National Library of Energy BETA

Sample records for volcanic field area

  1. Field Mapping At San Francisco Volcanic Field Area (Warpinski...

    Open Energy Info (EERE)

    Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At San Francisco Volcanic...

  2. Isotopic Analysis At San Juan Volcanic Field Area (Larson & Jr...

    Open Energy Info (EERE)

    San Juan Volcanic Field Area (Larson & Jr, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At San Juan Volcanic Field...

  3. Rock Sampling At San Francisco Volcanic Field Area (Warpinski...

    Open Energy Info (EERE)

    Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At San Francisco Volcanic...

  4. Ground Magnetics At San Francisco Volcanic Field Area (Warpinski...

    Open Energy Info (EERE)

    San Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At San Francisco...

  5. Ground Gravity Survey At San Francisco Volcanic Field Area (Warpinski...

    Open Energy Info (EERE)

    Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At San Francisco...

  6. Rock Sampling At San Juan Volcanic Field Area (Larson & Jr, 1986...

    Open Energy Info (EERE)

    Juan Volcanic Field Area (Larson & Jr, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At San Juan Volcanic Field Area...

  7. Modeling-Computer Simulations At San Juan Volcanic Field Area...

    Open Energy Info (EERE)

    San Juan region, to further investigate both the thermal history of the region and the nature of the influence of the San Juan volcanic field thermal source on the thermal history...

  8. Temporal relations of volcanism and hydrothermal systems in two areas of the Jemez volcanic field, New Mexico

    SciTech Connect (OSTI)

    WoldeGabriel, G.; Goff, F. )

    1989-11-01

    Two hydrothermal alteration events (8.07 Ma, one sample; 6.51-5.60 Ma, six samples) related to the waning stages of late Miocene volcanism ({ge} 13 to {le} 5.8 Ma) are recognized at the Cochiti district (southeast Jemez Mountains). Most of the K/Ar dates (0.83 {plus minus} 0.11-0.66 {plus minus} 0.21 Ma, four samples) in the hydrothermally altered, caldera-fill rocks of core hole VC-2A at Sulfur Springs, Valles caldera, indicate post-Valles caldera hydrothermal alteration. A sample from acid-altered landslide debris of postcaldera tuffs from the upper 13 m of the core hole was too young to be dated by the K/Ar method and is possibly associated with current hot-spring activity and the youngest pulses of volcanism. Oxygen-isotope data from illite/smectite clays in the Cochiti district are zonally distributed and range from {minus}2.15{per thousand} to {plus}7.97{per thousand} (SMOW), depending upon temperature, extent of rock-fluid interaction, and composition. The samples from VC-2A get lighter with depth ({minus}0.20{per thousand} to {plus}1.62{per thousand}). The K/Ar and oxygen-isotope data provide strong evidence that the epithermal quartz-vein-hosted gold-silver mineralization at Cochiti and the sub-ore grade molybdenite at VC-2A were deposited in the late Miocene (5.99-5.60 Ma) and mid-Quaternary ({approximately}0.66 Ma), respectively, by hydrothermal fluids composed primarily of meteoric water.

  9. Geothermal Literature Review At San Francisco Volcanic Field...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At San Francisco Volcanic Field Area (Morgan, Et Al., 2003) Exploration...

  10. Data Acquisition-Manipulation At San Francisco Volcanic Field...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At San Francisco Volcanic Field Area (Warpinski, Et Al., 2004)...

  11. Hydrothermal systems in two areas of the Jemez volcanic field: Sulphur Springs and the Cochiti mining district

    SciTech Connect (OSTI)

    WoldeGabriel, G.

