Sample records for volcanic systems hawaii

  1. Blind Geothermal System Exploration in Active Volcanic Environments...

    Open Energy Info (EERE)

    and Geochemical Surveys in Overt and Subtle Volcanic Systems, Hawaii and Maui Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title...

  2. Hawaii electric system reliability.

    SciTech Connect (OSTI)

    Silva Monroy, Cesar Augusto; Loose, Verne William

    2012-09-01T23:59:59.000Z

    This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers' views of reliability %E2%80%9Cworth%E2%80%9D and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and for application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers' views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.

  3. Hawaii National Pollutant Discharge Elimination System (NPDES...

    Open Energy Info (EERE)

    LibraryAdd to library PermittingRegulatory Guidance - Supplemental Material: Hawaii National Pollutant Discharge Elimination System (NPDES) Permit PacketPermittingRegulatory...

  4. Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii

    E-Print Network [OSTI]

    Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii 2000 1 Sensing Volcanism, Remote Sensing of Active Volcanism, AGU Geophysical Monograph Series 116, Mouginis

  5. EMPLOYMENT OPPORTUNITIES Hawaii Ocean Observing System (HiOOS) Employment Opportunities

    E-Print Network [OSTI]

    UHM EMPLOYMENT OPPORTUNITIES Hawaii Ocean Observing System (HiOOS) Employment Opportunities FIELD TECHNICIAN OPPORTUNITY: employment with possible development of a senior thesis project in GESCarlo, edecarlo@soest.hawaii.edu JOB REFERENCE NUMBER ON STUDENT EMPLOYMENT WEBSITE: none Student

  6. DECEMBER 2000 Economic Impact of the University of Hawai`i System

    E-Print Network [OSTI]

    REPORT ON THE ECONOMIC IMPACT OF THE UNIVERSITY OF HAWAI`I SYSTEM DECEMBER 2000 #12;Economic Impact of the University of Hawai`i System Prepared by: University of Hawai`i: Economic Research Organization (UHERO Department of Business, Economic Development and Tourism. #12;1 Economic Impact of the University of Hawai

  7. Active System For Monitoring Volcanic Activity- A Case Study...

    Open Energy Info (EERE)

    Central Japan Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Active System For Monitoring Volcanic Activity- A Case Study Of The...

  8. Blind Geothermal System Exploration in Active Volcanic Environments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon...

  9. Small Wind Electric Systems: A Hawaii Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01T23:59:59.000Z

    Small Wind Electric Systems: A Hawaii Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  10. Small Wind Electric Systems: A Hawaii Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2005-03-01T23:59:59.000Z

    Small Wind Electric Systems: A Hawaii Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  11. Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii

    E-Print Network [OSTI]

    Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii 2003 1 volcanic collapse formation, Geochemistry, Geophysics, Geosystems, 4 (9), 1077, doi:10.1029/2002GC000483

  12. UNIVERSITY OF HAWAI`I SYSTEM FEASIBILITY STUDY REPORT

    E-Print Network [OSTI]

    Olsen, Stephen L.

    STUDY OF GREEN ROOF TECHNOLOGIES IN URBAN DISTRICTS IN HAWAII SR-86 (2006) December 2006 #12;Feasibility Benefits...........................................................................19 Energy conservation Increase in wildlife habitat and native plant communities............................23 Noise and radiation

  13. Hawaii Natural Energy Institute installs PV systems at public schools Pacific Business News

    E-Print Network [OSTI]

    the performance of traditional and emerging PV materials and inverter technologies," Institute Director Richard of the inverters, which convert direct current or DC power generated by the PV panels into alternating currentHawaii Natural Energy Institute installs PV systems at public schools Pacific Business News

  14. Presented at the 34th Annual Hawaii Conference on Systems Sciences, January 3-6 ,2001

    E-Print Network [OSTI]

    company, and the Long Island Power Authority (LIPA) serves customers on the island through itsPresented at the 34th Annual Hawaii Conference on Systems Sciences, January 3-6 ,2001 "Electricity Since electricity, and its reliable provision on command, is a multi-attribute commodity, it should

  15. Temporal Relations of Volcanism and Hydrothermal Systems in Two...

    Open Energy Info (EERE)

    and the youngest pulses of volcanism. > Oxygen-isotope data from illitesmectite clays in the Cochiti district are zonally distributed and range from -2.15 to +7.97...

  16. Storage Solutions for Hawaii's Smart Energy

    E-Print Network [OSTI]

    Storage Solutions for Hawaii's Smart Energy Future Presented to CMRU August 12, 2012 University of Hawaii at Manoa Hawaii Natural Energy Institute #12;Current Energy Storage Projects in Hawaii · 15 (2) · Spinning reserve/reserve support (2) #12;· Select and deploy Grid-scale energy storage systems

  17. Hawaii International Conference on System Science, January 2003, Hawaii, 2003 IEEE Blackout Mitigation Assessment in Power Transmission Systems

    E-Print Network [OSTI]

    @engr.wisc.edu Abstract Electric power transmission systems are a key infrastructure and blackouts of these systems have Electrical Reliability Council blackout data suggests the existence of blackout size distributions with power by the dynamics. 1. Introduction Electric power transmission systems are an important element of the national

  18. Panel 1, Hawaii Hydrogen Projects Status & Lessons Learned

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Status & Lessons Learned Mitch Ewan Hydrogen Systems Program Manager Hawaii Natural Energy Institute School of Ocean Earth Science and Technology University of Hawaii at...

  19. University of Hawaii Advisory Task Group -Operational Assessment Report on System Level Administration Operating Policies and Practices

    E-Print Network [OSTI]

    #12;University of Hawaii ­ Advisory Task Group - Operational Assessment Report on System Level") approved the formation of an Advisory Task Group on Operational and Financial Controls Improvement ("ATG of eight members, four members from the BOR, and four from private industry with expertise in financial

  20. Final Technical Report: Hawaii Hydrogen Center for Development and Deployment of Distributed Energy Systems

    SciTech Connect (OSTI)

    Rocheleau, Richard E.

    2008-09-30T23:59:59.000Z

    Hydrogen power park experiments in Hawai‘i produced real-world data on the performance of commercialized electrochemical components and power systems integrating renewable and hydrogen technologies. By analyzing the different losses associated with the various equipment items involved, this work identifies the different improvements necessary to increase the viability of these technologies for commercial deployment. The stand-alone power system installed at Kahua Ranch on the Big Island of Hawaii required the development of the necessary tools to connect, manage and monitor such a system. It also helped the electrolyzer supplier to adapt its unit to the stand-alone power system application. Hydrogen fuel purity assessments conducted at the Hawai‘i Natural Energy Institute (HNEI) fuel cell test facility yielded additional knowledge regarding fuel cell performance degradation due to exposure to several different fuel contaminants. In addition, a novel fitting strategy was developed to permit accurate separation of the degradation of fuel cell performance due to fuel impurities from other losses. A specific standard MEA and a standard flow field were selected for use in future small-scale fuel cell experiments. Renewable hydrogen production research was conducted using photoelectrochemical (PEC) devices, hydrogen production from biomass, and biohydrogen analysis. PEC device activities explored novel configurations of ‘traditional’ photovoltaic materials for application in high-efficiency photoelectrolysis for solar hydrogen production. The model systems investigated involved combinations of copper-indium-gallium-diselenide (CIGS) and hydrogenated amorphous silicon (a-Si:H). A key result of this work was the establishment of a robust “three-stage” fabrication process at HNEI for high-efficiency CIGS thin film solar cells. The other key accomplishment was the development of models, designs and prototypes of novel ‘four-terminal’ devices integrating high-efficiency CIGS and a-Si:H with operating features compatible with high-efficiency photoelectrochemical (PEC) water-splitting. The objective of one activity under the hydrogen production from biomass task was to conduct parametric testing of the Pearson gasifier and to determine the effects of gasifier operating conditions on the gas yields and quality. The hydrogen yield from this gasifier was evaluated in a parametric test series over a range of residence times from 0.8 to 2.2 seconds. H2 concentrations as high as 55% (volume) were measured in the product gas at the longer residence times and this corresponds to a hydrogen yield of 90 kg per tonne of bagasse without gas upgrading. The objective of another activity was to develop hot gas clean-up capabilities for the HNEI gasifier test facility to support hydrogen-from-biomass research. The product gas stream at the outlet of the hot gas filter was characterized for concentrations of permanent gas species and contaminants. Biomass feedstock processing activity included a preliminary investigation into methods for processing sugar cane trash at the Puunene Sugar Factory on the island of Maui, Hawaii. The objective of the investigation was to explore treatment methods that would enable the successful use of cane trash as fuel for the production of hydrogen via gasification. Analyses were completed for the technical and economic feasibility of producing biofuel from photosynthetic marine microbes on a commercial scale. Results included estimates for total costs, energy efficiency, and return on investment. The biohydrogen team undertook a comprehensive review of the field and came to what is considered a realistic conclusion. To summarize, continued research is recommended in the fundamentals of the science related to genetic engineering and specific topics to cover knowledge gaps. In the meantime, the team also advocates continued development of related processes which can be linked to pollution control and other real world applications. The extra revenues hydrogen can provide to these multi-product systems can

  1. Seismic and infrasonic source processes in volcanic fluid systems

    E-Print Network [OSTI]

    Matoza, Robin S.

    2009-01-01T23:59:59.000Z

    in Infrasonic Early Warning Systems. IUGG XXIV Generaland the PEGASAS-VE early-warning system. In Proceedings of

  2. A WEB-BASED ATLAS INFORMATION SYSTEM FOR VOLCANIC MONITORING

    E-Print Network [OSTI]

    Jenny, Bernhard

    @erdw.ethz.ch) ABSTRACT Quiescent but active volcanoes represent a severe hazard and risk potential. Early warning systems and to develop a prototype of an early warning system. The system is an entirely web-based Atlas Information councils and civil protection agencies will use it as an early warning system. It includes the necessary

  3. Hawaii International Conference on Systems Sciences, January 2002, Hawaii. IEEE Growth and Propagation of Disturbances in a Communication Network Model

    E-Print Network [OSTI]

    Newman, David

    , distribution systems, and electrical power transmission grids which run near their operational limits, can of dynamical models if we want to understand the temporal operation of the systems as well as having some ability to control the flows (information, power etc.) and to understand as well as avoid vulnerabilities

  4. Copyright 1998 IEEE. Published in the Proceedings of the Hawai'i International Conference On System Sciences, January 6-9, 1998, Kona, Hawaii.

    E-Print Network [OSTI]

    of the electric power market, the viability of a spot market for reactive power remains cloudy. In [2 Sciences, January 6- 9, 1998, Kona, Hawaii. A Simulation Based Approach to Pricing Reactive Power James D the simulation of real and reactive power spot markets. While spot pricing of real power remains a viable option

  5. University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    Firestone, Jeremy

    Hawaii Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawaii Hawaii Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawaii of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE Hawaii Natural Energy Institute School of Ocean and Earth

  6. 40th Hawaii International Conference on System Science, January 2007, Waikoloa, Big Island, Hawaii, 2007 IEEE Interdependent Risk in Interacting Infrastructure Systems

    E-Print Network [OSTI]

    Dobson, Ian

    with "Complex System" dynamics. These systems range from electric power transmission and distribution systems infrastructure systems to which this would be relevant include power- communication systems, power-market systems, © 2007 IEEE Interdependent Risk in Interacting Infrastructure Systems B. A. Carreras Oak Ridge National

  7. Hawaii Natural Energy Institute www.hnei.hawaii.edu

    E-Print Network [OSTI]

    + hours Endurance · Full tank of fuel · Fully charged battery pack · Repeated 20 minutes load profile estimate using energy balance results under a 20 minutes load profile #12;4Hawaii Natural Energy Institute three UAV Systems · Novel Partial Hybrid (PH) System · Non-Hybrid (Load Following (LF)) and Full Hybrid

  8. Hawai`i's Early Childhood Comprehensive System Early Childhood Comprehensive System

    E-Print Network [OSTI]

    fostered community collaboration to develop a strategic plan for a more comprehensive system of care training on preventing child abuse and neglect to our state. · The Center for the Study of Social Policy abuse and neglect prevention communities to work on protective factors that strengthen Hawai

  9. Hawaii International Conference on System Sciences, January 2001, Maui, Hawaii. c 2001 IEEE An initial model for complex dynamics in electric power system blackouts

    E-Print Network [OSTI]

    Newman, David

    An initial model for complex dynamics in electric power system blackouts I. Dobson ECE Department University of electric power transmission system blackouts. The model describes opposing forces which have been conjectured to cause self-organized criticality in power system blackouts. There is a slow time scale

  10. Renewable energy in Hawaii--Lessons learned

    SciTech Connect (OSTI)

    Hubbard, H.M.; Totto, L.; Harvison, D. [Pacific International Center for High Technology Research, Honolulu, HI (United States)

    1993-11-01T23:59:59.000Z

    Hawaii`s extensive renewable resources and limited access to conventional fuels has, in a sense, created a natural environment for the development and implementation of renewable energy processes, technologies, and materials. Aside from its traditional combustion of bagasse at sugar mills, Hawaii has invested in a wide range of renewable energy technologies, including municipal waste-to-energy incineration, hydropower, wind energy, solar photovoltaic (PV), small-scale solar, geothermal, and innovative hybrid wind/diesel and wind/pumped hydro systems. While regarded as a leader in the field of renewable energy, Hawaii`s pioneering approach has generally focused on research and development rather on implementation and commercialization. Despite being a front-runner in the utilization of a number of renewable energy resources, Hawaii`s dependence on petroleum continues to be among the highest in the United States. In 1990, petroleum constituted 92% of Hawaii`s energy supply in contrast to renewable energy`s contribution of 8%. The introduction of coal-fired electricity generation in 1992 has helped to diversify the energy base and decrease the share of oil. But, coal`s low fuel costs may also impact negatively on the prospects for renewable energy. The combination of the impending decline of sugarcane and the growing concerns for the islands` energy and environmental security is changing Hawaii`s energy landscape. While a number of traditional options may be phased out over the next few years, the emergence of new prospects holds considerable promise for an expanded role for renewable energy in the future.

  11. Growing Hawaii's agriculture industry,

    E-Print Network [OSTI]

    Program Overview Growing Hawaii's agriculture industry, one business at a time Website: http-3547 agincubator@ctahr.hawaii.edu Grow Your Business If you are looking to start an agriculture-related business with our program · Positively impact the agriculture industry in Hawaii with their success

  12. Hawaii Energy Resource Overviews. Volume 4. Impact of geothermal resource development in Hawaii (including air and water quality)

    SciTech Connect (OSTI)

    Siegel, S.M.; Siegel, B.Z.

    1980-06-01T23:59:59.000Z

    The environmental consequences of natural processes in a volcanic-fumerolic region and of geothermal resource development are presented. These include acute ecological effects, toxic gas emissions during non-eruptive periods, the HGP-A geothermal well as a site-specific model, and the geothermal resources potential of Hawaii. (MHR)

  13. Effects of Volcanism, Crustal Thickness, and Large Scale Faulting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Volcanism, Crustal Thickness, and Large Scale Faulting on the Development and Evolution of Geothermal Systems: Collaborative Project in Chile Effects of Volcanism, Crustal...

  14. A University of Hawai`i Portrait 2011 Building Hawai`i's Future

    E-Print Network [OSTI]

    /affirmative action institution #12;1 Putting the power of higher education to work for Hawai`i I n February 2010, I`i is working to build a brighter future for the people of Hawai`i. As the state's sole system of public higher and Places highlights the people, programs and partnerships that illustrate how the University of Hawai

  15. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    & Technology ­ University of Hawai`i at Mnoa Hydrogen for GM Equinox Fuel Cell Vehicles Phone: (808) 956 for fueling General Motors (GM) Equinox fuel cell electric vehicles. Since the system at MCB Hawai`i will have fuel cell electric vehicles. Another goal is to provide validation for the various hydrogen

  16. Hawaii International Conference on System Sciences, January 3-6, 2001, Maui, Hawaii. 2001 IEEE Modeling Blackout Dynamics in Power Transmission Networks

    E-Print Network [OSTI]

    in electric power transmission systems is implemented and studied in simple networks with a regular structure dynamics of cascading overloads and outages. The model dynamics are demonstrated on the simple power system Electric power transmission systems are complex engineering systems with many interacting components

  17. Hawaii Bioenergy Master Plan Stakeholder Comment

    E-Print Network [OSTI]

    of Business, Economic Development and Tourism By University of Hawaii Hawaii Natural Energy Institute School ......................................................................................2 Hawaii Department of Transportation, Harbors Division..........................................................................................................................7 The Gas Co

  18. Temporal Relations of Volcanism and Hydrothermal Systems in Two Areas of

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:HoldingsTechintIsNumeric JumpTerrace,the Jemez Volcanic

  19. Final Technical Report: Hawaii Hydrogen Center for

    E-Print Network [OSTI]

    Alkaline Electrolyzer System 8 2.4.1.2 5 kW PEM Fuel Cell System 9 2.4.2 Experiments/Results and Economic 2.8 Acknowledgements 47 2.9 References 47 3 Task 2 ­ Hydrogen Fuel Purity Assessment 49 3.1 GoalsFinal Technical Report: Hawaii Hydrogen Center for Development and Deployment of Distributed Energy

  20. Ferdinand Emmerich Quer durch Hawaii

    E-Print Network [OSTI]

    Prodinger, Helmut

    Ferdinand Emmerich Quer durch Hawaii 1. KAPITEL. Mein Kurs lag ostwÀrts. Meine Aufgabe war nahe- zu

  1. Quantitative analysis of the hydrothermal system in Lassen Volcanic National Park and Lassen Known Geothermal Resource Area

    SciTech Connect (OSTI)

    Sorey, M.L.; Ingebritsen, S.E.

    1984-01-01T23:59:59.000Z

    The Lassen hydrothermal system is in the southern Cascade Range, approximately 70 kilometers east-southeast of Redding, California. The conceptual model of the Lassen system is termed a liquid-dominated hydrothermal system with a parasitic vapor-dominated zone. The essential feature of this model is that steam and steam-heated discharge at relatively high elevations in Lassen Volcanic National Park (LVNP) and liquid discharge with high chloride concentrations at relatively low elevations outside LVNP in the Lassen Known Geothermal Resource Area (KGRA) are both fed by an upflow of high-enthalpy, two-phase fluid within the Park. Liquid flows laterally away from the upflow area towards the areas of high-chloride discharge, and steam rises through a vapor-dominated zone to feed the steam and steam-heated features. The geometric model corresponds to an areally restricted flow regime that connects the Bumpass Hell area in LVNP with regions of chloride hot springs in the Mill Creek canyon in the KGRA south of LVNP. Simulations of thermal fluid withdrawal in the Mill Creek Canyon were carried out in order to determine the effects of such withdrawal on portions of the hydrothermal system within the Park. 19 refs., 17 figs., 4 tabs.

  2. Lana'ai Hawaii: An Inside Look at the World's Most Advanced Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Lanai with multi-megawatt solar PV generation. Location Hawaii United States See map: Google Maps Date October 2009 Topic Solar Basics & Educating Consumers Systems...

  3. Hawaii Guide to the Implementation and Practice of the Hawaii...

    Open Energy Info (EERE)

    the Implementation and Practice of the Hawaii Environmental Policy Act Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Guide...

  4. Designing Hawaiis First LEED Platinum Net Zero Community: ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kaupuni Village Department of Hawaiian Home Lands Designing Hawaii's first LEED Platinum Net Zero Community GUIDING PRINCIPALS *Pihapono *Hoa ina *Mlama ina Enable Native...

  5. BIOMASS ENERGY CONVERSION IN HAWAII

    E-Print Network [OSTI]

    Ritschard, Ronald L.

    2013-01-01T23:59:59.000Z

    for Hawaii. Some agricultural wastes and sugar industrygrains; to any kind of agricultural waste containing cellu~municipal solid wastes, agricultural residues, and crops

  6. BIOMASS ENERGY CONVERSION IN HAWAII

    E-Print Network [OSTI]

    Ritschard, Ronald L.

    2013-01-01T23:59:59.000Z

    Sugar Cane Juice , Molasses • , Bagasse Pineapple MethanolSugar Cane • Sugar Production in Hawaii Bagasse Production/Consumption Bagasse and Cane Trash Displayed by Sugar

  7. Being Blue in Hawai‘i: Politics, Affect, and the Last Queen of Hawai‘i

    E-Print Network [OSTI]

    Harvey, Bruce

    2011-01-01T23:59:59.000Z

    Being Blue in Hawai‘i: Politics, Affect, and the Last Queenmore primarily violated. To be blue in Hawai‘i is to be in amore subtle nuances of being blue in Hawai‘i. Yet also in

  8. Oxygen buffering of Kilauea volcanic gases and the oxygen fugacity of Kilauea basalt

    SciTech Connect (OSTI)

    Gerlach, T.M. (Geological Survey, Vancouver, WA (United States))

    1993-02-01T23:59:59.000Z

    Volcanic gases collected during episode 1 of the Puu Oo eruption along the east rift zone of Kilauea Volcano, Hawaii, have uniform C-O-H-S-Cl-F compositions that are sharply depleted in CO[sub 2]. The CO[sub 2]-poor gases are typical of Type II volcanic gases (GERLACH and GRAEBER, 1985) and were emitted from evolved magma stored for a prolonged period of time in the east rift zone after releasing CO[sub 2]-rich gases during an earlier period of temporary residence in the summit magma chamber. The samples are remarkably free of contamination by atmospheric gases and meteoric water. Thermodynamic evaluation of the analytical data shows that the episode 1 gases have equilibrium compositions appropriate for temperatures between 935 and 1032[degrees]C. Open- and closed-system equilibrium models of species distributions for the episode 1 gases show unequivocally that coexisting lavas buffered the gas oxygen fugacities during cooling. These models indicate that the F[sub o[sub 2

  9. HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Bioenergy Research

    E-Print Network [OSTI]

    , contaminant removal/control for gas quality improvement, H2 production · Biochemical ­ syngas fermentation #12;http://www.hnei.hawaii.edu Bio-Conversion of Syngas into Biopolyester & Bio-Oil Res

  10. Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii

    E-Print Network [OSTI]

    Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii 2011 1 (2011). Lunar swirls: Examining crustal magnetic anomalies and space weathering trends. J. Geophysics

  11. Geothermal spas in Hawaii: A new tourist industry. : A preliminary report

    SciTech Connect (OSTI)

    Woodruff, J.L.

    1987-07-01T23:59:59.000Z

    There are at least three very good uses for active volcanism: Obtain energy from it. Study it. Enjoy it. We are already obtaining electrical energy and industrial heat from Kilauea's abundant resource by drilling geothermal wells and building power plants. Our Volcano Observatory is recognized as a world renowned center of learning about volcanism. Our Volcanoes National Park allows us to view and appreciate this awesome phenomenon. For several years people have speculated about the high potential in Hawaii for another way of enjoying this warmth of mother earth -- spas or resorts that would make use of water that is naturally heated and mineralized by volcanic activity. However, before spas are developed in Hawaii, answers are needed to several important questions dealing with such topics as the suitability of our geothermal waters, sources of water that could be tapped, special equipment and materials needed, land availability, governmental and environmental hurdles, and the economics of this unique business. Though a considerable amount of research is still needed, it was felt worthwhile to summarize the information gathered to date from historical works, brochures, personal communications, and other sources. This report should stimulate interest in, and perhaps accelerate, the development of one of Hawaii's most important natural resources.

  12. Environmental Compliance Schofield Barracks, Hawaii

    E-Print Network [OSTI]

    Environmental Compliance Specialist Schofield Barracks, Hawaii POSITION An Environmental Compliance Specialist (Research Associate II Special) position is available with the Center for Environmental Management resource stewardship. We collaborate with our sponsors and within CSU to resolve complex environmental

  13. Hawaii-Okinawa Building Evaluations

    SciTech Connect (OSTI)

    Metzger, I.; Salasovich, J.

    2013-05-01T23:59:59.000Z

    NREL conducted energy evaluations at the Itoman City Hall building in Itoman, Okinawa Prefecture, Japan, and the Hawaii State Capitol building in Honolulu, Hawaii. This report summarizes the findings from the evaluations, including the best practices identified at each site and opportunities for improving energy efficiency and renewable energy. The findings from this evaluation are intended to inform energy efficient building design, energy efficiency technology, and management protocols for buildings in subtropical climates.

  14. Estimation of Fire Danger in Hawai`i Using Limited Weather Data and Simulation1

    E-Print Network [OSTI]

    Stephens, Scott L.

    199 Estimation of Fire Danger in Hawai`i Using Limited Weather Data and Simulation1 David R. Weise: The presence of fire in Hawai`i has increased with introduction of nonnative grasses. Fire danger estimation using the National Fire Danger Rat- ing System (NFDRS) typically requires 5 to 10 yr of data

  15. Ocean Thermal Resource and Site Selection Criteria (January 2011) luisvega@hawaii.edu Ocean Thermal Resources

    E-Print Network [OSTI]

    Ocean Thermal Resource and Site Selection Criteria (January 2011) luisvega@hawaii.edu 1 Ocean Thermal Resources The vast size of the ocean thermal resource and the baseload capability of OTEC systems of Hawaii throughout the year and at all times of the day. This is an indigenous renewable energy resource

  16. Health-hazard Evaluation Report Heta 90-179-2172, National Park Service, Hawaii Volcanoes National Park, Hilo, Hawaii

    SciTech Connect (OSTI)

    Burr, G.A.; Stephenson, R.L.; Kawamoto, M.W.

    1992-01-01T23:59:59.000Z

    In response to a request from the National Park Service, an evaluation was undertaken of possible hazardous exposures to volcanic emissions, both gases and particulates, at the Hawaii Volcanoes National Park (SIC-7999) on the island of Hawaii in the State of Hawaii. Concerns included exposures to sulfur-dioxide (7446095) (SO2), asphalt decomposition products from burning pavement, acid mists when lava enters the ocean, volcanic caused smog, and Pele's hair (a fibrous glass like material). Two other related requests for study were also received in regard to civil defense workers in these areas. No detectable levels of SO2 were found during long term colorimetric detector tube sampling used to characterize park workers' personal full shift exposures. Short term detector tube samples collected near a naturally occurring sulfur vent showed SO2 levels of 1.2 parts per million (ppm). Work related symptoms reported by more than 50% of the respondents included headache, eye irritation, throat irritation, cough, and phlegm. Chest tightness or wheezing and shortness of breath were also frequently reported. Samples collected for hydrochloric-acid (7647010) and hydrofluoric-acid (7664393) recorded concentrations of up to 15ppm for the former and 1.0ppm for the latter acid. Airborne particulates in the laze plume were comprised largely of chloride salts. Airborne fibers were detected at a concentration of 0.16 fibers per cubic centimeter. The authors conclude that excessive exposure to SO2 can occur at some locations within the park. The authors recommend that workers and visitors to the park be informed of the potential for exposures.

  17. Modeling volcanic ash dispersal

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  18. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science/Affirmative Action Institution Team Partners: Hawai`i Natural Energy Institute School of Ocean and Earth Science & Technology ­ University of Hawai`i at Mnoa Water, Energy and Soil Sustainability Phone: (808) 956-8890 ­ Fax

  19. Hawaii Bioenergy Master Plan Business Partnering

    E-Print Network [OSTI]

    Hawaii Bioenergy Master Plan Business Partnering Steven Chiang, Director Agribusiness Incubator a productive bioenergy industry, successful partnering amongst industry "players" is essential. This section of the Hawaii Bioenergy Master Plan specifically evaluates facilitating the bioenergy industry through

  20. Hawaii Clean Energy Initiative Scenario Analysis: Quantitative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oahu Kauai Maui Hawaii Lanai Molokai Total Biomass 355 Report b 7 20 8 20 No data 6 KIUC Renewable Energy Technology Assessment c 20 Hawaii Energy Strategy 2000 d 25 25 25 50...

  1. FAD Research in Hawaii the story so far...........

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    FAD Research in Hawaii ­ the story so far........... #12;#12;Characterization of Tuna Movements Around FADs Method: Active Acoustic Tracking #12;#12;#12;#12;#12;#12;#12;Characterization of Movements #12;#12;System Design · 192 kHz Side Scan like transducers · Mechanically scanned system · Battery

  2. Hawaii energy strategy report, October 1995

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    This is a report on the Hawaii Energy Strategy Program. The topics of the report include the a description of the program including an overview, objectives, policy statement and purpose and objectives; energy strategy policy development; energy strategy projects; current energy situation; modeling Hawaii`s energy future; energy forecasts; reducing energy demand; scenario assessment, and recommendations.

  3. Hawaii energy strategy: Executive summary, October 1995

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    This is an executive summary to a report on the Hawaii Energy Strategy Program. The topics of the report include the a description of the program including an overview, objectives, policy statement and purpose and objectives; energy strategy policy development; energy strategy projects; current energy situation; modeling Hawaii`s energy future; energy forecasts; reducing energy demand; scenario assessment, and recommendations.

  4. Hengill geothermal volcanic complex (Iceland) characterized by integrated geophysical observations

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Hengill geothermal volcanic complex (Iceland) characterized by integrated geophysical observations be used to infer the location of magma chambers or productive geothermal areas. The Hengill volcanic triple-junction complex has a well-developed geothermal system, which is being exploited to extract hot

  5. Volcanic rifting at Martian grabens Daniel Me`ge,1

    E-Print Network [OSTI]

    Mege, Daniel

    Volcanic rifting at Martian grabens Daniel Me`ge,1 Anthony C. Cook,2,3 Erwan Garel,4 Yves: Solar System Objects: Mars; 8121 Tectonophysics: Dynamics, convection currents and mantle plumes; 8010: Me`ge, D., A. C. Cook, E. Garel, Y. Lagabrielle, and M.-H. Cormier, Volcanic rifting at Martian

  6. Assessing Pathways in the U.S. Virgin Islands and Hawai'i | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Hawai'i Establishes Goal of Achieving 70% Clean Energy by 2030 Energy Transition Initiative: Islands Playbook A 448-kW PV system installed at the Cyril...

  7. Report Summarizing Development and Testing of Solar Forecasting for Hawai`i

    E-Print Network [OSTI]

    .S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Cooperative Agreement No. DE.1 Deliverable 5 Photovoltaic Systems By the Hawai`i Natural Energy Institute School of Ocean and Earth Science

  8. Hydrothermal flow systems in the Midcontinent Rift: Oxygen and hydrogen isotopic studies of the North Shore Volcanic Group and related hypabyssal sills, Minnesota

    SciTech Connect (OSTI)

    Park, Y.R.; Ripley, E.M. [Indiana Univ., Bloomington, IN (United States). Dept. of Geological Sciences] [Indiana Univ., Bloomington, IN (United States). Dept. of Geological Sciences

    1999-06-01T23:59:59.000Z

    Rift-related lavas of the North Shore Volcanic Group (NSVG) are intruded by plutonic rocks of the Duluth Complex along the unconformity between the NSVG and the underlying Proterozoic metasedimentary rocks (Animikie Group) and Archean volcano-sedimentary and plutonic rocks. Heat associated with the emplacement of the mafic intrusions generated fluid flow in the overlying plateau lavas. {delta}{sup 18}O values for whole rocks from the NSVG and hypabyssal sills range from 5.5 to 17.7{per_thousand} and 5.3 to 11.5{per_thousand}, respectively, and most values are higher than those considered normal for basaltic rocks (5.4 to 6.0{per_thousand}). In general, there is a positive correlation between whole rock {delta}{sup 18}O and water content, which suggests that elevated {delta}{sup 18}O values are related primarily to secondary mineral growth and isotopic exchange during hydrothermal alteration and metamorphism. {delta}{sup 18}O{sub H{sub 2}O} values computed from amygdule-filling minerals such as smectite, chlorite, and epidote found in low- to high-temperature metamorphic zones range from {approximately}{minus}1 to 6{per_thousand} with an average value of {approximately}3{per_thousand}. Smectite in the lower-grade zones gives computed {delta}D{sub H{sub 2}O} values between {minus}26 and {minus}83{per_thousand}, whereas epidote in the higher-grade zones gives {delta}D{sub H{sub 2}O} values of {minus}15 to 6{per_thousand}. Fluid isotopic compositions computed from epidote and smectite values are suggestive of the involvement of at least two fluids during the early stages of amygdule filling. Fluid {delta}D and {delta}{sup 18}O values determined from epidote at the higher metamorphic grades indicate that seawater dominated the deeper portions of the system where greenschist facies assemblages and elevated {delta}{sup 18}O values were produced in flow interiors, as well as margins. Smectite isotopic compositions suggest that meteoric water was predominant in the shallower portions of the system. The increase in {delta}{sup 18}O values of massive flow interiors with depth is interpreted as a result of rock interaction with a fluid of constant oxygen isotopic composition with increasing temperature. The stable isotopic data are supportive of previous suggestions that seawater was involved in the hydrothermal system associated with the Midcontinent Rift. Although the origin of the seawater remains problematic, it appears that marine incursions may have occurred during the late stages of Portage Lake volcanism, and periodically thereafter.

