Powered by Deep Web Technologies
Note: This page contains sample records for the topic "volt unknown percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Chevrolet Volt Vehicle Demonstration  

Broader source: Energy.gov (indexed) [DOE]

Volt Vehicle Demonstration Fleet Summary Report Reporting period: January 2013 through March 2013 Number of vehicles: 146 Number of vehicle days driven: 6,680 4292013 2:38:13 PM...

2

4160 Volt .pdf  

Broader source: Energy.gov (indexed) [DOE]

" " ~, U.S. Department of Energy Naval Reactors laboratory Field Office Knolls Laboratory National Environmental Policy Act (NEPA) Categorical Exclusion (CX) Determination Summary Form 4160 Volt Upgrade Project REFERENCE: 10 CFR Part 1021 , Department of Energy National Environmental Policy Act Implementation Procedures, Subpart 0 , Typical Classes of Actions PROJECT SCOPE DISCUSSION The scope of 4160 Volt Upgrade Project is to make significant improvements to the 4160 Volt power distribution system at the Knolls Laboratory by replacing antiquated (60 year old) switchgear and cabling located in the Z4 high yard with new state-of-the-art equipment. The new switch gear will be located in the NW corner of the existing Z8 High Yard. In addition to

3

Load Impedance as a Function of Power Input in 70-Volt, 100-Volt, and 25-Volt Distribution Systems  

Science Journals Connector (OSTI)

Distributed loudspeaker systems often make use of 70-volt or 100-volt distribution methods. In a 70-volt system, the full power of the amplifier, whatever it might be, is always available at 70 volts rms. By m...

John M. Eargle

2002-01-01T23:59:59.000Z

4

Sky Volt | Open Energy Information  

Open Energy Info (EERE)

Volt Volt Jump to: navigation, search Name Sky Volt Facility Sky Volt Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Sky Volt LLC (community owned) Energy Purchaser City of Greenfield - excess to Central Iowa Power Cooperative Location Greenfield IA Coordinates 41.29038343°, -94.48851585° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.29038343,"lon":-94.48851585,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

5

GreenVolts Inc | Open Energy Information  

Open Energy Info (EERE)

Name: GreenVolts Inc Place: San Francisco, California Zip: 94105 Product: US-based manufacturer of concentrating PV (CPV). References: GreenVolts Inc1 This article is a stub....

6

Percent Distribution  

Gasoline and Diesel Fuel Update (EIA)

. . Percent Distribution of Natural Gas Supply and Disposition by State, 1996 Table State Estimated Proved Reserves (dry) Marketed Production Total Consumption Alabama................................................................... 3.02 2.69 1.48 Alaska ...................................................................... 5.58 2.43 2.04 Arizona..................................................................... NA 0 0.55 Arkansas.................................................................. 0.88 1.12 1.23 California.................................................................. 1.25 1.45 8.23 Colorado .................................................................. 4.63 2.90 1.40 Connecticut.............................................................. 0 0 0.58 D.C...........................................................................

7

Sandia National Laboratories: HelioVolt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regional Testing Center (PV RTC), Renewable Energy, Solar, Solar Newsletter, SunShot HelioVolt, Sandia National Laboratories, the National Renewable Energy Laboratory,...

8

Percent Distribution  

Gasoline and Diesel Fuel Update (EIA)

. . Percent Distribution of Natural Gas Delivered to Consumers by State, 1996 Table State Residential Commercial Industrial Vehicle Fuel Electric Utilities Alabama..................................... 1.08 0.92 2.27 0.08 0.23 Alaska ........................................ 0.31 0.87 0.85 - 1.16 Arizona....................................... 0.53 0.92 0.30 3.91 0.70 Arkansas.................................... 0.88 0.98 1.59 0.11 1.24 California.................................... 9.03 7.44 7.82 43.11 11.64 Colorado .................................... 2.12 2.18 0.94 0.58 0.20 Connecticut................................ 0.84 1.26 0.37 1.08 0.38 D.C............................................. 0.33 0.52 - 0.21 - Delaware.................................... 0.19 0.21 0.16 0.04 0.86 Florida........................................

9

2011 Chevrolet Volt EREV Accelerated Testing - June 2013  

Broader source: Energy.gov (indexed) [DOE]

Chevrolet Volt EREV Accelerated Testing - June 2013 Two model year 2011 Chevrolet Volt extended range electric vehicles (EREVs) entered Accelerated testing during March 2011 in a...

10

GreenVolts | Open Energy Information  

Open Energy Info (EERE)

GreenVolts GreenVolts Jump to: navigation, search Logo: GreenVolts Name GreenVolts Address 50 First Street Place San Francisco, California Zip 94105 Sector Solar Product PV developer Website http://www.greenvolts.com/ Coordinates 37.790153°, -122.398669° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.790153,"lon":-122.398669,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

11

HydroVolts | Open Energy Information  

Open Energy Info (EERE)

HydroVolts HydroVolts Jump to: navigation, search Name HydroVolts Address 2815 Eastlake Ave E Place Seattle, Washington Zip 98102 Sector Hydro Product Aims to develop renewable energy from canals, waterways, streams, and ocean currents Website http://www.hydrovolts.com/ Coordinates 47.645778°, -122.3257532° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.645778,"lon":-122.3257532,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

12

HelioVolt Corporation | Open Energy Information  

Open Energy Info (EERE)

HelioVolt Corporation HelioVolt Corporation Jump to: navigation, search Name HelioVolt Corporation Place Austin, Texas Zip TX 78744 Product Copper indium gallium selenide (CIGS) thin-film PV module manufacturer based in Austin, Texas. Website http://www.heliovolt.net/ Coordinates 30.267605°, -97.742984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.267605,"lon":-97.742984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

13

Nissan Leafs and Chevrolet Volts Reporting Data in The EV Project  

Broader source: Energy.gov (indexed) [DOE]

Knoxville 88 Leafs 17 Volts DC 7 Leafs 177 Volts San Diego 657 Leafs 153 Volts 300 Smart Electric Drives Tucson 79 Leafs 7 Volts Chattanooga 50 Leafs 11 Volts Copyright: 2009...

14

AVTA: Chevrolet Volt 2013 Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2013 Chevrolet Volt. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.transportation.anl.gov/D3/2013_chevy_volt_phev.html). The reports for download here are based on research done at Idaho National Laboratory. Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

15

Chevy Volt Electrifies DOE Headquarters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Chevy Volt Electrifies DOE Headquarters Chevy Volt Electrifies DOE Headquarters Chevy Volt Electrifies DOE Headquarters December 9, 2010 - 7:05pm Addthis Dennis A. Smith Director, National Clean Cities Yesterday, Department of Energy staff members were able to experience the newest in market-ready vehicle technology when representatives from General Motors brought two Chevy Volts to Department headquarters. Officials and engineers alike, including the Department's Chief Financial Officer, Steve Isakowitz, test drove the Volt, and peppered the GM representatives with questions about the new plug-in hybrid electric vehicle. Unlike an all-electric vehicle (EV), the Volt has a gasoline engine that supplements the electric drive once the battery is depleted. The Chevrolet Volt will reach an estimated 93 mpg-equivalent when running on all-electric

16

Nissan Leafs and Chevrolet Volts Reporting Data in The EV Project...  

Broader source: Energy.gov (indexed) [DOE]

898 Leafs 164 Volts Oregon 541 Leafs 133 Volts 30 Smart Electric Drives San Francisco 1708 Leafs Los Angeles 424 Leafs 338 Volts Chicago 26 Leafs 129 Volts Atlanta 153 Leafs 75...

17

HelioVolt Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name HelioVolt Inc Address 8201 E. Riverside Dr Place Austin, Texas Zip 78744 Sector Solar Product Thin-film solar panel producer Website http://www.heliovolt.net/ Coordinates 30.216908°, -97.685078° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.216908,"lon":-97.685078,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

18

The Department of Energy's Innovation in GM's Chevrolet Volt | Department  

Broader source: Energy.gov (indexed) [DOE]

The Department of Energy's Innovation in GM's Chevrolet Volt The Department of Energy's Innovation in GM's Chevrolet Volt The Department of Energy's Innovation in GM's Chevrolet Volt January 11, 2011 - 11:49am Addthis Chevy Volt and replica battery | Photo Courtesy of Argonne Lab's Flickr Chevy Volt and replica battery | Photo Courtesy of Argonne Lab's Flickr Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager Last Thursday was a big day in the world of advanced vehicle batteries. On January 6, the Department of Energy's Argonne National Laboratory announced that General Motors and its battery cell supplier, LG Chem Power Inc., have each signed licensing agreements to use Argonne's breakthrough battery technology. Funded by the Department, scientists at Argonne have developed a unique suite of cathode materials - a 'family' of lithium-rich

19

The Department of Energy's Innovation in GM's Chevrolet Volt | Department  

Broader source: Energy.gov (indexed) [DOE]

Innovation in GM's Chevrolet Volt Innovation in GM's Chevrolet Volt The Department of Energy's Innovation in GM's Chevrolet Volt January 11, 2011 - 11:49am Addthis Chevy Volt and replica battery | Photo Courtesy of Argonne Lab's Flickr Chevy Volt and replica battery | Photo Courtesy of Argonne Lab's Flickr Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager Last Thursday was a big day in the world of advanced vehicle batteries. On January 6, the Department of Energy's Argonne National Laboratory announced that General Motors and its battery cell supplier, LG Chem Power Inc., have each signed licensing agreements to use Argonne's breakthrough battery technology. Funded by the Department, scientists at Argonne have developed a unique suite of cathode materials - a 'family' of lithium-rich

20

SeaVolt Technologies formerly Sea Power Associates | Open Energy  

Open Energy Info (EERE)

SeaVolt Technologies formerly Sea Power Associates SeaVolt Technologies formerly Sea Power Associates Jump to: navigation, search Name SeaVolt Technologies (formerly Sea Power & Associates) Place San Francisco, California Zip CA 94111 Sector Ocean Product The company's Wave Rider system, which is still in prototype stages, uses buoys and hydraulic pumps to convert the movement of ocean waves into electricity. References SeaVolt Technologies (formerly Sea Power & Associates)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. SeaVolt Technologies (formerly Sea Power & Associates) is a company located in San Francisco, California .

Note: This page contains sample records for the topic "volt unknown percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advances in 3-Volt Lithium Batteries for Electronic Applications  

Science Journals Connector (OSTI)

Significant improvements have been made in recent years in the performance, reliability and operating temperature range of 3-volt primary lithium cell systems. Because of their excellent characteristics, especially their long life, they are not only ...

R. A. Langan; V. Z. Leger; G. R. Tucholski

1985-08-01T23:59:59.000Z

22

A Method for Evaluating Volt-VAR Optimization Field Demonstrations  

SciTech Connect (OSTI)

In a regulated business environment a utility must be able to validate that deployed technologies provide quantifiable benefits to the end-use customers. For traditional technologies there are well established procedures for determining what benefits will be derived from the deployment. But for many emerging technologies procedures for determining benefits are less clear and completely absent in some cases. Volt-VAR Optimization is a technology that is being deployed across the nation, but there are still numerous discussions about potential benefits and how they are achieved. This paper will present a method for the evaluation, and quantification of benefits, for field deployments of Volt-VAR Optimization technologies. In addition to the basic methodology, the paper will present a summary of results, and observations, from two separate Volt-VAR Optimization field evaluations using the proposed method.

Schneider, Kevin P.; Weaver, T. F.

2014-08-31T23:59:59.000Z

23

CyVolt Energy Systems | Open Energy Information  

Open Energy Info (EERE)

CyVolt Energy Systems CyVolt Energy Systems Jump to: navigation, search Name CyVolt Energy Systems Place Seattle, Washington Zip 98104 Product Seattle-based developer fuel cell-powered battery systems for portable, hand-held consumer electronics Coordinates 47.60356°, -122.329439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.60356,"lon":-122.329439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

24

Nissan Leafs and Chevrolet Volts Reporting Data in The EV Project...  

Broader source: Energy.gov (indexed) [DOE]

December 2012 Washington State 893 Leafs 98 Volts Oregon 549 Leafs 94 Volts 30 Smart Electric Drives San Francisco 1730 Lea fs Los Angeles 497 Lea fs 165 Vo lts Chicago 29...

25

Guidelines for Working at Voltages < 240 Volts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Guidelines for Working at Voltages < 240 Volts Guidelines for Working at Voltages < 240 Volts February 4, 2005---DRAFT NOTE: Working hot is a LAST ALTERNATIVE. Electrical hot work is defined as: Working on or near exposed conducting parts that are or might become energized at 50V or more. Refer to Electrical Safety Flowchart for Working On or Near Live Parts. Engineered methods to prevent exposed sources of 50V and greater are to be implemented wherever practical. Only QUALIFIED PERSONNEL {as defined in NFPA 70E Article 110.6(D) 2004 edition} as authorized by the CAT/supervisor/division can perform such work. Refer to Qualified Electrical Worker Flow Chart. Training requirements: ES&H 114 (LOTO) / ES&H 375 (NFPA 70E) / ES&H 371 (electrical worker) - Observe Electrical Safe Work Practices. Refer to

26

EIA","Percent  

U.S. Energy Information Administration (EIA) Indexed Site

0. Estimated rail transportation rates for coal, state to state, 2009" 0. Estimated rail transportation rates for coal, state to state, 2009" "comparison of EIA and STB data" ,,"Transportation cost per short ton (nominal)",,,"Percent difference EIA vs. STB ",,"Total delivered cost per short ton (nominal) EIA","Percent transportation cost is of total delivered cost EIA","Shipments (1,000 short tons) EIA","Shipments with transportation rates over total shipments (percent)" "Origin State","Destination State"," STB"," EIA",,,,,,,"STB ","EIA " "Alabama","Alabama"," W"," $13.59",," W",," $63.63"," 21.4%"," 3,612"," W"," 100.0%"

27

EIA","Percent  

U.S. Energy Information Administration (EIA) Indexed Site

1. Estimated rail transportation rates for coal, basin to state, 2008" 1. Estimated rail transportation rates for coal, basin to state, 2008" "comparison of EIA and STB data" ,,"Transportation cost per short ton (nominal)",,,"Percent difference EIA vs. STB ",,"Total delivered cost per short ton (nominal) EIA","Percent transportation cost is of total delivered cost EIA","Shipments (1,000 short tons) EIA","Shipments with transportation rates over total shipments (percent)" "Origin Basin","Destination State"," STB"," EIA",,,,,,,"STB ","EIA " "Northern Appalachian Basin","Delaware"," W"," $28.49",," W",," $131.87"," 21.6%", 59," W"," 100.0%"

28

EIA","Percent  

U.S. Energy Information Administration (EIA) Indexed Site

9. Estimated rail transportation rates for coal, state to state, 2008" 9. Estimated rail transportation rates for coal, state to state, 2008" "comparison of EIA and STB data" ,,"Transportation cost per short ton (nominal)",,,"Percent difference EIA vs. STB ",,"Total delivered cost per short ton (nominal) EIA","Percent transportation cost is of total delivered cost EIA","Shipments (1,000 short tons) EIA","Shipments with transportation rates over total shipments (percent)" "Origin State","Destination State"," STB"," EIA",,,,,,,"STB ","EIA " "Alabama","Alabama"," W"," $14.43",," W",," $65.38"," 22.1%"," 4,509"," W"," 81.8%"

29

EIA","Percent  

U.S. Energy Information Administration (EIA) Indexed Site

2. Estimated rail transportation rates for coal, basin to state, 2009" 2. Estimated rail transportation rates for coal, basin to state, 2009" "comparison of EIA and STB data" ,,"Transportation cost per short ton (nominal)",,,"Percent difference EIA vs. STB",,"Total delivered cost per short ton (nominal) EIA","Percent transportation cost is of total delivered cost EIA","Shipments (1,000 short tons) EIA","Shipments with transportation rates over total shipments (percent)" "Origin Basin","Destination State"," STB"," EIA",,,,,,,"STB ","EIA " "Northern Appalachian Basin","Florida"," W"," $38.51",," W",," $140.84"," 27.3%", 134," W"," 100.0%"

30

The Breakthrough Behind the Chevy Volt Battery | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Breakthrough Behind the Chevy Volt Battery The Breakthrough Behind the Chevy Volt Battery Stories of Discovery & Innovation The Breakthrough Behind the Chevy Volt Battery Enlarge Photo Image courtesy of General Motors The 2011 Chevrolet Volt's 16 kWh battery can be recharged using a 120V or 240V outlet. The car's lithium-ion battery is based on technology developed at Argonne National Laboratory. Enlarge Photo Illustration courtesy Argonne National Laboratory This illustration shows the inner workings of a lithium-ion battery. When delivering energy to a device, the lithium ion moves from the anode to the cathode. The ion moves in reverse when recharging. Compared to other rechargeable 03.28.11 The Breakthrough Behind the Chevy Volt Battery A revolutionary breakthrough cathode for lithium-ion batteries-the kind in your

31

Variable Average Absolute Percent Differences  

U.S. Energy Information Administration (EIA) Indexed Site

Variable Variable Average Absolute Percent Differences Percent of Projections Over- Estimated Gross Domestic Product Real Gross Domestic Product (Average Cumulative Growth)* (Table 2) 1.0 42.6 Petroleum Imported Refiner Acquisition Cost of Crude Oil (Constant $) (Table 3a) 35.2 18.6 Imported Refiner Acquisition Cost of Crude Oil (Nominal $) (Table 3b) 34.7 19.7 Total Petroleum Consumption (Table 4) 6.2 66.5 Crude Oil Production (Table 5) 6.0 59.6 Petroleum Net Imports (Table 6) 13.3 67.0 Natural Gas Natural Gas Wellhead Prices (Constant $) (Table 7a) 30.7 26.1 Natural Gas Wellhead Prices (Nominal $) (Table 7b) 30.0 27.1 Total Natural Gas Consumption (Table 8) 7.8 70.2 Natural Gas Production (Table 9) 7.1 66.0 Natural Gas Net Imports (Table 10) 29.3 69.7 Coal Coal Prices to Electric Generating Plants (Constant $)** (Table 11a)

32

2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle...  

Broader source: Energy.gov (indexed) [DOE]

2-29678 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results Tyler Gray Jeffrey Wishart Matthew Shirk July 2013 The Idaho National Laboratory is a U.S....

33

Actual Versus Estimated Utility Factor of a Large Set of Privately Owned Chevrolet Volts  

SciTech Connect (OSTI)

In order to determine the overall fuel economy of a plug-in hybrid electric vehicle (PHEV), the amount of operation in charge depleting (CD) versus charge sustaining modes must be determined. Mode of operation is predominantly dependent on customer usage of the vehicle and is therefore highly variable. The utility factor (UF) concept was developed to quantify the distance a group of vehicles has traveled or may travel in CD mode. SAE J2841 presents a UF calculation method based on data collected from travel surveys of conventional vehicles. UF estimates have been used in a variety of areas, including the calculation of window sticker fuel economy, policy decisions, and vehicle design determination. The EV Project, a plug-in electric vehicle charging infrastructure demonstration being conducted across the United States, provides the opportunity to determine the real-world UF of a large group of privately owned Chevrolet Volt extended range electric vehicles. Using data collected from Volts enrolled in The EV Project, this paper compares the real-world UF of two groups of Chevrolet Volts to estimated UF's based on J2841. The actual observed fleet utility factors (FUF) for the MY2011/2012 and MY2013 Volt groups studied were observed to be 72% and 74%, respectively. Using the EPA CD ranges, the method prescribed by J2841 estimates a FUF of 65% and 68% for the MY2011/2012 and MY2013 Volt groups, respectively. Volt drivers achieved higher percentages of distance traveled in EV mode for two reasons. First, they had fewer long-distance travel days than drivers in the national travel survey referenced by J2841. Second, they charged more frequently than the J2841 assumption of once per day - drivers of Volts in this study averaged over 1.4 charging events per day. Although actual CD range varied widely as driving conditions varied, the average CD ranges for the two Volt groups studied matched the EPA CD range estimates, so CD range variation did not affect FUF results.

John Smart; Thomas Bradley; Stephen Schey

2014-04-01T23:59:59.000Z

34

How many electric miles do Nissan Leafs and Chevrolet Volts in The EV Project travel?  

SciTech Connect (OSTI)

This paper presents travel statistics and metrics describing the driving behavior of Nissan Leaf and Chevrolet Volt drivers in the EV Project. It specifically quantifies the distance each group of vehicles drives each month. This paper will be published to INL's external website and will be accessible by the general public.

John Smart

2014-05-01T23:59:59.000Z

35

Aerosol-Jet-Printed, 1 Volt HBridge Drive Circuit on Plastic with Integrated Electrochromic Pixel  

E-Print Network [OSTI]

Aerosol-Jet-Printed, 1 Volt HBridge Drive Circuit on Plastic with Integrated Electrochromic Pixel electrochromic (EC) pixel as large as 4 mm2 that is printed on the same substrate. All of the key components, flexible electronics, electrochromic pixel, transistor, capacitor, ion gel 1. INTRODUCTION Printing

Kim, Chris H.

36

Generation of mega-electron-volt electron beams by an ultrafast intense laser pulse  

E-Print Network [OSTI]

Generation of mega-electron-volt electron beams by an ultrafast intense laser pulse Xiaofang Wang filamentation and beam breakup. These results suggest an approach for generating a beam of femtosecond, Me-intensity lasers has made it pos- sible to study extreme physics on a tabletop. Among the studies, the generation

Umstadter, Donald

37

Percent Yield and Mass of Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Percent Yield and Mass of Water Percent Yield and Mass of Water Name: Lisa Status: educator Grade: 9-12 Location: CA Country: USA Date: Winter 2011-2012 Question: When doing a percent yield activity in lab, we use MgCl hexahydrate and CaSO4. How do we factor the mass of the water that is released during the reaction? Replies: Lisa, Based on your question, I am not quite sure what the experiment is. Are you heating the hydrates and looking at the percent-yield of water removed during the heating? If so, then you would calculate the theoretical yield (using stoichiometry and the balanced chemical equation: MgCl2.6H2O --> MgCl2 + 6H2O) of water released, and compare it to the actual yield of water released in the experiment to get percent yield. Greg (Roberto Gregorius) Canisius College

38

27. 5-percent silicon concentrator solar cells  

SciTech Connect (OSTI)

Recent advances in silicon solar cells using the backside point-contact configuration have been extended resulting in 27.5-percent efficiencies at 10 W/sq cm (100 suns, 24 C), making these the most efficient solar cells reported to date. The one-sun efficiencies under an AM1.5 spectrum normalized to 100 mW/sq cm are 22 percent at 24 C based on the design area of the concentrator cell. The improvements reported here are largely due to the incorportation of optical light trapping to enhance the absorption of weakly absorbed near bandgap light. These results approach the projected efficiencies for a mature technology which are 23-24 percent at one sun and 29 percent in the 100-350-sun (10-35 W/sq cm) range. 10 references.

Sinton, R.A.; Kwark, Y.; Gan, J.Y.; Swanson, R.M.

1986-10-01T23:59:59.000Z

39

Clock for and CAMAC hardware for measurement of volt-amphere characteristic of thermionic converter  

SciTech Connect (OSTI)

This paper describes a clock that is controlled by a computer through a CAMAC output-register module. The clock trigger the load of a thermionic converter for measurement of the volt-ampere charecteristic for 10 msec and synchronizes the start of measurement with the phase of the applied voltage. A schemitic diagram of the clock is shown. The clock increases the data-acquisition speed in successive measurement of several VACs with a limited amount of buffer memory.

DZHASHIASHVILI, Yu.N.

1986-09-01T23:59:59.000Z

40

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Tennessee - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 285 310 230 210 212 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,700 5,478 5,144 4,851 5,825 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

Note: This page contains sample records for the topic "volt unknown percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

38 38 Nevada - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 4 4 4 3 4 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 4 4 4 3 4

42

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Connecticut - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

43

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Oregon - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 18 21 24 26 24 Production (million cubic feet) Gross Withdrawals From Gas Wells 409 778 821 1,407 1,344 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

44

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Idaho - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

45

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Washington - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

46

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Maine - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

47

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Minnesota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

48

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 South Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

49

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 District of Columbia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

50

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 North Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

51

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Iowa - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

52

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Massachusetts - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

53

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Oregon - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 21 24 26 24 27 Production (million cubic feet) Gross Withdrawals From Gas Wells 778 821 1,407 1,344 770 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

54

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Georgia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

55

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Minnesota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

56

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Delaware - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

57

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 District of Columbia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

58

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 New Jersey - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

59

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Tennessee - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 305 285 310 230 210 Production (million cubic feet) Gross Withdrawals From Gas Wells NA 4,700 5,478 5,144 4,851 From Oil Wells 3,942 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

60

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Nebraska - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S29. Summary statistics for natural gas - Nebraska, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 186 322 285 276 322 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,331 2,862 2,734 2,092 1,854 From Oil Wells 228 221 182 163 126 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

Note: This page contains sample records for the topic "volt unknown percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Vermont - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. Summary statistics for natural gas - Vermont, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

62

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Wisconsin - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. Summary statistics for natural gas - Wisconsin, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

63

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 North Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

64

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 New Jersey - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

65

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Georgia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

66

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Connecticut - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

67

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Maryland - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 7 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells 35 28 43 43 34 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 35

68

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Florida - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 2,000 2,742 290 13,938 17,129 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

69

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 New Hampshire - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. Summary statistics for natural gas - New Hampshire, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

70

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Maryland - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 7 7 7 8 9 Production (million cubic feet) Gross Withdrawals From Gas Wells 28 43 43 34 44 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 28

71

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Missouri - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 53 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

72

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Delaware - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

73

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Massachusetts - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

74

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 South Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

75

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Rhode Island - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S41. Summary statistics for natural gas - Rhode Island, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

76

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Indiana - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 525 563 620 914 819 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,701 4,927 6,802 9,075 8,814 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

77

Where do Chevrolet Volt drivers in The EV Project charge when they have the opportunity to charge at work?  

SciTech Connect (OSTI)

This paper investigates where Chevy Volt drivers in the EV Project charge when they have the opportunity to charge at work. Do they charge at home, work, or some other location.

John Smart; Don Scoffield

2014-03-01T23:59:59.000Z

78

The Ionization of Neon and Argon by Positive Alkali Ions of Energies from 650 to 2000 Volts  

Science Journals Connector (OSTI)

With an apparatus of new design the study of the ionization of neon and argon by positive alkali ions has been extended to accelerating potentials as high as 2000 volts. The results obtained are in good quantitative agreement with the previous work at the low potentials. In a number of cases the efficiency of ionization reaches a maximum at accelerating potentials less than 2000 volts.

J. Carlisle Mouzon

1932-09-01T23:59:59.000Z

79

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Illinois - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 45 51 50 40 40 Production (million cubic feet) Gross Withdrawals From Gas Wells E 1,188 E 1,438 E 1,697 2,114 2,125 From Oil Wells E 5 E 5 E 5 7 0 From Coalbed Wells E 0 E 0 0 0 0 From Shale Gas Wells 0

80

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

50 50 North Dakota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 194 196 188 239 211 Production (million cubic feet) Gross Withdrawals From Gas Wells 13,738 11,263 10,501 14,287 22,261 From Oil Wells 54,896 45,776 38,306 27,739 17,434 From Coalbed Wells 0

Note: This page contains sample records for the topic "volt unknown percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Mississippi - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 2,343 2,320 1,979 5,732 1,669 Production (million cubic feet) Gross Withdrawals From Gas Wells 331,673 337,168 387,026 429,829 404,457 From Oil Wells 7,542 8,934 8,714 8,159 43,421 From Coalbed Wells 7,250

82

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Virginia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 5,735 6,426 7,303 7,470 7,903 Production (million cubic feet) Gross Withdrawals From Gas Wells R 6,681 R 7,419 R 16,046 R 23,086 20,375 From Oil Wells 0 0 0 0 0 From Coalbed Wells R 86,275 R 101,567

83

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Michigan - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 9,712 9,995 10,600 10,100 11,100 Production (million cubic feet) Gross Withdrawals From Gas Wells R 80,090 R 16,959 R 20,867 R 7,345 18,470 From Oil Wells 54,114 10,716 12,919 9,453 11,620 From Coalbed Wells 0

84

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Montana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S28. Summary statistics for natural gas - Montana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 6,925 7,095 7,031 6,059 6,477 Production (million cubic feet) Gross Withdrawals From Gas Wells R 69,741 R 67,399 R 57,396 R 51,117 37,937 From Oil Wells 23,092 22,995 21,522 19,292 21,777 From Coalbed Wells

85

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Mississippi - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 2,315 2,343 2,320 1,979 5,732 Production (million cubic feet) Gross Withdrawals From Gas Wells R 259,001 R 331,673 R 337,168 R 387,026 429,829 From Oil Wells 6,203 7,542 8,934 8,714 8,159 From Coalbed Wells

86

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Indiana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 2,350 525 563 620 914 Production (million cubic feet) Gross Withdrawals From Gas Wells 3,606 4,701 4,927 6,802 9,075 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

87

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 New York - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 6,680 6,675 6,628 6,736 6,157 Production (million cubic feet) Gross Withdrawals From Gas Wells 54,232 49,607 44,273 35,163 30,495 From Oil Wells 710 714 576 650 629 From Coalbed Wells 0

88

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Texas - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 76,436 87,556 93,507 95,014 100,966 Production (million cubic feet) Gross Withdrawals From Gas Wells R 4,992,042 R 5,285,458 R 4,860,377 R 4,441,188 3,794,952 From Oil Wells 704,092 745,587 774,821 849,560 1,073,301

89

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Ohio - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 34,416 34,963 34,931 46,717 35,104 Production (million cubic feet) Gross Withdrawals From Gas Wells 79,769 83,511 73,459 30,655 65,025 From Oil Wells 5,072 5,301 4,651 45,663 6,684 From Coalbed Wells 0

90

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Colorado - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 25,716 27,021 28,813 30,101 32,000 Production (million cubic feet) Gross Withdrawals From Gas Wells 496,374 459,509 526,077 563,750 1,036,572 From Oil Wells 199,725 327,619 338,565

91

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 South Dakota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S43. Summary statistics for natural gas - South Dakota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 71 71 89 102 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 422 R 1,098 R 1,561 1,300 933 From Oil Wells 11,458 10,909 11,366 11,240 11,516 From Coalbed Wells 0 0

92

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Illinois - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 43 45 51 50 40 Production (million cubic feet) Gross Withdrawals From Gas Wells RE 1,389 RE 1,188 RE 1,438 RE 1,697 2,114 From Oil Wells E 5 E 5 E 5 E 5 7 From Coalbed Wells RE 0 RE

93

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Colorado - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 22,949 25,716 27,021 28,813 30,101 Production (million cubic feet) Gross Withdrawals From Gas Wells R 436,330 R 496,374 R 459,509 R 526,077 563,750 From Oil Wells 160,833 199,725 327,619

94

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Alaska - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 239 261 261 269 277 Production (million cubic feet) Gross Withdrawals From Gas Wells 165,624 150,483 137,639 127,417 112,268 From Oil Wells 3,313,666 3,265,401 3,174,747 3,069,683 3,050,654

95

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Ohio - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 34,416 34,416 34,963 34,931 46,717 Production (million cubic feet) Gross Withdrawals From Gas Wells R 82,812 R 79,769 R 83,511 R 73,459 30,655 From Oil Wells 5,268 5,072 5,301 4,651 45,663 From Coalbed Wells

96

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Kentucky - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 16,563 16,290 17,152 17,670 14,632 Production (million cubic feet) Gross Withdrawals From Gas Wells 95,437 R 112,587 R 111,782 133,521 122,578 From Oil Wells 0 1,529 1,518 1,809 1,665 From Coalbed Wells 0

97

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Utah - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 5,197 5,578 5,774 6,075 6,469 Production (million cubic feet) Gross Withdrawals From Gas Wells R 271,890 R 331,143 R 340,224 R 328,135 351,168 From Oil Wells 35,104 36,056 36,795 42,526 49,947 From Coalbed Wells

98

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 California - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 1,540 1,645 1,643 1,580 1,308 Production (million cubic feet) Gross Withdrawals From Gas Wells 93,249 91,460 82,288 73,017 63,902 From Oil Wells R 116,652 R 122,345 R 121,949 R 151,369 120,880

99

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Utah - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 5,578 5,774 6,075 6,469 6,900 Production (million cubic feet) Gross Withdrawals From Gas Wells 331,143 340,224 328,135 351,168 402,899 From Oil Wells 36,056 36,795 42,526 49,947 31,440 From Coalbed Wells 74,399

100

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Louisiana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 18,145 19,213 18,860 19,137 21,235 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,261,539 R 1,288,559 R 1,100,007 R 911,967 883,712 From Oil Wells 106,303 61,663 58,037 63,638 68,505

Note: This page contains sample records for the topic "volt unknown percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Oklahoma - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 38,364 41,921 43,600 44,000 41,238 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,583,356 R 1,452,148 R 1,413,759 R 1,140,111 1,281,794 From Oil Wells 35,186 153,227 92,467 210,492 104,703

102

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 New Mexico - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 42,644 44,241 44,784 44,748 32,302 Production (million cubic feet) Gross Withdrawals From Gas Wells R 657,593 R 732,483 R 682,334 R 616,134 556,024 From Oil Wells 227,352 211,496 223,493 238,580 252,326

103

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 West Virginia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 48,215 49,364 50,602 52,498 56,813 Production (million cubic feet) Gross Withdrawals From Gas Wells R 189,968 R 191,444 R 192,896 R 151,401 167,113 From Oil Wells 701 0 0 0 0 From Coalbed Wells

104

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Michigan - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 9,995 10,600 10,100 11,100 10,900 Production (million cubic feet) Gross Withdrawals From Gas Wells 16,959 20,867 7,345 18,470 17,041 From Oil Wells 10,716 12,919 9,453 11,620 4,470 From Coalbed Wells 0

105

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 West Virginia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 49,364 50,602 52,498 56,813 50,700 Production (million cubic feet) Gross Withdrawals From Gas Wells 191,444 192,896 151,401 167,113 397,313 From Oil Wells 0 0 0 0 1,477 From Coalbed Wells 0

106

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

80 80 Wyoming - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S52. Summary statistics for natural gas - Wyoming, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 27,350 28,969 25,710 26,124 26,180 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,649,284 R 1,764,084 R 1,806,807 R 1,787,599 1,709,218 From Oil Wells 159,039 156,133 135,269 151,871 152,589

107

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 New York - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,675 6,628 6,736 6,157 7,176 Production (million cubic feet) Gross Withdrawals From Gas Wells 49,607 44,273 35,163 30,495 25,985 From Oil Wells 714 576 650 629 439 From Coalbed Wells 0

108

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Wyoming - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S52. Summary statistics for natural gas - Wyoming, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 28,969 25,710 26,124 26,180 22,171 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,764,084 1,806,807 1,787,599 1,709,218 1,762,095 From Oil Wells 156,133 135,269 151,871 152,589 24,544

109

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Virginia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,426 7,303 7,470 7,903 7,843 Production (million cubic feet) Gross Withdrawals From Gas Wells 7,419 16,046 23,086 20,375 21,802 From Oil Wells 0 0 0 0 9 From Coalbed Wells 101,567 106,408

110

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Kentucky - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 16,290 17,152 17,670 14,632 17,936 Production (million cubic feet) Gross Withdrawals From Gas Wells 112,587 111,782 133,521 122,578 106,122 From Oil Wells 1,529 1,518 1,809 1,665 0 From Coalbed Wells 0

111

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Pennsylvania - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S40. Summary statistics for natural gas - Pennsylvania, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 52,700 55,631 57,356 44,500 54,347 Production (million cubic feet) Gross Withdrawals From Gas Wells 182,277 R 188,538 R 184,795 R 173,450 242,305 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0

112

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Texas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 87,556 93,507 95,014 100,966 96,617 Production (million cubic feet) Gross Withdrawals From Gas Wells 5,285,458 4,860,377 4,441,188 3,794,952 3,619,901 From Oil Wells 745,587 774,821 849,560 1,073,301 860,675

113

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Alabama - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,860 6,913 7,026 7,063 6,327 Production (million cubic feet) Gross Withdrawals From Gas Wells 158,964 142,509 131,448 116,872 114,407 From Oil Wells 6,368 5,758 6,195 5,975 10,978

114

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Louisiana - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 19,213 18,860 19,137 21,235 19,792 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,288,559 1,100,007 911,967 883,712 775,506 From Oil Wells 61,663 58,037 63,638 68,505 49,380

115

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 South Dakota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S43. Summary statistics for natural gas - South Dakota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 71 89 102 100 95 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,098 1,561 1,300 933 14,396 From Oil Wells 10,909 11,366 11,240 11,516 689 From Coalbed Wells 0 0 0 0 0

116

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Kansas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 17,862 21,243 22,145 25,758 24,697 Production (million cubic feet) Gross Withdrawals From Gas Wells 286,210 269,086 247,651 236,834 264,610 From Oil Wells 45,038 42,647 39,071 37,194 0 From Coalbed Wells 44,066

117

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Arkansas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S4. Summary statistics for natural gas - Arkansas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 5,592 6,314 7,397 8,388 8,538 Production (million cubic feet) Gross Withdrawals From Gas Wells 173,975 164,316 152,108 132,230 121,684 From Oil Wells 7,378 5,743 5,691 9,291 3,000

118

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 California - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 1,645 1,643 1,580 1,308 1,423 Production (million cubic feet) Gross Withdrawals From Gas Wells 91,460 82,288 73,017 63,902 120,579 From Oil Wells 122,345 121,949 151,369 120,880 70,900

119

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Oklahoma - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 41,921 43,600 44,000 41,238 40,000 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,452,148 1,413,759 1,140,111 1,281,794 1,394,859 From Oil Wells 153,227 92,467 210,492 104,703 53,720

120

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Alaska - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 261 261 269 277 185 Production (million cubic feet) Gross Withdrawals From Gas Wells 150,483 137,639 127,417 112,268 107,873 From Oil Wells 3,265,401 3,174,747 3,069,683 3,050,654 3,056,918

Note: This page contains sample records for the topic "volt unknown percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Connectivity-Enhanced Route Selection and Adaptive Control for the Chevrolet Volt: Preprint  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory and General Motors evaluated connectivity-enabled efficiency enhancements for the Chevrolet Volt. A high-level model was developed to predict vehicle fuel and electricity consumption based on driving characteristics and vehicle state inputs. These techniques were leveraged to optimize energy efficiency via green routing and intelligent control mode scheduling, which were evaluated using prospective driving routes between tens of thousands of real-world origin/destination pairs. The overall energy savings potential of green routing and intelligent mode scheduling was estimated at 5% and 3% respectively. These represent substantial opportunities considering that they only require software adjustments to implement.

