degree loss in fill factor. Thin-film technologies are characterized by a much higher contribution from fill factor particularly for humid climates. Crystalline Si technologies in hot & humid climates also display a higher probability to show a mixture of losses (not just short circuit current losses) compared to other climates. The distribution for the module I-V parameters (electrical mismatch) was found to change with field exposure. The distributions not only widened but also developed a tail at the lower end, skewing the distribution.

  16. Environmental impacts of building integrated PV applications in the state public buildings sector

    SciTech Connect (OSTI)

    Byrne, J.; Agbemabiese, L.; Kliesch, J.; Eiffert, P.; Hadjilambrinos, C.; Nigro, R.

    1999-07-01T23:59:59.000Z

    If the US is to meet its commitments for CO{sub 2} and SO{sub 2} emission reductions, as anticipated by the 1997 Kyoto Protocol on Climate Change and the Clean air Act Amendments of 1990, it almost certainly must implement policies to increase the use of renewable energy. This paper evaluates the potential of photovoltaic (PV) technologies to deliver high-value electrical services while offsetting SO{sub 2} and CO{sub 2} emissions. Their study focuses on PV applications in the public buildings sector because of its potential for speeding the commercialization of the technology in a market conducive to long-term return on investment. The study investigates the economic and environmental implications of PV meeting 2% of the energy demand of public buildings. The specific application investigated is a roof-mounted dispatchable peak-shaving system with uninterruptible power supply (UPS) capability. Several previous studies have shown that such a system is cost-effective on the basis of the energy services it provides. The present analysis indicates that this application can play an important role in helping the US meet its CO{sub 2} and SO{sub 2} emissions targets.

  17. Design, Fabrication, and Certification of Advanced Modular PV Power Systems Final Technical Progress Report

    SciTech Connect (OSTI)

    Lambarski, T.; Minyard, G. (Solar Electric Specialties Co., Willits, California)

    1998-10-06T23:59:59.000Z

    This report describes the overall accomplishments and benefits of Solar Electric Specialties Co. (SES) under this Photovoltaic Manufacturing Technology (PVMaT) subcontract. SES addressed design issues related to their modular autonomous PV power supply (MAPPS) and a mobile photogenset. MAPPS investigations included gel-cell batteries mounted horizontally; redesign of the SES power supply; modified battery enclosure for increased safety and reduced cost; programmable, interactive battery charge controllers; and UL and FM listings. The photogenset systems incorporate generators, battery storage, and PV panels for a mobile power supply. The unit includes automatic oil-change systems for the propane generators, collapsible array mounts for the PV enclosure, and internal stowage of the arrays. Standardizing the products resulted in product lines of MAPPS and Photogensets that can be produced more economically and with shorter lead times, while increasing product quality and reliability. Product assembly and quality control have also been improved and streamlined with the development of standardized assembly processes and QC testing procedures. SES offers the UL-listed MAPPS at about the same price as its previous non-standardized, unlisted products.

  18. Design, fabrication, and certification of advanced modular PV power systems. Final technical progress report

    SciTech Connect (OSTI)

    Lambarski, T.; Minyard, G. [Solar Electric Specialties Co., Willits, CA (United States)

    1998-10-01T23:59:59.000Z

    Solar Electric Specialties Company (SES) has completed a two and a half year effort under the auspices of the US Department of Energy (DOE) PVMaT (Photovoltaic Manufacturing Technology) project. Under Phase 4A1 of the project for Product Driven System and Component Technology, the SES contract ``Design, Fabrication and Certification of Advanced Modular PV Power Systems`` had the goal to reduce installed system life cycle costs through development of certified (Underwriters Laboratories or other listing) and standardized prototype products for two of the product lines, MAPPS{trademark} (Modular Autonomous PV Power Supply) and Photogensets{trademark}. MAPPS are small DC systems consisting of Photovoltaic modules, batteries and a charge controller and producing up to about a thousand watt-hours per day. Photogensets are stand-alone AC systems incorporating a generator as backup for the PV in addition to a DC-AC inverter and battery charger. The program tasks for the two-year contract consisted of designing and fabricating prototypes of both a MAPPS and a Photogenset to meet agency listing requirements using modular concepts that would support development of families of products, submitting the prototypes for listing, and performing functionality testing at Sandia and NREL. Both prototypes were candidates for UL (Underwriters Laboratories) listing. The MAPPS was also a candidate for FM (Factory Mutual) approval for hazardous (incendiary gases) locations.

  19. Optimal Control of a Grid-Connected Hybrid Electrical Energy Storage System for Homes

    E-Print Network [OSTI]

    Pedram, Massoud

    with the introduction of dynamic electricity energy pricing models since electricity consumers can use their PV, and thereby, minimize their electricity bill. Due to the characteristics of a realistic electricity price period under a general electricity energy price function. The proposed algorithm is based on dynamic

  20. Lessons Learned from the Photovoltaic Manufacturing Technology/PV Manufacturing R&D and Thin Film PV Partnership Projects

    SciTech Connect (OSTI)

    Margolis, R.; Mitchell, R.; Zweibel, K.

    2006-09-01T23:59:59.000Z

    As the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program initiates new cost-shared solar energy R&D under the Solar America Initiative (SAI), it is useful to analyze the experience gained from cost-shared R&D projects that have been funded through the program to date. This report summarizes lessons learned from two DOE-sponsored photovoltaic (PV) projects: the Photovoltaic Manufacturing Technology/PV Manufacturing R&D (PVMaT/PVMR&D) project and the Thin-Film PV Partnership project. During the past 10-15 years, these two projects have invested roughly $330 million of government resources in cost-shared R&D and leveraged another $190 million in private-sector PV R&D investments. Following a description of key findings and brief descriptions of the PVMaT/PVMR&D and Thin-Film PV Partnership projects, this report presents lessons learned from the projects.

  1. Electrochemical Approaches to PV Busbar Application

    SciTech Connect (OSTI)

    Pankow, J. W.

    2005-01-01T23:59:59.000Z

    Busbars are an integral component of any thin-film photovoltaic module and must be easy and quick to apply by PV manufacturers, as well as provide long-term reliability in deployed modules. Potential reliability issues include loss of adhesion and delamination, chemical instability under current collection conditions (electromigration or corrosion), compatibility of material and application method with subsequent encapsulation steps. Several new and novel busbar materials and application methods have been explored, including adhering metal busbars with various one- and two-part conductive epoxies or conductive adhesive films, ultrasonic bonding of metal busbar strips, and bonding of busbar strips using low-temperature solders. The most promising approach to date has been the direct application of metal busbars via various electrochemical techniques, which offers a variety of distinct advantages.

  2. Analytical Improvements in PV Degradation Rate Determination

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2011-02-01T23:59:59.000Z

    As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined accurately. For non-spectrally corrected data several complete seasonal cycles (typically 3-5 years) are required to obtain reasonably accurate degradation rates. In a rapidly evolving industry such a time span is often unacceptable and the need exists to determine degradation rates accurately in a shorter period of time. Occurrence of outliers and data shifts are two examples of analytical problems leading to greater uncertainty and therefore to longer observation times. In this paper we compare three methodologies of data analysis for robustness in the presence of outliers, data shifts and shorter measurement time periods.

  3. Optimal Solar PV Arrays Integration for Distributed Generation

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A [ORNL; Li, Xueping [University of Tennessee, Knoxville (UTK)

    2012-01-01T23:59:59.000Z

    Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

  4. Kauai Island Utility Co-op (KIUC) PV integration study.

    SciTech Connect (OSTI)

    Ellis, Abraham; Mousseau, Tom (Knoxville, TN)

    2011-08-01T23:59:59.000Z

    This report investigates the effects that increased distributed photovoltaic (PV) generation would have on the Kauai Island Utility Co-op (KIUC) system operating requirements. The study focused on determining reserve requirements needed to mitigate the impact of PV variability on system frequency, and the impact on operating costs. Scenarios of 5-MW, 10-MW, and 15-MW nameplate capacity of PV generation plants distributed across the Kauai Island were considered in this study. The analysis required synthesis of the PV solar resource data and modeling of the KIUC system inertia. Based on the results, some findings and conclusions could be drawn, including that the selection of units identified as marginal resources that are used for load following will change; PV penetration will displace energy generated by existing conventional units, thus reducing overall fuel consumption; PV penetration at any deployment level is not likely to reduce system peak load; and increasing PV penetration has little effect on load-following reserves. The study was performed by EnerNex under contract from Sandia National Laboratories with cooperation from KIUC.

  5. PV Validation and Bankability Workshop: San Jose, California

    SciTech Connect (OSTI)

    Granata, J.; Howard, J.

    2011-12-01T23:59:59.000Z

    This report is a collaboration between Sandia National Laboratories, the National Renewable Energy Laboratory, and the Florida Solar Energy Center (FSEC). The report provides feedback from the U.S. Department of Energy's (DOE) Solar Program PV Validation and Bankability Workshop in San Jose, California on August 31, 2011. It focuses on the current state of PV in the United States, private funding to fund U.S. PV industry growth, roles and functions of the regional test center program, and ways to improve the current validation and bankability practices.

  6. ENERGY-10 PV: Photovoltaics, A New Capability (Preprint)

    SciTech Connect (OSTI)

    Balcomb, J.D.; Hayter, S.J. (National Renewable Energy Laboratory); Weaver, N.L. (InterWeaver Consulting)

    2001-02-16T23:59:59.000Z

    This is one of two companion papers that describe the ENERGY-10 PV design-tool computer simulation program. The other paper is titled ''Hourly Simulation of Grid-Connected PV Systems Using Realistic Building Loads.'' While this paper focuses on the implementation method, the companion paper focuses on the PV aspects of the program. The case study in this paper is a residential building application, whereas the case study in the companion paper is a commercial application with an entirely different building load characteristic. Together, they provide a balanced view.

  7. 20 IAEI NEWS January.February 2006 www.iaei.org back to the grid, designing pv systems for code complance

    E-Print Network [OSTI]

    Johnson, Eric E.

    on photovoltaic (PV) power systems and the National Electrical Code by John Wiles Code Compliance20 IAEI NEWS.82(6) lists solar photovoltaic equipment as permitted to be connected to the supply side of the service and sheet metal screws rather than with the required ground-bar kit listed by the manufacturer. Section 230

  8. HOW BPA/WSUN SCHOOL PV EFFORT WORKED AT ELMIRA HIGH SCHOOL This article reports on lessons learned from installing a

    E-Print Network [OSTI]

    Oregon, University of

    , and a mechanism to help share the cost of the system. The school and the students benefit in having a renewable energy system that can be used as an educational aide. The local utility and BPA benefit from experience" the system costs for fifteen solar electric (PV) systems. In other words, BPA paid the $2,500 for each system

  9. Abstract--The behavior of Solar Photo-Voltaic Generation (SPVG) in the grid is defined by the way its output active and

    E-Print Network [OSTI]

    Ca√Īizares, Claudio A.

    its output active and reactive power are controlled; the reactive power can be controlled directly). Therefore, two basic modeling approaches are considered in the present work: constant reactive power of electricity. The Ontario Power Authority (OPA), as per the Green Energy Act [1], considers renewable energy

  10. NREL PV Projects - FUPWG Meeting: "Going Coastal for Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    kWdc (1,200,000 kWh) one-axis tracking PV system - Grid connected (NREL "side of the meter") - Milestones Agreements: January 2008 Operation: August 2008 Solar Rewards...

  11. DOE-LPO-MiniReport_PV_v10

    Office of Environmental Management (EM)

    for what has become a robust market that is now purely commercially financed. 4 energy.govlpo Utility-Scale PV Solar Markets Loan Programs O ce As deployment of...

  12. Giant Leap Forward Toward Quality Assurance of PV Modules (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Wohlgemuth, J.; Sample, T.; Yamamichi, M.

    2012-03-01T23:59:59.000Z

    The presentation describes the composition of and motivation for the International PV QA Task Force, then describes the presentations and discussion that occurred at the workshop on Feb. 29th, 2012.

  13. Solar PV Jobs and Economic Development Impact Model Webinar

    Broader source: Energy.gov [DOE]

    Join the DOE SunShot Initiative, in conjunction with the National Renewable Energy Laboratory, for a webinar on August 21, 2013, at 2-3 p.m. EST highlighting the Scenario Solar PV Jobs and Economic...

  14. Tucson's Solar Experience: Developing PV with RFPs and PPAs

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation was given January 15, 2013, by Bruce Plenk, Solar Coordinator for the City of Tucson, Arizona, as part of the CommRE Developing PV Projects With RFPs and PPAs webinar.

  15. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect (OSTI)

    Anderson, K.; Coddington, M.; Burman, K.; Hayter, S.; Kroposki, B.; Watson, A.

    2009-12-01T23:59:59.000Z

    This study describes technical assistance provided by NREL to help New York City and Con Edison improve the interconnection of distributed PV systems on a secondary network distribution system.

  16. Impact of Soiling and Pollution on PV Generation Performance

    Broader source: Energy.gov [DOE]

    This 5-page technical letter addresses air pollution effects on PV performance by quantifying, based on a literature search, the average annual loss due to soiling, the impact of cleaning, and a recommended cleaning schedule.

  17. Agenda for the PV Module Reliability Workshop, February 26 -...

    Broader source: Energy.gov (indexed) [DOE]

    Technology, "PV Standards: What New Things Does the IEC Have for You?" 4. L. Sherwood of Solar ABCs, "Recent Reports from the Solar America Board for Codes and Standards" 5. A....

  18. Taunton Municipal Lighting Plant- Residential PV Rebate Program

    Broader source: Energy.gov [DOE]

    Customers of Taunton Municipal Lighting Plant (TMLP) may be eligible for $2.00/watt rebate on solar photovoltaic (PV) installations. The minimum system size eligible for this rebate is 1 kilowatt ...

  19. New York Sun Competitive PV Program (New York)

    Broader source: Energy.gov [DOE]

    The New York Sun Competitive Photovoltaic (PV) Program is an expansion of the Renewable Portfolio Standard (RPS) Customer-Sited Tier Regional Program that includes Upstate New York. The New York...

  20. Perspective on International PV Challenge & Opportunities for Rural Development

    SciTech Connect (OSTI)

    Taylor, R. W.

    2000-01-01T23:59:59.000Z

    International market opportunities for the sale and deployment of photovoltaic (PV) systems abound and will continue to out-pace domestic, grid-connected opportunities for the foreseeable future.

  1. Clean Energy State Program Guide: Mainstreaming Solar Electricity Strategies for States to Build Local Markets

    Broader source: Energy.gov [DOE]

    A PV mapping tool visually represents a specific site and calculates PV system size and projected electricity production. This report identifies the commercially available solar mapping tools and thoroughly summarizes the source data type and resolution, the visualization software program being used, user inputs, calculation methodology and algorithms, map outputs, and development costs for each map.