  9. http://www.bizjournals.com/pacific/blog/morning_call/2012/11/fuel-cell-test-lab-renamed-hawaii.html?s=print Nov 30, 2012, 6:56am HST

    E-Print Network [OSTI]

    system costs, Scott Seu, vice president for energy resources at Hawaiian Electric, a subsidiary-cell-test-lab-renamed-hawaii.html?s=print Nov 30, 2012, 6:56am HST Fuel cell test lab renamed Hawaii Sustainable Energy Research Facility Staff Pacific Business News The Hawaii Fuel Cell Test Facility, a 10-year-old research project sponsored

  10. Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii

    E-Print Network [OSTI]

    Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii 2005 1. 2 craters. Journal of Geophysical Research 110, E10001, doi: 10.1029/2004JE002338, 2005. 7. Blewett, D. T

  11. Draft Bioenergy Master Plan for the State of Hawaii

    E-Print Network [OSTI]

    Draft Bioenergy Master Plan for the State of Hawaii Prepared for the U.S. Department of Energy DRAFT Hawaii Bioenergy Master Plan Volume I Prepared for State of Hawaii Department of Business

  12. Hawaii Bioenergy Master Plan Potential Environmental Impacts of

    E-Print Network [OSTI]

    Hawaii Bioenergy Master Plan Potential Environmental Impacts of Bioenergy Development in Hawaii of the potential environmental impacts associated with bioenergy development in Hawaii was conducted as part included the characterization of the general environmental impacts and issues associated with bioenergy

  13. HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Bioenergy Products from Fiber

    E-Print Network [OSTI]

    Pathways #12;HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Biomass Resources in Hawaii Manure Bagasse for transportation, greater power generation efficiency, greater number of potential end uses ­ Gasification quality standards (e.g. ash chemistry) to meet requirements of pyrolysis and gasification technologies

  14. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science/Affirmative Action Institution Team Partners: Hawai`i Natural Energy Institute School of Ocean and Earth Science) has identified a strategic need for energy storage technologies to mitigate the impacts of renewable

  15. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science/Affirmative Action Institution Team Partners: Hawai`i Natural Energy Institute School of Ocean and Earth Science Department of Energy) Contact Information: Richard Rocheleau Principal Investigator HNEI 808

  16. Hawaii geothermal resource assessment: 1982

    SciTech Connect (OSTI)

    Thomas, D.M.; Cox, M.; Kavahikaua, J.P.; Lienert, B.R.; Mattice, M.

    1982-10-01T23:59:59.000Z

    The Geothermal Resource Assessment Program of the Hawaii Institute of Geophysics has conducted a series of geochemical and geophysical surveys throughout the State of Hawaii since February 1978. The results compiled during this study have been used to prepare a map of potential geothermal resource areas throughout the state. Approximately thirteen separate locations on three islands have been studied in detail. Of these, four areas are known to have direct evidence of a geothermal anomaly (Kilauea East Rift Zone, Kilauea Southwest Rift Zone, Kawaihae, and Olowalu-Ukumehame) and three others are strongly suspected of having at least a low-temperature resource (Hualalai west flank, Haleakala Southwest Rift, and Lualualei Valley). In the remainder of the areas surveyed, the data obtained either were contradictory or gave no evidence of a geothermal resource.

  17. Progress report on renewable energy in Hawaii

    SciTech Connect (OSTI)

    Troy, M.; Brown, N.E.

    1982-04-01T23:59:59.000Z

    Renewable energy projects in Hawaii are reviewed as follows: geothermal energy, ocean energy, biomass, wind energy, direct solar energy, hydroelectric and other energy.

  18. Hawaii Department of Land and Natural Resources Division of Forestry...

    Open Energy Info (EERE)

    Name: Hawaii Department of Land and Natural Resources Division of Forestry and Wildlife Address: Kalanimoku Building 1151 Punchbowl St., Room 325 Place: Honolulu, Hawaii Zip:...

  19. Innovative Financing Solutions to Hawaii's Clean Energy Challenges...

    Energy Savers [EERE]

    Energy Challenges Overview of on-bill financing basics, Hawaii's energy landscape and Green Energy Market Securitization. Author: Hawaii Public Utilities Commission Innovative...

  20. Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric...

    Office of Environmental Management (EM)

    Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles Offers Opportunity Nationwide Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles...

  1. Designing Hawaii's First LEED Platinum Net Zero Community: Kaupuni...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designing Hawaii's First LEED Platinum Net Zero Community: Kaupuni Village Designing Hawaii's First LEED Platinum Net Zero Community: Kaupuni Village U.S. Department of Energy...

  2. Hawaii Department of Land and Natural Resources Commission on...

    Open Energy Info (EERE)

    Hawaii Department of Land and Natural Resources Commission on Water Resource Management Address: Kalanimoku Building 1151 Punchbowl Street Room 227 Place: Honolulu, Hawaii Zip:...

  3. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fueling Station in Honolulu, Hawaii Feasibility Analysis Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis This feasibility report assesses the technical and...

  4. Natural Energy Laboratory of Hawaii Authority (NELHA): Hawaii Ocean Science & Technology Park; Kailua-Kona, Hawaii

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Olson, K.; Andreas, A.

    A partnership with the Natural Energy Laboratory of Hawaii Authority and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  5. Hawaii County, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| OpenInformationHartsville,NewOpen EnergyWebpageCounty, Hawaii:

  6. Geothermal energy for Hawaii: a prospectus

    SciTech Connect (OSTI)

    Yen, W.W.S.; Iacofano, D.S.

    1981-01-01T23:59:59.000Z

    An overview of geothermal development is provided for contributors and participants in the process: developers, the financial community, consultants, government officials, and the people of Hawaii. Geothermal energy is described along with the issues, programs, and initiatives examined to date. Hawaii's future options are explored. Included in appendices are: a technical glossary, legislation and regulations, a geothermal directory, and an annotated bibliography. (MHR)

  7. Hawaii Natural Energy Institute Energy Programs

    E-Print Network [OSTI]

    ) · Run-of-river Hydro (limited resource) · Ocean Energy ­ OTEC, Wave (UH National Marine Renewable EnergyHawaii Natural Energy Institute Energy Programs by Rick Rocheleau to Dr. M.R. C. Greenwood December 28, 2009 #12;Outline of Talk · Introduction to HNEI · Hawaii Energy Situation · HNEI Energy

  8. Volcanism Studies: Final Report for the Yucca Mountain Project

    SciTech Connect (OSTI)

    Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

    1998-12-01T23:59:59.000Z

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is defined and described as one of many alternative models of the structural controls of the distribution of Plio-Quaternary basalt centers in the YMR. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be > than about 7 x 10{sup {minus}8} events yr{sup {minus}1} . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption probability to the location of northeast boundaries of volcanic zones near the Yucca Mountain si

  9. HAWAII NATURAL ENERGY INSTITUTEE CS 2004 Meeting www.hnei.hawaii.edu Optimization ofOptimization of

    E-Print Network [OSTI]

    HAWAII NATURAL ENERGY INSTITUTEE CS 2004 Meeting www.hnei.hawaii.edu Optimization ofOptimization manufacture #12;HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu 5 E CS 2004 Meeting The HybridThe Hybrid of HybridHybrid PhotoelectrodePhotoelectrode forfor Solar WaterSolar Water--SplittingSplitting Bjorn Marsen

  10. Volcanic studies at Katmai

    SciTech Connect (OSTI)

    Not Available

    1989-12-31T23:59:59.000Z

    The Continental Scientific Drilling Program (CSDP) is a national effort supported by the Department of Energy, the US Geological Survey, and the National Science Foundation. One of the projects proposed for the CSDP consists of drilling a series of holes in Katmai National Park in Alaska to give a third dimension to the model of the 1912 eruption of Novarupta, and to investigate the processes of explosive volcanism and hydrothermal transport of metals (Eichelberger et al., 1988). The proposal for research drilling at Katmai states that ``the size, youth, elevated temperature, and simplicity of the Novarupta vent make it a truly unique scientific target.`` The National Park Service (NPS), which has jurisdiction, is sympathetic to aims of the study. However, NPS wishes to know whether Katmai is indeed uniquely suited to the research, and has asked the Interagency Coordinating Group to support an independent assessment of this claim. NPS suggested the National Academy of Sciences as an appropriate organization to conduct the assessment. In response, the National Research Council -- the working arm of the Academy -- established, under the aegis of its US Geodynamics Committee, a panel whose specific charge states: ``The proposed investigation at Katmai has been extensively reviewed for scientific merit by the three sponsoring and participating agencies. Thus, the scientific merit of the proposed drilling at Katmai is not at issue. The panel will review the proposal for scientific drilling at Katmai and prepare a short report addressing the specific question of the degree to which it is essential that the drilling be conducted at Katmai as opposed to volcanic areas elsewhere in the world.``

  11. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    ENERGY INSTITUTE School of Ocean & Earth Science & Technology ­ University of Hawai`i at Mnoa Batteries that fast-response Battery Energy Storage System (BESS) solutions are an integral part of a comprehensive) wind farm and on O`ahu at the Waiawa substation with a large distributed PV system. The objective

  12. Hawai'i's EVolution: Hawai'i Powered. Technology Driven. (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01T23:59:59.000Z

    This Hawaii Clean Energy Initiative (HCEI) brochure outlines Hawaii's energy and transportation goals and the implementation of electric vehicles (EV) and electric vehicle infrastructure since HCEI began in 2008. It includes information about Hawaii's role in leading the nation in available EV charging infrastructure per capita; challenges for continuing to implement EV technology; features on various successful EV users, including the Hawaiian Electric Company, Enterprise Rent-A-Car, and Senator Mike Gabbard; how EVs can integrate into and help propel Hawaii's evolving smart grid; and much more.

  13. Alternative Fuels Data Center: Hawaii Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    production facilities in Hawaii, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  14. Webinar: Supporting a Hawaii Hydrogen Economy

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Supporting a Hawaii Hydrogen Economy" on Tuesday, July 29, from 3:00 p.m. to 4:00 p.m. Eastern Daylight Time (EDT). The webinar will...

  15. Hawaii Clean Energy Initiative Scenario Analysis

    Office of Energy Efficiency and Renewable Energy (EERE)

    Analysis of potential policy options to help the state reach the 70% Hawaii Clean Energy Initiative (HCEI) goal, including possible pathways to attain the goal based on currently available technology.

  16. Kaneohe, Hawaii Wind Resource Assessment Report

    SciTech Connect (OSTI)

    Robichaud, R.; Green, J.; Meadows, B.

    2011-11-01T23:59:59.000Z

    The Department of Energy (DOE) has an interagency agreement to assist the Department of Defense (DOD) in evaluating the potential to use wind energy for power at residential properties at DOD bases in Hawaii. DOE assigned the National Renewable Energy Laboratory (NREL) to facilitate this process by installing a 50-meter (m) meteorological (Met) tower on residential property associated with the Marine Corps Base Housing (MCBH) Kaneohe Bay in Hawaii.

  17. Potential of Renewable Energy to Reduce the Dependence of the State of Hawaii on Oil

    SciTech Connect (OSTI)

    Arent, D.; Barnett, J.; Mosey, G.; Wise, A.

    2009-01-01T23:59:59.000Z

    Deriving nearly 90% of its primary energy resources from oil, the State of Hawaii is more dependent on oil than any other U.S. state. The price of electricity in Hawaii is also more than twice the U.S. average. The Energy Policy Act of 2005 directed assessment of the economic implications of Hawaii's oil dependence and the feasibility of using renewable energy to help meet the state's electrical generation and transportation fuel use. This paper is based on the assessments and report prepared in response to that directive.Current total installed electrical capacity for the State of Hawaii is 2,414 MWe, 83% of which is fuel-oil generated, but already including about 170 MWe of renewable capacity. The assessments identified about 2,133 MWe (plus another estimated 2,000 MWe of rooftop PV systems) of potential new renewable energy capacity. Most notable, in addition to the rooftop solar potential, is 750 MWe and 140 MWe of geothermal potential on Hawaii and Maui, respectively, 840 MWe of potential wind capacity, primarily on Lanai and Molokai, and one potential 285 MWe capacity specific solar project (PV or solar thermal) identified on Kauai. Important social, political, and electrical-grid infrastructure challenges would need to be overcome to realize this potential. Among multiple crop and acreage scenarios, biofuels assessment found 360,000 acres in Hawaii zoned for agriculture and appropriate for sugarcane, enough to produce 429 million gallons of ethanol-enough to meet about 64% of current 2005 Hawaiian gasoline use. Tropical oil seed crops-potentially grown on the same land-might meet a substantial portion of current diesel use, but there has been little experience growing such crops in Hawaii. The U.S. Department of Energy and the State of Hawaii initiated in January 2008 a program that seeks to reduce Hawaii's oil dependence and provide 70% of the state's primary energy from clean energy sources by 2030. The Hawaii Clean Energy Initiative (HCEI) activities will be concentrated in two areas: (1) HCEI Working Groups will be formed and made up of private, state, and U.S. government experts in the areas of Transportation and Fuels, Electricity Generation, Energy Delivery and Transmission, and End-Use Efficiency; and (2) Partnership Projects will be undertaken with local and mainland partners that demonstrate and commercialize new technologies and relieve technical barriers.

  18. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    processing for pilot scale production of bioplastics and bio-oil; Process economic evaluation for commercial be converted to bio-oil in supercritical methanol. The liquid products have the similar performance of C5-C24 & Technology ­ University of Hawai`i at Mnoa Bioplastics and Bio-OilTeam Partners: Hawai`i Natural Energy

  19. Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii

    E-Print Network [OSTI]

    Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii 2002 1-scale multielement analysis of the lunar surface using iron, titanium, and thorium abundances, Journal of Geophysical distribution of lunar composition: New results from Lunar Prospector Journal of Geophysical Research, VOL. 107

  20. Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii

    E-Print Network [OSTI]

    Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii 2006 1 with an albedo feature near Airy crater in the lunar nearside highlands. Geophysical Research Letters. 9. Boyce viewed by the THEMIS instrument: Double-layered ejecta craters. J. Geophysical Research, 111, E10005, doi

  1. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    Integration Study Maui Grid Analysis Project Maui Smart Grid Project Hydrogen for GM Equinox Fuel Cell successful integration of additional renewable resources. #12;Hawai`i Natural Energy Institute ­ Oahu Grid & Technology ­ University of Hawai`i at Mnoa Oahu Grid Analysis Project Phone: (808) 956-8890 ­ Fax: (808) 956

  2. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A. [Los Alamos National Lab., NM (United States); Wells, S. [Univ. of California, Riverside, CA (United States); Bowker, L.; Finnegan, K. [Univ. of Nevada, Las Vegas, NV (United States); Geissman, J.; McFadden, L.

    1995-02-01T23:59:59.000Z

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report.

  3. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    : Grid Management Using Hydrogen Hydrogen for GM Equinox Vehicles Fuel Cell Hydrogen Contaminants Project, the Hawai`i Natural Energy Institute (HNEI) will provide hydrogen for fueling plug-in hybrid electric of the overall system to provide hydrogen for fueling the PHEV shuttle buses used for visitors to HAVO, 2

  4. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    of fuel cell systems and avoid future costly failures in fuel cell vehicles and electricity generation Contaminants and Fuel Cell Performance Team Partners: Hawai`i Natural Energy Institute Center for Clean Energy in HNEI's fuel cell test facility to characterize, analyze, and understand the effects of airborne

  5. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    for GM Equinox Fuel Cell Vehicles Team Partners: Hawai`i Natural Energy Institute School of Ocean systems for fueling General Motors (GM) Equinox fuel cell electric vehicles located at Marine Corps Base`i. Overall, this project will support operations of the GM fuel cell vehicle demonstration program in Hawai

  6. The University of Hawai`i 21st Century

    E-Print Network [OSTI]

    issues. President Greenwood welcomes your comments and questions. Call her at (808) 956-8207 Email her at mrcgreenwood@hawaii.edu Visit her webpage at www.hawaii.edu/offices/op An Equal Employment Opportunity

  7. Proceedings of 2009 NSF Engineering Research and Innovation Conference, Honolulu, Hawaii Grant #0423484 Separation and Energy Use Performance of Material Recycling Systems

    E-Print Network [OSTI]

    Gutowski, Timothy

    #0423484 Separation and Energy Use Performance of Material Recycling Systems Timothy Gutowski Malima I Abstract: This paper outlines current research on the performance of recycling processes and systems of recycling processes. Descriptive terminology for separation performance is presented. The goal

  8. http://business.uhh.hawaii.edu ...UH Hilo's

    E-Print Network [OSTI]

    Olsen, Stephen L.

    http://business.uhh.hawaii.edu ...UH Hilo's Business Administration Degree program! Coming Soon to West Hawai`i!... What? A five-semester cohort program leading to an accredited Business Administration degree from UH Hilo. Through a business pathway agreement between UH Hilo and Hawaii Community College

  9. Analysis of Land Suitable for Algae State of Hawaii

    E-Print Network [OSTI]

    Analysis of Land Suitable for Algae Production State of Hawaii Prepared by Mele Chillingworth Scott of Hawaii at Manoa August 2011 #12;i Executive Summary Algae are considered to be a viable crop for biofuel for biofuels has increased interest in growing algae in Hawaii for biofuels. An analysis of algae production

  10. Analysis of Land Suitable for Algae State of Hawaii

    E-Print Network [OSTI]

    Analysis of Land Suitable for Algae Production State of Hawaii Prepared for the U.S. Department agency thereof. #12;Analysis of Land Suitable for Algae Production State of Hawaii Prepared by Mele University of Hawaii at Manoa August 2011 #12;i Executive Summary Algae are considered to be a viable crop

  11. Hawaii Bioenergy Master Plan Financial Incentives And Barriers; And

    E-Print Network [OSTI]

    at levels sufficient to contribute a significant renewable energy resource to the State of HawaiHawaii Bioenergy Master Plan Financial Incentives And Barriers; And Other Funding Sources Prepared for: Hawai`i Natural Energy Institute University of Hawai`i at Manoa 1680 East West Road, POST 109

  12. Oahu Solar Measurement Grid (1-Year Archive): 1-Second Solar Irradiance; Oahu, Hawaii (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sengupta, M.; Andreas, A.

    Seventeen measurement stations in the south western region of the island of Oahu collected data at 1-second intervals over the course of a year. The sensors are located in a 1-kilometer grid and the information then can be used to predict what PV outputs might be at 1-second intervals for medium-sized and large PV systems. This DOE-funded study by NREL supports the Hawaii Clean Energy Initiative (HCEI), a multifaceted program to substantially increase the use of renewable energy in Hawaii.

  13. STUDIES IN GEOPHYSICS 4'~xplosiveVolcanism:-

    E-Print Network [OSTI]

    volcanism was modeled in experiments in which thermite melt fFe + AtOj explosively interacted with water

  14. Waipio, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane, Hawaii: EnergyWaipio, Hawaii: Energy

  15. Kailua, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island, Florida: EnergyKDOTIIKailua, Hawaii:

  16. Hawaii Hydrogen Energy Park | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudson YearHarvesting the HawaiiHawaii

  17. Using seafloor geodesy to monitor volcanic collapse on the south flank of Kilauea Volcano, Hawaii

    E-Print Network [OSTI]

    Phillips, Kathleen A.

    2006-01-01T23:59:59.000Z

    Photo of PXP on deck with pressure sensorPhoto of a benchmark on deck with pressure sensorII.4 Photo of PXP on deck with pressure sensor rigging.

  18. Using seafloor geodesy to monitor volcanic collapse on the south flank of Kilauea Volcano, Hawaii

    E-Print Network [OSTI]

    Phillips, Kathleen A.

    2006-01-01T23:59:59.000Z

    seismic interpretation . . . . . . . . . . . . . . . . . . . .Figure I.16 shows the seismic interpretation from Morgan etMorgan et al. seismic interpretation. Figure from (Morgan et

  19. Hawaii Bioenergy Master Plan Bioenergy Technology

    E-Print Network [OSTI]

    technology assessment was conducted as part of the Hawaii Bioenergy Master Plan mandated by Act 253 collected in preparing this task and include: 1. The State should continue a bioenergy technology assessment-oil production X Y Charcoal production X X Y Bio-oil production for fuels X X Y Combustion X Y Renewable diesel

  20. Disruptive event analysis: volcanism and igneous intrusion

    SciTech Connect (OSTI)

    Crowe, B.M.

    1980-08-01T23:59:59.000Z

    An evaluation is made of the disruptive effects of volcanic activity with respect to long term isolation of radioactive waste through deep geologic storage. Three major questions are considered. First, what is the range of disruption effects of a radioactive waste repository by volcanic activity. Second, is it possible, by selective siting of a repository, to reduce the risk of disruption by future volcanic activity. And third, can the probability of repository disruption by volcanic activity be quantified. The main variables involved in the evaluation of the consequences of repository disruption by volcanic activity are the geometry of the magma-repository intersection (partly controlled by depth of burial) and the nature of volcanism. Potential radionuclide dispersal by volcanic transport within the biosphere ranges in distance from several kilometers to global. Risk from the most catastrophic types of eruptions can be reduced by careful site selection to maximize lag time prior to the onset of activity. Certain areas or volcanic provinces within the western United States have been sites of significant volcanism and should be avoided as potential sites for a radioactive waste repository. Examples of projection of future sites of active volcanism are discussed for three areas of the western United States. Probability calculations require two types of data: a numerical rate or frequency of volcanic activity and a numerical evaluation of the areal extent of volcanic disruption for a designated region. The former is clearly beyond the current state of art in volcanology. The latter can be approximated with a reasonable degree of satisfaction. In this report, simplified probability calculations are attempted for areas of past volcanic activity.

  1. BIOMASS ENERGY CONVERSION IN HAWAII

    E-Print Network [OSTI]

    Ritschard, Ronald L.

    2013-01-01T23:59:59.000Z

    being considered: waterwall incineration and refuse-derivedpollutant from direct incineration systems. Emission rates

  2. Direct numerical simulations of multiphase flow with applications to basaltic volcanism and planetary evolution

    E-Print Network [OSTI]

    Suckale, Jenny

    2011-01-01T23:59:59.000Z

    Multiphase flows are an essential component of natural systems: They affect the explosivity of volcanic eruptions, shape the landscape of terrestrial planets, and govern subsurface flow in hydrocarbon reservoirs. Advancing ...

  3. Hawaii Energy Strategy program. Annual report 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    This is the second annual report on the Hawaii Energy Strategy (HES) program which began on March 2, 1992, under a Cooperative Agreement (FCO3-92F19l68) with the United States Department of Energy (USDOE). The HES program is scheduled for completion by December 31, 1994. As outlined in the Statement of Joint Objectives. The purpose of the study is to develop an integrated State of Hawaii energy strategy, including an assessment of the State`s fossil fuel reserve requirements and the most effective way to meet those needs, the availability and practicality of increasing the use of native energy resources, potential alternative fossil energy technologies such as coal gasification and potential energy efficiency measures which could lead to demand reduction. This work contributes to the (US)DOE mission, will reduce the State`s vulnerability to energy supply disruptions and contributes to the public good.

  4. Hawaii Clean Energy Iniative - Construction Upon a State Highway...

    Open Energy Info (EERE)

    Construction Upon a State Highway Permit Packet Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Instructions: Hawaii Clean...

  5. University of Hawaii, EHSO October 2005 PROTOCOL FOR UNIVERSITY PERSONNEL

    E-Print Network [OSTI]

    or operation at any time. These agencies include: FEDERAL - Environmental Protection Agency (EPA), Nuclear (DOH), Department of Agriculture (DOA), Department of Labor and Industrial Relations (DLIR), Hawaii

  6. Hawaii Clean Energy Initiative Certificate of Public Convenience...

    Open Energy Info (EERE)

    Reference LibraryAdd to library PermittingRegulatory Guidance - Instructions: Hawaii Clean Energy Initiative Certificate of Public Convenience and Necessity Permit...

  7. Our Future. Energy Independence...It's Up To Us. Hawaii Clean Energy Initiative (HCEI) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01T23:59:59.000Z

    Brochure for the Hawaii Clean Energy (HCEI) Initiative that estabishes the new HCEI brand and highlights two focus areas for achieving Hawaii's clean energy goals: conserve and convert.

  8. Hawaii Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Hawaii Regions Hawaii Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules,...

  9. Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii...

    Broader source: Energy.gov (indexed) [DOE]

    Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment...

  10. Hawaii energy strategy project 2: Fossil energy review. Task 2: Fossil energy in Hawaii

    SciTech Connect (OSTI)

    Breazeale, K. [ed.; Yamaguchi, N.D.; Keeville, H. [and others

    1993-12-01T23:59:59.000Z

    In Task 2, the authors establish a baseline for evaluating energy use in Hawaii, and examine key energy and economic indicators. They provide a detailed look at fossil energy imports by type, current and possible sources of oil, gas and coal, quality considerations, and processing/transformation. They present time series data on petroleum product consumption by end-use sector, though they caution the reader that the data is imperfect. They discuss fuel substitutability to identify those end-use categories that are most easily switched to other fuels. They then define and analyze sequential scenarios of fuel substitution in Hawaii and their impacts on patterns of demand. They also discuss energy security--what it means to Hawaii, what it means to neighboring economies, whether it is possible to achieve energy security. 95 figs., 48 tabs.

  11. Hawaii hydrogen power park Hawaii Hydrogen Power Park

    E-Print Network [OSTI]

    energy source. (Barrier V-Renewable Integration) Hydrogen storage & distribution system. (Barrier V Vent AC Power Reformer Low Pressure H2 Storage Propane Hydrogen Optional Reformer System Optional Wind. Low pressure hydrogen storage utilizing propane tanks. High pressure storage using lightweight

  12. Assessment of coal technology options and implications for the State of Hawaii

    SciTech Connect (OSTI)

    Carlson, J.L.; Elcock, D.; Elliott, T.J. [and others] [and others

    1993-12-01T23:59:59.000Z

    The mandate of this research report was to provide the state of Hawaii with an assessment of the potential opportunities and drawbacks of relying on coal-fired generating technologies to diversify its fuel mix and satisfy future electric power requirements. This assessment was to include a review of existing and emerging coal-based power technologies-including their associated costs, environmental impacts, land use, and infrastructure requirements-to determine the range of impacts likely to occur if such systems were deployed in Hawaii. Coupled with this review, the report was also to (1) address siting and safety issues as they relate to technology choice and coal transport, (2) consider how environmental costs associated with coal usage are included in the integrated resource planning (ERP) process, and (3) develop an analytical tool from which the Department of Business, Economic Development & Tourism of the State of Hawaii could conduct first-order comparisons of power plant selection and siting. The prepared report addresses each element identified above. However, available resources and data limitations limited the extent to which particular characteristics of coal use could be assessed. For example, the technology profiles are current but not as complete regarding future developments and cost/emissions data as possible, and the assessment of coal technology deployment issues in Hawaii was conducted on an aggregate (not site-specific) basis. Nonetheless, the information and findings contained in this report do provide an accurate depiction of the opportunities for and issues associated with coal utilization in the state of Hawaii.

  13. The University of Hawaii Wide Field Imager (UHWFI)

    E-Print Network [OSTI]

    Klaus W. Hodapp; Andreas Seifahrt; Gerard A. Luppino; Richard Wainscoat; Ed Sousa; Hubert Yamada; Alan Ryan; Richard Shelton; Mel Inouye; Andrew J. Pickles; Yanko K. Ivanov

    2006-04-01T23:59:59.000Z

    The University of Hawaii Wide-Field Imager (UHWFI) is a focal compressor system designed to project the full half-degree field of the UH 2.2 m telescope onto the refurbished UH 8Kx8K CCD camera. The optics use Ohara glasses and are mounted in an oil-filled cell to minimize light losses and ghost images from the large number of internal lens surfaces. The UHWFI is equipped with a six-position filter wheel and a rotating sector blade shutter,both driven by stepper motors. The instrument saw first light in 2004 in an engineering mode. After filling the lens cell with index matching oil, integration of all software components into the user interface, tuning of the CCD performance, and the purchase of the final filter set, UHWFI is now fully commissioned at the UH 2.2 m telescope.

  14. Renewable Energy Permitting Barriers in Hawaii: Experience from the Field

    SciTech Connect (OSTI)

    Busche, S.; Donnelly, C.; Atkins, D.; Fields, R.; Black, C.

    2013-03-01T23:59:59.000Z

    This white paper presents a summary of the solicited input from permitting agencies and renewable energy developers on the permitting process in Hawaii to provide stakeholders in Hawaii, particularly those involved in permitting, with information on current permitting barriers that renewable energy developers are experiencing.

  15. Wave Energy Test Site (WETS) Marine Corps Base Hawaii (MCBH)

    E-Print Network [OSTI]

    Wave Energy Test Site (WETS) Marine Corps Base Hawaii (MCBH) Alexandra DeVisser, NAVFAC-EXWC Brian June 10, 2013 #12;Wave Energy Test Site (WETS) Objective: Provide location for year-long in Cable, Sound & Sea Technology (SST) Luis A. Vega, HNEI-University of Hawaii Energy Ocean International

  16. Identification and Assessment of Food Waste Generators in Hawaii

    E-Print Network [OSTI]

    Department of Agriculture By University of Hawaii Hawaii Natural Energy Institute School of Ocean and Earth Sciences and Technology Wendy Okazaki Scott Q. Turn December 2005 #12;2 Table of Contents 1. Executive............................................................................................... 11 3.4 Survey data entry and Microsoft Access database

  17. UNIVERSITY OF HAWAI`I COMMUNITY COLLEGES POLICY

    E-Print Network [OSTI]

    Olsen, Stephen L.

    of Hawai`i Executive Policy E5.211 Ethical Standards in Research and Scholarly Activities. http://www.hawaii.edu/apis these recognized standards of the profession an integral part of their professional lives. The expectation reinforces the expectations and standards, which we strive to achieve. II. Related University Policies

  18. Detailed Work Plan for Development of a Hawai`i

    E-Print Network [OSTI]

    Subtask 9.1 First Deliverable By the University of Hawaii Hawaii Natural Energy Institute School of Ocean energy and economic security and sustainability. Moreover, unlike wind, solar, geothermal, or ocean.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Award No. DE-FC-06NT42847

  19. SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT

    SciTech Connect (OSTI)

    Perry, F. V.; Crowe, G. A.; Valentine, G. A.; Bowker, L. M.

    1997-09-23T23:59:59.000Z

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The distribution of Pliocene and Quaternary basaltic volcanic centers is evaluated with respect to tectonic models for detachment, caldera, regional and local rifting, and the Walker Lane structural zone. Geophysical data are described for the YMR and are used as an aid to understand the distribution of past basaltic volcanic centers and possible future magmatic processes. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be greater than 10{sup -7} events per year. Bounding probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Arnargosa Valley and Crater Flat. The results of simulation modeling are used to assess the sensitivity of the disruption probability for the location of northeast boundaries of volcanic zones near the Yucca Mountain site. A new section on modeling of radiological releases associated with surface and subsurface magmatic activity has been added to chapter 6. The modeling results are consistent with past total system performance assessments that show future volcanic and magmatic events are not significant components of repository performance and volcanism is not a prio

  20. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    Research http://www.onr.navy.mil Related Projects: Maui Smart Grid Batteries for Grid Management Grid to environmental changes, and interaction with the associated electric grid. A prime example test bed is the one for use in Hawai`i and application to future grid integration by HELCO and other utilities on O`ahu, Maui

  1. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    to electricity as power sources. BFCs promise niche applications for generation of electricity at small scale & Technology ­ University of Hawai`i at Mnoa Bio-Fuel Cells Project Period of Performance: From 2003 Project of immobilization (e.g., covalent attachment versus physical entrapment of enzyme). Project Benefits Bio-fuel cells

  2. Hawaii Energy Resource Overviews. Volume 5. Social and economic impacts of geothermal development in Hawaii

    SciTech Connect (OSTI)

    Canon, P.

    1980-06-01T23:59:59.000Z

    The overview statement of the socio-economic effects of developing geothermal energy in the State of Hawaii is presented. The following functions are presented: (1) identification of key social and economic issues, (2) inventory of all available pertinent data, (3) analysis and assessment of available data, and (4) identification of what additional information is required for adequate assessment.

  3. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    vehicles, hardware- in-loop dynamic testing or autonomous vehicles, and use of alternate fuels. Fuel Cell & Technology ­ University of Hawai`i at Mnoa Airborne Contaminants and Fuel Cell Performance Phone: (808) 956 Contaminants and Fuel Cell Performance Effects of Defects in Fuel Cell MEA Components Background

  4. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    Hydrogen for GM Fuel Cell Vehicles Project Description and Goals As one of the tasks under an award from Laboratory www.nrl.navy.mil Related Projects: Bio-Fuel Cells Project Fuel Cell Hardware-in-Loop (HiL) Testing of HNEI's Hawai`i Fuel Cell Test Facility. Besides the basic energy need for hydrate exploitation, HNEI

  5. Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

    SciTech Connect (OSTI)

    Goldstein, N.E.; Flexser, S.