Gonder, J.; Wood, E.; Rajagopalan, S.

2014-09-01T23:59:59.000Z

122

Colorado Natural Gas % of Total Residential Deliveries (Percent...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

% of Total Residential Deliveries (Percent) Colorado Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

123

Connecticut Natural Gas % of Total Residential Deliveries (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

% of Total Residential Deliveries (Percent) Connecticut Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

124

UNKNOWN  

Office of Legacy Management (LM)

DOI: 10.10071~00267-004-0126-6 DOI: 10.10071~00267-004-0126-6 Science, Policy, and Stakeholders: Developing a Consensus Science Plan for Amchitka Island, Aleutians, Alaska JOANNABURGER Division of Life Sciences Consortium for Risk Evaluation with Stakeholder Participation (CRESP) and Environmental and Occupational Health Sciences Institute (EOHSI) Rutgers University Piscataway, New Jersey 08854-8082, USA MICHAEL GOCHFELD CRESP and EOHSI UMDNJ-Robert Wood Johnson Medical School Piscataway, New Jersey 08854, USA DAVID S. KOSSON Department of Civil and Environmental Engineering CRESP and Vanderbilt University Nashville, Tennessee 37235, USA CHARLES W. POWERS BARRY FRIEDLANDER CRESP and EOHSI UMDNJ-Robert Wood Johnson Medical School Piscataway, New Jersey 08854, USA JOHN EICHELBERGER

125

UNKNOWN  

Office of Legacy Management (LM)

JOURNAL OF JOURNAL OF ENVIRONMENTAL Journal of ELSEVIER Environmental Radioactivity 60 (2002) 165-187 RADIOACTIVITY An assessment of the reported leakage of anthropogenic radionuclides from the underground nuclear test sites at Amchitka Island, Alaska, USA to the surface environment Douglas Dashera3*, Wayne ans son^, Stan Reada, Scott FalleS, Dennis Farmerc, Wes ~ f u r d ~ , John Kelleye, Robert patrickf " Aluska Department o f Etz~~ironmental Conservation, 610 Liniversitj Avenue, Fairbanks, AK 99709, U S A ~ a t ~ s o n Environmentul Research Sercice, Inc.,I902 Yew Street Rd., Bellingham, W A 98226, U S A ' U . S . Encironmental Protection Agency Radiation and Indoor Encironments National Laboratory, P.O. Box 98517, La.r P'egrrs, N V 89193, U S A d ~ o s Alatnos Nationnl Laboratorj, Clzemical Science and Technology, M

126

UNKNOWN  

Office of Legacy Management (LM)

glass, while other radionuclides reside outside the glass and are potentially mobile (Smith, 1995). The resulting glass is subject to slow dissolution in groundwater and to...

127

Electron-Atom Superelastic Scattering in Magnesium at Millielectron Volt Energies T. Baynard, A. C. Reber, R. F. Niedziela,| S. A. Darveau, B. Prutzman,# and R. S. Berry*,  

E-Print Network [OSTI]

Electron-Atom Superelastic Scattering in Magnesium at Millielectron Volt Energies T. Baynard, A. C energy dependence of magnesium from threshold to 1400 eV10 with an energy resolution of 250 meV. Similar

Berry, R. Stephen

128

Optimization of Solar Cell Design for Use with GreenVolts CPV System: Cooperative Research and Development Final Report, CRADA Number CRD-08-00281  

SciTech Connect (OSTI)

GreenVolts, a Bay area start-up, was developing a CPV system that was based on a unique reflective optical design. They were interested in adapting the inverted GaInP/GaAs/GaInAs cell structure designed at NREL for use in their system. The purpose of this project was to optimize the inverted GaInP/GaAs/GaInAs cell for operation in the GreenVolts optical system.

Ward, S.

2011-05-01T23:59:59.000Z

129

Causal Analysis of the Inadvertent Contact with an Uncontrolled Electrical Hazardous Energy Source (120 Volts AC)  

SciTech Connect (OSTI)

On September 25, 2013, a Health Physics Technician (HPT) was performing preparations to support a pneumatic transfer from the HFEF Decon Cell to the Room 130 Glovebox in HFEF, per HFEF OI 3165 section 3.5, Field Preparations. This activity involves an HPT setting up and climbing a portable ladder to remove the 14-C meter probe from above ball valve HBV-7. The HPT source checks the meter and probe and then replaces the probe above HBV-7, which is located above Hood ID# 130 HP. At approximately 13:20, while reaching past the HBV-7 valve position indicator switches in an attempt to place the 14-C meter probe in the desired location, the HPTs left forearm came in contact with one of the three sets of exposed terminals on the valve position indication switches for HBV 7. This resulted in the HPT receiving an electrical shock from a 120 Volt AC source. Upon moving the arm, following the electrical shock, the HPT noticed two exposed electrical connections on a switch. The HPT then notified the HFEF HPT Supervisor, who in turn notified the MFC Radiological Controls Manager and HFEF Operations Manager of the situation. Work was stopped in the area and the hazard was roped off and posted to prevent access to the hazard. The HPT was escorted by the HPT Supervisor to the MFC Dispensary and then preceded to CFA medical for further evaluation. The individual was evaluated and released without any medical restrictions. Causal Factor (Root Cause) A3B3C01/A5B2C08: - Knowledge based error/Attention was given to wrong issues - Written Communication content LTA, Incomplete/situation not covered The Causal Factor (root cause) was attention being given to the wrong issues during the creation, reviews, verifications, and actual performance of HFEF OI-3165, which covers the need to perform the weekly source check and ensure placement of the probe prior to performing a rabbit transfer. This resulted in the hazard not being identified and mitigated in the procedure. Work activities with in HFEF-OI-3165 placed the HPT in proximity of an unmitigated hazard directly resulting in this event. Contributing Factor A3B3C04/A4B5C04: - Knowledge Based Error, LTA Review Based on Assumption That Process Will Not Change - Change Management LTA, Risks/consequences associated with change not adequately reviewed/assessed Prior to the pneumatic system being out of service, the probe and meter were not being source checked together. The source check issue was identified and addressed during the period of time when the system was out of service. The corrective actions for this issue resulted in the requirement that a meter and probe be source checked together as it is intended to be used. This changed the activity and required an HPT to weekly, when in use, remove and install the probe from above HBV-7 to meet the requirement of LRD 15001 Part 5 Article 551.5. Risks and consequences associated with this change were not adequately reviewed or assessed. Failure to identify the hazard associated with this change directly contributed to this event.

David E. James; Dennis E. Raunig; Sean S. Cunningham

2014-10-01T23:59:59.000Z

130

Federal Government Increases Renewable Energy Use Over 1000 Percent since  

Broader source: Energy.gov (indexed) [DOE]

Federal Government Increases Renewable Energy Use Over 1000 Percent Federal Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal Federal Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal November 3, 2005 - 12:35pm Addthis WASHINGTON, DC - The Department of Energy (DOE) announced today that the federal government has exceeded its goal of obtaining 2.5 percent of its electricity needs from renewable energy sources by September 30, 2005. The largest energy consumer in the nation, the federal government now uses 2375 Gigawatt hours (GWh) of renewable energy -- enough to power 225,000 homes or a city the size of El Paso, Texas, for a year. "Particularly in light of tight oil and gas supplies caused by Hurricanes Katrina and Rita, it is important that all Americans - including the

131

Federal Government Increases Renewable Energy Use Over 1000 Percent since  

Broader source: Energy.gov (indexed) [DOE]

Federal Government Increases Renewable Energy Use Over 1000 Percent Federal Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal Federal Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal November 3, 2005 - 12:35pm Addthis WASHINGTON, DC - The Department of Energy (DOE) announced today that the federal government has exceeded its goal of obtaining 2.5 percent of its electricity needs from renewable energy sources by September 30, 2005. The largest energy consumer in the nation, the federal government now uses 2375 Gigawatt hours (GWh) of renewable energy -- enough to power 225,000 homes or a city the size of El Paso, Texas, for a year. "Particularly in light of tight oil and gas supplies caused by Hurricanes Katrina and Rita, it is important that all Americans - including the

132

Ninety - Two Percent Minimum Heater Efficiency By 1980  

E-Print Network [OSTI]

Technology is now available to increase heater efficiencies to 92 percent and more. By 1980, this technology will be field proven and corrosion and reliability problems identified and resolved. Recent studies have shown that a minimum efficiency...

Mieth, H. C.; Hardie, J. E.

1980-01-01T23:59:59.000Z

133

BOSS Measures the Universe to One-Percent Accuracy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

This and future measures at this precision are the key to determining the nature of dark energy. "One-percent accuracy in the scale of the universe is the most precise such...

134

Implementation of non-intrusive energy saving estimation for Volt/VAr control of smart distribution system  

Science Journals Connector (OSTI)

Abstract There has been a growing interest among power distribution utilities to explore smart grid technologies to improve the operational efficiency and reliability. As electricity distribution grid is evolving to become smart, energy demand reduction is one of the goals for the distribution utilities. In order to obtain this goal, utilities need to commit significant financial resources. Therefore, it became important to assess the benefit of new technologies such as Volt/VAr control (VVC). To compute the energy savings due to VVC implementation, existing algorithms are intrusive, and generally require altering the distribution system control settings and operating points, which is undesirable for system operator. On the other hand, these may require large amount of historical data. In this paper, implementation of a new non-intrusive energy saving estimation algorithm has been presented for integrated Volt/VAr control by Avista Utilities in Northwest USA. Developed algorithm utilizes measurements from smart distribution system. Develop algorithm allows studying the energy saving in long term as it requires no change in control settings of actual distribution system. Satisfactory results have been obtained and validated against field data from experiments on real feeders by Avista Utilities.

S. Chanda; F. Shariatzadeh; A. Srivastava; E. Lee; W. Stone; J. Ham

2014-01-01T23:59:59.000Z

135

A new HBMO algorithm for multiobjective daily Volt/Var control in distribution systems considering Distributed Generators  

Science Journals Connector (OSTI)

In recent years, Distributed Generators (DGs) connected to the distribution network have received increasing attention. The connection of enormous \\{DGs\\} into existing distribution network changes the operation of distribution systems. Because of the small X/R ratio and radial structure of distribution systems, \\{DGs\\} affect the daily Volt/Var control. This paper presents a new algorithm for multiobjective daily Volt/Var control in distribution systems including Distributed Generators (DGs). The objectives are costs of energy generation by \\{DGs\\} and distribution companies, electrical energy losses and the voltage deviations for the next day. A new optimization algorithm based on a Chaotic Improved Honey Bee Mating Optimization (CIHBMO) is proposed to determine the active power values of DGs, reactive power values of capacitors and tap positions of transformers for the next day. Since objectives are not the same, a fuzzy system is used to calculate the best solution. The plausibility of the proposed algorithm is demonstrated and its performance is compared with other methods on a 69-bus distribution feeder. Simulation results illustrate that the proposed algorithm has better outperforms the other algorithms.

Taher Niknam

2011-01-01T23:59:59.000Z

136

Search in unknown random environments  

Science Journals Connector (OSTI)

N searchers are sent out by a source in order to locate a fixed object which is at a finite distance D, but the search space is infinite and D would be in general unknown. Each of the searchers has a finite random lifetime, and may be subject to destruction or failures, and it moves independently of other searchers, and at intermediate locations some partial random information may be available about which way to go. When a searcher is destroyed or disabled, or when it dies naturally, after some time the source becomes aware of this and it sends out another searcher, which proceeds similarly to the one that it replaces. The search ends when one of the searchers finds the object being sought. We use N coupled Brownian motions to derive a closed form expression for the average search time as a function of D which will depend on the parameters of the problem: the number of searchers, the average lifetime of searchers, the routing uncertainty, and the failure or destruction rate of searchers. We also examine the cost in terms of the total energy that is expended in the search.

Erol Gelenbe

2010-12-07T23:59:59.000Z

137

NETL: News Release - President's Initiative to Seek 90 Percent Mercury  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April 21, 2004 April 21, 2004 President's Initiative to Seek 90 Percent Mercury Removal We Energies to Test TOXECON(tm) Process in Michigan Coal-fired Power Plant WASHINGTON, DC - The Department of Energy (DOE) and We Energies today initiated a joint venture to demonstrate technology that will remove an unprecedented 90 percent of mercury emissions from coal-based power plants. Presque Isle Power Plant - We Energies' Presque Isle Power Plant located on the shores of Lake Superior in the Upper Peninsula of Michigan. As part of the President's Clean Coal Power Initiative of technology development and demonstration, the new project supports current proposals to reduce mercury emissions in the range of 70 percent through a proposed regulation pending before the Environmental Protection Agency or, in the

138

A new approach based on ant colony optimization for daily Volt/Var control in distribution networks considering distributed generators  

Science Journals Connector (OSTI)

This paper presents a new approach to daily Volt/Var control in distribution systems with regard to distributed generators (DGs). Due to the small X/R ratio and radial configuration of distribution systems, \\{DGs\\} have much impact on this problem. A cost-based compensation methodology is proposed as a proper signal to encourage owners of \\{DGs\\} in active and reactive power generation. An evolutionary method based on ant colony optimization (ACO) is used to determine the active and reactive power values of DGs, reactive power values of capacitors and tap positions of transformers for the next day. The results indicate that the proposed encouraging factor has improved the performance of distribution networks on a large scale.

Taher Niknam

2008-01-01T23:59:59.000Z

139

Adjustable Robust Parameter Design with Unknown Distributions  

E-Print Network [OSTI]

Mar 27, 2013 ... Adjustable Robust Parameter Design with Unknown Distributions. ihsan Yanikoglu(i.yanikoglu ***at*** uvt.nl) Dick den Hertog(d.denhertog...

ihsan Yanikoglu

2013-03-27T23:59:59.000Z

140

Table 2. Percent of Households with Vehicles, Selected Survey Years  

U.S. Energy Information Administration (EIA) Indexed Site

Percent of Households with Vehicles, Selected Survey Years " Percent of Households with Vehicles, Selected Survey Years " ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",85.5450237,89.00343643,88.75545852,89.42917548,87.25590956,92.08566108 "Household Characteristics" "Census Region and Division" " Northeast",77.22222222,"NA",79.16666667,82.9015544,75.38461538,85.09615385 " New England",88.37209302,"NA",81.81818182,82.9787234,82,88.52459016 " Middle Atlantic ",73.72262774,"NA",78.37837838,82.31292517,74.30555556,83.67346939 " Midwest ",85.51401869,"NA",90.66666667,90.17094017,92.30769231,91.47286822 " East North Central",82,"NA",88.81987578,89.88095238,91.51515152,90.55555556

Note: This page contains sample records for the topic "volt unknown percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Interactive multiobjective daily volt/var control of distribution networks considering wind power and fuel-cell power plants  

Science Journals Connector (OSTI)

This paper deals with a multiobjective daily volt/var control (MDVVC) for radial distribution feeders integrated renewable energy sources (RES) by means of the tap position of the under load tap changer (ULTC) transformers shunt capacitors and active and reactive power of RES. The multiple objective functions to be minimized are the electrical energy losses the voltage deviations and the total emissions of RES and substations. Discrete behavior of equipments in the distribution systems and nonlinear power flow equations change the VVC problem into a mixed integer non-linear programming (MINLP). Hence a new optimization method based upon the shuffled frog leaping algorithm (SFLA) is presented to solve the optimization problem. The SFLA is modified for resolving the disadvantages of the original algorithm. Besides of accurately passing local optima the MSFLA takes less time to achieve the optimal response. Furthermore the tribe-MSFLA is proposed through using the concept of the tribe. Dealing with the multiobjective optimization problem an interactive fuzzy satisfying method is used while the objective functions are formulated by a fuzzy set theory. An 85-bus radial distribution system is used to test and assess the performance of the proposed algorithm.

Taher Niknam; Mohsen Zare; Jamshid Aghaei; Rasoul Azizipanah-Abarghooee

2012-01-01T23:59:59.000Z

142

Autonomous Flight in Unknown Indoor Environments  

E-Print Network [OSTI]

This paper presents our solution for enabling a quadrotor helicopter, equipped with a laser rangefinder sensor, to autonomously explore and map unstructured and unknown indoor environments. While these capabilities are ...

Bachrach, Abraham Galton

143

Chevrolet Volt Vehicle Demonstration  

Broader source: Energy.gov (indexed) [DOE]

8.2 Overall AC electrical energy consumption (AC Whmi) 157 Average Trip Distance 12.3 Total distance traveled (mi) 407,245 Average Ambient Temperature (deg F) 67.9 Electric...

144

Chevrolet Volt Vehicle Demonstration  

Broader source: Energy.gov (indexed) [DOE]

70.1 Overall AC electrical energy consumption (AC Whmi) 169 Average Trip Distance 12.3 Total distance traveled (mi) 2,817,365 Average Ambient Temperature (deg F) 62.4 Electric...

145

Table B29. Percent of Floorspace Cooled, Number of Buildings and Floorspace, 199  

U.S. Energy Information Administration (EIA) Indexed Site

9. Percent of Floorspace Cooled, Number of Buildings and Floorspace, 1999" 9. Percent of Floorspace Cooled, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","Not Cooled","1 to 50 Percent Cooled","51 to 99 Percent Cooled","100 Percent Cooled","All Buildings","Not Cooled","1 to 50 Percent Cooled","51 to 99 Percent Cooled","100 Percent Cooled" "All Buildings ................",4657,1097,1012,751,1796,67338,8864,16846,16966,24662 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,668,352,294,1034,6774,1895,1084,838,2957 "5,001 to 10,000 ..............",1110,282,292,188,348,8238,2026,2233,1435,2544

146

Table B30. Percent of Floorspace Lit When Open, Number of Buildings and Floorspa  

U.S. Energy Information Administration (EIA) Indexed Site

0. Percent of Floorspace Lit When Open, Number of Buildings and Floorspace, 1999" 0. Percent of Floorspace Lit When Open, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","Not Lita","1 to 50 Percent Lit","51 to 99 Percent Lit","100 Percent Lit","All Buildings","Not Lita","1 to 50 Percent Lit","51 to 99 Percent Lit","100 Percent Lit" "All Buildings ................",4657,498,835,1228,2096,67338,3253,9187,20665,34233 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,323,351,517,1156,6774,915,1061,1499,3299 "5,001 to 10,000 ..............",1110,114,279,351,367,8238,818,2014,2614,2793

147

U.S. Utility-Scale Solar 60 Percent Towards Cost-Competition...  

Energy Savers [EERE]

U.S. Utility-Scale Solar 60 Percent Towards Cost-Competition Goal U.S. Utility-Scale Solar 60 Percent Towards Cost-Competition Goal February 12, 2014 - 11:05am Addthis News Media...

148

Table B28. Percent of Floorspace Heated, Number of Buildings and Floorspace, 199  

U.S. Energy Information Administration (EIA) Indexed Site

8. Percent of Floorspace Heated, Number of Buildings and Floorspace, 1999" 8. Percent of Floorspace Heated, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","Not Heated","1 to 50 Percent Heated","51 to 99 Percent Heated","100 Percent Heated","All Buildings","Not Heated","1 to 50 Percent Heated","51 to 99 Percent Heated","100 Percent Heated" "All Buildings ................",4657,641,576,627,2813,67338,5736,7593,10745,43264 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,366,230,272,1479,6774,1091,707,750,4227 "5,001 to 10,000 ..............",1110,164,194,149,603,8238,1148,1504,1177,4409

149

Vehicle Technologies Office: Fact #720: March 26, 2012 Eleven Percent of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0: March 26, 0: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection to someone by E-mail Share Vehicle Technologies Office: Fact #720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection on Facebook Tweet about Vehicle Technologies Office: Fact #720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection on Twitter Bookmark Vehicle Technologies Office: Fact #720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection on Google Bookmark Vehicle Technologies Office: Fact #720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection on Delicious Rank Vehicle Technologies Office: Fact #720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection on Digg

150

Comparison of the percent recoveries of activated charcoal and Spherocarb after storage utilizing thermal desorption  

E-Print Network [OSTI]

between the two adsorbents. The parameters of storage in- cluded various durations of time, temperatures, and concentrations. Rather than the present conventional solvent desorption methods, thermal desorption was used in the analysis of samples... Duncan's Multiple Range Test For Variable Percent. 32 6 Mean Percent Recoveries For The Interaction Between Type Of Adsorbent And Storage Time . 7 Mean Percent Recoveries For The Interaction Between Sample Concentration And Storage Time. 39 40 8...

Stidham, Paul Emery

2012-06-07T23:59:59.000Z

151

EECBG 11-002 Clarification of Ten Percent Limitation on Use of...  

Energy Savers [EERE]

Energy Efficiency and Renewable Energy (EERE), Energy Efficiency and Conservation Block Grant Program (EECBG), ten percent limitation, administrative expenses, the Energy...

152

Policy ForumSeries "Beyond 33 Percent: California's Renewable Energy Future,  

E-Print Network [OSTI]

Policy ForumSeries "Beyond 33 Percent: California's Renewable Energy Future, From Near with the UC Davis Policy Institute is the UC Davis Energy Institute. Renewables Beyond 33 Percent October 17 as it transitions to a renewable energy future. Featuring panelists from government, industry and academia

California at Davis, University of

153

PRESS RELEASES OF SENATOR PETE DOMENICI Domenici Supports 12 Percent Increase for Nuclear Energy, Disputes Fusion  

E-Print Network [OSTI]

PRESS RELEASES OF SENATOR PETE DOMENICI Domenici Supports 12 Percent Increase for Nuclear Energy his support for a 12 percent increase in federal funding for nuclear energy research, but challenged of modern nuclear power plants. Domenici is chairman of the Energy and Water Development Appropriations

154

Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 |  

Broader source: Energy.gov (indexed) [DOE]

Could Produce 20 Percent of U.S. Electricity By 2030 Could Produce 20 Percent of U.S. Electricity By 2030 Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 May 12, 2008 - 11:30am Addthis DOE Report Analyzes U.S. Wind Resources, Technology Requirements, and Manufacturing, Siting and Transmission Hurdles to Increasing the Use of Clean and Sustainable Wind Power WASHINGTON, DC - The U.S Department of Energy (DOE) today released a first-of-its kind report that examines the technical feasibility of harnessing wind power to provide up to 20 percent of the nation's total electricity needs by 2030. Entitled "20 Percent Wind Energy by 2030", the report identifies requirements to achieve this goal including reducing the cost of wind technologies, citing new transmission infrastructure, and

155

Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 |  

Broader source: Energy.gov (indexed) [DOE]

Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 May 12, 2008 - 11:30am Addthis DOE Report Analyzes U.S. Wind Resources, Technology Requirements, and Manufacturing, Siting and Transmission Hurdles to Increasing the Use of Clean and Sustainable Wind Power WASHINGTON, DC - The U.S Department of Energy (DOE) today released a first-of-its kind report that examines the technical feasibility of harnessing wind power to provide up to 20 percent of the nation's total electricity needs by 2030. Entitled "20 Percent Wind Energy by 2030", the report identifies requirements to achieve this goal including reducing the cost of wind technologies, citing new transmission infrastructure, and

156

Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent Remediated Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent Remediated The Office of Environmental Management's (EM) American Recovery and Reinvestment Act Program recently achieved 74 percent footprint reduction, exceeding the originally established goal of 40 percent. EM has reduced its pre-Recovery Act footprint of 931 square miles, established in 2009, by 688 square miles. Reducing its contaminated footprint to 243 square miles has proven to be a monumental task, and a challenge the EM team was ready to take on from the beginning. Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent Remediated More Documents & Publications 2011 ARRA Newsletters

157

Transient Signal Analysis is a digital device testing method that is based on the analysis of volt-age transients at multiple test points. In this paper, the power supply transient signals from sim-  

E-Print Network [OSTI]

in 8-bit Multiplier Simulation Experiments Investigating the Use of Power Supply Transient SigAbstract Transient Signal Analysis is a digital device testing method that is based on the analysis of volt- age transients at multiple test points. In this paper, the power supply transient signals from

Plusquellic, James

158

Coal deposit characterization by gamma-gamma density/percent dry ash relationships  

E-Print Network [OSTI]

: pb = C + Va(pa) Equation 3 where C is a constant. Ash content can therefore be geophysically determined as variations In log-derived bulk density measurements are in direct response to variations in ash content. However, when any of the above... by applying the relationships between geophysi cally-derived gamma-gamma density and laboratory-derived percent dry ash. The linear gamma-gamma density/percent dry ash relationship is dependent upon a constant fuel ratio (percent fixed carbon...

Wright, David Scott

1984-01-01T23:59:59.000Z

159

If I generate 20 percent of my national electricity from wind...  

Open Energy Info (EERE)

generate 20 percent of my national electricity from wind and solar - what does it do to my GDP and Trade Balance ? Home I think that the economics of fossil fuesl are well...

160

EECBG 11-002 Clarification of Ten Percent Limitation on Use of Funds for Administrative Expenses  

Broader source: Energy.gov [DOE]

U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Energy Efficiency and Conservation Block Grant Program (EECBG), ten percent limitation, administrative expenses, the Energy Independence and Security Act of 2007.

Note: This page contains sample records for the topic "volt unknown percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Skills, education, and the rise of earnings inequality among the other 99 percent  

Science Journals Connector (OSTI)

...disaster assistance, food assistance) that buffer...executives and financial professionals...evidence of rents in top 1 percent...macro-micro-minnesota/2012/02...attractive financial proposition on average...research assistance. Supported...

David H. Autor

2014-05-23T23:59:59.000Z

162

Fact #727: May 14, 2012 Nearly Twenty Percent of Households Own Three or More Vehicles  

Broader source: Energy.gov [DOE]

Household vehicle ownership has changed over the last six decades. In 1960, over twenty percent of households did not own a vehicle, but by 2010, that number fell to less than 10%. The number of...

163

97 percent of special nuclear material de-inventoried from LLNL | National  

National Nuclear Security Administration (NNSA)

97 percent of special nuclear material de-inventoried from LLNL | National 97 percent of special nuclear material de-inventoried from LLNL | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > 97 percent of special nuclear material de-inventoried ... 97 percent of special nuclear material de-inventoried from LLNL Posted By Office of Public Affairs

164

Effects of time constraint and percent defective on visual inspection performance  

E-Print Network [OSTI]

EFFECTS OF TIME CONSTRAINT AND PERCENT DEFECTIVE ON VISUAL INSPECTION PERFORMANCE A Thesis by WALTER EDGAR GILMORE II Submitted to the Graduate College of Texas ABM University in partial fulfillment of the requirement for the degree MASTER... OF SCIENCE August 1982 Major Subject: Industrial Engineering EFFECTS OF TIME CONSTRAINT AND PERCENT DEFECTIVE ON VISUAL INSPECTION PERFORMANCE A Thesis by WALTER EDGAR GILMORE II Approved as to sty1e and content by: Chairman of Committ e) (Memb r...

Gilmore, Walter Edgar

2012-06-07T23:59:59.000Z

165

Property:Plants with Unknown Planned Capacity | Open Energy Information  

Open Energy Info (EERE)

Plants with Unknown Planned Capacity Plants with Unknown Planned Capacity Jump to: navigation, search Property Name Plants with Unknown Planned Capacity Property Type String Description Number of plants with unknown planned capacity per GEA Pages using the property "Plants with Unknown Planned Capacity" Showing 21 pages using this property. A Alaska Geothermal Region + 1 + C Cascades Geothermal Region + 2 + Central Nevada Seismic Zone Geothermal Region + 9 + G Gulf of California Rift Zone Geothermal Region + 4 + H Hawaii Geothermal Region + 0 + Holocene Magmatic Geothermal Region + 0 + I Idaho Batholith Geothermal Region + 1 + N Northern Basin and Range Geothermal Region + 11 + Northern Rockies Geothermal Region + 0 + Northwest Basin and Range Geothermal Region + 9 + R Rio Grande Rift Geothermal Region + 1 +

166

Better Buildings Challenge Partners Pledge 20 Percent Energy Drop By 2020 |  

Broader source: Energy.gov (indexed) [DOE]

Better Buildings Challenge Partners Pledge 20 Percent Energy Drop Better Buildings Challenge Partners Pledge 20 Percent Energy Drop By 2020 Better Buildings Challenge Partners Pledge 20 Percent Energy Drop By 2020 November 9, 2011 - 10:00am Addthis This is the Atlanta Better Buildings Challenge Breakout Session Panel with representatives from the City of Atlanta Office of Sustainability, Southface, the U.S. General Services Administration, and two Atlanta BBC partner organizations. | Photo courtesy of Fred Perry Photography This is the Atlanta Better Buildings Challenge Breakout Session Panel with representatives from the City of Atlanta Office of Sustainability, Southface, the U.S. General Services Administration, and two Atlanta BBC partner organizations. | Photo courtesy of Fred Perry Photography Maria Tikoff Vargas

167

Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test |  

Broader source: Energy.gov (indexed) [DOE]

Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test August 21, 2012 - 1:00pm Addthis Washington, DC - The successful bench-scale test of a novel carbon dioxide (CO2) capturing sorbent promises to further advance the process as a possible technological option for reducing CO2 emissions from coal-fired power plants. The new sorbent, BrightBlack™, was originally developed for a different application by Advanced Technology Materials Inc. (ATMI) , a subcontractor to SRI for the Department of Energy (DOE)-sponsored test at the University of Toledo. Through partnering with the Office of Fossil Energy's National Energy Technology Laboratory (NETL) and others, SRI developed a method to

168

If I generate 20 percent of my national electricity from wind and solar -  

Open Energy Info (EERE)

If I generate 20 percent of my national electricity from wind and solar - If I generate 20 percent of my national electricity from wind and solar - what does it do to my GDP and Trade Balance ? Home > Groups > DOE Wind Vision Community I think that the economics of fossil fuesl are well understood. Some gets to find the fuel and sell it. The fuel and all associated activities factor into the economic equation of the nation and the wrold. What is the economics of generating 20 percent of my total capacity from say wind? And all of it replaces coal powered electricty ? What happended to GDP ? Is the economy a net gain or net loss ? The value of the electricity came into the system, but no coal is bought or sold. Submitted by Jamespr on 6 May, 2013 - 17:46 0 answers Groups Menu You must login in order to post into this group.

169

Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test |  

Broader source: Energy.gov (indexed) [DOE]

Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test August 21, 2012 - 1:00pm Addthis Washington, DC - The successful bench-scale test of a novel carbon dioxide (CO2) capturing sorbent promises to further advance the process as a possible technological option for reducing CO2 emissions from coal-fired power plants. The new sorbent, BrightBlack™, was originally developed for a different application by Advanced Technology Materials Inc. (ATMI) , a subcontractor to SRI for the Department of Energy (DOE)-sponsored test at the University of Toledo. Through partnering with the Office of Fossil Energy's National Energy Technology Laboratory (NETL) and others, SRI developed a method to

170

Moab Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Reaches  

Broader source: Energy.gov (indexed) [DOE]

Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Reaches Significant Milestone Moab Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Reaches Significant Milestone June 3, 2011 - 12:00pm Addthis Media Contacts Donald Metzler Moab Federal Project Director (970) 257-2115 Wendee Ryan S&K Aerospace Public Affairs Manager (970) 257-2145 Grand Junction, CO - One quarter of the uranium mill tailings pile located in Moab, Utah, has been relocated to the Crescent Junction, Utah, site for permanent disposal. Four million tons of the 16 million tons total has been relocated under the Uranium Mill Tailings Remedial Action Project managed by the U.S. Department of Energy (DOE). A little over 2 years ago, Remedial Action Contractor EnergySolutions began

171

Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent Remediated  

Broader source: Energy.gov (indexed) [DOE]

November 2, 2012 November 2, 2012 WASHINGTON, D.C. - The Office of Environmental Management's (EM) American Recovery and Reinvestment Act Program recently achieved 74 percent footprint reduction, exceeding the originally established goal of 40 percent. EM has reduced its pre-Recovery Act footprint of 931 square miles, established in 2009, by 688 square miles. Reducing its contaminated footprint to 243 square miles has proven to be a monu- mental task, and a challenge the EM team was ready to take on from the beginning. In 2009, EM identified a goal of 40 percent footprint reduction by September 2011 as its High Priority Performance Goal. EM achieved that goal in April 2011, five months ahead of schedule, and continues to achieve footprint reduction, primarily at Savannah River Site and Hanford. Once

172

26-percent efficient point-junction concentrator solar cells with a front metal grid  

SciTech Connect (OSTI)

This paper reports on silicon concentrator cells with point diffusions and metal contacts on both the front and back sides. The design minimizes reflection losses by forming an inverted pyramid topography on the front surface and by shaping the metal grid lines in the form of a triangular ridge. A short-circuit current density of 39.6 mA/cm{sup 2} has been achieved even though the front grid covers 16 percent of the cell's active area of 1.56 cm{sup 2}. This, together with an open-circuit voltage of 700 mV, has led to an efficiency of 22 percent at one sun, AM1.5 global spectrum. Under direct-spectrum, 8.8-W/cm{sup 2}, concentrated light, the efficiency is 26 percent. This is the highest ever reported for a silicon cell having a front metal grid.