  2. residential environment. Electrical connections that are easily pulled apart and single, exposed conductors that are readily

    E-Print Network [OSTI]

    Johnson, Eric E.

    of Energy, which sponsored code-writing activities, believed that rooftop, building-integrated, utility that additions to the code specifically addressed this technology. Making Solar Electricity Safer In the mid-1970 connections. In those early years, although the majority of PV installations were off grid, the early PV code

  3. Evaluation of tracking flat plate and concentrator PV systems

    SciTech Connect (OSTI)

    Lepley, T. [Phasor Energy Co., Phoenix, AZ (United States); Hammond, B.; Harris, A. [Arizona State Univ., Tempe, AZ (United States)

    1997-12-31T23:59:59.000Z

    Arizona Public Service Company has conducted side-by-side field tests of most of the leading tracking flat plate and concentrating PV technologies. The results verify the added value due to tracking, but show that additional reliability improvements are needed in most cases. Concentrator PV systems can be high performers in sunny regions. In addition, a novel inverter system design by Raytheon has demonstrated excellent performance and promises to be more reliable and have lower cost than competing technologies.

  4. Time-dependent first-principles approaches to PV materials

    SciTech Connect (OSTI)

    Miyamoto, Yoshiyuki [Nanosystem Research Institute, AIST, Central 2, 1-1-1, Umezono, Tsukuba, 305-8568 (Japan)

    2013-12-10T23:59:59.000Z

    Computational scheme for designing photovoltaic (PV) materials is presented. First-principles electron dynamics of photo-excitation and subsequent electron-hole splitting is performed based on the time-dependent density functional theory. Photo-induced enhancement of dipole moment was observed in a polar crystal and a donor-acceptor molecular pair. These experiences will pave a way to design PV material from first-principles simulations.

  5. Sandia National Laboratories: PV Power Tech: PV Power Plant Technology and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNoLongAnalysisPV PerformanceBusiness

  6. Continuing Developments in PV Risk Management: Strategies, Solutions, and Implications

    SciTech Connect (OSTI)

    Lowder, T.; Mendelsohn, M.; Speer, B.; Hill, R.

    2013-02-01T23:59:59.000Z

    As the PV industry matures, successful risk management practices will become more imperative to ensure investor confidence, control costs, and facilitate further growth. This report discusses several key aspects of risk management during the commercial- and utility-scale project life cycle, from identification of risks, to the process of mitigating and allocating those risks among project parties, to transferring those risks through insurance. The report also explores novel techniques in PV risk management, options to offload risks onto the capital markets, and innovative insurance policies (namely warranty policies) that address risks unique to the PV sector. One of the major justifications for robust risk management in the PV industry is the cost-reduction opportunities it affords. If the PV industry can demonstrate the capability to successfully manage its risks, thereby inspiring confidence in financiers, it may be able to obtain a lower cost of capital in future transactions. A lower cost of capital translates to a lower cost of energy, which will in turn enhance PV?s competitiveness at a time when it will have to rely less on subsidies to support its market penetration.

  7. Review of PV Inverter Technology Cost and Performance Projections

    SciTech Connect (OSTI)

    Navigant Consulting Inc.

    2006-01-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) has a major responsibility in the implementation of the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program. Sandia National Laboratories (SNL) has a major role in supporting inverter development, characterization, standards, certifications, and verifications. The Solar Energy Technologies Program recently published a Multiyear Technical Plan, which establishes a goal of reducing the Levelized Energy Cost (LEC) for photovoltaic (PV) systems to $0.06/kWh by 2020. The Multiyear Technical Plan estimates that, in order to meet the PV system goal, PV inverter prices will need to decline to $0.25-0.30 Wp by 2020. DOE determined the need to conduct a rigorous review of the PV Program's technical and economic targets, including the target set for PV inverters. NREL requested that Navigant Consulting Inc.(NCI) conduct a review of historical and projected cost and performance improvements for PV inverters, including identification of critical barriers identified and the approaches government might use to address them.

  8. Lightweight PV Inverters: Dual Bi-Directional IGBTs Modules Enables Breakthrough PV Inverter Using Current Modulation Topology

    SciTech Connect (OSTI)

    None

    2012-01-30T23:59:59.000Z

    Solar ADEPT Project: PV inverters convert DC power generated by modules into usable AC power. IPCís initial 30kW 94lb. PV inverter reduces the weight of comparable 30kW PV inverters by 90%óreducing the cost of materials, manufacturing, shipping, and installation. With ARPA-E support, new bi-directional silicon power switches will be developed, commercialized, and utilized in IPCís next-generation PV inverter. With these components, IPC will produce 100kW inverters that weight less than 100lb., reducing the weight of conventional 3,000lb. 100kW inverters by more than 95%. The new power switches will cut IPCís $/W manufacturing cost in half, as well as further reduce indirect shipping and installation costs.

  9. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect (OSTI)

    Energy and Resources Group, University of California, Berkeley; Darghouth, Naim R.; Barbose, Galen; Wiser, Ryan

    2011-06-01T23:59:59.000Z

    Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers in the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under three potential alternative compensation mechanisms, based on California's Market Price Referent (MPR). We find that net metering provides significantly greater bill savings than a full MPR-based feed-in tariff, but only modestly greater savings than alternative mechanisms under which hourly or monthly net excess generation is compensated at the MPR rate.

  10. Purification of soluble and active RaxH, a transmembrane histidine protein kinase from Xanthomonas oryzae pv. oryzae required for AvrXa21 activity.

    E-Print Network [OSTI]

    Stolov, Avital; Valverde, Angel; Ronald, Pamela; Burdman, Saul

    2007-01-01T23:59:59.000Z

    of the plant pathogenic bacterium Xanthomonas campestris pv.oryzae pv. oryzae isolates in transgenic plants. Mol. PlantĖXanthomonas oryzae pv. oryzae. Mol. PlantĖMicrobe Interact.

  11. PV Module Reliability R&D Project Overview

    SciTech Connect (OSTI)

    Hulstrom, R. L.

    2005-01-01T23:59:59.000Z

    The DOE Solar Energy Technologies Program includes a sub-key activity entitled ''Photovoltaic Module Reliability R&D''. This activity has been in existence for several years to help ensure that the PV technologies that advance to the commercial module stage have acceptable service lifetimes and annual performance degradation rates. The long-term (2020) goal, as stated in the Solar Program Multi-Year Technical Plan [1], is to assist industry with the development of PV systems that have 30-year service lifetimes and 1% annual performance degradation rates. The corresponding module service lifetimes and annual performance degradation rate would have to be 30 years lifetime and approximately 0.5% (or less, depending on the type of PV system) annual performance degradation. Reaching this goal is critical to achieving the PV technology Levelized Energy Cost Targets, as listed and described in the Solar Program Multi-Year Technical Plan. This paper is an overview of the Module Reliability R&D sub-key activity. More details and the major results and accomplishments are covered in the papers presented in the PV Module Reliability Session of the DOE Solar Energy Technology Review Meeting, October 25-28, 2004, in Denver, Colorado.

  12. PV output smoothing using a battery and natural gas engine-generator.

    SciTech Connect (OSTI)

    Johnson, Jay; Ellis, Abraham; Denda, Atsushi [Shimizu Corporation; Morino, Kimio [Shimizu Corporation; Shinji, Takao [Tokyo Gas Co., Ltd.; Ogata, Takao [Tokyo Gas Co., Ltd.; Tadokoro, Masayuki [Tokyo Gas Co., Ltd.

    2013-02-01T23:59:59.000Z

    In some situations involving weak grids or high penetration scenarios, the variability of photovoltaic systems can affect the local electrical grid. In order to mitigate destabilizing effects of power fluctuations, an energy storage device or other controllable generation or load can be used. This paper describes the development of a controller for coordinated operation of a small gas engine-generator set (genset) and a battery for smoothing PV plant output. There are a number of benefits derived from using a traditional generation resource in combination with the battery; the variability of the photovoltaic system can be reduced to a specific level with a smaller battery and Power Conditioning System (PCS) and the lifetime of the battery can be extended. The controller was designed specifically for a PV/energy storage project (Prosperity) and a gas engine-generator (Mesa Del Sol) currently operating on the same feeder in Albuquerque, New Mexico. A number of smoothing simulations of the Prosperity PV were conducted using power data collected from the site. By adjusting the control parameters, tradeoffs between battery use and ramp rates could be tuned. A cost function was created to optimize the control in order to balance, in this example, the need to have low ramp rates with reducing battery size and operation. Simulations were performed for cases with only a genset or battery, and with and without coordinated control between the genset and battery, e.g., without the communication link between sites or during a communication failure. The degree of smoothing without coordinated control did not change significantly because the battery dominated the smoothing response. It is anticipated that this work will be followed by a field demonstration in the near future.

  13. The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2013-01-01T23:59:59.000Z

    concentrated solar power (CSP), and wind penetrations in theis met by wind, solar PV, concentrating solar power with 6schemes on power prices: The case of wind electricity in

  14. New Hampshire Electric Co-Op- Residential Solar Photovoltaic Incentive Program

    Broader source: Energy.gov [DOE]

    New Hampshire Electric Co-op (NHEC) is offering rebates for residential, grid-tied photovoltaic (PV) systems up to one megawatt (MW) in capacity. The rebate is equal to 20% of the installed cost of...

  15. Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan

    E-Print Network [OSTI]

    Haas, Reinhard

    2008-01-01T23:59:59.000Z

    tax incentives, TGC) PV feed in ďRenewable energy actĒ ďrenewable energy funds, typically collected through electricity surcharges, and these funds have developed incentiveincentives Private investors get tax credits for investments in using renewable energies (

  16. El Paso Electric Company- Small and Medium System Renewable Energy Certificate Purchase Program

    Broader source: Energy.gov [DOE]

    Effective January 1, 2010, El Paso Electric is purchasing renewable energy certificates (RECs) from its New Mexico customers who install small photovoltaic (PV) systems and wind systems up to 10...

  17. Exascale for Energy: The Role of Exascale Computing in Energy Security

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    Photovoltaic Solar Energy Conversion Electrical generation by solar energy capture with photo- voltaic systems has virtually no environmental impact

  18. PV Cell and Module Calibration Activities at NREL

    SciTech Connect (OSTI)

    Emery, K.; Anderberg, A.; Kiehl, J.; Mack, C.; Moriarty, T.; Ottoson, L.; Rummel, S.

    2005-11-01T23:59:59.000Z

    The performance of PV cells and modules with respect to standard reference conditions is a key indicator of progress of a given technology. This task provides the U.S. terrestrial PV community with the most accurate measurements that are technically possible in a timely fashion. The international module certification and accreditation program PVGap requires certification laboratories to maintain their calibration traceability path to groups like this one. The politics of a "world record" efficiency requires that an independent laboratory perform these measurements for credibility. Most manufacturers base their module peak watt rating upon standards and reference cells calibrated under this task. This task has been involved in reconciling disputes between manufacturers and their cell suppliers in terms of expected versus actual performance. This task has also served as a resource to the PV community for consultation on solar simulation, current versus voltage measurement instrumentation, measurement procedures and measurement artifacts.

  19. Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions

    SciTech Connect (OSTI)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2013-01-09T23:59:59.000Z

    This scoping study investigates the impact of, and interactions among, three key sources of uncertainty in the future value of bill savings from customer-sited PV, focusing in particular on residential customers. These three sources of uncertainty are: changes to electricity market conditions that would affect retail electricity prices, changes to the types of retail rate structures available to residential customers with PV, and shifts away from standard net-metering toward other compensation mechanisms for residential PV. We investigate the impact of a range of electricity market scenarios on retail electricity prices and rate structures, and the resulting effects on the value of bill savings from PV. The scenarios include various levels of renewable and solar energy deployment, high and low natural gas prices, the possible introduction of carbon pricing, and greater or lesser reliance on utility-scale storage and demand response. We examine the bill savings from PV with time-invariant, flat residential retail rates, as well as with time-varying retail rates, including time-of-use (TOU) rates and real-time pricing (RTP). In addition, we explore a flat rate with increasing-block pricing (IBP). We evaluate the bill savings from PV with net metering, as currently allowed in many states, as well as scenarios with hourly netting, a partial form of net metering. This scoping study is the first known effort to evaluate these types of interactions in a reasonably comprehensive fashion, though by no means have we considered every possible change to electricity market conditions, retail rate structures, or PV compensation mechanisms. It focuses solely on the private value of bill savings for residential PV and does not seek to quantify the broader social or economic cost or value of solar electricity. Our analysis applies assumptions based loosely on Californiaís electricity market in a future year (2030); however, it is neither intended to forecast Californiaís future market, nor are our conclusions intended to have implications specific only to the California market. That said, some of the findings are unique to our underlying assumptions, as described further within the main body of the report, along with other key limitations.

  20. Time series power flow analysis for distribution connected PV generation.

    SciTech Connect (OSTI)

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J. [Georgia Institute of Technology, Atlanta, GA; Smith, Jeff [Electric Power Research Institute, Knoxville, TN; Dugan, Roger [Electric Power Research Institute, Knoxville, TN

    2013-01-01T23:59:59.000Z

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

  1. Sri M., Huld T., Dunlop E.D., Albuisson M., Lefvre M., Wald L., 2007. Uncertainties in photovoltaic electricity yield prediction from fluctuation of solar radiation. Proceedings of the 22nd

    E-Print Network [OSTI]

    Boyer, Edmond

    in photovoltaic electricity yield prediction from fluctuation of solar radiation. Proceedings of the 22nd European ELECTRICITY YIELD PREDICTION FROM FLUCTUATION OF SOLAR RADIATION Marcel S√ļri1 , Thomas Huld1 , Ewan D. Dunlop1Clim, PVGIS, solar radiation, interannual variability, PV yield prediction 1 INTRODUCTION Photovoltaic (PV

  2. The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants.

    E-Print Network [OSTI]

    Wang, G L; Song, W Y; Ruan, D L; Sideris, S; Ronald, P C

    1996-01-01T23:59:59.000Z

    Tl progeny plants were inoculated with X.oryzae pv. oryzae.oryzae pv. oryzae in transgenic plants. The resistanceoryzae pv. oryzae Isolates in Transgenic Plants Guo-Liang

  3. The Open PV Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place:InnovationFunds-BusinessOhio Environmental Council

  4. Toward integrated PV panels and power electronics using printing technologies

    SciTech Connect (OSTI)

    Ababei, Cristinel; Yuvarajan, Subbaraya [Electrical and Computer Engineering Department, North Dakota State University, Fargo, ND 58108 (United States); Schulz, Douglas L. [Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, ND 58102 (United States)

    2010-07-15T23:59:59.000Z

    In this paper, we review the latest developments in the area of printing technologies with an emphasis on the fabrication of control-embedded photovoltaics (PV) with on-board active and passive devices. We also review the use of power converters and maximum power point tracking (MPPT) circuits with PV panels. Our focus is on the investigation of the simplest implementations of such circuits in view of their integration with solar cells using printing technologies. We see this concept as potentially enabling toward further cost reduction. Besides a discussion as to feasibility, we shall also present some projections and guidelines toward possible integration. (author)

  5. Testing of Packaging Materials for Improved PV Module Reliability

    SciTech Connect (OSTI)

    Jorgensen, G. J.; Terwilliger, K. M.; Kempe, M. D.; McMahon, T. J.