    1984-12-01T23:59:59.000Z

    Recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. The areas studied were: (1) Salton Trough, (2) The Geysers-Clear Lake, (3) Long Valley caldera, (4) Coso volcanic field, and (5) Medicine Lake volcano, all located in California and all selected on the basis of recent volcanic activity and published indications of crustal melt zones. 23 figs.

  6. Dam and Hydroelectric Powerplant University of Hawai`i CEE 491University of Hawai`i CEE 491

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    Karun 3 Dam and Hydroelectric Powerplant University of Hawai`i ­ CEE 491University of Hawai`i ­ CEE;Location #12;Description/Background Hydroelectric dam on Karun River Help with national energy needs #12;Social & Economic Benefits Flood Control Dam reservoirs help to control floods Mitigate high peak

  7. School of Ocean and Earth Science and Technology, University of Hawai`i at Mnoa Hawai`i's Changing Climate

    E-Print Network [OSTI]

    Wang, Yuqing

    1880). How is global warming influencing the climate in Hawai`i? The purpose of this briefing sheet of global warming. In Hawai`i: · Air temperature has risen; · Rainfall and stream flow have decreased`i's water resources and forests, coastal communities, and marine ecology. There is a significant need

  8. Metrics for Measuring Progress under the Hawai`i Clean Energy Initiative

    E-Print Network [OSTI]

    ENERGY INSTITUTE School of Ocean & Earth Science & Technology ­ University of Hawai`i at Manoa #12 by Hawai`i Natural Energy Institute School of Ocean and Earth Science and Technology University of HawaiMetrics for Measuring Progress under the Hawai`i Clean Energy Initiative: Hawai`i Clean Energy

  9. Energy Incentive Programs, Hawaii | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogenDistributionFact SheetColoradoGeorgia EnergyHawaii

  10. MHK Projects/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma: EnergyMARECInformationGriffin ProjectHawaii

  11. Waikane, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane, Hawaii: Energy Resources Jump to:

  12. Waimalu, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane, Hawaii: Energy Resources Jump

  13. Waimanalo, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane, Hawaii: Energy Resources

  14. Waipahu, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane, Hawaii: Energy ResourcesWainscott,

  15. Categorical Exclusion Determinations: Hawaii | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments EnergyFebruary3 Categorical ExclusionCalifornia|GeorgiaHawaii

  16. Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms A SUKHydrogenGuascorHamidjojoHawaii: Energy

  17. Renewable Hawaii Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History FacebookRegenesysRenewable Hawaii Inc Jump to: navigation,

  18. Kahaluu, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: Energy ResourcesKACOKahaluu, Hawaii: Energy Resources

  19. Kahuku, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: Energy ResourcesKACOKahaluu, Hawaii: EnergyKahuku,

  20. Kaneohe, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: EnergyKanabec County, Minnesota: EnergyKaneohe, Hawaii:

  1. Hawaii/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategy |HatchetInformation Hawaii's

  2. Kahului, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island, Florida: EnergyKDOTII

  3. Hauula, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| OpenInformationHartsville, NewPennsylvania:Hauula, Hawaii: Energy

  4. Punaluu, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublic PowerKentucky:Plant on Hawaii's

  5. Pupukea, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublic PowerKentucky:Plant onPupukea, Hawaii:

  6. Hawaii State Energy Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open Energy Information HanergyHarney ElectricHaryanaHavanaHawaii

  7. World Conference on Photovoltaic Conversion, Hawaii, May 8-12, 2006 QUANTIFYING THE LIFE-CYCLE ENVIRONMENTAL PROFILE OF PHOTOVOLTAICS

    E-Print Network [OSTI]

    IEEE 4 th World Conference on Photovoltaic Conversion, Hawaii, May 8-12, 2006 QUANTIFYING THE LIFE-CYCLE ENVIRONMENTAL PROFILE OF PHOTOVOLTAICS AND COMPARISONS WITH OTHER ELECTRICITY-GENERATING TECHNOLOGIES V and Australian studies portrayed photovoltaic systems as causing significant life-cycle environmental and health

  8. Ocean Thermal Resources off the Hawaiian Islands luisvega@hawaii.edu Ocean Thermal Resources off the Hawaiian Islands

    E-Print Network [OSTI]

    information to assist developers of ocean thermal energy conversion (OTEC) systems in site selection Energy Conversion The immense size of the ocean thermal resource and the baseload capability of OTECOcean Thermal Resources off the Hawaiian Islands luisvega@hawaii.edu 1 Ocean Thermal Resources off

  9. Volcanic loading: The dust veil index

    SciTech Connect (OSTI)

    Lamb, H.H. [Univ. of East Anglia, Norwich (United Kingdom). Climatic Research Unit

    1985-09-01T23:59:59.000Z

    Dust ejected into the high atmosphere during explosive volcanic eruptions has been considered as a possible cause for climatic change. Dust veils created by volcanic eruptions can reduce the amount of light reaching the Earth`s surface and can cause reductions in surface temperatures. These climatic effects can be seen for several years following some eruptions and the magnitude and duration of the effects depend largely on the density or amount of tephra (i.e. dust) ejected, the latitude of injection, and atmospheric circulation patterns. Lamb (1970) formulated the Dust Veil Index (DVI) in an attempt to quantify the impact on the Earth`s energy balance of changes in atmospheric composition due to explosive volcanic eruptions. The DVI is a numerical index that quantifies the impact on the Earth`s energy balance of changes in atmospheric composition due to explosive volcanic eruptions. The DVI is a numerical index that quantifies the impact of a particular volcanic eruptions release of dust and aerosols over the years following the event. The DVI for any volcanic eruptions are available and have been used in estimating Lamb`s dust veil indices.

  10. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    ENERGY INSTITUTE School of Ocean & Earth Science & Technology ­ University of Hawai`i at Mnoa Ocean Thermal Energy Conversion Team Partners: Hawai`i Natural Energy Institute School of Ocean and Earth of Ocean Thermal Energy Conversion (OTEC) in Hawai`i. OTEC uses the difference between the cold deep water

  11. Greta Smith Aeby Hawaii Institute of Marine Biology

    E-Print Network [OSTI]

    Wang, Yuqing

    Greta Smith Aeby Hawaii Institute of Marine Biology PO Box 1346 Kaneohe, HI 96744 Work, TM, Forsman, Rogers, A, Sanciangco, J, Sheppard, A, Sheppard, C, Smith, J, Stuart, S, Turak, E, Veron, J, Wallace, C

  12. MIE Regional Climate Change Impact Webinar Series: Hawaii & Pacific Islands

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE's) Minorities in Energy Initiative is hosting a webinar on Hawaii and Pacific Islands impacts of climate change on minority and tribal communities featuring...

  13. Hawaii Solar Integration Study Final Technical Report for Oahu

    E-Print Network [OSTI]

    Hawaii Solar Integration Study Final Technical Report for Oahu Prepared for: The National Renewable ..................................................................................................................19 4.5. Statistical analysis of wind, solar and load data ................................................................................................................................... 21 5.1. Solar Site Selection Process

  14. Geothermal resources assessment in Hawaii. Final report

    SciTech Connect (OSTI)

    Thomas, D.M.

    1984-02-21T23:59:59.000Z

    The Hawaii Geothermal Resources Assessment Program was initiated in 1978. The preliminary phase of this effort identified 20 Potential Geothermal Resource Areas (PGRA's) using available geological, geochemical and geophysical data. The second phase of the Assessment Program undertook a series of field studies, utilizing a variety of geothermal exploration techniques, in an effort to confirm the presence of thermal anomalies in the identified PGRA's and, if confirmed, to more completely characterize them. A total of 15 PGRA's on four of the five major islands in the Hawaiian chain were subject to at least a preliminary field analysis. The remaining five were not considered to have sufficient resource potential to warrant study under the personnel and budget constraints of the program.

  15. Regional Systems Development for Geothermal Energy Resources...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Regional Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii)....

  16. Memorandum of Understanding Between the State of Hawaii and the U.S. Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document describes the Memorandum of Understanding signed between the state of Hawaii and the U.S. Department of Energy, outlining their intent to work together to help Hawaii develop its natural renewable resources.

  17. Isotopic Analysis At Lassen Volcanic National Park Area (Janik...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity...

  18. Hawaii Natural Energy Institute: Annual report, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    This progress report from the University of Hawaii at Manoa's School of Ocean and Earth Science and Technology describes state of the art research in tapping the energy in and around the Hawaiian Islands. Researchers are seeking new ways of generating electricity and producing methanol from sugarcane waste and other biomass. They are finding ways to encourage the expanded use of methanol as a transportation fuel. They are creating innovative and cost-efficient methods of producing and storing hydrogen gas, considered the fuel of the future''. Researchers are also developing the techniques and technologies that will enable us to tap the unlimited mineral resources of the surrounding ocean. they are testing methods of using the oceans to reduce the carbon dioxide being discharged to the atmosphere. And they are mapping the strategies by which the seas can become a major source of food, precious metals, and space for living and for industry. The achievements described in this annual report can be attributed to the experience, creativity, painstaking study, perseverance, and sacrifices of our the dedicated corps of researchers.

  19. Report on Business Case in Hawai`i for Storage Options

    E-Print Network [OSTI]

    Report on Business Case in Hawai`i for Storage Options Prepared for the U.S. Department of Energy on Business Case in Hawai`i for Storage Options Prepared by Hawai`i Natural Energy Institute School of Ocean, and minimize energy costs. This study will help determine where energy storage technologies can best fit

  20. HIGH SCHOOL BACKGROUND OF FIRST-TIME STUDENTS UNIVERSITY OF HAWAI`I

    E-Print Network [OSTI]

    HIGH SCHOOL BACKGROUND OF FIRST-TIME STUDENTS UNIVERSITY OF HAWAI`I FALL 2007 Institutional, Students Reports available online at: http://www.hawaii.edu/iro/maps.htm #12;HIGH SCHOOL BACKGROUND 1). Enrollment of first-time students from Hawai`i high schools measured 5,967, a 9.4% increase from

  1. Compilation of Expenditures for the Hawai`i Gateway Energy Center

    E-Print Network [OSTI]

    `i Distributed Energy Resource Technologies for Energy Security Subtask 2.2 Deliverable #3 By Hawai`i Natural`i Distributed Energy Resource Technologies for Energy Security project, the Hawai`i Natural Energy InstituteCompilation of Expenditures for the Hawai`i Gateway Energy Center Prepared for the U.S. Department

  2. 148 Faculty and Staff Hawai`i Community College 2013-2014 RobertYamane

    E-Print Network [OSTI]

    Olsen, Stephen L.

    and Staff 149Hawai`i Community College 2013-2014 Grace Funai Recipient, Chancellor's`A`ali`i Award James AU, KAREN L. Educational Specialist, University of Hawai`i Center, West Hawai`i B.A. 1998, University

  3. Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and

    E-Print Network [OSTI]

    Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and Hawaii's Labor Market associated with biofuels in Hawai'i. In particular, it discusses how a potential biofuels industry might policy makers and leaders consider how best to support biofuels. One major labor market question

  4. The epidemiology and etiology of visitor injuries in Hawaii Volcanoes National Park

    E-Print Network [OSTI]

    Heggie, Travis Wade

    2006-04-12T23:59:59.000Z

    TABLE 15 Behavioral and preparedness factors most frequently involved in frontcountry incidents in Hawaii Volcanoes National Park??????. 72 16 Frontcountry destinations in Hawaii Volcanoes National Park with the highest number... Park????????????????????????. 86 27 Behavioral and preparedness factors commonly associated with backcountry incidents in Hawaii Volcanoes National Park??????.. 87 28 Distribution of roadway incidents by specific road and severity...

  5. Preliminary geothermal assessment surveys for the State of Hawaii

    SciTech Connect (OSTI)

    Thomas, D.M.; Cox, M.E.; Lienert, B.R.; Kauahikaua, J.P.; Mattice, M.D.

    1980-09-01T23:59:59.000Z

    The Geothermal Resource Assessment Program of the Hawaii Institute of Geophysics has conducted a series of geochemical and geophysical surveys in ten separate locations within the State of Hawaii in an effort to identify and assess potential geothermal areas throughout the state. The techniques applied include groundwater chemistry and temperatures, soil mercury surveys, ground radon emanometry, time-domain electromagnetic surveys and Schlumberger resistivity soundings. Although geochemical and geophysical anomalies were identified in nearly all the survey sites, those areas which show most promise, based on presently available data, for a geothermal resource are as follows: Puna, Kailua Kona, and Kawaihae on the island of Hawaii; Haiku-Paia and Olowalu-Ukumehame canyons on Maui; and Lualualei Valley on Oahu. Further surveys are planned for most of these areas in order to further define the nature of the thermal resource present.

  6. Did the Toba volcanic eruption of $74 ka B.P. produce widespread glaciation?

    E-Print Network [OSTI]

    Robock, Alan

    climate models, the National Center for Atmospheric Research Community Climate System Model 3.0 (CCSM3 that the Toba volcanic eruption, approximately 74 ka B.P., was responsible for the extended cooling period a maximum global cooling of 10 K and ModelE runs produced 8­17 K of cooling within the first years

  7. Galen Sasaki EE 361 University of Hawaii 1 Memory technologies

    E-Print Network [OSTI]

    Sasaki, Galen H.

    faster #12;Galen Sasaki EE 361 University of Hawaii 5 Components: CMOS drain source gate n-channel transistor drain source gate p-channel transistor gate = `1' --> close gate = `0' --> open gate = `1 · Write bit back after a read Capacitor Passive transistor Word line Bit line A cell Word line

  8. Galen Sasaki EE 361 University of Hawaii 1 Memory technologies

    E-Print Network [OSTI]

    Sasaki, Galen H.

    faster #12;3 Galen Sasaki EE 361 University of Hawaii 5 Components: CMOS drain source gate n-channel transistor drain source gate p-channel transistor gate = `1' --> close gate = `0' --> open gate = `1 · Write bit back after a read Capacitor Passive transistor Word line Bit line A

  9. Internship Opportunities Akamai Internship Program for Hawaii Residents

    E-Print Network [OSTI]

    Internship Opportunities Akamai Internship Program for Hawaii Residents http://cfao.ucolick.org/EO/internshipsnew/akamai/index.php American Meteorological Society http://www.ametsoc.org/amsstudentinfo/internships.html Explorations information, visit: Geotimes Summer Internship http://www.geotimes.org/internship.html Joint

  10. Hawaii Bioenergy Master Plan Marc. M. Siah & Associates, Inc.

    E-Print Network [OSTI]

    energy future require an expeditious and broad implementation of clean and renewable energy applications of promising bioenergy projects in the state. To meet its clean energy goals, Hawaii cannot afford the perception that investment and green energy initiatives are hindered by a lack of support from State

  11. Hawaii Renewable Hydrogen Program State & Regional Initiatives Webinar

    E-Print Network [OSTI]

    MWPotential Biom ass W ind G eotherm alHydro Solar(roof) Solar(utility) M SW O cean Molokai Lanai Hawaii Maui Kauai Routes Crater Rim Drive 11 miles Elevation 4,000 ft Chain of Craters Road 48 miles round trip Steep

  12. Environmental Resources of Selected Areas of Hawaii: Socioeconomics (DRAFT)

    SciTech Connect (OSTI)

    Saulsbury, J.W.; Sorensen, B.M.; Schexnayder, S.M.

    1994-06-01T23:59:59.000Z

    This report has been prepared to make available and archive the background information on socioeconomic resources collected during the preparation of the Environmental Impact Statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 (Fed. Regis. 5925638), withdrawing its Notice of Intent (Fed Regis. 57:5433), of February 14, 1992, to prepare the HGPEIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This document provides background information on socioeconomic resources in Hawaii County, with particular emphasis on the Puna District (Fig. 1). Information is being made available for use by others in conducting future socioeconomic impact assessments in this area. This report describes existing socioeconomic resources in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts. The socioeconomic resources described are primarily those that would be affected by employment and population growth associated with any future large-scale development. These resource categories are (1) population, (2) housing, (3) land use, (4) economic structure (primarily employment and income), (5) infrastructure and public services (education, ground transportation, police and fire protection, water, wastewater, solid waste disposal, electricity, and emergency planning), (6) local government revenues and expenditures, and (7) tourism and recreation.

  13. Environmental resources of selected areas of Hawaii: Socioeconomics

    SciTech Connect (OSTI)

    Saulsbury, J.W.; Sorensen, B.M.; Reed, R.M. [Oak Ridge National Lab., TN (United States); Schexnayder, S.M. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-03-01T23:59:59.000Z

    This report has been prepared to make available and archive the background information on socioeconomic resources collected during the preparation of the environmental impact statement (EIS) for Phases 3--4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The USDOE published a notice withdrawing its Notice of Intent to prepare the HGP EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This document provides background information on socioeconomic resources in Hawaii County, with particular emphasis on the Puna District. Information is being made available for use by others in conducting future socioeconomic impact assessments in this area. this report describes existing socioeconomic resources in the areas studied and does not represent an assessment of environmental impacts. The socioeconomic resources described are primarily those that would be affected by employment and population growth associated with any future large-scale development. These resource categories are population, housing, land use, economic structure, infrastructure and public services, local government revenues and expenditures, and tourism and recreation.

  14. DOE 2003 Program Review Hawaii Natural Energy Institute

    E-Print Network [OSTI]

    DOE 2003 Program Review Hawaii Natural Energy Institute School of Ocean&Earth ScienceHydrogen Production Eric L.Miller Richard E. Rocheleau ACKNOWLEDGEMENTS -U.S. Department of Energy for continued.)catalyst films CIS, CIGS iron-oxideelectrochemical metal oxide semiconductor films tungsten trioxide titanium

  15. The Social Networks of Hawaii's Longline Fishery a

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    The Social Networks of Hawaii's Longline Fishery ­ a preliminary assessment Michele Barnes, Shawn Future Outlook #12;Introduction Project Goal Examine the role of Social Networks on vessel economic) Vietnamese-American (57) source: panoramio.com #12;Methodology 1. Social Network Analysis Structured survey

  16. Principle Investigator M. Cooney (Hawaii Natural Energy Institute)

    E-Print Network [OSTI]

    (Engineering Overview), Hawaii American Waters (Host WWTP), RealGreen Power (Technology Provider), Pacific Biodiesel (Produce Biodiesel from grease trap waste and fryer grease), Diacarbon Energy (Biochar producer that approaches theoretical maximum of 0.35 m3/Kg COD reduced. GTW Brown grease for biodiesel Separated wastewater

  17. Environmental Resources of Selected Areas of Hawaii: Ecological Resources (DRAFT)

    SciTech Connect (OSTI)

    Trettin, C.C.; Tolbert, V.R.; Jones, A.T.; Smith, C.R.; Kalmijn, A.J.

    1994-06-01T23:59:59.000Z

    This report has been prepared to make available and archive the background scientific data and related information collected on ecological resources during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (COE) published a notice in the Federal Register on May 17, 1994 (Fed. Regist. 5925638) withdrawing its Notice of Intent (Fed. Regst. 575433) of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The background scientific data and related information presented in this report focus on several areas of Hawaii County, including the southeastern coast, a potential development corridor along the Saddle Road between Hilo and the North Kohala District on the northwestern coast, and on the southeastern coast of Maui. In this report, reference is made to these areas as study areas rather than as areas where proposed or alternative facilities of the HGP would be located. The resource areas addressed herein include terrestrial ecology, aquatic ecology, and marine ecology. The scientific background data and related information is being made available for future research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  18. Environmental resources of selected areas of Hawaii: Ecological resources

    SciTech Connect (OSTI)

    Trettin, C.C.; Tolbert, V.R. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Jones, A.T. [Jones (Anthony T.), Vancouver, British Columbia (Canada); Smith, C.R. [Smith (Craig R.), Kailna, HI (United States); Kalmijn, A.J. [Kalmijn (Adrianus J.), Encinitas, CA (United States)

    1995-03-01T23:59:59.000Z

    This report has been prepared to make available and archive the background scientific data and related information collected on ecological resources during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The background scientific data and related information presented in this report focus on several areas of Hawaii County. In this report, reference is made to these areas as study areas rather than as areas where proposed or alternative facilities of the HGP would be located. The resource areas addressed herein include terrestrial ecology, aquatic ecology, and marine ecology. The scientific background data and related information that were obtained from review of the (1) scientific literature, (2) government and private sector reports, (3) studies done under DOE interagency agreements with the US Fish and Wildlife Service (FWS) and with the US Army Corps of Engineers (COE), and (4) observations made during site visits are being made available for future research in these areas.

  19. Analysis of Hawaii Biomass Energy Resources for Distributed Energy Applications

    E-Print Network [OSTI]

    Energy Institute School of Ocean and Earth Sciences and Technology Scott Q. Turn Vheissu Keffer MiltonAnalysis of Hawaii Biomass Energy Resources for Distributed Energy Applications Prepared for State) concentrations on a unit energy basis for sugar cane varieties and biomass samples

  20. Monday, March 12, 2007 MARS VOLCANISM

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Monday, March 12, 2007 MARS VOLCANISM 2:30 p.m. Crystal Ballroom B Chairs: J. E. Bleacher M. H to the northeast. 2:45 p.m. Baloga S. M. * Glaze L. S. Time-Dependent Levee Growth for Mars Lava Flows [#1276, for very cold climate, sulfur dioxide glaciers and liquid sulfur dioxide runoff. 4:00 p.m. Johnson S. S

  1. HAWAI`I UNDERSEA RESEARCH LABORATORY NOAA's Undersea Research Center for Hawai`i and the Western Pacific

    E-Print Network [OSTI]

    resources of the Pa- cific and renewable energy from the sea, HURL's contributions will continue to play accepts funded requests from private, state, or federal agencies and participates in international Region Hawai`i Northwestern Hawaiian Islands American SamoaAustralia Japan CNMI Guam Marshall IslandsFederated

  2. Geo-neutrinos and silicate earth enrichment of U and Th Hawaii Pacific University, Kaneohe, Hawaii, USA

    E-Print Network [OSTI]

    Mcdonough, William F.

    Frontiers Geo-neutrinos and silicate earth enrichment of U and Th S.T. Dye Hawaii Pacific of refractory lithophile elements, including U and Th, in the silicate earth by 1.5. Global removal of volatile elements potentially increases this enrichment to 2.8. The K content of the silicate earth follows from

  3. Matthieu Dubarry Matthieu Dubarry Cyril Cyril TruchotTruchot Bor Yann LiawBor Yann Liaw Electrochemical Power Systems Laboratory (EPSL)Electrochemical Power Systems Laboratory (EPSL)

    E-Print Network [OSTI]

    Electrochemical Power Systems Laboratory (EPSL)Electrochemical Power Systems Laboratory (EPSL) Hawaii Natural environment and eco-system? bbut how long can weut how long can we ccontinue toontinue to damage our fragiledamage our fragile enenvironmentvironment and ecand ecoo--system?system? #12;©©2009 University of Hawaii

  4. Environmental resources of selected areas of Hawaii: Groundwater in the Puna District of the Island of Hawaii

    SciTech Connect (OSTI)

    Staub, W.P.; Reed, R.M.

    1995-03-01T23:59:59.000Z

    This report has been prepared to make available and archive the background scientific data and related information collected on groundwater during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice in the withdrawing its notice of intent of February 14, 1992, to prepare the HGP EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The background scientific data and related information presented in this report were collected for the geothermal resource subzones in the Puna District on the island of Hawaii. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied and does not represent an assessment of environmental impacts. This paper summarizes the current state of knowledge with respect to groundwater in the Puna District of the island of Hawaii. Groundwater quality in and adjacent to Kilauea`s east rift zone (KERZ), is compared with that of meteoric water, seawater, and geothermal fluid. Two segments of KERZ lie within the Puna District. These segments are the middle east rift zone (KERZ) and lower east rift zone (LERZ). The degree of mixing between meteoric water, seawater, and geothermal water in and adjacent to the also is discussed.

  5. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    Inverters for High- Penetration Photovoltaic Applications Team Partners: Hawai`i Natural Energy Institute Projects: Maui Smart Grid Project PV Test Beds in the Micro- Climates of Hawai`i Energy Efficiency Research-industry partnership for a multi-year project to develop a Smart Grid Inverter (SGI). The SGI will be used to assess

  6. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    ://www.heco.com Maui Electric Company http://www.mauielectric.com General Electric Company Periods of Performance-Principal Investigator HNEI 808-956-8346 rochelea@hawaii.edu Links: HNEI http://www.hnei.hawaii.edu General Electric. General Electric Company ­ it will provide expertise in application of smart grid technology. Project

  7. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    for GM Equinox Fuel Cell Vehicles Team Partners: Hawai`i Natural Energy Institute School of Ocean Motors (GM) Equinox fuel cell electric vehicles located at Marine Corps Base (MCB) Hawai at MCB Hawai`i. Overall, this project will support operations of the GM fuel cell vehicle demonstration

  8. Hierarchical probabilistic regionalization of volcanism for Sengan region in Japan using multivariate statistical techniques and geostatistical interpolation techniques.

    SciTech Connect (OSTI)

    Park, Jinyong (University of Arizona, Tucson, AZ); Balasingham, P. (University of Arizona, Tucson, AZ); McKenna, Sean Andrew; Kulatilake, Pinnaduwa H. S. W. (University of Arizona, Tucson, AZ)

    2004-09-01T23:59:59.000Z

    Sandia National Laboratories, under contract to Nuclear Waste Management Organization of Japan (NUMO), is performing research on regional classification of given sites in Japan with respect to potential volcanic disruption using multivariate statistics and geo-statistical interpolation techniques. This report provides results obtained for hierarchical probabilistic regionalization of volcanism for the Sengan region in Japan by applying multivariate statistical techniques and geostatistical interpolation techniques on the geologic data provided by NUMO. A workshop report produced in September 2003 by Sandia National Laboratories (Arnold et al., 2003) on volcanism lists a set of most important geologic variables as well as some secondary information related to volcanism. Geologic data extracted for the Sengan region in Japan from the data provided by NUMO revealed that data are not available at the same locations for all the important geologic variables. In other words, the geologic variable vectors were found to be incomplete spatially. However, it is necessary to have complete geologic variable vectors to perform multivariate statistical analyses. As a first step towards constructing complete geologic variable vectors, the Universal Transverse Mercator (UTM) zone 54 projected coordinate system and a 1 km square regular grid system were selected. The data available for each geologic variable on a geographic coordinate system were transferred to the aforementioned grid system. Also the recorded data on volcanic activity for Sengan region were produced on the same grid system. Each geologic variable map was compared with the recorded volcanic activity map to determine the geologic variables that are most important for volcanism. In the regionalized classification procedure, this step is known as the variable selection step. The following variables were determined as most important for volcanism: geothermal gradient, groundwater temperature, heat discharge, groundwater pH value, presence of volcanic rocks and presence of hydrothermal alteration. Data available for each of these important geologic variables were used to perform directional variogram modeling and kriging to estimate values for each variable at 23949 centers of the chosen 1 km cell grid system that represents the Sengan region. These values formed complete geologic variable vectors at each of the 23,949 one km cell centers.

  9. Surface Gas Sampling At Lassen Volcanic National Park Area (Janik...

    Open Energy Info (EERE)

    Date Usefulness not indicated DOE-funding Unknown References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid Geochemistry At Lassen Volcanic National Park,...

  10. A Miocene Island-Arc Volcanic Seamount- The Takashibiyama Formation...

    Open Energy Info (EERE)

    the vents, being flanked or covered with volcaniclastic flow deposits. Each volcanic pile is several kilometers wide and several hundred meters thick, and overlaps one after...

  11. Modeling-Computer Simulations At San Juan Volcanic Field Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At San Juan Volcanic Field Area (Clarkson & Reiter, 1987) Exploration...

  12. Compound and Elemental Analysis At Lassen Volcanic National Park...

    Open Energy Info (EERE)

    Thompson, 1985) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Lassen Volcanic National Park Area (Thompson,...

  13. archean volcanic hosted: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    greenstone pile Sandiford, Mike 23 Application of magnetic amplitude inversion in exploration for natural gas in volcanics Yaoguo Li, Center for Gravity, Electrical, and...

  14. A Volcanologist'S Review Of Atmospheric Hazards Of Volcanic Activity...

    Open Energy Info (EERE)

    atmospheric hazards caused by explosive volcanic activity. The hazard posed by fine silicate ash with long residence time in the atmosphere is probably much less serious than...

  15. Data Acquisition-Manipulation At San Francisco Volcanic Field...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At San Francisco Volcanic Field Area (Warpinski, Et Al., 2004)...

  16. Data Acquisition-Manipulation At Lassen Volcanic National Park...

    Open Energy Info (EERE)

    82) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Lassen Volcanic National Park Geothermal Area (1982)...

  17. Heterogeneous Structure Around the Jemez Volcanic Field, New...

    Open Energy Info (EERE)

    Heterogeneous Structure Around the Jemez Volcanic Field, New Mexico, USA, as Inferred from the Envelope Inversion of Active-Experiment Seismic Data Jump to: navigation, search...

  18. anatolian volcanic province: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volcanic Province Geosciences Websites Summary: the Lonar crater. Chondrite-normalized Rare Earth Element (REE) patterns in the target basalts and brecciaTrace element and...

  19. Groundwater in the Southwestern Part of the Jemez Mountains Volcanic...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Groundwater in the Southwestern Part of the Jemez Mountains Volcanic Region, New Mexico...

  20. Late Cenozoic volcanism, geochronology, and structure of the...

    Open Energy Info (EERE)

    County, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Late Cenozoic volcanism, geochronology, and structure of the Coso Range,...

  1. Magnetic Modeling Of The Phlegraean Volcanic District With Extension...

    Open Energy Info (EERE)

    Archipelago, Italy Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Magnetic Modeling Of The Phlegraean Volcanic District With Extension To The...

  2. Teleseismic-Seismic Monitoring At Lassen Volcanic National Park...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration...

  3. Transportation energy strategy: Project {number_sign}5 of the Hawaii Energy Strategy Development Program

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This study was prepared for the State Department of Business, Economic Development and Tourism (DBEDT) as part of the Hawaii Energy Strategy program. Authority and responsibility for energy planning activities, such as the Hawaii Energy Strategy, rests with the State Energy Resources Coordinator, who is the Director of DBEDT. Hawaii Energy Strategy Study No. 5, Transportation Energy Strategy Development, was prepared to: collect and synthesize information on the present and future use of energy in Hawaii`s transportation sector, examine the potential of energy conservation to affect future energy demand; analyze the possibility of satisfying a portion of the state`s future transportation energy demand through alternative fuels; and recommend a program targeting energy use in the state`s transportation sector to help achieve state goals. The analyses and conclusions of this report should be assessed in relation to the other Hawaii Energy Strategy Studies in developing a comprehensive state energy program. 56 figs., 87 tabs.

  4. Native Hawaiian Ethnographic Study for the Hawaii Geothermal Project Proposed for Puna and Southeast Maui

    SciTech Connect (OSTI)

    Matsuoka, J.K; Minerbi, L. [Cultural Advocacy Network for Developing Options (CANDO) (United States); Kanahele, P.; Kelly, M.; Barney-Campbell, N.; Saulsbury [Oak Ridge National Lab., TN (United States); Trettin, L.D. [Tennessee Univ., Knoxville, TN (United States)

    1996-05-01T23:59:59.000Z

    This report makes available and archives the background scientific data and related information collected for an ethnographic study of selected areas on the islands of Hawaii and Maui. The task was undertaken during preparation of an environmental impact statement for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. Information is included on the ethnohistory of Puna and southeast Maui; ethnographic fieldwork comparing Puna and southeast Maui; and Pele beliefs, customs, and practices.

  5. 36 ways to save energy and money - right now! Hawai'i Clean Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and money in Hawaii, in the office, at home, and in the car. 47304.pdf More Documents & Publications Energy Conservation Plans Energy Saver Guide Emergency Preparedness Resources...

  6. Hawaii Energy Strategy Project 2: Fossil Energy Review. Task IV. Scenario development and analysis

    SciTech Connect (OSTI)

    Yamaguchi, N.D.; Breazeale, K. [ed.

    1993-12-01T23:59:59.000Z

    The Hawaii Energy Strategy (HES) Program is a seven-project effort led by the State of Hawaii Department of Business, Economic Development & Tourism (DBEDT) to investigate a wide spectrum of Hawaii energy issues. The East-West Center`s Program on Resources: Energy and Minerals, has been assigned HES Project 2, Fossil Energy Review, which focuses on fossil energy use in Hawaii and the greater regional and global markets. HES Project 2 has four parts: Task I (World and Regional Fossil Energy Dynamics) covers petroleum, natural gas, and coal in global and regional contexts, along with a discussion of energy and the environment. Task II (Fossil Energy in Hawaii) focuses more closely on fossil energy use in Hawaii: current utilization and trends, the structure of imports, possible future sources of supply, fuel substitutability, and energy security. Task III`s emphasis is Greenfield Options; that is, fossil energy sources not yet used in Hawaii. This task is divided into two sections: first, an in-depth {open_quotes}Assessment of Coal Technology Options and Implications for the State of Hawaii,{close_quotes} along with a spreadsheet analysis model, which was subcontracted to the Environmental Assessment and Information Sciences Division of Argonne National Laboratory; and second, a chapter on liquefied natural gas (LNG) in the Asia-Pacific market and the issues surrounding possible introduction of LNG into the Hawaii market.