    1989-03-01

    K/Ar dates and oxygen isotope data were obtained on 13 clay separates (<2 ..mu..m) of thermally altered mafic and silicic rocks from the Cochiti mining district (SE Jemez Mountains) and Continental Scientific Drilling Project (CSDP) core hole VC-2A (Sulphur Springs, Valles caldera). Illite with K/sub 2/O contents of 6.68%--10.04% is the dominant clay in the silicic rocks, whereas interstratified illite/smectites containing 1.4%--5.74% K/sub 2/O constitute the altered andesites. Two hydrothermal alteration events are recognized at the Cochiti area (8.07 m.y., n = 1, and 6.5--5.6 m.y., n = 6). The older event correlates with the waning stages of Paliza Canyon Formation andesite volcanism (greater than or equal to13 to less than or equal to8.5 m.y.), whereas the younger event correlates with intrusions and gold- and silver-bearing quartz veins associated with the Bearhead Rhyolite (7.54--5.8 m.y.). The majority of K/Ar dates in the hydrothermally altered, caldera-fill rocks of core hole VC-2A (0.83--0.66 m.y., n = 4) indicate that hydrothermal alteration developed contemporaneously with resurgence and ring fracture Valles Rhyolite domes (0.89--0.54 m.y.). One date of 0 +- 0.10 m.y. in acid-altered landslide debris of postcaldera tuffs from the upper 13 m of the core hole probably correlates with Holocene hydrothermal activity possibly associated with the final phases of the Valles Rhyolite (0.13 m.y.).

  12. Volcanic hazards of the Idaho National Engineering Laboratory and adjacent areas

    SciTech Connect (OSTI)

    Hackett, W.R.; Smith, R.P.

    1994-12-01

    Potential volcanic hazards are assessed, and hazard zone maps are developed for the Idaho National Engineering Laboratory (INEL) and adjacent areas. The basis of the hazards assessment and mapping is the past volcanic history of the INEL region, and the apparent similarity of INEL volcanism with equivalent, well-studied phenomena in other regions of active volcanism, particularly Hawaii and Iceland. The most significant hazards to INEL facilities are associated with basaltic volcanism, chiefly lava flows, which move slowly and mainly threaten property by inundation or burning. Related hazards are volcanic gases and tephra, and ground disturbance associated with the ascent of magma under the volcanic zones. Several volcanic zones are identified in the INEL area. These zones contain most of the volcanic vents and fissures of the region and are inferred to be the most probable sites of future INEL volcanism. Volcanic-recurrence estimates are given for each of the volcanic zones based on geochronology of the lavas, together with the results of field and petrographic investigations concerning the cogenetic relationships of INEL volcanic deposits and associated magma intrusion. Annual probabilities of basaltic volcanism within the INEL volcanic zones range from 6.2 {times} 10{sup {minus}5} per year (average 16,000-year interval between eruptions) for the axial volcanic zone near the southern INEL boundary and the Arco volcanic-rift zone near the western INEL boundary, to 1 {times} 10{sup {minus}5} per year (average 100,000-year interval between eruptions) for the Howe-East Butte volcanic rift zone, a geologically old and poorly defined feature of the central portion of INEL. Three volcanic hazard zone maps are developed for the INEL area: lava flow hazard zones, a tephra (volcanic ash) and gas hazard zone, and a ground-deformation hazard zone. The maps are useful in land-use planning, site selection, and safety analysis.

  13. Isotopic Analysis At Lassen Volcanic National Park Area (Janik...

    Open Energy Info (EERE)

    Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness...

  14. Geothermometry At Lassen Volcanic National Park Area (Thompson...

    Open Energy Info (EERE)

    Thompson, 1985) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Lassen Volcanic National Park Area (Thompson, 1985) Exploration...

  15. Flow Test At Lassen Volcanic National Park Area (Janik & Mclaren...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity...

  16. Surface Gas Sampling At Lassen Volcanic National Park Area (Janik...

    Open Energy Info (EERE)

    Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Lassen...