    2005-02-01T23:59:59.000Z

    A number of candidate alternative encapsulant and soft backsheet materials have been evaluated in terms of their suitability for photovoltaic (PV) module packaging applications. Relevant properties, including interfacial adhesion and moisture transport, have been measured as a function of damp-heat (85 C/85% relative humidity) exposure. Based on these tests, promising new encapsulants with improved properties have been identified. Backsheets prepared by industry and at NREL have been found to provide varying levels of moisture ingress protection. To achieve significantly improved products, further development of these candidates is ongoing. The relative effectiveness of various packaging strategies to protect PV devices has also been investigated.

  6. Outdoor PV Module Degradation of Current-Voltage Parameters: Preprint

    SciTech Connect (OSTI)

    Smith, R. M.; Jordan, D. C.; Kurtz, S. R.

    2012-04-01T23:59:59.000Z

    Photovoltaic (PV) module degradation rate analysis quantifies the loss of PV power output over time and is useful for estimating the impact of degradation on the cost of energy. An understanding of the degradation of all current-voltage (I-V) parameters helps to determine the cause of the degradation and also gives useful information for the design of the system. This study reports on data collected from 12 distinct mono- and poly-crystalline modules deployed at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Most modules investigated showed < 0.5%/year decrease in maximum power due to short-circuit current decline.

  7. Modular Power Converters for PV Applications

    SciTech Connect (OSTI)

    Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

    2012-05-01T23:59:59.000Z

    This report describes technical opportunities to serve as parts of a technological roadmap for Shoals Technologies Group in power electronics for PV applications. There are many different power converter circuits that can be used for solar inverter applications. The present applications do not take advantage of the potential for using common modules. We envision that the development of a power electronics module could enable higher reliability by being durable and flexible. Modules would have fault current limiting features and detection circuits such that they can limit the current through the module from external faults and can identify and isolate internal faults such that the remaining modules can continue to operate with only minimal disturbance to the utility or customer. Development of a reliable, efficient, low-cost, power electronics module will be a key enabling technology for harnessing more power from solar panels and enable plug and play operation. Power electronics for computer power supplies, communication equipment, and transportation have all targeted reliability and modularity as key requirements and have begun concerted efforts to replace monolithic components with collections of common smart modules. This is happening on several levels including (1) device level with intelligent control, (2) functional module level, and (3) system module. This same effort is needed in power electronics for solar applications. Development of modular units will result in standard power electronic converters that will have a lower installed and operating cost for the overall system. These units will lead to increased adaptability and flexibility of solar inverters. Incorporating autonomous fault current limiting and reconfiguration capabilities into the modules and having redundant modules will lead to a durable converter that can withstand the rigors of solar power generation for more than 30 years. Our vision for the technology roadmap is that there is no need for detailed design of new power converters for each new application or installation. One set of modules and controllers can be pre-developed and the only design question would be how many modules need to be in series or parallel for the specific power requirement. Then, a designer can put the modules together and add the intelligent reconfigurable controller. The controller determines how many modules are connected, but it might also ask for user input for the specific application during setup. The modules include protection against faults and can reset it, if necessary. In case of a power device failure, the controller reconfigures itself to continue limited operation until repair which might be as simple as taking the faulty module out and inserting a new module. The result is cost savings in design, maintenance, repair, and a grid that is more reliable and available. This concept would be a perfect fit for the recently announced funding opportunity announcement (DE-FOA-0000653) on Plug and Play Photovoltaics.

  8. Berkeley Program Offers New Option for Financing Residential PV Systems

    SciTech Connect (OSTI)

    Bolinger, Mark A

    2008-07-06T23:59:59.000Z

    Readily accessible credit has often been cited as a necessary ingredient to open up the market for residential photovoltaic (PV) systems. Though financing does not reduce the high up-front cost of PV, by spreading that cost over some portion of the system's life, financing can certainly make PV systems more affordable. As a result, a number of states have, in the past, set up special residential loan programs targeting the installation of renewable energy systems and/or energy-efficiency improvements and often featuring low interest rates, longer terms and no-hassle application requirements. Historically, these loan programs have had mixed success (particularly for PV), for a variety of reasons, including a historical lack of homeowner interest in PV, a lack of program awareness, a reduced appeal in a low-interest-rate environment, and a tendency for early PV adopters to be wealthy and not in need of financing. Some of these barriers have begun to fade. Most notably, homeowner interest in PV has grown in some states, particularly those that offer solar rebates. The passage of the Energy Policy Act of 2005 (EPAct 2005), however, introduced one additional roadblock to the success of low-interest PV loan programs: a residential solar investment tax credit (ITC), subject to the Federal government's 'anti-double-dipping' rules. Specifically, the residential solar ITC--equal to 30% of the system's tax basis, capped at $2000--will be reduced or offset if the system also benefits from what is known as 'subsidized energy financing', which is likely to include most government-sponsored low-interest loan programs. Within this context, it has been interesting to note the recent flurry of announcements from a number of U.S cities concerning a new type of PV financing program. Led by the city of Berkeley, Calif., these cities propose to offer their residents the ability to finance the installation of a PV system using increased property tax assessments, rather than a more-traditional credit vehicle, to recover both system and administrative costs. This approach has a number of features that should appeal to PV owners, including long-term, fixed-cost, attractive financing; loans that are tied to the tax capacity of the property rather than to the owner's credit standing; a repayment obligation that transfers along with the sale of the property; and a potential ability to deduct the repayment obligation from federal taxable income as part of the local property tax deduction. For these reasons, Berkeley's program, which was first announced on October 23, 2007, has received considerable nationwide attention in both the trade and general press. Since the announcement, cities from throughout California and the broader U.S. have expressed keen interest in the possibility of replicating this type of program. In California alone, the cities of Santa Cruz, Santa Monica and Palm Desert are all reportedly considering similar programs, while the city of San Francisco has recently announced its own program, portions of which closely parallel Berkeley's approach. In addition, a bill (AB 811) that would authorize all cities in California, not just charter cities like Berkeley, to create this type of program was approved by the California General Assembly on January 29 and is currently under consideration in the State Senate. A similar bill in Colorado (HB 1350) was signed into law on May 28. Elsewhere, the city of Tucson, Arizona has also considered this financing approach.

  9. Improved Reliability of PV Modules with Lexan PC Sheet-Front...

    Broader source: Energy.gov (indexed) [DOE]

    Improved Reliability of PV Modules with Lexan PC Sheet-Front Sheet, Noryl PPE Sheet-Back Sheet Improved Reliability of PV Modules with Lexan PC Sheet-Front Sheet, Noryl PPE...

  10. Interline Photovoltaic (I-PV) power system - A novel concept of power flow control and management

    E-Print Network [OSTI]

    Khadkikar, Vinod

    This paper presents a new system configuration for a large-scale Photovoltaic (PV) power system with multi-line transmission/distribution networks. A PV power plant is reconfigured in a way that two adjacent power system ...

  11. Interline photovoltaic (I-PV) power plants for voltage unbalance compensation

    E-Print Network [OSTI]

    Moawwad, Ahmed

    This paper proposes a stationary-frame control method for voltage unbalance compensation using Interline Photovoltaic (I-PV) power system. I-PV power systems are controlled to compensate voltage unbalance autonomously. The ...

  12. Can Solar PV Rebates Be Funded with Utility Cost Savings? | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Can Solar PV Rebates Be Funded with Utility Cost Savings? Can Solar PV Rebates Be Funded with Utility Cost Savings? This presentation was given by Jan Aceti of Concord Light at the...

  13. Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice

    E-Print Network [OSTI]

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-01-01T23:59:59.000Z

    2006. Celentano, Ron. 2005. ďSDF Solar PV Grant Program inSustainable Development Fund (SDF) Rhode Island RenewableOH Ė DOD OR Ė ETO PA Ė SDF RI Ė RIREF Small PV Program RI Ė

  14. Climatically Diverse Data Set for Flat-Plate PV Module Model Validations (Presentation)

    SciTech Connect (OSTI)

    Marion, B.

    2013-05-01T23:59:59.000Z

    Photovoltaic (PV) module I-V curves were measured at Florida, Colorado, and Oregon locations to provide data for the validation and development of models used for predicting the performance of PV modules.

  15. Dynamic Model Validation of PV Inverters Under Short-Circuit Conditions: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Singh, M.; Bravo, R.; Gevorgian, V.

    2013-03-01T23:59:59.000Z

    Photovoltaic (PV) modules have dramatically decreased in price in the past few years, spurring the expansion of photovoltaic deployment. Residential and commercial rooftop installations are connected to the distribution network; large-scale installation PV power plants (PVPs) have benefited from tax incentives and the low cost of PV modules. As the level penetration of PV generation increases, the impact on power system reliability will also be greater. Utility power system planners must consider the role of PV generation in power systems more realistically by representing PV generation in dynamic stability analyses. Dynamic models of PV inverters have been developed in the positive sequence representation. NREL has developed a PV inverter dynamic model in PSCAD/EMTDC. This paper validates the dynamic model with an actual hardware bench test conducted by Southern California Edison's Distributed Energy Resources laboratory. All the fault combinations -- symmetrical and unsymmetrical -- were performed in the laboratory. We compare the simulation results with the bench test results.

  16. Junction Evolution During Fabrication of CdS/CdTe Thin-film PV Solar Cells (Presentation)

    SciTech Connect (OSTI)

    Gessert, T. A.

    2010-09-01T23:59:59.000Z

    Discussion of the formation of CdTe thin-film PV junctions and optimization of CdTe thin-film PV solar cells.

  17. pv land use | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flatshydro Home Water Home Jweers'suser Home Developer

  18. Robust control strategy for PV system integration in distribution systems M.J. Hossain a,

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    the coming years [1,2]. The technologies of DG include PV genera- tors, wind turbines, small hydro turbines

  19. November 21, 2000 PV Lesson Plan 2 Sample Questions & Answers

    E-Print Network [OSTI]

    Oregon, University of

    November 21, 2000 PV Lesson Plan 2 ­ Sample Questions & Answers Prepared for the Oregon Million Solar Roofs Coalition By Frank Vignola ­ University of Oregon Solar Radiation Monitoring Lab John Hocken your understanding: 1. The typical voltage of a silicon solar cell is about 0.5 volts; where does

  20. Modelling PV Deployment: A Tool Developed at CEEP to

    E-Print Network [OSTI]

    Delaware, University of

    Modelling PV Deployment: A Tool Developed at CEEP to Explore the Delaware Market Energy and the University of Delaware August 2014 #12;Center for Energy and Environmental Policy The Center for Energy in energy, environmental, and sustainable development policy. The Center serves as a University-wide forum

  1. November 21, 2000 PV Lesson Plan 1 Solar Cells

    E-Print Network [OSTI]

    Oregon, University of

    November 21, 2000 PV Lesson Plan 1 ≠ Solar Cells Prepared for the Oregon Million Solar Roofs Coalition By Frank Vignola ≠ University of Oregon Solar Radiation Monitoring Lab John Hocken ≠ South Eugene High School Gary Grace ≠ South Eugene High School In Schools #12;1 Solar Cells Lesson Plan Content

  2. Dynamic Interactions of PV units in Low Volatge Distribution Systems

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    . Abstract--Photovoltaic (PV) units along with other distributed energy resources (DERs) are located close by minimizing the negative interactions. Index Terms--Photovoltaic, negative interactions, distribution systems different DERs may react negatively and degrade reliability. There are several different measures

  3. Utility Scale Solar PV Cost Steven SimmonsSteven Simmons

    E-Print Network [OSTI]

    Nuclear Generating Station. 4 #12;6/19/2013 3 EVEN MORE SUNNY HEADLINES New solar panels glisten6/19/2013 1 Utility Scale Solar PV Cost Steven SimmonsSteven Simmons Northwest Power Cost Forecast 5. Levelized Costs 1 SOLAR POWER SYSTEM HAS BRIGHT FUTURE 1. Modest environmental impacts

  4. Opportunities and Challenges for Power Electronics in PV Modules (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Deline, C.; Wohlgemuth, J.; Marion, B.; Granata, J.

    2011-02-01T23:59:59.000Z

    The presentation describes the value of adding DC converters and other power electronics to modules to improve their output even when shading or bad cells would otherwise decrease the module output. The presentation was part of a workshop sponsored by ARPA-E exploring the opportunities for power electronics to support PV applications.