  7. Hawaii Clean Energy Initiative Permit to Cross or Enter the State...

    Open Energy Info (EERE)

    Reference LibraryAdd to library PermittingRegulatory Guidance - Instructions: Hawaii Clean Energy Initiative Permit to Cross or Enter the State Energy CorridorPermitting...

  8. Siting Evaluation for Biomass-Ethanol Production in Hawaii

    SciTech Connect (OSTI)

    Kinoshita, C.M.; Zhou, J.

    2000-10-15T23:59:59.000Z

    This report examines four Hawaiian islands, Oahu, Hawaii, Maui, and Kauai, to identify three best combinations of potential sites and crops for producing dedicated supplies of biomass for conversion to ethanol. Key technical and economic factors considered in the siting evaluation include land availability (zoning and use), land suitability (agronomic conditions), potential quantities and costs of producing biomass feedstocks, infrastructure (including water and power supplies), transportation, and potential bioresidues to supplement dedicated energy crops.

  9. Sandia-Power Surety Task Force Hawaii foam analysis.

    SciTech Connect (OSTI)

    McIntyre, Annie

    2010-11-01T23:59:59.000Z

    The Office of Secretary of Defense (OSD) Power Surety Task Force was officially created in early 2008, after nearly two years of work in demand reduction and renewable energy technologies to support the Warfighter in Theater. The OSD Power Surety Task Force is tasked with identifying efficient energy solutions that support mission requirements. Spray foam insulation demonstrations were recently expanded beyond field structures to include military housing at Ft. Belvoir. Initial results to using the foam in both applications are favorable. This project will address the remaining key questions: (1) Can this technology help to reduce utility costs for the Installation Commander? (2) Is the foam cost effective? (3) What application differences in housing affect those key metrics? The critical need for energy solutions in Hawaii and the existing relationships among Sandia, the Department of Defense (DOD), the Department of Energy (DOE), and Forest City, make this location a logical choice for a foam demonstration. This project includes application and analysis of foam to a residential duplex at the Waikulu military community on Oahu, Hawaii, as well as reference to spray foam applied to a PACOM facility and additional foamed units on Maui, conducted during this project phase. This report concludes the analysis and describes the utilization of foam insulation at military housing in Hawaii and the subsequent data gathering and analysis.

  10. Maui Electrical System Simulation Model Validation

    E-Print Network [OSTI]

    Maui Electrical System Simulation Model Validation Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Award No. DE-FC-06NT42847 Task 9 Deliverable ­ Baseline Model Validation By GE Global Research Niskayuna, New York And University of Hawaii Hawaii Natural

  11. The volcanic acidification of glacial Lake Caviahue, Province of Neuquen, Argentina Johan C. Varekamp

    E-Print Network [OSTI]

    Royer, Dana

    The volcanic acidification of glacial Lake Caviahue, Province of Neuquen, Argentina Johan C (northern Patagonia, Argentina) is a large glacial lake acidified by volcanic fluids from Copahue volcano

  12. Archaeology in the Kilauea East Rift Zone: Part 1, Land-use model and research design, Kapoho, Kamaili and Kilauea Geothermal Subzones, Puna District, Hawaii Island

    SciTech Connect (OSTI)

    Burtchard, G.C.; Moblo, P. [International Archaeological Research Inst., Inc., Honolulu, HI (United States)

    1994-07-01T23:59:59.000Z

    The Puna Geothermal Resource Subzones (GRS) project area encompasses approximately 22,000 acres centered on the Kilauea East Rift Zone in Puna District, Hawaii Island. The area is divided into three subzones proposed for geothermal power development -- Kilauea Middle East Rift, Kamaili and Kapoho GRS. Throughout the time of human occupation, eruptive episodes along the rift have maintained a dynamic landscape. Periodic volcanic events, for example, have changed the coastline configuration, altered patterns of agriculturally suitable sediments, and created an assortment of periodically active, periodically quiescent, volcanic hazards. Because of the active character of the rift zone, then, the area`s occupants have always been obliged to organize their use of the landscape to accommodate a dynamic mosaic of lava flow types and ages. While the specific configuration of settlements and agricultural areas necessarily changed in response to volcanic events, it is possible to anticipate general patterns in the manner in which populations used the landscape through time. This research design offers a model that predicts the spatial results of long-term land-use patterns and relates them to the character of the archaeological record of that use. In essence, the environmental/land-use model developed here predicts that highest population levels, and hence the greatest abundance and complexity of identifiable prehistoric remains, tended to cluster near the coast at places that maximized access to productive fisheries and agricultural soils. With the possible exception of a few inland settlements, the density of archaeological remains expected to decrease with distance from the coastline. The pattern is generally supported in the regions existing ethnohistoric and archaeological record.

  13. Hawaii State Historic Preservation Programmatic Agreement

    Broader source: Energy.gov (indexed) [DOE]

    heat recovery devices, including desuperheater water heaters, condensing heat exchangers, heat pump and water heating heat recovery systems, and other energy recovery equipment k....

  14. Reducing Plug Loads in Office Spaces: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Sheppy, M.; Metzger, I.; Cutler, D.; Holland, G.; Hanada, A.

    2014-01-01T23:59:59.000Z

    As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with the Department of Energy's National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This project was one of several demonstrations of new or underutilized commercial energy technologies. The common goal was to demonstrate and measure the performance and economic benefit of the system while monitoring any ancillary impacts to related standards of service and operation and maintenance (O&M) practices. In short, demonstrations at naval facilities simultaneously evaluate the benefits and compatibility of the technology with the U.S. Department of Defense (DOD) mission, and with NAVFAC's design, construction, operations, and maintenance practices, in particular. This project demonstrated the performance of commercially available advanced power strips (APSs) for plug load energy reductions in building A4 at Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii.

  15. The Impact of Trade-wind Strength on Precipitation over the Windward Side of the Island of Hawaii

    E-Print Network [OSTI]

    Chen, Yi-Leng

    The Impact of Trade-wind Strength on Precipitation over the Windward Side of the Island of Hawaii@hawaii.edu #12;ABSTRACT The effects of trade-wind strength and the diurnal heating cycle on the production of summer trade-wind rainfall on the windward side of the island of Hawaii are examined from the data

  16. FORECASTING THE ROLE OF RENEWABLES IN HAWAII

    E-Print Network [OSTI]

    Sathaye, Jayant

    2013-01-01T23:59:59.000Z

    Oahu Development of geothermal energy can be pro~ moted only13 Role of Renewables Geothermal energy cabL;; system tv:illQ New Techno of hence geothermal energy would be available

  17. FORECASTING THE ROLE OF RENEWABLES IN HAWAII

    E-Print Network [OSTI]

    Sathaye, Jayant

    2013-01-01T23:59:59.000Z

    type of power plant and on the generating capacity of eachplant would therma.l storage system, This would permit extended use of solar thennal We energy for generating

  18. Cylindrical Equidis LAMONT (LDEO) WOODS HOLE O.I. NOAA U.HAWAII SOEST US NAVY

    E-Print Network [OSTI]

    HOLE O.I. NOAA U.HAWAII SOEST US NAVY SCRIPPS INST.OC U RHODE ISLAND RUSSIA US COAST GUARD GERMANY US NOAA 330 415326 415326 0 0 0 0 1932257 U.HAWAII SOEST 1 5873 5319 3992 5387 0 0 69927 US NAVY 3 3486

  19. Liquified Natural Gas (LNG) for Hawaii: Policy, Economic, and Technical Questions

    E-Print Network [OSTI]

    Liquified Natural Gas (LNG) for Hawaii: Policy, Economic, and Technical Questions This report presents analyses for the potential demand for LNG in Hawai`i, potential benefits and costs of LNG importation, and features of the regulatory structure, policy, and practices for LNG. The report was submitted

  20. The Development and Decline of Hawaii's Skipjack Tuna Fishery CHRISTOFER H. BOGGS and BERT S. KIKKAWA

    E-Print Network [OSTI]

    pelamis, was the largest commercial fishery in Hawaii. Annual pole-and-line landings of skipjack tuna, I Bert S. Kikkawa. An update of the skipjack tuna, Katsuwonus pelamis, baitboat fishery in Hawaii-2396, unpub!. manuscr. ABSTRACT-The pole-and-line fishery for skipjack tuna, Katsuwonus pelamis

  1. LIST OF FISH AT A PROPOSED OTEC SITE OFF KE-AHOLE POINT, HAWAII, DERIVED FROM COMMERCIAL FISH RECORDS, 1959-1978

    E-Print Network [OSTI]

    Jones, Anthony T.

    2012-01-01T23:59:59.000Z

    a proposed Ocean Thermal Energy Conversion Hawaii areproposed Ocean Thermal Energy Conversion (OTEC) site are A

  2. LIST OF FISH AT A PROPOSED OTEC SITE OFF KE-AHOLE POINT, HAWAII, DERIVED FROM COMMERCIAL FISH RECORDS, 1959-1978

    E-Print Network [OSTI]

    Jones, Anthony T.

    2012-01-01T23:59:59.000Z

    a proposed Ocean Thermal Energy Conversion Hawaii area presented. proposed Ocean Thermal Energy Conversion (OTEC)

  3. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis

    SciTech Connect (OSTI)

    Porter Hill; Michael Penev

    2014-08-01T23:59:59.000Z

    The Department of Energy Hydrogen & Fuel Cells Program Plan (September 2011) identifies the use of hydrogen for government and fleet electric vehicles as a key step for achieving “reduced greenhouse gas emissions; reduced oil consumption; expanded use of renewable power …; highly efficient energy conversion; fuel flexibility …; reduced air pollution; and highly reliable grid-support.” This report synthesizes several pieces of existing information that can inform a decision regarding the viability of deploying a hydrogen (H2) fueling station at the Fort Armstrong site in Honolulu, Hawaii.

  4. Geothermal power development in Hawaii. Volume I. Review and analysis

    SciTech Connect (OSTI)

    Not Available

    1982-06-01T23:59:59.000Z

    The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topies covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, Public Utilities Commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

  5. Kauai, Hawaii: Solar Resource Analysis and High Penetration PV Potential

    SciTech Connect (OSTI)

    Helm, C.; Burman, K.

    2010-04-01T23:59:59.000Z

    Overview of the solar resource assessment conducted by the National Renewable Energy Laboratory (NREL) in cooperation with Kauai Island Utility Cooperative (KIUC) in Hawaii to determine the technical feasibility of increasing the contribution of solar renewable energy generation on the island of Kauaii through the use of photovoltaic (PV) arrays. The analysis, which was performed using a custom version of NREL's In My Back Yard (IMBY) software tool, showed that there is potential to generate enough energy to cover the peak load as reported for Kauai in 2007.

  6. Aeromagnetic study of the Island of Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004) | OpenInformation Zablocki,Energyof Hawaii

  7. Waimanalo Beach, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane, Hawaii: Energy Resources JumpWaimanalo

  8. Waipio Acres, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane, Hawaii: Energy

  9. Whitmore Village, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho: EnergyWhitman County, Washington:Village, Hawaii:

  10. HAWAI'I CLEAN ENERGY DRAFT PROGRAMMATIC ENVIRONMENTAL IMPACT STATEMENT

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopment ofofthePerformanceofPathwaySeptember 11HAWAI'I

  11. Hawaii Clean Energy Initiative (HCEI) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of Energy Completing theWhiz! | DepartmentThe Hawaii

  12. Spurring Solar Installations in Hawaii | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's NuclearSpurring Solar Installations in Hawaii Spurring

  13. Hawaii Department of Transportation Highways Division | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategy |Hatchet RidgeInformation Hawaii

  14. Hawaii's 1st congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategy |HatchetInformation Hawaii's 1st

  15. Hawaii Habitat Conservation Plans Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEI Reference LibraryAddHawaii Habitat Conservation

  16. Hawaii Historic Preservation Permit Packet | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEI Reference LibraryAddHawaii Habitat

  17. Hawaii Individual Wastewater Management Permit Packet | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEI Reference LibraryAddHawaii

  18. Hawaii Land Study Bureau's Land Classification Finder | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEI Reference LibraryAddHawaiiOpen

  19. Hawaii Underground Injection Control Program Webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEI ReferenceNoiseInformation State of Hawaii

  20. Mililani Town, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee|Mililani Town, Hawaii: Energy Resources Jump to:

  1. Hawaii Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionalsResearch »FundingGlenn6-7, 2013of ScienceHawaii

  2. Hawaii Solar Integration Study: Executive Summary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudson YearHarvesting theRenewableHawaii

  3. RAPID/BulkTransmission/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia: EnergyOnlineMontana <UtahGeneralHawaii <

  4. RAPID/Geothermal/Environment/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎ |Hawaii < RAPID‎ |

  5. RAPID/Geothermal/Land Access/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada <WashingtonHawaii <

  6. RAPID/Geothermal/Water Use/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas < RAPID‎ |UseHawaii < RAPID‎

  7. RAPID/Geothermal/Well Field/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <Field < RAPID‎Hawaii <

  8. RAPID/Overview/Geothermal/Exploration/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <FieldSiting/Colorado <Hawaii)

  9. Geothermal Energy in Hawaii: Present and Future | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005) |Information 6thGeothermalInformationHawaii:

  10. Village Park, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planningFlowmeter Logging JumpWorkstreamVilas County,Park, Hawaii:

  11. Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative (HCEI)

    SciTech Connect (OSTI)

    Busche, S.; Doris, E.; Braccio, R.; Lippert, D.; Finch, P.; O'Toole, D.; Fetter, J.

    2010-04-01T23:59:59.000Z

    This report provides detailed analyses of 21 clean energy policy options considered by the Hawaii Clean Energy Initiative working groups for recommendation to the 2010 Hawaii State Legislature. The report considers the impact each policy may have on ratepayers, businesses, and the state in terms of energy saved, clean energy generated, and the financial costs and benefits. The analyses provide insight into the possible impacts, both qualitative and quantitative, that these policies may have in Hawaii based on the experience with these policies elsewhere. As much as possible, the analyses incorporate Hawaii-specific context to reflect the many unique aspects of energy use in the State of Hawaii.

  12. Hawaii National Pollutant Discharge Elimination System (NPDES) Permit

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEI Reference

  13. A Distinction Technique Between Volcanic And Tectonic Depression...

    Open Energy Info (EERE)

    Modeling Of Gravity Anomaly- A Case Study Of The Hohi Volcanic Zone, Central Kyushu, Japan Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A...

  14. A Morphometric Analysis Of The Submarine Volcanic Ridge South...

    Open Energy Info (EERE)

    Morphometric Analysis Of The Submarine Volcanic Ridge South-East Of Pico Island, Azores Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A...

  15. The dynamics of genetic and morphological variation on volcanic islands

    E-Print Network [OSTI]

    Thorpe, Roger Stephen

    : volcanism; phylogeography; geographical variation; natural selection; Canary islands; Tarentola 1 and Canary islands). It has been argued that population extinctions, recolonizations and associ- ated a role in shaping geographical variation. The islands of the Canary Archipelago provide an excellent

  16. Cenozoic volcanic geology of the Basin and Range province in...

    Open Energy Info (EERE)

    volcanic geology of the Basin and Range province in Hidalgo County, southwestern New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  17. Helium Isotopes in Geothermal and Volcanic Gases of the Western...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Helium Isotopes in Geothermal and Volcanic Gases of the Western United States, II. Long...

  18. Helium Isotopes In Geothermal And Volcanic Gases Of The Western...

    Open Energy Info (EERE)

    Helium Isotopes In Geothermal And Volcanic Gases Of The Western United States, I, Regional Variability And Magmatic Origin Jump to: navigation, search OpenEI Reference LibraryAdd...

  19. Static Temperature Survey At Lassen Volcanic National Park Area...

    Open Energy Info (EERE)

    Usefulness useful DOE-funding Unknown Notes In 1978, the Walker "O" No. 1 well at Terminal Geyser was drilled to 1222 m, all in volcanic rocks (Beall, 1981). Temperature-log...

  20. Application Of Gravity And Deep Dipole Geoelectrics In The Volcanic...

    Open Energy Info (EERE)

    Of Mt Etna (Sicily) Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Application Of Gravity And Deep Dipole Geoelectrics In The Volcanic Area Of...

  1. Melt Zones Beneath Five Volcanic Complexes in California: An...

    Open Energy Info (EERE)

    (2) The Geysers-Clear Lake, (3) Long Valley caldera, (4) Coso volcanic field, and (5) Medicine Lake volcano, all located in California and all selected on the basis of recent...

  2. Melt zones beneath five volcanic complexes in California: an...

    Open Energy Info (EERE)

    (2) The Geysers-Clear Lake, (3) Long Valley caldera, (4) Coso volcanic field, and (5) Medicine Lake volcano, all located in California and all selected on the basis of recent...

  3. Hawaii Utility Integration Initiatives to Enable Wind (Wind HUI) Final Technical Report

    SciTech Connect (OSTI)

    Dora Nakafuji; Lisa Dangelmaier; Chris Reynolds

    2012-07-15T23:59:59.000Z

    To advance the state and nation toward clean energy, Hawaii is pursuing an aggressive Renewable Portfolio Standard (RPS), 40% renewable generation and 30% energy efficiency and transportation initiatives by 2030. Additionally, with support from federal, state and industry leadership, the Hawaii Clean Energy Initiative (HCEI) is focused on reducing Hawaii's carbon footprint and global warming impacts. To keep pace with the policy momentum and changing industry technologies, the Hawaiian Electric Companies are proactively pursuing a number of potential system upgrade initiatives to better manage variable resources like wind, solar and demand-side and distributed generation alternatives (i.e. DSM, DG). As variable technologies will continue to play a significant role in powering the future grid, practical strategies for utility integration are needed. Hawaiian utilities are already contending with some of the highest penetrations of renewables in the nation in both large-scale and distributed technologies. With island grids supporting a diverse renewable generation portfolio at penetration levels surpassing 40%, the Hawaiian utilities experiences can offer unique perspective on practical integration strategies. Efforts pursued in this industry and federal collaborative project tackled challenging issues facing the electric power industry around the world. Based on interactions with a number of western utilities and building on decades of national and international renewable integration experiences, three priority initiatives were targeted by Hawaiian utilities to accelerate integration and management of variable renewables for the islands. The three initiatives included: Initiative 1: Enabling reliable, real-time wind forecasting for operations by improving short-term wind forecasting and ramp event modeling capabilities with local site, field monitoring; Initiative 2: Improving operators situational awareness to variable resources via real-time grid condition monitoring using PMU devices and enhanced grid analysis tools; and Initiative 3: Identifying grid automation and smart technology architecture retrofit/improvement opportunities following a systematic review approach, inclusive of increasing renewables and variable distributed generation. Each of the initiative was conducted in partnership with industry technology and equipment providers to facilitate utility deployment experiences inform decision making, assess supporting infrastructure cost considerations, showcase state of the technology, address integration hurdles with viable workarounds. For each initiative, a multi-phased approach was followed that included 1) investigative planning and review of existing state-of-the-art, 2) hands on deployment experiences and 3) process implementation considerations. Each phase of the approach allowed for mid-course corrections, process review and change to any equipment/devices to be used by the utilities. To help the island grids transform legacy infrastructure, the Wind HUI provided more systematic approaches and exposure with vendor/manufacturers, hand-on review and experience with the equipment not only from the initial planning stages but through to deployment and assessment of field performance of some of the new, remote sensing and high-resolution grid monitoring technologies. HELCO became one of the first utilities in the nation to install and operate a high resolution (WindNet) network of remote sensing devices such as radiometers and SODARs to enable a short-term ramp event forecasting capability. This utility-industry and federal government partnership produced new information on wind energy forecasting including new data additions to the NOAA MADIS database; addressed remote sensing technology performance and O&M (operations and maintenance) challenges; assessed legacy equipment compatibility issues and technology solutions; evaluated cyber-security concerns; and engaged in community outreach opportunities that will help guide Hawaii and the nation toward more reliable adoption of clean energy resources. Resu

  4. Volcanic ash: What it is and how it forms

    SciTech Connect (OSTI)

    Heiken, G.

    1991-09-13T23:59:59.000Z

    There are four basic eruption processes that produce volcanic ash: (1) decompression of rising magma, gas bubble growth, and fragmentation of the foamy magma in the volcanic vent (magmatic), (2) explosive mixing of magma with ground or surface water (hydrovolcanic), (3) fragmentation of country rock during rapid expansion of steam and/or hot water (phreatic), and (4) breakup of lava fragments during rapid transport from the vent. Variations in eruption style and the characteristics of volcanic ashes produced during explosive eruptions depend on many factors, including magmatic temperature, gas content, viscosity and crystal content of the magma before eruption, the ratio of magma to ground or surface water, and physical properties of the rock enclosing the vent. Volcanic ash is composed of rock and mineral fragments, and glass shards, which is less than 2 mm in diameter. Glass shard shapes and sizes depend upon size and shape of gas bubbles present within the magma immediately before eruption and the processes responsible for fragmentation of the magma. Shards range from slightly curved, thin glass plates, which were broken from large, thin-walled spherical bubble walls, to hollow needles broken from pumiceous melts containing gas bubbles stretched by magma flow within the volcanic vent. Pumice fragments make up the coarser-grained portions of the glass fraction. Particle sizes range from meters for large blocks expelled near the volcanic vent to nanometers for fine ash and aerosol droplets within well-dispersed eruption plumes. 18 refs., 6 figs., 1 tab.

  5. Halogen emissions from a small volcanic eruption: Modeling the peak concentrations, dispersion, and volcanically induced ozone loss in the

    E-Print Network [OSTI]

    Rose, William I.

    , with lesser quantities of H2S, H2 and CO. Volcanic emissions also often include halogen-bearing species, and the greater water vapor content in the lower troposphere at tropical latitudes, which enhance removal

  6. Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations

    SciTech Connect (OSTI)

    Burman, K.; Kandt, A.; Lisell, L.; Booth, S.; Walker, A.; Roberts, J.; Falcey, J.

    2011-11-01T23:59:59.000Z

    DOD's U.S. Pacific Command has partnered with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency in Hawaii installations. NREL selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations.

  7. Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii...

    Broader source: Energy.gov (indexed) [DOE]

    Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations K. Burman, A. Kandt, L. Lisell, S. Booth, A. Walker, J. Roberts and J. Falcey...

  8. University of Hawai`i ACCESS REQUEST TO DATAAND REPORTS IN OPERATIONAL DATA STORE (ODS)

    E-Print Network [OSTI]

    Olsen, Stephen L.

    University of Hawai`i ACCESS REQUEST TO DATAAND REPORTS IN OPERATIONAL DATA STORE (ODS) Name Title Approved Denied ODS Data Administrator's name (print or type) Signature Date Send completed form to

  9. Hawai'i Makes Progress Toward Clean Energy Goals with Energy...

    Office of Environmental Management (EM)

    29, 2014 - 4:50pm Addthis Set in the Waianae Valley of Oahu, Kaupuni Village is the first net-zero energy affordable housing community in Hawaii.| Photo by Ryan Siphers Group 70,...

  10. U.S. Department of Energy and State of Hawaii Sign Agreement...

    Broader source: Energy.gov (indexed) [DOE]

    Energy on Island Nations Set in the Waianae Valley of Oahu, Kaupuni Village is the first net-zero energy affordable housing community in Hawaii.| Photo by Ryan Siphers Group 70,...

  11. Hawaii Clean Energy Initiative Existing Building Energy Efficiency Analysis: November 17, 2009- June 30, 2010

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report presents the results of the Booz Allen Hamilton study on the existing building stock of Hawaii, along with conclusions on the key drivers of potential energy efficiency savings and on the steps necessary to attain them.

  12. Energy Independence . . . It's up to us. Hawaii Clean Energy Initiative (HCEI) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01T23:59:59.000Z

    This tri-fold brochure provides an overview of how the State of Hawaii will work toward a goal of 70% clean energy by 2030 and the importance of meeting this goal.

  13. Results of Electric Survey in the Area of Hawaii Geothermal Test...

    Open Energy Info (EERE)

    of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Results of Electric Survey...

  14. Residential building design : comprehensive comparative guidelines for building single-family dwellings in Hawaii

    E-Print Network [OSTI]

    Nagata, Rochelle Morie

    1997-01-01T23:59:59.000Z

    Energy shortages, earthquakes, and hurricanes are environmental factors that challenge the home designers of Hawaii. The depletion of renewable natural resources and global warming trends foreshadow energy shortage and the ...

  15. The causes and consequences of condo hotel conversion in Waikiki, Hawaii

    E-Print Network [OSTI]

    Lu, Mark C. K

    2005-01-01T23:59:59.000Z

    This paper explores the causes and consequences of the recent conversions of hotels into 'condo hotels' in Waikiki, Hawaii, through an examination of local and national real estate trends. Condo hotels result from the ...

  16. Hawaii Clean Energy Initiative Existing Building Energy Efficiency Analysis: November 17, 2009 - June 30, 2010

    SciTech Connect (OSTI)

    Finch, P.; Potes, A.

    2010-06-01T23:59:59.000Z

    In June 2009, the State of Hawaii enacted an Energy Efficiency Portfolio Standard (EEPS) with a target of 4,300 gigawatt hours (GWh) by 2030 (Hawaii 2009). Upon setting this goal, the Hawaii Clean Energy Initiative, Booz Allen Hamilton (BAH), and the National Renewable Energy Laboratory (NREL), working with select local stakeholders, partnered to execute the first key step toward attaining the EEPS goal: the creation of a high-resolution roadmap outlining key areas of potential electricity savings. This roadmap was divided into two core elements: savings from new construction and savings from existing buildings. BAH focused primarily on the existing building analysis, while NREL focused on new construction forecasting. This report presents the results of the Booz Allen Hamilton study on the existing building stock of Hawaii, along with conclusions on the key drivers of potential energy efficiency savings and on the steps necessary to attain them.

  17. A New Day in Hawai‘i: the Lingle to Abercrombie Transition and the State Budget

    E-Print Network [OSTI]

    Belt, Todd L.

    2012-01-01T23:59:59.000Z

    Transition and the State Budget Abstract: The Stateof Hawai‘i’s budget for Fiscal Year 2012 was balanced by aon his predecessor’s budget proposal, against a some- what

  18. Structure Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii...

    Open Energy Info (EERE)

    Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii, From Seismic And Gravity Data Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Structure...

  19. Hawaii demand-side management resource assessment. Final report: DSM opportunity report

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. 10 figs., 55 tabs.

  20. A model simulation of Pinatubo volcanic aerosols in the stratosphere

    SciTech Connect (OSTI)

    Zhao, J. [Univ. of Hawaii, Honolulu, HI (United States)] [Univ. of Hawaii, Honolulu, HI (United States); Turco, R.P. [Univ. of California, Los Angeles, CA (United States)] [Univ. of California, Los Angeles, CA (United States); Toon, O.B. [NASA Ames Research Center, Moffett Field, CA (United States)] [NASA Ames Research Center, Moffett Field, CA (United States)

    1995-04-20T23:59:59.000Z

    A one-dimensional, time-dependent model is used to study the chemical, microphysical, and radiative properties of volcanic aerosols produced by the Mount Pinatubo eruption on June 15, 1991. The authors` model treats gas-phase sulfur photochemistry, gas-to-particle conversion of sulfur, and the microphysics of sulfate aerosols and ash particles under stratospheric conditions. The dilution and diffusion of the volcanic eruption clouds are also accounted for in these conditions. Heteromolecular homogeneous and heterogeneous binary H{sub 2}SO{sub 4}/H{sub 2}O nucleation, acid and water condensational growth, coagulation, and gravitational sedimentation are treated in detail in the model. Simulations suggested that after several weeks, the volcanic cloud was composed mainly of sulfuric acid/water droplets produced in situ from the SO{sub 2} emissions. The large amounts of SO{sub 2} (around 20 Mt) injected into the stratosphere by the Pinatubo eruption initiated homogeneous nucleation which generated a high concentration of small H{sub 2}SO{sub 4}/H{sub 2}O droplets. These newly formed particles grew rapidly by condensation and coagulation in the first few months and then reached their stabilized sizes with effective radii in a range between 0.3 and 0.5 {mu}m approximately one-half year after the eruption. The predicted volcanic cloud parameters reasonably agree with measurements in term of the vertical distribution and lifetime of the volcanic aerosols, their basic microphysical structures (e.g., size distribution, concentration, mass ratio, and surface area) and radiative properties. The persistent volcanic aerosols can produce significant anomalies in the radiation field, which have important climatic consequences. The large enhancement in aerosol surface area can result in measurable global stratospheric ozone depletion. 57 refs., 15 figs., 1 tab.

  1. 36 Ways to Save Energy and Money - Right Now! Hawai'i Clean Energy Initiative (HCEI) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01T23:59:59.000Z

    Fact sheet outlining top ways to save energy and money in Hawaii, in the office, at home, and in the car.

  2. "Hot Water" in Lassen Volcanic National Park--Fumaroles, Steaming Ground, and Boiling Mudpots

    E-Print Network [OSTI]

    Torgersen, Christian

    "Hot Water" in Lassen Volcanic National Park-- Fumaroles, Steaming Ground, and Boiling Mudpots U, ydrothermal (hot water) and steaming ground. These features are re- lated to active volcanism, the largest fumarole (steam and volcanic-gas vent) in the park. The temperature of the high-velocity steam

  3. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    and Innovation for Vehicle efficiency and Energy sustainability) partnership. Existing lithium-ion battery ENERGY INSTITUTE School of Ocean & Earth Science & Technology ­ University of Hawai`i at Mnoa Battery.energy.gov/v ehiclesandfuels/about/partners hips/usdrive.html Related Projects: Batteries for Grid Management HNEI

  4. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    Description and Goals With funding from federal agencies and industrial sponsors, Dr. Jian Yu has invented renewable energy; developing bioreactors with high mass transfer rate of insoluble gases for high cell ENERGY INSTITUTE School of Ocean & Earth Science & Technology ­ University of Hawai`i at Mnoa Bio

  5. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    Inverters for High- Penetration Photovoltaic Applications Team Partners: Hawai`i Natural Energy Institute://www.heco.com Maui Electric Company http://www.mauielectric.com Related Projects: Maui Smart Grid Project PV Test into a Fronius inverter to create a Smart Grid inverter (SGI). The project will then demonstrate the ability

  6. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    ) validation of the various hydrogen infrastructure elements involved, 3) validation for operation of the PHEV infrastructure required to advance the "Hydrogen Economy." Status A vendor for supply of the hydrogen dispensing ENERGY INSTITUTE School of Ocean & Earth Science & Technology ­ University of Hawai`i at Mnoa Hydrogen

  7. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    ) validation of the various hydrogen infrastructure elements involved, 3) validation for operation of the PHEV infrastructure required to advance the "Hydrogen Economy." Status The hydrogen production, storage, dispensing ENERGY INSTITUTE School of Ocean & Earth Science & Technology ­ University of Hawai`i at Mnoa Hydrogen

  8. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    Laboratory www.nrl.navy.mil Related Projects: Bio-Fuel Cells Project Hydrogen for GM Fuel Cell Vehicles Ocean of HNEI's Hawai`i Fuel Cell Test Facility. Besides the basic energy need for hydrate exploitation, HNEI hydrate technologies are relevant in areas such as subsea power and logistical fuel supply; geophysical

  9. SILICATE MELT PROPERTIES AND VOLCANIC Youxue Zhang,1,2

    E-Print Network [OSTI]

    Zhang, Youxue

    SILICATE MELT PROPERTIES AND VOLCANIC ERUPTIONS Youxue Zhang,1,2 Zhengjiu Xu,2 Mengfan Zhu,1 2007. [1] Knowledge about the properties of silicate melts is needed by volcanologists and petrologists and diffusivity of volatile components in silicate melts, silicate melt viscosity, and the fragmentation condition

  10. Wednesday, March 25, 2009 VENUS GEOLOGY, VOLCANISM, TECTONICS, AND RESURFACING

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Wednesday, March 25, 2009 VENUS GEOLOGY, VOLCANISM, TECTONICS, AND RESURFACING 3:00 p.m. Waterway. The Geological History of Venus: Constraints from Buffered Crater Densities [#1096] We apply buffered crater density technique to a new global geological map of Venus (Ivanov, 2008) and obtain robust constraints

  11. CX-000667: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Maui - Blind Geothermal System Exploration in Active Volcanic EnvironmentsCX(s) Applied: A9, B3.1Date: 02/08/2010Location(s): Puna, HawaiiOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  12. School of Ocean and Earth Science and Technology at the University of Hawaii at Manoa 1680 East West Rd, POST 802, Honolulu, HI 96822 USA ! www.soest.hawaii.edu

    E-Print Network [OSTI]

    School of Ocean and Earth Science and Technology at the University of Hawaii at Manoa 1680 East West Rd, POST 802, Honolulu, HI 96822 USA ! www.soest.hawaii.edu The UH School of Ocean and Earth School ­ Kapalama "Identification of Marine Fungi Found on Oahu Beaches" SOEST Senior Research, Second

  13. Computation of probabilistic hazard maps and source parameter estimation for volcanic ash transport and dispersion

    SciTech Connect (OSTI)

    Madankan, R. [Department of Mechanical and Aerospace Engineering, University at Buffalo (United States); Pouget, S. [Department of Geology, University at Buffalo (United States); Singla, P., E-mail: psingla@buffalo.edu [Department of Mechanical and Aerospace Engineering, University at Buffalo (United States); Bursik, M. [Department of Geology, University at Buffalo (United States); Dehn, J. [Geophysical Institute, University of Alaska, Fairbanks (United States); Jones, M. [Center for Computational Research, University at Buffalo (United States); Patra, A. [Department of Mechanical and Aerospace Engineering, University at Buffalo (United States); Pavolonis, M. [NOAA-NESDIS, Center for Satellite Applications and Research (United States); Pitman, E.B. [Department of Mathematics, University at Buffalo (United States); Singh, T. [Department of Mechanical and Aerospace Engineering, University at Buffalo (United States); Webley, P. [Geophysical Institute, University of Alaska, Fairbanks (United States)

    2014-08-15T23:59:59.000Z

    Volcanic ash advisory centers are charged with forecasting the movement of volcanic ash plumes, for aviation, health and safety preparation. Deterministic mathematical equations model the advection and dispersion of these plumes. However initial plume conditions – height, profile of particle location, volcanic vent parameters – are known only approximately at best, and other features of the governing system such as the windfield are stochastic. These uncertainties make forecasting plume motion difficult. As a result of these uncertainties, ash advisories based on a deterministic approach tend to be conservative, and many times over/under estimate the extent of a plume. This paper presents an end-to-end framework for generating a probabilistic approach to ash plume forecasting. This framework uses an ensemble of solutions, guided by Conjugate Unscented Transform (CUT) method for evaluating expectation integrals. This ensemble is used to construct a polynomial chaos expansion that can be sampled cheaply, to provide a probabilistic model forecast. The CUT method is then combined with a minimum variance condition, to provide a full posterior pdf of the uncertain source parameters, based on observed satellite imagery. The April 2010 eruption of the Eyjafjallajökull volcano in Iceland is employed as a test example. The puff advection/dispersion model is used to hindcast the motion of the ash plume through time, concentrating on the period 14–16 April 2010. Variability in the height and particle loading of that eruption is introduced through a volcano column model called bent. Output uncertainty due to the assumed uncertain input parameter probability distributions, and a probabilistic spatial-temporal estimate of ash presence are computed.