Cuevas, A.; Sinton, R.A.; Midkiff, N.E.; Swanson, R.M. (Stanford Univ., CA (USA). Dept. of Electrical Engineering)

1990-01-01T23:59:59.000Z

173

Moab Reaches 40-Percent Mark in Tailings Removal | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Moab Reaches 40-Percent Mark in Tailings Removal Moab Reaches 40-Percent Mark in Tailings Removal Moab Reaches 40-Percent Mark in Tailings Removal December 24, 2013 - 12:00pm Addthis A haul truck carrying a container is loaded with mill tailings at the Moab site. Once loaded and lidded, the container will be placed on a railcar for shipment by train to the Crescent Junction disposal site. A haul truck carrying a container is loaded with mill tailings at the Moab site. Once loaded and lidded, the container will be placed on a railcar for shipment by train to the Crescent Junction disposal site. MOAB, Utah - The Moab Uranium Mill Tailings Remedial Action Project had a productive year, despite continued budget constraints and a first-ever, three-month curtailment of shipping operations last winter. On June 18, the project reached a significant milestone of having shipped 6

174

Nonlinear Adaptive Control for Bioreactors with Unknown Kinetics  

E-Print Network [OSTI]

on a real life wastewater treatment plant. Key words: Nonlinear adaptive control, continuous bioprocesses, unknown kinetics, wastewater treatment. 1 Introduction Biological processes have become widely used a pollutant (wastewater treatment...). There- fore, bioreactors require advanced regulation procedures

Bernard, Olivier

175

Autonomous Flight in Unstructured and Unknown Indoor Environments  

E-Print Network [OSTI]

This paper presents our solution for enabling a quadrotor helicopter, equipped with a laser rangefinder sensor, to autonomously explore and map unstructured and unknown indoor environments. While these capabilities are ...

Bachrach, Abraham Galton

176

Method for identifying known materials within a mixture of unknowns  

DOE Patents [OSTI]

One or both of two methods and systems are used to determine concentration of a known material in an unknown mixture on the basis of the measured interaction of electromagnetic waves upon the mixture. One technique is to utilize a multivariate analysis patch technique to develop a library of optimized patches of spectral signatures of known materials containing only those pixels most descriptive of the known materials by an evolutionary algorithm. Identity and concentration of the known materials within the unknown mixture is then determined by minimizing the residuals between the measurements from the library of optimized patches and the measurements from the same pixels from the unknown mixture. Another technique is to train a neural network by the genetic algorithm to determine the identity and concentration of known materials in the unknown mixture. The two techniques may be combined into an expert system providing cross checks for accuracy.

Wagner, John S. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

177

System for identifying known materials within a mixture of unknowns  

DOE Patents [OSTI]

One or both of two methods and systems are used to determine concentration of a known material in an unknown mixture on the basis of the measured interaction of electromagnetic waves upon the mixture. One technique is to utilize a multivariate analysis patch technique to develop a library of optimized patches of spectral signatures of known materials containing only those pixels most descriptive of the known materials by an evolutionary algorithm. Identity and concentration of the known materials within the unknown mixture is then determined by minimizing the residuals between the measurements from the library of optimized patches and the measurements from the same pixels from the unknown mixture. Another technique is to train a neural network by the genetic algorithm to determine the identity and concentration of known materials in the unknown mixture. The two techniques may be combined into an expert system providing cross checks for accuracy.

Wagner, John S. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

178

System for identifying known materials within a mixture of unknowns  

DOE Patents [OSTI]

One or both of two methods and systems are used to determine concentration of a known material in an unknown mixture on the basis of the measured interaction of electromagnetic waves upon the mixture. One technique is to utilize a multivariate analysis patch technique to develop a library of optimized patches of spectral signatures of known materials containing only those pixels most descriptive of the known materials by an evolutionary algorithm. Identity and concentration of the known materials within the unknown mixture is then determined by minimizing the residuals between the measurements from the library of optimized patches and the measurements from the same pixels from the unknown mixture. Another technique is to train a neural network by the genetic algorithm to determine the identity and concentration of known materials in the unknown mixture. The two techniques may be combined into an expert system providing cross checks for accuracy. 37 figs.

Wagner, J.S.

1999-07-20T23:59:59.000Z

179

Achieving a ten percent greenhouse gas reduction by 2020 Response to  

E-Print Network [OSTI]

's environmental and economic goals are to ensure ... (e) greenhouse gas emissions will be at least ten per cent). The Nova Scotia Department of Energy also assumes this level of emissions by 2020 in its background paper of carbon dioxide. #12;Energy Research Group: Achieving a ten percent greenhouse gas reduction 2 shows NRCan

Hughes, Larry

180

What is the problem? Buildings account for 40 percent of U.S.  

E-Print Network [OSTI]

What is the problem? Buildings account for 40 percent of U.S. energy use and a similar percentage with buildings and appliances are projected to grow faster than those from any other sector. In order to ensure that building energy consumption be significantly reduced. One way this can be achieved is through

Note: This page contains sample records for the topic "volt unknown percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A combined cycle designed to achieve greater than 60 percent efficiency  

SciTech Connect (OSTI)

In cooperation with the US Department of Energy`s Morgantown Energy Technology Center, Westinghouse is working on Phase 2 of an 8-year Advanced Turbine Systems Program to develop the technologies required to provide a significant increase in natural gas-fired combined cycle power generation plant efficiency. In this paper, the technologies required to yield an energy conversion efficiency greater than the Advanced Turbine Systems Program target value of 60 percent are discussed. The goal of 60 percent efficiency is achievable through an improvement in operating process parameters for both the combustion turbine and steam turbine, raising the rotor inlet temperature to 2,600 F (1,427 C), incorporation of advanced cooling techniques in the combustion turbine expander, and utilization of other cycle enhancements obtainable through greater integration between the combustion turbine and steam turbine.

Briesch, M.S.; Bannister, R.L.; Diakunchak, I.S.; Huber, D.J. [Westinghouse Electric Corp., Orlando, FL (United States)

1994-12-31T23:59:59.000Z

182

Ultrasonic methods for measuring liquid viscosity and volume percent of solids  

SciTech Connect (OSTI)

This report describes two ultrasonic techniques under development at Argonne National Laboratory (ANL) in support of the tank-waste transport effort undertaken by the U.S. Department of Energy in treating low-level nuclear waste. The techniques are intended to provide continuous on-line measurements of waste viscosity and volume percent of solids in a waste transport line. The ultrasonic technique being developed for waste-viscosity measurement is based on the patented ANL viscometer. Focus of the viscometer development in this project is on improving measurement accuracy, stability, and range, particularly in the low-viscosity range (<30 cP). A prototype instrument has been designed and tested in the laboratory. Better than 1% accuracy in liquid density measurement can be obtained by using either a polyetherimide or polystyrene wedge. To measure low viscosities, a thin-wedge design has been developed and shows good sensitivity down to 5 cP. The technique for measuring volume percent of solids is based on ultrasonic wave scattering and phase velocity variation. This report covers a survey of multiple scattering theories and other phenomenological approaches. A theoretical model leading to development of an ultrasonic instrument for measuring volume percent of solids is proposed, and preliminary measurement data are presented.

Sheen, S.H.; Chien, H.T.; Raptis, A.C.

1997-02-01T23:59:59.000Z

183

Handling Advertisements of Unknown Quality in Search Advertising  

E-Print Network [OSTI]

Handling Advertisements of Unknown Quality in Search Advertising Sandeep Pandey Christopher Olston@yahoo-inc.com Abstract We consider how a search engine should select advertisements to display with search results well the displayed advertisements appeal to users. The main difficulty stems from new ad- vertisements

Olston, Christopher

184

AUTONOMOUS NAVIGATION TROUP FOR COOPERATIVE MODELLING OF UNKNOWN ENVIRONMENTS  

E-Print Network [OSTI]

AUTONOMOUS NAVIGATION TROUP FOR COOPERATIVE MODELLING OF UNKNOWN ENVIRONMENTS Josep Amat,mantaras@iiia.csic.es} Abstract Based on the information gathered by a set of small autonomous low cost vehicles, the generation, small autonomous vehicles has been developed. These vehicles follow the already classical line of insect

López-Sánchez, Maite

185

Robust Multi-loop Airborne SLAM in Unknown Wind Environments  

E-Print Network [OSTI]

Robust Multi-loop Airborne SLAM in Unknown Wind Environments Jonghyuk Kim Department of Engineering for Autonomous Systems University of Sydney, Australia Email: salah@acfr.usyd.edu.au Abstract-- This paper presents a robust multi-loop airborne SLAM structure which also augments wind information. The air velocity

Kim, Jonghyuk "Jon"

186

New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability  

Broader source: Energy.gov [DOE]

This case study outlines how General Motors (GM) developed a highly efficient pumping system for their Pontiac Operations Complex in Pontiac, Michigan. In short, GM was able to replace five original 60- to 100-hp pumps with three 15-hp pumps whose speed could be adjusted to meet plant requirements. As a result, the company reduced pumping system energy consumption by 80 percent (225,100 kWh per year), saving an annual $11,255 in pumping costs. With a capital investment of $44,966 in the energy efficiency portion of their new system, GM projected a simple payback of 4 years.

187

Application of Categorical Exclusions (1021.410) Disagree Agree Unknown  

Broader source: Energy.gov (indexed) [DOE]

1 1 Checklist for Categorical Exclusion Determination, revised Nov. 2011 Application of Categorical Exclusions (1021.410) Disagree Agree Unknown (b)(1) The proposal fits within a class of actions that is listed in appendix A or B to subpart D. X (b)(2) There are no extraordinary circumstances related to the proposal that may affect the significance of the environmental effects of the proposal, including, but not limited to, scientific controversy about the environmental effects of the proposal; uncertain effects or effects involving unique or unknown risks; and unresolved conflicts concerting alternate uses of available resources X (b)(3) The proposal has not been segmented to meet the definition of a categorical exclusion. Segmentation can occur when a proposal is

188

Interferometric distillation and determination of unknown two-qubit entanglement  

E-Print Network [OSTI]

We propose a scheme for both distilling and quantifying entanglement, applicable to individual copies of an arbitrary unknown two-qubit state. It is realized in a usual two-qubit interferometry with local filtering. Proper filtering operation for the maximal distillation of the state is achieved, by erasing single-qubit interference, and then the concurrence of the state is determined directly from the visibilities of two-qubit interference. We compare the scheme with full state tomography.

S. -S. B. Lee; H. -S. Sim

2010-06-08T23:59:59.000Z

189

Interferometric distillation and determination of unknown two-qubit entanglement  

SciTech Connect (OSTI)

We propose a scheme for both distilling and quantifying entanglement, applicable to individual copies of an arbitrary unknown two-qubit state. It is realized in a usual two-qubit interferometry with local filtering. Proper filtering operation for the maximal distillation of the state is achieved by erasing single-qubit interference, and then the concurrence of the state is determined directly from the visibilities of two-qubit interference. We compare the scheme with full state tomography.

Lee, S.-S. B.; Sim, H.-S. [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)

2009-05-15T23:59:59.000Z

190

Color and perceptual variation revisited: Unknown facts, alien modalities, and perfect psychosemantics  

E-Print Network [OSTI]

Revisited: Unknown Facts, Alien Modalities, and Perfectunwarranted optimism. 7 Alien Modalities A related objection

Cohe, J

2006-01-01T23:59:59.000Z

191

Extraction of Plutonium into 30 Percent Tri-Butyl Phosphate from Nitric Acid Solution Containing Fluoride, Aluminum, and Boron  

SciTech Connect (OSTI)

This work consists of experimental batch extraction data for plutonium into 30 volume-percent tri-butyl phosphate at ambient temperature from such a solution matrix and a model of this data using complexation constants from the literature.

Kyser, E.A.

2000-01-06T23:59:59.000Z

192

"EIA-914 Production Weighted Response Rates, Percent"  

U.S. Energy Information Administration (EIA) Indexed Site

EIA-914 Production Weighted Response Rates, Percent" EIA-914 Production Weighted Response Rates, Percent" "Areas",38353,38384,38412,38443,38473,38504,38534,38565,38596,38626,38657,38687,38718,38749,38777,"application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel"

193

A correlation of water solubility in jet fuels with API gravity: aniline point percent aromatics, and temperature.  

E-Print Network [OSTI]

A CORRELATION OF WATER SOLUBILITY IN JET FUELS WITH API GRAVITY, ANILINE POINT PERCENT AROMATICS, AND TEMPERATURE A Thesis By ALONZO B YINGTON Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE January, 1964 Major Subject: Petroleum Engineering A CORRELATION OF MATER SOLUBILITT IH JET FUELS WITS API GEAVITT, ANILINE POINT, PERCENT ARONATICS, AND TENPERATURE A Thesis By ALOHZO BYIHGTOH Approved...

Byington, Alonzo

2012-06-07T23:59:59.000Z

194

Data series subtraction with unknown and unmodeled background noise  

E-Print Network [OSTI]

LISA Pathfinder (LPF), ESA's precursor mission to a gravitational wave observatory, will measure the degree to which two test-masses can be put into free-fall, aiming to demonstrate a residual relative acceleration with a power spectral density (PSD) below 30 fm/s$^2$/Hz$^{1/2}$ around 1 mHz. In LPF data analysis, the measured relative acceleration data series must be fit to other various measured time series data. This fitting is required in different experiments, from system identification of the test mass and satellite dynamics to the subtraction of noise contributions from measured known disturbances. In all cases, the background noise, described by the PSD of the fit residuals, is expected to be coloured, requiring that we perform such fits in the frequency domain. This PSD is unknown {\\it a priori}, and a high accuracy estimate of this residual acceleration noise is an essential output of our analysis. In this paper we present a fitting method based on Bayesian parameter estimation with an unknown frequency-dependent background noise. The method uses noise marginalisation in connection with averaged Welch's periodograms to achieve unbiased parameter estimation, together with a consistent, non-parametric estimate of the residual PSD. Additionally, we find that the method is equivalent to some implementations of iteratively re-weighted least-squares fitting. We have tested the method both on simulated data of known PSD, and to analyze differential acceleration from several experiments with the LISA Pathfinder end-to-end mission simulator.

Stefano Vitale; Giuseppe Congedo; Rita Dolesi; Valerio Ferroni; Mauro Hueller; Daniele Vetrugno; William Joseph Weber; Heather Audley; Karsten Danzmann; Ingo Diepholz; Martin Hewitson; Natalia Korsakova; Luigi Ferraioli; Ferran Gibert; Nikolaos Karnesis; Miquel Nofrarias; Henri Inchauspe; Eric Plagnol; Oliver Jennrich; Paul W. McNamara; Michele Armano; James Ira Thorpe; Peter Wass

2014-04-18T23:59:59.000Z

195

Simulated NMIS Imaging Data for an Unknown Object  

SciTech Connect (OSTI)

This report presents simulated Nuclear Materials Identification System (NMIS) imaging data for an unclassified object, whose characteristics are initially unknown to the reader. This data will be used to test various analysis capabilities and was created with a simple deterministic ray-tracing algorithm. NMIS is a time-dependent coincidence counting system that is used to characterize both fissile and non-fissile materials undergoing nondestructive assay. NMIS characterizes materials by interrogating them with neutrons, either from an associated-particle deuterium-tritium (DT) neutron generator, which produces a time and directionally tagged monoenergetic beam of 14.1 MeV neutrons, or a time-tagged spontaneous fission source in an ionization chamber.

Walker, Mark E [ORNL; Mihalczo, John T [ORNL

2012-04-01T23:59:59.000Z

196

"Table 1. Aeo Reference Case Projection Results" "Variable","Average Absolute Percent Differences","Percent of Projections Over- Estimated"  

U.S. Energy Information Administration (EIA) Indexed Site

Aeo Reference Case Projection Results" Aeo Reference Case Projection Results" "Variable","Average Absolute Percent Differences","Percent of Projections Over- Estimated" "Gross Domestic Product" "Real Gross Domestic Product (Average Cumulative Growth)* (Table 2)",0.9772689079,42.55319149 "Petroleum" "Imported Refiner Acquisition Cost of Crude Oil (Constant $) (Table 3a)",35.19047501,18.61702128 "Imported Refiner Acquisition Cost of Crude Oil (Nominal $) (Table 3b)",34.68652106,19.68085106 "Total Petroleum Consumption (Table 4)",6.150682783,66.4893617 "Crude Oil Production (Table 5)",5.99969572,59.57446809 "Petroleum Net Imports (Table 6)",13.27260615,67.0212766 "Natural Gas"

197

ITER: Japan to assign 20 percent of construction work to EU firms; Proposal for EU official to assume chief executive  

E-Print Network [OSTI]

ITER: Japan to assign 20 percent of construction work to EU firms; Proposal for EU official to assume chief executive position MAINICHI (Top Play) (Lead para.) December 7, 2004 Japan and the European Experimental Reactor (ITER). Japan yesterday revealed the details of a proposal to host the project. Tokyo has

198

EV Project Chevrolet Volt Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

2012 Vehicle Usage Overall fuel economy (mpg) 136 Overall electrical energy consumption (AC Whmi) 222 Number of trips 286,682 Total distance traveled (mi) 2,392,509 Avg...

199

EV Project Chevrolet Volt Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

December 2011 Vehicle Usage Overall fuel economy (mpg) 131 Overall electrical energy consumption (AC Whmi) 271 Number of trips 13,819 Total distance traveled (mi) 108,115 Avg trip...

200

EV Project Chevrolet Volt Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

42 Overall electrical energy consumption (AC Whmi) 231 Number of trips 676,414 Total distance traveled (mi) 5,753,009 Avg trip distance (mi) 8.3 Avg distance traveled per day...

Note: This page contains sample records for the topic "volt unknown percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

EV Project Chevrolet Volt Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

March 2012 Vehicle Usage Overall fuel economy (mpg) 139 Overall electrical energy consumption (AC Whmi) 293 Number of trips 76,425 Total distance traveled (mi) 609,737 Avg...

202

EV Project Chevrolet Volt Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

fuel economy (mpg) 155 Overall electrical energy consumption (AC Whmi) 242 Number of trips 147,886 Total distance traveled (mi) 1,184,265 Avg trip distance (mi) 8.0 Avg distance...

203

Maintenance Sheet for 2013 Chevrolet Volt  

Broader source: Energy.gov (indexed) [DOE]

0DU103929 Date Mileage Description Cost 342013 4,876 Replaced relay assembly, engine control module, and 12V battery - under warranty NC 342013 4,876 Reflashed parking brake...

204

EV Project Chevrolet Volt Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Summary Report Region: ALL Number of vehicles: 1766 Reporting period: January 2013 through March 2013 1 A trip is defined as all the driving done between consecutive...

205

Two algorithms for the sorting of unknown train vibration signals into freight and passenger train  

E-Print Network [OSTI]

Two algorithms for the sorting of unknown train vibration signals into freight and passenger train in particular. To facilitate this, two algorithms have been constructed with the aim of sorting unknown train vibration signals into freight and passenger train categories so that they can be further analysed. 307

Paris-Sud XI, Université de

206

The Multi-robot Coverage Problem for Optimal Coordinated Search with an Unknown Number of Robots  

E-Print Network [OSTI]

The Multi-robot Coverage Problem for Optimal Coordinated Search with an Unknown Number of Robots of Minnesota Minneapolis, MN 55455 Email: {hjmin|npapas}@cs.umn.edu Abstract-- This work presents a novel multi-robot coverage scheme for an unknown number of robots; it focuses on optimizing the number of robots and each

Minnesota, University of

207

ShieldGen: Automatic Data Patch Generation for Unknown Vulnerabilities with Informed Probing  

E-Print Network [OSTI]

ShieldGen: Automatic Data Patch Generation for Unknown Vulnerabilities with Informed Probing generating a data patch or a vulnerability signature for an unknown vulnerability, given a zero-day attack. In this paper, we aim to automate this process and enable fast, patch-level pro- tection generation

Locasto, Michael E.

208

Lean and Steering Motorcycle Dynamics Reconstruction : An Unknown Input HOSMO Approach  

E-Print Network [OSTI]

Lean and Steering Motorcycle Dynamics Reconstruction : An Unknown Input HOSMO Approach L. Nehaoua1. For this purpose, we consider a unknown input high order sliding mode observer (UIHOSMO). First, a motorcycle- flected by an important increase of motorcycle's fatalities. Recent statistics confirm this fact

Paris-Sud XI, Université de

209

First all-sky search for continuous gravitational waves from unknown sources in binary systems  

E-Print Network [OSTI]

We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect ...

Aggarwal, Nancy

210

Vision-based guidance and control of a hovering vehicle in unknown environments  

E-Print Network [OSTI]

This thesis presents a methodology, architecture, hardware implementation, and results of a system capable of controlling and guiding a hovering vehicle in unknown environments, emphasizing cluttered indoor spaces. Six-axis ...

Ahrens, Spencer Greg

2008-01-01T23:59:59.000Z

211

unknown title  

E-Print Network [OSTI]

(DOI: will be inserted by hand later) HD 172189: An eclipsing and spectroscopic binary with a ? Sct-type pulsating component in an open cluster

S. Martn-ruiz; P. J. Amado; J. C. Surez; A. Moya; A. Arellano Ferro; I. Ribas; E. Poretti

2005-01-01T23:59:59.000Z

212

unknown title  

E-Print Network [OSTI]

Analytic expressions for the single particle energies with a quadrupole-quadrupole interaction and the relation to Elliotts SU(3) model

E. Moya De Guerra; P. Sarriguren; L. Zamick; Typeset Using Revtex

2008-01-01T23:59:59.000Z

213

unknown title  

E-Print Network [OSTI]

A. Evidence for carcinogenicity to hum ans (sufficient) There have been a number of case reports of skin cancer in patients who used tar ointments for a variety of skin diseasesl,2. A mortality analysis in the UK from 1946 showed a greatly increased scrotal cancer risk for patent-fuel workers. Furthermore, a large number of case reports describe the development of skin (including the scrotum) cancer in workers exposed to coal-tars or coal-tar pitches (see p. 174)1. Several epidemiological studies have shown an excess of lung cancer among workers exposed to coal-tar fumes in coal gasification and coke production3.. One study showed a small excess of bladder cancer in tar distillers and in patent-fuel workers. An elevated risk of cancer of the renal pelvis was seen in workers exposed to 'petroleum or tar or pitch'l. One study of milwrights and welders exposed to coal-tars and coal-tar pitch in a stamping plant showed significant excesses of leukaemia and of cancers of the lung and digestive organs5. B. Evidence for carcinogenicity to animaIs (suffcient) Coal-tars from blast furnaces, coke ovens and co al gasification plants, as well as

unknown authors

214

Unknown significance  

Science Journals Connector (OSTI)

...positive. Another, TP53, confers a nearly 100% chance of cancer in women and a 73% chance in men; TP53 cancers include brain cancers and sarcomas. When it comes to two of the genes on the panel, BRCA1 and BRCA2, there's little doubt that in cancer-prone...

Jennifer Couzin-Frankel

2014-12-05T23:59:59.000Z

215

unknown title  

E-Print Network [OSTI]

THE GOAL OF PROJECT APOLLO, to place a man on the surfaceof the Moon and return him safely to Earth, was a task for engineering and technology. The resultant transportation system was so robust in its capability that a rich scientific harvest also was gathered in the process. The visibility and magnitude of the Apollo program left the impression, even within the scientific community,that the major lunar scientific questions had been answered. Since the Surveyor project, NASA's unmanned planetary program has ignored the Moon, preferring to concentrate its admittedly limited resources on other bodies in the solar system. In 1972,lunar scientists proposed launching a remote-sensing satellite into lunar polar orbit. Carrying a small number of geochemical and geophysical sensors,the Lunar Polar Orbiter (LBO)was designed to expand to global coverage the limited Apollo orbital science data set. Remote-sensing information from the orbiting Service Modules of Apollos 15, 16,and 17 had been invaluable in revealing the scale and extent of the planetary processes whose nature and timing were decoded in analyses of the returned samples. Low orbital inclination and limited time at the Moon resulted in tantalizingly

unknown authors

216

unknown title  

E-Print Network [OSTI]

is a schematic of the fission theory for formation of planets and major moons. The left column is the

unknown authors

2008-01-01T23:59:59.000Z

217

unknown title  

E-Print Network [OSTI]

AbstractThe problem of wastewater treatment in Egypt is a two-fold problem; the first part concerning the existing rural areas, the second one dealing with new industrial/domestic areas. In Egypt several agricultural projects have been initiated by the government and the private sector as well, in order to change its infrastructure. As a reliable energy source, photovoltaic pumping systems have contributed to supply water for local rural communities worldwide; they can also be implemented to solve the problem wastewater environment pollution. The solution of this problem can be categorised as recycle process. In addition, because of regional conditions past technologies are being reexamined to select a smallscale treatment system requiring low construction and maintenance costs. This paper gives the design guidelines of a Photovoltaic Small-Scale Wastewater Treatment Plant (PVSSWTP) based on technologies that can be transferred. KeywordsRenewable energy sources, Photovoltaic, small-scale projects, wastewater treatment. I I.

Photovoltaic Small-scale; Wastewater Treatment; Fadia M. A. Ghali

218

unknown title  

E-Print Network [OSTI]

L. L e i n emann und H. H. Ha t t eme r Genetic variation and mating pattern in a stand of yew (Taxus baccata L.)................................ 217 (Genetische Variation und Paarungssystem in einem Eiben-bestand (Taxus baccata)

C Mann; Unter Mitwirkung Der

219

unknown title  

E-Print Network [OSTI]

Transcription of the gene encoding melanomaassociated antigen gp100 in tissues and cell lines other than those of the melanocytic lineage

unknown authors

220

unknown title  

E-Print Network [OSTI]

Tyrosinase expression in the peripheral blood of stage III melanoma patients is associated with a poor prognosis: a clinical follow-up study of 110 patients

S Osella-abate; P Savoia; P Quaglino; Mt Fierro; C Leporati; M Ortoncelli; Mg Bernengo

Note: This page contains sample records for the topic "volt unknown percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

unknown title  

E-Print Network [OSTI]

Quantitative methylation analyses of resection margins predict local recurrences and disease-specific deaths in patients with head and neck squamous cell carcinomas

Hk Tan; P Saulnier; A Auperin; L Lacroix; O Casiraghi; F Janot; P Fouret; S Temam

222

unknown title  

E-Print Network [OSTI]

www.elsevier.com/locate/envpol Heavy metal pollution disturbs immune response in wild ant populations

Jouni Sorvari A; Liisa M. Rantala B; Markus J. Rantala A; Harri Hakkarainen A; Tapio Eeva A

2006-01-01T23:59:59.000Z

223

unknown title  

E-Print Network [OSTI]

The steam engine, then, we may just look upon as the noblest machine invented by man the pride of the machinist, the admiration of the philosopher....

unknown authors

224

unknown title  

E-Print Network [OSTI]

rs ch un g s-sc hw er p un kt Fa ku lt t 1 0 Fa ku lt t 0 9 Fa ku lt t 0 6 Fa ku lt t 0 5 Fa ku lt t 0 4 Fa ku lt t 0 3 Fa ku lt t 0 2 Fa ku lt

unknown authors

225

Bloom, fruit development, and embryo development of peaches in a mild-winter region, and use of percent dry weight of ovule as a maturity index  

E-Print Network [OSTI]

persica (L.) Batsch] were examined, and percent dry weight of ovule (PDO) was studied as an embryo maturity index for stratification-germination in the breeding program. Differences in bloom times of 5 bloom period (BP) reference cultisms resulted...

Bacon, Terry A

2012-06-07T23:59:59.000Z

226

(Vg = 2 volts, Fp = 3,7 volts). Dans le circuit  

E-Print Network [OSTI]

the process is incom- plete. But since it is advantageous to have thermionic convertors workingat temperatures and the latter was used simultaneously for the ionization process. In general, when the energy to be converted

Paris-Sud XI, Université de

227

2-D TOMOGRAPHY FROM NOISY PROJECTIONS TAKEN AT UNKNOWN RANDOM DIRECTIONS  

E-Print Network [OSTI]

to the Fourier-projection slice theorem that relates the 1-D Fourier transform R(f) of the Radon transform2-D TOMOGRAPHY FROM NOISY PROJECTIONS TAKEN AT UNKNOWN RANDOM DIRECTIONS A. SINGER AND H.-T. WU Abstract. Computerized Tomography (CT) is a standard method for obtaining internal struc- ture of objects

Singer, Amit

228

Host suppression and bioinformatics for sequence-based characterization of unknown pathogens.  

SciTech Connect (OSTI)

Bioweapons and emerging infectious diseases pose formidable and growing threats to our national security. Rapid advances in biotechnology and the increasing efficiency of global transportation networks virtually guarantee that the United States will face potentially devastating infectious disease outbreaks caused by novel ('unknown') pathogens either intentionally or accidentally introduced into the population. Unfortunately, our nation's biodefense and public health infrastructure is primarily designed to handle previously characterized ('known') pathogens. While modern DNA assays can identify known pathogens quickly, identifying unknown pathogens currently depends upon slow, classical microbiological methods of isolation and culture that can take weeks to produce actionable information. In many scenarios that delay would be costly, in terms of casualties and economic damage; indeed, it can mean the difference between a manageable public health incident and a full-blown epidemic. To close this gap in our nation's biodefense capability, we will develop, validate, and optimize a system to extract nucleic acids from unknown pathogens present in clinical samples drawn from infected patients. This system will extract nucleic acids from a clinical sample, amplify pathogen and specific host response nucleic acid sequences. These sequences will then be suitable for ultra-high-throughput sequencing (UHTS) carried out by a third party. The data generated from UHTS will then be processed through a new data assimilation and Bioinformatic analysis pipeline that will allow us to characterize an unknown pathogen in hours to days instead of weeks to months. Our methods will require no a priori knowledge of the pathogen, and no isolation or culturing; therefore it will circumvent many of the major roadblocks confronting a clinical microbiologist or virologist when presented with an unknown or engineered pathogen.

Branda, Steven S.; Lane, Todd W.; Misra, Milind; Meagher, Robert J.; Patel, Kamlesh D.; Kaiser, Julia N.

2009-11-01T23:59:59.000Z

229

Organizations around the world lose an estimated five percent of their annual revenues to fraud, according to a survey of fraud experts conducted by the Association of Certified  

E-Print Network [OSTI]

Organizations around the world lose an estimated five percent of their annual revenues to fraud, according to a survey of fraud experts conducted by the Association of Certified Fraud Examiners (ACFE, the University's total expense for scholarships and fellowships was $110,067,000. Fraud cost includes reported

Sanders, Seth

230

www.global.unam.mx www.unam.mx UNAM is home to more than 45 research institutes, centers and university programs; 50 percent of the  

E-Print Network [OSTI]

and university programs; 50 percent of the research carried out in Mexico is generated by our institution. Our researchers cover the spectrum of disciplines, including energy, engineering, environmental sciences, genomic sciences, medicine, nanotechnologies, sustainable development, and water. Nationwide, one out of every 3

Petriu, Emil M.

231

Memory difference control of unknown unstable fixed points: Drifting parameter conditions and delayed measurement  

E-Print Network [OSTI]

Difference control schemes for controlling unstable fixed points become important if the exact position of the fixed point is unavailable or moving due to drifting parameters. We propose a memory difference control method for stabilization of a priori unknown unstable fixed points by introducing a memory term. If the amplitude of the control applied in the previous time step is added to the present control signal, fixed points with arbitrary Lyapunov numbers can be controlled. This method is also extended to compensate arbitrary time steps of measurement delay. We show that our method stabilizes orbits of the Chua circuit where ordinary difference control fails.

Jens Christian Claussen; Thorsten Mausbach; Alexander Piel; Heinz Georg Schuster

2006-09-20T23:59:59.000Z

232

The effects of storage time, storage temperature, and concentration on percent recoveries of thermally desorbed diffusive dosimeter samples contaminated with chloroform  

E-Print Network [OSTI]

, the Analabs Thermal Desorber. 4. The Programmed Thermal Desorber on the left and linear chart recorder on the far right. 5. Gas Chromatograph Peak, Integrator Counting, and GC Conditions for Chloroform. 10 17 19 21 24 6. Photograph Illustrating.... A 2 x 3 x 3 Factorial Treatment Design . 13. Analysis of Variance Table for the Experimental Data 14. Mean Percent Recovery vs. Storage Temperature for 7 Days and 14 Days Storage Time At Concentration I (5 ppm - 8 hours). 26 27 28 29 30 31...

Gallucci, Joseph Matthew

2012-06-07T23:59:59.000Z

233

First all-sky search for continuous gravitational waves from unknown sources in binary systems  

E-Print Network [OSTI]

We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO Science Run and the second and third Virgo Science Runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ~2,254 h and a frequency- and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semi-major axes of the orbit from ~0.6e-3 ls to ~6,500 ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3e-24 at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for circular binary orbits, the upper limits obtained remain valid for orbital eccentricities as large as 0.9. In addition, upper limits are placed on continuous gravitational wave emission from the low-mass x-ray binary Scorpius X-1 between 20 Hz and 57.25 Hz.