  5. Optimum Inverter Sizing in Consideration of Irradiance Pattern and PV Incentives

    E-Print Network [OSTI]

    Lehman, Brad

    Optimum Inverter Sizing in Consideration of Irradiance Pattern and PV Incentives Song Chen* Peng Li Boston, Massachusetts, USA Abstract-- This paper proposes a general method of sizing the inverter for a PV system. The method evaluates effects of PV incentive policies, inverter efficiency curves

  6. THE DEVELOPMENT AND COMMERCIALIZATION OF SOLAR PV TECHNOLOGY IN THE OIL Jonatan Pinksea,b

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    THE DEVELOPMENT AND COMMERCIALIZATION OF SOLAR PV TECHNOLOGY IN THE OIL INDUSTRY Jonatan Pinksea regarding solar PV technology investments, a renewable energy technology that has seen explosive growth towards the development and commercialization of solar PV technology. To investigate this, a multiple case

  7. 2 IAEI NEWS January.February 2005 www.iaei.org PERSPECTIVES ON PV

    E-Print Network [OSTI]

    Johnson, Eric E.

    to ease installation and are used in PV systems for battery cables, power conductors to large utility2 IAEI NEWS January.February 2005 www.iaei.org PERSPECTIVES ON PV T he use of fine stranded" industries like the photovoltaic (PV) industry, the fuel cell indus- try, and the uninterruptible power

  8. A Distributed Approach to MPPT for PV Sub-Module Differential Power Processing

    E-Print Network [OSTI]

    Liberzon, Daniel

    for differential power processing in photovoltaic (PV) applica- tions. This distributed algorithm performs true of the proposed distributed algorithm. I. INTRODUCTION In photovoltaic (PV) energy systems, PV modules are of- ten, reliability, and cost. A high level introduction to the DPP concept can be found in [8]. In contrast to DC

  9. OPTIMIZATION WITH ENERGY MANAGEMENT OF PV BATTERY STAND-ALONE SYSTEMS OVER THE ENTIRE LIFE CYCLE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of both the installed PV power and storage capacity (lead-acid battery technology for purposes). Keywords: Battery storage and control, Lifetime simulation, PV system. 1. INTRODUCTION Given the sizableOPTIMIZATION WITH ENERGY MANAGEMENT OF PV BATTERY STAND-ALONE SYSTEMS OVER THE ENTIRE LIFE CYCLE

  10. The figure shows the current energy pay back time for PV

    E-Print Network [OSTI]

    , Senior researcher at Utrecht University, The Netherlands "We found that today's PV systems have an energy statement is: "The energy balance of solar PV is clearly positive today and will further improveThe figure shows the current energy pay back time for PV systems using different cell technologies

  11. Keywords: Photovoltaic System, fault-tolerance, recon-figurable PV panel

    E-Print Network [OSTI]

    Pedram, Massoud

    plants, and satellites. The output power of a PV cell (also called solar cell) is dependent on the solar: naehyuck@elpl.snu.ac.kr). output power of a PV cell increases as solar irradiance increases and temperature irradiance level and temperature. Figure 1 shows PV cell output current-voltage and power

  12. CONTINUOUS ROLL-TO-ROLL SERPENTINE DEPOSITION FOR HIGH THROUGHPUT a-Si PV MANUFACTURING

    E-Print Network [OSTI]

    Deng, Xunming

    a number of advantages in a fully automated high throughput PV module production plant [l-18--a significant problem in many glass substrate amorphous silicon alloy PV module manufacturing plants. ECDCONTINUOUS ROLL-TO-ROLL SERPENTINE DEPOSITION FOR HIGH THROUGHPUT a-Si PV MANUFACTURING M. Izu, H

  13. Geographic Variation in Potential of Rooftop Residential Photovoltaic Electric Power Production in the United States

    Broader source: Energy.gov [DOE]

    This paper describes a geographic evaluation of Zero Energy Home (ZEH) potential, specifically an assessment of residential roof-top solar electric photovoltaic (PV) performance around the United States and how energy produced would match up with very-efficient and super-efficient home designs. We performed annual simulations for 236 TMY2 data locations throughout the United States on two highly-efficient one-story 3-bedroom homes with a generic grid-tied solar electric 2kW PV system. These annual simulations show how potential annual solar electric power generation (kWh) and potential energy savings from PV power vary geographically around the U.S. giving the user in a specific region an indication of their expected PV system performance.

  14. Rooftop PV system. PV:BONUS Phase 3B, final technical report

    SciTech Connect (OSTI)

    NONE

    1998-11-01T23:59:59.000Z

    Under the PV:BONUS Program, ECD and United Solar developed, demonstrated and commercialized two new lightweight, flexible BIPV modules specifically designed as replacements for conventional asphalt shingles and standing seam metal roofing. These modules can be economically and aesthetically integrated into new residential and commercial buildings, and can be used to address the even larger roofing-replacement market. An important design feature of these modules, which minimizes the installation and balance-of-system costs, is their ability to be installed by conventional roofing contractors without special training. The modules are fabricated from high-efficiency, triple-junction spectrum-splitting a-Si alloy solar cells developed by ECD and United Solar. These cells are produced on thin, flexible stainless steel substrates and encapsulated with polymer materials. The Phase 3 program began in August 1995. The principal tasks and goals of this program, which have all been successfully completed by ECD and United Solar, are described in the body and appendices of this report.

  15. The Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS Systems

    E-Print Network [OSTI]

    Wh per day. The effect of varying the size of the pv array and the battery bank in such systems on both hours and so on. This paper explores the effect of different sizes of battery bank and photovoltaic of battery size and photovoltaic array. The study is addressed to loads in the small community range

  16. Integrating High Penetrations of PV into Southern California: Year 2 Project Update; Preprint

    SciTech Connect (OSTI)

    Mather, B.; Neal, R.

    2012-08-01T23:59:59.000Z

    Southern California Edison (SCE) is well into a five-year project to install a total of 500 MW of distributed photovoltaic (PV) energy within its utility service territory. Typical installations to date are 1-3 MW peak rooftop PV systems that interconnect to medium-voltage urban distribution circuits or larger (5 MW peak) ground-mounted systems that connect to medium-voltage rural distribution circuits. Some of the PV system interconnections have resulted in distribution circuits that have a significant amount of PV generation compared to customer load, resulting in high-penetration PV integration scenarios. The National Renewable Energy Laboratory (NREL) and SCE have assembled a team of distribution modeling, resource assessment, and PV inverter technology experts in order to investigate a few of the high-penetration PV distribution circuits. Currently, the distribution circuits being studied include an urban circuit with a PV penetration of approximately 46% and a rural circuit with a PV penetration of approximately 60%. In both cases, power flow on the circuit reverses direction, compared to traditional circuit operation, during periods of high PV power production and low circuit loading. Research efforts during year two of the five-year project were focused on modeling the distribution system level impacts of high-penetration PV integrations, the development and installation of distribution circuit data acquisition equipment appropriate for quantifying the impacts of high-penetration PV integrations, and investigating high-penetration PV impact mitigation strategies. This paper outlines these research efforts and discusses the following activities in more detail: the development of a quasi-static time-series test feeder for evaluating high-penetration PV integration modeling tools; the advanced inverter functions being investigated for deployment in the project's field demonstration and a power hardware-in-loop test of a 500-kW PV inverter implementing a limited set of advanced inverter functions.

  17. The Potential Impact of Increased Renewable Energy Penetration Levels on Electricity Bill Savings From Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2014-01-01T23:59:59.000Z

    concentrated solar power (CSP), and wind penetrations in theis met by wind, solar PV, concentrating solar power with 6schemes on power prices: The case of wind electricity in

  18. Solar Photovoltaic Economic Development: Building and Growing a Local PV Industry, August 2011 (Book)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    The U.S. photovoltaic (PV) industry is forecast to grow, and it represents an opportunity for economic development and job creation in communities throughout the United States. This report helps U.S. cities evaluate economic opportunities in the PV industry. It serves as a guide for local economic development offices in evaluating their community?s competitiveness in the solar PV industry, assessing the viability of solar PV development goals, and developing strategies for recruiting and retaining PV companies to their areas.

  19. Beloin-Saint-Pierre, D., Blanc, I., Payet, J., Jacquin, P., Adra, N., Mayer, D., Environmental impact of PV systems: Effects of energy sources used in production of solar panels , In Proceedings of the 24rd

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -936338-25-6, pp. 4517-4520. DOI: 10.4229/24thEUPVSEC2009-6DV.3.7 ENVIRONMENTAL IMPACT OF PV SYSTEMS: EFFECTS understanding of the critical parameters influencing the indirect solar electricity environmental impacts. Even if technological improvements are an important goal to both minimize the cost and environmental impacts of solar

  20. Residential Use of Building Integrated Photo Voltaics

    E-Print Network [OSTI]

    Balabadhrapatruni, Aswini

    2012-07-16T23:59:59.000Z

    Zone 3 Zone 4 Zone 5 Bismarck_ND Burns_OR Baltimore_MD Amarillo TX Abilene_TX Cheyenne WY Chicago_IL Covington_KY Asheville_NC Brownsville_TX Fargo_ND Colorado springs_CO Eugene_OR Birmingham_AL Fortworth_TX Kalispell_MT Grand island NE...

  1. Sol Voltaics AB | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver Peak Area (Henkle, Et Al.,Sol Inc

  2. PG&E Plans for 500 MW of PV

    Broader source: Energy.gov [DOE]

    PG&E has developed a plan to install 500 MW of PV by the year 2015. The plan calls for 250 MW to be acquired through Power Purchase Agreements (PPA) and the other 250 MW to be purchased and owned by the utility. PG&E presented the plan at a public forum on April 27, 2009. A copy of the power point presentation is attached.

  3. Stochastic PV performance/reliability model : preview of alpha version.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Miller, Steven P.

    2010-03-01T23:59:59.000Z

    Problem Statement: (1) Uncertainties in PV system performance and reliability impact business decisions - Project cost and financing estimates, Pricing service contracts and guarantees, Developing deployment and O&M strategies; (2) Understanding and reducing these uncertainties will help make the PV industry more competitive (3) Performance has typically been estimated without much attention to reliability of components; and (4) Tools are needed to assess all inputs to the value proposition (e.g., LCOE, cash flow, reputation, etc.). Goals and objectives are: (1) Develop a stochastic simulation model (in GoldSim) that can represent PV system performance as a function of system design, weather, reliability, and O&M policies; (2) Evaluate performance for an example system to quantify sources of uncertainty and identify dominant parameters via a sensitivity study; and (3) Example System - 1 inverter, 225 kW DC Array latitude tilt (90 strings of 12 modules {l_brace}1080 modules{r_brace}), Weather from Tucumcari, NM (TMY2 with annual uncertainty).

  4. Exploring the Economic Value of EPAct 2005's PV Tax Credits

    SciTech Connect (OSTI)

    Bolinger, Mark A; Wiser, Ryan; Ing, Edwin

    2009-08-01T23:59:59.000Z

    This CESA - LBNL Case Study examines how much economic value do new and expanded federal tax credits really provide to PV system purchasers, and what implications might they hold for state/utility PV grant programs. The report begins with a discussion of the taxability of PV grants and their interaction with federal credits, as this issue significantly affects the analysis that follows. We then calculate the incremental value of EPAct's new and expanded credits for PV systems of different sizes, and owned by different types of entities. The report concludes with a discussion of potential implications for purchasers of PV systems, as well as for administrators of state/utility PV programs. The market for grid-connected photovoltaics (PV) in the US has grown dramatically in recent years, driven in large part by PV grant or 'buy-down' programs in California, New Jersey, and many other states. The recent announcement of a new 11-year, $3.2 billion PV program in California suggests that state policy will continue to drive even faster growth over the next decade. Federal policy has also played a role, primarily by providing commercial PV systems access to tax benefits, including accelerated depreciation (5-year MACRS schedule) and a business energy investment tax credit (ITC). Since the signing of the Energy Policy Act of 2005 (EPAct) on August 8, the federal government has begun to play a much more significant role in supporting both commercial and residential PV systems. Specifically, EPAct increased the federal ITC for commercial PV systems from 10% to 30% of system costs, and also created a new 30% ITC (capped at $2000) for residential solar systems. Both changes went into effect on January 1, 2006, for an initial period of two years, and in late 2006 were extended for an additional year. Unless extended further, the new residential ITC will expire, and the 30% commercial ITC will revert back to 10%, on January 1, 2009. How much economic value do these new and expanded federal tax credits really provide to PV system purchasers? And what implications might they hold for state/utility PV grant programs? Using a generic (i.e., non-state-specific) cash flow model, this report explores these questions.1 We begin with a discussion of the taxability of PV grants and their interaction with federal credits, as this issue significantly affects the analysis that follows. We then calculate the incremental value of EPAct's new and expanded credits for PV systems of different sizes, and owned by different types of entities. We conclude with a discussion of potential implications for purchasers of PV systems, as well as for administrators of state/utility PV programs.

  5. Conductor sizes and overcurrent device ratings are critical to the safe, long-term operation of any electrical system, but

    E-Print Network [OSTI]

    Johnson, Eric E.

    of this procedure is in Section 690.8(B) of the 2011 National Electrical Code. Historically, most residential and light-commercial electrical wiring has involved indoor wiring at room temperatures--30¬įC (86¬įF) or less of any electrical system, but are particularly important in PV systems where the outdoor environment can

  6. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    E-Print Network [OSTI]

    Darghouth, Naim Richard

    2013-01-01T23:59:59.000Z

    The Private and Public Economies of Renewable Electricityprivate sector, began to push for deregulation in the electricityprivate customer value of behind-the-meter PV generation, as potential customers most often will consider the value of avoided electricity

  7. Design, fabrication, and certification of advanced modular PV power systems. Annual technical progress report, 8 September 1995--7 September 1996

    SciTech Connect (OSTI)

    Lambarski, T.; Minyard, G. [Solar Electric Specialties, Willits, CA (United States)

    1997-03-01T23:59:59.000Z

    This report summarizes the activities performed during the first year of a nominal 2-year effort by Solar Electric Specialties Company (SES) under the Photovoltaic Manufacturing Technology (PVMaT) project of the National Photovoltaic Program. The goal of the SES contract is to reduce the installed system life-cycle costs by developing certified and standardized prototype products for two SES product lines--MAPPS{trademark} and Photogenset{trademark}. The MAPPS (modular autonomous PV power supply) systems are used for DC applications up to about a thousand watt-hours. The Photogensets are hybrid PV/generator systems for AC applications. SES expects these products to provide the basis for future commercial product lines of standardized certified, packaged systems.

  8. www.iaei.org November . December 2014 IAEI NEWS 1110 IAEI NEWS November . December 2014 www.iaei.org PERSPECTIVES ON PV |

    E-Print Network [OSTI]

    Johnson, Eric E.

    1500 volts. And, standalone, off grid PV systems and utility- interactive PV systems with battery.iaei.org PERSPECTIVES ON PV | Safety First -- for the Inspector Photovoltaic (PV) power systems are generally in and local code requirements. A thorough inspection of a PV system will ensure that those requirements have

  9. PV Supply Chain and Cross-Cutting Technologies: Upcoming Funding Opportunity

    SciTech Connect (OSTI)

    Not Available

    2008-10-01T23:59:59.000Z

    Summarizes the Solar Program's upcoming funding opportunity, called PV Supply Chain and Cross-Cutting Technologies, which is expected to be open by the end of October 2008.

  10. Financing Solar PV at Government Sites with PPAs and Public Debt...

    Broader source: Energy.gov (indexed) [DOE]

    state and local governmental agencies have employed one of two models to deploy solar photovoltaic (PV) projects: (1) self-ownership (financed through a variety of means)...