  14. Hawaii energy strategy project 2: Fossil energy review. Task 3 -- Greenfield options: Prospects for LNG use

    SciTech Connect (OSTI)

    Breazeale, K. [ed.; Fesharaki, F.; Fridley, D.; Pezeshki, S.; Wu, K.

    1993-12-01T23:59:59.000Z

    This paper begins with an overview of the Asia-Pacific LNG market, its major players, and the likely availability of LNG supplies in the region. The discussion then examines the possibilities for the economic supply of LNG to Hawaii, the potential Hawaiian market, and the viability of an LNG project on Oahu. This survey is far from a complete technical assessment or an actual engineering/feasibility study. The economics alone cannot justify LNG`s introduction. The debate may continue as to whether fuel diversification and environmental reasons can outweigh the higher costs. Several points are made. LNG is not a spot commodity. Switching to LNG in Hawaii would require a massive, long-term commitment and substantial investments. LNG supplies are growing very tight in the Asia-Pacific region. Some of the environmental benefits of LNG are not entirely relevant in Hawaii because Hawaii`s air quality is generally excellent. Any air quality benefits may be more than counterbalanced by the environmental hazards connected with large-scale coastal zone construction, and by the safety hazards of LNG carriers, pipelines, etc. Lastly, LNG is not suitable for all energy uses, and is likely to be entirely unsuitable for neighbor island energy needs.

  15. Environmental resources of selected areas of Hawaii: Climate, ambient air quality, and noise

    SciTech Connect (OSTI)

    Lombardi, D.A.; Blasing, T.J.; Easterly, C.E.; Reed, R.M. [Oak Ridge National Lab., TN (United States); Hamilton, C.B. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-03-01T23:59:59.000Z

    This report has been prepared to make available and archive background scientific data and related information on climate, ambient air quality, and ambient noise levels collected during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The report presents a general description of the climate add air quality for the islands of Hawaii (henceforth referred to as Hawaii), Maui and Oahu. It also presents a literature review as baseline information on the health effects of sulfide. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  16. Kaupuni Village: A Closer Look at the First Net-Zero Energy Affordable Housing Community in Hawai'i (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-05-01T23:59:59.000Z

    This is the first of four Hawaii Clean Energy Initiative community brochures focused on HCEI success stories. This brochure focuses on the first LEED Platinum net-zero energy affordable housing community in Hawaii. Our lead NREL contact for HCEI is Ken Kelly.

  17. Hawai`i Institute of Marine Biology to house state-of-the-art solar energy project

    E-Print Network [OSTI]

    Wang, Yuqing

    Hawai`i Institute of Marine Biology to house state-of-the-art solar energy project Landmark purchasing agreement (PPA) with SolarCity to provide renewable solar energy to the Hawai`i Institute this one make solar both logical and affordable." Power purchase agreements for renewable energy

  18. Hawaii Energy Resource Overviews. Volume II. Impact of geothermal development on the geology and hydrology of the Hawaiian Islands

    SciTech Connect (OSTI)

    Feldman, C.; Siegel, B.Z.

    1980-06-01T23:59:59.000Z

    The following topics are discussed: the geological setting of the Hawaiian Islands, regional geology of the major islands, geohydrology of the Hawaiian Islands, Hawaiis' geothermal resources, and potential geological/hydrological problems associated with geothermal development. Souces of information on the geology of Hawaii are presented. (MHR)

  19. Seismic and infrasonic source processes in volcanic fluid systems

    E-Print Network [OSTI]

    Matoza, Robin S.

    2009-01-01T23:59:59.000Z

    interface between a liquid with high sound speed (e.g. , theof the speed of sound in bubbly liquids. Am. J. Phys. , 76(f is the effective sound speed of the liquid-bubble mixture,

  20. Halogens in volcanic systems A. Aiuppa a,b

    E-Print Network [OSTI]

    Long, Bernard

    , Università di Palermo, Via archirafi 36, 90123 Palermo, Italy b Istituto Nazionale di Geofisica e Geofisica e Vulcanologia, sezione di Roma, Via di Vigna Murata 605, 00143 Roma, Italy e Department of Earth

  1. Blind Geothermal System Exploration in Active Volcanic Environments...

    Broader source: Energy.gov (indexed) [DOE]

    lack of surface thermal manifestation * Assessing unconventional targets requires re-tooling the standard geothermal exploration kit and adding in new tools Gravity Aeromagnetics...

  2. askja volcanic system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gases and solid aerosol particles that can affect the Earth's radiative balance and climate and the cold winter of 1783-1784 (see Franklin, Benjamin, Volume 1). If an...

  3. Seismic and infrasonic source processes in volcanic fluid systems

    E-Print Network [OSTI]

    Matoza, Robin S.

    2009-01-01T23:59:59.000Z

    f is the effective sound speed of the liquid-bubble mixture,are small, and the sound speed of the liquid-bubble mixtureinterface between a liquid with high sound speed (e.g. , the

  4. Seismic and infrasonic source processes in volcanic fluid systems

    E-Print Network [OSTI]

    Matoza, Robin S.

    2009-01-01T23:59:59.000Z

    tremors self-excited thermoacoustic oscillations? Earthal. , 1998], and possibly thermoacoustic processes [Busse et

  5. Blind Geothermal System Exploration in Active Volcanic Environments;

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10| Departmentin theIssues

  6. An Expert System For The Tectonic Characterization Of Ancient Volcanic

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan BlanchAmiteIn The Artesian-City Area, Idaho |Rocks |

  7. Blind Geothermal System Exploration in Active Volcanic Environments;

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 |Bleckley County, Georgia: EnergyMulti-phase

  8. Measurements of electric and magnetic fields in the Waianae, Hawaii area

    SciTech Connect (OSTI)

    Mantiply, E.D.

    1992-07-01T23:59:59.000Z

    During November 27--30, 1990, the US Environmental Protection Agency (EPA) conducted a measurement survey of electric and magnetic field levels along the southwest coast of Oahu, Hawaii. These measurements were requested by the State of Hawaii to determine the levels of radiofrequency (RF) electric and magnetic fields near Naval radio transmitters at Lualualei. The objective was to determine maximum fields in residential areas. This report documents the measurement results. Also, a few measurements were made of extremely-low-frequency (ELF) electric and magnetic fields at 60 hertz, the frequency used for electrical power.

  9. Materials compatibility with the volcanic environment. Final report

    SciTech Connect (OSTI)

    Htun, K.M.

    1984-03-08T23:59:59.000Z

    Attempts were made to run materials compatibility, volcanic gas collection, and heat transfer experiments during the 1977 Kilauea eruption. Preliminary results from the recovered samples showed that Fe, Ni, and Fe-Ni alloys were the most heavily oxidized. The Mo and W alloys showed some attack and only neglible reaction was seen on 310 stainless, Hastelloy C, Inconel 600, Inconel 718, Rene 41, and Nichrome. Results are qualitative only. (DLC)

  10. Hawaii Geothermal Project annotated bibliography: Biological resources of the geothermal subzones, the transmission corridors and the Puna District, Island of Hawaii

    SciTech Connect (OSTI)

    Miller, S.E.; Burgett, J.M. [Fish and Wildlife Service, Honolulu, HI (United States). Pacific Islands Office

    1993-10-01T23:59:59.000Z

    Task 1 of the Hawaii Geothermal Project Interagency Agreement between the Fish and Wildlife Service and the Department of Energy-Oak Ridge National Laboratory (DOE) includes an annotated bibliography of published and unpublished documents that cover biological issues related to the lowland rain forest in Puna, adjacent areas, transmission corridors, and in the proposed Hawaii Geothermal Project (HGP). The 51 documents reviewed in this report cover the main body of biological information for these projects. The full table of contents and bibliography for each document is included along with two copies (as requested in the Interagency Agreement) of the biological sections of each document. The documents are reviewed in five main categories: (1) geothermal subzones (29 documents); (2) transmission cable routes (8 documents); (3) commercial satellite launching facility (Spaceport; 1 document); (4) manganese nodule processing facility (2 documents); (5) water resource development (1 document); and (6) ecosystem stability and introduced species (11 documents).

  11. Long-term desorption behavior of uranium and neptunium in heterogeneous volcanic tuff materials /

    SciTech Connect (OSTI)

    Dean, Cynthia A.

    2010-05-01T23:59:59.000Z

    Uranium and neptunium desorption were studied in long-term laboratory experiments using four well-characterized volcanic tuff cores collected from southeast of Yucca Mountain, Nevada. The objectives of the experiments were to 1. Demonstrate a methodology aimed at characterizing distributions of sorption parameters (attributes of multiple sorption sites) that can be applied to moderately-sorbing species in heterogeneous systems to provide more realistic reactive transport parameters and a more realistic approach to modeling transport in heterogeneous systems. 2. Focus on uranium and neptunium because of their high solubility, relatively weak sorption, and high contributions to predicted dose in Yucca Mountain performance assessments. Also, uranium is a contaminant of concern at many DOE legacy sites and uranium mining sites.

  12. Contribution, Linkages and Impacts of the Fisheries Sector to Hawaii's Economy

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    : A Social Accounting Matrix Analysis Shawn Arita Joint Institute for Marine and Atmospheric Research details to reflect the income distribution process of the economy. Hawaii's fisheries operate in a complex environment that is constantly changing due to the varied interest involved with the fishery. The legal issues

  13. 1UNIVERSITY OF HAWAI`I AT HILO GENERAL CATALOG GENERAL CATALOG

    E-Print Network [OSTI]

    Wiegner, Tracy N.

    earned their doctorate degrees · Due to small class size, our faculty are able to develop teaching success. The University of Hawai`i at Hilo truly offers a quality education at a great value. I constantly ....................................................................................... 11 College of Agriculture, Forestry & Natural Resource Management (CAFNRM

  14. University of Hawai`i Watt Watcher: Energy Consumption Data Analysis

    E-Print Network [OSTI]

    University of Hawai`i Watt Watcher: Energy Consumption Data Analysis Phase I Interim Report Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under of the United States Government. Neither the United States Government nor any agency thereof, nor any

  15. University of Hawai`i Watt Watcher: Energy Consumption Data Analysis

    E-Print Network [OSTI]

    University of Hawai`i Watt Watcher: Energy Consumption Data Analysis Phase I Final Report Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Award No. DE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither

  16. Environmental resources of selected areas of Hawaii: Cultural environment and aesthetic resources

    SciTech Connect (OSTI)

    Trettin, L.D. [Univ. of Tennessee (United States)] [Univ. of Tennessee (United States); Petrich, C.H.; Saulsbury, J.W. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States)

    1996-01-01T23:59:59.000Z

    This report has been prepared to make available and archive the background scientific data and related information collected on the cultural environment and aesthetic resources during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The cultural environment in the Geothermal Resource Zone (GRZ) and associated study area consists of Native Hawaiian cultural and religious practices and both Native Hawaiian and non-Native Hawaiian cultural resources. This report consists of three sections: (1) a description of Native Hawaiian cultural and religious rights, practices, and values; (2) a description of historic, prehistoric, and traditional Native Hawaiian sites; and (3) a description of other (non-native) sites that could be affected by development in the study area. Within each section, the level of descriptive detail varies according to the information currently available. The description of the cultural environment is most specific in its coverage of the Geothermal Resource Subzones in the Puna District of the island of Hawaii and the study area of South Maui. Ethnographic and archaeological reports by Cultural Advocacy Network Developing Options and International Archaeological Research Institute, Inc., respectively, supplement the descriptions of these two areas with new information collected specifically for this study. Less detailed descriptions of additional study areas on Oahu, Maui, Molokai, and the island of Hawaii are based on existing archaeological surveys.

  17. Bibliography of documents and related materials collected for the Hawaii Geothermal Project Environmental Impact Statement

    SciTech Connect (OSTI)

    Glenn, F.M.; Boston, C.R.; Burns, J.C.; Hagan, C.W. Jr.; Saulsbury, J.W.; Wolfe, A.K.

    1995-03-01T23:59:59.000Z

    This report has been prepared to make available and archive information developed during preparation of the Environmental Impact Statement for Phases 3 and 4 of the Hawaii Geothermal Project as defined by the state of Hawaii in its April 1989 proposal to Congress. On May 17, 1994, the USDOE published a notice in the Federal Register withdrawing its Notice of Intent of February 14, 1992, to prepare the HGP EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report provides a bibliography of documents, published papers, and other reference materials that were obtained or used. The report provides citations for approximately 642 documents, published papers, and other reference materials that were gathered to describe the potentially affected environment on the islands of Hawaii, Maui, and Oahu. The listing also does not include all the reference materials developed by support subcontractors and cooperating agencies who participated in the project. This listing does not include correspondence or other types of personal communications. The documents listed in this report can be obtained from original sources or libraries.

  18. University of Hawai`i Strategic Plan for Information Technology 2000

    E-Print Network [OSTI]

    Olsen, Stephen L.

    of information technology as recurring costs that include stable budgets for computers, software, maintenanceUniversity of Hawai`i Strategic Plan for Information Technology 2000 Executive Summary This Strategic Plan for Information Technology outlines the vision and planning context for moving forward

  19. Hawai'i Community College John Morton, Vice President for Community Colleges

    E-Print Network [OSTI]

    1 Focusing on Boundaries 2 Hawai'i DOE UH Community Colleges 3 High School to College 2,931 3,020 3 Graduates Fall Placement DOE Student Readiness 8 New HS graduation requirements effective with Fall 2012 sciences Common core standards in math and English Common assessment for these standards CTE pathway

  20. 1992-93 Results of geomorphological and field studies Volcanic Studies Program, Yucca Mountain Project

    SciTech Connect (OSTI)

    Wells, S.G.

    1993-10-01T23:59:59.000Z

    Field mapping and stratigraphic studies were completed of the Black Tank volcanic center, which represents the southwestern most eruptive center in the Cima volcanic field of California. The results of this mapping are presented. Contacts between volcanic units and geomorphic features were field checked, incorporating data from eight field trenches as well as several exposures along Black Tank Wash. Within each of the eight trenches, logs were measured and stratigraphic sections were described. These data indicate that three, temporally separate volcanic eruptions occurred at the Black Tank center. The field evidence for significant time breaks between each stratigraphic unit is the presence of soil and pavement-bounded unconformities.

  1. The Long Valley/Mono Basin Volcanic Complex: A Preliminary Magnetotell...

    Open Energy Info (EERE)

    ValleyMono Basin Volcanic Complex: A Preliminary Magnetotelluric and Magnetic Variation Interpretation Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  2. Volcanic gas emissions and their effect on ambient air character

    SciTech Connect (OSTI)

    Sutton, A.J. [Geological Survey, Menlo Park, CA (United States); Elias, T. [Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory

    1994-01-01T23:59:59.000Z

    This bibliography was assembled to service an agreement between Department of Energy and the USGS to provide a body of references and useful annotations for understanding background gas emissions from Kilauea volcano. The current East Rift Zone (ERZ) eruption of Kilauea releases as much as 500,000 metric tonnes of SO{sub 2} annually, along with lesser amounts of other chemically and radiatively active species including H{sub 2}S, HCl, and HF. Primary degassing locations on Kilauea are located in the summit caldera and along the middle ERZ. The effects of these emissions on ambient air character are a complex function of chemical reactivity, source geometry and effusivity, and local meteorology. Because of this complexity, we organized the bibliography into three main sections: (1) characterizing gases as they leave the edifice; (2) characterizing gases and chemical reaction products away from degassing sources; and (3) Hawaii Island meteorology.

  3. Phase I Archaeological Investigation Cultural Resources Survey, Hawaii Geothermal Project, Makawao and Hana Districts, South Shore of Maui, Hawaii (DRAFT )

    SciTech Connect (OSTI)

    Erkelens, Conrad

    1994-03-01T23:59:59.000Z

    This report details the archaeological investigation of a 200 foot wide sample corridor extending approximately 9 miles along the southern portion of Maui within the present districts of Hana and Makawao. A total of 51 archaeological sites encompassing 233 surface features were documented. A GPS receiver was used to accurately and precisely plot locations for each of the documented sites. Analysis of the locational information suggests that archaeological sites are abundant throughout the region and only become scarce where vegetation has been bulldozed for ranching activities. At the sea-land transition points for the underwater transmission cable, both Ahihi Bay and Huakini Bay are subjected to seasonal erosion and redeposition of their boulder shorelines. The corridor at the Ahihi Bay transition point runs through the Moanakala Village Complex which is an archaeological site on the State Register of Historic Places within a State Natural Area Reserve. Numerous other potentially significant archaeological sites lie within the project corridor. It is likely that rerouting of the corridor in an attempt to avoid known sites would result in other undocumented sites located outside the sample corridor being impacted. Given the distribution of archaeological sites, there is no alternative route that can be suggested that is likely to avoid encountering sites. A total of twelve charcoal samples were obtained for potential taxon identification and radiocarbon analysis. Four of these samples were subsequently submitted for dating and species identification. Bird bone from various locations within a lava tube were collected for identification. Sediment samples for subsequent pollen analysis were obtained from within two lava tubes. With these three sources of information it is hoped that paleoenvironmental data can be recovered that will enable a better understanding of the setting for Hawaiian habitation of the area. A small test unit was excavated at one habitation site. Charcoal, molluscan and fish remains, basalt tools, and other artifacts were recovered. This material, while providing an extremely small sample, will greatly enhance our understanding of the use of the area. Recommendations regarding the need for further investigation and the preservation of sites within the project corridor are suggested. All sites within the project corridor must be considered potentially significant at this juncture. Further archaeological investigation consisting of a full inventory survey will be required prior to a final assessment of significance for each site and the development of a mitigation plan for sites likely to be impacted by the Hawaii Geothermal Project.

  4. Lassen Volcanic National Park Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,Lakefront Tow Tank Jump to:WindLaoLaredoLassen Volcanic

  5. San Francisco Volcanic Field Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY)Project JumpSan Francisco Volcanic Field

  6. Type B: Andesitic Volcanic Resource | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships JumpType B: Andesitic Volcanic Resource Jump

  7. Long-term management and discounting of groundwater resources with a case study of KukioÌ? HawaiiÌ?

    E-Print Network [OSTI]

    Duarte, Thomas Kae̕ o, 1973-

    2002-01-01T23:59:59.000Z

    Long-term management strategies for groundwater resources are examined with theoretical examples and with a case study of Kuki'o, Hawai'i. In Part I a groundwater mining and a dryland salinization optimal management problem ...

  8. Archaeology in the Kilauea East Rift Zone: Part 2, A preliminary sample survey, Kapoho, Kamaili and Kilauea geothermal subzones, Puna District, Hawaii island

    SciTech Connect (OSTI)

    Sweeney, M.T.K.; Burtchard, G.C. [International Archaeological Research Inst., Inc., Honolulu, HI (United States)] [International Archaeological Research Inst., Inc., Honolulu, HI (United States)

    1995-05-01T23:59:59.000Z

    This report describes a preliminary sample inventory and offers an initial evaluation of settlement and land-use patterns for the Geothermal Resources Subzones (GRS) area, located in Puna District on the island of Hawaii. The report is the second of a two part project dealing with archaeology of the Puna GRS area -- or more generally, the Kilauea East Rift Zone. In the first phase of the project, a long-term land-use model and inventory research design was developed for the GRS area and Puna District generally. That report is available under separate cover as Archaeology in the Kilauea East Rift Zone, Part I: Land-Use Model and Research Design. The present report gives results of a limited cultural resource survey built on research design recommendations. It offers a preliminary evaluation of modeled land-use expectations and offers recommendations for continuing research into Puna`s rich cultural heritage. The present survey was conducted under the auspices of the United States Department of Energy, and subcontracted to International Archaeological Research Institute, Inc. (IARII) by Martin Marietta Energy Systems, Inc. The purpose of the archaeological work is to contribute toward the preparation of an environmental impact statement by identifying cultural materials which could be impacted through completion of the proposed Hawaii Geothermal Project.

  9. ATMOSPHERIC DISPERSAL AND DEPOSITION OF TEPHRA FROM A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN, NEVADA

    SciTech Connect (OSTI)

    C. Harrington

    2004-10-25T23:59:59.000Z

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit by Igneous Intrusion''. This model report provides direct inputs to the TSPA, which uses the ASHPLUME software described and used in this model report. Thus, ASHPLUME software inputs are inputs to this model report for ASHPLUME runs in this model report. However, ASHPLUME software inputs are outputs of this model report for ASHPLUME runs by TSPA.

  10. Hawaii Clean Energy Initiative (HCEI) Scenario Analysis: Quantitative Estimates Used to Facilitate Working Group Discussions (2008-2010)

    SciTech Connect (OSTI)

    Braccio, R.; Finch, P.; Frazier, R.

    2012-03-01T23:59:59.000Z

    This report provides details on the Hawaii Clean Energy Initiative (HCEI) Scenario Analysis to identify potential policy options and evaluate their impact on reaching the 70% HECI goal, present possible pathways to attain the goal based on currently available technology, with an eye to initiatives under way in Hawaii, and provide an 'order-of-magnitude' cost estimate and a jump-start to action that would be adjusted with a better understanding of the technologies and market.

  11. Project Management Plan for the Hawaii Geothermal Project Environmental Impact Statement

    SciTech Connect (OSTI)

    Reed, R.M.; Saulsbury, J.W.

    1993-06-01T23:59:59.000Z

    In 1990, Congress appropriated $5 million (Pu 101-514) for the State of Hawaii to use in Phase 3 of the Hawaii Geothermal Project (HGP). As defined by the State in its 1990 proposal to Congress, the HGP would consist of four phases: (1) exploration and testing of the geothermal resource associated with the Kilauea Volcano on the Island of Hawaii (the Big Island), (2) demonstration of deep-water power transmission cable technology in the Alenuihaha Channel between the Big Island and Maui, (3) verification and characterization of the geothermal resource on the Big Island, and (4) construction and operation of commercial geothermal power production facilities on the Big Island, with overland and submarine transmission of electricity from the Big Island to Oahu and possibly other islands (DBED 1990). Because it considered Phase 3 to be research and not project development or construction, Congress indicated that allocation of this funding would not be considered a major federal action under NEPA and would not require an EIS. However, because the project is highly visible, somewhat controversial, and involves a particularly sensitive environment in Hawaii, Congress directed in 1991 (House Resolution 1281) that ''...the Secretary of Energy shall use such sums as are necessary from amounts previously provided to the State of Hawaii for geothermal resource verification and characterization to conduct the necessary environmental assessments and/or environmental impact statement (EIS) for the geothermal initiative to proceed''. In addition, the U.S. District Court of Hawaii (Civil No. 90-00407, June 25, 1991) ruled that the federal government must prepare an EIS for Phases 3 and 4 before any further disbursement of funds was made to the State for the HGP. This Project Management Plan (PMP) briefly summarizes the background information on the HGP and describes the project management structure, work breakdown structure, baseline budget and schedule, and reporting procedures that have been established for the project. The PMP does not address in detail the work that has been completed during the scoping process and preparation of the IP. The PMP has been developed to address the tasks required in preparing the Draft Environmental Impact Statement (DEIS), the public comment period, and the Final Environmental Impact Statement (FEIS).

  12. Temporal and petrogenetic constraints on volcanic accretionary processes at 9-10 degrees North East Pacific Rise

    E-Print Network [OSTI]

    Waters, Christopher L

    2010-01-01T23:59:59.000Z

    Volcanic accretion at the fast-spreading East Pacific Rise (EPR) occurs over a ~2-4 km wide neo-volcanic zone on either side of the axial summit trough (AST). Eruption ages are critical for understanding the distribution ...

  13. Deep explosive volcanism on the Gakkel Ridge and seismological constraints on Shallow Recharge at TAG Active Mound

    E-Print Network [OSTI]

    Pontbriand, Claire Willis

    2013-01-01T23:59:59.000Z

    Seafloor digital imagery and bathymetric data are used to evaluate the volcanic characteristics of the 85°E segment of the ultraslow spreading Gakkel Ridge (9 mm yr-č). Imagery reveals that ridges and volcanic cones in the ...

  14. Spatio-temporal variability in volcanic sulphate deposition over the past 2 kyr in snow pits and firn cores from

    E-Print Network [OSTI]

    Fischer, Hubertus

    environmental effects. Apart from volcanic ashes, CO2 and water vapour, the reactive gaseous compounds SO2, H2S Running median RRMi Reduced running mean (after removal of all volcanic peaks) xi Ion concentration

  15. Magnetotelluric images of the crustal structure of Chyulu Hills volcanic field, Kenya

    E-Print Network [OSTI]

    Meju, Max

    Magnetotelluric images of the crustal structure of Chyulu Hills volcanic field, Kenya V. Sakkas volcanic chain on the eastern flank of the Kenya Rift in East Africa. Transient electromagnetic (TEM flank of the Kenya Rift deduced from wide-angle P-wave data. In: Fuchs, K., Altherr, R., Muller, B

  16. OPEN-FILE REPORT 2005-1164 An Assessment of Volcanic Threat and Monitoring

    E-Print Network [OSTI]

    OPEN-FILE REPORT 2005-1164 An Assessment of Volcanic Threat and Monitoring Capabilities Reawakens Volcanic Threat Assessment: Analysis of Hazard and Risk Factors......................... 14 · Table 2. List of hazard and exposure factors used in the NVEWS threat assessment · Figure 3

  17. Ice nucleation and overseeding of ice in volcanic clouds A. J. Durant,1,2

    E-Print Network [OSTI]

    Rose, William I.

    that such ``overseeded'' volcanic clouds will exhibit enhanced ice crystal concentrations and smaller average ice crystal nucleation in volcanic plumes and clouds affects dynamics [Glaze et al., 1997; Herzog et al., 1998; Mastin- porting water to the stratosphere [Glaze et al., 1997] and these fluxes depend in part on the microphysics

  18. Globally synchronous ice core volcanic tracers and abrupt cooling during the last glacial period

    E-Print Network [OSTI]

    Price, P. Buford

    Globally synchronous ice core volcanic tracers and abrupt cooling during the last glacial period R ash layers determined by remote optical borehole logging and core assays. We find that the Antarctic. These globally coincident volcanics were associated with abrupt cooling, often simultaneous with onsets or sudden

  19. ORIGINAL RESEARCH PAPER Quantitative mapping of active mud volcanism at the western

    E-Print Network [OSTI]

    Nicolas, Chamot-Rooke

    to produce a synthetic and objective map of recent mud flows covering a 640 · 700 km2 area, which representsORIGINAL RESEARCH PAPER Quantitative mapping of active mud volcanism at the western Mediterranean model for the origin for Mediterranean Ridge mud volcanism. Image analysis techniques are used

  20. Arctic Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depletion

    E-Print Network [OSTI]

    Robock, Alan

    of perturbation experiments, the full radiative effects of the observed Pinatubo aerosol cloud were included eruption, which produced the largest global volcanic aerosol cloud in the twentieth century. A seriesArctic Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols

  1. Late Quaternary geology of small basaltic volcanic centers, SW USA: Disparity among dating methods and implications for volcanic and geomorphic studies

    SciTech Connect (OSTI)

    Wells, S. [Univ. of California, Riverside, CA (United States). Dept. of Earth Sciences; McFadden, L.; Perry, F. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Geology; Forman, S. [Ohio State Univ., Columbus, OH (United States). Byrd Polar Research Center; Crowe, B.; Pothis, J.; Olinger, C. [Los Alamos National Lab., NM (United States)

    1992-12-31T23:59:59.000Z

    Evaluation of volcanic hazards near the proposed high-level radioactive waste repository at Yucca Mountain provides the impetus for a series of detailed field and geochronologic studies of selected small late Quaternary basaltic scoria cones and lava flows in Nevada and California. Two of the most significant results of these studies are: the presence of chronostratigraphic units which indicate multiple eruptions with significant intervals of no activity between events (polycyclic volcanism); and a marked difference between conventional, numerical ages derived from K-Ar and Ar-40/Ar-39 methods and numerical, calibrated, and relative ages derived from thermoluminescence, cosmogenic He-3, the degree of soil development, and geomorphology of these volcanic landforms. Soil-bounded unconformities and buried stone pavements define the boundaries of chronostratigraphic units within these small volume basaltic centers. Volcanic centers displaying this type of stratigraphy may appear morphological simple but cannot be considered mongenetic. Recent studies by Perry and Crowe demonstrate that geochemical variations within a single basaltic volcanic center in NV are consistent with several magma batches forming a complex polycyclic volcano. The K-Ar and Ar-40/Ar-39 ages are 1--2 orders of magnitude older than either TL or cosmogenic He-3 and appear to have insufficient precision to constrain the ages of chronostratigraphic units within polycyclic volcanoes. In contrast, preliminary data indicate the TL and cosmogenic He-3 dating methods have the ability to resolve the late Quaternary volcanic stratigraphy, and results from these dating methods are consistent with the degree of soil development and geomorphic modification of the volcanic units. K-Ar and Ar-40/Ar-39 dates from these small basaltic volcanic centers have been used to calibrate new Quaternary dating methods, e.g. rock varnish, which in turn have been used to interpret landscape evolution in the SW US.

  2. Wind Energy Resource Atlas. Volume 11. Hawaii and Pacific Islands Region

    SciTech Connect (OSTI)

    Schroeder, T.A.; Hori, A.M.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-02-01T23:59:59.000Z

    This atlas of the wind energy resource is composed of introductory and background information, and assessments of the wind resource in each division of the region. Background on how the wind resource is assessed and on how the results of the assessment should be inerpreted is presented. An introduction and outline to the descriptions of the wind resource for each division are provided. Assessments for individual divisions are presented as separate chapters. Much of the information in the division chapters is given in graphic or tabular form. The sequences for each chapter are similar, but some presentations used for Hawaii are inappropriate or impractical for presentation with the Pacific Islands. Hawaii chapter figure and tables are cited below and appropriate Pacific Islands figure and table numbers are included in brackets ().

  3. Targeting Net Zero Energy at Marine Corps Base Hawaii, Kaneohe Bay: Preprint

    SciTech Connect (OSTI)

    Burman, K.; Kandt, A.; Lisell, L.; Booth, S.