The LIGO Scientific Collaboration; the Virgo Collaboration; J. Aasi; B. P. Abbott; R. Abbott; T. Abbott; M. R. Abernathy; T. Accadia; F. Acernese; K. Ackley; C. Adams; T. Adams; P. Addesso; R. X. Adhikari; C. Affeldt; M. Agathos; N. Aggarwal; O. D. Aguiar; A. Ain; P. Ajith; A. Alemic; B. Allen; A. Allocca; D. Amariutei; M. Andersen; R. Anderson; S. B. Anderson; W. G. Anderson; K. Arai; M. C. Araya; C. Arceneaux; J. Areeda; S. M. Aston; P. Astone; P. Aufmuth; C. Aulbert; L. Austin; B. E. Aylott; S. Babak; P. T. Baker; G. Ballardin; S. W. Ballmer; J. C. Barayoga; M. Barbet; B. C. Barish; D. Barker; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; M. A. Barton; I. Bartos; R. Bassiri; A. Basti; J. C. Batch; J. Bauchrowitz; Th. S. Bauer; B. Behnke; M. Bejger; M. G. Beker; C. Belczynski; A. S. Bell; C. Bell; G. Bergmann; D. Bersanetti; A. Bertolini; J. Betzwieser; P. T. Beyersdorf; I. A. Bilenko; G. Billingsley; J. Birch; S. Biscans; M. Bitossi; M. A. Bizouard; E. Black; J. K. Blackburn; L. Blackburn; D. Blair; S. Bloemen; M. Blom; O. Bock; T. P. Bodiya; M. Boer; G. Bogaert; C. Bogan; C. Bond; F. Bondu; L. Bonelli; R. Bonnand; R. Bork; M. Born; V. Boschi; Sukanta Bose; L. Bosi; C. Bradaschia; P. R. Brady; V. B. Braginsky; M. Branchesi; J. E. Brau; T. Briant; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; A. F. Brooks; D. A. Brown; D. D. Brown; F. Brckner; S. Buchman; T. Bulik; H. J. Bulten; A. Buonanno; R. Burman; D. Buskulic; C. Buy; L. Cadonati; G. Cagnoli; J. Caldern Bustillo; E. Calloni; J. B. Camp; P. Campsie; K. C. Cannon; B. Canuel; J. Cao; C. D. Capano; F. Carbognani; L. Carbone; S. Caride; A. Castiglia; S. Caudill; M. Cavagli; F. Cavalier; R. Cavalieri; C. Celerier; G. Cella; C. Cepeda; E. Cesarini; R. Chakraborty; T. Chalermsongsak; S. J. Chamberlin; S. Chao; P. Charlton; E. Chassande-Mottin; X. Chen; Y. Chen; A. Chincarini; A. Chiummo; H. S. Cho; J. Chow; N. Christensen; Q. Chu; S. S. Y. Chua; S. Chung; G. Ciani; F. Clara; J. A. Clark; F. Cleva; E. Coccia; P. -F. Cohadon; A. Colla; C. Collette; M. Colombini; L. Cominsky; M. Constancio Jr.; A. Conte; D. Cook; T. R. Corbitt; M. Cordier; N. Cornish; A. Corpuz; A. Corsi; C. A. Costa; M. W. Coughlin; S. Coughlin; J. -P. Coulon; S. Countryman; P. Couvares; D. M. Coward; M. Cowart; D. C. Coyne; R. Coyne; K. Craig; J. D. E. Creighton; T. D. Creighton; S. G. Crowder; A. Cumming; L. Cunningham; E. Cuoco; K. Dahl; T. Dal Canton; M. Damjanic; S. L. Danilishin; S. D'Antonio; K. Danzmann; V. Dattilo; H. Daveloza; M. Davier; G. S. Davies; E. J. Daw; R. Day; T. Dayanga; G. Debreczeni; J. Degallaix; S. Delglise; W. Del Pozzo; T. Denker; T. Dent; H. Dereli; V. Dergachev; R. De Rosa; R. T. DeRosa; R. DeSalvo; S. Dhurandhar; M. Daz; L. Di Fiore; A. Di Lieto; I. Di Palma; A. Di Virgilio; A. Donath; F. Donovan; K. L. Dooley; S. Doravari; S. Dossa; R. Douglas; T. P. Downes; M. Drago; R. W. P. Drever; J. C. Driggers; Z. Du; S. Dwyer; T. Eberle; T. Edo; M. Edwards; A. Effler; H. Eggenstein; P. Ehrens; J. Eichholz; S. S. Eikenberry; G. Endr?czi; R. Essick; T. Etzel; M. Evans; T. Evans; M. Factourovich; V. Fafone; S. Fairhurst; Q. Fang; S. Farinon; B. Farr; W. M. Farr; M. Favata; H. Fehrmann; M. M. Fejer; D. Feldbaum; F. Feroz; I. Ferrante; F. Ferrini; F. Fidecaro; L. S. Finn; I. Fiori; R. P. Fisher; R. Flaminio; J. -D. Fournier; S. Franco; S. Frasca; F. Frasconi; M. Frede; Z. Frei; A. Freise; R. Frey; T. T. Fricke; P. Fritschel; V. V. Frolov; P. Fulda; M. Fyffe; J. Gair; L. Gammaitoni; S. Gaonkar; F. Garufi; N. Gehrels; G. Gemme; E. Genin; A. Gennai; S. Ghosh; J. A. Giaime; K. D. Giardina; A. Giazotto; C. Gill; J. Gleason; E. Goetz; R. Goetz; L. Gondan; G. Gonzlez; N. Gordon; M. L. Gorodetsky; S. Gossan; S. Goler; R. Gouaty; C. Grf; P. B. Graff; M. Granata; A. Grant; S. Gras; C. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; P. Groot; H. Grote; K. Grover; S. Grunewald; G. M. Guidi; C. Guido; K. Gushwa; E. K. Gustafson; R. Gustafson; D. Hammer; G. Hammond; M. Hanke; J. Hanks; C. Hanna; J. Hanson; J. Harms; G. M. Harry; I. W. Harry; E. D. Harstad; M. Hart; M. T. Hartman; C. -J. Haster; K. Haughian; A. Heidmann; M. Heintze; H. Heitmann; P. Hello; G. Hemming; M. Hendry; I. S. Heng; A. W. Heptonstall; M. Heurs; M. Hewitson; S. Hild; D. Hoak; K. A. Hodge; K. Holt; S. Hooper; P. Hopkins; D. J. Hosken; J. Hough; E. J. Howell; Y. Hu; E. Huerta; B. Hughey; S. Husa; S. H. Huttner; M. Huynh; T. Huynh-Dinh; D. R. Ingram; R. Inta; T. Isogai; A. Ivanov; B. R. Iyer; K. Izumi; M. Jacobson; E. James; H. Jang; P. Jaranowski; Y. Ji; F. Jimnez-Forteza; W. W. Johnson; D. I. Jones; R. Jones; R. J. G. Jonker; L. Ju; Haris K; P. Kalmus; V. Kalogera; S. Kandhasamy; G. Kang; J. B. Kanner; J. Karlen; M. Kasprzack; E. Katsavounidis; W. Katzman; H. Kaufer; K. Kawabe; F. Kawazoe; F. Kflian; G. M. Keiser; D. Keitel; D. B. Kelley; W. Kells; A. Khalaidovski

2014-05-30T23:59:59.000Z

234

First all-sky search for continuous gravitational waves from unknown sources in binary systems  

E-Print Network [OSTI]

We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO Science Run and the second and third Virgo Science Runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ~2,254 h and a frequency- and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semi-major axes of the orbit from ~0.6e-3 ls to ~6,500 ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3e-24 at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for ci...

Aasi, J; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brckner, F; Buchman, S; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Bustillo, J Caldern; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavagli, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corpuz, A; Corsi, A; Costa, C A; Coughlin, M W; Coughlin, S; Coulon, J -P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Creighton, T D; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Canton, T Dal; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; Debreczeni, G; Degallaix, J; Delglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Daz, M; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Donath, A; Donovan, F; Dooley, K L; Doravari, S; Dossa, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H; Ehrens, P; Eichholz, J; Eikenberry, S S; Endr\\Hoczi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; Gonzlez, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goler, S; Gouaty, R; Grf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K; Gustafson, E K; Gustafson, R; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Hooper, S; Hopkins, P; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Huerta, E; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jaranowski, P; Ji, Y; Jimnez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kawabe, K; Kawazoe, F; Kflian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N; Kim, N G; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S

2014-01-01T23:59:59.000Z

235

Using Photon Activation Analysis To Determine Concentrations Of Unknown Components In Reference Materials  

SciTech Connect (OSTI)

Using certified multi-element reference materials for instrumental analyses one frequently is confronted with the embarrassing fact that the concentration of some desired elements are not given in the respective certificate, nonetheless are detectable, e.g. by photon activation analysis (PAA). However, these elements might be determinable with sufficient quality of the results using scaling parameters and the well-known quantities of a reference element within the reference material itself. Scaling parameters include: activation threshold energy, Giant Dipole Resonance (GDR) peak and endpoint energy of the bremsstrahlung continuum; integrated photo-nuclear cross sections for the isotopes of the reference element; bremsstrahlung continuum integral; target thickness; photon flux density. Photo-nuclear cross sections from the unreferenced elements must be known, too. With these quantities, the integral was obtained for both the known and unknown elements resulting in an inference of the concentration of the unreported element based upon the reported value, thus also the concentration of the unreferenced element in the reference material. A similar method to determine elements using the basic nuclear and experimental data has been developed for thermal neutron activation analysis some time ago (k{sub 0} Method).

Green, Jaromy; Sun, Zaijing [Idaho State University, Physics Department, 921 S. 8th Avenue, Stop 8106, Pocatello, ID 83209 (United States); Wells, Doug [Idaho State University, Physics Department, 921 S. 8th Avenue, Stop 8106, Pocatello, ID 83209 (United States); Idaho Accelerator Center, 1500 Ricken Drive, Pocatello, ID 83201 (United States); Maschner, Herb [Idaho State University, Anthropology Department, 921 S. 8th Avenue, Stop 8005, Pocatello, ID 83209 (United States)

2011-06-01T23:59:59.000Z

236

On the estimation of the unknown reactivity coefficients in a CANDU reactor  

Science Journals Connector (OSTI)

A space-time kinetics based inverse architecture method is suggested to analyze the reactivity variations associated with power excursions in a generic CANDU reactor. It is intended to provide diagnosis tools to gain enhanced control thereby ensuring safe operation of the plant. A methodology for analyzing the data available from the in core flux detectors and extracting the unknown reactivity coefficients is presented. The proposed system uses a reference model in conjunction with an optimal estimator. The reference model is composed of a state space representation of the space-time dynamics of neutron flux in the core, based on modal expansion approximation, and a time domain optimal estimator filter. We investigated three different estimation techniques based on recursive prediction error method (RPEM), dual extended Kalman filter (DEKF), and joint extended Kalman filter (JEKF). We compared their applicability to the estimation of coolant-void dynamic reactivity in loss-of-coolant accident in a CANDU reactor. The state equations also include the characteristics of the detector responses. The thermal hydraulic models were not included in the calculations. Two different types of detectors are considered in this analysis, the over prompt responsive Platinum detector of the reactor shutdown systems, and the under delayed responsive Vanadium detector of the flux mapping system.

Lobat Tayebi; Daryoosh Vashaee

2013-01-01T23:59:59.000Z

237

Affordable, clean and secure energy is essential for  

Energy Savers [EERE]

by 25 percent over conventional engines. * All-electric and plug-in hybrid electric vehicles reduce carbon dioxide emissions in the transportation sector. The Chevrolet Volt...

238

Sandia National Laboratories: HelioVolt Modules Installed at...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Exhibition (EU PVSC) EC Top Publications Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter Experimental Wave Tank Test for Reference Model 3 Floating- Point...

239

2013 Chevrolet Volt - VIN 3929 - Advanced Vehicle Testing - Beginning...  

Broader source: Energy.gov (indexed) [DOE]

Voltage 3 : 3.00 V Thermal Management: Active - Liquid cooled BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 4,007 mi Date of...

240

2013 Chevrolte Volt - VIN 3929 - Advanced Vehicle Testing - Baseline...  

Broader source: Energy.gov (indexed) [DOE]

Sheets (MSDS) for all unique hazardous materials the vehicle is equipped with, including Energy Storage System (ESS) batteries or capacitors, and auxiliary batteries. (3)...

Note: This page contains sample records for the topic "volt unknown percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

2011 Chevrolte Volt - VIN 0815 - Advanced Vehicle Testing - Baseline...  

Broader source: Energy.gov (indexed) [DOE]

Sheets (MSDS) for all unique hazardous materials the vehicle is equipped with, including Energy Storage System (ESS) batteries or capacitors, and auxiliary batteries. (3)...

242

Chevrolet Volt for a Smart Planet Video Transcript  

E-Print Network [OSTI]

Gassenfeit, GM: A smarter automotive industry is one that can foresee the future and then bring it to market pla

243

Some operating features of a 100,000-volt transmission  

E-Print Network [OSTI]

of the thesis - - - - - - Page 2. (2) Introductory description of line - - - Page 5* A* Stations in operation, B. Plan and profile of route, C. Mechanical construction. D. Mechanical weakness of line - - - Paige 10. a^ Excessive lengths of spans. b... Superstructure Denver Substation - 7 Profile of the Transmission Line 8a Plan of the Transmission Line - - - - - 8b Transmission Line at Hell Gate - - - - - 11 Sleet on the Argentine Crest Tower 13 Tower Crushed by Snow Slide - - - - - 13 Curve of Sparking...

Jones, Raymond

1914-03-17T23:59:59.000Z

244

New LM Unit Root Tests in the Presence of a Possible Break of Unknown Date and Size  

E-Print Network [OSTI]

New LM Unit Root Tests in the Presence of a Possible Break of Unknown Date and Size John T. Cuddington and Shuichiro Nishioka December 6, 2005 Abstract: Lagrange Multiplier (LM) unit root tests performs poorly when used in LM unit root tests and propose an alternative procedure that uses the sup

245

Purification of the product of the unknown gene from the pyrLBIX operon in Escherichia coli  

E-Print Network [OSTI]

PURIFICATION OF THE PRODUCT OF THE UNKNO%N GENE FROM THE R~BIX OPERON IN ESCHERICHIA COLI A Thesis by FRANCINE DUSZA SHIRLEY Submitted to the Office of Graduate Studies of Texas ASM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1989 Major Subject: Genetics PURIFICATION OF THE PRODUCT OF THE UNKNOWN GENE FROM THE II~B OPERON IN ESCHERICHIA COLl A Thesis by FRANCINE DUSZA SHIRLEY Approved as to content and style by: (Z (~g James R...

Shirley, Francine Dusza

1989-01-01T23:59:59.000Z

246

The Environmental Protection Agency (EPA) has inventoried over 30000 major hazardous waste sites in the US of which about 80 percent present some threat to groundwater supplies. The remediation of each of these  

E-Print Network [OSTI]

in the US of which about 80 percent present some threat to groundwater supplies. The remediation of each new and innovative strategies are developed. Much of the problem and initial cost of subsurface remediation concerns site characterization. A three-dimensional picture of the heterogeneous subsurface

Rubin, Yoram

247

Communicating with unknown teammates  

Science Journals Connector (OSTI)

Past research has investigated a number of methods for coordinating teams of agents, but, with the growing number of sources of agents, it is likely that agents will encounter teammates that do not share their coordination methods. Therefore, it is desirable ... Keywords: ad hoc teamwork, multi-armed bandits, multiagent systems, teamwork

Samuel Barrett, Noa Agmon, Noam Hazon, Sarit Kraus, Peter Stone

2014-05-01T23:59:59.000Z

249

ACHIEVING CALIFORNIA'S 33 PERCENT RENEWABLE PORTFOLIO  

E-Print Network [OSTI]

. To remedy this limitation, the report presents a new feed-in tariff approach that is modelled on successful as the basis for feed-in tariff rates that do not achieve the renewable goal, or do so at a higher cost than and risks because of their diversification effects. KEYWORDS Feed-in tariffs, portfolio analysis, generation

250

Functional Annotation and Mechanistic Characterization of Enzymes with Unknown Functions: Studies on Adenine Deaminase, N-6-Methyladenine Deaminase and the C-P Lyase Pathway  

E-Print Network [OSTI]

to be oxygenated were primarily the metal binding residues implying the origin of this reaction was the binuclear iron center. A group of bacterial enzymes that are co-localized in the same genomic operon as ADE but of unknown function were identified. The enzyme...

Kamat, Siddhesh

2012-10-19T23:59:59.000Z

251

Time-and Energy-efficient Detection of Unknown Tags in Large-scale RFID Systems Xiulong Liu, Heng Qi, Keqiu Li  

E-Print Network [OSTI]

Time- and Energy-efficient Detection of Unknown Tags in Large-scale RFID Systems Xiulong Liu, Heng by reducing more than 90% of the required execution time and energy consumption. I. INTRODUCTION Radio, this is the first piece of work taking both time-efficiency and energy-efficiency into consideration, where

Liu, Alex X.

252

Power-One produces the industry's broadest selection of linear power supplies with output voltages from 5 volts through 250 volts. Rugged  

E-Print Network [OSTI]

-A 5V @ 9A (Note 1,5) N 5V HD5-12/OVP-A 5V @ 12A (Note 1,5) D HE5-18/OVP-A 5V @ 18A (Note 1,5) E F5 regulatory standards, and is CE Marked to the Low Voltage Directive (LVD). INTERNATIONAL SERIES LINEARS marked to Low Voltage Directive · 100% Burn-In · 2 Year Warranty · Overvoltage Protection (OVP) Standard

Berns, Hans-Gerd

253

In-silico dissection of tumours and its application in the identification of the tissue of origin of cancers of unknown primary site  

Science Journals Connector (OSTI)

We have used TCLASS a multi-class tumour classifier that interprets gene expression microarray data and allows the identification of the primary site of CUPs. The classifier is implemented as a web-based tool and is an extremely simple and straightforward approach for molecular characterisation of tumour samples. We randomly selected 100 metastatic cancer samples from the large Expression Project for Oncology and show an accuracy of TCLASS of 88% on these samples. We conclude that TCLASS is a user friendly tool that will allow the molecular characterisation of tumour samples of unknown origin analysed with Affymetrix U133 Plus 2.0 GeneChips.

T.A. Ayoubi; Patrick Lindsey; H.J.M. Smeets; A.P.M. Stassen

2011-01-01T23:59:59.000Z

254

EST-CE QU'ON VOlT ATRAVERS UN MICROSCOPE? '  

E-Print Network [OSTI]

speculations philosophiques. *Ian Hacking, «Do we see through a microscope?», P~cifi: Ph~loso phical Quarterly. Texte de Ian Hacking extrait de : Philosophie des sciences - Tome 2 : Naturalismes et réalismes Dirigé par Sandra Laugier , Pierre Wagner Ed. Vrin, Paris #12;240 IAN HACKING LA GRANDE CHAiNE DES ETRES Le

Aubin, David

255

Winery pairs vines with volts, leads the way for solar on BPA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

vineyard. You'll find productive bugs, not poisons. And now, you'll also find 4,100 solar panels, painstakingly placed on the 1,000 acre estate to harvest the sun's rays. The...

256

Scalable Distributed Automation System: Scalable Real-time Decentralized Volt/VAR Control  

SciTech Connect (OSTI)

GENI Project: Caltech is developing a distributed automation system that allows distributed generatorssolar panels, wind farms, thermal co-generation systemsto effectively manage their own power. To date, the main stumbling block for distributed automation systems has been the inability to develop software that can handle more than 100,000 distributed generators and be implemented in real time. Caltechs software could allow millions of generators to self-manage through local sensing, computation, and communication. Taken together, localized algorithms can support certain global objectives, such as maintaining the balance of energy supply and demand, regulating voltage and frequency, and minimizing cost. An automated, grid-wide power control system would ease the integration of renewable energy sources like solar power into the grid by quickly transmitting power when it is created, eliminating the energy loss associated with the lack of renewable energy storage capacity of the grid.

None

2012-03-01T23:59:59.000Z

257

The characteristics of arcing faults in 480-volt power distribution systems  

E-Print Network [OSTI]

spontaneous arc-over to ground or to another phase. ~ Insulation failure due to surface conduction across conductive dust or contamination, or due to a cracked insulator body. ~ Conductive gases emanating from circuit breakers or fuses during circuit.... ~ Rodents or vermin, especially those returning from a wet outing to the warmth of the equipment. In tropical climates, snakes are known to have caused arcing faults across insulator strings. Since causes of arcing fault cannot always be eliminated in 480...

Shih, Yu?

2012-06-07T23:59:59.000Z

258

Data Analysis and Reporting of the 150 Chevrolet Volt ARRA Demonstration Fleet  

SciTech Connect (OSTI)

This is the final report for the GM Vehicle Demo analysis and reporting. I'd like it to be posted to the AVTA website. It contains no new information than what is in Quarterly reports that were previously approved by GM.

Richard "Barney" Carlson

2014-07-01T23:59:59.000Z

259

Mega-electron-volt ion beam induced anisotropic plasmon resonance of silver nanocrystals in glass  

E-Print Network [OSTI]

, 3508 TA Utrecht, The Netherlands B. J. Kooi Department of Applied Physics, Materials Science Center. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125 A. M. Vredenberg Department of Atomic and Interface Physics, Debye Institute, Utrecht University, P.O. Box 80000

Polman, Albert

260

Laboratory testing of Saft SEH-5-200 6 volt traction battery  

SciTech Connect (OSTI)

The purpose of this report is to describe the testing performed on the Saft SEH-5-200 flooded nickel cadmium traction battery by the INEL Electric Vehicle Battery Laboratory, to present the results and conclusions of this testing, and to make appropriate recommendations. 17 figs., 3 tabs.

Hardin, J.E.

1989-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "volt unknown percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Known and unknown SCUBA sources  

E-Print Network [OSTI]

Summary and discussion of some projects to use SCUBA to target sources selected at other wavebands, as well as to find new sub-mm galaxies in `blank fields': FIRBACK galaxies; Lyman break galaxies and `the Blob'; HDF flanking fields and the Groth Strip; survey of lensing cluster fields.

Douglas Scott; Colin Borys; Mark Halpern; Anna Sajina; Scott Chapman; Greg Fahlman

2000-10-25T23:59:59.000Z

262

In Search Of Unknown Atoms  

Science Journals Connector (OSTI)

"The Transuranium People: The Inside Story," by Darleane C. Hoffman, Albert Ghiorso, and Glenn T. Seaborg, Imperial College Press, 2000, 467 pages, $75 (ISBN 1-86094-087-0) ... This excitement is ably conveyed in "The Transuranium People: The Inside Story" by three giants of heavy-element researchDarleane C. Hoffman, Albert Ghiorso, and Glenn T. Seaborg of Lawrence Berkeley National Laboratory in California. ... Seaborg died last year after the manuscript had been completed. ...

RON DAGANI

2000-05-29T23:59:59.000Z

263

Coherent searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: results from the second LIGO science run  

E-Print Network [OSTI]

We carry out two searches for periodic gravitational waves using the most sensitive few hours of data from the second LIGO science run. The first search is targeted at isolated, previously unknown neutron stars and covers the entire sky in the frequency band 160-728.8 Hz. The second search targets the accreting neutron star in the low-mass X-ray binary Scorpius X-1, covers the frequency bands 464-484 Hz and 604-624 Hz, and two binary orbit parameters. Both searches look for coincidences between the Livingston and Hanford 4-km interferometers. For isolated neutron stars our 95% confidence upper limits on the gravitational wave strain amplitude range from 6.6E-23 to 1E-21 across the frequency band; For Scorpius X-1 they range from 1.7E-22 to 1.3E-21 across the two 20-Hz frequency bands. The upper limits presented in this paper are the first broad-band wide parameter space upper limits on periodic gravitational waves using coherent search techniques. The methods developed here lay the foundations for upcoming hi...

Abbott, B; Adhikari, R; Ageev, A; Agresti, J; Allen, B; Allen, J; Amin, R; Anderson, S B; Anderson, W G; Araya, M; Armandula, H; Ashley, M; Asiri, F; Aufmuth, P; Aulbert, C; Babak, S; Balasubramanian, R; Ballmer, S; Barish, B C; Barker, C; Barker, D; Barnes, M; Barr, B; Barton, M A; Bayer, K; Beausoleil, R; Belczynski, K; Bennett, R; Berukoff, S J; Betzwieser, J; Bhawal, B; Bilenko, I A; Billingsley, G; Black, E; Blackburn, K; Blackburn, L; Bland, B; Bochner, B; Bogue, L; Bork, R; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burgess, R; Busby, D; Butler, W E; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K; Cantley, C A; Cardenas, L; Carter, K; Casey, M M; Castiglione, J; Chandler, A; Chapsky, J; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chickarmane, V; Chin, D; Christensen, N; Churches, D; Cokelaer, T; Colacino, C; Coldwell, R; Coles, M; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Creighton, T D; Crooks, D R M; Csatorday, P; Cusack, B J; Cutler, C; Dalrymple, J; D'Ambrosio, E; Danzmann, K; Davies, G; Daw, E; De Bra, D; Delker, T; Dergachev, V; Desai, S; DeSalvo, R; Dhurandhar, S V; Di Credico, A; Ding, H; Drever, R W P; Dupuis, R J; Edlund, J A; Ehrens, P; Elliffe, E J; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fallnich, C; Farnham, D; Fejer, M M; Findley, T; Fine, M; Finn, L S; Franzen, K Y; Freise, A; Frey, R; Fritschel, P; Frolov, V V; Fyffe, M; Ganezer, K S; Garofoli, J; Giaime, J A; Gillespie, A; Goda, K; Goggin, L; Gonzlez, G; Gossler, S; Grandclment, P; Grant, A; Gray, C; Gretarsson, A M; Grimmett, D; Grote, H; Grnewald, S; Gnther, M; Gustafson, E; Gustafson, R; Hamilton, W O; Hammond, M; Hanson, J; Hardham, C; Harms, J; Harry, G; Hartunian, A; Heefner, J; Hefetz, Y; Heinzel, G; Heng, I S; Hennessy, M; Hepler, N; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hindman, N; Hoang, P; Hough, J; Hrynevych, M; Hua, W; Ito, M; Itoh, Y; Ivanov, A; Jennrich, O; Johnson, B; Johnson, W W; Johnston, W R; Jones, D I; Jones, G; Jones, L; Jungwirth, D; Kalogera, V; Katsavounidis, E; Kawabe, K; Kawamura, S; Kells, W; Kern, J; Khan, A; Killbourn, S; Killow, C J; Kim, C; King, C; King, P; Klimenko, S; Koranda, S; Kotter, K; Kovalik, Yu; Kozak, D; Krishnan, B; Landry, M; Langdale, J; Lantz, B; Lawrence, R; Lazzarini, A; Lei, M; Leonor, I; Libbrecht, K; Libson, A; Lindquist, P; Liu, S; Logan, J; Lormand, M; Lubinski, M; Luck, H; Luna, M; Lyons, T T; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Majid, W; Malec, M; Mandic, V; Mann, F; Marin, A; Marka, S; Maros, E; Mason, J; Mason, K; Matherny, O; Matone, L; Mavalvala, N; McCarthy, R; McClelland, D E; McHugh, M; McNabb, J W C; Melissinos, A C; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C; Mikhailov, E; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Miyoki, S; Mohanty, S; Moreno, G; Mossavi, K; Mller, G; Mukherjee, S; Murray, P; Myers, E; Myers, J; Nagano, S; Nash, T; Nayak, R; Newton, G; Nocera, F; Noel, J S; Nutzman, P; Olson, T; O'Reilly, B; Ottaway, D J; Ottewill, A; Ouimette, D A; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Parameswaran, A J; Parameswariah, C; Pedraza, M; Penn, S; Pitkin, M; Plissi, M; Prix, R; Quetschke, V; Raab, F; Radkins, H; Rahkola, R; Rakhmanov, M; Rao, S R; Rawlins, K; Ray-Majumder, S; Re, V; Redding, D; Regehr, M W; Regimbau, T; Reid, S; Reilly, K T; Reithmaier, K; Reitze, D H; Richman, S; Riesen, R; Riles, K; Rivera, B; Rizzi, A; Robertson, D I; Robertson, N A; Robinson, C; Robison, L; Roddy, S; Rodrguez, A; Rollins, J; Romano, J D; Romie, J; Rong, H; Rose, D; Rotthoff, E; Rowan, S; Rdiger, A; Ruet, L; Russell, P; Ryan, K; Salzman, I; Sanchodela, L; Jordana; Sandberg, V; Sanders, G H; Sannibale, V; Sarin, P; Sathyaprakash, B; Saulson, P R; Savage, R; Sazonov, A; Schilling, R; Schlaufman, K; Schmidt, V; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Seader, S E; Searle, A C; Sears, B; Seel, S; Seifert, F; Sellers, D; Sengupta, A S; Shapiro, C A; Shawhan, P; Shoemaker, D H; Shu, Q Z; Sibley, A; Siemens, X; Sievers, L; Sigg, D; Sintes, A M; Smith, J R; Smith, M; Smith, M R; Sneddon, P H; Spero, R; Spjeld, O; Stapfer, G; Steussy, D; Strain, K A; Strom, D; Stuver, A; Summerscales, T; Sumner, M C; Sung, M; Sutton, P J; Sylvestre, J; Takamori, A; Tanner, D B; Tariq, H; Taylor, I; Taylor, R; Taylor, R; Thorne, K A; Thorne, K S; Tibbits, M; Tilav, S; Tinto, M; Tokmakov, 2K V; Torres, C; Torrie, C; Traylor, G; Tyler, W; Ugolini, D W; Ungarelli, C; Vallisneri, M; Van Putten, M H P M; Vass, S; Vecchio, A; Veitch, J; Vorvick, C; Vyachanin, S P; Wallace, L; Walther, H; Ward, H; Ward, R; Ware, B; Watts, K; Webber, D; Weidner, A; Weiland, U; Weinstein, A; Weiss, R; Welling, H; Wen, L; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Wiley, S

2006-01-01T23:59:59.000Z

264

District of Columbia Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 76.0 76.2 75.3 73.4 81.1 82.2 72.9 80.3 74.6 72.2 72.3 71.0 2003 70.4 71.0 69.3 63.9 64.8 75.9 55.6 69.6 77.6 71.8 73.7 74.8 2004 76.1 74.9 74.1 72.9 71.1 70.5 74.3 74.9 74.5 72.5 77.7 78.4 2005 81.0 79.1 78.9 74.5 76.2 85.2 80.8 74.1 80.3 78.0 81.0 81.0 2006 78.2 77.9 77.1 70.3 69.8 67.8 70.1 76.8 73.8 78.1 78.2 78.7 2007 77.0 80.1 73.9 74.4 62.5 77.4 68.0 77.1 67.8 74.0 75.2 78.5 2008 78.0 78.1 78.2 67.8 69.9 70.3 72.2 71.4 73.2 68.0 79.2 78.9 2009 78.8 78.7 76.5 71.7 70.4 67.9 64.8 77.2 68.5 72.4 72.6 78.2 2010 77.6 78.6 75.3 64.5 61.1 68.0 66.9 66.1 72.7 69.1 77.7 77.3 2011 79.4 75.3 74.8 72.3 54.3 60.9 70.6 78.8 70.9 77.6 78.7 71.5

265

Colorado Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

266

Connecticut Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 99.3 99.3 99.2 99.3 99.1 99.2 99.0 99.0 86.9 99.5 99.1 99.2 2003 100.0 98.7 98.7 98.4 98.2 98.4 98.2 98.0 97.6 97.9 98.2 98.5 2004 98.7 98.7 98.7 98.5 97.8 98.7 98.0 98.8 98.7 97.8 98.8 98.9 2005 99.0 99.0 98.9 98.7 98.6 98.5 98.5 98.5 98.5 98.3 98.3 98.6 2006 98.7 98.6 98.7 98.4 98.3 98.4 98.4 98.5 98.3 97.9 98.2 98.3 2007 98.4 98.6 98.6 98.3 98.3 97.3 98.4 97.6 95.5 97.9 97.5 98.2 2008 98.2 98.0 98.1 97.9 97.3 95.8 97.8 97.4 97.4 96.8 97.2 97.8 2009 97.8 98.0 97.9 97.4 97.3 97.2 97.3 97.4 97.1 96.5 96.9 97.3 2010 97.8 97.7 97.6 97.0 96.9 97.3 97.1 97.1 96.8 95.9 96.7 97.0 2011 97.0 97.4 97.0 96.3 96.6 96.5 96.4 96.6 97.0 95.6 96.3 96.5

267

Percent of Commercial Natural Gas Deliveries in Massachusetts Represented  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 99.8 99.8 99.7 99.7 1991 99.8 99.8 99.9 99.9 99.9 99.8 99.7 99.6 99.6 99.8 99.9 99.9 1992 99.9 99.9 99.8 99.8 99.7 99.8 99.7 99.6 99.6 99.6 99.7 99.8 1993 98.9 98.7 98.5 97.7 96.5 97.7 96.8 89.2 97.5 96.7 96.9 97.8 1994 75.2 78.4 72.5 69.8 69.8 61.2 67.0 86.0 79.7 90.6 81.2 87.1 1995 87.9 89.4 92.0 88.3 88.0 82.7 74.6 77.3 77.5 81.0 81.6 79.5 1996 84.7 83.5 82.4 80.2 79.2 71.3 68.1 61.3 55.4 69.5 62.5 68.9 1997 68.0 69.0 72.9 74.1 69.9 48.5 46.0 41.3 43.8 48.7 62.9 68.6

268

Massachusetts Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 99.9 99.9 99.9 99.9 99.8 99.9 99.8 99.8 99.9 99.8 99.8 99.8 2006 100.0 100.0 100.0 100.0 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 2007 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 2008 89.7 89.7 89.3 86.2 78.4 70.7 68.4 68.3 68.1 77.4 83.6 89.3 2009 90.8 93.1 87.5 86.3 84.5 64.9 72.9 66.1 67.2 78.4 83.0 87.7 2010 91.5 89.7 88.6 82.6 77.8 68.7 65.0 61.5 67.4 75.8 84.1 93.4

269

Missouri Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

270

Mississippi Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

271

Pennsylvania Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

272

Vermont Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

273

Maryland Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

274

Hawaii Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

275

Louisiana Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

276

Percent of Commercial Natural Gas Deliveries in Wisconsin Represented by  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 94.1 94.2 94.5 94.0 92.6 87.7 86.1 84.2 84.2 84.3 91.1 95.0 1990 91.6 91.5 91.9 91.9 90.3 86.5 83.1 82.4 82.6 87.5 90.1 93.3 1991 93.8 92.3 92.9 91.2 88.8 83.8 80.7 84.7 83.6 86.7 91.5 92.1 1992 92.7 92.1 91.6 90.0 85.8 82.3 83.3 84.1 85.2 90.7 93.4 95.1 1993 95.2 96.0 95.3 93.5 92.1 90.8 89.2 88.5 90.0 92.6 95.2 96.0 1994 97.1 97.6 97.4 96.6 91.8 89.9 83.5 87.1 87.8 90.8 94.4 84.4 1995 93.5 94.0 93.2 92.4 90.0 81.8 82.3 84.8 87.3 88.9 93.4 93.6 1996 93.9 94.8 94.0 92.0 89.9 86.1 82.1 83.8 82.4 87.1 90.9 91.8 1997 89.7 88.2 88.5 83.3 77.4 60.6 67.8 55.4 62.9 69.3 85.9 83.2 1998 87.0 81.6 79.8 75.5 55.6 55.5 47.6 48.5 45.5 71.1 74.9 79.2

277

Arkansas Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

278

Kentucky Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 92.9 92.8 93.1 92.8 91.4 93.2 94.3 94.4 95.3 91.9 93.4 94.2 2003 93.8 94.2 93.1 93.4 96.9 95.2 94.6 94.5 95.7 92.2 93.9 94.0 2004 94.0 93.9 92.9 92.7 96.0 94.9 95.0 95.3 95.6 93.7 93.7 95.1 2005 94.5 94.5 94.6 94.0 95.7 95.3 95.9 95.8 96.1 93.8 95.3 95.7 2006 96.2 95.5 95.8 98.0 95.5 97.7 96.8 97.3 97.2 95.6 96.4 96.2 2007 96.2 95.9 96.2 95.8 96.4 96.6 96.7 96.9 97.0 95.7 95.8 96.3 2008 96.4 95.9 96.1 96.1 96.0 96.8 97.0 96.5 96.4 95.4 95.7 95.8 2009 95.8 95.3 95.2 94.9 95.3 95.6 95.1 95.6 95.5 94.8 94.9 95.6 2010 95.4 95.7 95.9 95.7 96.0 96.7 96.5 96.3 96.1 94.8 95.3 95.8 2011 95.1 95.0 95.2 95.4 94.9 94.5 95.9 96.5 96.1 97.2 96.3 96.1

279

Alabama Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

280

Indiana Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 98.9 98.5 98.7 99.1 92.8 99.4 98.8 98.8 99.1 99.0 98.8 97.8 2003 97.0 97.0 97.0 96.3 96.6 97.7 96.1 100.0 97.2 96.4 97.1 96.9 2004 97.0 96.7 96.7 96.3 97.3 96.3 97.8 96.5 96.0 96.1 96.7 96.7 2005 96.8 96.7 96.2 95.7 96.4 96.0 96.3 96.3 96.2 96.1 96.4 96.5 2006 96.2 96.3 96.2 96.3 95.8 96.4 95.5 96.1 96.5 97.0 96.2 96.3 2007 96.4 97.0 95.9 96.6 96.1 95.2 95.0 95.6 95.0 94.8 95.9 95.9 2008 95.9 95.8 95.8 94.2 94.1 94.1 93.9 93.9 93.4 93.1 94.4 94.3 2009 94.0 94.9 93.2 92.8 91.7 93.2 92.8 92.1 91.7 93.1 93.3 93.7 2010 94.1 94.5 94.2 93.1 94.1 92.8 93.0 92.9 92.6 93.1 94.0 94.8 2011 95.2 94.7 94.6 94.4 94.4 94.5 93.9 94.7 93.8 94.2 94.2 94.6

Note: This page contains sample records for the topic "volt unknown percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

North Dakota Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

282

West Virginia Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

283

Utah Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

284

New Hampshire Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

285

Wisconsin Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

286

South Carolina Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

287

Arizona Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

288

Rhode Island Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

289

Nebraska Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 71.4 90.5 87.4 84.8 95.4 86.8 82.7 90.4 81.3 75.5 79.7 78.6 2003 80.3 93.4 87.6 91.1 95.3 94.9 87.9 80.0 95.4 69.4 78.6 80.7 2004 81.5 91.9 86.8 94.5 88.7 84.8 89.1 89.1 88.2 83.7 83.7 88.7 2005 86.1 87.2 86.3 83.0 84.5 86.5 85.0 84.4 85.5 83.9 84.3 84.1 2006 87.1 85.9 86.7 85.8 85.0 86.2 87.0 86.2 85.9 83.3 84.2 85.1 2007 84.9 87.4 89.4 86.1 87.5 86.9 88.7 85.5 83.3 77.5 76.6 83.9 2008 86.6 89.0 90.3 89.6 90.1 89.0 87.7 87.3 85.6 75.2 77.2 85.0 2009 90.2 89.1 89.1 86.8 85.8 88.1 86.7 88.8 86.4 83.6 84.6 85.4 2010 87.0 88.8 89.5 86.2 82.5 87.3 86.5 87.8 87.6 87.1 84.0 86.8 2011 87.2 88.9 89.2 86.3 86.1 86.1 87.8 89.1 86.7 86.3 83.3 86.1

290

Virginia Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 88.0 91.4 90.8 89.2 91.0 91.3 88.4 91.6 88.4 88.0 89.0 89.1 2003 88.6 88.6 87.7 87.7 85.5 91.4 80.6 86.1 83.9 86.4 88.3 89.1 2004 88.5 88.5 88.0 87.2 84.7 86.1 87.7 85.7 87.7 88.3 88.4 89.3 2005 90.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 91.2 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2010 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

291

Nevada Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

292

Montana Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 99.8 99.8 99.8 99.8 99.8 99.9 99.9 99.9 2007 99.9 99.9 99.8 99.8 99.7 100.0 99.8 99.8 99.8 99.8 99.9 99.9 2008 99.9 99.9 99.9 99.9 99.8 99.8 99.8 99.8 99.8 99.9 99.9 99.9 2009 99.8 99.9 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.9 99.9 99.9 2010 99.8 99.9 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.9 99.9 99.9

293

Ohio Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

294

Delaware Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

295

Oklahoma Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 99.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

296

Maine Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.8 99.8

297

New Jersey Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 98.0 97.8 97.7 97.9 92.7 97.0 98.1 97.2 97.2 95.4 96.1 95.6 2003 94.9 95.0 95.5 95.0 95.1 95.2 95.3 95.1 96.7 94.4 94.9 94.7 2004 94.5 95.4 95.0 95.4 95.8 95.2 95.2 94.4 95.0 94.2 94.4 94.7 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2010 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

298

Iowa Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

299

Alaska Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

300

Oregon Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: This page contains sample records for the topic "volt unknown percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Kansas Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 2005 99.5 99.5 99.5 99.2 99.5 99.5 99.6 99.6 99.6 99.7 99.7 99.9 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2010 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

302

Percent of Commercial Natural Gas Deliveries in South Carolina Represented  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 98.5 98.5 98.6 98.3 98.1 98.2 98.1 97.7 97.7 97.8 98.0 97.3 1990 98.6 98.4 98.3 98.1 92.2 97.6 97.6 97.5 97.9 97.3 98.0 98.6 1991 98.7 98.9 98.7 96.9 97.4 97.5 97.3 97.7 97.7 97.4 98.9 98.9 1992 99.1 99.1 98.9 98.6 98.5 95.8 95.5 95.8 97.0 99.7 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 95.1 94.6 100.0 95.3 100.0 100.0 1994 100.0 100.0 100.0 99.7 97.8 98.3 97.0 95.7 95.2 95.6 96.2 99.9 1995 97.8 97.5 96.7 95.0 95.6 88.4 95.0 95.1 95.3 95.3 95.9 100.0 1996 100.0 100.0 100.0 100.0 97.5 96.9 100.0 97.3 97.3 96.4 97.4 100.0 1997 100.0 98.3 97.8 96.0 100.0 100.0 99.9 97.1 98.8 99.9 100.0 98.0

303

New York Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

304

Washington Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

305

Texas Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 99.9 100.0 100.0 99.9 100.0 100.0 100.0 99.9 100.0 100.0 100.0

306

Georgia Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

307

NNSA hits 21 percent of CFC goal | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

represent such diverse fields as medical research, education, environment, recreation and sports, civil rights and science and technology. By working collectively, the...