  11. U.S. Aims for Zero-Energy: Support for PV on New Homes

    E-Print Network [OSTI]

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-01-01T23:59:59.000Z

    for Clean Energy or Green Building Projects. Competitiveclean energy or green building projects. In Massachusetts,projects with PV and other green building features. And in

  12. Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice

    E-Print Network [OSTI]

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-01-01T23:59:59.000Z

    communication with New York State Energy Research andSolar Pioneer Program New York Energy $mart PV IncentivePower Authority (LIPA) New York State Energy Research and

  13. Financing Solar PV at Government Sites with PPAs and Public Debt...

    Broader source: Energy.gov (indexed) [DOE]

    Solar PV at Government Sites with PPAs and Public Debt Overview of financing solar photovoltaics at government sties with power purchase agreements and public debt. Author:...

  14. Community Renewable Energy Success Stories Webinar: Developing PV Projects with RFPs and PPAs (text version)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Below is the text version of the webinar titled "Developing PV Projects with RFPS and PPAS," originally presented on January 15, 2013.

  15. Shaking Up the Residential PV Market: Implications of Recent Changes to the ITC

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01T23:59:59.000Z

    E NERGY Shaking Up the Residential PV Market: Implicationsthe Revised Residential Credit ..ITC (capped at $2,000) for residential solar systems. Both

  16. Modeling Metal Fatigue As a Key Step in PV Module Life Time Prediction (Presentation)

    SciTech Connect (OSTI)

    Bosco, N.

    2012-02-01T23:59:59.000Z

    This presentation covers modeling metal fatigue as a key step in photovoltaic (PV) module lifetime predictions. Described are time-dependent and time-independent case studies.

  17. Defining a Technical Basis for Confidence in PV Investments - A Pathway to Service Life Prediction (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Wohlgemuth, J.; Kempe, M.; Bosco, N.; Hacke, P.; Jordan, D.; Miller, D.

    2013-09-01T23:59:59.000Z

    Four levels of accelerated test standards for PV modules are described in the context of how the community can most quickly begin using these.

  18. The Economic Value of PV and Net Metering to Residential Customers in California

    E-Print Network [OSTI]

    Darghouth, Naim

    2010-01-01T23:59:59.000Z

    incentives under the California Solar Initiative takeRates Undermine Californiaís Solar Photovoltaic Subsidies? ĒSolar PV and Retail Rate DesignĒ, Unpublished draft report for the California

  19. THE SOLARIZE GUIDEBOOK: A community guide to collective purchasing of residential PV systems

    E-Print Network [OSTI]

    THE SOLARIZE GUIDEBOOK: A community guide to collective purchasing of residential PV systems #12 and Sustainability partnered with neighborhood coalition offices,

  20. Delamination Failures in Long-Term Field Aged PV Modules from...

    Office of Environmental Management (EM)

    More Documents & Publications Thermal Cycling Combined with Dynamic Mechanical Load: Preliminary Report Failure and Degradation Modes of PV Modules in a Hot Dry...

  1. Failure and Degradation Modes of PV Modules in a Hot Dry Climate...

    Office of Environmental Management (EM)

    More Documents & Publications Thermal Cycling Combined with Dynamic Mechanical Load: Preliminary Report Delamination Failures in Long-Term Field Aged PV Modules...

  2. Pyranometers and Reference Cells: Part 2: What Makes the Most Sense for PV Power Plants?; Preprint

    SciTech Connect (OSTI)

    Meydbray, J.; Riley, E.; Dunn, L.; Emery, K.; Kurtz, S.

    2012-10-01T23:59:59.000Z

    As described in Part 1 of this two-part series, thermopile pyranometers and photovoltaic (PV) reference cells can both be used to measure irradiance; however, there are subtle differences between the data that are obtained. This two-part article explores some implications of uncertainty and subtleties of accurately measuring PV efficiency in the field. Part 2 of the series shows how reference cells can be used to more confidently predict PV performance, but how this could best be accomplished if historic irradiance data could be available in PV-technology-specific formats.

  3. Precursor Report of Data Needs and Recommended Practices for PV Plant Availability Operations and Maintenance Reporting.

    SciTech Connect (OSTI)

    Hill, Roger R.; Klise, Geoffrey Taylor; John Balfour, John R Balfour, High Performance PV

    2015-01-01T23:59:59.000Z

    Characterizing the factors that affect reliability of a photovoltaic (PV) power plant is an important aspect of optimal asset management. This document describes the many factors that affect operation and maintenance (O&M) of a PV plant, identifies the data necessary to quantify those factors, and describes how data might be used by O&M service providers and others in the PV industry. This document lays out data needs from perspectives of reliability, availability, and key performance indicators and is intended to be a precursor for standardizing terminology and data reporting, which will improve data sharing, analysis, and ultimately PV plant performance.

  4. U.S. Aims for Zero-Energy: Support for PV on New Homes

    E-Print Network [OSTI]

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-01-01T23:59:59.000Z

    Investigation of Photovoltaic Cost Trends in California. Ēphotovoltaic (PV) adoption, new homes have a number of attractive attributes. Homebuyers can easily roll the cost

  5. Property Tax Assessments as a Finance Vehicle for Residential PV Installations: Opportunities and Potential Limitations

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01T23:59:59.000Z

    interest PV loan programs: a residential solar investmentsolar ITC, it is important to evaluate the financial attractiveness of this specific type of loan

  6. Designing PV Incentive Programs to Promote Performance: A Review of Current Practice

    E-Print Network [OSTI]

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2007-01-01T23:59:59.000Z

    based on the actual energy production of the PV system overof estimated annual energy production, expressed either onto maximize annual energy production. Although some programs

  7. Measurement uncertainty analysis techniques applied to PV performance measurements

    SciTech Connect (OSTI)

    Wells, C.

    1992-10-01T23:59:59.000Z

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis? It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment`s final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis? A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.

  8. The effect of sandstorms on PV arrays and components

    SciTech Connect (OSTI)

    Thornton, J.P.

    1992-03-01T23:59:59.000Z

    Photovoltaic (PV) systems deployed in desert areas are exposed to wind-blown particles during most of their lifetimes. Here I describe the characteristics of wind-blown particles and with their effect on exposed surfaces. I provide insights for use in array design to minimize the effects of exposure and keep system costs as low as possible. Finally, I present some data describing the exposure of polymer-encapsulated arrays to both field and laboratory wind-blown sand environments, and I present evidence that an encapsulated or ``soft`` array has a higher abrasion resistance and, therefore, a much higher probability of surviving a severe sand environment.

  9. The effect of sandstorms on PV arrays and components

    SciTech Connect (OSTI)

    Thornton, J P

    1992-03-01T23:59:59.000Z

    Photovoltaic (PV) systems deployed in desert areas are exposed to wind-blown particles during most of their lifetimes. Here I describe the characteristics of wind-blown particles and with their effect on exposed surfaces. I provide insights for use in array design to minimize the effects of exposure and keep system costs as low as possible. Finally, I present some data describing the exposure of polymer-encapsulated arrays to both field and laboratory wind-blown sand environments, and I present evidence that an encapsulated or soft'' array has a higher abrasion resistance and, therefore, a much higher probability of surviving a severe sand environment.

  10. PV vs. Solar Water Heating- Simple Solar Payback

    Broader source: Energy.gov [DOE]

    Solar energy systems hang their hats on payback. Financial payback is as tangible as money in your bank account, while other types of paybackólike environmental externalitiesóare not usually calculated in dollars. Thereís no doubt that photovoltaic (PV) and solar hot water (SHW) systems will pay you back. Maybe not as quickly as youíd like, but all systems will significantly offset their cost over their lifetimes. Here weíll try to answer: Which system will give the quickest return on investment (ROI)?

  11. Kauai, Hawaii: Solar Resource Analysis and High Penetration PV Potential

    SciTech Connect (OSTI)

    Helm, C.; Burman, K.

    2010-04-01T23:59:59.000Z

    Overview of the solar resource assessment conducted by the National Renewable Energy Laboratory (NREL) in cooperation with Kauai Island Utility Cooperative (KIUC) in Hawaii to determine the technical feasibility of increasing the contribution of solar renewable energy generation on the island of Kauaii through the use of photovoltaic (PV) arrays. The analysis, which was performed using a custom version of NREL's In My Back Yard (IMBY) software tool, showed that there is potential to generate enough energy to cover the peak load as reported for Kauai in 2007.

  12. Geothermal, Energy Efficiency, and Solar PV Opportunities at Nissan USE

    E-Print Network [OSTI]

    Ford, R.; Ong, J.; Reeder, J.; Sridar, V.; Zhang, R.

    2014-01-01T23:59:59.000Z

    Geothermal, Energy Efficiency, and Solar PV Opportunities at Nissan USA May 21st, 2014 Robinson Ford Justin Ong Jake Reeder Vikram Sridar Rica Zhang ESL-IE-14-05-04 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New... Orleans, LA. May 20-23, 2014 Carbon Goal is Driving Innovation ESL-IE-14-05-04 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Research Areas Geothermal Solar Photovoltaics EE Verification ESL...

  13. PV Performance and Reliability Validation Capabilities at Sandia National Laboratories

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652 Srivastava, WSUEnergyPV Performance and

  14. PV Validation and Bankability Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652 Srivastava, WSUEnergyPV Performance andPVPV

  15. Sandia National Laboratories: 2013 PV Performance Modeling Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStoriesSANDIA1MedicalClimateECEnergy2013O&M WorkshopPV

  16. Shanghai JTU PV Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation, search|Sewaren,Shanghai JTU PV Technology Co Ltd Jump

  17. Zhejiang Cineng PV Science Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty is aYoakumYu EnergyZeZhejiang Cineng PV

  18. Sandia National Laboratories: PV Paper Published in IEEE Transactions on

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNoLong RangePILSResourcesPV

  19. Sandia National Laboratories: PV arc-fault detection research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PV Systems ReliabilityWorkshops PVPV

  20. Sandia National Laboratories: PV Plant Performance Technical Briefing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSP Resources On SeptemberNuclearSPIDERSPublished in PV

  1. Sandia National Laboratories: Sandian Presents on PV Failure Analysis at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for US PatentOperational Energy atPartnershipOffice ofEuropean PV

  2. Tianfu PV Guangxian Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978) |Thrall, Texas:Thurmont,Thurston,Tianfu PV

  3. Sandia National Laboratories: 2013 PV Systems Symposium Details

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwardsSafeguards andSan$0.06 per09 Archives3O&M3 PV

  4. A DESIGN AND ANALYSIS TOOL FOR SOLAR ELECTRIC SYSTEMS

    E-Print Network [OSTI]

    Delaware, University of

    PV PLANNER A DESIGN AND ANALYSIS TOOL FOR SOLAR ELECTRIC SYSTEMS Updated User Manual May 2011 University of Delaware #12;Mailing Address: John Byrne Director Center for Energy and Environmental Policy) 831-3098 Website: http://ceep.udel.edu The Center for Energy and Environmental Policy conducts

  5. POWER '99 Conference 1 Stochastic Models of Electricity Spot Price

    E-Print Network [OSTI]

    California at Berkeley. University of

    spread call options. power spot price delivery at PV gas spot price SoCal system 8000 heat rate When power. When the spot market implied heat rate is below the unit operating heat rate, generator should1 POWER '99 Conference 1 Stochastic Models of Electricity Spot Price and their Applications Shijie

  6. Independent Control of Two Induction Motors Fed by a Five Legs PWM Inverter for Electric Vehicles

    E-Print Network [OSTI]

    Boyer, Edmond

    Independent Control of Two Induction Motors Fed by a Five Legs PWM Inverter for Electric Vehicles B. NOMENCLATURE EV = Electric vehicle; IM = Induction motor; IFOC = Indirect field oriented control; PWM= Pulse force; Fcr = Climbing and downgrade resistance force; Pv = Vehicle driving power; J = Total inertia

  7. SOLAR ENERGY (conditionally accepted 1/2010) QUANTIFYING PV POWER OUTPUT VARIABILITY

    E-Print Network [OSTI]

    Perez, Richard R.

    SOLAR ENERGY (conditionally accepted 1/2010) QUANTIFYING PV POWER OUTPUT VARIABILITY Thomas E create major problems that will require major mitigation efforts. #12;SOLAR ENERGY (conditionally industry believe it could constrain the penetration of gridconnected PV. The U.S. Department of Energy

  8. On the Impact of Partial Shading on PV Output Power DEZSO SERA YAHIA BAGHZOUZ

    E-Print Network [OSTI]

    Sera, Dezso

    On the Impact of Partial Shading on PV Output Power DEZSO SERA YAHIA BAGHZOUZ Institute of Energy the inflation adjusted cost of PV energy has declined by roughly by a factor of 2 over the same time period [3 power capability. However, the relative amount of such degradation in energy production cannot

  9. Environmental impacts of large-scale grid-connected ground-mounted PV installations

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    deployment and solar energy use are developing rapidly in Europe. In particular, Austria, Switzerland the higher external environmental costs of PV compared to those of nuclear energy and natural-gas-fuel power,6]. They highlighted the photovoltaic potential for a low carbon energy supply and the environmental benefits of PV

  10. Chapter III-2: Standards, Calibration and Testing of PV Modules and Solar Cells

    SciTech Connect (OSTI)

    Osterwald, C. R.

    2012-01-01T23:59:59.000Z

    This chapter covers common PV measurement techniques and shows how potential problems and sources of error are minimized through the development and use of common standards. Measurement uncertainty, however, remains a problem for some types of PV cells, and tests continue to be developed to address these issues.

  11. Moving to a Higher Level for PV Reliability through Comprehensive Standards Based on Solid Science (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2014-11-01T23:59:59.000Z

    PV reliability is a challenging topic because of the desired long life of PV modules, the diversity of use environments and the pressure on companies to rapidly reduce their costs. This presentation describes the challenges, examples of failure mechanisms that we know or don't know how to test for, and how a scientific approach is being used to establish international standards.

  12. Data Science Study Protocols for Investigating Lifetime and Degradation of PV Technology Systems

    E-Print Network [OSTI]

    Rollins, Andrew M.

    of Epidemiology and Biostatistics, Case Western Reserve University Abstract -- The reliability of photovoltaic (PV. Index Terms -- photovoltaic systems, regression analysis, enter- prise resource planning, knowledge management I. INTRODUCTION AND BACKGROUND The reliability of PV technology systems is of the utmost im

  13. FEMP Webcast: O&M Best Practices for Small-Scale PV Systems

    Broader source: Energy.gov [DOE]

    Hosted by the Federal Energy Management Program (FEMP), this seminar covers operations and maintenance (O&M) best practices for photovoltaic (PV) systems of 100 kilowatt or less, including planning for a PV O&M scope of work and maintenance procedures to keep the system operating at optimal capacity.