  17. Gravity and magnetic anomalies associated with Tertiary volcanism and a Proterozoic crustal boundary, Hopi Buttes volcanic field, Navajo Nation (Arizona)

    SciTech Connect (OSTI)

    Donovan-Ealy, P.F. . Geology Dept.); Hendricks, J.D. )

    1992-01-01

    The Hopi Buttes volcanic field is located in the Navajo Nation of northeastern Arizona, near the southern margin of the Colorado Plateau. Explosive phreatomagmatic eruptions from late Miocene to mid-Pliocene time produced more than 300 maar-diatremes and deposited limburgite tuffs and tuff breccia and monchiquite dikes, necks and flows within a roughly circular 2,500 km[sup 2] area. The volcanic and volcaniclastic rocks make up the middle member of the Bidahochi Formation, whose lower and upper members are lacustrine and fluvial, respectively. The Bidahochi Formation overlies gently dipping Mesozoic sedimentary rocks exposed in the southwestern portion of the volcanic field. Two significant gravity and magnetic anomalies appear within the Hopi Buttes volcanic field that are unlike the signatures of other Tertiary volcanic fields on the Colorado Plateau. A circular 20 mGal negative gravity anomaly is centered over exposed sedimentary rocks in the southwestern portion of the field. The anomaly may be due to the large volume of low density pyroclastic rocks in the volcanic field and/or extensive brecciation of the underlying strata from the violent maar eruptions. The second significant anomaly is the northeast-trending Holbrook lineament, a 5 km-wide gravity and magnetic lineament that crosses the southeastern part of the volcanic field. The lineament reflects substantial gravity and magnetic decreases of 1.67 mGals/km and 100 gammas/km respectively, to the southeast. Preliminary two-dimensional gravity and magnetic modeling suggests the lineament represents a major Proterozoic crustal boundary and may correlate with one of several Proterozoic faults exposed in the transition zone of central Arizona. Gravity modeling shows a 3--5 km step'' in the Moho near the crustal boundary. The decrease in depth of the Moho to the northwest indicates either movement along the fault or magmatic upwelling beneath the volcanic field.

  18. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    SciTech Connect (OSTI)

    Hackett, W.R.; Smith, R.P.

    1992-01-01

    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  19. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    SciTech Connect (OSTI)

    Hackett, W.R.; Smith, R.P.

    1992-09-01

    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  20. Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Journal Article: Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Abstract Large, young calderas...

  1. Mercury Vapor At Lassen Volcanic National Park Area (Varekamp...

    Open Energy Info (EERE)

    Usefulness useful DOE-funding Unknown References J. C. Varekamp, P. R. Buseck (1983) Hg Anomalies In Soils- A Geochemical Exploration Method For Geothermal Areas Additional...

  2. Lassen Volcanic National Park Geothermal Area | Open Energy Informatio...

    Open Energy Info (EERE)

    Image needs updating Reference needed Missing content Broken link Other Additional Comments Cancel Submit Categories: Geothermal Available for Case Study Geothermal Resource Areas...

  3. San Francisco Volcanic Field Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    and Environmental Issues Click "Edit With Form" above to add content Exploration History First Discovery Well Completion Date: Well Name: Location: Depth: Initial Flow...

  4. San Francisco Volcanic Field Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean...

  5. San Juan Volcanic Field Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean...

  6. San Juan Volcanic Field Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With...

  7. Geologic and geophysical investigations of the Zuni-Bandera volcanic field, New Mexico

    SciTech Connect (OSTI)

    Ander, M.E.; Heiken, G.; Eichelberger, J.; Laughlin, A.W.; Huestis, S.

    1981-05-01

    A positive, northeast-trending gravity anomaly, 90 km long and 30 km wide, extends southwest from the Zuni uplift, New Mexico. The Zuni-Bandera volcanic field, an alignment of 74 basaltic vents, is parallel to the eastern edge of the anomaly. Lavas display a bimodal distribution of tholeiitic and alkalic compositions, and were erupted over a period from 4 Myr to present. A residual gravity profile taken perpendicular to the major axis of the anomaly was analyzed using linear programming and ideal body theory to obtain bounds on the density contrast, depth, and minimum thickness of the gravity body. Two-dimensionality was assumed. The limiting case where the anomalous body reaches the surface gives 0.1 g/cm/sup 3/ as the greatest lower bound on the maximum density contrast. If 0.4 g/cm/sup 3/ is taken as the geologically reasonable upper limit on the maximum density contrast, the least upper bound on the depth of burial is 3.5 km and minimum thickness is 2 km. A shallow mafic intrusion, emplaced sometime before Laramide deformation, is proposed to account for the positive gravity anomaly. Analysis of a magnetotelluric survey suggests that the intrusion is not due to recent basaltic magma associated with the Zuni-Bandera volcanic field. This large basement structure has controlled the development of the volcanic field; vent orientations have changed somewhat through time, but the trend of the volcanic chain followed the edge of the basement structure. It has also exhibited some control on deformation of the sedimentary section.