    2012-05-01T23:59:59.000Z

    This paper summarizes the results of an NREL assessment of Marine Corps Base Hawaii (MCBH), Kaneohe Bay to appraise the potential of achieving net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. In 2008, the U.S. Department of Defense's U.S. Pacific Command partnered with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency at Hawaii military installations. DOE selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay, to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. This paper summarizes the results of the assessment and provides energy recommendations. The analysis shows that MCBH Kaneohe Bay has the potential to make significant progress toward becoming a net zero installation. Wind, solar photovoltaics, solar hot water, and hydrogen production were assessed, as well as energy efficiency technologies. Deploying wind turbines is the most cost-effective energy production measure. If the identified energy projects and savings measures are implemented, the base will achieve a 96% site Btu reduction and a 99% source Btu reduction. Using excess wind and solar energy to produce hydrogen for a fleet and fuel cells could significantly reduce energy use and potentially bring MCBH Kaneohe Bay to net zero. Further analysis with an environmental impact and interconnection study will need to be completed. By achieving net zero status, the base will set an example for other military installations, provide environmental benefits, reduce costs, increase energy security, and exceed its energy goals and mandates.

  4. Hawaii energy strategy project 3: Renewable energy resource assessment and development program

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    RLA Consulting (RLA) has been retained by the State of Hawaii Department of Business, Economic Development and Tourism (DBEDT) to conduct a Renewable Energy Resource Assessment and Development Program. This three-phase program is part of the Hawaii Energy Strategy (HES), which is a multi-faceted program intended to produce an integrated energy strategy for the State of Hawaii. The purpose of Phase 1 of the project, Development of a Renewable Energy Resource Assessment Plan, is to better define the most promising potential renewable energy projects and to establish the most suitable locations for project development in the state. In order to accomplish this goal, RLA has identified constraints and requirements for renewable energy projects from six different renewable energy resources: wind, solar, biomass, hydro, wave, and ocean thermal. These criteria were applied to areas with sufficient resource for commercial development and the results of Phase 1 are lists of projects with the most promising development potential for each of the technologies under consideration. Consideration of geothermal energy was added to this investigation under a separate contract with DBEDT. In addition to the project lists, a monitoring plan was developed with recommended locations and a data collection methodology for obtaining additional wind and solar data. This report summarizes the results of Phase 1. 11 figs., 22 tabs.

  5. Preliminary volcanic hazards evaluation for Los Alamos National Laboratory Facilities and Operations : current state of knowledge and proposed path forward

    SciTech Connect (OSTI)

    Keating, Gordon N.; Schultz-Fellenz, Emily S.; Miller, Elizabeth D.

    2010-09-01T23:59:59.000Z

    The integration of available information on the volcanic history of the region surrounding Los Alamos National Laboratory indicates that the Laboratory is at risk from volcanic hazards. Volcanism in the vicinity of the Laboratory is unlikely within the lifetime of the facility (ca. 50–100 years) but cannot be ruled out. This evaluation provides a preliminary estimate of recurrence rates for volcanic activity. If further assessment of the hazard is deemed beneficial to reduce risk uncertainty, the next step would be to convene a formal probabilistic volcanic hazards assessment.

  6. Hawaii Energy Resource Overviews - Geothermal. Supplement to Volume 4, The environment. 3. Impact: air quality data

    SciTech Connect (OSTI)

    Siegel, S.M.; Siegel, B.Z.

    1980-12-01T23:59:59.000Z

    The results of sampling for SO/sub 2/, H/sub 2/S, mercury, and radon are presented and discussed. The difficulties in differentiating the effects of the well HGP-A from the background of volcanism are described. Soil and water mercury analyses as techniques for geothermal exploration are suggested. (MHR)

  7. U.S. Coast Guard - Honolulu, Hawaii | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kia'i Kai Hale Housing Area. The USCG converted 278 units in the complex from electric water heaters to solar water-heating systems with assistance from the Federal Energy...

  8. Geek-Up[12.10.2010]: A New Planet in Another Solar System, Fast-Tracked Drug Treatments and Better Batteries

    Broader source: Energy.gov [DOE]

    Using high-contrast, near infrared adaptive optics on the Keck II telescope in Hawaii, LLNL astronomers have identified a fourth planet that is part of a new planetary system discovered in 2008.

  9. First results from the MIT optical rapid imaging system (MORIS) on the IRTF: A stellar occultation by Pluto and a transit by exoplanet XO-2b

    E-Print Network [OSTI]

    Gulbis, Amanda A. S.

    We present a high-speed, visible-wavelength imaging instrument: MORIS (the MIT Optical Rapid Imaging System). MORIS is mounted on the 3 m Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. Its primary component is ...

  10. Helium and lead isotope geochemistry of oceanic volcanic rocks from the East Pacific and South Atlantic

    E-Print Network [OSTI]

    Graham, David W. (David William)

    1987-01-01T23:59:59.000Z

    The isotopic evolution of helium and lead in the Earth is coupled by virtue of their common radioactive parents uranium and thorium. The isotopic signatures in oceanic volcanic rocks provide constraints on the temporal ...

  11. New Mexico Geochronology Research Laboratory: Zuni-Bandera volcanic field road log

    SciTech Connect (OSTI)

    Laughlin, A.W.; Charles, R.; Reid, K.; White, C.

    1993-01-01T23:59:59.000Z

    This field conference was designed to assemble a group of Quaternary researchers to examine the possibility of using the Zuni-Bandera volcanic field in western New Mexico as a test area for evaluating and calibrating various Quaternary dating techniques. The Zuni-Bandera volcanic-field is comprised of a large number of basaltic lava flows ranging in age from about 700 to 3 ka. Older basalts are present in the Mount Taylor volcanic field to the north. Geologic mapping has been completed for a large portion of the Zuni-Bandera volcanic field and a number of geochronological investigations have been initiated in the area. While amending this conference, please consider how you might bring your expertise and capabilities to bear on solving the many problem in Quaternary geochronology.

  12. New Mexico Geochronology Research Laboratory: Zuni-Bandera volcanic field road log

    SciTech Connect (OSTI)

    Laughlin, A.W.; Charles, R.; Reid, K.; White, C.

    1993-04-01T23:59:59.000Z

    This field conference was designed to assemble a group of Quaternary researchers to examine the possibility of using the Zuni-Bandera volcanic field in western New Mexico as a test area for evaluating and calibrating various Quaternary dating techniques. The Zuni-Bandera volcanic-field is comprised of a large number of basaltic lava flows ranging in age from about 700 to 3 ka. Older basalts are present in the Mount Taylor volcanic field to the north. Geologic mapping has been completed for a large portion of the Zuni-Bandera volcanic field and a number of geochronological investigations have been initiated in the area. While amending this conference, please consider how you might bring your expertise and capabilities to bear on solving the many problem in Quaternary geochronology.

  13. Ice core evidence for a second volcanic eruption around 1809 in the Northern Hemisphere

    E-Print Network [OSTI]

    Kurapov, Alexander

    is reported in the historical volcanism record between 1801 and 1812 [Simkin and Siebert, 1994]. [3] Analysis and a March 1809 eruption date for Cosiguina [Simkin and Siebert, 1994]. However, recent work on Cosiguina has

  14. Integrated Renewable Energy and Energy Storage Systems

    E-Print Network [OSTI]

    Integrated Renewable Energy and Energy Storage Systems Prepared for the U.S. Department of Energy and Energy Storage Systems TABLE OF CONTENTS 1 Office of Electricity Delivery and Energy Reliability Under Award No. DE-FC-06NT42847 Hawai`i Distributed

  15. Solar Forecasting System and Irradiance Variability Characterization

    E-Print Network [OSTI]

    and Energy Reliability As part of Cooperative Agreement No. DE-EE0003507 Under Task 3.1: Photovoltaic Systems Reliability Under Cooperative Agreement No. DE-EE0003507 Hawai`i Energy Sustainability Program Subtask 3.1 Photovoltaic Systems: Report 3 Development of data base allowing managed access to statewide PV and insolation

  16. Solar production of intermediate temperature process heat. Phase I design. Final report. [For sugarcane processing plant in Hawaii

    SciTech Connect (OSTI)

    None

    1980-08-01T23:59:59.000Z

    This report is the final effort in the Phase I design of a solar industrial process heat system for the Hilo Coast Processing Company (HCPC) in Pepeekeo, Hawaii. The facility is used to wash, grind and extract sugar from the locally grown sugarcane and it operates 24 hours a day, 305 days per year. The major steam requirements in the industrial process are for the prime movers (mill turbines) in the milling process and heat for evaporating water from the extracted juices. Bagasse (the fibrous residue of milled sugarcane) supplied 84% of the fuel requirement for steam generation in 1979, while 65,000 barrels of No. 6 industrial fuel oil made up the remaining 16%. These fuels are burned in the power plant complex which produces 825/sup 0/F, 1,250 psi superheated steam to power a turbogenerator set which, in addition to serving the factory, generates from 7 to 16 megawatts of electricity that is exported to the local utility company. Extracted steam from the turbo-generator set supplies the plant's process steam needs. The system consists of 42,420 ft./sup 2/ of parabolic trough, single axis tracking, concentrating solar collectors. The collectors will be oriented in a North-South configuration and will track East-West. A heat transfer fluid (Gulf Synfluid 4cs) will be circulated in a closed loop fashion through the solar collectors and a series of heat exchangers. The inlet and outlet fluid temperatures for the collectors are 370/sup 0/F and 450/sup 0/F respectively. It is estimated that the net useable energy delivered to the industrial process will be 7.2 x 10/sup 9/ Btu's per year. With an HCPC boiler efficiency of 78% and 6.2 x 10/sup 6/ Btu's per barrel of oil, the solar energy system will displace 1489 barrels of oil per year. (WHK)

  17. Species trials for biomass plantations in Hawaii: a first appraisal. Forest Service research paper (Final)

    SciTech Connect (OSTI)

    Schubert, T.H.; Whitesell, C.D.

    1985-08-01T23:59:59.000Z

    Fast-growing trees producing high-density wood are required to justify from an exonomic standpoint short rotation biomass plantations. Nine species trials were established on five sub-tropical sites on the island of Hawaii. Survival and growth of 27 introduced species and the native Acacia koa were appraised at one or more locations, for periods from 24 to 60 months. Performance varied greatly, within, and between all species tested. Eucalyptus saligna and E. grandis usually proved to be the species best adapted to well drained sites. Most failures a-d unsatisfactory performances related to harsh site conditions, such as low soil fertility, droughts, and high winds.

  18. Hawaii Information Package for Chemical Inventory Form (HCIF)/Tier II |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEI Reference LibraryAddHawaiiOpen Energy

  19. Hawaii NPDES General Permit Notice of Intent Forms Webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEI Reference LibraryAddHawaiiOpenInformation

  20. Geologic origin of magnetic volcanic glasses in the KBS tuff

    SciTech Connect (OSTI)

    Schlinger, C.M.; Smith, R.M.; Veblen, D.R.

    1986-11-01T23:59:59.000Z

    Volcanic glass shards and banded pumice from the KBS tuff of northern Kenya exhibit marked variations in magnetic susceptibility and color (colorless to dark brown). The darker glass shards exhibit superparamagnetism, which they now know to be carried by a population of tiny microcrystals of Fe-rich cubic oxide, approx. 20 to approx. 100 A in size, thought to be magnetite. A theory for their origin is one of nucleation and growth (precipitation) in quenched homogeneous glass (colorless) at temperatures of approx. 700-1000/sup 0/C during and immediately subsequent to eruption. Results from high-temperature heating experiments on KBS shards support this idea. The precipitate appears in the KBS shards as a consequence of their cooling history and is the origin of their coloring; the origin cannot lie in negligible compositional differences between the colorless and darkest shards. On the other hand, banded pumice from the KBS tuff has both dark and colorless glasses of differing compositions. The pumice appears banded because precipitation occurred preferentially in the Fe-rich glass. Although magma mixing may have played a role in the eruption of these materials, on the basis of their survey of distal eruptive products, it would appear that the volumetric amount of the mafic end member (dark pumice) was insubstantial.

  1. Origin of geochemical heterogeneity in the mantle : constraints from volcanism associated with Hawaiian and Kerguelen mantle plumes

    E-Print Network [OSTI]

    Xu, Guangping

    2007-01-01T23:59:59.000Z

    Lavas derived from long-lived mantle plumes provide important information of mantle compositions and the processes that created the geochemical heterogeneity within the mantle. Kerguelen and Hawaii are two long-lived mantle ...

  2. Combined U-Th/He and 40Ar/39Ar geochronology of post-shield lavas from the Mauna Kea and Kohala volcanoes, Hawaii

    SciTech Connect (OSTI)

    Aciego, S.M.; Jourdan, F.; DePaolo, D.J.; Kennedy, B.M.; Renne, P.R.; Sims, K.W.W.

    2009-10-01T23:59:59.000Z

    Late Quaternary, post-shield lavas from the Mauna Kea and Kohala volcanoes on the Big Island of Hawaii have been dated using the {sup 40}Ar/{sup 39}Ar and U-Th/He methods. The objective of the study is to compare the recently demonstrated U-Th/He age method, which uses basaltic olivine phenocrysts, with {sup 40}Ar/{sup 39}Ar ages measured on groundmass from the same samples. As a corollary, the age data also increase the precision of the chronology of volcanism on the Big Island. For the U-Th/He ages, U, Th and He concentrations and isotopes were measured to account for U-series disequilibrium and initial He. Single analyses U-Th/He ages for Hamakua lavas from Mauna Kea are 87 {+-} 40 ka to 119 {+-} 23 ka (2{sigma} uncertainties), which are in general equal to or younger than {sup 40}Ar/{sup 39}Ar ages. Basalt from the Polulu sequence on Kohala gives a U-Th/He age of 354 {+-} 54 ka and a {sup 40}Ar/{sup 39}Ar age of 450 {+-} 40 ka. All of the U-Th/He ages, and all but one spurious {sup 40}Ar/{sup 39}Ar ages conform to the previously proposed stratigraphy and published {sup 14}C and K-Ar ages. The ages also compare favorably to U-Th whole rock-olivine ages calculated from {sup 238}U - {sup 230}Th disequilibria. The U-Th/He and {sup 40}Ar/{sup 39}Ar results agree best where there is a relatively large amount of radiogenic {sup 40}Ar (>10%), and where the {sup 40}Ar/{sup 36}Ar intercept calculated from the Ar isochron diagram is close to the atmospheric value. In two cases, it is not clear why U-Th/He and {sup 40}Ar/{sup 39}Ar ages do not agree within uncertainty. U-Th/He and {sup 40}Ar/{sup 39}Ar results diverge the most on a low-K transitional tholeiitic basalt with abundant olivine. For the most alkalic basalts with negligible olivine phenocrysts, U-Th/He ages were unattainable while {sup 40}Ar/{sup 39}Ar results provide good precision even on ages as low as 19 {+-} 4 ka. Hence, the strengths and weaknesses of the U-Th/He and {sup 40}Ar/{sup 39}Ar methods are complimentary for basalts with ages of order 100-500 ka.

  3. Control Algorithms for Grid-Scale Battery Energy Storage Systems

    E-Print Network [OSTI]

    Control Algorithms for Grid-Scale Battery Energy Storage Systems This report describes development-connected battery energy storage system. The report was submitted by HNEI to the U.S. Department of Energy Office.2: Energy Storage Systems August 2014 HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science

  4. Evaluation of Model Results and Measured Performance of Net-Zero Energy Homes in Hawaii: Preprint

    SciTech Connect (OSTI)

    Norton, P.; Kiatreungwattana, K.; Kelly, K. J.

    2013-03-01T23:59:59.000Z

    The Kaupuni community consists of 19 affordable net-zero energy homes that were built within the Waianae Valley of Oahu, Hawaii in 2011. The project was developed for the native Hawaiian community led by the Department of Hawaiian Homelands. This paper presents a comparison of the modeled and measured energy performance of the homes. Over the first year of occupancy, the community as a whole performed within 1% of the net-zero energy goals. The data show a range of performance from house to house with the majority of the homes consistently near or exceeding net-zero, while a few fall short of the predicted net-zero energy performance. The impact of building floor plan, weather, and cooling set point on this comparison is discussed. The project demonstrates the value of using building energy simulations as a tool to assist the project to achieve energy performance goals. Lessons learned from the energy performance monitoring has had immediate benefits in providing feedback to the homeowners, and will be used to influence future energy efficient designs in Hawaii and other tropical climates.

  5. Impact of geothermal development on the state of Hawaii. Executive summary. Volume 7

    SciTech Connect (OSTI)

    Siegel, B.Z.

    1980-06-01T23:59:59.000Z

    Questions regarding the sociological, legal, environmental, and geological concerns associated with the development of geothermal resources in the Hawaiian Islands are addressed in this summary report. Major social changes, environmental degradation, legal and economic constraints, seismicity, subsidence, changes in volcanic activity, accidents, and ground water contamination are not major problems with the present state of development, however, the present single well does not provide sufficient data for extrapolation. (ACR)

  6. The Surface Expression of Semidiurnal Internal Tides near a Strong Source at Hawaii. Part I: Observations and Numerical Predictions*

    E-Print Network [OSTI]

    The Surface Expression of Semidiurnal Internal Tides near a Strong Source at Hawaii. Part I differ significantly. The S2 kinetic energy pattern re- sembles the predicted pattern. In contrast, the observed structure and magnitude of the more important M2 kinetic energy pattern differs significantly from

  7. Weather Internship opportunity with KITV 4 Island Television is the ABC television affiliate in Honolulu, Hawai`i.

    E-Print Network [OSTI]

    Weather Internship opportunity with KITV 4 Island Television is the ABC television affiliate in Honolulu, Hawai`i. KITV recognizes that a good internship program can add practical experience to the education a student gains in college or graduate school. KITV has a long-established Internship Program

  8. UNIVERSITYOF HAWAI'I lIl3RARY INTERNAL TIDE SCATTERING AT M1DOCEAN TOPOGRAPHY

    E-Print Network [OSTI]

    Luther, Douglas S.

    of the topography and along a tidal beam up to the first surface bounce. A transition from a beam structure nearUNIVERSITYOF HAWAI'I lIl3RARY INTERNAL TIDE SCATTERING AT M1DOCEAN TOPOGRAPHY A DISSERTATION The scattering ofmode-oneM, internal tides from I) idealized Gaussian topography and 2) the Line Islands Ridge

  9. MTS/IEEE Oceans 2001, Honolulu, Hawaii, November 2001 Controlling an uninstrumented ROV manipulator by visual servoing

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MTS/IEEE Oceans 2001, Honolulu, Hawaii, November 2001 Controlling an uninstrumented ROV manipulator of the approach. I. INTRODUCTION In this paper we present a vision-based method to control the manipulator manipulator called Sherpa. The Sherpa manipulator is not instrumented and is open-loop controlled

  10. Wave Power Resources off the Hawaiian Islands luisvega@hawaii.edu Wave Resources for Representative Sites Around the Hawaiian Islands

    E-Print Network [OSTI]

    Wave Power Resources off the Hawaiian Islands luisvega@hawaii.edu 1 Wave Resources for Representative Sites Around the Hawaiian Islands Table of Contents Summary p2 Background: Wave Power Conversion p3 Licensing and Permitting p3 Challenges and Barriers p4 Wave Power Resources: Previous Work p5 Wave

  11. Impacts of Radioactive 137Cs on Marine Bacterioplankton: Effects of the Fukushima Disaster on Hawaii's Kaneohe Bay Bacterial Communities

    E-Print Network [OSTI]

    Heller, Paul

    Impacts of Radioactive 137Cs on Marine Bacterioplankton: Effects of the Fukushima Disaster such catastrophe, a tsunami off the coast of Japan, occurred on March 11, 2011. The tsunami caused the Fukushima on the bacterioplankton community of Kaneohe Bay in Oahu, Hawaii. The bay is in the direct path of Fukushima's radioactive

  12. Sequence Logos: A Powerful, Yet Simple, Tool version = 3.03 of hawaii.tex 2003 Feb 12

    E-Print Network [OSTI]

    Schneider, Thomas D.

    Sequence Logos: A Powerful, Yet Simple, Tool version = 3.03 of hawaii.tex 2003 Feb 12 Mark C DNA and protein sequences, the sequence logo, is now available to re- searchers. This method has advantages over the con- ventional method of creating a consensus. For exam- ple, a logo of DNA shows all

  13. The red triangles are volcano locations. Dark-orange areas have a higher volcanic hazard; light-orange areas have a lower volcanic hazard. Dark-gray areas have a higher ash fall hazard;

    E-Print Network [OSTI]

    Torgersen, Christian

    The red triangles are volcano locations. Dark-orange areas have a higher volcanic hazard; light-orange areas have a lower volcanic hazard. Dark-gray areas have a higher ash fall hazard; light-gray areas have a lower ash fall hazard. Information is based on data during the past 10,000 years. Bottom, from left

  14. Bull. Soc. gol. Fr., 2008, no The alkaline intraplate volcanism of the Antalya nappes (Turkey): a Late

    E-Print Network [OSTI]

    Demouchy, Sylvie

    Bull. Soc. géol. Fr., 2008, no 4 The alkaline intraplate volcanism of the Antalya nappes (Turkey-words. ­ Alkali basalt, Intraplate volcanism, Triassic (Upper), Neotethys, Turkey, Geochemistry. Abstract. ­ Late belonging to the Kara Dere ­ Sayrun unit of the Middle Antalya nappes, southwestern Turkey. New

  15. Solar and volcanic fingerprints in tree-ring chronologies over the past 2000 years Petra Breitenmoser a,b,

    E-Print Network [OSTI]

    Wehrli, Bernhard

    Solar and volcanic fingerprints in tree-ring chronologies over the past 2000 years Petra Climate variability Tree-ring proxies DeVries solar cycle Volcanic activity Past two millennia The Sun cli- mate forcings to continuing global warming. To properly address long-term fingerprints of solar

  16. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    SciTech Connect (OSTI)

    Hackett, W.R.; Smith, R.P.

    1992-09-01T23:59:59.000Z

    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  17. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    SciTech Connect (OSTI)

    Hackett, W.R.; Smith, R.P.

    1992-01-01T23:59:59.000Z

    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  18. Evidence for explosive silicic volcanism on the Moon from the extended distribution of thorium near the Compton-Belkovich Volcanic Complex

    E-Print Network [OSTI]

    Wilson, J T; Massey, R J; Elphic, R C; Jolliff, B L; Lawrence, D J; Llewellin, E W; McElwaine, J N; Teodoro, L F A

    2014-01-01T23:59:59.000Z

    We reconstruct the abundance of thorium near the Compton-Belkovich Volcanic Complex on the Moon, using data from the Lunar Prospector Gamma Ray Spectrometer. We enhance the resolution via a pixon image reconstruction technique, and find that the thorium is distributed over a larger (40 km $\\times$ 75 km) area than the (25 km $\\times$ 35 km) high albedo region normally associated with Compton-Belkovich. Our reconstructions show that inside this region, the thorium concentration is 15 - 33 ppm. We also find additional thorium, spread up to 300 km eastward of the complex at $\\sim$2 ppm. The thorium must have been deposited during the formation of the volcanic complex, because subsequent lateral transport mechanisms, such as small impacts, are unable to move sufficient material. The morphology of the feature is consistent with pyroclastic dispersal and we conclude that the present distribution of thorium was likely created by the explosive eruption of silicic magma.

  19. Hawaii energy strategy project 2: Fossil energy review. Task 1: World and regional fossil energy dynamics

    SciTech Connect (OSTI)

    Breazeale, K. [ed.; Isaak, D.T.; Yamaguchi, N.; Fridley, D.; Johnson, C.; Long, S.

    1993-12-01T23:59:59.000Z

    This report in the Hawaii Energy Strategy Project examines world and regional fossil energy dynamics. The topics of the report include fossil energy characteristics, the world oil industry including reserves, production, consumption, exporters, importers, refining, products and their uses, history and trends in the global oil market and the Asia-Pacific market; world gas industry including reserves, production, consumption, exporters, importers, processing, gas-based products, international gas market and the emerging Asia-Pacific gas market; the world coal industry including reserves, classification and quality, utilization, transportation, pricing, world coal market, Asia-Pacific coal outlook, trends in Europe and the Americas; and environmental trends affecting fossil fuels. 132 figs., 46 tabs.

  20. A Preliminary Report on the Early History and Archaeology of Kahauale'A, Puna, Hawaii

    SciTech Connect (OSTI)

    Holmes, Tommy

    1982-04-14T23:59:59.000Z

    The following is a report on the findings of a documentary literature search on the ahupuaa of Kahauale'a in the Puna District of the island of Hawaii. Attention is given to the entirety of the ahupuaa, though the emphasis is on the mauka portions from about 1,500 to 3,800-feet elevation, or roughly three miles inland to the northern terminus of the ahupuaa, just below Kilauea. The report was commissioned by The Estate of James Campbell for purposes of ascertaining what the extent of early Hawaiian activities and/or habitation occurred in the mauka regions of Kahauale'a--specifically to see if proposed geothermal drilling activities in these areas would disturb any archaeological sites.

  1. Final Report for Research in High Energy Physics (University of Hawaii)

    SciTech Connect (OSTI)

    Browder, Thomas E.

    2013-08-31T23:59:59.000Z

    Here we present a final report for the DOE award for the University of Hawaii High Energy Physics Group (UHHEPG) for the period from December 1, 2009 to May 31, 2013 (including a period of no-cost extension). The high energy physics (HEP) group at the University of Hawaii (UH) has been engaged in experiments at the intensity frontier studying flavor physics (Task A: Belle, Belle-II and Task B: BES) and neutrinos (Task C: SuperK, LBNE, Double Chooz, DarkSide, and neutrino R\\&D). On the energy frontier, new types of pixel detectors were developed for upgrades of the ATLAS experiment at the LHC (Task D). On the cosmic frontier, there were investigations of ultra high-energy neutrino astrophysics and the highest energy cosmic rays using special radio detection techniques (Task E: AMBER, ANITA R\\&D) and results of the analysis of ANITA data. In addition, we have developed new types of sophisticated and cutting edge instrumentation based on novel ``oscilloscope on a chip'' electronics (Task F). Theoretical physics research (Task G) is phenomenologically oriented and has studied experimental consequences of existing and proposed new theories relevant to the energy, cosmic and intensity frontiers. The senior investigators for proposal were T. E. Browder (Task A), F. A. Harris (Task B), P. Gorham (Task E), J. Kumar (Task G), J. Maricic (Task C), J. G. Learned (Task C), S. Pakvasa (Task G), S. Parker (Task D), S. Matsuno (Task C), X. Tata (Task G) and G. S. Varner (Tasks F, A, E).

  2. State Geothermal Resource Assessment and Data Collection Efforts

    Broader source: Energy.gov [DOE]

    HawaiiNational Geothermal Data System Aids in Discovering Hawaii's Geothermal Resource (November 20, 2012)

  3. Application of magnetic amplitude inversion in exploration for natural gas in volcanics Yaoguo Li, Center for Gravity, Electrical, and Magnetic Studies, Colorado School of Mines

    E-Print Network [OSTI]

    Application of magnetic amplitude inversion in exploration for natural gas in volcanics Yaoguo Li basins and have strong remanent magnetization. The appli- cation arises in exploration of natural gas identify the volcanic units at large depths. INTRODUCTION Exploration for natural gas hosted in volcanics

  4. Chemistry of spring and well waters on Kilauea Volcano, Hawaii, and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER es unaChelmsford,Volcanic National Park |

  5. Copyright 1998 IEEE. Published in the Proceedings of the Hawai'i International Conference On System Sciences, January 6-9, 1998, Kona, Hawaii.

    E-Print Network [OSTI]

    simulation of a spot market for electricity. While the development in this paper will account for both real and reactive power supply and consumption, the examples in the paper will concentrate on real power markets and Reactive Power 1. Introduction Over the last thirty years or so the optimal power flow (OPF) algorithm has

  6. Copyright 2003 IEEE. Published in the Proceedings of the Hawaii International Conference On System Sciences,

    E-Print Network [OSTI]

    # Dept. of Applied Economics & Management, Cornell University Abstract This paper presents a joint market to differences in operating rules and market designs, as well as differences in business practices. They include submittal times, or different operating procedures. Even apparently minor differences in rules can create

  7. This century, Hawai`i must develop low-cost systems that provide for sustainable use --

    E-Print Network [OSTI]

    Water Office of Technology Transfer and Economic Development Pacific Biodiesel Technologies Inc. Real anaerobic digester project at Pacific Biodiesel Technologies waste trap grease pro- cessing facility · 1, and commercializes WESS technology. To achieve this vision WESS will facilitate collaborative interactions between

  8. GEOMECHANICAL ANALYSIS OF VOLCANIC ROCK ON THE ISLAND OF SABA (NETHERLANDS ANTILLES)

    E-Print Network [OSTI]

    Hack, Robert

    GEOMECHANICAL ANALYSIS OF VOLCANIC ROCK ON THE ISLAND OF SABA (NETHERLANDS ANTILLES) Richard Rijkers 1 & Robert Hack 2 ABSTRACT A geomechanical analysis of a shallow small scale landslide, (NITG-TNO), Geomechanical Research, PO box 97, 2600 JA Delft, The Netherlands, tel.: +31 15 2697222, r

  9. ILLITE-SMECTITE MIXED-LAYER MINERALS IN HYDROTHERMAL ALTERATION OF VOLCANIC ROCKS

    E-Print Network [OSTI]

    Boyer, Edmond

    1 ILLITE-SMECTITE MIXED-LAYER MINERALS IN HYDROTHERMAL ALTERATION OF VOLCANIC ROCKS: I. ONE-layer minerals The person to whom correspondence and page proofs should be sent: Atsuyuki Inoue Department-00107011,version1-5Dec2007 Author manuscript, published in "Clays and Clay Minerals 53 (2005) 423-439" DOI

  10. ILLITE-SMECTITE MIXED-LAYER MINERALS IN HYDROTHERMAL ALTERATION OF VOLCANIC ROCKS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 ILLITE-SMECTITE MIXED-LAYER MINERALS IN HYDROTHERMAL ALTERATION OF VOLCANIC ROCKS: II. ONE-D HRTEM structure images of hydrothermal I-S mixed-layer minerals The person to whom correspondence manuscript, published in "Clays and Clay Minerals 53 (2005) 440-451" DOI : 10.1346/CCMN.2005.0530502 hal

  11. Following more than 30 years of seismic and volcanic quiescence, the Canary Islands

    E-Print Network [OSTI]

    Sleeman, Reinoud

    Following more than 30 years of seismic and volcanic quiescence, the Canary Islands region located History Several eruptions have taken place in the Canary Islands in the last 500 years, all of them, TRANSACTIONS, AMERICAN GEOPHYSICAL UNION PAGES 61,65 Monitoring the Reawakening of Canary Islands'Teide Volcano

  12. Impacts, volcanism and mass extinction: random coincidence or cause and effect?

    E-Print Network [OSTI]

    in diameter caused significant species extinctions. This includes the 170 km-diameter Chicxulub impact crater or even significant species extinctions. The K/T mass extinction may have been caused by the coincidenceImpacts, volcanism and mass extinction: random coincidence or cause and effect? G. KELLER

  13. Geochemistry of volcanic rocks from the Geysers geothermal area, California Coast Ranges

    E-Print Network [OSTI]

    source of geothermal energy, is ulti- 0024-4937/$ - see front matter D 2005 Published by Elsevier BGeochemistry of volcanic rocks from the Geysers geothermal area, California Coast Ranges Axel K Potsdam, Germany c Philippine Geothermal, Inc., Makati, Philippines Received 1 May 2004; accepted 25 May

  14. Geologic constraints on the existence and distribution of West Antarctic subglacial volcanism

    E-Print Network [OSTI]

    Hemming, Sidney R

    geothermal heat associated with their em- placement and cooling could play a crucial role in basal melt water [2] Geophysical studies suggest that subglacial volcanic activity and geothermal phenomena may help production. For instance, the geothermal flux estimate in the vicinity of a (potential) recently active

  15. Steam Explosions, Earthquakes, and Volcanic Eruptions--What's in Yellowstone's Future?

    E-Print Network [OSTI]

    Torgersen, Christian

    Steam Explosions, Earthquakes, and Volcanic Eruptions-- What's in Yellowstone's Future? U. In the background, steam vigorously rises from the hot Each year, millions of visitors come to admire the hot, such as geysers. Steam and hot water carry huge quantities of thermal en- ergy to the surface from the magma cham

  16. American Journal of Science UTURUNCU VOLCANO, BOLIVIA: VOLCANIC UNREST DUE TO

    E-Print Network [OSTI]

    Pritchard, Matthew

    American Journal of Science JUNE 2008 UTURUNCU VOLCANO, BOLIVIA: VOLCANIC UNREST DUE TO MID. Uturuncu volcano, SW Bolivia, is a dormant stratovolcano ( 85 km3 ) dominated by dacitic lava domes §§§ Empresa Minera Unificada S.A., La Paz, Bolivia; Mayelsuco@hotmail.com Institute of Geophysics, University

  17. High-Resolution Aeromagnetic Mapping Of Volcanic Terrain, Yellowstone...

    Open Energy Info (EERE)

    anomalies coincides with the mapped extent of several post-caldera rhyolitic lavas. Linear magnetic anomalies reflect the rectilinear fault systems characteristic of...