  14. Why Are Residential PV Prices in Germany So Much Lower Than in the United States?

    E-Print Network [OSTI]

    Why Are Residential PV Prices in Germany So Much Lower Than in the United States? A Scoping is significantly lower in Germany than in the U.S., due primarily to differences in "soft" costs ­ But relatively consultant data relevant to the cost structure of residential PV in Germany · Focus is the pre

  15. Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study

    E-Print Network [OSTI]

    Low, Steven H.

    with photovoltaic (PV) arrays, wind turbines, and battery storage is designed based on empirical weather and load with renewable resources such as solar and wind power, supplemented with battery storage in a case study. One ­ the size of PV arrays, the number of wind turbines and the capacity of battery storage ­ that limit

  16. Literature Review of the Effects of UV Exposure on PV Modules

    Broader source: Energy.gov [DOE]

    This PowerPoint presentation, originally presented at the NREL 2013 PV Module Reliability Workshop on Feb. 26-27, 2013 in Denver, CO, presents the literature review of the effects of prolonged UV exposure of PV modules, with a particular emphasis on UV exposure testing using artificial light sources, including fluorescent, Xenon, and metal halide lamps.

  17. World Renewable Energy Congress 2011 Sweden Photovoltaic Technology (PV) 8-11 May 2011, Linkping, Sweden

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    or (2) wood supports, and mobile structures with (3) single-axis trackers or (4) dual-axis trackers performance. Mobile PV installations with dual-axis trackers show the largest impact potential on ecosystem installations 1. Introduction PV systems deployment and solar energy use are developing rapidly in Europe

  18. Energy Management Strategy for Commercial Buildings Integrating PV and Storage Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Energy Management Strategy for Commercial Buildings Integrating PV and Storage Systems He ZHANG1 by using the solution proposed. Keywords: Photovoltaic (PV) systems, fuzzy logic, storage system, energy connected to the power network and associated to photovoltaic and storage system. Some energy management

  19. Hawaii Natural Energy Institute installs PV systems at public schools Pacific Business News

    E-Print Network [OSTI]

    of the inverters, which convert direct current or DC power generated by the PV panels into alternating current in Ewa Beach and at Kawaikini New Century Public Charter School in Lihue on Kauai. "These installations the performance of traditional and emerging PV materials and inverter technologies," Institute Director Richard

  20. ePOWER Seminar AC solar cells: A new breed of PV power generation

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    ePOWER Seminar AC solar cells: A new breed of PV power generation Professor Faisal Khan Assistant dc output which needs to be processed and inverted for ac applications. Using a modern manufacturing facility, PV panels could be mass produced without any apparent issues. Unfortunately, power converters

  1. Rooftop PV Potential for Scotland: Preliminary Analysis Professor Gareth Harrison and Dr Lucy Cradden

    E-Print Network [OSTI]

    Painter, Kevin

    . Uncertainties An analysis of UK solar potential is based on a similar approach using aggregate land use data in suitable area to allow for shading and other effects. The solar PV potential per square metre of roof has was used to determine annual output for standard PV arrays in each location. It found annual production

  2. THE INTEGRATION AND CONTROL OF MULTIFUNCTIONAL STATIONARY PV-BATTERY SYSTEMS IN SMART DISTRIBUTION GRID

    E-Print Network [OSTI]

    Berning, Torsten

    ) in presence of photovoltaic (PV) panel on the view of techno economic optimal sizing taking the considerationTHE INTEGRATION AND CONTROL OF MULTIFUNCTIONAL STATIONARY PV-BATTERY SYSTEMS IN SMART DISTRIBUTION stationary battery energy storage systems (BESS) in the public low-voltage distribution grid in order

  3. PV Grounding Sponsored by the Photovoltaic Systems Assistance Center, Sandia National Laboratories

    E-Print Network [OSTI]

    Johnson, Eric E.

    PV Grounding Continued John Wiles Sponsored by the Photovoltaic Systems Assistance Center, Sandia methods will be covered. The subject is quite complex. Grounding photovoltaic (PV) systems with both AC-grounding conductors in other DC circuits and in AC circuits are sized according to Table 250.122 in the NEC

  4. Fraunhofer-Center fr Silizium-Photovoltaik CSP INTERPRETATION OF CELL FRACTURE IN PV

    E-Print Network [OSTI]

    ¬© Fraunhofer-Center f√ľr Silizium-Photovoltaik CSP INTERPRETATION OF CELL FRACTURE IN PV MODULES stability of PV modules" #12;¬© Fraunhofer-Center f√ľr Silizium-Photovoltaik CSP Agenda Motivation #12;¬© Fraunhofer-Center f√ľr Silizium-Photovoltaik CSP Motivation & Background Thermo

  5. 2008 European PV Conference, Valencia, Spain COMPARISON OF SOLAR RADIATION FORECASTS FOR THE USA

    E-Print Network [OSTI]

    Perez, Richard R.

    2008 European PV Conference, Valencia, Spain COMPARISON OF SOLAR RADIATION FORECASTS FOR THE USA J models 1 INTRODUCTION Solar radiation and PV production forecasts are becoming increasingly important/) three teams of experts are benchmarking their solar radiation forecast against ground truth data

  6. Genome-Wide Identification of Transcriptional Start Sites in the Plant Pathogen Pseudomonas syringae pv. tomato

    E-Print Network [OSTI]

    Myers, Chris

    identified 59-ends of transcripts for the plant pathogen Pseudomonas syringae pv. tomato str. DC3000-Wide Identification of Transcriptional Start Sites in the Plant Pathogen Pseudomonas syringae pv. tomato str. DC3000Genome-Wide Identification of Transcriptional Start Sites in the Plant Pathogen Pseudomonas

  7. Introduction of Break-Out Session 2 of the 2011 International PV Module Quality Assurance Forum(Presentation)

    SciTech Connect (OSTI)

    Wohlgemuth, J.; Kurtz, S.; Sample, T.; Yamamichi, M.

    2011-07-01T23:59:59.000Z

    This presentation outlines the goals and specific tasks of break-out session 2 of the 2011 International PV Module Quality Assurance Forum, along with a review of accelerated stress tests used for photovoltaics (PV).

  8. Designing PV Incentive Programs to Promote Performance: A Review of Current Practice in the U.S.

    E-Print Network [OSTI]

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2008-01-01T23:59:59.000Z

    Washington Renewable Energy Production Incentives Cash Backincentives for customer- sited PV: Non-Residential Renewable Energy (Renewable Energy Program SolarGenerations Solar Pioneer Program New York Energy $mart PV Incentive

  9. Advanced polymer PV system: PVMaT 4A1 annual report, September 1995--September 1996

    SciTech Connect (OSTI)

    Hanoka, J.; Chleboski, R.; Farber, M.; Fava, J.; Kane, P.; Martz, J. [Evergreen Solar, Inc., Waltham, MA (United States)] [Evergreen Solar, Inc., Waltham, MA (United States)

    1997-06-01T23:59:59.000Z

    Purpose of this subcontract was to produce lower module and systems costs through the innovative use of polymeric materials. The Innovative Mounting System (IMS) was developed and testing begun during the first year of this contract. IMS reduces the cost of installed PV systems by reducing labor and materials costs both in the factory and in field installation. It incorporates several advances in polymers, processing methods and product design. An advanced backskin material permits elimination of the conventional Al perimeter frame by protecting and sealing the edge and by direct bonding of multifunctional mounting bars. Electrical interconnection is easier and more reliable with a new junction box. Feasibility of a non-vacuum, high-throughput lamination method was also demonstrated, involving a novel transparent encapsulant with UV stabilization package that can be laminated in air and which should lead to longer field life than conventional designs. The first-year program culminated in the fielding of prototype products with the new encapsulant, backskin, junction box, frameless edge seal, and IMS. Feedback and marketing information from potential customers were solicited. Result promises a $0.50/watt manufacturing and system cost reductions as well as increased system lifetime. The second year will complete refinement and test of the encapsulant and backskin, complete the new lamination method, and refine product designs.

  10. Reactive power interconnection requirements for PV and wind plants : recommendations to NERC.

    SciTech Connect (OSTI)

    McDowell, Jason (General Electric, Schenectady, NY); Walling, Reigh (General Electric, Schenectady, NY); Peter, William (SunPower, Richmond, CA); Von Engeln, Edi (NV Energy, Reno, NV); Seymour, Eric (AEI, Fort Collins, CO); Nelson, Robert (Siemens Wind Turbines, Orlando, FL); Casey, Leo (Satcon, Boston, MA); Ellis, Abraham; Barker, Chris. (SunPower, Richmond, CA)

    2012-02-01T23:59:59.000Z

    Voltage on the North American bulk system is normally regulated by synchronous generators, which typically are provided with voltage schedules by transmission system operators. In the past, variable generation plants were considered very small relative to conventional generating units, and were characteristically either induction generator (wind) or line-commutated inverters (photovoltaic) that have no inherent voltage regulation capability. However, the growing level of penetration of non-traditional renewable generation - especially wind and solar - has led to the need for renewable generation to contribute more significantly to power system voltage control and reactive power capacity. Modern wind-turbine generators, and increasingly PV inverters as well, have considerable dynamic reactive power capability, which can be further enhanced with other reactive support equipment at the plant level to meet interconnection requirements. This report contains a set of recommendations to the North-America Electricity Reliability Corporation (NERC) as part of Task 1-3 (interconnection requirements) of the Integration of Variable Generation Task Force (IVGTF) work plan. The report discusses reactive capability of different generator technologies, reviews existing reactive power standards, and provides specific recommendations to improve existing interconnection standards.

  11. falls into this category if the PV DC conductors penetrate the house. Although batteries are not power generators,

    E-Print Network [OSTI]

    Johnson, Eric E.

    falls into this category if the PV DC conductors penetrate the house. Although batteries-grid, battery-based PV systems or grid-tied (utility-interactive) PV systems with battery backup. In situations are not power generators, they can source energy, so a battery disconnect might also fall into this category

  12. www.iaei.org July.August 2005 IAEI NEWS 83 GROUNDING PV AND SYSTEMS FINE STRANDED CONDUCTORS

    E-Print Network [OSTI]

    Johnson, Eric E.

    with single inverters sized below about 10 kW. Figure 1 shows the dc grounding for a PV system as spelled out electrode) bare or insulated A series of articles on photovoltaic (PV) power systems and the Nationalwww.iaei.org July.August 2005 IAEI NEWS 83 GROUNDING PV AND SYSTEMS FINE STRANDED CONDUCTORS

  13. The inverter is a major component of photovoltaic (PV) systems either autonomous or grid connected. It affects the

    E-Print Network [OSTI]

    Oregon, University of

    and a variety of photovoltaic modules. The PV systems range in size from 2.5 to 3.6 kilowatts. The purposeABSTRACT The inverter is a major component of photovoltaic (PV) systems either autonomous or grid. INTRODUCTION For any grid tied photovoltaic (PV) system, the inverter is the essential piece of equipment

  14. High Performance Packaging Solutions for Low Cost, Reliable PV Modules: Final Subcontract Report, 26 May 2005 - 30 November 2008

    SciTech Connect (OSTI)

    Keotla, B. M.; Marinik, B. J.

    2009-06-01T23:59:59.000Z

    During this research effort, Dow Corning Corporation has addressed the PV manufacturing goals of: (i) improving PV manufacturing processes and equipment; (ii) accelerating manufacturing cost reductions of PV modules; (iii) increasing commercial product performance and reliability; and (iv) scaling up U.S. manufacturing capacity.

  15. Plug and Play Components for Building Integrated PV Systems, Phase II Final Report, 20 February 2003 - 31 May 2007

    SciTech Connect (OSTI)

    Rowell, D.

    2008-04-01T23:59:59.000Z

    Progress by Schott Solar, Inc. under NREL's PV Manufacturing R&D Project. Details progress on meter-interconnect device; free-standing mounting system; dark I-V curves to unearth problems with PV module strings; new 34-V version of ASE-300 PV module; and updated source-circuit protectors.

  16. Packaging Materials and Design for Improved PV Module Reliability

    SciTech Connect (OSTI)

    Jorgensen, G.; Terwilliger, K.; Kempe, M.; Pern, J.; Glick, S.; del Cueto, J.; Kennedy, C.; McMahon, T.

    2005-01-01T23:59:59.000Z

    A number of candidate alternative encapsulant and soft backsheet materials have been evaluated in terms of their suitability for photovoltaic (PV) module packaging applications. Relevant properties, including peel strength as a function of damp heat exposure and permeability, have been measured. Based on these tests, promising new encapsulants with adhesion-promoting primers have been identified that result in improved properties. Test results for backsheets provided by industry and prepared at the National Renewable Energy Laboratory (NREL) have suggested strategies to achieve significantly improved products. The ability of glass/glass and glass/breathable backsheet constructions laminated with various encapsulant and/or edge seal materials to protect thin-film aluminum coatings deposited onto glass substrates was assessed. Glass/glass laminate constructions can trap harmful compounds that catalyze moisture-driven corrosion of the aluminum. Constructions with breathable backsheets allow higher rates of moisture ingress, but also allow egress of deleterious substances that can result in decreased corrosion.

  17. Fundamentals of PV Efficiency: Limits for Light Absorption

    E-Print Network [OSTI]

    M. Ryyan Khan; Xufeng Wang; Muhammad A. Alam

    2012-12-13T23:59:59.000Z

    A simple thermodynamic argument related to a (weakly absorbing) finite dielectric slab illuminated by sunlight- originally suggested by Yablonovich- leads to the conclusion that the absorption in a dielectric can at best be increased by a factor 4n2. Therefore, the absorption in these materials is always imperfect; the Shockley-Queisser limit can be achieved only asymptotically. In this paper, we make the connection between the degradation in efficiency and the Yablonovich limit explicit and re-derive the 4n2 limit by intuitive geometrical arguments based on Snell's law and elementary rules of probability. Remarkably, the re-derivation suggests strategies of breaking the traditional limit and improving PV efficiency by enhanced light absorption.

  18. Final Technical Report - Photovoltaics for You (PV4You) Program

    SciTech Connect (OSTI)

    Weissman, J.M.; Sherwood, L.; Pulaski, J.; Cook, C.; Kalland, S.; Haynes, J.