  8. The Lathrop Wells volcanic center: Status of field and geochronology studies

    SciTech Connect (OSTI)

    Crowe, B.; Morley, R.; Wells, S.; Geissman, J.; McDonald, E.; McFadden, L.; Perry, F.; Murrell, M.; Poths, J.; Forman, S.

    1993-03-01

    The Lathrop Wells volcanic center is located 20 km south of the potential Yucca Mountain site, at the south end of the Yucca Mountain range. It has long been recognized as the youngest basalt center in the region. However, determination of the age and eruptive history of the center has proven problematic. The purpose of this paper is to describe the status of field and geochronology studies of the Lathrop Wells center. Our perspective is that it is critical to assess all possible methods for obtaining cross-checking data to resolve chronology and field problems. It is equally important to consider application of the range of chronology methods available in Quaternary geologic research. Such an approach seeks to increase the confidence in data interpretations through obtaining convergence among separate isotopic, radiogenic, and age-correlated methods. Finally, the assumptions, strengths, and weaknesses of each dating method need to be carefully described to facilitate an impartial evaluation of results.

  9. Late Cenozoic volcanism in the Lassen area, southernmost Cascade Range, California

    SciTech Connect (OSTI)

    Clynne, M.A.; Muffler, L.J.P.; Dalrymple, G.B. )

    1993-04-01

    Volcanism in the southernmost Cascade Range can be characterized on two scales. Regional volcanism is predominantly basaltic to andesitic, and hundreds of coalescing volcanoes of small volume (10[sup [minus]3] to 10[sup 1] km[sup 3]) with short lifetimes have built a broad platform. Superimposed on the regional volcanism are a few long-lived ([approximately]10[sup 6] years) much larger (>10 [sup 2] km[sup 3]) volcanic centers. Each of these larger centers consists of a basaltic-andesite to andesite composite cone and flanking silicic domes and flows. The evolution of these volcanic centers conforms to a generalized three-stage model during which a conspicuous edifice is constructed. Stages 1 and 2 comprise a dominantly andesitic composite cone; Stage 3 marks a change to dominantly silicic volcanism and is accompanied by development of a hydrothermal system in the permeable core of the andesitic composite cone. Subsequent fluvial and glacial erosion produces a caldera-like depression with a topographically high resistant rim of Stage 2 lavas surrounding the deeply eroded, hydrothermally altered core of the composite cone. Two types of basalt are recognized in the southernmost Cascades; medium-K calc-alkaline (CAB) and low-K olivine tholeiite (LKOT). CAB exhibits considerable geochemical diversity and is the parent magma for the volcanic-center lavas and the majority of the evolved regional lavas. LKOT is chemically homogeneous, and outcrops sporadically in association with extensional tectonics of the Basin and Range Province, and is related to Pleistocene encroachment of Basin-and-Range tectonics on the subduction-related volcanism of the Cascade Range.

  10. Heteromorphism and crystallization paths of katungites, Navajo volcanic field, Arizona, USA

    SciTech Connect (OSTI)

    Laughlin, A.W.; Charles, R.W.; Aldrich, M.J. Jr.