308

Colorado Natural Gas % of Total Residential - Sales (Percent...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 100.0 1990's 99.8 99.6 100.0 100.0 100.0 100.0 100.0 100.0 1.0 100.0 2000's 100.0 100.0 100.0...

309

Number Percent Official Lawrence HC 26,934 100%  

E-Print Network [OSTI]

Lawrence Free State 134 Blue Valley Northwest 117 Blue Valley North 109 Lawrence 94 Saint Thomas Aquinas 90 Olathe East 80 Shawnee Mission Northwest 78 Shawnee Mission South 75 Shawnee Mission West 71 Total 990

310

Sandia National Laboratories: Voltage Increases Up to 25 Percent...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Exhibition (EU PVSC) EC Top Publications Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter Experimental Wave Tank Test for Reference Model 3 Floating- Point...

311

Conditions for collection efficiencies greater than one hundred percent  

SciTech Connect (OSTI)

An account is given for the conditions under which the collection efficiency is hydrogenated amorphous silicon pin-diodes increases to values larger than 100%. By specific bias illumination through the p-side bias generated photocarriers are collected under certain probe beam conditions of the collection efficiency measurement, leading to apparent large collection efficiencies. By numerical modeling they investigated the influence of the diode thickness, bias photon flux and probe absorption coefficient as well as applied voltage for possible sensor applications which may utilize this optical amplifying principle. The alternative with bias light through the n-side and probe light through the p-side is also explored. Collection efficiency values determined by the photogating of bias generated holes become only slightly larger than 100% in contrast to the electron case where values in excess of 3,000% are presented.

Brueggemann, R.; Zollondz, J.H.; Main, C.; Gao, W.

1997-07-01T23:59:59.000Z

312

State and National Wind Resource Potential 30 Percent Capacity...  

Wind Powering America (EERE)

Note - 50% exclusions are not cumulative. If an area is non-ridgecrest forest on FS land, it is just excluded at the 50% level one time. 1) Exclude areas of slope > 20% Derived...

313

Transcending Portland Cement with 100 percent fly ash concrete  

SciTech Connect (OSTI)

The use of concrete, made with 100% fly ash and no Portland cement, in buildings at the Transportation Institute in Bozeman, MT, USA, is described. 3 refs., 7 figs.

Cross, D.; Akin, M.; Stephens, J.; Cuelh, E. [Montana State University, MT (United States)

2009-07-01T23:59:59.000Z

314

PERCENT FEDERAL LAND FOR OIL/GAS FIELD OUTLINES  

U.S. Energy Information Administration (EIA) Indexed Site

Federalland as your second layer. Copy the code into a VBA module in ArcMap. Inputs: Data frame in ArcMap named "Task 2" Layer (0) is a reference layer of your choice Layer...

315

RESEARCH ARTICLE Forty percent revenue increase by combining organic  

E-Print Network [OSTI]

Uganda. Cabbage was grown on eight replicate farms in close association with a farmer field school-Saharan Africa indicate the need for effective strategies to restore soils, while improving smallholder incomes an eco- nomic perspective and none have explored its potential in intensively managed, market vegetable

Paris-Sud XI, Université de

316

Percent of Industrial Natural Gas Deliveries in Connecticut Represente...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 66.4 55.8 55.8 2000's 47.3 54.0 48.9 45.3 44.0 46.4 48.5 50.0 47.3 37.5 2010's 31.1 31.0 32.3...

317

Percent of Commercial Natural Gas Deliveries in Connecticut Represente...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 96.0 93.0 96.5 98.1 80.9 82.0 87.0 81.9 68.7 62.8 2000's 78.3 77.6 72.4 68.1 69.0 70.3 71.0 71.5...

318

Percent of Commercial Natural Gas Deliveries in Connecticut Represente...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 98.4 90.0 81.6 76.5 74.5 80.4 74.8 85.5 90.8 99.5 1990 100.0 100.0 98.7 95.9 92.3 89.9 87.5 86.9 87.2 91.3...

319

Connecticut Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 100.0 1990's 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1.0 100.0 2000's 100.0 99.0 99.0...

320

Percent of Industrial Natural Gas Deliveries in Connecticut Represente...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 66.1 48.5 50.9 50.2 58.7 44.3 34.1 58.5 55.7 73.8 58.9 51.8 2002 45.0 47.4 53.0 41.3 52.5 50.1 38.1 49.3 53.9 52.2 49.1...

Note: This page contains sample records for the topic "volt unknown percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Table 2. Percent of Households with Vehicles, Selected Survey...  

U.S. Energy Information Administration (EIA) Indexed Site

or More","NA","NA",93.75,96.42857143,91.27516779,97.46835443 "Race of Householder1" " White",88.61111111,"NA",91.54929577,91.68704156,90.27093596,92.77845777 " Black...

322

Federal Government Increases Renewable Energy Use Over 1000 Percent...  

Office of Environmental Management (EM)

to power 225,000 homes or a city the size of El Paso, Texas, for a year. "Particularly in light of tight oil and gas supplies caused by Hurricanes Katrina and Rita, it is important...

323

Minnesota Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

324

Michigan Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 97.9 97.7 97.9 97.7 95.5 94.0 95.6 94.1 91.2 91.7 92.6 92.9 2003 93.8 93.4 92.3 96.3 95.8 95.0 95.8 95.5 94.0 93.6 95.9 94.7 2004 95.1 95.6 95.3 95.7 90.9 95.6 95.7 95.6 95.1 95.0 95.3 95.7 2005 95.9 96.1 96.0 95.9 95.9 95.6 95.1 95.1 94.4 93.3 94.2 95.1 2006 94.6 94.4 94.6 95.4 94.6 95.0 94.2 93.8 92.6 92.1 93.4 93.6 2007 94.6 95.1 95.5 95.3 95.5 95.5 94.8 94.5 93.8 92.7 92.1 93.5 2008 93.6 93.5 94.1 95.5 94.2 95.6 95.1 94.3 94.2 91.9 93.1 94.0 2009 93.9 94.6 94.4 94.5 94.3 94.5 93.2 93.8 92.3 91.6 92.7 92.2 2010 93.6 93.5 93.8 80.9 93.6 93.1 93.1 92.7 91.5 90.4 91.6 92.1 2011 92.3 92.7 92.1 93.0 93.1 92.7 91.9 91.5 90.2 89.8 91.0 91.7

325

New Mexico Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

326

Percent of Industrial Natural Gas Deliveries in New Hampshire Represented  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 13.5 16.2 17.9 15.4 9.9 5.0 3.7 8.5 13.7 14.1 17.5 16.5 2002 16.4 11.2 14.6 9.0 8.3 9.0 5.2 10.1 7.7 29.4 32.3 17.4 2003 6.7 7.2 19.4 17.0 10.6 13.5 13.0 12.3 13.4 15.5 21.1 26.3 2004 30.3 9.1 10.7 10.4 7.1 5.5 3.9 4.3 5.6 8.7 9.7 17.0 2005 17.6 17.5 12.0 6.5 6.9 6.6 3.3 10.0 5.5 6.4 13.7 13.0 2006 16.3 24.3 18.2 18.2 17.7 12.9 4.8 9.1 8.0 12.8 8.8 15.6 2007 11.7 16.6 12.0 8.4 15.3 8.9 5.4 7.0 6.0 8.5 10.7 45.8 2008 23.0 22.9 22.0 15.0 16.4 16.2 14.6 12.3 11.2 13.6 16.1 20.0 2009 30.5 28.1 25.0 16.7 15.5 16.3 14.5 13.7 13.3 16.5 18.7 23.1 2010 18.0 16.4 15.4 12.2 10.3 8.8 8.6 10.9 8.0 10.7 13.6 14.1

327

Generation of high-quality mega-electron volt proton beams with intense-laser-driven nanotube accelerator  

SciTech Connect (OSTI)

An ion acceleration scheme using carbon nanotubes (CNTs) is proposed, in which embedded fragments of low-Z materials are irradiated by an ultrashort intense laser to eject substantial numbers of electrons. Due to the resultant characteristic electrostatic field, the nanotube and embedded materials play the roles of the barrel and bullets of a gun, respectively, to produce highly collimated and quasimonoenergetic ion beams. Three-dimensional particle simulations, that take all the two-body Coulomb interactions into account, demonstrate generation of quasimonoenergetic MeV-order proton beams using nanometer-size CNT under a super-intense electrostatic field {approx}10{sup 14} V m{sup -1}.

Murakami, M. [Institute of Laser Engineering, Osaka University, Osaka 565-0871 (Japan)] [Institute of Laser Engineering, Osaka University, Osaka 565-0871 (Japan); Tanaka, M. [Department of Engineering, Chubu University, Aichi 487-8501 (Japan)] [Department of Engineering, Chubu University, Aichi 487-8501 (Japan)

2013-04-22T23:59:59.000Z

328

Figures of merit for focusing mega-electron-volt ion beams in biomedical imaging and proton beam writing  

SciTech Connect (OSTI)

A figure of merit (FOM) has been developed for focusing quadrupole multiplet lenses for ion micro- and nanobeam systems. The method which is based on measurement of the central peak of the two-dimensional autocorrelation function of an image provides separate FOM for the horizontal and vertical directions. The approach has been tested by comparison with the edge widths obtained by nonlinear fitting the edge widths of a Ni grid and found to be reliable. The FOM has the important advantage for ion beam imaging of biomedical samples that the fluence needed is considerably lower than for edge fitting.

Ren Minqin; Whitlow, Harry J.; Ananda Sagari, A. R.; Kan, Jeroen A. van; Osipowicz, Thomas; Watt, Frank [Department of Physics, University of Jyvaeskylae, P.O. Box 35 (YFL), FIN-40014 (Finland); Centre for Ion Beam Applications, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore)

2008-01-01T23:59:59.000Z

329

Press Pass - Press Releases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

atoms makes up only 4 percent of the energy-matter content of the universe. "Dark energy" makes up 73 percent, and an unknown form of dark matter makes up the last 23 percent....

330

Quantum Process Estimation with an Unknown Detector  

Science Journals Connector (OSTI)

We present an operational approach to quantum process estimation, where the detector response is characterized directly by a set of probe states. Numerical simulations are presented...

Karpinski, Michal; Cooper, Merlin; Smith, Brian J

331

Robust strategies in an evolving unknown environment  

E-Print Network [OSTI]

, S contains the prices of gaz, oil, coal, wind energy... You are not influencing the evolution of these prices ressources, S contains the prices of gaz, oil, coal, wind energy... You are not influencing the evolution(s,j) is increasing in |s -j|. 4) You sell a few products online, and need to decide products and prices for your

Combettes, Patrick Louis

332

Radioactivity in man: levels, effects and unknowns  

SciTech Connect (OSTI)

The report discusses the potential for significant human exposure to internal radiation. Sources of radiation considered include background radiation, fallout, reactor accidents, radioactive waste, and occupational exposure to various radioisotopes. (ACR)

Rundo, J.

1980-01-01T23:59:59.000Z

333

_MainReport  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

26 26 Overall electrical energy consumption (AC Wh/mi) 253 Number of trips¹ 526,156 Total distance traveled (mi) 4,369,753 Avg trip distance (mi)² 8.2 Avg distance traveled per day when the vehicle was driven (mi) 39.4 Avg number of trips between charging events 3.4 Avg distance traveled between charging events (mi) 27.9 Avg number of charging events per day when the vehicle was driven 1.4 EV Project Chevrolet Volt Vehicle Summary Report Region: ALL Number of vehicles: 1766 Reporting period: January 2013 through March 2013 Charging Location Home charging location³ Away-from-home charging locations Unknown charging locations Total number of charging events 124,954 21,973 7,718 Percent of all charging events 81% 14% 5% 1 A trip is defined as all the driving done between consecutive "key-on" and "key-off" events when some distance was traveled.

334

_MainReport  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

26 26 Overall electrical energy consumption (AC Wh/mi) 229 Number of trips¹ 369,118 Total distance traveled (mi) 3,001,976 Avg trip distance (mi) 8.1 Avg distance traveled per day when the vehicle was driven (mi) 40.5 Avg number of trips between charging events 3.5 Avg distance traveled between charging events (mi) 28.2 Avg number of charging events per day when the vehicle was driven 1.4 EV Project Chevrolet Volt Vehicle Summary Report Region: ALL Number of vehicles: 1021 Reporting period: October 2012 through December 2012 Charging Location and Type Home charging location² Away-from- home charging locations³ Unknown charging locations Number of charging events 86,264 13,547 6,698 Percent of all charging events 81% 13% 6% 1 A trip is defined as all the driving done between consecutive "key-on" and "key-off" events when some distance was traveled.

335

_MainReport  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

55 55 Overall electrical energy consumption (AC Wh/mi) 242 Number of trips¹ 147,886 Total distance traveled (mi) 1,184,265 Avg trip distance (mi) 8.0 Avg distance traveled per day when the vehicle was driven (mi) 39.6 Avg number of trips between charging events 3.2 Avg distance traveled between charging events (mi) 26.0 Avg number of charging events per day when the vehicle was driven 1.5 EV Project Chevrolet Volt Vehicle Summary Report Region: ALL Number of vehicles: 408 Reporting period: April 2012 through June 2012 Charging Location and Type Home charging location² Away-from- home charging locations³ Unknown charging locations Number of charging events 36,015 6,374 3,179 Percent of all charging events 79% 14% 7% 1 A trip is defined as all the driving done between consecutive "key-on" and "key-off" events when some distance was traveled.

336

China's Pathways to Achieving 40percent 45percent Reduction in CO2 Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential  

E-Print Network [OSTI]

by Scenario E3 Max Tech Wind Power Nuclear Power NG Fired CCcapacity of wind, solar, and biomass power grows from 2.3 GWcapacity of wind, solar, and biomass power grows from 2.3 GW

Zheng, Nina

2013-01-01T23:59:59.000Z

337

China's Pathways to Achieving 40percent 45percent Reduction in CO2 Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential  

E-Print Network [OSTI]

goal of reducing its carbon intensity (CO 2 per unit of GDP)to achieve the 2020 carbon intensity reduction target. Thecommitted to reduce its carbon intensity (CO 2 per unit of

Zheng, Nina

2013-01-01T23:59:59.000Z

338

China's Pathways to Achieving 40percent 45percent Reduction in CO2 Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential  

E-Print Network [OSTI]

reduction in energy consumption per unit of GDP from 2006 toEnergy Technologies Division Lawrence Berkeley National Laboratory Abstract Achieving Chinas goal of reducing its carbon intensity (CO 2 per unit of GDP)

Zheng, Nina

2013-01-01T23:59:59.000Z

339

Data:62bf5887-4fc6-464c-a737-fc9cdc1d8e4a | Open Energy Information  

Open Energy Info (EERE)

bf5887-4fc6-464c-a737-fc9cdc1d8e4a bf5887-4fc6-464c-a737-fc9cdc1d8e4a No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Bartholomew County Rural E M C Effective date: 2011/10/01 End date if known: Rate name: Industrial Power Service - High Load Factor Sector: Industrial Description: Applicable to consumers supplied at a single location who meet the following requirements for service: The consumer's monthly maximum demands must be at least 500 kW. The consumer's monthly billing load factor must be at least 45 percent. The type of service rendered under this schedule will be alternating current, 60 hertz, single phase, or three phase, secondary voltage of approximately either 120 volts, 208 volts, 240 volts, 277 volts, or 480 volts, as requested.

340

Measurements of the volt-ampere characteristics and the breakdown voltages of direct-current helium and hydrogen discharges in microgaps  

SciTech Connect (OSTI)

The discharge phenomena for micro meter gap sizes include many interesting problems from engineering and physical perspectives. In this paper, the authors deal with the experimental and theoretical results of the breakdown voltage and current-voltage characteristics of the direct-current helium and hydrogen discharges. The measurements were performed at a constant pressure of around one atmosphere, while varying the gap size between two parallel plane tungsten electrodes between 1??m and 100??m. From the measured breakdown voltage curves, the effective yields and the ionization coefficients were derived for both gases. Present data for the ionization coefficients correlate with the data obtained for the breakdown voltage curves measured for fixed 100??m interelectrode separation. The current-voltage characteristics were plotted for the various gap sizes illustrating the role of the field emission effects in the microgaps. Based on the Fowler-Nordheim theory, the enhancement factors were determined. The gap spacing dependence of the field emission current can be explained by the introduction of two ideas, the first being a space charge effect by emitted electrons, and the second a change in the breakdown mechanism. Experimental results, presented here, demonstrate that Townsend phenomenology breaks down when field emission becomes the key mechanism affecting the breakdown and deforming the left hand side of the breakdown voltage curves.

Klas, M.; Matej?ik, . [Department of Experimental Physics, Comenius University, Mlynskadolina F2, 84248 Bratislava (Slovakia); Radjenovi?, B.; Radmilovi?-Radjenovi?, M. [Institute of Physics, University of Belgrade, P.O. Box 57, 11080 Belgrade (Serbia)

2014-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "volt unknown percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

pour unite : l'angstr6m pour a, le kiloelectron-volt pour b et le centimetre carre par gramme  

E-Print Network [OSTI]

cristaux d'halog6nures alcalins par irradiation de ces derniers avec des rayons X, ont ete 6tudi6es par de des rayons X de 5o kV. Nous avons 6tudi6 des cristaux d'halog6nures alcalins synth6tiques en utilisant

Paris-Sud XI, Université de

342

Percent of Commercial Natural Gas Deliveries in Hawaii Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100 100 100 100 100 100 100 100 100 100 100 100 1990 100 100 100 100 100 100 100 100 100 100 100 100 1991 100 100 100 100 100 100 100 100 100 100 100 100 1992 100 100 100 100 100 100 100 100 100 100 100 100 1993 100 100 100 100 100 100 100 100 100 100 100 100 1994 100 100 100 100 100 100 100 100 100 100 100 100 1995 100 100 100 100 100 100 100 100 100 100 100 100 1996 100 100 100 100 100 100 100 100 100 100 100 100 1997 100 100 100 100 100 100 100 100 100 100 100 100 1998 100 100 100 100 100 100 100 100 100 100 100 100 1999 100 100 100 100 100 100 100 100 100 100 100 100

343

Percent of Industrial Natural Gas Deliveries in Maryland Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 15.4 11.4 9.7 7.2 6.7 4.5 9.7 6.3 6.3 7.0 6.6 10.3 2002 10.3 11.3 13.0 5.3 5.8 6.0 4.5 5.8 4.3 6.9 7.1 11.9 2003 10.5 13.2 11.4 9.1 7.8 6.6 6.3 6.2 7.1 12.1 11.9 12.9 2004 11.2 10.7 8.8 9.1 6.4 4.7 5.0 5.6 7.2 7.2 9.4 10.9 2005 11.3 11.5 11.3 9.8 5.5 5.1 4.9 5.3 5.2 6.2 9.4 10.7 2006 8.7 10.4 8.9 6.1 4.5 4.4 3.7 3.9 6.5 5.8 7.7 9.2 2007 13.1 13.7 11.0 9.9 6.1 3.7 4.5 3.8 6.9 3.5 8.4 10.4 2008 9.5 10.4 7.5 6.6 4.7 3.1 3.0 4.2 4.5 4.5 6.7 9.6 2009 12.8 10.9 8.0 4.2 1.7 2.2 2.0 2.0 3.6 2.8 3.4 7.6 2010 7.3 7.1 6.3 4.1 3.3 2.3 2.1 4.3 4.6 5.1 6.1 10.6 2011 11.3 10.0 8.0 7.2 4.2 3.5 2.2 3.6 3.9 3.9 4.9 5.0

344

Percent of Commercial Natural Gas Deliveries in Florida Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 100.0 100.0 100.0 100.0 96.2 96.1 96.3 96.1 96.4 96.0 96.7 94.9 1991 96.5 97.0 97.5 98.1 97.8 97.8 97.9 97.8 98.2 97.8 96.8 96.8 1992 96.8 97.2 97.4 98.2 98.3 98.2 98.1 98.1 98.3 98.2 97.4 97.0 1993 97.2 97.2 97.2 98.3 98.4 98.4 98.3 98.3 98.3 98.2 97.3 97.0 1994 97.3 97.6 97.8 98.3 97.6 98.3 98.2 98.4 98.5 97.9 97.8 97.0 1995 96.7 97.3 97.5 97.9 97.9 98.1 98.2 97.8 98.1 97.8 97.4 96.7 1996 96.7 96.9 96.7 97.6 97.8 97.6 97.5 97.2 97.6 97.4 97.0 96.1 1997 97.1 97.4 97.7 98.3 98.3 98.2 97.7 97.9 97.8 97.5 96.4 96.1

345

Percent of Industrial Natural Gas Deliveries in Arizona Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 33.6 44.6 45.1 46.7 45.0 48.3 48.5 41.4 43.8 54.6 54.8 55.3 2002 55.5 54.5 47.0 46.9 41.4 41.7 36.1 34.9 36.7 33.1 32.9 33.0 2003 37.3 38.2 36.6 36.4 36.4 35.7 37.7 38.8 44.8 45.3 45.3 48.8 2004 58.9 65.1 52.4 51.8 51.2 55.8 50.6 52.0 51.7 53.3 55.4 57.8 2005 47.4 48.2 43.8 47.9 46.2 40.8 40.9 38.2 40.1 40.3 42.7 43.5 2006 37.1 41.1 37.8 37.6 36.4 37.6 38.3 35.9 37.9 39.7 37.1 37.6 2007 36.3 35.8 34.0 35.0 32.8 32.4 26.5 26.4 24.4 28.9 29.7 30.4 2008 32.5 30.5 30.2 27.5 28.3 30.7 25.9 25.0 28.6 30.6 31.5 31.3 2009 32.5 34.6 31.8 30.4 29.8 28.5 25.9 23.5 24.4 27.1 28.8 28.4 2010 28.6 28.5 25.4 26.7 21.9 22.5 21.3 21.4 22.8 24.5 29.0 27.8

346

Percent of Commercial Natural Gas Deliveries in New York Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 90.4 90.1 89.3 85.0 85.4 81.3 78.6 78.2 73.6 74.8 82.4 89.7 1990 90.5 92.3 85.6 85.3 78.9 77.8 80.2 80.1 76.5 75.8 80.7 81.5 1991 86.2 85.4 84.4 81.0 75.8 72.8 76.8 75.1 73.1 75.0 79.5 81.1 1992 81.0 78.9 79.5 77.3 72.4 70.9 72.9 69.3 69.3 76.0 82.6 81.5 1993 81.4 81.5 82.3 77.8 71.3 66.2 69.1 72.1 72.8 74.1 77.9 77.2 1994 83.7 83.4 83.3 77.7 73.4 73.2 74.7 73.4 75.1 76.4 78.0 81.9 1995 80.8 82.8 79.3 76.3 71.7 66.5 66.5 64.1 68.1 72.3 77.2 79.9 1996 NA NA NA NA NA NA NA NA NA NA NA NA 1997 74.3 72.1 69.3 67.7 59.1 53.5 53.3 54.6 56.2 59.3 65.6 68.3 1998 55.3 60.7 59.0 53.6 48.2 49.8 43.2 43.2 43.3 50.2 53.3 56.7

347

Percent of Commercial Natural Gas Deliveries in Nevada Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 98.0 98.1 96.9 95.0 94.2 94.3 92.7 91.7 91.2 96.2 97.2 98.8 1990 99.1 99.4 97.7 97.0 96.4 96.7 95.7 95.0 95.1 96.8 98.4 99.1 1991 99.4 99.4 94.3 92.2 90.6 87.2 84.0 85.2 79.5 84.3 82.2 89.0 1992 90.6 89.5 88.3 87.2 83.7 84.0 84.8 81.4 82.7 88.9 88.5 95.4 1993 97.0 96.0 94.3 91.0 92.5 90.6 89.7 86.7 89.6 89.7 90.9 93.5 1994 93.8 89.3 86.1 81.3 80.1 79.6 76.4 74.5 76.4 73.9 76.7 81.4 1995 81.5 83.2 77.4 78.9 77.1 76.5 72.8 70.0 71.3 67.8 70.8 75.2 1996 79.1 80.5 78.2 76.4 74.2 73.0 69.2 66.7 67.6 64.0 70.8 74.9 1997 77.2 79.7 78.0 69.2 64.7 60.9 73.2 63.1 62.9 65.9 67.9 73.3 1998 76.5 79.1 75.1 72.9 71.0 70.0 65.2 55.2 55.5 62.6 63.6 69.9

348

Percent of Commercial Natural Gas Deliveries in U.S. Total Represented by  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1983 NA NA NA NA NA NA NA NA NA NA NA NA 1984 NA NA NA NA NA NA NA NA NA NA NA NA 1985 NA NA NA NA NA NA NA NA NA NA NA NA 1986 NA NA NA NA NA NA NA NA NA NA NA NA 1987 NA NA NA NA NA NA NA NA NA NA NA NA 1988 93.8 93.3 92.5 91.7 89.4 87.5 86.3 87.2 87.6 87.4 88.7 89.7 1989 91.0 91.2 90.8 89.2 88.2 86.1 85.1 85.1 84.6 85.2 87.7 90.7 1990 90.8 88.8 88.3 86.9 85.5 83.8 81.8 81.7 80.3 81.2 84.7 87.9 1991 89.4 88.5 87.8 84.0 83.2 80.0 79.3 81.6 78.1 78.7 85.1 86.1 1992 87.1 85.2 84.7 84.0 79.3 79.4 76.0 76.1 78.0 80.9 83.1 85.6 1993 86.6 86.3 86.4 84.9 82.2 79.0 79.2 78.0 78.3 79.9 83.0 85.1

349

Percent of Commercial Natural Gas Deliveries in Colorado Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 98.0 98.1 98.3 97.8 97.3 97.3 95.0 91.8 95.8 95.6 96.9 97.2 1990 98.1 98.0 97.9 97.6 97.3 97.4 94.7 94.5 95.5 94.6 97.0 97.0 1991 96.8 97.1 96.1 96.2 96.9 97.2 93.7 93.9 93.6 92.3 94.7 96.3 1992 96.7 96.7 95.9 95.7 95.1 96.0 94.2 93.3 93.6 91.2 93.7 96.2 1993 96.6 96.4 96.5 95.8 95.2 95.5 93.0 93.1 95.2 90.6 94.1 95.9 1994 95.9 96.1 95.7 94.9 95.3 94.3 91.2 91.7 93.1 91.5 93.2 95.5 1995 95.9 96.0 95.1 94.3 95.1 95.5 92.3 89.7 89.3 89.8 93.5 93.8 1996 94.5 95.5 93.8 93.1 92.4 92.5 88.0 87.1 90.6 89.1 92.8 94.3 1997 94.6 95.4 94.4 93.9 93.7 92.9 86.2 83.1 90.2 86.9 89.8 93.0 1998 95.4 95.1 96.1 95.8 95.0 91.6 92.0 91.1 93.2 87.5 94.0 95.2

350

Percent of Commercial Natural Gas Deliveries in Montana Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 98.3 98.9 98.8 98.6 97.4 96.8 96.4 96.3 96.3 97.5 97.9 98.1 1990 97.9 97.8 97.6 98.6 96.9 98.4 96.3 95.8 93.3 96.9 97.6 99.6 1991 98.5 98.1 98.0 97.7 97.8 96.9 95.8 95.8 95.8 96.3 96.5 97.2 1992 97.1 98.0 96.7 96.5 96.6 94.9 95.4 96.8 90.6 92.0 92.8 94.6 1993 95.4 94.0 94.9 93.9 94.9 91.1 91.2 91.2 87.5 88.8 91.5 93.5 1994 92.7 93.0 92.7 91.8 91.9 89.6 88.7 87.8 87.5 89.0 91.2 93.1 1995 93.0 92.5 92.5 91.9 92.0 90.1 89.6 88.9 88.2 88.8 91.8 91.9 1996 92.2 93.7 91.9 92.6 90.8 90.8 87.8 87.2 86.1 87.5 91.6 92.7 1997 93.5 93.1 92.0 91.3 90.4 88.9 90.6 87.6 85.8 88.2 90.6 92.3 1998 86.4 80.5 80.5 76.4 72.1 66.7 67.7 68.6 64.2 70.5 74.9 77.0

351

Table 1. Comparison of Absolute Percent Errors for Present and Current AEO Forecast Evaluations  

Gasoline and Diesel Fuel Update (EIA)

AEO82 to AEO82 to AEO99 AEO82 to AEO2000 AEO82 to AEO2001 AEO82 to AEO2002 AEO82 to AEO2003 AEO82 to AEO2004 Total Energy Consumption 1.9 2.0 2.1 2.1 2.1 2.1 Total Petroleum Consumption 2.9 3.0 3.1 3.1 3.0 2.9 Total Natural Gas Consumption 7.3 7.1 7.1 6.7 6.4 6.5 Total Coal Consumption 3.1 3.3 3.5 3.6 3.7 3.8

352

Percent of Commercial Natural Gas Deliveries in Arizona Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 96.1 96.3 94.1 93.5 92.8 91.7 89.1 89.1 91.6 91.6 94.8 95.3 1990 97.6 97.4 96.3 94.9 95.6 92.8 92.0 90.9 94.6 96.4 96.7 97.0 1991 98.0 94.9 93.5 92.6 91.7 89.6 87.0 88.1 88.5 92.8 92.8 97.7 1992 97.2 97.0 96.3 92.7 89.9 88.9 86.3 86.0 90.5 91.2 89.1 92.9 1993 93.3 93.4 92.5 90.1 91.2 90.6 88.3 89.5 90.2 92.1 90.7 92.5 1994 94.2 92.5 91.9 89.9 90.5 88.3 87.2 86.4 89.3 90.4 89.9 91.5 1995 91.7 92.8 88.7 86.9 87.8 87.9 84.5 84.8 86.5 88.4 87.9 87.2 1996 89.6 90.2 86.9 83.7 84.8 83.6 82.1 78.5 83.5 83.2 84.1 84.1 1997 87.3 87.8 86.5 83.8 86.1 82.6 79.7 78.6 83.8 81.0 83.1 85.8 1998 87.1 87.4 86.9 85.2 83.6 86.4 84.4 83.0 83.7 79.9 82.9 84.0

353

Percent of Industrial Natural Gas Deliveries in Colorado Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 0.0 0.1 0.0 0.2 0.6 1.2 2.9 2.8 1.7 0.4 0.4 0.1 2002 0.1 0.1 1.4 1.1 1.9 1.7 2.1 3.3 1.7 0.7 0.6 0.6 2003 0.1 0.0 0.3 1.2 0.8 0.9 1.9 3.0 2.7 0.9 0.4 0.1 2004 0.1 0.1 0.3 1.1 0.8 1.5 1.5 2.3 2.0 0.3 0.2 0.0 2005 0.8 0.8 0.6 0.7 0.6 0.4 0.3 0.6 0.5 0.4 0.5 0.7 2006 0.1 0.1 0.2 0.6 1.1 1.5 1.6 2.0 1.0 0.3 0.1 0.1 2007 0.1 0.1 0.1 0.2 0.5 0.8 1.3 1.5 0.7 0.2 0.2 0.1 2008 0.7 0.8 0.7 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.6 0.5 2009 0.6 0.8 0.4 0.8 0.2 0.4 0.4 0.5 0.4 0.5 0.6 0.5 2010 8.3 5.3 6.0 5.7 5.3 3.9 2.6 2.9 2.9 5.0 5.5 6.3 2011 8.9 9.0 8.3 8.6 6.5 4.3 5.2 5.5 5.7 6.9 8.5 8.6