    2005-08-14T23:59:59.000Z

    In September 2000, the Interstate Renewable Energy Council (IREC) began its 5-year work on contract # DE-FGO3-00SF22116, the Photovoltaics for You (PV4You) Project. The objective was to develop and distribute information on photovoltaics and to educate key stakeholder groups including state government agencies, local government offices, consumer representative agencies, school officials and students, and Million Solar Roofs Partnerships. In addition, the project was to identify barriers to the deployment of photovoltaics and implement strategies to overcome them. Information dissemination and education was accomplished by publishing newsletters; creating a base of information, guides, and models on the www.irecusa.org and the www.millionsolarroofs.org web sites; convening workshops and seminars; engaging multiple stakeholders; and widening the solar network to include new consumers and decision makers. Two major web sites were maintained throughout the project cycle. The www.irecusa.org web site housed dedicated pages for Connecting to the Grid, Schools Going Solar, Community Outreach, and Certification & Training. The www.millionsolarroofs.org web site was created to serve the MSR Partnerships with news, interviews, key documents, and resource material. Through the course of this grant, the Interstate Renewable Energy Council has been supporting the Department of Energy?s solar energy program goals by providing the Department with expertise services for their network of city, state, and community stakeholders. IREC has been the leading force at the state and federal levels regarding net metering and interconnection policy for photovoltaic systems. The principal goal and benefit of the interconnection and net metering work is to lower both barriers and cost for the installation of PV. IREC typically plays a leadership role among small generator stakeholders and has come to be relied upon for its expertise by industry and regulators. IREC also took a leadership position in developing quality and competency standards for solar professionals and for training programs ? critical components to bring the solar industry into step with other recognized craft labor forces. IREC?s objective was to provide consumer assurances and assist the states and the solar industry in building a strong and qualified workforce. IREC?s Schools Going Solar Clearinghouse provided channels of information to educate students, teachers, parents and the community at large about the benefits of solar energy. Solar school projects enhance science and math education while creating an initial entry market for domestic PV. And, IREC?s community and outreach network got the right information out to capture the interest and met the needs of different audiences and reached groups that weren?t traditionally part of the solar community. IREC?s PV4You project was effective because it resulted in reduced costs through easier interconnection and better net metering agreements and by raising the competency standards for solar practitioners. The project provided ways to eliminate barriers and constraints by providing technical assistance, offering model agreements based on industry consensus that were used by state and local decision makers. And, the project increased public acceptance by providing information, news and guidelines for different audiences.

  19. National electrical code changes for 1996 and USA participation in International Energy Agency activities related to photovoltaics safety and grid interconnection

    SciTech Connect (OSTI)

    Bower, W.

    1995-01-01T23:59:59.000Z

    As photovoltaic (PV) systems gain more acceptance in utility-interactive applications throughout the world, many organizations are placing increasingly higher priorities on writing guidelines, codes and standards. These guidelines and codes are being written to improve safety, installation, acceptance, listing or certification of the PV components or systems. Sandia National Laboratories` PV System Applications Department is working closely with the PV industry to address issues that are associated with fire and personnel safety and with National Electrical Code (NEC) requirements. Additionally, the United States has agreed to participate in two of the International Energy Agency (IEA) Annexes (topical tasks) of the Implementing Agreement for a Cooperative Programme on Photovoltaic Power Systems. This paper describes events and activities associated with the NEC and the IEA that are being led by Sandia National Laboratories with broad participation by the US PV industry.

  20. Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems

    SciTech Connect (OSTI)

    Schauder, C.

    2014-03-01T23:59:59.000Z

    This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

  1. Designing PV Incentive Programs to Promote Performance: A Reviewof Current Practice in the U.S.

    SciTech Connect (OSTI)

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-10-06T23:59:59.000Z

    In the U.S., the increasing financial support for customer-sited photovoltaic (PV) systems provided through publicly-funded incentive programs has heightened concerns about the long-term performance of these systems. Given the barriers that customers face to ensuring that their PV systems perform well, and the responsibility that PV incentive programs bear to ensure that public funds are prudently spent, these programs should, and often do, play a critical role in addressing PV system performance. To provide a point of reference for assessing the current state of the art, and to inform program design efforts going forward, we examine the approaches to encouraging PV system performance used by 32 prominent PV incentive programs in the U.S. We identify eight general strategies or groups of related strategies that these programs have used to address factors that affect performance, and describe key implementation details. Based on this review, we then offer recommendations for how PV incentive programs can be effectively designed to mitigate potential performance issues.

  2. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    of traditional resources, and Renewable Portfolio Standardsto develop remote renewable resources and new transmissionexisting and new renewable resources and other miscellaneous

  3. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    concluded the utilityís load-following capability limited PVfrequency regulation and load following capability. Althoughinto the following: Production Cost Modeling, Load (Power)

  4. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    solar having a combined 15,000 Gigawatts of potential capacity [1,2]. For the past 30 years, California

  5. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    of the absorber or photovoltaic cell. Color behavior, oras ln (A.27) For a photovoltaic cell under concentrated2 day Multijunction photovoltaic cells are used with medium

  6. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    problems are encountered. There are utility concerns that a high penetration of inverter-based solar energyproblem with a non-imaging 2D Fresnel concentrator. Lorenzo (1981) evaluated chromatic aberrations in solar energy

  7. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    by 2020 by from renewable resources [140]. Solar costto remotely located renewable resources including permittingand remote access to renewable resources. The water-borne

  8. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    of a distribution control system managing reliability andwith distribution control systems to ensure reliability andwith distribution control systems to ensure reliability and

  9. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    Happy†Camp†Sanitation†District† Harwood†Products,†Inc. † Healdsburg†City† Herlong†PUD† Hess†Collection†Winery† Hidden†Valley†

  10. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    Integration of Intermittent Renewable Technologies Yih-huei,W. ; Parsons, B National Renewable Energy Laboratory, August2020: Towards a Policy of Renewable and Distributed Energy

  11. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    City† Watsonville†City† Weaverville†Sanitary†District† Weed†WWTP† WATSONVILLE†WWTP† Weaverville†SD†WWTP† Weed†Shastina†Mountain†View†Street,†Weaverville,†CA†96093† Highway†97,†

  12. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    solar ramping and produce the fastest ramp rate output powersolar panels or modules into AC) needs to automatically adjust the power output

  13. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    15,1998 pp. 1424-1431 [140] Grid 2020: Towards a Policy ofInverter connected to the Grid via LCL Filter Papavasiliou,Act, Title XIII- Smart Grid, Section 1301-Statement of

  14. 39thPVSC_Electrical_Simulations_of_Series_and_Parallel_PV_Arc-Faults(Presentation).pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered¬ČPNGExperience hands-onASTROPHYSICS H.CarbonMarch Value4 3.P D AT E S038th

  15. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    LLC† Hamilton†City†CSD† Hanford†City† Happy†Camp†Sanitation†10555†HOUSTON,†Hanford,†CA†93230† Happy†Camp†WWTP† Highway†

  16. Microsoft Word - Electrical Simulations of Series and Parallel PV Arc - rev4.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMappingENVIRONMENTAL IMPACTApproved:GEORGEICReduced Form Energy

  17. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    93609† 1960†CATE†MESA†RD,†Carpinteria,†CA†93013† 46041†Road†CA†94558† Carneros†Partnership†LLC† CARPINTERIA†SD†WWTP†5351†Sixth†Street,†Carpinteria,†CA†93013† Carpinteria†SD†

  18. Planning for PV: The Value and Cost of Solar Electricity (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-01-01T23:59:59.000Z

    This is a brochure developed specifically for residential home builders. It provides information on basic financial factors and additional resources to consider when incorporating solar technologies into building plans.

  19. Sandia National Laboratories: Second Annual Electric Power Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by Dino Vournas) PV performance modeling; screening methods, distribution PV host-ing capacity, and advanced inverter modeling; and PV system reliability and maintenance...

  20. Analysis of electric vehicle interconnection with commercial building microgrids

    E-Print Network [OSTI]

    Stadler, Michael

    2011-01-01T23:59:59.000Z

    power (CHP), PV, solar thermal, stationary battery, etc. isstationary battery ē stationary batteries charged by PV ē noyears PV: $3237/kW, lifetime: 20 years stationary battery: $

  1. Low Cost High Concentration PV Systems for Utility Power Generation...

    Broader source: Energy.gov (indexed) [DOE]

    Electricity On Flat Commercial Rooftops,Fully Automated Systems Technology, Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to the Rooftop Practical...

  2. Loan Guarantees for Three California PV Solar Plants Expected...

    Broader source: Energy.gov (indexed) [DOE]

    across the country. Combined, the projects will produce 1330 Megawatts of installed solar power -- enough electricity to power about 275,000 homes. Building on the momentum of...

  3. Jay Apt, Paulina Jaramillo, and Stephen Rose Carnegie Mellon Electricity Industry Center (CEIC)'s RenewElec Project

    E-Print Network [OSTI]

    McGaughey, Alan

    electric generators. 9 · Solar: ­ Photovoltaic (solar panels) ­ Solar thermal (concentrated solar power at 15-20 cents per kWh. · If installed prices fall 40%, PV can match the current price of wind) supporting wind projects and the investment tax credits (ITC) supporting solar projects. Electric Generation

  4. User's Manual for Data for Validating Models for PV Module Performance

    SciTech Connect (OSTI)

    Marion, W.; Anderberg, A.; Deline, C.; Glick, S.; Muller, M.; Perrin, G.; Rodriguez, J.; Rummel, S.; Terwilliger, K.; Silverman, T. J.

    2014-04-01T23:59:59.000Z

    This user's manual describes performance data measured for flat-plate photovoltaic (PV) modules installed in Cocoa, Florida, Eugene, Oregon, and Golden, Colorado. The data include PV module current-voltage curves and associated meteorological data for approximately one-year periods. These publicly available data are intended to facilitate the validation of existing models for predicting the performance of PV modules, and for the development of new and improved models. For comparing different modeling approaches, using these public data will provide transparency and more meaningful comparisons of the relative benefits.

  5. Development of a Visual Inspection Checklist for Evaluation of Fielded PV Module Condition (Presentation)

    SciTech Connect (OSTI)

    Packard, C. E; Wohlgemuth, J. H.; Kurtz, S. R.

    2012-03-01T23:59:59.000Z

    A visual inspection checklist for the evaluation of fielded photovoltaic (PV) modules has been developed to facilitate collection of data describing the field performance of PV modules. The proposed inspection checklist consists of 14 sections, each documenting the appearance or properties of a part of the module. This tool has been evaluated through the inspection of over 60 PV modules produced by more than 20 manufacturers and fielded at two different sites for varying periods of time. Aggregated data from a single data collection tool such as this checklist has the potential to enable longitudinal studies of module condition over time, technology evolution, and field location for the enhancement of module reliability models.

  6. Tucson Request for Proposal for 1-5 MW PV PPA

    Broader source: Energy.gov [DOE]

    The mission of Tucson Water, a Department of the City of Tucson (the City), is to ensure that its customers receive high quality water and excellent service in a cost efficient, safe and environmentally responsible manner. In the interest of furthering Tucson Waters mission, the City is seeking a Contractor to finance, design, build, commission, own, operate and maintain up to a 1 megawatt (MW) DCSTC hotovoltaic (PV) system. The City also seeks an option for expanding the PV system up to a total of 5 MW DCSTC PV.

  7. Exploring the Economic Value of EPAct 2005's PV Tax Credits

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Ing, Edwin

    2006-03-28T23:59:59.000Z

    The market for grid-connected photovoltaics (PV) in the US has grown dramatically in recent years, driven in large part by PV grant or ''buy-down'' programs in California, New Jersey, and many other states. The recent announcement of a new 11-year, $3.2 billion PV program in California suggests that state policy will continue to drive even faster growth over the next decade. Federal policy has also played a role, primarily by providing commercial PV systems access to tax benefits, including accelerated depreciation (5-year MACRS schedule) and a business energy investment tax credit (ITC). With the signing of the Energy Policy Act of 2005 (EPAct) on August 8, the federal government is poised to play a much more significant future role in supporting both commercial and residential PV systems. Specifically, EPAct increased the federal ITC for commercial PV systems from 10% to 30% of system costs, and also created a new 30% ITC (capped at $2000) for residential solar systems. Both changes went into effect on January 1, 2006, and--absent an extension (for which the solar industry has already begun lobbying)--will last for a period of two years: the new residential ITC will expire, and the 30% commercial ITC will revert back to 10%, on January 1, 2008. How much economic value do these new and expanded federal tax credits really provide to PV system purchasers? And what implications might they hold for state/utility PV grant programs? Using a generic (i.e., non-state-specific) cash flow model, this report explores these questions. We begin with a discussion of the taxability of PV grants and their interaction with federal credits, as this issue significantly affects the analysis that follows. We then calculate the incremental value of EPAct's new and expanded credits for PV systems of different sizes, and owned by different types of entities. We conclude with a discussion of potential implications for purchasers of PV systems, as well as for administrators of state/utility PV programs.

  8. Building opportunities for photovoltaics in the U.S. Final report [PV BONUS

    SciTech Connect (OSTI)

    Michael Nicklas

    1999-09-08T23:59:59.000Z

    The objective of the North Carolina's PV Bonus Team was to develop and demonstrate a commercially viable, building-integrated, photovoltaic system that, in addition to providing electricity, would capture and effectively utilize the thermal energy produced by the photovoltaic array. This project objective was successfully achieved by designing, testing, constructing, and monitoring two roof integrated photovoltaic systems--one on a Applebee's Restaurant in Salisbury, North Carolina and the second on a Central Carolina Bank in Bessemer City, North Carolina. The goal of Innovative Design is to now use these successful demonstrations to facilitate entry of building integrated, pv/thermal systems into the marketplace. The strategy was to develop the two systems that could be utilized in future applications. Both systems were designed and then constructed at the North Carolina Solar Center at North Carolina State University. After extensive testing at the North Carolina Solar Center, the systems were moved to the actual construction sites and implemented. The Applebee's Restaurant system was designed to substitute for the roof assembly of a low sloping, south-facing sunspace roof that typically incorporated clay tile. After monitoring the installed system for one year it was determined that the 1.2 kilowatt (peak) system produces an average peak reduction of 1 kilowatt (rated peak is 1.7 kiloWatts), saves 1,529 kilowatt-hours of electricity, and offsets 11,776 kilowatt-hours of thermal energy savings used to pre-heat water. A DC fan connected directly to eight of the thirty-two amorphous modules moves air through air passages mounted on the backside of the modules and into a closed loop duct system to a heat exchanger. This heat exchanger is, in turn, connected to a pre-heat hot water tank that is used to heat the water for the restaurant. The Central Carolina Bank system was designed to substitute for the roof assembly of the drive-in window area of the bank. The design featured a triangulated truss that incorporated ten crystalline photovoltaic modules on one side of the truss and a reflective panel on the opposite side. The system used a utility interactive, programmable inverter and a 18.9 kilowatt-hour battery bank. The system is designed so that a DC fan, connected to one of the modules, forces ambient air across the back side of the modules. In the summer this heat is vented to the outside but in the winter this heated, fresh air is introduced into the building as ventilation air. Like the Applebee's system, the design allowed the entire roof assembly to be constructed off-site, tested, and then shipped to the site in pie-assembled, large components. During the first full year of operation, the 2.2 kilowatt (rated peak is 2.7 kilowatts) system contributed to an average peak reduction of .9 kilowatts. The system, as designed, saves 2,576 kilowatt-hours of electricity and offsets 3,473 kilowatt hours (of a potential thermal benefit of 10,172 collected kWhs) of thermal energy savings that is used as fresh air make-up in the colder months. This report is a summary of their conclusions.