    1986-01-01

    A swarm of thin, isochemical but heteromorphic dikes crops out in the valley of Hasbidito Creek in NE Arizona. The swarm is part of the dominantly potassic, mid-Tertiary Navajo volcanic field of the Colorado Plateau. Whole-rock chemical analyses of five samples from four of the dikes indicate that they are chemically identical to the katungites of Uganda. These dikes show the characteristic seriate-porphyritic texture of lamprophyres. Samples of an olivine-melilitite dike from the same swarm lack this texture and the chemical analysis, while similar to those of the other dikes, shows effects from the incorporation of xenocrystic olivine. Over 20 mineral phases have been identified in the Arizona samples and as many as 18 phases may occur in a single sample. The major phases are phlogopite, olivine, perovskite, opaque oxides, +- melilite and +- clinopyroxene. Based upon the modal mineralogies and textures of ten dike samples, we recognize five general non-equilibrium assemblages. Comparison of these assemblages with recent experimental results shows that they represent various combinations of complete and incomplete reactions. Reaction relations were determined by entering melt and phase compositions into the computer program GENMIX to obtain balanced reactions. By combining petrographic observations with mineral chemical data, balanced reactions from GENMIX, and the recently determined phase diagrams we are able to trace crystallization paths for the katungite magma.

  11. Field Mapping At Colrado Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Colrado Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Colrado Area (DOE GTP) Exploration Activity Details...

  12. Field Mapping At Mccoy Geothermal Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Mccoy Geothermal Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Mccoy Geothermal Area (DOE GTP) Exploration...

  13. Field Mapping At Olowalu-Ukumehame Canyon Area (Thomas, 1986...

    Open Energy Info (EERE)

    Mapping At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity Details Location Olowalu-Ukumehame Canyon Area Exploration Technique Field Mapping Activity Date...

  14. Some Aspects Of Exploration In Non-Volcanic Areas | Open Energy...

    Open Energy Info (EERE)

    Aeromagnetic Survey (Nannini, 1986) Ground Gravity Survey (Nannini, 1986) Ground Magnetics (Nannini, 1986) Reflection Survey (Nannini, 1986) Areas (1) Unspecified Regions (0)...

  15. Field Mapping At Lualualei Valley Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location...

  16. Field Mapping At Raft River Geothermal Area (1977) | Open Energy...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River...

  17. Field Mapping At Raft River Geothermal Area (1980) | Open Energy...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Raft River Geothermal Area (1980) Exploration Activity Details Location Raft River...

  18. Field Mapping At Raft River Geothermal Area (1990) | Open Energy...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Raft River Geothermal Area (1990) Exploration Activity Details Location Raft River...

  19. Wide Area Wind Field Monitoring Status & Results

    SciTech Connect (OSTI)

    Alan Marchant; Jed Simmons

    2011-09-30

    Volume-scanning elastic has been investigated as a means to derive 3D dynamic wind fields for characterization and monitoring of wind energy sites. An eye-safe volume-scanning lidar system was adapted for volume imaging of aerosol concentrations out to a range of 300m. Reformatting of the lidar data as dynamic volume images was successfully demonstrated. A practical method for deriving 3D wind fields from dynamic volume imagery was identified and demonstrated. However, the natural phenomenology was found to provide insufficient aerosol features for reliable wind sensing. The results of this study may be applicable to wind field measurement using injected aerosol tracers.

  20. Field Mapping At Neal Hot Springs Geothermal Area (Colwell, Et...

    Open Energy Info (EERE)

    of Neal Hot Springs and the surrounding areas. This study was conducted by a geophysics field camp from the Colorado School of Mines. Notes Geologic field mapping was done...

  1. Hyperspectral Imaging At Dixie Valley Geothermal Field Area ...

    Open Energy Info (EERE)

    Field Area Exploration Technique Hyperspectral Imaging Activity Date Spectral Imaging Sensor AVIRIS Usefulness useful DOE-funding Unknown Notes Geology and Geophysics of...

  2. Field Mapping At Chena Geothermal Area (Waring, Et Al., 1917...

    Open Energy Info (EERE)

    Waring, Et Al., 1917) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Chena Geothermal Area (Waring, Et Al., 1917) Exploration...

  3. Field Mapping At Coso Geothermal Area (1999) | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Coso Geothermal Area (1999) Exploration Activity Details Location Coso Geothermal...