  18. The Timber Mountain magmato-thermal event: An intense widespread culmination of magmatic and hydrothermal activity at the southwestern Nevada volcanic field

    SciTech Connect (OSTI)

    Jackson, M.R. Jr.

    1988-05-01T23:59:59.000Z

    Eruption of the Rainier Mesa and Ammonia Tanks Members Timber Mountain Tuff at about 11.5 and 11.3 Ma, respectively, resulted in formation of the timber Mountain (TM) caldera; new K-Ar ages show that volcanism within and around the TM caldera continued for about 1 m.y. after collapse. Some TM age magmatic activity took place west and southeast of the TM caldera in the Beatty -- Bullfrog Hills and Shoshone Mountain areas, suggesting that volcanic activity at the TM caldera was an intense expression of an areally extensive magmatic system active from about 11.5 to 10Ma. Epithermal Au-Ag, Hg and fluorite mineralization and hydrothermal alteration are found in both within and surrounding the Timber Mountain -- Oasis Valley caldera complex. New K-Ar ages date this hydrothermal activity between about 13 and 10 Ma, largely between about 11.5 and 10 Ma, suggesting a genetic relation of hydrothermal activity to the TM magmatic system.

  19. UNCOVERING BURIED VOLCANOES: NEW DATA FOR PROBABILISTIC VOLCANIC HAZARD ASSESSMENT AT YUCCA MOUNTAIN

    SciTech Connect (OSTI)

    F.V. Perry

    2005-10-13T23:59:59.000Z

    Basaltic volcanism poses a potential hazard to the proposed Yucca Mountain nuclear waste repository because multiple episodes of basaltic volcanism have occurred in the Yucca Mountain region (YMR) in the past 11 Ma. Intervals between eruptive episodes average about 1 Ma. Three episodes have occurred in the Quaternary at approximately 1.1 Ma (5 volcanoes), 350 ka (2 volcanoes), and 80 ka (1 volcano). Because Yucca Mountain lies within the Basin and Range Province, a significant portion of the pre-Quaternary volcanic history of the YMR may be buried in alluvial-filled basins. An exceptionally high-resolution aeromagnetic survey and subsequent drilling program sponsored by the U.S. Department of Energy (DOE) began in 2004 and is gathering data that will enhance understanding of the temporal and spatial patterns of Pliocene and Miocene volcanism in the region (Figure 1). DOE has convened a ten-member expert panel of earth scientists that will use the information gathered to update probabilistic volcanic hazard estimates originally obtained by expert elicitation in 1996. Yucca Mountain is a series of north-trending ridges of eastward-tilted fault blocks that are bounded by north to northeast-trending normal faults. Topographic basins filled with up to 500 m of alluvium surround it to the east, south and west. In the past several decades, nearly 50 holes have been drilled in these basins, mainly for Yucca Mountain Project Site Characterization and the Nye County Early Warning Drilling Program. Several of these drill holes have penetrated relatively deeply buried (300-400 m) Miocene basalt; a Pliocene basalt dated at 3.8 Ma was encountered at a relatively shallow depth (100 m) in the northern Amargosa Desert (Anomaly B in Figure 1). The current drilling program is the first to specifically target and characterize buried basalt. Based on the new aeromagnetic survey and previous air and ground magnetic surveys (Connor et al. 2000; O'Leary et al. 2002), at least eight drill holes are planned with the goal of sampling each geographic subpopulation of magnetic anomalies in the region (Figure 1). This will result in a more complete characterization of the location, age, volume and composition of buried basaltic features for the purpose of updating the volcanic hazard assessment. Smith and Keenan (2005) suggested that volcanic hazard estimates might be 1-2 orders of magnitude higher than estimated by the DOE expert elicitation in 1996, based on (1) a proposed relationship between recurrence rates in the YMR and the Reveille-Lunar Crater volcanic field to the north, and (2) the implication that a number of so-far-undiscovered buried volcanoes would have a significant impact on hazard estimates. This article presents the new aeromagnetic data and an interpretation of the data that suggests magnetic anomalies nearest the proposed repository site represent buried Miocene basalt that will likely have only a minor impact on the volcanic hazard.

  20. Isotopic Analysis At San Juan Volcanic Field Area (Larson & Jr, 1986) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperiorEnergy Information GolesOpen

  1. Ocean energy systems. Quarterly report, July-September 1982

    SciTech Connect (OSTI)

    Not Available

    1982-09-30T23:59:59.000Z

    This quarterly report summarizes work on the following tasks as of September 30, 1982: (1) OTEC pilot plant conceptual design review; (2) OTEC methanol; (3) financial and legal considerations in OTEC implementation; (4) GEOTEC resource exploration at Adak, Alaska, and Lualualei, Hawaii; (5) preliminary GEOTEC plant cost estimates; and (6) supervision of testing of pneumatic wave energy conversion system.

  2. The Mount Manengouba, a complex volcano of the Cameroon Line:1 Volcanic history, petrological and geochemical features2

    E-Print Network [OSTI]

    Boyer, Edmond

    1 The Mount Manengouba, a complex volcano of the Cameroon Line:1 Volcanic history, petrological Group 2). Both magmatic groups belong to the under-saturated alkaline40 sodic series. Petrological

  3. Waste-to-Energy: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Davis, J.; Gelman, R.; Tomberlin, G.; Bain, R.

    2014-03-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) and the U.S. Navy have worked together to demonstrate new or leading-edge commercial energy technologies whose deployment will support the U.S. Department of Defense (DOD) in meeting its energy efficiency and renewable energy goals while enhancing installation energy security. This is consistent with the 2010 Quadrennial Defense Review report1 that encourages the use of 'military installations as a test bed to demonstrate and create a market for innovative energy efficiency and renewable energy technologies coming out of the private sector and DOD and Department of Energy laboratories,' as well as the July 2010 memorandum of understanding between DOD and the U.S. Department of Energy (DOE) that documents the intent to 'maximize DOD access to DOE technical expertise and assistance through cooperation in the deployment and pilot testing of emerging energy technologies.' As part of this joint initiative, a promising waste-to-energy (WTE) technology was selected for demonstration at the Hickam Commissary aboard the Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii. The WTE technology chosen is called high-energy densification waste-to-energy conversion (HEDWEC). HEDWEC technology is the result of significant U.S. Army investment in the development of WTE technology for forward operating bases.

  4. THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY: STACKED IMAGES AND CATALOGS

    SciTech Connect (OSTI)

    Gwyn, Stephen D. J., E-mail: Stephen.Gwyn@nrc-cnrc.gc.ca [Canadian Astronomy Data Centre, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, British Columbia, V9E 2E7 (Canada)

    2012-02-15T23:59:59.000Z

    This paper describes the image stacks and catalogs of the Canada-France-Hawaii Telescope Legacy Survey produced using the MegaPipe data pipeline at the Canadian Astronomy Data Centre. The Legacy Survey is divided into two parts. The Deep Survey consists of four fields each of 1 deg{sup 2}, with magnitude limits (50% completeness for point sources) of u = 27.5, g = 27.9, r = 27.7, i = 27.4, and z = 26.2. It contains 1.6 Multiplication-Sign 10{sup 6} sources. The Wide Survey consists of 150 deg{sup 2} split over four fields, with magnitude limits of u = 26.0, g = 26.5, r = 25.9, i = 25.7, and z = 24.6. It contains 3 Multiplication-Sign 10{sup 7} sources. This paper describes the calibration, image stacking, and catalog generation process. The images and catalogs are available on the web through several interfaces: normal image and text file catalog downloads, a 'Google Sky' interface, an image cutout service, and a catalog database query service.

  5. Calendar Year 2004 annual site environmental report : Tonopah Test Range, Nevada & Kauai Test Facility, Hawaii.

    SciTech Connect (OSTI)

    Montoya, Amber L.; Wagner, Katrina; Goering, Teresa Lynn; Koss, Susan I.; Salinas, Stephanie A.

    2005-09-01T23:59:59.000Z

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2004. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004b).

  6. Hawaii Solar Integration Study: Solar Modeling Developments and Study Results; Preprint

    SciTech Connect (OSTI)

    Orwig, K.; Corbus, D.; Piwko, R.; Schuerger, M.; Matsuura, M.; Roose, L.

    2012-12-01T23:59:59.000Z

    The Hawaii Solar Integration Study (HSIS) is a follow-up to the Oahu Wind Integration and Transmission Study completed in 2010. HSIS focuses on the impacts of higher penetrations of solar energy on the electrical grid and on other generation. HSIS goes beyond the island of Oahu and investigates Maui as well. The study examines reserve strategies, impacts on thermal unit commitment and dispatch, utilization of energy storage, renewable energy curtailment, and other aspects of grid reliability and operation. For the study, high-frequency (2-second) solar power profiles were generated using a new combined Numerical Weather Prediction model/ stochastic-kinematic cloud model approach, which represents the 'sharp-edge' effects of clouds passing over solar facilities. As part of the validation process, the solar data was evaluated using a variety of analysis techniques including wavelets, power spectral densities, ramp distributions, extreme values, and cross correlations. This paper provides an overview of the study objectives, results of the solar profile validation, and study results.

  7. Acoustic waves in the atmosphere and ground generated by volcanic activity

    SciTech Connect (OSTI)

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru [Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Instituto Geofisico, Escuela Politecnica Nacional, Ladron de Guevara E11-253, Aptdo 2759, Quito (Ecuador); Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)

    2012-09-04T23:59:59.000Z

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  8. Monitoring Volcanic Eruptions with a Wireless Sensor Network

    E-Print Network [OSTI]

    consumption of these systems is very high, requiring large batteries and solar panels for long deployments, and differ- entiate true eruptions from noise or other signals (e.g., mining activity) not of volcanological interest. A typical campaign-type study will involve placement of one or more stations on various sites

  9. Geologic and geophysical investigations of the Zuni-Bandera volcanic field, New Mexico

    SciTech Connect (OSTI)

    Ander, M.E.; Heiken, G.; Eichelberger, J.; Laughlin, A.W.; Huestis, S.

    1981-05-01T23:59:59.000Z

    A positive, northeast-trending gravity anomaly, 90 km long and 30 km wide, extends southwest from the Zuni uplift, New Mexico. The Zuni-Bandera volcanic field, an alignment of 74 basaltic vents, is parallel to the eastern edge of the anomaly. Lavas display a bimodal distribution of tholeiitic and alkalic compositions, and were erupted over a period from 4 Myr to present. A residual gravity profile taken perpendicular to the major axis of the anomaly was analyzed using linear programming and ideal body theory to obtain bounds on the density contrast, depth, and minimum thickness of the gravity body. Two-dimensionality was assumed. The limiting case where the anomalous body reaches the surface gives 0.1 g/cm/sup 3/ as the greatest lower bound on the maximum density contrast. If 0.4 g/cm/sup 3/ is taken as the geologically reasonable upper limit on the maximum density contrast, the least upper bound on the depth of burial is 3.5 km and minimum thickness is 2 km. A shallow mafic intrusion, emplaced sometime before Laramide deformation, is proposed to account for the positive gravity anomaly. Analysis of a magnetotelluric survey suggests that the intrusion is not due to recent basaltic magma associated with the Zuni-Bandera volcanic field. This large basement structure has controlled the development of the volcanic field; vent orientations have changed somewhat through time, but the trend of the volcanic chain followed the edge of the basement structure. It has also exhibited some control on deformation of the sedimentary section.

  10. Contact information: Richard Rocheleau (808) 956-8346; Larry Cutshaw (808) 956-7787 Phone: (808) 956-8890; Fax: (808) 956-2336; 1680 East-West Road, POST 109; Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    in the CCS Figure 4 Flow chart of initial Wind Smoothing Algorithm embedded in the CCS After completing://www.hnei.hawaii.edu/ An Equal Opportunity/Affirmative Action Institution HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean Description Integrating intermittent renewable energy resources onto the electricity grid gives rise

  11. Midcontinent rift volcanism in the Lake Superior region: Sr, Nd, and Pb isotopic evidence for a mantle plume origin

    SciTech Connect (OSTI)

    Nicholson, S.W. (Geological Survey, Reston, VA (USA) Univ. of Minnesota, MN (USA)); Shirey, S.B. (Carnegie Institution of Washington, DC (USA))

    1990-07-10T23:59:59.000Z

    Between 1091 and 1098 Ma, most of a 15- to 20-km thickness of dominantly tholeiitic basalt erupted in the Midcontinent Rift System of the Lake Superior region, North American. The Portage Lake Volcanics in Michigan, which are the youngest MRS flood basalts, fall into distinctly high- and low-TiO{sub 2} types having different liquid lines of descent. Incompatible trace elements in both types of tholeiites are enriched compared to depleted or primitive mantle (La/Yb = 4.3-5.3; Th/Ta = 2.12-2.16; Zr/Y = 4.3-4.4), and both basalt types are isotopically indistinguishable. Sr, Nd, and Pb isotopic compositions of the Portage Lake tholeiites have {sup 87}Sr/{sup 86}Sr{sub i} {approx}0.7038, {epsilon}{sub Nd(1095 Ma)} {approx}0 {plus minus} 2, and {mu}{sub 1} {approx}8.2. Model ages with respect to a depleted mantle source (T{sub DM}) average about 1950-2100 Ma. Portage Lake rhyolits fall into two groups. Type I rhyolites have Nd and Pb isotopic characteristics ({epsilon}{sub Nd(1095 Ma)} {approx}0 to {minus}4.7; {mu}{sub 1} {approx}8.2-7.8) consistent with contamination of tholeiitic rocks by 5-10% Archean crust. The one type II rhyolite analyzed has Nd and Pb isotopic compositions ({epsilon}{sub Nd(1095 Ma)} {approx}{minus}13 to {minus}16; {mu}{sub 1} {approx}7.6-7.7) which are consistent with partial melting of Archean crust. Early Proterozoic crust was not a major contaminant of MRS rocks in the Lake Superior region. Most reported Nd and Pb isotopic compositions of MRS tholeiites from the main stage of volcanism in the Lake Superior region and of the Duluth Complex are comparable to the Nd and Pb isotopic data for Portage lake tholeiites. The isotopic enrichment of the MRS source compared to depleted mantle is striking and must have occurred at least 700 m.y. before 1100 Ma.

  12. Qualification Plan for Phase One of True-MidPacific Geothermal Venture: James Campbell - Kahaualea Project, Island of Hawaii

    SciTech Connect (OSTI)

    None

    1981-06-01T23:59:59.000Z

    The objective of this project is to develop the geothermal resources of the James Campbell Estate, comprising acres in the Puna District of the Island of Hawaii. The geothermal resource is assumed to exist in the vicinity of the East Rift of the Kilauea volcano. The location of the proposed geothermal well field and the geothermal-electric power plant are shown on Dwg. No. E-04-001. Access to the project area will be provided by a new road extension from the boundary road south from Glenwood on Highway 11.

  13. Comprehensive Summary and Analysis of Oral and Written Scoping Comments on the Hawaii Geothermal Project EIS (DOE Review Draft)

    SciTech Connect (OSTI)

    None

    1992-09-18T23:59:59.000Z

    This report contains summaries of the oral and written comments received during the scoping process for the Hawaii Geothermal Project (HGP) Environmental Impact Statement (EIS). Oral comments were presented during public scoping meetings; written comments were solicited at the public scoping meetings and in the ''Advance Notice of Intent'' and ''Notice of Intent'' (published in the ''Federal Register'') to prepare the HGP EIS. This comprehensive summary of scoping inputs provides an overview of the issues that have been suggested for inclusion in the HGP EIS.

  14. Surveys of arthropod and gastropod diversity in the geothermal resource subzones, Puna, Hawaii

    SciTech Connect (OSTI)

    Miller, S.E.; Burgett, J.; Bruegmann, M.

    1995-04-01T23:59:59.000Z

    The invertebrate surveys reported here were carried out as part of ecological studies funded by the Department of Energy in support of their environmental impact statement (EIS) for the Hawaii Geothermal Project. Currently, preparation of the EIS has been suspended, and all supporting information is being archived and made available to the public. The invertebrate surveys reported here assessed diversity and abundance of the arthropod and gastropod fauna in forested habitat and lava tubes in or near the three geothermal resource subzones. Recommendations for conservation of these organisms are given in this report. Surveys were conducted along three 100-m transect lines at each of the six forested locations. Malaise traps, baited pitfall traps, yellow pan traps, baited sponge lures, and visual examination of vegetation were used to assess invertebrate diversity along each transect line. Three of these locations were adjacent to roads, and three were adjacent to lava flows. Two of these lava-forest locations (Keauohana Forest Reserve and Pu`u O`o) were relatively remote from direct human impacts. The third location (Southeast Kula) was near a low-density residential area. Two lava tubes were surveyed. The forest over one of these tubes (Keokea tube) had recently been burned away. This tube was used to assess the effects of loss of forest habitat on the subterranean fauna. An undisturbed tube (Pahoa tube) was used as a control. Recommendations offered in this report direct geothermal development away from areas of high endemic diversity and abundance, and toward areas where natural Hawaiian biotic communities have already been greatly disturbed. These disturbed areas are mainly found in the lower half of the Kamaili (middle) geothermal subzone and throughout most of the Kapoho (lower) geothermal subzone. These recommendation may also generally apply to other development projects in the Puna District.

  15. Early recovery of a Hawaiian lowland rainforest following clearcutting at Kalapana on the Island of Hawaii

    SciTech Connect (OSTI)

    Grossman, D.H.

    1992-01-01T23:59:59.000Z

    The recovery of lowland rainforest vegetation on the Island of Hawaii was evaluated 2 years after clearcutting. Rainforest quality was assessed with regeneration success associated with the environmental changes. Sixty-three percent of the 57 vascular species in the forest were native to the Hawaiian rainforest. Phanerophytes were the most important life form. The presence of Psidium cattleianum and other alien species demonstrated disturbances had occurred in selected areas prior to the clearcutting. Two years after clearcutting (1987), only 24% of the 101 species coming into the clearcut area were native. The shrubs, micro- and nano-phanerophyte, were the dominant life forms, represented by Pipturus albidus, a native rainforest shrub or tree, and four non-native shrub species. Metrosideros polymorpha, the dominant tree in the native forest, was successfully regenerating from seed across the clear-cut area. The forest seedbank analysis also demonstrated that Metrosideros, along with the seeds of important exotic species colonizing the clearcut area were presented in the forest soils. The forest and clearcut species had a high rate of correlation with the elevation gradient. The underlying lava flows strong influenced past and present vegetation associations. In the clearcut area, the degree of compaction and distance from the forest were critical factors determining the composition of recovering vegetation. The microclimate variables of soils, significantly altered due to the effects of clearcutting, and competition from weeds probably lead to poor germination and growth of native rainforest species. This native forest is not pristine, but unique in stature, in complex of cohort stands, and in position on the landscape. It is extremely prone to species composition shift following perturbation, due to the presence of the weed seedbank in the forest seedbank as demonstrated in the dominance of these species across the clearcut area.

  16. Electricity Transmission, Pipelines, and National Trails. An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, Alaska, and Hawaii

    SciTech Connect (OSTI)

    Kuiper, James A; Krummel, John R; Hlava, Kevin J; Moore, H Robert; Orr, Andrew B; Schlueter, Scott O; Sullivan, Robert G; Zvolanek, Emily A

    2014-03-25T23:59:59.000Z

    As has been noted in many reports and publications, acquiring new or expanded rights-of-way for transmission is a challenging process, because numerous land use and land ownership constraints must be overcome to develop pathways suitable for energy transmission infrastructure. In the eastern U.S., more than twenty federally protected national trails (some of which are thousands of miles long, and cross many states) pose a potential obstacle to the development of new or expanded electricity transmission capacity. However, the scope of this potential problem is not well-documented, and there is no baseline information available that could allow all stakeholders to study routing scenarios that could mitigate impacts on national trails. This report, Electricity Transmission, Pipelines, and National Trails: An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, was prepared by the Environmental Science Division of Argonne National Laboratory (Argonne). Argonne was tasked by DOE to analyze the “footprint” of the current network of National Historic and Scenic Trails and the electricity transmission system in the 37 eastern contiguous states, Alaska, and Hawaii; assess the extent to which national trails are affected by electrical transmission; and investigate the extent to which national trails and other sensitive land use types may be affected in the near future by planned transmission lines. Pipelines are secondary to transmission lines for analysis, but are also within the analysis scope in connection with the overall directives of Section 368 of the Energy Policy Act of 2005, and because of the potential for electrical transmission lines being collocated with pipelines. Based on Platts electrical transmission line data, a total of 101 existing intersections with national trails on federal land were found, and 20 proposed intersections. Transmission lines and pipelines are proposed in Alaska; however there are no locations that intersect national trails. Source data did not indicate any planned transmission lines or pipelines in Hawaii. A map atlas provides more detailed mapping of the topics investigated in this study, and the accompanying GIS database provides the baseline information for further investigating locations of interest. In many cases the locations of proposed transmission lines are not accurately mapped (or a specific route may not yet be determined), and accordingly the specific crossing locations are speculative. However since both national trails and electrical transmission lines are long linear systems, the characteristics of the crossings reported in this study are expected to be similar to both observed characteristics of the existing infrastructure provided in this report, and of the new infrastructure if these proposed projects are built. More focused study of these siting challenges is expected to mitigate some of potential impacts by choosing routes that minimize or eliminate them. The current study primarily addresses a set of screening-level characterizations that provide insights into how the National Trail System may influence the siting of energy transport facilities in the states identified under Section 368(b) of the Energy Policy Act of 2005. As such, it initializes gathering and beginning analysis of the primary environmental and energy data, and maps the contextual relationships between an important national environmental asset and how this asset intersects with energy planning activities. Thus the current study sets the stage for more in-depth analyses and data development activities that begin to solve key transmission siting constraints. Our recommendations for future work incorporate two major areas: (1) database development and analytics and (2) modeling and scenario analysis for energy planning. These recommendations provide a path forward to address key issues originally developed under the Energy Policy Act of 2005 that are now being carried forward under the President’s Climate Action Plan.

  17. Volcanic ash in feed coal and its influence on coal combustion products

    SciTech Connect (OSTI)

    Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.; Brownfield, I.K.; Hower, J.C.; Stricker, G.D.; O'Connor, J.T.

    2000-07-01T23:59:59.000Z

    The US Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana Utility to determine the physical and chemical properties of feed coal and coal combustion products (CCPs) from a coal-fired power plant. The plant utilizes a low-sulfur (.23--.47 weight percent S) coal from the Powder River Basin, Wyoming. Scanning Electron Microscope (SEM) and X-ray diffraction (XRD) analysis of feed coal samples identified two mineral suites. A primary suite (not authigenic) consisting of quartz (detrital and volcanic beta-form grains), biotite, and minor zircon and a secondary authigenic mineral suite containing calcite, alumino-phosphates (crandallite and gorceixite), kaolinite, quartz, anatase, barite, and pyrite. The authigenic minerals are attributed to air-fall and reworked volcanic ash that was deposited in peat-forming mires. The Powder River Basin feed coals contain higher amounts of Ba, Ca, Mg, Na, Sr, and P compared to other analyzed eastern coals. These elements are associated with alumino-phosphate, biotite, calcite, and clay minerals. The element associations are indicative of coal that incorporated volcanic ash during deposition. XRD analysis of CCPs revealed a predominance of glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals in the fly ash; and quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite in the bottom ash. Microprobe and SEM analysis of fly ash samples revealed quartz, zircon, monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, and rounded grains of wollastonite with periclase. The abundant Ca and Mg mineral phases in the fly ashes are related to the presence of carbonate, clay, and phosphate minerals in the feed coal. The Ca- and Mg-rich mineral phases in the CCPs can be attributed to volcanic minerals deposited in the peat-forming mire. Dissolution and alteration of these minerals occurred either in the peat-forming sate or during coalification/diagenesis contributing to the authigenic mineral suite. Additionally, detrital mineral input and epigenetic ground-water flow may have affected the geochemistry of the feed coal.

  18. Tectonic versus volcanic origin of the summit depression at Medicine Lake Volcano, California

    SciTech Connect (OSTI)

    Mark Leon Gwynn

    2010-05-01T23:59:59.000Z

    Medicine Lake Volcano is a Quaternary shield volcano located in a tectonically complex and active zone at the transition between the Basin and Range Province and the Cascade Range of the Pacific Province. The volcano is topped by a 7x12 km elliptical depression surrounded by a discontinuous constructional ring of basaltic to rhyolitic lava flows. This thesis explores the possibility that the depression may have formed due to regional extension (rift basin) or dextral shear (pull-apart basin) rather than through caldera collapse and examines the relationship between regional tectonics and localized volcanism. Existing data consisting of temperature and magnetotelluric surveys, alteration mineral studies, and core logging were compiled and supplemented with additional core logging, field observations, and fault striae studies in paleomagnetically oriented core samples. These results were then synthesized with regional fault data from existing maps and databases. Faulting patterns near the caldera, extension directions derived from fault striae P and T axes, and three-dimensional temperature and alteration mineral models are consistent with slip across arcuate ring faults related to magma chamber deflation during flank eruptions and/or a pyroclastic eruption at about 180 ka. These results are not consistent with a rift or pull-apart basin. Limited subsidence can be attributed to the relatively small volume of ash-flow tuff released by the only known major pyroclastic eruption and is inconsistent with the observed topographic relief. The additional relief can be explained by constructional volcanism. Striae from unoriented and oriented core, augmented by striae measurements in outcrop suggest that Walker Lane dextral shear, which can be reasonably projected from the southeast, has probably propagated into the Medicine Lake area. Most volcanic vents across Medicine Lake Volcano strike north-south, suggesting they are controlled by crustal weakness related to Basin and Range extension. Interaction of dextral shear, Basin and Range extension, and the zone of crustal weakness expressed as the Mount Shasta-Medicine Lake volcanic highland controlled the location and initiation of Medicine Lake Volcano at about 500 ka.

  19. TECTONIC VERSUS VOLCANIC ORIGIN OF THE SUMMIT DEPRESSION AT MEDICINE LAKE VOLCANO, CALIFORNIA

    SciTech Connect (OSTI)

    Mark Leon Gwynn

    2010-05-01T23:59:59.000Z

    Medicine Lake Volcano is a Quaternary shield volcano located in a tectonically complex and active zone at the transition between the Basin and Range Province and the Cascade Range of the Pacific Province. The volcano is topped by a 7x12 km elliptical depression surrounded by a discontinuous constructional ring of basaltic to rhyolitic lava flows. This thesis explores the possibility that the depression may have formed due to regional extension (rift basin) or dextral shear (pull-apart basin) rather than through caldera collapse and examines the relationship between regional tectonics and localized volcanism. Existing data consisting of temperature and magnetotelluric surveys, alteration mineral studies, and core logging were compiled and supplemented with additional core logging, field observations, and fault striae studies in paleomagnetically oriented core samples. These results were then synthesized with regional fault data from existing maps and databases. Faulting patterns near the caldera, extension directions derived from fault striae P and T axes, and three-dimensional temperature and alteration mineral models are consistent with slip across arcuate ring faults related to magma chamber deflation during flank eruptions and/or a pyroclastic eruption at about 180 ka. These results are not consistent with a rift or pull-apart basin. Limited subsidence can be attributed to the relatively small volume of ash-flow tuff released by the only known major pyroclastic eruption and is inconsistent with the observed topographic relief. The additional relief can be explained by constructional volcanism. Striae from unoriented and oriented core, augmented by striae measurements in outcrop suggest that Walker Lane dextral shear, which can be reasonably projected from the southeast, has probably propagated into the Medicine Lake area. Most volcanic vents across Medicine Lake Volcano strike north-south, suggesting they are controlled by crustal weakness related to Basin and Range extension. Interaction of dextral shear, Basin and Range extension, and the zone of crustal weakness expressed as the Mount Shasta-Medicine Lake volcanic highland controlled the location and initiation of Medicine Lake Volcano at about 500 ka.

  20. Type D: Sedimentary-hosted, Volcanic-related Resource | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships JumpType B: Andesitic Volcanic

  1. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1996, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode

    E-Print Network [OSTI]

    46 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1996, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode Island, Vermont. Together, these firms operated about 820 mines. Estimated value of all marketable clay produced was about

  2. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1999, clays were produced in most States except Alaska, Delaware, Hawaii,

    E-Print Network [OSTI]

    50 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1999, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode Island, Vermont, and Wisconsin. A total of 238 companies operated approximately 700 clay pits or quarries. The leading 20 firms

  3. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1997, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode

    E-Print Network [OSTI]

    46 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1997, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode Island, Vermont, these firms operated approximately 739 mines. The estimated value of all marketable clay produced was about $1

  4. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 2000, clays were produced in all States except Alaska, Delaware, Hawaii, Idaho,

    E-Print Network [OSTI]

    46 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 2000, clays were produced in all States except Alaska, Delaware, Hawaii, Idaho, New Hampshire, Rhode Island, Vermont, and Wisconsin. A total of 233 companies operated approximately 650 clay pits or quarries

  5. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1998, clays were produced in most States except Alaska, Delaware, Hawaii, Idaho,

    E-Print Network [OSTI]

    50 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1998, clays were produced in most States except Alaska, Delaware, Hawaii, Idaho, New Hampshire, Rhode clay produced was about $2.14 billion. Major domestic uses for specific clays were estimated as follows

  6. Hawaii Hydrogen Power Park The U.S. Department of Energy (U.S. DOE) has promoted the vision that the transition to a

    E-Print Network [OSTI]

    ). The objective of the PICHTR project was developing and testing the use of wind and solar power to power small demonstration program we used the electricity generated by the wind turbine and solar array to powerHawaii Hydrogen Power Park Background The U.S. Department of Energy (U.S. DOE) has promoted

  7. The 1st International Symposium on Micro & Nano Technology, 14-17 March, 2004, Honolulu, Hawaii, USA MOLECULAR DYNAMICS SIMULATIONS OF HEAT TRANSFER ISSUES

    E-Print Network [OSTI]

    Maruyama, Shigeo

    The 1st International Symposium on Micro & Nano Technology, 14-17 March, 2004, Honolulu, Hawaii, USA MOLECULAR DYNAMICS SIMULATIONS OF HEAT TRANSFER ISSUES IN CARBON NANOTUBES S. Maruyama, Y-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, JAPAN ABSTRACT Several heat transfer problems related to single

  8. The Mount Perkins block, northwestern Arizona: An exposed cross section of an evolving, preextensional to synextensional magmatic system

    E-Print Network [OSTI]

    Faulds, James E.; Feuerbach, Daniel L.; Reagan, Mark K.; Metcalf, Rodney V.; Gans, Phil; Walker, J. Douglas

    1995-08-10T23:59:59.000Z

    The steeply tilted Mount Perkins block, northwestern Arizona, exposes a cross section of a magmatic system that evolved through the onset of regional extension. New 40Ar/39Ar ages of variably tilted (0–90°) volcanic strata ...

  9. PHOTOMETRIC REDSHIFTS IN THE HAWAII-HUBBLE DEEP FIELD-NORTH (H-HDF-N)

    SciTech Connect (OSTI)

    Yang, G.; Xue, Y. Q.; Kong, X.; Wang, J.-X.; Yuan, Y.-F.; Zhou, H. Y. [Key Laboratory for Research in Galaxies and Cosmology, Center for Astrophysics, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Luo, B.; Brandt, W. N. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Alexander, D. M. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Bauer, F. E. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, 306, Santiago 22 (Chile); Cui, W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Lehmer, B. D. [The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Wu, X.-B. [Department of Astronomy, Peking University, Beijing 100871 (China); Yuan, F., E-mail: yg1991@mail.ustc.edu.cn, E-mail: xuey@ustc.edu.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)

    2015-01-01T23:59:59.000Z

    We derive photometric redshifts (z {sub phot}) for sources in the entire (?0.4 deg{sup 2}) Hawaii-Hubble Deep Field-North (H-HDF-N) field with the EAzY code, based on point-spread-function-matched photometry of 15 broad bands from the ultraviolet (U band) to mid-infrared (IRAC 4.5 ?m). Our catalog consists of a total of 131,678 sources. We evaluate the z {sub phot} quality by comparing z {sub phot} with spectroscopic redshifts (z {sub spec}) when available, and find a value of normalized median absolute deviation ?{sub NMAD} = 0.029 and an outlier fraction of 5.5% (outliers are defined as sources having |z{sub phot} – z{sub spec} |/(1 + z{sub spec} ) > 0.15) for non-X-ray sources. More specifically, we obtain ?{sub NMAD} = 0.024 with 2.7% outliers for sources brighter than R = 23 mag, ?{sub NMAD} = 0.035 with 7.4% outliers for sources fainter than R = 23 mag, ?{sub NMAD} = 0.026 with 3.9% outliers for sources having z < 1, and ?{sub NMAD} = 0.034 with 9.0% outliers for sources having z > 1. Our z {sub phot} quality shows an overall improvement over an earlier z {sub phot} work that focused only on the central H-HDF-N area. We also classify each object as a star or galaxy through template spectral energy distribution fitting and complementary morphological parameterization, resulting in 4959 stars and 126,719 galaxies. Furthermore, we match our catalog with the 2 Ms Chandra Deep Field-North main X-ray catalog. For the 462 matched non-stellar X-ray sources (281 having z {sub spec}), we improve their z {sub phot} quality by adding three additional active galactic nucleus templates, achieving ?{sub NMAD} = 0.035 and an outlier fraction of 12.5%. We make our catalog publicly available presenting both photometry and z {sub phot}, and provide guidance on how to make use of our catalog.