  9. NREL/SCE High-Penetration PV Integration Project: Report on Field Demonstration of Advanced Inverter Functionality in Fontana, CA

    SciTech Connect (OSTI)

    Mather, B.

    2014-08-01T23:59:59.000Z

    The National Renewable Energy Laboratory/Southern California Edison High-Penetration PV Integration Project is (1) researching the distribution system level impacts of high-penetration photovoltaic (PV) integration, (2) determining mitigation methods to reduce or eliminate those impacts, and (3) seeking to demonstrate these mitigation methods on actual high-penetration PV distribution circuits. This report describes a field demonstration completed during the fall of 2013 on the Fontana, California, study circuit, which includes a total of 4.5 MW of interconnected utility-scale rooftop PV systems. The demonstration included operating a 2-MW PV system at an off-unity power factor that had been determined during previously completed distribution system modeling and PV impact assessment analyses. Data on the distribution circuit and PV system operations were collected during the 2-week demonstration period. This demonstration reinforces the findings of previous laboratory testing that showed that utility-scale PV inverters are capable of operating at off-unity power factor to mitigate PV impacts; however, because of difficulties setting and retaining PV inverter power factor set points during the field demonstration, it was not possible to demonstrate the effectiveness of off-unity power factor operation to mitigate the voltage impacts of high-penetration PV integration. Lessons learned from this field demonstration are presented to inform future field demonstration efforts.

  10. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

    2012-11-30T23:59:59.000Z

    Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations Ė may cause some voltage control challenges or overloading problems, respectively. But when combined, there Ė at least intuitively Ė could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

  11. Regional Per Capita Solar Electric Footprint for the United States

    SciTech Connect (OSTI)

    Denholm, P.; Margolis, R.

    2007-12-01T23:59:59.000Z

    In this report, we quantify the state-by-state per-capita 'solar electric footprint' for the United States. We use state-level data on population, electricity consumption, economic activity and solar insolation, along with solar photovoltaic (PV) array packing density data to develop a range of estimates of the solar electric footprint. We find that the solar electric footprint, defined as the land area required to supply all end-use electricity from solar photovoltaics, is about 181 m2 per person in the United States. Two key factors that influence the magnitude of the state-level solar electric footprint include how industrial energy is allocated (based on location of use vs. where goods are consumed) and the assumed distribution of PV configurations (flat rooftop vs. fixed tilt vs. tracking). The solar electric footprint is about 0.6% of the total land area of the United States with state-level estimates ranging from less than 0.1% for Wyoming to about 9% for New Jersey. We also compare the solar electric footprint to a number of other land uses. For example, we find that the solar electric footprint is equal to less than 2% of the land dedicated to cropland and grazing in the United States.

  12. Performance and Analysis of Photovoltaic (PV)Technologies

    E-Print Network [OSTI]

    HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science & Technology ­ University of Hawai was submitted by HNEI to the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Cooperative

  13. Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions

    E-Print Network [OSTI]

    Feng, Wei

    2013-01-01T23:59:59.000Z

    photovoltaics (PV), and battery storage, are considered forStorage Heat Storage Flow Battery Energy Flow Battery PowerkW) Battery Capacity (kWh) Photo voltaic (kW) Heat Storage (

  14. Multi-Objective Capacity Planning of a Pv-Wind-Diesel-Battery Hybrid Power System

    E-Print Network [OSTI]

    Saif, A.

    A new solution methodology of the capacity design problem of a PV-Wind-Diesel-Battery Hybrid Power System (HPS) is presented. The problem is formulated as a Linear Programming (LP) model with two objectives: minimizing ...

  15. Improved Reliability of PV Modules with Lexan PC Sheet-Front...

    Broader source: Energy.gov (indexed) [DOE]

    IMPROVED RELIABILITY OF PV MODULES WITH LEXAN(tm) (PC ) SHEET - FRONT SHEET NORYL(tm) (PPE) SHEET - BACK SHEET NORYL(tm) Sheet for back sheet application LEXAN(tm) sheet for front...

  16. Non-Standard Physics and Nucleon Strangeness in Low-Energy PV Electron Scattering

    E-Print Network [OSTI]

    M. J. Musolf; T. W. Donnelly

    1992-12-03T23:59:59.000Z

    Contributions from physics beyond the Standard Model, strange quarks in the nucleon, and nuclear structure effects to the left-right asymmetry measured in parity-violating (PV) electron scattering from $\

  17. Is the hourly data I get from NREL's PV Watts program adjusted...

    Open Energy Info (EERE)

    get from NREL's PV Watts program adjusted for daylight savings time. Home I take the hourly AC output numbers and apply them to a program I built that assigns a dollar value to the...

  18. A methodology for optimal sizing of autonomous hybrid PV/wind system

    E-Print Network [OSTI]

    Boyer, Edmond

    mathematical models for characterizing PV module, wind generator and battery are proposed. The second step is obtained for a system comprising a 125 W photovoltaic modules, one wind generator (600 W) and storage

  19. E-Print Network 3.0 - arboricola pv pruni Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rates d) The Value of Net Metering 4. Policy... Motivation: To create a self-sustaining market, grid-connected PV may have to be competitive with retail Source: Lawrence...

  20. Introduction of Break-Out Session at the International PV Module Quality Assurance Forum (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Wohlgemuth, J.; Yamamichi, M.; Sample, T.

    2011-07-01T23:59:59.000Z

    This presentation outlines review requirements for quality assurance (QA) rating systems, logical design of QA systems, and specific tasks for break-out session 1 of the 2011 International PV Module Quality Assurance Forum.

  1. E-Print Network 3.0 - alloy pv manufacturing Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    63 Beloin-Saint-Pierre, D., Blanc, I., Payet, J., Jacquin, P., Adra, N., Mayer, D., Environmental impact of PV systems: Effects of energy sources used in production of solar...

  2. A Comparison of Key PV Backsheet and Module Properties from Fielded...

    Broader source: Energy.gov (indexed) [DOE]

    of Key PV Backsheet and Module Properties from Fielded Module Exposures and Accelerated Test Conditions W. Gambogi 1 , O. Fu 2 , Y. Heta 3 , K. Hashimoto 3 , J. Kopchick 1...

  3. Third Party Financing and Power Purchasing Agreements for Public Sector PV Projects

    Broader source: Energy.gov [DOE]

    Provides information on third-party financing and Power Purchase Agreements for public sector PV projects presented at the TAP Web Seminar on May 27, 2009, includes economic and legal information.

  4. New York City- Property Tax Abatement for Photovoltaic (PV) Equipment Expenditures

    Broader source: Energy.gov [DOE]

    In August 2008 the State of New York enacted legislation allowing a property tax abatement for photovoltaic (PV) system expenditures made on buildings located in cities with a population of 1...

  5. User Guide for PV Dynamic Model Simulation Written on PSCAD Platform

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with a discussion of the basic PV inverter and the control philosophy adapted for a power electronics-based generator, which we then contrast to the control philosophy for a...

  6. Analyzing and simulating the variability of solar irradiance and solar PV powerplants

    E-Print Network [OSTI]

    Lave, Matthew S.

    2012-01-01T23:59:59.000Z

    dampen fluctuations in solar power output of the average ofa panelís solar conversion efficiency, power output can beQuantifying PV power Output Variability, Solar Energy, 84 (

  7. THERMOMECHANICS OF PV MODULES INCLUDING THE VISCOELASTICITY OF EVA Ulrich Eitner1,

    E-Print Network [OSTI]

    ]. It is therefore essential to understand the thermomechanics, i.e. the build-up of stresses from thermal] at the Fraunhofer CSP to inspect copper ribbons in PV modules. In 2010, we presented a viscoelastic material model

  8. Why Are Resiential PV Prices in Germany So Much Lower Than in the United States?

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) SunShot Initiative, in conjunction with the Lawrence Berkeley National Laboratory (LBNL) discusses the installed price of residential PV being significantly lower in Germany than in the United States.

  9. A.W. Blakers, 'Solar and Wind Electricity in Australia', Australian Journal of Environmental Management, Vol 7, pp 223-236, 2000 SOLAR AND WIND ELECTRICITY IN AUSTRALIA

    E-Print Network [OSTI]

    environmental impact associated with the construction of what amounts to a coastal hydro scheme. Solar energy.blakers@anu.edu.au Abstract This paper examines the renewable generation of electricity in Australia from photovoltaics (PV environmental impacts even when deployed on very large scales. They are the only fully sustainable technologies

  10. Comparison of two techniques for the simulation of PV systems

    SciTech Connect (OSTI)

    Bucciarelli, L.L.; Grossman, B.L.

    1980-01-01T23:59:59.000Z

    For several years, MIT Lincoln Laboratory has conducted computer simulations of the performance of photovoltaic solar energy systems in order to size system components, to define designs of potential economic feasibility, to test various control schemes, and to monitor the performance of working systems in the field. When used as an aid-to-design, these hourly simulations step through a full year's worth of insolation and weather data at a specific geographical site. These data are available on computer tapes in the SOLMET format from the National Climatic Center. More recently, a simulation technique has been developed that does not require marching through time but instead works with probability-density functions of daily values of insolation and load as inputs while still providing estimates of the usual measures of system performance (e.g., auxiliary energy required, surplus energy thrown away, fraction of load displaced). Results obtained compare well with results previously obtained from an hourly simulation of a daytime radio station. This technique may be used to study the effect on system performance of varying degrees of correlation of load with insolation and to test the sensitivity of economic analyses to variations in utility escalation rate (discounted for inflation), PV module and balance-of-system costs.

  11. FTIR Laboratory in Support of the PV Program

    SciTech Connect (OSTI)

    Keyes, B. M.; Gedvilas, L. M.; Bhattacharya, R.; Xu, Y.; Li, X.; Wang, Q.

    2005-01-01T23:59:59.000Z

    The Fourier Transform Infrared Spectroscopy (FTIR) Laboratory supports the Solar Energy Technologies Program through the measurement and characterization of solar energy-related materials and devices. The FTIR technique is a fast, accurate, and reliable method for studying molecular structure and composition. This ability to identify atomic species and their bonding environment is a powerful combination that finds use in many research and development efforts. A brief overview of the technical approach used is contained in Section 2 of this report. Because of its versatility and accessibility, the FTIR Laboratory is a valuable contributor to the Solar Energy Technologies Program. The laboratory provides support for, and collaborates with, several in-house programs as well as our industry and university partners. By the end of FY 2004, the FTIR Laboratory performed over 1100 measurements on PV-related materials. These contributions resulted in conference and workshop presentations and several peer-reviewed publications. A brief summary of a few of these efforts is contained in Section 3 of this report.

  12. Data Filtering Impact on PV Degradation Rates and Uncertainty (Poster)

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2012-03-01T23:59:59.000Z

    To sustain the commercial success of photovoltaics (PV) it becomes vital to know how power output decreases with time. In order to predict power delivery, degradation rates must be determined accurately. Data filtering, any data treatment assessment of long-term field behavior, is discussed as part of a more comprehensive uncertainty analysis and can be one of the greatest sources of uncertainty in long-term performance studies. Several distinct filtering methods such as outlier removal and inclusion of only sunny days on several different metrics such as PVUSA, performance ratio, DC power to plane-of-array irradiance ratio, uncorrected, and temperature-corrected were examined. PVUSA showed the highest sensitivity while temperature-corrected power over irradiance ratio was found to be the least sensitive to data filtering conditions. Using this ratio it is demonstrated that quantification of degradation rates with a statistical accuracy of +/- 0.2%/year within 4 years of field data is possible on two crystalline silicon and two thin-film systems.

  13. Report on PV Test Sites and Test Prepared for the

    E-Print Network [OSTI]

    of Electricity Delivery and Energy Reliability Under Cooperative Agreement No. DE-FC26-06NT42847 Hawai Protocols plus Subtask 11.1 Deliverables 1 and 3 Photovoltaic Systems (corrected) By the Hawai`i Natural

  14. Prospects for grid-connected solar PV in Kenya

    E-Print Network [OSTI]

    Rose, Amy Michelle

    2013-01-01T23:59:59.000Z

    Kenya's electric power system is heavily reliant on hydropower, leaving it vulnerable during recurring droughts. Supply shortfalls are currently met through the use of expensive leased diesel generation. Therefore, plans ...

  15. AVTA: 2010 Electric Vehicles International Neighborhood Electric...

    Energy Savers [EERE]

    10 Electric Vehicles International Neighborhood Electric Vehicle Testing Results AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results The...

  16. Electricity Reliability

    E-Print Network [OSTI]

    Electricity Delivery and Energy Reliability High Temperature Superconductivity (HTS) Visualization in the future because they have virtually no resistance to electric current, offering the possibility of new electric power equipment with more energy efficiency and higher capacity than today's systems

  17. Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan

    E-Print Network [OSTI]

    Haas, Reinhard

    2008-01-01T23:59:59.000Z

    PV, Wind, Biomass, Small hydro PV All technologies VariesProgram PV, Wind, Biomass, Small hydro, for Energy ande.V. , PV, Wind, Biomass, Small hydro PV All technologies (

  18. Sandia National Laboratories: Solar Electric Propulsion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

  19. Dynamic Reconfiguration of Photovoltaic Energy Harvesting System in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Pedram, Massoud

    Dynamic Reconfiguration of Photovoltaic Energy Harvesting System in Hybrid Electric Vehicles Yanzhi, xuelin, pedram}@usc.edu, 2 {naehyuck}@elpl.snu.ac.kr ABSTRACT Photovoltaic (PV) energy harvesting system and Reliability]: Performance Analysis and Design Aids. General Terms Algorithms, Design, Management, Performance

  20. Impacts of Regional Electricity Prices and Building Type on the Economics of Commercial Photovoltaic Systems

    SciTech Connect (OSTI)

    Ong, S.; Campbell, C.; Clark, N.

    2012-12-01T23:59:59.000Z

    To identify the impacts of regional electricity prices and building type on the economics of solar photovoltaic (PV) systems, 207 rate structures across 77 locations and 16 commercial building types were evaluated. Results for expected solar value are reported for each location and building type. Aggregated results are also reported, showing general trends across various impact categories.