354

Percent of Industrial Natural Gas Deliveries in Rhode Island Represented by  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 41.4 29.5 26.1 37.6 29.0 29.3 26.0 26.2 22.4 26.8 29.3 13.6 2002 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 2003 15.7 18.9 21.5 19.6 26.7 11.7 16.8 18.8 18.6 22.1 18.5 22.3 2004 13.9 16.7 14.5 16.8 21.1 11.7 16.7 15.3 16.0 19.4 10.5 23.0 2005 17.8 14.7 15.9 11.0 16.3 16.5 12.9 13.8 16.3 13.2 16.5 19.7 2006 18.6 18.7 16.4 15.0 12.5 13.3 8.8 10.5 11.4 12.8 10.5 15.7 2007 13.0 19.0 15.1 12.7 10.1 14.3 8.0 6.3 17.1 8.3 9.0 10.9 2008 19.9 14.2 16.6 7.2 8.2 9.5 10.7 7.0 13.2 8.2 15.2 23.1 2009 12.2 14.7 8.0 12.3 9.5 7.8 6.7 9.5 10.8 3.5 8.6 7.0 2010 7.3 6.2 5.2 3.8 3.8 6.3 5.5 4.2 5.7 9.3 7.7 10.4

355

Percent of Commercial Natural Gas Deliveries in Delaware Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1991 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1992 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1994 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1995 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1996 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

356

Percent of Industrial Natural Gas Deliveries in New York Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 13.3 14.8 13.4 11.3 10.4 10.0 9.2 10.2 4.2 4.8 15.5 9.7 2002 12.2 12.1 11.1 11.1 11.9 10.9 9.4 10.4 13.5 7.7 9.4 11.2 2003 11.5 11.6 12.1 10.9 10.9 12.3 10.5 12.0 8.0 5.8 10.5 10.1 2004 12.4 13.5 11.5 13.0 11.1 11.5 9.3 8.7 8.0 7.6 8.7 9.8 2005 17.0 16.9 17.4 14.3 10.2 11.1 15.9 16.5 14.3 11.9 12.4 14.8 2006 14.8 14.0 11.5 9.6 7.6 11.4 11.0 9.9 9.6 10.8 13.6 13.7 2007 13.5 18.5 12.7 13.3 10.1 7.8 10.2 9.0 11.0 9.7 11.2 15.1 2008 16.6 13.4 13.1 10.6 9.0 9.2 9.0 7.7 9.3 9.8 11.3 12.9 2009 14.7 15.7 13.5 12.0 10.0 9.4 7.5 8.5 8.0 8.2 9.6 15.0 2010 14.2 14.8 11.4 10.3 8.8 7.5 8.0 10.3 9.0 8.1 9.6 11.0

357

Percent of Industrial Natural Gas Deliveries in Vermont Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 95.2 80.1 79.2 79.2 69.2 67.8 65.6 67.7 70.7 73.3 76.0 79.0 2002 77.7 78.3 78.6 78.2 72.6 66.8 66.7 65.1 66.8 72.6 76.2 85.5 2003 87.3 100.0 100.0 75.7 74.2 72.4 75.0 67.7 70.4 73.2 77.4 80.1 2004 79.9 84.7 80.7 82.2 78.6 73.8 70.0 68.3 69.2 76.4 82.1 83.7 2005 83.6 86.4 82.6 78.0 74.4 71.5 72.1 83.9 94.3 82.4 75.7 96.4 2006 93.0 87.6 82.4 77.2 73.3 72.9 71.7 69.7 71.5 76.3 75.1 79.5 2007 83.0 84.1 81.8 76.2 72.2 71.7 71.4 71.2 73.9 76.6 78.7 82.2 2008 81.0 84.1 83.3 78.8 76.0 76.0 76.9 76.1 74.1 77.7 80.2 83.2 2009 82.6 85.8 77.5 76.6 74.2 73.8 73.8 72.4 72.8 77.4 76.0 81.5 2010 81.6 78.8 78.4 75.2 73.0 74.0 74.2 73.8 73.0 76.3 77.3 82.7

358

Percent of Commercial Natural Gas Deliveries in Nebraska Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 96.8 96.5 97.1 99.8 99.7 99.8 99.9 99.9 99.7 98.8 98.1 98.5 1990 95.6 95.3 94.1 93.2 92.3 89.6 96.9 94.2 93.0 90.2 89.9 93.5 1991 93.6 93.3 91.8 87.9 85.4 88.2 96.4 95.2 85.8 86.1 90.5 91.4 1992 91.7 91.6 89.9 90.9 88.7 81.7 85.6 83.6 80.5 84.5 87.1 90.9 1993 94.1 94.7 94.5 93.4 89.5 88.4 88.1 87.8 82.9 85.2 84.8 92.0 1994 88.2 88.9 85.8 82.3 79.2 72.9 75.9 77.8 65.1 62.2 73.5 80.7 1995 81.4 80.6 79.2 79.8 76.0 71.8 70.4 68.4 NA NA NA NA 1996 83.8 79.1 77.7 77.3 69.8 66.0 51.8 54.1 66.2 40.3 68.6 76.6 1997 82.4 91.9 74.2 77.5 67.0 68.6 67.6 69.2 63.2 50.0 72.4 77.2 1998 80.4 78.6 77.9 72.1 74.6 67.1 66.3 82.0 74.5 80.4 66.5 51.5

359

Percent of Industrial Natural Gas Deliveries in Nebraska Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 25.7 29.6 30.3 21.0 19.7 16.7 8.3 12.9 13.3 18.6 12.0 18.7 2002 22.6 19.5 29.3 17.6 15.0 24.0 7.4 8.4 8.8 16.4 18.9 19.6 2003 20.3 22.7 24.9 19.3 17.1 24.1 8.7 9.7 10.9 15.7 17.7 19.4 2004 19.7 21.4 24.7 19.0 18.3 14.2 9.2 10.6 16.5 18.8 16.0 16.6 2005 24.4 20.0 24.6 18.5 19.0 18.2 10.0 8.6 12.9 15.1 14.2 18.3 2006 13.8 15.1 17.1 13.3 13.0 9.8 8.3 7.7 10.5 11.5 10.2 12.4 2007 12.1 13.0 14.5 11.6 9.7 8.9 7.1 6.4 6.9 9.8 8.5 10.5 2008 12.0 13.8 13.2 13.6 12.4 8.5 8.0 7.1 8.6 7.4 8.0 11.4 2009 11.8 12.1 10.5 10.2 8.8 7.6 6.6 6.1 7.3 7.8 9.0 8.7 2010 11.1 11.7 10.5 9.1 7.0 7.8 6.8 6.5 7.2 7.4 7.6 7.5

360

Percent of Industrial Natural Gas Deliveries in Montana Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 3.0 3.1 2.8 2.6 2.3 1.9 0.9 0.8 1.0 1.2 1.9 3.0 2002 3.0 2.9 3.6 2.3 2.0 1.2 0.9 0.7 0.8 1.1 2.1 3.4 2003 2.9 2.8 3.3 2.1 1.8 1.0 1.0 0.8 0.8 0.6 1.2 1.6 2004 1.8 2.4 1.9 1.0 1.5 1.4 1.1 0.7 0.8 1.1 1.8 2.4 2005 3.1 2.9 2.2 2.3 1.8 1.4 0.9 0.6 0.7 1.0 1.3 2.3 2006 1.3 1.0 1.1 0.9 0.6 0.4 0.2 0.1 0.2 0.3 0.6 1.0 2007 1.0 1.2 0.9 0.9 0.5 0.4 0.3 0.3 0.4 0.5 0.7 1.0 2008 1.3 1.4 1.8 1.1 0.9 0.5 0.6 0.5 0.5 0.4 0.8 0.9 2009 2.5 1.7 1.5 1.2 0.8 0.5 0.3 0.3 0.4 0.6 1.0 1.8 2010 2.3 2.4 2.3 1.8 1.4 0.5 0.7 0.6 0.6 1.5 1.0 2.0 2011 1.9 3.3 2.1 1.3 0.9 0.6 0.5 0.5 0.4 0.5 1.7 1.3

Note: This page contains sample records for the topic "volt unknown percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Percent of Industrial Natural Gas Deliveries in Ohio Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 13.1 9.8 10.4 6.2 3.9 3.4 1.5 4.8 1.2 2.9 5.6 6.4 2002 5.4 6.2 5.4 4.8 1.9 1.7 1.6 2.1 2.5 2.3 4.9 6.7 2003 6.3 7.0 5.4 4.0 1.8 2.4 2.0 1.7 1.7 2.4 3.3 4.6 2004 5.1 5.7 4.0 3.8 2.1 2.3 1.7 2.3 2.2 2.7 3.4 4.5 2005 5.7 6.6 4.5 2.6 2.0 1.6 2.1 2.0 1.9 2.6 3.3 4.8 2006 4.6 4.7 4.0 2.7 2.1 2.2 2.2 2.1 2.2 2.2 3.0 3.5 2007 3.9 4.8 3.5 2.6 1.8 1.8 1.9 1.4 1.5 1.2 2.2 3.7 2008 3.9 4.2 3.5 2.5 1.1 1.7 1.9 1.4 1.4 1.6 2.7 4.1 2009 4.8 4.7 3.8 2.2 2.1 2.6 1.7 1.4 1.1 1.6 2.0 3.2 2010 4.7 4.4 3.2 1.4 0.7 0.7 0.7 0.6 0.7 1.5 1.7 2.9 2011 4.0 3.5 3.0 1.5 1.0 0.7 0.5 0.7 1.0 0.8 1.9 2.8

362

Percent of Commercial Natural Gas Deliveries in Rhode Island Represented by  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 87.1 83.9 47.7 48.9 40.4 44.6 82.7 100.0 100.0 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 75.5 80.2 97.3 91.1 1991 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1992 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1994 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1995 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1996 100.0 99.3 98.4 98.2 97.8 92.0 84.1 86.8 49.9 66.5 87.3 89.1 1997 89.6 91.7 82.2 88.5 80.8 72.4 71.1 67.9 68.7 71.1 80.7 64.1

363

Percent of Industrial Natural Gas Deliveries in Hawaii Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 100 100 100 100 100 100 100 100 100 100 100 100 2002 100 100 100 100 100 100 100 100 100 100 100 100 2003 100 100 100 100 100 100 100 100 100 100 100 100 2004 100 100 100 100 100 100 100 100 100 100 100 100 2005 100 100 100 100 100 100 100 100 100 100 100 100 2006 100 100 100 100 100 100 100 100 100 100 100 100 2007 100 100 100 100 100 100 100 100 100 100 100 100 2008 100 100 100 100 100 100 100 100 100 100 100 100 2009 100 100 100 100 100 100 100 100 100 100 100 100 2010 100 100 100 100 100 100 100 100 100 100 100 100 2011 100 100 100 100 100 100 100 100 100 100 100 100

364

Percent of Commercial Natural Gas Deliveries in Maine Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1991 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1992 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1994 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1995 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1996 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

365

Percent of Industrial Natural Gas Deliveries in Arkansas Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 6.8 10.0 9.1 4.6 6.6 4.9 5.5 3.8 4.0 5.6 5.3 5.4 2002 6.1 6.1 6.5 5.0 4.1 3.9 5.1 3.8 3.8 5.0 4.8 4.9 2003 5.4 5.9 5.8 4.6 4.0 3.8 4.5 5.2 5.9 6.5 6.2 6.1 2004 6.5 6.8 6.3 5.7 5.1 6.0 5.8 4.4 4.9 7.2 7.0 5.0 2005 5.5 6.2 5.6 5.3 4.7 4.6 4.3 3.8 4.6 6.8 5.5 5.1 2006 5.3 5.7 5.2 4.6 4.0 4.1 3.7 3.3 4.1 5.4 5.5 5.8 2007 4.5 5.6 4.4 4.2 3.8 3.8 3.3 3.4 3.7 4.5 4.5 3.7 2008 4.1 4.6 3.9 4.0 3.1 2.8 3.0 2.9 3.2 4.8 5.4 4.4 2009 4.5 4.6 3.9 3.9 2.7 2.9 2.9 2.4 3.1 3.8 4.5 3.9 2010 4.0 3.9 3.6 3.1 2.4 2.5 2.2 2.1 2.4 2.7 2.2 2.0 2011 2.7 3.0 2.1 1.9 1.4 1.3 2.1 1.4 1.7 1.8 2.3 2.5

366

Percent of Industrial Natural Gas Deliveries in Nevada Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 32.2 25.0 16.8 19.7 13.2 12.9 38.9 31.5 31.7 41.7 48.4 68.2 2002 58.3 44.3 59.1 37.8 44.2 40.0 17.5 18.2 19.5 21.2 23.0 28.8 2003 25.6 28.9 20.3 22.8 14.8 13.2 13.6 11.9 12.5 15.8 23.9 21.7 2004 21.4 23.6 14.9 15.1 12.4 11.3 10.7 11.5 13.4 15.9 20.9 22.6 2005 24.3 25.3 17.8 18.4 14.8 14.1 9.6 12.3 13.6 15.9 18.3 19.5 2006 20.9 21.8 22.3 14.7 14.8 11.9 11.7 10.6 11.5 16.9 16.6 23.7 2007 22.1 26.8 17.9 16.6 14.8 11.6 11.3 10.2 10.6 13.6 20.4 25.3 2008 27.5 26.4 21.5 17.5 17.4 9.7 10.4 9.2 8.1 11.3 23.4 26.0 2009 21.4 23.7 19.2 19.9 13.9 11.5 8.7 9.4 11.2 16.2 20.4 26.7 2010 23.5 26.8 23.1 19.6 18.0 13.4 12.7 11.0 10.9 13.6 22.0 22.3

367

Percent of Industrial Natural Gas Deliveries in Kentucky Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 27.3 21.8 18.9 13.8 17.8 15.8 17.4 17.4 17.3 19.6 16.5 16.9 2002 16.8 18.2 18.9 17.2 15.5 16.5 18.0 19.1 16.3 18.0 18.8 18.4 2003 20.6 20.1 18.7 19.5 19.2 20.3 16.6 16.0 18.1 18.2 18.1 18.4 2004 18.8 18.3 16.3 16.0 14.6 16.6 16.2 15.2 15.5 15.6 17.5 20.3 2005 16.5 17.5 17.3 16.0 15.8 15.2 16.1 14.9 17.4 17.9 17.2 19.7 2006 15.6 16.9 17.6 14.8 14.9 14.2 16.0 15.7 14.6 15.7 15.5 17.6 2007 16.6 18.1 17.0 17.7 16.1 17.5 16.6 14.7 15.3 16.1 16.6 16.5 2008 19.1 20.3 18.1 17.7 17.7 16.4 16.4 15.9 16.1 17.0 15.8 18.1 2009 17.3 19.7 16.0 17.8 19.4 21.5 18.1 18.8 18.2 16.1 17.4 17.8 2010 18.0 18.5 19.6 19.1 18.5 16.8 15.8 16.9 16.1 18.0 17.6 18.6

368

Percent of Commercial Natural Gas Deliveries in Michigan Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 75.8 74.5 76.0 71.7 64.9 47.6 51.7 50.8 57.5 64.4 69.5 73.5 1990 73.1 74.0 74.5 72.3 67.4 58.1 49.6 51.5 52.2 62.1 70.1 74.6 1991 73.0 72.2 72.4 67.3 62.1 51.2 44.3 41.2 47.5 60.1 87.2 70.0 1992 73.7 74.5 71.4 70.5 66.6 55.5 48.5 51.6 49.9 61.1 68.6 73.1 1993 74.5 72.3 72.6 68.0 63.7 51.6 50.5 54.4 50.9 63.1 68.1 73.1 1994 73.7 71.6 70.8 66.3 60.1 45.7 41.7 42.3 45.4 55.4 63.4 69.8 1995 72.5 72.2 71.2 68.0 61.5 45.8 41.6 39.0 46.9 57.1 68.0 72.5 1996 73.7 72.1 73.1 68.5 64.4 46.1 44.2 41.3 44.6 55.8 67.2 70.2 1997 70.0 70.2 67.3 66.2 58.6 45.7 55.7 40.7 39.7 54.2 64.8 65.7 1998 70.8 66.5 65.7 60.1 44.3 42.3 39.6 37.5 42.5 47.8 57.9 64.7

369

Percent of Industrial Natural Gas Deliveries in Maine Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 7.1 9.5 8.2 5.5 7.6 14.7 17.1 12.4 4.5 8.9 4.5 3.6 2002 13.5 1.7 6.8 1.5 1.6 1.2 100.0 0.8 100.0 0.7 0.8 1.0 2003 10.9 12.0 11.3 10.5 11.9 9.1 7.6 10.1 9.0 7.3 9.2 16.5 2004 2.0 1.7 1.5 1.7 1.8 2.3 1.3 2.0 1.6 1.5 1.6 1.8 2005 3.8 4.1 3.6 3.0 2.8 2.5 3.2 2.0 1.4 3.4 3.2 3.8 2006 1.3 1.3 0.8 0.9 0.8 0.8 0.8 0.8 0.7 1.0 0.9 0.8 2007 0.9 1.0 4.3 0.9 0.4 0.3 0.6 0.4 0.5 0.7 0.6 1.3 2008 1.1 0.9 1.5 0.6 0.5 0.3 0.8 0.6 0.6 1.0 0.9 0.9 2009 1.8 2.2 1.5 0.8 0.5 1.3 1.0 0.5 2.1 0.8 0.8 1.2 2010 1.2 0.8 1.2 0.7 0.5 0.3 0.4 0.4 0.4 0.4 0.3 0.7 2011 0.7 0.9 0.7 1.0 0.4 0.4 0.2 0.2 0.3 0.3 0.5 0.6

370

Percent of Commercial Natural Gas Deliveries in Ohio Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 87.4 88.1 87.1 86.0 81.2 74.4 75.5 75.0 78.9 85.1 87.8 90.3 1990 89.9 89.2 89.9 86.4 82.4 78.5 77.0 75.6 77.7 83.0 87.9 91.4 1991 91.6 90.0 87.2 83.6 78.6 74.7 75.5 73.7 75.6 82.6 87.8 89.8 1992 89.1 88.0 88.4 85.7 78.9 73.9 72.0 73.5 73.1 84.2 85.7 88.5 1993 89.4 87.0 86.9 83.8 76.1 73.9 74.6 69.4 72.6 82.8 84.5 86.3 1994 87.4 86.5 84.9 78.4 75.9 70.5 66.7 67.5 66.5 75.1 78.7 81.5 1995 81.0 80.0 78.6 76.8 67.8 61.4 62.9 59.0 58.3 69.9 77.9 79.2 1996 77.3 76.1 76.1 72.3 63.1 42.1 56.4 53.9 65.1 68.5 72.4 74.0 1997 73.2 69.3 70.0 65.6 58.9 50.2 47.4 49.3 50.4 55.0 67.3 67.4 1998 61.5 61.2 61.1 54.9 42.3 45.6 48.0 36.3 44.9 56.3 50.7 50.3

371

Percent of Industrial Natural Gas Deliveries in Kansas Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 3.0 2.9 3.2 2.9 7.8 9.4 18.1 21.2 16.4 7.7 7.9 4.4 2002 5.0 5.1 6.6 13.0 12.4 16.1 22.4 18.5 11.6 5.7 4.3 4.3 2003 2.4 3.4 3.2 8.2 11.0 6.9 14.8 21.1 9.1 5.3 5.0 3.1 2004 2.7 2.8 4.6 10.3 9.4 14.0 13.4 11.0 9.2 2.6 2.4 2.3 2005 1.7 1.4 1.4 3.2 6.6 8.2 16.3 19.2 9.0 3.8 2.5 1.7 2006 1.7 2.0 3.2 5.7 9.4 12.9 16.2 16.9 9.4 3.6 2.1 2.1 2007 1.3 1.5 1.5 1.4 4.9 9.8 16.2 17.3 9.6 4.0 2.8 1.7 2008 1.6 1.5 2.7 7.5 10.4 13.4 18.9 17.9 10.9 4.1 1.7 1.6 2009 1.5 2.0 4.4 4.6 6.3 9.2 16.6 17.0 11.0 3.3 1.5 1.1 2010 1.2 1.2 1.2 2.5 6.5 10.6 17.3 18.2 12.5 5.8 3.7 1.9 2011 1.5 1.7 5.6 10.4 11.0 17.0 20.8 19.9 12.8 4.9 3.6 1.6

372

Percent of Commercial Natural Gas Deliveries in Arkansas Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 95.3 95.6 95.9 94.3 91.3 91.5 87.2 86.2 88.2 87.5 90.7 93.4 1990 95.8 94.8 93.7 93.2 90.7 88.8 88.4 86.9 87.4 86.8 90.6 91.5 1991 93.8 94.7 96.1 91.0 87.7 85.1 84.8 85.5 85.9 86.5 90.5 92.3 1992 93.0 94.7 91.3 92.7 88.4 87.0 85.9 85.4 86.4 87.6 88.7 90.8 1993 92.5 93.0 92.8 91.8 87.6 84.2 85.9 84.7 85.7 87.8 92.7 98.7 1994 93.9 95.9 95.4 94.8 91.2 91.7 94.2 94.3 96.6 95.3 96.4 97.4 1995 97.2 98.0 96.3 95.1 93.3 93.1 91.5 93.4 92.3 91.8 92.6 100.0 1996 96.4 97.0 95.6 96.3 92.4 94.2 88.5 91.6 92.7 90.2 94.1 95.7 1997 96.3 96.8 95.2 93.8 91.8 91.1 90.3 91.8 91.3 92.6 90.4 95.9 1998 95.5 95.4 94.0 93.0 88.8 86.8 86.1 84.9 82.4 81.5 86.1 89.0

373

Percent of Commercial Natural Gas Deliveries in New Jersey Represented by  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 99.0 98.9 98.7 98.3 96.2 94.7 94.2 93.4 93.5 94.7 99.0 99.7 1990 99.6 99.3 96.6 94.4 94.3 93.2 89.3 86.4 87.1 86.2 91.7 96.5 1991 98.1 96.5 95.8 91.8 92.3 89.1 89.5 80.6 89.2 90.0 93.2 97.0 1992 96.9 95.7 92.1 87.7 94.1 91.3 88.6 80.7 80.7 86.4 94.8 96.9 1993 93.6 94.0 93.7 91.2 88.5 86.4 87.1 79.8 84.6 90.0 92.4 93.8 1994 94.9 96.2 96.3 89.8 87.4 85.1 81.4 82.2 83.6 88.0 89.6 92.1 1995 93.7 92.4 91.3 87.4 84.5 80.0 78.7 75.1 83.8 72.6 81.9 82.9 1996 81.3 80.5 78.9 73.5 68.8 66.3 62.0 60.0 61.8 67.2 69.4 70.2 1997 60.9 89.2 58.4 55.9 45.7 50.1 44.8 47.8 47.2 47.0 48.2 52.0 1998 63.8 64.1 66.9 60.1 51.7 59.2 55.7 57.9 54.8 53.3 60.2 59.7

374

Percent of Industrial Natural Gas Deliveries in New Jersey Represented by  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 29.3 31.1 27.6 21.9 21.2 19.6 18.6 15.6 18.5 16.8 15.6 21.1 2002 23.5 22.2 23.5 21.5 18.7 18.3 17.4 16.9 18.0 18.5 22.1 26.0 2003 21.1 23.1 26.0 26.8 23.9 18.0 15.3 17.3 13.3 14.9 13.0 18.4 2004 19.5 22.5 18.1 16.6 15.0 13.7 11.6 15.1 13.6 13.6 15.4 18.5 2005 22.4 22.7 21.9 17.6 15.7 15.4 17.7 20.4 16.9 19.4 20.1 25.4 2006 23.6 22.4 21.6 19.0 17.0 16.3 18.5 19.1 15.6 16.6 19.9 21.8 2007 21.5 23.6 20.8 23.0 17.1 17.5 17.7 19.8 19.9 20.0 21.2 23.1 2008 16.5 15.9 16.1 9.9 11.1 8.6 4.0 5.6 4.6 7.7 9.7 13.7 2009 18.4 13.1 12.9 6.5 4.2 4.2 3.1 3.9 4.9 6.2 8.8 11.6 2010 14.6 17.7 9.8 7.1 4.9 3.6 3.0 3.5 3.0 4.2 6.8 12.3

375

Percent of Industrial Natural Gas Deliveries in Iowa Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9.5 10.3 7.4 5.5 6.3 3.3 6.0 4.5 5.4 7.8 10.9 9.9 2002 8.5 5.3 8.3 6.1 4.9 5.4 5.4 5.2 5.6 10.4 12.8 10.2 2003 10.3 8.9 9.3 6.7 5.2 6.0 5.5 5.6 6.3 8.8 10.6 9.1 2004 10.4 8.9 8.8 5.7 4.9 5.3 4.0 4.8 5.1 8.4 16.2 12.9 2005 11.8 9.6 9.8 7.7 7.8 8.0 8.8 8.3 9.1 11.5 12.5 10.7 2006 10.3 9.5 9.6 6.1 7.4 6.4 5.7 6.7 7.1 9.4 11.9 10.2 2007 8.9 8.1 6.4 6.1 5.8 5.2 4.2 5.0 5.8 6.6 7.0 7.5 2008 7.9 6.5 5.8 5.0 6.0 5.0 4.6 5.0 5.1 7.2 9.1 10.2 2009 6.9 7.2 6.4 4.7 4.3 4.6 4.5 4.4 4.3 7.3 9.4 10.2 2010 9.3 7.6 5.7 4.9 4.2 4.3 4.4 5.5 5.6 5.0 5.5 6.5 2011 6.5 6.5 5.5 5.3 4.6 5.1 4.2 4.4 5.9 5.6 6.2 5.8

376

Percent of Commercial Natural Gas Deliveries in Kentucky Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 97.1 96.6 96.4 94.9 91.0 89.2 89.5 88.2 89.8 90.7 94.4 97.0 1990 97.2 96.9 96.3 94.8 91.6 91.6 89.5 89.5 89.1 93.3 95.0 96.2 1991 97.1 95.7 94.7 89.8 86.4 85.5 87.5 88.0 91.1 91.5 95.7 95.5 1992 95.4 94.2 93.6 91.9 87.9 86.9 86.7 87.4 87.9 93.0 94.6 94.9 1993 91.6 91.6 95.3 93.5 92.4 93.5 89.9 81.6 88.1 88.5 94.5 95.4 1994 93.6 95.9 94.6 92.1 88.2 85.4 83.0 83.5 83.4 87.6 87.9 89.9 1995 90.8 91.2 89.9 86.3 87.4 80.6 76.5 81.5 81.7 85.7 91.0 92.7 1996 93.8 92.0 92.1 90.3 84.0 91.1 85.9 85.4 84.3 88.9 88.9 91.9 1997 92.5 91.5 90.3 89.0 86.3 88.6 84.0 80.3 84.9 89.9 89.9 91.3 1998 90.4 90.1 90.4 86.2 84.8 82.2 76.5 79.1 81.9 82.3 87.1 88.6

377

State and National Wind Resource Potential 30 Percent Capacity Factor at 80 Meters  

Wind Powering America (EERE)

Note - 50% exclusions are not cumulative. If an area is non-ridgecrest forest on FS land, it is just excluded at the 50% level one time. Note - 50% exclusions are not cumulative. If an area is non-ridgecrest forest on FS land, it is just excluded at the 50% level one time. 1) Exclude areas of slope > 20% Derived from 90 m national elevation dataset. 6) 100% exclude 3 km surrounding criteria 2-5 (except water) Merged datasets and buffer 3 km 5) 100% exclusion of airfields, urban, wetland and water areas. USGS North America Land Use Land Cover (LULC), version 2.0, 1993; ESRI airports and airfields (2006); U.S. Census Urbanized Areas (2000 and 2003) 10) 50% exclusion of non-ridgecrest forest Ridge-crest areas defined using a terrain definition script, overlaid with USGS LULC data screened for the forest categories. Other Criteria 8) 50% exclusion of remaining Dept. of Defense lands except

378

Percent of Commercial Natural Gas Deliveries in Maryland Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 97.1 96.6 97.1 96.7 95.9 95.1 94.3 94.7 94.1 94.2 94.6 96.8 1990 97.6 97.1 96.0 95.7 94.3 94.5 93.6 93.1 92.6 93.3 94.7 95.6 1991 97.3 97.5 97.1 96.6 95.9 94.8 94.5 94.7 94.1 95.8 96.5 97.4 1992 97.2 97.2 96.3 95.6 94.1 92.8 93.1 92.7 94.1 95.0 97.0 97.4 1993 97.3 97.4 96.5 96.3 94.6 96.2 95.0 93.4 93.4 95.4 97.1 98.1 1994 98.1 98.3 98.2 95.8 95.8 95.4 95.2 94.1 95.2 96.2 96.5 97.8 1995 97.9 98.5 97.8 96.7 95.9 96.2 94.4 94.9 95.6 94.7 95.6 97.0 1996 94.9 96.5 93.7 92.4 86.2 86.8 81.4 85.0 87.0 87.3 92.2 93.2 1997 83.9 81.9 77.6 71.5 61.9 56.1 51.6 50.3 48.6 51.7 64.7 53.1 1998 47.0 49.3 45.6 32.1 26.8 24.3 22.2 22.7 23.0 25.2 38.3 37.7

379

Percent of Industrial Natural Gas Deliveries in Florida Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 6.1 4.5 3.5 4.7 5.9 3.6 1.9 2.9 2.5 2.5 3.3 4.0 2002 4.1 4.5 4.1 3.6 3.5 4.2 3.2 3.5 3.9 3.4 3.8 4.4 2003 4.2 5.9 4.4 3.9 3.5 3.7 3.3 2.6 3.7 3.2 4.4 3.3 2004 4.6 3.8 4.2 3.3 3.3 3.7 2.9 3.2 4.4 3.3 4.1 3.6 2005 2.7 4.1 3.8 3.4 3.1 3.2 3.4 3.5 3.4 3.7 3.5 3.6 2006 3.0 2.8 3.0 2.8 2.3 2.4 5.3 2.9 3.0 2.4 4.2 3.1 2007 2.6 3.1 3.5 2.3 2.9 4.0 2.8 2.6 3.6 2.5 3.7 3.6 2008 2.9 3.3 3.4 2.5 2.9 2.4 2.8 2.5 3.2 3.0 3.3 3.3 2009 3.5 3.4 4.8 3.3 3.1 2.8 2.8 2.9 2.8 3.4 3.1 2.8 2010 2.6 3.4 2.9 2.7 3.6 2.3 2.5 5.1 3.0 2.8 2.8 2.6 2011 3.1 4.3 2.6 2.8 2.8 2.6 2.9 2.9 2.8 3.1 3.8 2.4

380

Percent of Commercial Natural Gas Deliveries in Indiana Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 94.1 93.9 94.3 92.6 92.6 97.2 96.7 96.8 89.1 91.9 97.7 98.9 1990 99.2 98.5 93.4 90.1 92.1 90.6 92.2 89.7 88.4 91.8 98.4 98.6 1991 94.2 93.3 93.2 93.2 92.6 89.2 89.9 89.6 92.6 98.5 97.9 95.4 1992 93.6 92.4 98.6 99.1 99.7 99.9 92.8 99.6 91.9 99.8 99.9 98.0 1993 94.5 94.1 99.6 99.5 100.0 91.9 90.4 91.1 92.9 90.7 92.2 96.1 1994 94.1 97.5 93.7 91.5 88.4 85.6 84.6 85.9 84.3 86.7 91.3 91.4 1995 89.7 89.9 89.5 87.0 83.4 76.1 73.5 72.7 77.9 80.9 90.7 93.4 1996 98.1 98.6 97.9 97.4 93.7 88.9 91.6 86.8 86.8 91.5 96.1 97.4 1997 97.1 96.7 93.4 91.1 58.0 59.4 85.4 86.8 87.2 93.9 96.0 94.0 1998 85.1 83.9 88.3 78.9 75.8 69.8 59.1 70.2 57.3 69.0 74.5 82.6

Note: This page contains sample records for the topic "volt unknown percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Percent of Commercial Natural Gas Deliveries in Alaska Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1991 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1992 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1994 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1995 100.0 83.9 83.2 83.8 81.9 76.4 72.0 71.3 72.1 69.2 72.9 77.9 1996 73.4 78.9 76.0 62.5 59.1 55.0 51.2 53.1 50.7 54.2 58.2 61.8 1997 60.3 59.0 57.7 57.1 54.8 50.5 49.9 45.0 49.9 52.2 51.9 54.3

382

Percent of Commercial Natural Gas Deliveries in Utah Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1991 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1992 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1994 83.8 85.2 82.9 82.4 77.7 77.9 76.4 79.0 79.8 83.7 83.8 85.9 1995 85.5 85.5 82.5 83.1 80.0 79.3 73.9 71.3 75.2 79.4 80.2 82.8 1996 84.0 85.6 82.8 82.3 77.7 72.9 73.3 71.9 78.4 79.5 81.2 84.4 1997 86.2 87.1 82.9 83.7 78.8 76.9 72.7 71.6 74.7 80.1 83.0 86.4

383

Percent of Commercial Natural Gas Deliveries in Georgia Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 96.6 93.6 89.7 88.2 85.3 81.7 80.7 80.2 83.0 86.4 89.4 96.8 1990 96.5 90.3 88.7 86.9 82.0 80.9 80.1 82.5 78.9 84.3 87.9 94.1 1991 92.1 90.7 88.8 84.7 81.6 79.7 79.6 80.3 78.8 82.8 90.7 92.5 1992 90.8 90.6 89.3 88.2 85.0 82.7 79.7 83.3 83.4 84.6 87.9 92.9 1993 91.5 92.9 94.6 90.9 86.5 83.0 85.4 84.9 85.6 86.0 91.2 93.0 1994 97.0 94.9 92.4 90.3 89.3 86.8 87.9 89.0 86.1 88.6 91.6 92.6 1995 96.1 97.1 93.3 90.7 89.7 88.4 87.4 88.4 87.9 91.1 94.8 97.2 1996 97.7 98.1 96.9 94.9 92.2 89.0 88.7 88.1 86.6 90.6 92.2 93.2 1997 94.3 93.5 90.0 88.5 85.4 84.3 81.0 81.9 82.9 85.6 88.6 91.6 1998 90.7 91.3 88.8 86.3 83.7 80.9 71.5 71.5 73.6 74.6 77.4 79.2

384

Percent of Industrial Natural Gas Deliveries in Alaska Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 99.6 99.6 99.6 99.7 97.1 92.7 90.5 89.6 94.4 94.9 99.3 99.3 2002 99.3 99.2 99.2 99.3 80.9 79.0 78.8 78.4 86.9 99.4 96.3 99.6 2003 97.3 98.3 81.5 78.0 62.0 62.8 61.5 54.7 55.2 70.5 100.0 95.4 2004 94.3 77.2 72.2 65.1 68.5 66.1 60.9 54.9 55.5 58.7 76.9 73.3 2005 76.0 75.0 71.9 66.3 71.4 64.0 61.8 63.1 67.6 76.6 70.9 69.0 2006 66.8 63.2 71.2 60.6 60.5 63.6 55.1 60.2 64.8 61.6 78.2 70.2 2007 77.8 76.7 78.2 73.6 78.3 72.5 59.1 59.3 73.8 63.5 71.8 68.8 2008 100.0 100.0 83.8 82.2 57.2 60.9 54.5 72.1 75.9 93.1 83.1 100.0 2009 77.2 77.4 82.7 70.6 44.2 54.8 55.5 78.9 84.3 79.0 82.4 83.1

385

Percent of Commercial Natural Gas Deliveries in Oregon Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 99.1 99.2 98.7 98.3 97.6 97.6 97.0 97.2 97.4 96.7 97.3 98.0 1990 98.2 98.6 98.4 97.4 97.4 97.5 96.6 96.6 96.9 95.6 96.5 98.1 1991 98.7 98.3 97.8 97.7 97.5 98.0 97.3 97.2 97.2 95.9 97.6 98.0 1992 98.6 98.4 97.4 97.7 97.7 97.8 97.9 96.7 97.8 94.6 97.4 98.4 1993 98.6 99.0 98.5 98.0 97.6 97.8 97.6 97.5 97.3 93.6 96.5 98.2 1994 98.5 98.6 98.3 97.4 97.6 97.7 98.1 97.7 97.9 97.0 97.8 98.6 1995 98.5 98.5 98.2 98.2 97.9 97.8 98.1 97.9 98.1 96.7 97.9 98.4 1996 98.4 98.8 98.6 98.1 98.2 98.3 98.1 98.0 97.6 97.0 98.3 98.6 1997 98.8 98.9 98.8 98.5 98.5 98.1 98.3 98.3 98.0 97.5 98.4 98.4 1998 99.3 99.2 99.1 98.9 98.8 99.0 98.9 98.6 98.7 98.4 99.0 99.1

386

Percent of Commercial Natural Gas Deliveries in Idaho Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 88.9 90.2 90.6 89.0 82.8 85.9 86.8 83.0 84.1 79.3 84.6 87.4 1990 91.5 90.4 89.7 87.7 85.8 88.1 86.1 85.2 85.0 79.3 86.3 86.4 1991 91.0 91.7 88.5 87.4 87.4 86.8 84.7 84.0 82.9 73.6 85.1 87.5 1992 89.4 89.0 87.1 85.2 83.1 80.2 81.0 82.4 80.2 77.9 82.2 88.3 1993 89.4 89.9 91.0 87.9 87.4 82.3 82.8 81.3 79.2 77.7 81.5 87.8 1994 87.8 88.6 88.1 85.9 83.2 82.7 84.2 80.1 80.6 79.4 84.1 87.6 1995 89.7 89.1 86.5 85.5 86.0 85.3 83.7 82.5 80.4 77.1 85.9 85.5 1996 88.8 90.1 88.2 87.2 85.7 86.0 82.4 81.9 80.0 77.3 84.9 87.6 1997 87.8 89.7 87.7 86.1 86.4 83.3 83.1 82.8 82.5 76.4 83.1 86.9 1998 90.2 88.9 88.3 86.7 85.7 85.6 84.2 83.3 80.6 75.3 83.9 86.1

387

Percent of Industrial Natural Gas Deliveries in Indiana Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 15.1 14.0 7.1 7.1 4.2 3.7 5.2 1.0 5.5 8.3 6.6 10.2 2002 8.4 8.1 10.1 6.4 5.3 6.2 5.3 5.9 6.6 12.5 12.6 12.4 2003 14.2 12.9 8.9 7.2 7.0 5.9 6.2 5.7 9.3 6.2 11.3 9.3 2004 9.2 8.9 8.9 6.9 6.4 6.2 6.9 6.5 7.3 7.9 10.4 11.6 2005 9.8 7.7 9.6 5.8 6.3 5.5 5.5 6.7 8.2 8.2 10.6 8.9 2006 8.2 9.3 7.4 4.3 7.0 5.0 6.4 5.9 6.3 8.2 8.3 8.4 2007 9.3 9.4 5.8 7.6 6.1 5.5 6.0 5.0 6.9 6.8 9.5 9.1 2008 8.4 7.5 7.0 6.7 5.5 4.5 4.7 4.7 5.3 9.1 8.4 7.6 2009 8.6 8.5 5.3 6.3 7.1 6.2 6.8 5.0 6.2 7.8 6.8 8.1 2010 7.5 6.4 5.7 5.4 4.1 4.4 4.6 4.3 5.0 4.7 5.5 6.3 2011 4.5 4.8 4.8 3.5 3.4 3.2 3.5 2.2 2.5 2.4 3.1 4.0

388

Percent of Commercial Natural Gas Deliveries in Vermont Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100 100 100 100 100 100 100 100 100 100 100 100 1990 100 100 100 100 100 100 100 100 100 100 100 100 1991 100 100 100 100 100 100 100 100 100 100 100 100 1992 100 100 100 100 100 100 100 100 100 100 100 100 1993 100 100 100 100 100 100 100 100 100 100 100 100 1994 100 100 100 100 100 100 100 100 100 100 100 100 1995 100 100 100 100 100 100 100 100 100 100 100 100 1996 100 100 100 100 100 100 100 100 100 100 100 100 1997 100 100 100 100 100 100 100 100 100 100 100 100 1998 100 100 100 100 100 100 100 100 100 100 100 100 1999 100 100 100 100 100 100 100 100 100 100 100 100

389

Ten-percent solar-to-fuel conversion with nonprecious materials  

Science Journals Connector (OSTI)

...the past 7 y, the price of crystalline silicon...by 86%, and the price of PV modules has...In the meantime, average commercial c-Si...furnish a solar-to-fuels device with an efficiency...avoid the deleterious effect of concentrated base...2008 ) The hydrogen fuel alternative . MRS Bull...