  10. A limit on the effect of rectified diffusion in volcanic systems

    E-Print Network [OSTI]

    Ichihara, Mie; Brodsky, Emily E.

    2006-01-01T23:59:59.000Z

    the ICMF, New Orleans, LA. Linde, A. T. , and I. S. Sacks (like those ob- served by Linde and Sacks [1998]. The

  11. Active System For Monitoring Volcanic Activity- A Case Study Of The

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to: navigation,BarriersIzu-Oshima Volcano, Central

  12. Hot Spring Monitoring at Lassen Volcanic National Park, California 1983-1985

    SciTech Connect (OSTI)

    Sorey, Michael L.

    1986-01-21T23:59:59.000Z

    Data collected on several occasions between 1983 and 1985 as part of a hydrologic monitoring program by the U.S. Geological Survey permit preliminary estimation of the natural variability in the discharge characteristics of hydrothermal features in Lassen Volcanic National Park and the Lassen KGRA in northern California. The total rate of discharge of high-chloride hot springs along Mill Creek and Canyon Creek in the Lassen KGRA has averaged 20.9 {+-} 1.7 L/s, based on seven measurements of the flux of chloride in these streams. Measured chloride flux does not appear to increase with streamflow during the spring-summer snowmelt period, as observed at Yellowstone and Long Valley Caldera. The corresponding fluxes of arsenic in Mill Creek and Canyon Creek decrease within distances of about 2 km downstream from the hot springs by approximately 30%, most likely due to chemical absorption on streambed sediments. Within Lassen Volcanic National Park, measurements of sulfate flux in streams draining steam-heated thermal features at Sulphur Works and Bumpass Hell have averaged 7.5 {+-} 1.0 and 4.0 {+-} 1.5 g/s, respectively. Calculated rates of steam upflow containing, dissolved H{sub 2}S to supply these sulfate fluxes are 1.8 kg/s at Sulphur Works and 1.0 kg/s at Bumpass Hell.

  13. HiSERF --Hawai`i Sustainable Energy Research Facility The Hawai`i Fuel Cell Test Facility was established in 2003 with a grant from the Office

    E-Print Network [OSTI]

    cell and battery energy storage systems Since the opening of the facility, funding for fuel cell and testing several advanced, grid-scale battery energy storage systems (BESS) with individual power ratings to HECO's ongoing efforts to reduce the use of fossil fuels. Grid-scale battery storage at Hawi Wind Farm

  14. RECOVERY AND SEQUESTRATION OF CO{sub 2} FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect (OSTI)

    Takashi Nakamura; Miguel Olaizola; Stephen M. Masutani

    2004-07-01T23:59:59.000Z

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 January to 31 March 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run first pilot scale production run with coal combustion gas to microalgae. Aquasearch started the second full scale carbon sequestration tests with propane combustion gases. Aquasearch also conducted modeling work to study the change in alkalinity in the medium resulting form microalgal photosynthesis and growth. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  15. Classifying Three-way Seismic Volcanic Data by Dissimilarity Representation Diana Porro-Mu~noz , Isneri Talavera, Robert P.W. Duin, Mauricio Orozco-Alzate and John Makario Londo~no-Bonilla

    E-Print Network [OSTI]

    Duin, Robert P.W.

    Classifying Three-way Seismic Volcanic Data by Dissimilarity Representation Diana Porro in a natural way. As an example, the classification of seismic volcanic events is used. It is shown features. Keywords-volcanic seismic data, three-way representation, dissimilarity representation

  16. RM12-2703 Advanced Rooftop Unit Control Retrofit Kit Field Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Doebber, I.; Dean, J.; Dominick, J.; Holland, G.

    2014-03-01T23:59:59.000Z

    As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This was one of several demonstrations of new and underutilized commercial energy efficiency technologies. The consistent year-round demand for air conditioning and dehumidification in Hawaii provides an advantageous demonstration location for advanced rooftop control (ARC) retrofit kits to packaged rooftop units (RTUs). This report summarizes the field demonstration of ARCs installed on nine RTUs serving a 70,000-ft2 exchange store (large retail) and two RTUs, each serving small office buildings located on Joint Base Pearl Harbor-Hickam (JBPHH).

  17. Hawaii demand-side management resource assessment. Final report, Reference Volume 3 -- Residential and commercial sector DSM analyses: Detailed results from the DBEDT DSM assessment model; Part 1, Technical potential

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. Numerous tables and figures illustrating the technical potential for demand-side management are included.

  18. High CO2 Levels in Boreholes at El Teide Volcano Complex (Tenerife, Canary Islands): Implications for Volcanic

    E-Print Network [OSTI]

    Long, Bernard

    High CO2 Levels in Boreholes at El Teide Volcano Complex (Tenerife, Canary Islands): Implications emissions at numerous water prospection drillings in the volcanic island of Tenerife. Large concentrations region of the island (Las Can~ adas del Teide caldera). In this work we analysed CO2 concentrations

  19. Storage conditions and eruptive dynamics of central versus flank eruptions in volcanic islands: the case of Tenerife (Canary Islands,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    : the case of Tenerife (Canary Islands, Spain) Joan AndĂșjara,* , Fidel Costab , Bruno Scailleta a. UniversitĂ©1 Storage conditions and eruptive dynamics of central versus flank eruptions in volcanic islands eruptions (ca. 1 km3 ) of the Teide-Pico Viejo complex (Tenerife Island). Combined with previous

  20. Lithospheric response to volcanic loading by the Canary Islands: constraints from seismic reflection data in their flexural moat

    E-Print Network [OSTI]

    Watts, A. B. "Tony"

    Lithospheric response to volcanic loading by the Canary Islands: constraints from seismic the seismic stratigraphy of the flexural moat that flanks the Canary Islands. The moat stratigraphy has been the volcanoes that make up the Canary Islands progressively load the underlying lithosphere from east to west

  1. Geothermal waters from the Taupo Volcanic Zone, New Zealand: Li,1 B and Sr isotopes characterization2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Geothermal waters from the Taupo Volcanic Zone, New Zealand: Li,1 B and Sr isotopes 13 In this study, we report chemical and isotope data for 23 geothermal water samples collected geothermal waters collected from deep boreholes16 in different geothermal fields (Ohaaki, Wairakei, Mokai

  2. Volcanic activity can have a profound effect on the Earth's atmosphere and environment across many spatial and

    E-Print Network [OSTI]

    Robock, Alan

    . Fink (Eds.) 117 Earth's Deep Interior: Mineral Physics and Tomography From the Atomic to the Global and the atmosphere will find this work an important resource. Volcanism and the Earth's Atmosphere Alan Robock IUGG Volumes Maurice Ewing Volumes Mineral Physics Volumes #12;105 New Perspectives on the Earth

  3. Age, geochemical and SrNdPb isotopic constraints for mantle source characteristics and petrogenesis of Teru Volcanics,

    E-Print Network [OSTI]

    Stern, Robert J.

    Age, geochemical and Sr­Nd­Pb isotopic constraints for mantle source characteristics and petrogenesis of Teru Volcanics, Northern Kohistan Terrane, Pakistan S.D. Khana,*, R.J. Sternb , M.I. Mantonb, University of Peshawar, Pakistan Accepted 21 April 2004 Available online 23 September 2004 Abstract

  4. Atmospheric chemistry of a 3334 hour old volcanic cloud from Hekla Volcano (Iceland): Insights from direct sampling

    E-Print Network [OSTI]

    Rose, William I.

    Geological Engineering and Sciences, Michigan Technological University, Houghton, Michigan, USA. 2 Department and nitric acid promoted polar stratospheric cloud (PSC) formation at 201­203 K, yielding ice, nitric acid) particles. We show that these volcanically induced PSCs, especially the ice and NAT particles, activated

  5. Volcanic particle aggregation in explosive eruption columns. Part I: Parameterization of the microphysics of hydrometeors and ash

    E-Print Network [OSTI]

    Rose, William I.

    , Michigan Technological University, Houghton, MI, USA d Department of Earth Sciences, University of Bristol imply that volcanic particles are active as condensation nuclei for water and ice formation. Ash can: Department of Geography, University of Cambridge, UK. 2 Present address: NOAA Geophysical Fluid Dynamics

  6. Earth Planets Space, 52, 329336, 2000 Rock magnetism of sediments in the Angola-Namibia upwelling system

    E-Print Network [OSTI]

    Yamazaki, Toshitsugu

    Earth Planets Space, 52, 329­336, 2000 Rock magnetism of sediments in the Angola-Namibia upwelling system with special reference to loss of magnetization after core recovery Toshitsugu Yamazaki1 , Peter A Magnetism, University of Minnesota, Minneapolis, MN 55455-0128, U.S.A. 3Hawaii Institute of Geophysics

  7. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    Equinox Fuel Cell Electric Vehicles Project Description and Goals Through National Aeronautic and Space://www.sierralobo.com/pag es/default.aspx Related Projects: Airborne Contaminants and Fuel Cell Performance Hydrogen for GM) is investigating the feasibility of using a proton exchange membrane fuel cell system (PEMFCS) to separate gaseous

  8. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    the system will be used for transportation fuel and stationary power fuel cells. Project Benefits completed. Environmental assessment initiated. Fuel cell electric bus ordered. First Responder training for HAVO Vehicles Hydrogen for GM Equinox Vehicles Project Description and Goals Under an award from

  9. Ying Hu,Anthony Kuh, and Aleksandar Kavcic University of Hawaii at Manoa, USA

    E-Print Network [OSTI]

    Kavcic, Aleksandar

    to the feeder cir- cuit, thus filling in the gap between the traditional energy management system (EMS- able energy management system into the Smart-Grid Distribution Management System (DMS) and automated estimation problem. Our approach provides a seamless connection from the monitoring of transmission system

  10. The Role of UH Engineers in Bringing Food Security via Aquaculture to Hawai'i

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    in aquaponics, the aquaculture farmer need to have the solve issue related to recirculating aquaculture systems

  11. A survey of endangered waterbirds on Maui and Oahu and assessment of potential impacts to waterbirds from the proposed Hawaii Geothermal Project transmission corridor. Final report

    SciTech Connect (OSTI)

    Evans, K.; Woodside, D.; Bruegmann, M. [Fish and Wildlife Service, Honolulu, HI (United States). Pacific Islands Office

    1994-08-01T23:59:59.000Z

    A survey of endangered waterbirds on Maui and Oahu was conducted during August and September 1993 to identify potential waterbird habitats within the general area of the proposed Hawaii Geothermal Project transmission corridor and to assess the potential impacts to endangered waterbird of installing and operating a high voltage transmission line from the Island of Hawaii to the islands of Oahu and Maui. Annual waterbird survey information and other literature containing information on specific wetland sites were summarized. Literature describing impacts of overhead transmission lines on birds was used to evaluate potential impacts of the proposed project on endangered waterbirds, resident wading birds, and migratory shorebirds and waterfowl. On Oahu, five wetland habitats supporting endangered Hawaiian waterbirds were identified within 2.5 miles of the proposed transmission line corridor. On Maui, three wetland habitats supporting endangered Hawaiian waterbirds were identified within the general area of the proposed transmission line corridor. Several of the wetlands identified on Oahu and Maui also supported resident wading birds and migratory shorebirds and waterfowl. Endangered waterbirds, resident wading birds, and migratory birds may collide with the proposed transmission lines wires. The frequency and numbers of bird collisions is expected to be greater on Oahu than on Maui because more wetland habitat exists and greater numbers of birds occur in the project area on Oahu. In addition, the endangered Hawaiian goose and the endangered Hawaiian petrel may be impacted by the proposed segment of the Hawaii Geothermal Project transmission line on Maui.

  12. Hawai`i Solar Integration Study: Final Technical Report for Maui

    E-Print Network [OSTI]

    ..........................................................................................................4 4.0 GE Power System Modeling Tools.........................................................................................................7 4.2. GE PSLFTM transient stability model

  13. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect (OSTI)

    Takashi Nakamura

    2004-11-01T23:59:59.000Z

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run further, pilot and full scale, carbon sequestration tests with actual propane combustion gases utilizing two different strains of microalgae. Aquasearch continued testing modifications to the coal combustor to allow for longer-term burns. Aquasearch also tested an alternative cell separation technology. University of Hawaii performed experiments at the Mera Pharmaceuticals facility in Kona in mid June to obtain data on the carbon venting rate out of the photobioreactor; gas venting rates were measured with an orifice flow meter and gas samples were collected for GC analysis to determine the carbon content of the vented gases.

  14. Center for volcanic and tectonic studies, Department of Geoscience, Univ. of Nevada, Las Vegas, NV. Annual report No. 69, October 1, 1991--September 30, 1992

    SciTech Connect (OSTI)

    Smith, E.I.

    1992-12-15T23:59:59.000Z

    The annual report of the Center for Volcanic and Tectonic Studies (CVTS) contains a series of papers, maps, and reprints that review the progress made by the CVTS between October 1, 1991 and December 31, 1992. During this period CVTS staff focused on several topics that had direct relevance to volcanic hazards related to the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. These topics included: (1) The role of the mantle during regional extension. (2) The structural controls and emplacement mechanisms of Pliocene/Quaternary basaltic centers and dikes. (3) The detailed geochemistry of individual volcanic centers in Crater Flat, Nevada. (4) Estimating the probability of disruption of the proposed repository by volcanic eruption (this topic is being studied by Dr. C-H. Ho at UNLV).

  15. Abstract The Holocene Parinacota Volcanic Debris Av-alanche (ca. 8,000 years B.P.) is located in the central An-

    E-Print Network [OSTI]

    Huppert, Herbert

    that material that travelled further broke up and had an initial greater kinetic energy. Keywords Debris Andes Volcanic Zone of northern Chile (Figs. 1 and 2). Parinacota Volcano is located on the Chile­Bolivia

  16. (2007, January). Proceedings of the Fortieth Hawai'i International Conference on System Sciences (HICSS-40). Los Alamitos: IEEE Press.

    E-Print Network [OSTI]

    Herring, Susan

    have been identified based on blog topic (e.g., politics), common interests (e.g., fandom), and online

  17. 2005 IEEE Systems, Man, and Cybernetics Conference Proceedings, October 2005, Hawaii, USA Mars Exploration Rover Surface Operations: Driving

    E-Print Network [OSTI]

    centimeter ground clearance, and large solar panels on the top of the rover require additional clearance to tall rocks (60 centime- ters from ground to solar panel). Wheel baseline is roughly 1 meter side studied it for six months. Then it went to examine the heat shield that had protected Opportu- nity during

  18. Presented at the 36th Annual Hawaii International Conference on Systems Sciences, January 6-9, 2003

    E-Print Network [OSTI]

    that have a forward option market with a strike price, followed by real time market clearing. #12;2 1-9, 2003 "Markets for Reliability and Financial Options in Electricity: Theory to Support the Practice service is explored, together with the technological options and cost characteristics for the provision

  19. REPORT TOTHE 2014 LEGISLATURE ANNUAL REPORT FROM THE HAWAI`I

    E-Print Network [OSTI]

    and demonstrate renewable energy systems. HNEI works closely with federal funding agencies, industry, the State 253) and expanded its mandate to explicitly include coordination with state and federal agencies. For example, Systems Integration/Energy Security, the area with the most significant amounts of federal

  20. Calendar year 2007 annual site environmental report for Tonopah Test range, Nevada and Kauai Test Facility, Hawaii,

    SciTech Connect (OSTI)

    Agogino, Karen [Department of Energy, Albuquerque, NM (US), NNSA; Sanchez, Rebecca [Sandia Corp., Albuquerque, NM (US)

    2008-09-30T23:59:59.000Z

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE)/National Nuclear Security Administration (NNSA), through the Sandia Site Offi ce (SSO), in Albuquerque, NM, administers the contract and oversees contractor operations at TTR and KTF. Sandia manages and conducts operations at TTR in support of the DOE/NNSA’s Weapons Ordnance Program and has operated the site since 1957. Washington Group International subcontracts to Sandia in administering most of the environmental programs at TTR. Sandia operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2007. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia is responsible only for those environmental program activities related to its operations. The DOE/NNSA/Nevada Site Offi ce (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2007a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting Manual (DOE 2007).

  1. Calendar year 2002 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.

    SciTech Connect (OSTI)

    Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

    2003-09-01T23:59:59.000Z

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, oversees TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2002. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 5400.1, General Environmental Protection Program (DOE 1990) and DOE Order 231.1, Environment, Safety, and Health Reporting (DOE 1996).

  2. Four-year prospective study of the respiratory effects of volcanic ash from Mt. St. Helens

    SciTech Connect (OSTI)

    Buist, A.S.; Vollmer, W.M.; Johnson, L.R.; Bernstein, R.S.; McCamant, L.E.

    1986-04-01T23:59:59.000Z

    This report describes the 4-yr follow-up of 712 loggers exposed over an extended period to varying levels of fresh volcanic ash from the 1980 eruptions of Mt. St. Helens. Concerns related to the irritant effect the ash might have on the airways and also to its fibrogenic potential if exposures were intense and continued over many years. Our subjects were divided into 3 groups: high, low, and no exposure. Baseline testing was begun in June 1980, 1 month after the major eruption, and follow-up testing continued on an annual basis through 1984; 88% of the loggers have been tested at least 3 times. Analysis of lung function data showed that a significant, exposure-related decline in FEV1 occurred during the first year after the eruption. The decline was short-lived, however, and by 1984 the differences between exposure groups were no longer significant. Self-reported symptoms of cough, phlegm, and wheeze showed a similar pattern. No ash-related changes were seen in chest roentgenograms taken in 1980 and in 1984. Our findings are consistent with the hypothesis that the inhaled ash caused mucus hypersecretion and/or airway inflammation that reversed when the exposure levels decreased. The ash levels to which the loggers were exposed were low compared with permissible occupational levels for nuisance dusts, but generally higher than the total suspended particulate levels permissible in ambient air.

  3. Analysis of a multiphase, porous-flow imbibition experiment in fractured volcanic tuff

    SciTech Connect (OSTI)

    Eaton, R.R.; Bixler, N.E.

    1986-12-31T23:59:59.000Z

    A sub-meter-scale imbibition experiment has been analyzed using a finite element, multiphase-flow code. In the experiment, an initially dry cylindrical core of fractured volcanic tuff was saturated by contacting the ends with pressurized water. Our model discretely accounts for three primary fractures that may be present in the core, as indicated by measurements of porosity and saturation. We show that vapor transport has a small (less than 5%) effect on the speed of the wetting front. By using experimental results to estimate apparent spatial variations in permeability along the core, good agreement with measured, transient, saturation data was achieved. The sensitivity of predicted transient wetting fronts to permeability data indicates a need for more extensive measurements. We conclude that it will be difficult to characterize an entire repository - where inhomogeneities due to variations in matrix and fracture properties are not well known - solely from the results of sub-meter-scale laboratory testing and deterministic modeling. 16 refs., 8 figs., 1 tab.

  4. Drying analysis of a multiphase, porous-flow experiment in fractured volcanic tuff

    SciTech Connect (OSTI)

    Bixler, N.E.; Eaton, R.R.; Russo, A.J.

    1987-12-31T23:59:59.000Z

    A submeter-scale drying experiment has been analyzed using a finite element, multiphase-flow code. In the experiment, an initially wet cylindrical core of fractured volcanic tuff was dried by blowing dry nitrogen over the ends. Our model discretely accounts for three primary fractures that may be present in the core, as indicated by measurements of porosity and saturation. We show that vapor transport is unimportant in the interior of the core; the rate of drying is controlled by transport of liquid water to the ends of the core, where it can evaporate and escape into the dry environment outside. By using previous experimental results to estimate apparent spatial variations in permeability along the core, good agreement between measured and calculated drying rates was achieved. However, predicted saturation profiles were much smoother that those measured experimentally, presumably because of centimeter-scale inhomogeneities in the core sample. Our results indicate that water is transported chiefly as liquid from the interior to the edges of the core, where it evaporates and escapes out the ends. Thus, liquid-phase transport controls the overall drying rate. 18 refs., 8 figs., 1 tab.

  5. 4/22/08 4:15 PMCientficos estudian origen de los volcanes costarricenses -ALDEA GLOBAL -nacion.com Page 1 of 2http://nacion.com/ln_ee/2008/abril/22/aldea1502437.html

    E-Print Network [OSTI]

    Holbrook, W. Steven

    volcanes y los sismos aquĂ­ PABLO FONSECA Q. | pfonseca@nacion.com Un grupo de cientĂ­ficos estadounidenses y

  6. Geographic Information System Resources to Support

    E-Print Network [OSTI]

    Cooperative Agreement Number DE-FC26-06NT42847 Hawai`i Distributed Energy Resource Technologies for Energy.......................................................................................................5 #12;1 Introduction Hawaii is the most isolated island archipelago in the world and the most fossil fuel-dependent state in the nation. In 2009, over 90% of Hawaii's electricity was generated from fossil

  7. Natural Hazards and Earth System Sciences (2001) 1: 4351 c European Geophysical Society 2001 Natural Hazards

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2001-01-01T23:59:59.000Z

    that the electromagnetic wave monitor- ing system has the potential to monitor and/or warn of vol- canic activity as a field trial for monitoring volcanic activities through the use of the electromagnetic method. Up Natural Hazards and Earth System Sciences Electromagnetic-wave radiation due to diastrophism of magma dike

  8. Jadoo Power Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm Jump to:Oregon:Jadoo Power Systems

  9. Pahoa geothermal industrial park. Engineering and economic analysis for direct applications of geothermal energy in an industrial park at Pahoa, Hawaii

    SciTech Connect (OSTI)

    Moreau, J.W.

    1980-12-01T23:59:59.000Z

    This engineering and economic study evaluated the potential for developing a geothermal industrial park in the Puna District near Pahoa on the Island of Hawaii. Direct heat industrial applications were analyzed from a marketing, engineering, economic, environmental, and sociological standpoint to determine the most viable industries for the park. An extensive literature search produced 31 existing processes currently using geothermal heat. An additional list was compiled indicating industrial processes that require heat that could be provided by geothermal energy. From this information, 17 possible processes were selected for consideration. Careful scrutiny and analysis of these 17 processes revealed three that justified detailed economic workups. The three processes chosen for detailed analysis were: an ethanol plant using bagasse and wood as feedstock; a cattle feed mill using sugar cane leaf trash as feedstock; and a papaya processing facility providing both fresh and processed fruit. In addition, a research facility to assess and develop other processes was treated as a concept. Consideration was given to the impediments to development, the engineering process requirements and the governmental support for each process. The study describes the geothermal well site chosen, the pipeline to transmit the hydrothermal fluid, and the infrastructure required for the industrial park. A conceptual development plan for the ethanol plant, the feedmill and the papaya processing facility was prepared. The study concluded that a direct heat industrial park in Pahoa, Hawaii, involves considerable risks.

  10. Petrology and geochemistry of the Late Cenozoic volcanic rocks of the Dominican Republic

    SciTech Connect (OSTI)

    Vespucci, P.D.

    1988-01-01T23:59:59.000Z

    Late Cenozoic rocks of Hispaniola are subdivided into two petrographically and geochemically contrasting series, a calc-alkaline series (CA-series), and a mafic alkaline series (MA-series). The CA-series are basalts, basaltic andesites, trachyandesites, and dacites occurring in several eruptive centers in the southern part of the Cordillera Central of the Dominican Republic. MA-series basalts are alkali-olivine basalts and limburgitic basalts occurring in the San Juan Valley of the Dominican republic and in the Cul de Sac of south central Haiti. Olivine, clinopyroxene, amphibole, mica, feldspar, and titanomagnetite were analyzed for major element chemical composition. MA-series basalts are slightly to moderately silica undersaturated, have high TiO2 (>1.5%) and MgO (>5.0%) and moderately high total alkalis (>2.0%). MA-series basalts are enriched in K, Rb, Sr, Ba, U, Th and LREEs with Ba/La ratios around 0.98. REE patterns are fractionated (chrondrite normalized La/Yb ratios around 62, and La/Sm ratios around 6). HFS elements Zr, Hf, Nb, and Ta are high resembling intraplate basalts. 86SR/87SR ratios are high (0.7060-0.7070) with low Rb/Sr ratios (0.03 to 0.15). Basalts, basaltic andesites, trachyandesites, and dacites of the CA-series show low MgO (<5.0%) and TiO2(<2.0%), and moderately high total alkali contents (2 to 7%). Enrichment is seen in K Rb, Sr, Ba, Th, U, and LREEs with Ba/La ratios as high as 5.6 REE patterns are fractionated to a lesser degree compared to the MA-series (chondrite normalized La/Yb around 23, and La/Sm ratios less than 5). HFS elements are lower resembling typical island arc volcanic rocks. CA-series have 87Sr/86Sr ratios (.7043-.7053), with low Rb/Sr ratios as in the MA-series.

  11. Gigantic Ordovician volcanic ash fall in North America and Europe: Biological, tectonomagmatic, and event-stratigraphic significance

    SciTech Connect (OSTI)

    Huff, W.D. (Univ. of Cincinnati, OH (United States)); Bergstroem, S.M. (Ohio State Univ., Columbus (United States)); Kolata, D.R. (Illinois State Geological Survey, Champaign (United States))

    1992-10-01T23:59:59.000Z

    Biostratigraphical, geochemical, isotopic, and paleogeographic data suggest that the Millbrig K-bentonite, one of the thickest and most widespread Ordovician volcanic ash beds in eastern North America, is the same as the so-called 'Big Bentonite' in Baltoscandia. This is the first time that the same K-bentonite has been identified in both North America and Europe, and it serves as a unique event-stratigraphic marker over a large portion of the Northern Hemisphere. This eruption produced at least 340 km[sup 3] of dense-rock-equivalent ash that was deposited in a layer up to 1-2 m thick over several million square kilometers. As much as 800 km[sup 3] of additional ash may have fallen into the Iapetus Ocean, for a total of 1,140 km[sup 3]. Trace element geochemistry shows that the ash was derived from a felsic calc-alkalic magmatic source characteristic of volcanism in a continental crust-based, destructive plate-margin setting. This is one of the largest, if not the largest, ash falls recorded in Earth's Phanerozoic stratigraphic record, but its recognizable effect on faunas and floras was minimal, and it did not result in a global extinction event. The Millbrig-Big Bentonite bed provides accurate time control for sedimentologic, paleoecologic, and paleogeographic reconstructions across plates positioned in tropical (Laurentia) and temperate (Baltica) latitudes during Middle Ordovician time.

  12. PHYTOPLANKTON DYNAMICS IN OCEANIC WATERS OFF KE-AHOLE POINT, Hawaii

    SciTech Connect (OSTI)

    Bienfang, P.K.; Szyper, J.P.

    1980-07-01T23:59:59.000Z

    Phytoplankton activity in an oligotrophic environment was studied on six cruises over a 14-month period. Phytoplankton biomass and productivity displayed considerable temporal variability despite the relative constancy of the physical and chemical environment. No evidence of seasonality or diurnal variability in phytoplankton biomass was observed. Annual average (+ s.d.) depth-integrated values (0-260 m) for chlorophyll a, phaeopigment, ATP, and primary productivity were 24.55 + 10.31 mg {center_dot} m{sup -2}, 11.81 + 7.20 mg {center_dot} m{sup -2}, 3.00 + 1.78 mg {center_dot} m{sup -2}, and 8.79 + 7.82 mg C {center_dot} m{sup -2}, h{sup -1}, respectively; over the year these parameters were seen to vary over ranges of 3X, 6X, 10X, and 26X, respectively. The mean depths of the chlorophyll and phaeopigment maxima were 85 + 9 m and 95 + 11 m, respectively; the pheopigment maximum was always located at or below that of chlorophyll. Size fractionation studies showed that at this oceanic station about 80% of the phytoplankton biomass occurred in the < 5 {micro}m fraction. Low ambient nutrient levels were typical at the depth of the chlorophyll maximum, indicating that nutrient assimilation was actively occurring in that layer. Elevated nutrient levels were typical at the deeper phaeopigment maximum layer. The results of sinking rate and size fractionation experiments, together with evidence of physiological viability in this layer suggest that phytoplankton sinking and possibly its association with the nutrient regime influence the accumulation of biomass in this region. Productivity biomass ratios (mg carbon {center_dot} mg chlorophyll a{sup -1} {center_dot} h{sup -1}) were consistently low and indicative of strong nutrient limitation. Variations in phytoplankton biomass did not account (p > 0.10) for the high variability in photosynthetic activity among the six site visits; neither did the slopes or upper depth limits of the nitrate or phosphate gradients (as indicators of the supply rate of new nutrients) show any correlation (p > 0.10) with the observed primary productivity. There were significant correlations (p < 0.01) between depth-integrated phaeopigment stocks and integrated primary production (r = 0.92), and between integrated phaeopigments and integrated ammonium levels (r = 0.80). It is postulated that variations in the supply of regenerated nutrients via grazing (indexed by phaeopigments) were primarily responsible for the observed temporal variability in photosynthesis. Indications of a close coupling between grazing and phytoplankton activity in these waters is supportive evidence for the commonly held belief that animal excretion products are significant sources of nutrients for phytoplankton in oligotrophic systems. The observed relationship between phaeopigments and primary production may be related in part to the predominance of small cells in this phytoplankton community since the latter are probably grazed by small filter feeders which produce amorphous, slow-sinking, rather than encapsulated, fast-sinking fecal material.

  13. Recovery and Sequestration of CO2 from Stationary Combustion Systems by Photosynthesis of Microalgae

    SciTech Connect (OSTI)

    T. Nakamura; C.L. Senior

    2005-04-01T23:59:59.000Z

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October 2000 to 31 March 2005 in which PSI, Aquasearch and University of Hawaii conducted their tasks. This report discusses results of the work pertaining to five tasks: Task 1--Supply of CO2 from Power Plant Flue Gas to Photobioreactor; Task 2--Selection of Microalgae; Task 3--Optimization and Demonstration of Industrial Scale Photobioreactor; Task 4--Carbon Sequestration System Design; and Task 5--Economic Analysis. Based on the work conducted in each task summary conclusion is presented.

  14. Systems

    E-Print Network [OSTI]

    Chapter 1. Systems. 1.1. On Line. In this introductory section we will pose no exercises, but instead, will detail. how to use Maple to solve problems in linear ...

  15. THE TEPHRA STRATIGRAPHY OF TWO LAKES IN SOUTH-CENTRAL BRITISH COLUMBIA, CANADA AND ITS IMPLICATIONS FOR THE MID-LATE HOLOCENE VOLCANIC ACTIVITY AT GLACIER PEAK AND

    E-Print Network [OSTI]

    Gavin, Daniel G.

    FOR THE MID-LATE HOLOCENE VOLCANIC ACTIVITY AT GLACIER PEAK AND MOUNT ST. HELENS, WASHINGTON, USA Objective · New evidence of the ages and plume trajectories for four tephras. First evidence of Glacier Peak A, D, and Dusty Creek, and Mt. St. Helens P, as airfall tephra in south-central British Columbia. · The Glacier

  16. Sulfur Emissions from Volcanic A c t i v i t y i n 1985 and 1990 Carmen M. Benkovitz and M. A l t a f Mubaraki

    E-Print Network [OSTI]

    a t approximately 0.4 Tg S y-l, emissions from biomass burning a t approximately 2 Tg S Y-' and volcanic emissions localized i n the highly populated and industrialized regions i n Eastern North America, and across Europe from the United Kingdom over Central Europe t o the Donbas region #12;in Russia (Benkovitz et a!., 1996

  17. Hawaii Natural Gas Summary

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess than 200Decade Year-0Year JanCitygate

  18. Hawaii Natural Gas Prices

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOW TO OBTAINCommercialPipeline22.38

  19. Hawaii Renewable Hydrogen Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudson YearHarvesting theRenewable

  20. Proceedings of the Hawaii International Conference on System Sciences (HICSS-37), January 2004. A Cost-Effective Usability Evaluation Progression for Novel Interactive Systems

    E-Print Network [OSTI]

    Hollerer, Tobias

    as a goal the development of methodological techniques that reduce the total life cycle cost to a product's development life cycle. In fact, usability engineering can reduce development costs over to be applied at any stage of the development life cycle, and its various activities are generalizable