Casandra R. Cox; Jungwoo Z. Lee; Daniel G. Nocera; Tonio Buonassisi

2014-01-01T23:59:59.000Z

390

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

J. Charles Smith (Utility Wind Integration Group) and Robertare the integration costs associated with wind power. The

Hand, Maureen

2008-01-01T23:59:59.000Z

391

Ten-percent solar-to-fuel conversion with nonprecious materials  

Science Journals Connector (OSTI)

...solar-to-fuels conversion. Distributed and grid-scale adoption of nondispatchable, intermittent...Energy (2013) Hydrogen, fuel cells, & infrastructure technologies program. Hydrogen production. Available...2003 ) Design considerations for a hybrid amorphous silicon/photoelectrochemical...

Casandra R. Cox; Jungwoo Z. Lee; Daniel G. Nocera; Tonio Buonassisi

2014-01-01T23:59:59.000Z

392

Sixty Percent Conceptual Design Report: Enterprise Accountability System for Classified Removable Electronic Media  

SciTech Connect (OSTI)

Classified removable electronic media (CREM) are tracked in several different ways at the Laboratory. To ensure greater security for CREM, we are creating a single, Laboratory-wide system to track CREM. We are researching technology that can be used to electronically tag and detect CREM, designing a database to track the movement of CREM, and planning to test the system at several locations around the Laboratory. We focus on affixing ''smart tags'' to items we want to track and installing gates at pedestrian portals to detect the entry or exit of tagged items. By means of an enterprise database, the system will track the entry and exit of tagged items into and from CREM storage vaults, vault-type rooms, access corridors, or boundaries of secure areas, as well as the identity of the person carrying an item. We are considering several options for tracking items that can give greater security, but at greater expense.

B. Gardiner; L.Graton; J.Longo; T.Marks, Jr.; B.Martinez; R. Strittmatter; C.Woods; J. Joshua

2003-05-03T23:59:59.000Z

393

Ten-percent solar-to-fuel conversion with nonprecious materials  

Science Journals Connector (OSTI)

...2013) Hydrogen, fuel cells, & infrastructure technologies program. Hydrogen production. Available at http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/. Accessed April 30, 2014 . 10 Walter MG ( 2010 ) Solar water splitting cells...

Casandra R. Cox; Jungwoo Z. Lee; Daniel G. Nocera; Tonio Buonassisi

2014-01-01T23:59:59.000Z

394

Fact #763: January 21, 2013 Eighty-four Percent of Scrapped Tires Are Recycled  

Broader source: Energy.gov [DOE]

There were 263 million tires scrapped in 2009 (latest available data) which amounts to more than 4.7 million tons of waste. Fortunately, 84% of that waste was recycled. Most of the recycled tires...

395

Graduates 6 2 1 5 5 1 4 2 2 2 3 Percent of Graduates with  

E-Print Network [OSTI]

Placement Database As of 4/2/2013 #12;29 Number of Grads with Placement Info Art History, PhD Graduates is captured in the TGS PhD Placement Database using graduate responses from the Exit Survey and Survey of Earned Doctorates, and updated with the help of faculty and staff after each graduation. The database

Grzybowski, Bartosz A.

396

Graduates 2 1 5 5 1 4 2 2 2 6 3 Percent of Graduates with  

E-Print Network [OSTI]

Placement Database As of 7/15/2014 #12;30 Number of Grads with Placement Info Art History, PhD Graduates is captured in the TGS PhD Placement Database using graduate responses from the Exit Survey and Survey of Earned Doctorates, and updated with the help of faculty and staff after each graduation. The database

Grzybowski, Bartosz A.

397

Graduates 6 6 2 1 5 5 1 4 2 2 3 Percent of Graduates with  

E-Print Network [OSTI]

Placement Database #12;33 Number of Grads with Placement Info Art History, PhD Graduates First Placement is captured in the TGS PhD Placement Database using graduate responses from the Exit Survey and Survey of Earned Doctorates, and updated with the help of faculty and staff after each graduation. The database

Grzybowski, Bartosz A.

398

Ten-percent solar-to-fuel conversion with nonprecious materials  

Science Journals Connector (OSTI)

...electronics. This approach allows for facile optimization en route to addressing lower-cost...Gasteiger HA , eds ( 2003 ) Handbook of Fuel Cells: Fundamentals, Technology and Applications...Department of Energy (2013) Hydrogen, fuel cells, & infrastructure technologies program...

Casandra R. Cox; Jungwoo Z. Lee; Daniel G. Nocera; Tonio Buonassisi

2014-01-01T23:59:59.000Z

399

Ten-percent solar-to-fuel conversion with nonprecious materials  

Science Journals Connector (OSTI)

...Mechanical Engineering, Massachusetts Institute of Technology...Mechanical Engineering, Massachusetts Institute of Technology...Cambridge, MA 02139 Direct solar-to-fuels conversion...Information for 10% solar-to-fuel conversion...University, Cambridge, Massachusetts 02138, USA. bMassachusetts...

Casandra R. Cox; Jungwoo Z. Lee; Daniel G. Nocera; Tonio Buonassisi

2014-01-01T23:59:59.000Z

400

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

power system modeling, wind energy I. I NTRODUCTION Generating electricity from wind technology has several advantages

Hand, Maureen

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "volt unknown percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Using image processing to measure tree crown diameters and estimate percent crown closure  

E-Print Network [OSTI]

. 92 15739. 78 12458. 89 14827. 1D 34621. 61 29827. 54 31822. 85 2'l709. 21 17220. 59 16172. 18 16078. 61 15824. 26 28936. 74 26003. 63 26839. 35 24482. 40 16616. 60 15824. 26 26422. 72 zszee. es 14828. 65 14340. 70 23922. 95 22465. 35...

Gabriel, Darren Kyle

2012-06-07T23:59:59.000Z

402

Ten-percent solar-to-fuel conversion with nonprecious materials  

Science Journals Connector (OSTI)

...nickel-borate thin film electrocatalyst . J Am Chem Soc 135 ( 9 ): 3662 3674...Accelerating materials development for photoelectrochemical hydrogen...Foundation Faculty Early Career Development Program ECCS-1150878 (to...a NiBi anode and NiMoZn cathode operating in 1 M KOH (pH...

Casandra R. Cox; Jungwoo Z. Lee; Daniel G. Nocera; Tonio Buonassisi

2014-01-01T23:59:59.000Z

403

Ten-percent solar-to-fuel conversion with nonprecious materials  

Science Journals Connector (OSTI)

...can effectively be harnessed to electricity by fuel cell devices (3, 4) or converted...solar cell describes both wired and wireless water splitting and constrains the currents and...technology pathways to reach baseload electricity costs . Energy Environ Sci 5...

Casandra R. Cox; Jungwoo Z. Lee; Daniel G. Nocera; Tonio Buonassisi

2014-01-01T23:59:59.000Z

404

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

GIS-based supply curves for wind resources, along with projected costs and performance for other generation technologies such as pulverized coal

Hand, Maureen

2008-01-01T23:59:59.000Z

405

Graduates 0 2 3 2 2 1 2 2 1 1 2 Percent of Graduates with  

E-Print Network [OSTI]

D Completions and Placement, Ten Year Trend 2002-2003 to 2011-2012 French and Italian Placement Category As of 4/2/2013 #12;12 Number of Grads with Placement Info French and Italian, PhD Graduates First First Placement Category by Broad Field Category 77% 14% 18% 60% 11% 68% 36% 18% 3% 13% 42% 11% 3% 4% 7

Grzybowski, Bartosz A.

406

Record Alewife Harvest Hikes U.S. Great Lakes Commercial Fish Catch 16 Percent  

E-Print Network [OSTI]

School Set for Persian Gulf Kuwait, Saudi Arabia, Qatar, the United Arab Emirates, and Iran signed a draft agreement on 17 June 1975 in Kuwait to establish a Persian Gulf Regional Center to train captains, and mechanics. Training courses will be in English and Arabic. The Persian Gulf Regional

407

Direct Hydrogenation Magnesium Boride to Magnesium Borohydride: Demonstration of >11 Weight Percent Reversible Hydrogen Storage  

SciTech Connect (OSTI)

We here for the first time demonstrate direct hydrogenation of magnesium boride, MgB2, to magnesium borohydride, Mg(BH4)2 at 900 bar H2-pressures and 400C. Upon 14.8wt% hydrogen release, the end-decomposition product of Mg(BH4)2 is MgB2, thus, this is a unique reversible path here obtaining >11wt% H2 which implies promise for a fully reversible hydrogen storage material.

Severa, Godwin; Ronnebro, Ewa; Jensen, Craig M.

2010-11-16T23:59:59.000Z

408

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

fuel price forecast Coal prices follow AEO 2007 referencecoal- and natural gas-based electricity generation analyzed here include decreased natural gas prices,

Hand, Maureen

2008-01-01T23:59:59.000Z

409

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

Contribution to U.S. Electricity Supply. National Renewable20% of the nation's electricity from wind technology byTERMS wind-generated electricity; wind energy; 20% wind

Hand, Maureen

2008-01-01T23:59:59.000Z

410

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

pulverized coal plants, combined cycle natural gas plants,natural gas plants, and combined cycle natural gas plants.generated largely from combined-cycle Capacity (GW) yd r as

Hand, Maureen

2008-01-01T23:59:59.000Z

411

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

W. Golove, Accounting for Fuel Price Risk When Comparingdirect electricity sector costs, including fuel priceforecasts, fuel price elasticity, and carbon regulation.

Hand, Maureen

2008-01-01T23:59:59.000Z

412

A combined cycle designed to achieve greater than 60 percent efficiency  

SciTech Connect (OSTI)

In cooperation with the US Department of Energy`s Morgantown Energy Technology Center, Westinghouse is working on Phase 2 of an 8-year Advanced Turbine Systems Program to develop the technologies required to provide a significant increase in natural gas-fired combined cycle power generation plant efficiency. In this paper, the technologies required to yield an energy conversion efficiency greater than the Advanced Turbine Systems Program target value of 60% are discussed. The goal of 60% efficiency is achievable through an improvement in operating process parameters for both the combustion turbine and steam turbine, raising the rotor inlet temperature to 2,600 F (1,427 C), incorporation of advanced cooling techniques in the combustion turbine expander, and utilization of other cycle enhancements obtainable through greater integration between the combustion turbine and steam turbine.

Briesch, M.S.; Bannister, R.L.; Diakunchak, I.S.; Huber, D.J. [Westinghouse Electric Corp., Orlando, FL (United States)

1995-10-01T23:59:59.000Z

413

Five percent platinum-tungsten oxide-based electrocatalysts for phosphoric acid fuel cell cathodes  

SciTech Connect (OSTI)

A Pt-tungsten oxide-based electrocatalyst has been fabricated by an inexpensive chemical route for use as an oxygen cathode in 99% phosphoric acid at 180 C. The effect of %WO{sub 3} (wt/wt) on the Pt-tungsten oxide/C-based electrode performance was studied. The electrocatalytic properties for the oxygen reduction reaction (ORR), e.g., exchange current density and mass activity of a 5% Pt-40% WO{sub 3}-based electrode were found to be twice as high as those of 10% Pt, which contains double the amount of platinum. The Tafel slope and specific activity of the two electrodes are similar. It was shown that an increase in its electrochemically active surface area was the only reason for the performance of the 5% Pt-40% WO{sub 3}-based electrode. The electrocatalytic parameters of the 5% Pt-40% WO{sub 3}-based electrode for the ORR were compared to those of the 2% Pt-1% H{sub 2}WO{sub 4}-based electrode.

Savadogo, O.; Beck, P. [Ecole Polytechnique, Montreal, Quebec (Canada). Lab. d`Electrochimie et de Materiaux Energetiques

1996-12-01T23:59:59.000Z

414

SAVANNAH RIVER SITE TANK CLEANING: CORROSION RATE FOR ONE VERSUS EIGHT PERCENT OXALIC ACID SOLUTION  

SciTech Connect (OSTI)

Until recently, the use of oxalic acid for chemically cleaning the Savannah River Site (SRS) radioactive waste tanks focused on using concentrated 4 and 8-wt% solutions. Recent testing and research on applicable dissolution mechanisms have concluded that under appropriate conditions, dilute solutions of oxalic acid (i.e., 1-wt%) may be more effective. Based on the need to maximize cleaning effectiveness, coupled with the need to minimize downstream impacts, SRS is now developing plans for using a 1-wt% oxalic acid solution. A technology gap associated with using a 1-wt% oxalic acid solution was a dearth of suitable corrosion data. Assuming oxalic acid's passivation of carbon steel was proportional to the free oxalate concentration, the general corrosion rate (CR) from a 1-wt% solution may not be bound by those from 8-wt%. Therefore, after developing the test strategy and plan, the corrosion testing was performed. Starting with the envisioned process specific baseline solvent, a 1-wt% oxalic acid solution, with sludge (limited to Purex type sludge-simulant for this initial effort) at 75 C and agitated, the corrosion rate (CR) was determined from the measured weight loss of the exposed coupon. Environmental variations tested were: (a) Inclusion of sludge in the test vessel or assuming a pure oxalic acid solution; (b) acid solution temperature maintained at 75 or 45 C; and (c) agitation of the acid solution or stagnant. Application of select electrochemical testing (EC) explored the impact of each variation on the passivation mechanisms and confirmed the CR. The 1-wt% results were then compared to those from the 8-wt%. The immersion coupons showed that the maximum time averaged CR for a 1-wt% solution with sludge was less than 25-mils/yr for all conditions. For an agitated 8-wt% solution with sludge, the maximum time averaged CR was about 30-mils/yr at 50 C, and 86-mils/yr at 75 C. Both the 1-wt% and the 8-wt% testing demonstrated that if the sludge was removed from the testing, there would be a significant increase in the CR. Specifically, the CR for an agitated 1-wt% pure oxalic acid solution at 45 or 75 C was about 4 to 10 times greater than those for a 1-wt% solution with sludge. For 8-wt% at 50 C, the effect was even larger. The lower CRs suggest that the cathodic reactions were altered by the sludge. For both the 1-wt% and 8-wt% solution, increasing the temperature did not result in an increased CR. Although the CR for a 1-wt% acid with sludge was considered to be non-temperature dependent, a stagnant solution with sludge resulted in a CR that was greater at 45 C than at 75 C, suggesting that the oxalate film formed at a higher temperature was better in mitigating corrosion. For both a 1 and an 8-wt% solution, agitation typically resulted in a higher CR. Overall, the testing showed that the general CR to the SRS carbon steel tanks from 1-wt% oxalic acid solution will remain bounded by those from an 8-wt% oxalic acid solution.

Ketusky, E.; Subramanian, K.

2011-01-20T23:59:59.000Z

415

Fishing Communities Facts Alaska communities are small. Ninety-nine percent of  

E-Print Network [OSTI]

.4% 2000 Race and Hispanic/Latino Ethnicity: Alaska and Average of Selected Fishing Communities Race Hawaiian and other Pacific Islander Some other race Two or more races % Hispanic or Latino (of any race Total Fishing Communities Total Population Median Household Income % Family Households below Poverty

416

NNSA Achieves 50 Percent Production for W76-1 Units | National...  

National Nuclear Security Administration (NNSA)

with NNSA, the team has achieved this important milestone, and I look forward to completion of W76-1 production before the decade is out. The combination of the Ohio-class...

417

0 20 40 60 80 100 Starting percent of Be12Ti in  

E-Print Network [OSTI]

element. The low threshold (n,2n) reaction makes 9Be the preferred choice material for solid-type breeder the beryllium usage whilst maintaining a high TBR. The energy amplification of the blanket and peak nuclear and photonic energy deposited in any one region should be kept low to minimise the chance of hot spots forming

418

Fact #720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection  

Broader source: Energy.gov [DOE]

Gasoline direct fuel injection (GDI) allows fuel to be injected directly into the cylinder so the timing and shape of the fuel mist can be controlled more precisely. The improved combustion and...

419

Percent of Industrial Natural Gas Deliveries in Utah Represented by the  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 11.9 9.2 10.7 10.1 9.5 9.5 10.1 11.5 9.4 9.2 11.0 13.8 2002 14.0 13.8 12.6 15.8 13.0 13.4 12.1 13.6 13.5 12.8 15.0 13.7 2003 14.5 14.6 13.1 14.9 14.1 13.2 11.8 12.7 13.8 13.9 13.2 13.1 2004 13.8 15.2 13.3 14.6 12.7 12.7 18.4 46.5 26.9 24.3 23.4 23.8 2005 18.4 18.6 18.4 17.7 18.6 21.3 20.0 21.2 21.3 21.5 18.3 19.9 2006 22.3 23.2 22.5 24.0 24.0 24.7 24.2 13.9 13.4 15.3 15.8 16.0 2007 14.4 13.6 14.4 14.6 13.3 12.7 14.5 14.9 13.8 13.4 14.2 14.8 2008 13.5 13.1 13.1 12.4 12.7 12.8 13.2 12.1 11.6 12.0 12.7 12.3 2009 13.3 10.3 12.0 9.8 11.7 12.8 11.6 13.4 14.0 13.1 12.0 12.5 2010 12.0 9.8 10.9 11.7 12.0 13.3 13.2 12.6 13.4 12.8 11.9 12.6

420

8 FEBRUARY 2005 Over 95 percent of the approximate1y 1.5 million  

E-Print Network [OSTI]

States each year are framed with wood, the world's most sustainable building material. Wood, and molded wall panels as both skin and structural ele- ments. The exterior application of structural wood building materials because they consume wood much faster than native subterranean termites

Note: This page contains sample records for the topic "volt unknown percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

U.S. Parking Facilities Cut Energy Use by 90 Percent, Switch...  

Broader source: Energy.gov (indexed) [DOE]

U.S. businesses save money by saving energy, the Department's Better Buildings Alliance is supporting the Lighting Energy Efficiency in Parking (LEEP) Campaign. To date,...

422

Outlaw Motorcycle Gangs: Aspects of the One-Percenter Culture for Emergency Department Personnel to Consider  

E-Print Network [OSTI]

among members of outlaw motorcycle clubs. Deviant Behavior.and values of the motorcycle club. Deviant Behavior. 2009;of the Chosen Few motorcycle club. Chosen Few Motorcycle

Bosmia, Anand; Quinn, James; Peterson, Todd; Griessenauer, Christoph; Tubbs, R. Shane

2014-01-01T23:59:59.000Z

423

GIESKES, WINFRIED W., AND GIJSBERT W. KRAAY. Unknown ...  

Science Journals Connector (OSTI)

Sep 18, 1980 ... oceanic water, where a green pigment with absorption .... ciates model 6000A solvent delivery sys- ... rophyll c, consisted of the first solvent to.

2000-02-09T23:59:59.000Z

424

HOME NETWORKS: THE GREAT UNKNOWN FOR THE SERVICE PROVIDER  

Science Journals Connector (OSTI)

Abstract (40-Word Limit): As new broadband access networks drive the development of new cross-sectoral services, they also lead to home networks increasing in size, scale, and...

den Hartog, Frank

425

Electrical Resistivity Imaging for Unknown Bridge Foundation Depth Determination  

E-Print Network [OSTI]

experimentation and at five field experimentations located at three roadway bridges, a geotechnical test site, and a railway bridge. The first experimentation was at the bridges with the smallest foundations, later working up in size to larger drilled shafts...

Arjwech, Rungroj

2012-02-14T23:59:59.000Z

426

Maritime intent estimation and the detection of unknown obstacles  

E-Print Network [OSTI]

The benefits of using Unmanned Undersea Vehicles (UUVs) in maritime operations are numerous. However, before these benefits can be realized, UUV capabilities must be expanded. This thesis focuses on improving certain aspects ...

Fong, Edward H. L. (Edward Hsiang Lung), 1980-

2004-01-01T23:59:59.000Z

427

Optimizing Robust Limit Cycles for Legged Locomotion on Unknown Terrain  

E-Print Network [OSTI]

periodic control input, for many possible one-step solution trajectories (using ground profiles drawn from scheme can recover the known deadbeat open- loop control solution for the Spring Loaded Inverted Pendulum. Dai and R. Tedrake are with the Computer Science and Artificial Intelligence Lab, Massachusetts

Tedrake, Russ

428

Methods for characterizing, classifying, and identifying unknowns in samples  

DOE Patents [OSTI]

Disclosed is a method for taking the data generated from an array of responses from a multichannel instrument, and determining the characteristics of a chemical in the sample without the necessity of calibrating or training the instrument with known samples containing the same chemical. The characteristics determined by the method are then used to classify and identify the chemical in the sample. The method can also be used to quantify the concentration of the chemical in the sample.

Grate, Jay W [West Richland, WA; Wise, Barry M [Manson, WA

2002-01-01T23:59:59.000Z

429

Unknown Input Observers and Fault Tolerant Control Allocation Andrea Cristofaro  

E-Print Network [OSTI]

objectives [3] [13] [17] , such as power or fuel consumption minimization. On the other hand, usually in order to make relevant faults observable. The case study of an overactuated marine vessel supports

Johansen, Tor Arne

430

Managing the Known Unknowns: Theranostic Cancer Nanomedicine and Informed Consent  

Science Journals Connector (OSTI)

The potential clinical applications and the economic benefits of theranostics represent a tremendous incentive to push research ... chapter, we address the issue of how theranostics might challenge our current co...

Fabrice Jotterand; Archie A. Alexander

2011-01-01T23:59:59.000Z

431

The Unknown Max Weber: A Note on Missing Translations  

E-Print Network [OSTI]

shabbily treated of all Weber's works, on "sociology and social policy" (1924b), which includes much of his most "empirical" research. Again, until recently (1971) only one small essay (on socialism) had become available to Americans. This sorry condition... of Social Rights and the Western Welfare State: A Weberian Perspective (Uni versity of North Carolina Press, 1981); Ronald Glassman and Vatro Murvar, eds., Max Weber's Political Sociology (Greenwood, 1984); ]urgen Habermas, The Theory of Communicative...

Sica, Alan

1984-01-01T23:59:59.000Z

432

The wonder of the unknown at Hadley-Apennine  

Science Journals Connector (OSTI)

With two maria and the Fra Mauro Formation sampled, the geologists were eager to attempt a highland site, but none of the feature sites had been surveyed sufficiently to certify them for a landing. However, ...

2008-01-01T23:59:59.000Z

433

Estimators for models with constraints involving unknown parameters  

E-Print Network [OSTI]

- tor of real numbers. Such estimators have asymptotic variance P(f - c a)2 . If Paa is invertible, then by the Cauchy­Schwarz inequality the asymptotic variance is minimized for cf = (Paa )-1 Paf. The constant cf ^cf = ( ^Paa )-1 ^Paf = n i=1 a(Xi)a(Xi) -1 n i=1 a(Xi)f(Xi). The resulting estimator ^P(f -^cf a) has

Wefelmeyer, Wolfgang

434

Robotic Searching for Stationary, Unknown and Transient Radio Sources  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . 17 D. Analysis of Common Searching Strategies . . . . . . . . . . 19 1. The Slap Method Versus The Random Walk . . . . . 19 a. The Slap Method (SM) . . . . . . . . . . . . . . . 19 b. Random Walk . . . . . . . . . . . . . . . . . . . . 23 2... the target. The dashed line is a robot trajectory. . . . . . . . . . . . . . . . . . . 13 2 (a) A sample motion plan for the slap method. (b) An illustration of how a tour (line l) intersects the circle of the target. . . . . . . . . 20 3 An illustration...

Kim, Chang Young

2012-07-16T23:59:59.000Z

435

Data:413a6afc-d8e2-45db-836e-dca265edab2a | Open Energy Information  

Open Energy Info (EERE)

afc-d8e2-45db-836e-dca265edab2a afc-d8e2-45db-836e-dca265edab2a No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Northern States Power Co - Wisconsin Effective date: 2011/12/23 End date if known: Rate name: Cg-9.1 (Time Of Day Secondary Mandatory) Sector: Commercial Description: Availability-Mandatory: This rate schedule is mandatory for any retail customer having a 15-minute measured demand equal to or greater than 200 kW for at least 4 of 12 months. Customer remains on this rate schedule on a mandatory basis unless demand remains below 200 kW for 12 consecutive months. Availability-Optional: This rate schedule is optional for any general service customer for service supplied through one meter where customer's demands are measured and where customer is not required to be on a time-of-day rate schedule. Any customer choosing to be served on this rate schedule waives all rights to any billing adjustments arising from a claim that the bill for the customer's service would be cheaper on any alternative rate schedule for any period of time, including any rights under Wis. Adm. Code, Section PSC 113.16(4), Reg. March 1979, No. 279. Kind of Service: 1. Alternating current at the following nominal voltages: a. for Secondary Voltage Service- three wire single-phase and three-or four-wire three-phase at 208 volts or higher; b. for Primary Voltage Service- three-phase at 2400 volts or higher, but less than 34,500 volts; c. for Transmission Voltage Service-Transformed- i) three-phase at 2400 volts or higher, with service taken and metered at substation which is fed at 69,000 volts or higher; or ii) three wire three-phase at 34,500 R volts or higher, but less than 69,000 volts. R d. for Transmission Voltage Service-Untransformed- service at 69,000 volts or higher. Energy Charge Credit per Month: All kWh in Excess of 400 Hours times the On-Peak Period Billing Demand, not to Exceed 50 Percent of Total kWh 0.800¢/kWh Energy Charge Discount (before Energy Cost Adjustment and Energy Charge Credit) Primary 2.0% Transmission Transformed 6.5% Transmission Untransformed 7.0%

436

Acronyms, Abbreviations and Definitions, DOE Hydrogen Program FY 2010 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

81 81 FY 2010 Annual Progress Report DOE Hydrogen Program °C Degrees Celsius °F Degrees Fahrenheit α-AlH 3 Alpha polymorph of aluminum hydride Δ Change, delta ΔG Gibbs free energy of reaction ΔH Enthalpy of reaction, enthalpy of hydrogenation ΔH° f standard heat of formation ΔK Stress intensity factor ΔP Pressure drop, pressure change ~ Approximately ≈ Equals approximately > Greater than ≥ Greater than or equal to < Less than ≤ Less than or equal to @ At # Number % Percent ® Registered trademark µA Micro ampere(s) µA/cm 2 Micro ampere(s) per square centimeter μc-Si Microcrystalline silicon µg Microgram(s) µm Micrometer(s); micron(s) µM Micromolar µmol Micromole(s) µΩ-cm 2 Micro-ohm(s)-square centimeter µV Micro volt(s)

437

Data:002f8a66-bbeb-4c94-a163-2f8a380904c5 | Open Energy Information  

Open Energy Info (EERE)

02f8a66-bbeb-4c94-a163-2f8a380904c5 02f8a66-bbeb-4c94-a163-2f8a380904c5 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Indianapolis Power & Light Co Effective date: 2010/03/30 End date if known: Rate name: SL - Secondary Service (LARGE) Sector: Industrial Description: AVAILABILITY: Available to any alternating current Customer for lighting and/or power service who will contract for not less than fifty (50) kilowatts of demand. CHARACTER OF SERVICE: Sixty cycle alternating current energy, ordinarily delivered and measured at 120/240 volts single phase three wire, 120/240 volts three phase four wire, 120/208 volts three phase four wire or 277/480 volts three phase four wire, which voltage will be designated by the Company, and through a single metering installation. If the Company, at its option, measures all the energy at the primary side of the transformers (4160 volts or 13,200 volts), the following deductions will be made in the meter readings: Two and one-half percent (2½%) will be deducted from the KW of demand established by the Customer during the month and two and one-half percent (2½%) will be deducted from the KWH consumed. No discount will be allowed where any part of energy is utilized at primary voltage. TRANSFORMER OWNERSHIP: All transformers and supplementary equipment will be owned, installed, operated and maintained by the Company. No discount will be allowed for Customer ownership of transformation facilities. RATE: The Customer Charge; plus the sum of the Demand Charge and the Energy Charge adjusted according to the "Power Factor" clause shown hereafter; plus the Demand Side Management Adjustment, the Fuel Cost Adjustment, the Environmental Compliance Cost Recovery Adjustment and the Core and Core Plus Demand- Side Management Adjustment calculated in accordance with Rider No. 3, Rider No. 6, Rider No. 20 and Rider No. 22, respectively.

438

Fischer-Tropsch Synthesis: Influence of CO Conversion on Selectivities H2/CO Usage Ratios and Catalyst Stability for a 0.27 percent Ru 25 percent Co/Al2O3 using a Slurry Phase Reactor  

SciTech Connect (OSTI)

The effect of CO conversion on hydrocarbon selectivities (i.e., CH{sub 4}, C{sub 5+}, olefin and paraffin), H{sub 2}/CO usage ratios, CO{sub 2} selectivity, and catalyst stability over a wide range of CO conversion (12-94%) on 0.27%Ru-25%Co/Al{sub 2}O{sub 3} catalyst was studied under the conditions of 220 C, 1.5 MPa, H{sub 2}/CO feed ratio of 2.1 and gas space velocities of 0.3-15 NL/g-cat/h in a 1-L continuously stirred tank reactor (CSTR). Catalyst samples were withdrawn from the CSTR at different CO conversion levels, and Co phases (Co, CoO) in the slurry samples were characterized by XANES, and in the case of the fresh catalysts, EXAFS as well. Ru was responsible for increasing the extent of Co reduction, thus boosting the active site density. At 1%Ru loading, EXAFS indicates that coordination of Ru at the atomic level was virtually solely with Co. It was found that the selectivities to CH{sub 4}, C{sub 5+}, and CO{sub 2} on the Co catalyst are functions of CO conversion. At high CO conversions, i.e. above 80%, CH{sub 4} selectivity experienced a change in the trend, and began to increase, and CO{sub 2} selectivity experienced a rapid increase. H{sub 2}/CO usage ratio and olefin content were found to decrease with increasing CO conversion in the range of 12-94%. The observed results are consistent with water reoxidation of Co during FTS at high conversion. XANES spectroscopy of used catalyst samples displayed spectra consistent with the presence of more CoO at higher CO conversion levels.

W Ma; G Jacobs; Y Ji; T Bhatelia; D Bukur; S Khalid; B Davis

2011-12-31T23:59:59.000Z

439

Using LiDAR and normalized difference vegetation index to remotely determine LAI and percent canopy cover at varying scales  

E-Print Network [OSTI]

: (1) Develop scanning LiDAR and multispectral imagery methods to estimate PCC and LAI over both hardwood and coniferous forests; (2) investigate whether a LiDAR and normalized difference vegetation index (NDVI) data fusion through linear regression...

Griffin, Alicia Marie Rutledge

2009-05-15T23:59:59.000Z

440

machining parameters showed 5 percent scatter in dimensional instability, but all were within the required tolerance band.  

E-Print Network [OSTI]

instability within 11­20, 21­30 and 31­50 micron tolerance bands in turning precision aero gas turbine engine of Superal- loys as Applied to Gas Turbine,'' M. S. Research thesis, J.N.T.U., Hyderabed. 7 ``Measurement for predicting surface residual stresses, dimensional instability, surface finish and tool life were derived

Endres. William J.

Note: This page contains sample records for the topic "volt unknown percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

REVIEW REPORT: BUILDING C-400 THERMAL TREATMENT 90 PERCENT REMEDIAL DESIGN REPORT AND SITE INVESTIGATION, PGDP, PADUCAH, KENTUCKY  

SciTech Connect (OSTI)

On 9 April 2007, the U.S. Department of Energy (DOE) Headquarters, Office of Soil and Groundwater Remediation (EM-22) initiated an Independent Technical Review (ITR) of the 90% Remedial Design Report (RDR) and Site Investigation (RDSI) for thermal treatment of trichloroethylene (TCE) in the soil and groundwater in the vicinity of Building C-400 at the Paducah Gaseous Diffusion Plant (PGDP). The general ITR goals were to assess the technical adequacy of the 90% RDSI and provide recommendations sufficient for DOE to determine if modifications are warranted pertaining to the design, schedule, or cost of implementing the proposed design. The ultimate goal of the effort was to assist the DOE Paducah/Portsmouth Project Office (PPPO) and their contractor team in ''removing'' the TCE source zone located near the C-400 Building. This report provides the ITR findings and recommendations and supporting evaluations as needed to facilitate use of the recommendations. The ITR team supports the remedial action objective (RAO) at C-400 to reduce the TCE source area via subsurface Electrical Resistance Heating (ERH). Further, the ITR team commends PPPO, their contractor team, regulators, and stakeholders for the significant efforts taken in preparing the 90% RDR. To maximize TCE removal at the target source area, several themes emerge from the review which the ITR team believes should be considered and addressed before implementing the thermal treatment. These themes include the need for: (1) Accurate and site-specific models as the basis to verify the ERH design for full-scale implementation for this challenging hydrogeologic setting; (2) Flexible project implementation and operation to allow the project team to respond to observations and data collected during construction and operation; (3) Defensible performance metrics and monitoring, appropriate for ERH, to ensure sufficient and efficient clean-up; and (4) Comprehensive (creative and diverse) contingencies to address the potential for system underperformance, and other unforeseen conditions These themes weave through the ITR report and the various analyses and recommendations. The ITR team recognizes that a number of technologies are available for treatment of TCE sources. Further, the team supports the regulatory process through which the selected remedy is being implemented, and concurs that ERH is a potentially viable remedial technology to meet the RAOs adjacent to C-400. Nonetheless, the ITR team concluded that additional efforts are needed to provide an adequate basis for the planned ERH design, particularly in the highly permeable Regional Gravel Aquifer (RGA), where sustaining target temperatures present a challenge. The ERH design modeling in the 90% RDR does not fully substantiate that heating in the deep RGA, at the interface with the McNairy formation, will meet the design goals; specifically the target temperatures. Full-scale implementation of ERH to meet the RAOs is a challenge in the complex hydrogeologic setting at PGDP. Where possible, risks to the project identified in this ITR report as ''issues'' and ''recommendations'' should be mitigated as part of the final design process to increase the likelihood of remedial success. The ITR efforts were organized into five lines of inquiry (LOIs): (1) Site investigation and target zone delineation; (2) Performance objectives; (3) Project and design topics; (4) Health and safety; and (5) Cross cutting and independent cost evaluation. Within each of these LOIs, the ITR team identified a series of unresolved issues--topics that have remaining uncertainties or potential project risks. These issues were analyzed and one or more recommendations were developed for each. In the end, the ITR team identified 27 issues and provided 50 recommendations. The issues and recommendations are briefly summarized below, developed in Section 5, and consolidated into a single list in Section 6. The ITR team concluded that there are substantive unresolved issues and system design uncertainties, resulting in technical and financial risks to DOE.

Looney, B; Jed Costanza, J; Eva Davis, E; Joe Rossabi, J; Lloyd (Bo) Stewart, L; Hans Stroo, H

2007-08-15T23:59:59.000Z

442

Oxygen enriched combustion system performance study. Phase 2: 100 percent oxygen enriched combustion in regenerative glass melters, Final report  

SciTech Connect (OSTI)

The field test project described in this report was conducted to evaluate the energy and environmental performance of 100% oxygen enriched combustion (100% OEC) in regenerative glass melters. Additional objectives were to determine other impacts of 100% OEC on melter operation and glass quality, and to verify on a commercial scale that an on-site Pressure Swing Adsorption oxygen plant can reliably supply oxygen for glass melting with low electrical power consumption. The tests constituted Phase 2 of a cooperative project between the United States Department of Energy, and Praxair, Inc. Phase 1 of the project involved market and technical feasibility assessments of oxygen enriched combustion for a range of high temperature industrial heating applications. An assessment of oxygen supply options for these applications was also performed during Phase 1, which included performance evaluation of a pilot scale 1 ton per day PSA oxygen plant. Two regenerative container glass melters were converted to 100% OEC operation and served as host sites for Phase 2. A 75 ton per day end-fired melter at Carr-Lowrey Glass Company in Baltimore, Maryland, was temporarily converted to 100% OEC in mid- 1990. A 350 tpd cross-fired melter at Gallo Glass Company in Modesto, California was rebuilt for permanent commercial operation with 100% OEC in mid-1991. Initially, both of these melters were supplied with oxygen from liquid storage. Subsequently, in late 1992, a Pressure Swing Adsorption oxygen plant was installed at Gallo to supply oxygen for 100% OEC glass melting. The particular PSA plant design used at Gallo achieves maximum efficiency by cycling the adsorbent beds between pressurized and evacuated states, and is therefore referred to as a Vacuum/Pressure Swing Adsorption (VPSA) plant.

Tuson, G.B.; Kobayashi, H.; Campbell, M.J.

1994-08-01T23:59:59.000Z

443

February 2007 www.stsc.hill.af.mil 29 In Europe, 85 percent of IT sector compa-  

E-Print Network [OSTI]

/IEC 12207 and/or ISO 9001:2000 and ISO/IEC 15504 process assessment becomes pos- sible with a minimum impact and use the concepts, processes, and practices proposed by the ISO's international software engineering standards. At the Brisbane meeting of ISO/IEC JTC1/SC7 in 2004, Canada raised the issue of small enterprises

Québec, Université du

444

Does One Know the Properties of a MICE Solid or Liquid Absorber to Better than 0.3 Percent?  

E-Print Network [OSTI]

OH, (1955) Handbook of Chemistry and Physics 58, p B-438,cooldemo Handbook of Chemistry and Physics 36, pp 1761 toModern Physics 48, Number 2, Part II, April 1976 Handbook of

Green, Michael A.; Yang, Stephanie Q.

2006-01-01T23:59:59.000Z

445

Three Percent Dietary Fish Oil Concentrate Increased Efficacy of Doxorubicin Against MDA-MB 231 Breast Cancer Xenografts  

Science Journals Connector (OSTI)

...Nu-Chek-Prep; Elysian, MN) were used for peak identification. The EPA and DHA content...in the livers of mice fed 19% w/w fish oil for 6 months. Our results demonstrate that...that the erythrocytes of mice fed 12% fish oil had higher levels of n-3 fatty acids and...

W. Elaine Hardman; C. P. Reddy Avula; Gabriel Fernandes; and Ivan L. Cameron

2001-07-01T23:59:59.000Z

446

Three Percent Dietary Fish Oil Concentrate Increased Efficacy of Doxorubicin Against MDA-MB 231 Breast Cancer Xenografts  

Science Journals Connector (OSTI)

...described previously (38) . Fields containing a single layer of...6% explanation for a total cumulative explanation of 96% of the...FOC diet by increasing the production of GPX and CAT resulting in...of mice fed 19% w/w fish oil for 6 months. Our results...

W. Elaine Hardman; C. P. Reddy Avula; Gabriel Fernandes; and Ivan L. Cameron

2001-07-01T23:59:59.000Z

447

Design and installation of continuous flow and water quality monitoring stations to improve water quality forecasting in the lower San Joaquin River  

E-Print Network [OSTI]

mile south of Hwy 140. Solar Panel with 12-volt batteryMarshall Road Reservoir. Solar Panel with 12-volt batteryflows from adjacent fields. Solar Panel with 12-volt battery

Quinn, Nigel W.T.

2007-01-01T23:59:59.000Z

448

Intrinsic Surface Stability in LiMn2-xNixO4-d (x=0.45, 0.5) High Volt-age Spinel Materials for Lithium Ion Batteries  

SciTech Connect (OSTI)

This work reports the surface stability of the high voltage Li ion cathode LiMn2-xNixO4- (x= 0.5, 0.45) by comparing thin film and powder composite electrodes after cycling using X-ray photoelectron spectroscopy. The thin film electrodes offer the ability to probe the surface of the material without the need of a conductive agent and polymer binder typically used in composite electrodes. The results suggest that neither oxidation of PF6 to POF5 nor the decomposition of ethylene carbonate or dimethylene carbonate occurs on the surface of the spinel material. These results confirm the enhanced cycling stability and rate capability associated with the high voltage spinel material and suggests that the SEI layer forms due to the reaction of electrochemically inactive components in composite electrodes with the electrolyte.

Carroll, Kyler J [University of California, San Diego; Yang, Ming-Che [University of Florida, Gainesville; Veith, Gabriel M [ORNL; Dudney, Nancy J [ORNL; Meng, Ying Shirley [University of California, San Diego

2012-01-01T23:59:59.000Z

449

Data:5da7b0d8-6db1-405e-a2fc-fac59e293cba | Open Energy Information  

Open Energy Info (EERE)

phase service at a nominal voltage of 120 volts or 120240 volts, furnished through one meter for domestic purposes only, including lighting, small domestic appliances, heating,...

450

Test and evaluation of the Chloride Spegel S1P108/30 electric vehicle battery charger  

SciTech Connect (OSTI)

The Chloride Spegel Model S1P108/30 electric vehicle battery charger was tested by the Tennessee Valley Authority (TVA) as an account of work sponsored by the Electric Power Research Institute (EPRI). Charger input/output voltage, current, and power characteristics and input waveform distortion were measured; and induced electromagnetic interference was evaluated as the charger recharged a lead-acid battery pack. Electrical quantities were measured with precision volt-ampere-watt meters, frequency counters, a digital-storage oscilloscope, and a spectrum analyzer. THe Chloride charger required 8.5 hours to recharge a 216V tubular plate lead-acid battery from 100 percent depth of discharge (DOD). Energy efficiency was 83 percent, specific power was 37.4 W/kg (17.0 W/lb), input current distortion varied from 22.4 to 34.1 percent, and electromagnetic interference was observed on AM radio. Tests were conducted with the battery at initial DOD of 100, 75, 50, and 25 percent. Charge factor was 1.14 from 100-percent DOD, increasing to 1.39 from 25-percent DOD.

Driggans, R.L.; Keller, A.S.

1985-09-01T23:59:59.000Z

451

High concentration low wattage solar arrays and their applications  

SciTech Connect (OSTI)

Midway Labs currently produces a 335x concentrator module that has reached as high as 19{percent} active area efficiency in production. The current production module uses the single crystal silicon back contact SunPower cell. The National Renewable Energy Lab has developed a multi junction cell using GalnP/GaAs technologies. The high efficiency ({gt}30{percent}) and high cell voltage offer an opportunity for Midway Labs to develop a tracking concentrator module that will provide 24 volts in the 140 to 160 watt range. This voltage and wattage range is applicable to a range of small scale water pumping applications that make up the bulk of water pumping solar panel sales. {copyright} {ital 1997 American Institute of Physics.}

Hoffmann, R. [Midway Labs, Inc., 350 N. Ogden Avenue, Chicago, Illinois 60607 (United States); OGallagher, J.; Winston, R. [University of Chicago (United States)

1997-02-01T23:59:59.000Z

452

A Previously Unknown Oxalyl-CoA Synthetase Is Important for Oxalate Catabolism in Arabidopsis  

Science Journals Connector (OSTI)

...Occurrence of oxalyl-CoA synthetase in Indian pulses. Experientia 33 : 416-417...image analysis using NIH Image/ImageJ. Indian J. Cancer 41 : 47. Godoy, G. , Steadman...proteins: Common and specific features point to a variety of functions. Planta 211...

Justin Foster; Hyun Uk Kim; Paul A. Nakata; John Browse

2012-03-23T23:59:59.000Z

453

Impossibility of Determining the Unknown Quantum Wavefunction of a Single System  

E-Print Network [OSTI]

-Demolition Measurements, Measurements without Entanglement and Adiabatic Measurements Orly Alter and Yoshihisa Yamamoto, California, 94305 Abstract We establish that the information which can be obtained in the measurement of the expectation values of the measured observables, with the estimate errors satisfying the uncertainty principle

Utah, University of

454

Site-specific survival rates for cancer of unknown primary according to location of metastases  

E-Print Network [OSTI]

University School of Medicine, Palo Alto, CA 4 Cancer Gene Therapy Group, Molecular Cancer Biology Program tumor often remains unidentified. Limited population-based survival data are available for metastatic) site is one of the most fatal cancers with a median survival of about 3 months based on population

Hemminki, Akseli

455

The challenges of understanding cancer of unknown primary Kari Hemminki1,2  

E-Print Network [OSTI]

, Malmo, Sweden 3 Stanford Prevention Research Center, Stanford University School of Medicine, Palo Alto among the most fatal cancers and the apparent survival varies, depending on how the patient population-based studies it ranged from 3 to 11 months.1 The median survival in our recent Swedish population-based study

Hemminki, Akseli

456

Robust and Efficient Covering of Unknown Continuous Domains with Simple, Ant-Like  

E-Print Network [OSTI]

want to cover (or clean or search or paint) a connected domain in R2 simple robots having effectors (or robots with very limited capabilities. The robots can mark places visited with pheromone marks and sense the level of the pheromone in their local neighborhood. In case of multiple robots these pheromone marks can

Bruckstein, Alfred M.

457

Position USBL/DVL Sensor-based Navigation Filter in the presence of Unknown Ocean Currents  

E-Print Network [OSTI]

This paper presents a novel approach to the design of globally asymptotically stable (GAS) position filters for Autonomous Underwater Vehicles (AUVs) based directly on the nonlinear sensor readings of an Ultra-short Baseline (USBL) and a Doppler Velocity Log (DVL). Central to the proposed solution is the derivation of a linear time-varying (LTV) system that fully captures the dynamics of the nonlinear system, allowing for the use of powerful linear system analysis and filtering design tools that yield GAS filter error dynamics. Simulation results reveal that the proposed filter is able to achieve the same level of performance of more traditional solutions, such as the Extended Kalman Filter (EKF), while providing, at the same time, GAS guarantees, which are absent for the EKF.

Morgado, M; Oliveira, P; Silvestre, C

2010-01-01T23:59:59.000Z

458

E-Print Network 3.0 - arabidopsis unknown small Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the intrinsic properties of the plant such as small size, large seed... Prehistory and History of Arabidopsis Research Elliot M. ... Source: Meyerowitz, Elliot M. - Division of...

459

Summary The molecular processes underlying cork bio-synthesis and differentiation are mostly unknown. Recently, a  

E-Print Network [OSTI]

protects woody plant organs and healing tissues from de- hydration, solar irradiation and pathogens. Cork-colored cork is produced early in the sea- son when cell production is more active and the cells are rela- tively large. Later, cork turns darker as cell production deceler- ates and cells become smaller

García-Berthou, Emili

460

Introduction The purpose of this work is to enable extraction of unknown  

E-Print Network [OSTI]

Engineering and Advanced Materials, Newcastle University. The membrane was PBI doped with 5.6 H3PO4 PRU 20% Pt/C catalyst and a loading of 0.2 mg Pt/cm2. The cathode used 40% Pt/C catalyst with a loading of 0.4 mg Pt/cm2. The cell active area was 9 cm2. Reactant flow rates were 0.45 L/min for air and 0.2 L

Berning, Torsten

Note: This page contains sample records for the topic "volt unknown percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Predicting mostly disordered proteins by using structure-unknown protein data  

Science Journals Connector (OSTI)

Predicting intrinsically disordered proteins is important in structural biology because they ... We know the structures of far more ordered proteins than disordered proteins. The structural distribution of proteins

Kana Shimizu; Yoichi Muraoka; Shuichi Hirose; Kentaro Tomii

2007-03-01T23:59:59.000Z

462

Distributed Model-Invariant Detection of Unknown Inputs in Networked Systems  

E-Print Network [OSTI]

, including dynam- ically networked ones such as the smart grid and building thermal dynamics, fault detection, as in environmental monitoring [1], building energy management [2, 3], wireless communica- tions [4] and power grids algorithms undoubtedly benefit from the knowledge of accurate models [6, 1, 3]. Howe

Johansson, Karl Henrik

463

Dynamics of Electricity Markets with Unknown Utility Functions: AnExtremum Seeking Control Approach  

E-Print Network [OSTI]

time and schedule the electricity consumption and productionclearing price. The electricity consumption of the consumerswhere x i is the electricity consumption of consumer i ? N

Ma, Kai; Hu, Guoqiang; Spanos, Costas J

2014-01-01T23:59:59.000Z

464

Biofuels: Network Analysis of the Literature Reveals Key Environmental and Economic Unknowns  

Science Journals Connector (OSTI)

(4) Many international groups are now proposing to measure, track, and rank forms of renewable energy, including but not limited to biofuels, based on their ability to meet environmental criteria that may not have been previously considered. ... Egypt, Kenya ...

Caroline E. Ridley; Christopher M. Clark; Stephen D. LeDuc; Britta G. Bierwagen; Brenda B. Lin; Adrea Mehl; David A. Tobias

2012-01-09T23:59:59.000Z

465

Translating Iraq: The Unknown Soldiers of the US Occupation of Iraq.  

E-Print Network [OSTI]

?? Iraqis who worked with the US occupation Army in Iraq after the war in 2003 experienced extraordinary challenges and risks as a result of (more)

AL Baldawi, Wisam Qusay Majeed

2011-01-01T23:59:59.000Z

466

ACTIVE VISION FOR NAVIGATING UNKNOWN ENVIRONMENTS: AN EVOLUTIONARY ROBOTICS APPROACH FOR SPACE RESEARCH  

E-Print Network [OSTI]

, below the solar panel in front. Another pair is looking backward, below the solar panel in the back future, autonomous robots are expected to be the principal actors in the exploration of Solar System of the time. Nowadays, the time delay that affects the communication between the Earth and other Solar System

Cangelosi, Angelo

467

Quantitative Identification of Unknown Exposure Pathways of Phthalates Based on Measuring Their Metabolites in Human Urine  

Science Journals Connector (OSTI)

Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai 79-7, Hodogaya-ku, Yokohama, 240-8501 Japan, and Research Center for Chemical Risk Management, National Institute of Advanced Industrial Science and Technology, Onogawa 16-1, Tsukuba, 305-8569 Japan ... Takahashi et al. (23) also surveyed the concentrations of four phthalates including DEP, DBP, and DEHP in the 3 day duplicate diet samples (n = 18) obtained from three households in Sendai in 1998 and 1999. ... Japan Food Research Laboratories surveyed DEHP concentrations in duplicate diet samples (81 day meals including drinking water) obtained from 27 households in Tokyo Metropolitan Prefecture three households in every nine blocks all over the country) 3 days in a row in 2001 (25). ...

Hiroaki Itoh; Kikuo Yoshida; Shigeki Masunaga

2007-06-01T23:59:59.000Z

468

A General Tactile Approach for Grasping Unknown Objects with a Humanoid Robot  

E-Print Network [OSTI]

to efficiently grasp and hold those objects will have a large impact in households, care giving or industrial (Joint Robotics Laboratory), UMI3218/CRT, Tsukuba, Japan Email: see https

Paris-Sud XI, Université de

469

FODDIS et al Identification of the unknown pollution source in the  

E-Print Network [OSTI]

and model design of carbon tetrachloride pollution in the Alsatian aquifer has been the subject of various strategies in polluted aquifers. This work aims at studying the spreading of a dangerous chemical - carbon tetrachloride (CCl4) - that contaminated a part of the Alsatian aquifer (France) because of a tanker accident

Paris-Sud XI, Université de

470

7 September 2011 Despite the lagging U.S. economy, salaries for aggregated geoscience-related occupations increased by 1.1 percent between  

E-Print Network [OSTI]

. See AGI's 2011 Status of the Geoscience Workforce report, Appendix A for full explanation,320), petroleum engineers ($127,970), and engineering managers ($125,900), and geoscientists ($93,380). Mean Petroleum Engineers Geoscientists Atmospheric and Space Scientists Mining and Geological Engineers

Kammer, Thomas

472

http://www.dailytexanonline.com/news/2013/11/12/powers-committee-plan-to-reduce-ut-water-and-energy-consumption-by-20-percent-by  

E-Print Network [OSTI]

on November 13, 2013 at 12:33 am By Julia Brouillette UT Facilities Services' Energy and Water Conservation to sustainability. "The more communication we have with the public, the more we're going to see people changehttp://www.dailytexanonline.com/news/2013/11/12/powers-committee-plan-to-reduce-ut-water-and-energy

John, Lizy Kurian

473

fig5_VqP_polar_co2_50Hz_relation_15-1_10percent_sat_color.eps  

E-Print Network [OSTI]

1.0. 2.0. 3.0. 4.0. 30. 60. 90. 0. qP Waves. Vex (m/s). Vez (m/s). 1. Brine saturated medium with fractures. 2. Patchy saturated medium without fractures. 3. Patchy...

474

PEV Market Briefing: May 2014 In our 2013 market briefing, we noted that 2012 PEV sales were reaching about 50 percent  

E-Print Network [OSTI]

, and faster growth in Asia due to a surge in China. Source: http://ev-sales.blogspot.com The U.S. market1 PEV Market Briefing: May 2014 In our 2013 market briefing, we noted that 2012 PEV sales were later, PEV sales around the world continue to grow at a similar pace. In 2013, global sales of PEVs were

California at Davis, University of

475

The Great Lakes comprise the largest freshwater ecosystem on Earth. The restoration and protection of the Great Lakes is vital as they contain 95 percent of the surface  

E-Print Network [OSTI]

by expanding and enhancing many existing programs and implementing new innovative projects that address Targeted for Remediation Nearshore Health and Nonpoint Source Pollution · Decision Support Tools is an important complement to AOC remediation investments. Great Lakes Sediment Contamination Database High

476

The Great Lakes comprise the largest freshwater ecosystem on Earth. The restoration and protection of the Great Lakes is vital as they contain 95 percent of the surface  

E-Print Network [OSTI]

by expanding and enhancing many existing programs and implementing new innovative projects that address Targeted for Remediation Nearshore Health and Nonpoint Source Pollution · Decision Support Tools

477

The Great Lakes comprise the largest freshwater ecosystem on Earth. The restoration and protection of the Great Lakes is vital as they contain 95 percent of the surface  

E-Print Network [OSTI]

The Great Lakes comprise the largest freshwater ecosystem on Earth. The restoration and protection and Beach Forecasting* · Identifying Land Use Tipping Points that Threaten Great Lakes Ecosystems* Aquatic Invasive Species · Great Lakes Aquatic Nuisance Species Information System Expansion* · Regional Ecosystem

478

Test and evaluation of the Philips Model PE 1701 and Lester Model 9865 electric vehicle battery chargers  

SciTech Connect (OSTI)

The Philips Model PE 1701 and the Lester Model 9865 electric vehicle battery chargers have been tested by the Tennessee Valley Authority. Charger input/output voltage, current, power characteristics, and input waveform distortion were measured and induced electromagnetic interference was evaluated while the chargers recharged a fully discharged lead-acid battery pack. Electrical quantities were measured with precision volt-ampere-watt meters, frequency counters, a digital storage oscilloscope, and a spectrum analyzer. The Philips charger required 12.2 hours to recharge a 144-V battery; it had an energy efficiency of 86.0 percent and a specific power of 87.4 W/kg (39.7 W/lb). Input current distortion was between 6.9 and 23.0 percent, and electromagnetic interference was observed on AM radio. The Lester charger required 8.2 hours to recharge a 106-V battery; it had an energy efficiency of 83.0 percent and a specific power of 117.3 W/kg (53.3 W/lb). Current distortion was between 52.7 and 97.4 percent, and electromagnetic interference was observed on AM radio.

Reese, R.W.; Driggans, R.L.; Keller, A.S.

1984-04-01T23:59:59.000Z

479

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

1. Comparison of operating and incremental costs of battery electric vehicles 1. Comparison of operating and incremental costs of battery electric vehicles and conventional gasoline vehicles Characteristics Hybrid electric vehicle (Prius) Plug-in hybrid electric vehicle (Volt) Plug-in electric vehicle (Leaf) Fuel efficiency (mpg equivalent) 45 38 (charge-sustaining mode) 94 (charge-depleting mode) 99 (charge-depleting mode) Annual vehicle miles traveled 12,500 Percent vehicle miles traveled electric only 0 58 100 Fuel savings vs. conventional gasoline ICE vehicle (at $3.50 per gallon)a $1,169 $2,036 $3,314 Fuel savings vs. conventional gasoline ICE vehicle (at $6.00 per gallon)a $2,004 $4,340 $7,071 Incremental vehicle cost (2010 dollars) relative to cost of 35-mpg conventional gasoline ICE vehicleb $7,000 $20,000 $20,000

480

Microsoft PowerPoint - ALPESsrnl_TechBriefp1.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at a at a glance  Collects microorganisms, chemical agents, radioactive particles  >90 percent collection efficiency  Collects particles of < 0.3 to 10 micron diameters  Maintains viability of live agents  300 liters per minute flow rate  Consumes < 12 watts of power  Uses a 12 volt battery  Measures 6" x 10" x 21"  U. S. patent 6,955,075 New device collects deadly agents for quick identification SRNL-L9100-2008-00559 Aerosol-to-Liquid Particle Extraction System (ALPES) Agents that could be used in chemical and biological warfare tend to disperse widely in the air when released. Quickly collecting a concentrated sample of these agents is critical to detecting them before they reach harmful dose levels in the air. Also, methods of detection such as by

Note: This page contains sample records for the topic "volt unknown percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

de Haas-van Alphen Effect in Cadmium  

Science Journals Connector (OSTI)

The de Haas-van Alphen effect (periodic dependence of magnetic susceptibility upon magnetic field) has been investigated in single crystals of cadmium in the liquid helium temperature range and in magnetic fields up to 25 kilogauss. The orientation dependence of the effect in cadmium was found to be different from all other known cases and cannot be interpreted in terms of ellipsoidal constant energy surfaces or other constant energy surfaces obtainable by the usual transformations from the isotropic case. The susceptibility oscillations of maximum period ?E0=1.8810-7 gauss-1 occur whenever the magnetic field makes an angle of 28.5 with the hexagonal axis. The chemical potential of the pertinent electrons is E0=69.610-14 erg=0.435 electron volt to an estimated accuracy of 1 percent.Unsuccessful attempts were made to observe the de Haas-van Alphen effect in single crystals of Ta, Mo, and hexagonal Ti.

Ted G. Berlincourt

1954-06-01T23:59:59.000Z

482

A heat-driven monochromatic light source  

SciTech Connect (OSTI)

This work investigates theoretically the efficiency with which heat may be converted into resonance radiation in a cesium thermionic diode. An analytical model of a thermionic converter is employed which combines the coupled effects of line radiation transport, excited-state kinetics, and plasma diffusion. Operating regimes are established for various degrees of optical density in the plasma. The results indicate that monochromatic radiation can be produced with efficiencies on the order of 30 percent provided there is an adequate voltage drop across the plasma. In this study, a drop of one volt was used since it can be maintained without any electrical power input to the device. It is found that high efficiencies come by virtue of the higher interelectrode distances which the solutions will accommodate, and that radiation can be generated efficiently, even with optically dense gases.

Stefani, F.; Lawless, J.L.

1989-04-01T23:59:59.000Z

483

Stan Zak files, Nov 10  

E-Print Network [OSTI]

Nov 10, 2011 ... Battery charger circuit. 30. Volts. 10. Volts. Battery. I. 1. I. 2. R. 2. R. 1. +. ? ... Find I1,...,I5 to maximize power transferred to batteries, that is, max.

2011-11-10T23:59:59.000Z

484

T1000BAT.DOC  

E-Print Network [OSTI]

watt zener diode in series with the 12 volt to drop the voltage down to the 9. volts required by the T1000. Since the external battery is charging the.

485

Ionisierungsspannung von Methan  

Science Journals Connector (OSTI)

In einer nher skizzierten Versuchsanordnung wird die Ionisierungsspannung von Methan zu 14,580,05 Volt, die...4?Molekel erforderliche Energie zu 15,400,05 Volt in guter bereinstimmung mit der fr den homogene...

Erich Pietsch; Gertrud Wilcke

1927-01-01T23:59:59.000Z

486

Data:17397684-5d67-4665-a17a-9f7765df54bc | Open Energy Information  

Open Energy Info (EERE)

i) three-phase at 2400 volts or higher, with service taken and metered at substation which is fed at 69,000 volts or higher; or ii) three wire three-phase at 34,500 R...

487

Data:F3b1d7ee-6c52-4a01-bd18-c320d7253c95 | Open Energy Information  

Open Energy Info (EERE)

i) three-phase at 2400 volts or higher, with service taken and metered at substation which is fed at 69,000 volts or higher; or ii) three wire three-phase at 34,500 R...

488

A Geothermic Generating Plant  

Science Journals Connector (OSTI)

... energy is generated in the turbo-alternators at 25,000 volts and transmitted to the substations along the ViareggioRome railway, where it is converted to 3,000 volts direct ...

1939-10-28T23:59:59.000Z

489

INEEL/EXT-97-  

Office of Scientific and Technical Information (OSTI)

the installation process. The initial set of filter systems were ordered with 12-volt heating elements in the heating chamber of the filter housing. Twelve-volt power is not...

490

Photo-electric Conduction in Selenium  

Science Journals Connector (OSTI)

Variation with light intensity of the photo-current in selenium.A selenium cell is described which gives a photo-current of 10 ma. for a difference of potential of 100 volts and an illumination of 100 foot-candles. The sensitiveness ratio between the currents under light and dark conditions is 100. The characteristics of the cell are very constant. The experimental results establish the existence of a linear relation between the square of the photo-current and the light intensity. It is pointed out that this result substantiates the conclusion that the photo-conduction in selenium is due to a photo-electric liberation of electrons rather than to an allotropic change from an insulating to a conducting form of selenium.Effect of temperature on the photo-conductivity of selenium.Under dark conditions the current through a cell immersed in liquid air dropped in 15 sec. to 35 percent of its value at room temperature, and in 10 min. to 0.000046 percent. When the same cell was illuminated with 100 foot-candles and immersed in liquid air, the current increased for 8 min. to about 1.8 times its value at room temperature and then decreased until after 3 hours its value was 82 percent of its value at room temperature. It is concluded that the mechanism of the current conduction under dark conditions is entirely different from that of the photo-conduction.

R. J. Piersol

1927-11-01T23:59:59.000Z

491

Automotive bailout may affect research  

Science Journals Connector (OSTI)

... Chevrolet Volt, which is supposed to be America's first mass-produced plug-in hybrid electric car? ...

Jeff Tollefson

2009-06-09T23:59:59.000Z

492

News and Views  

Science Journals Connector (OSTI)

... station at a pressure of 100,000 volts, and from thence is retransmitted to the substations situated along the line at 22,000 volts. At the ... situated along the line at 22,000 volts. At the substations the pressure is reduced and then converted into direct current at the working pressure of ...

1928-03-03T23:59:59.000Z

493

Electric Lighting in the Isle of Man  

Science Journals Connector (OSTI)

... works, the supply being stepped up from 3,300 to 33,000 volts at a substation before it comes to the high tension ring main. The overhead lines are carried ... 33 kilovolts, they satisfy the British Standard Specification for 66 kilovolts. The low-tension substations connected with the ring main supply consumers at 400 volts for power and 230 volts ...

1933-09-02T23:59:59.000Z

494

2009-2010 11 2010-2011 16  

E-Print Network [OSTI]

level. Department Statistics Doctoral Degree Program Statistics Contact Name Dr. Fred Dahm, Graduate Employment Profile (In field within one year of graduation). For each of the three most recent years, the number and percent of graduates by year employed, those still seeking employment, and unknown Employed

495

On Human Culture Let us not dream that reason can ever be popular. Passions, emo-  

E-Print Network [OSTI]

does knowledge. Charles Darwin, 1871 Ninety-five percent of human knowledge is the names of things, A Handbook for Scholars, 1986 p 3.1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 of the unknown rational efforts of extra-terrestrial intelligence. Richard Feynman, The Character of Physical Law

Page, Rex L.

496

An unknown regulator affects cell division and the timing of entry into stationary phase in Escherichia coli  

E-Print Network [OSTI]

...................................................................... 22 P 1 mapping....................................................................... 27 Complementation tests with F?111.................................... 31 Sequencing of the cpxA gene from DS380 and DS381...-independent. Using phage P 1, transduction of YK410 flhD cells to flhD+ (strain DS522) did not rescue the mutant phenotype, and when the flhD mutation from YK4131 was transduced into the flhD+ parental strain (to produce strain DS513), the cells did not demonstrate...

Bain, Sherrie Valarie

2005-08-29T23:59:59.000Z

497

Computer vision-based localization and mapping of an unknown, uncooperative and spinning target for spacecraft proximity operations  

E-Print Network [OSTI]

Prior studies have estimated that there are over 100 potential target objects near the Geostationary Orbit belt that are spinning at rates of over 20 rotations per minute. For a number of reasons, it may be desirable to ...

Tweddle, Brent Edward

2013-01-01T23:59:59.000Z

498

Resource Allocation with Unknown Constraints: AnExtremum SeekingControl Approach and Applications to Demand Response  

E-Print Network [OSTI]

Z. Yang, and Y. Zhang, Demand response manage- ment withS. H. Low, Optimal demand response: Problem formulation andYang, and X. Guan, Optimal demand response scheduling with

Ma, Kai; Hu, Guoqiang; Spanos, Costas

2014-01-01T23:59:59.000Z

499

Site-specific cancer deaths in cancer of unknown primary diagnosed with lymph node metastasis may reveal hidden  

E-Print Network [OSTI]

, Stanford University School of Medicine, Palo Alto, CA 4 Cancer Gene Therapy Group, Molecular Cancer Biology through meta- static tissue; the primary tumor often remains undetected.2,3 In population-based patient

Hemminki, Akseli

500

Identification of Unknown Interface Locations in a Source/Shield System Using the Mesh Adaptive Direct Search Method  

SciTech Connect (OSTI)

The Levenberg-Marquardt (or simply Marquardt) and differential evolution (DE) optimization methods were recently applied to solve inverse transport problems. The Marquardt method is fast but convergence of the method is dependent on the initial guess. While it has been shown to work extremely well at finding an optimum independent of the initial guess, the DE method does not provide a global optimal solution in some problems. In this paper, we apply the Mesh Adaptive Direct Search (MADS) algorithm to solve the inverse problem of material interface location identification in one-dimensional spherical radiation source/shield systems, and we compare the results obtained by MADS to those obtained by Levenberg-Marquardt and DE.

Armstrong, Jerawan C. [Los Alamos National Laboratory; Favorite, Jeffrey A. [Los Alamos National Laboratory

2012-06-20T23:59:59.000Z