  4. Field Mapping At Mokapu Penninsula Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu...

  5. Field Mapping At Beowawe Hot Springs Area (Wesnousky, Et Al....

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Beowawe Hot Springs Area (Wesnousky, Et Al., 2003) Exploration Activity Details...

  6. Field Mapping At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Blue Mountain...

  7. Field Mapping At Dixie Valley Geothermal Area (Smith, Et Al....

    Open Energy Info (EERE)

    Smith, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Dixie Valley Geothermal Area (Smith, Et Al., 2001)...

  8. Field Mapping At Neal Hot Springs Geothermal Area (Edwards &...

    Open Energy Info (EERE)

    Edwards & Faulds, 2012) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Neal Hot Springs Geothermal Area (Edwards & Faulds,...

  9. Field Mapping At Coso Geothermal Area (1978) | Open Energy Information

    Open Energy Info (EERE)

    8) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Coso Geothermal Area (1978) Exploration Activity Details Location Coso...

  10. Field Mapping At Valles Caldera - Redondo Geothermal Area (Goff...

    Open Energy Info (EERE)

    Goff, Et Al., 2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Valles Caldera - Redondo Geothermal Area (Goff, Et Al.,...

  11. Seismicity And Fluid Geochemistry At Lassen Volcanic National...

    Open Energy Info (EERE)

    National Park Area (Janik & Mclaren, 2010) Static Temperature Survey At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Surface Gas Sampling At Lassen Volcanic...

  12. Fenton Hill HDR Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    HDR Geothermal Area (Heiken & Goff, 1983) Data Acquisition-Manipulation 1983 Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Development Wells At Fenton Hill...

  13. Cybersecurity Intrusion Detection and Security Monitoring for Field Area Networks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intrusion Detection and Security Monitoring for Field Area Networks Continuous security validation, intrusion detection, and situational awareness for advanced metering infrastructure and distribution automation Background Advanced metering infrastructure (AMI) and distribution automation (DA) field area networks (FANs) are among the largest, possibly most complex, networks operated by utilities in the United States. Exploitable vulnerabilities in AMI and DA systems may arise from weaknesses in

  14. Field Mapping At Valles Caldera - Redondo Geothermal Area (Bailey...

    Open Energy Info (EERE)

    based on surface mapping of the caldera. References Roy A. Bailey, Robert Leland Smith, Clarence Samuel Ross (1969) Stratigraphic Nomenclature of Volcanic Rocks in the Jemez...

  15. Modeling volcanic ash dispersal

    ScienceCinema (OSTI)

    None

    2011-10-06

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  16. Tectonic and sedimentary evolution of the Luna field area, Italy

    SciTech Connect (OSTI)

    Roveri, M. )

    1990-05-01

    The Luna gas field is located near Crotone (Calabria region, southern Italy) in a shallow-water/onshore area. It was discovered and put into production during the early 1970s. Up to now it has produced 19 {times} 10{sup 9} sm{sup 3} of gas; its productivity (50 {times} 10{sup 6} sm{sup 3}/y) has remained virtually unaltered since the beginning. The field is located on the axial culmination of a thrust-related anticline of the Apennine postcollisional thrust belt; it can be roughly subdivided into two areas characterized by different stratigraphic contexts. In the northern and central parts of the field is a structural trap. Reservoir rocks are Serravallian to Tortonian deep marine resedimented conglomerates and sandstones. These deposits represent part of the infill of a middle-upper Miocene foredeep. Reservoir rocks are now thrusted, eroded, and unconformably overlain by lower Pliocene shales, which are the most important seal in this part of the field. In the southern part of the field is a combination trap. Reservoir rocks are upper Tortonian shallow-water sandstones. They lap onto a Tortonian unconformity related to a tectonic phase which split the previous foredeep into minor piggyback basins. The upper Tortonian sandstones are overlain and sealed by Messinian shales and evaporites. Tectonosedimentary evolution of the area and, consequently, areal distribution and geometry of sedimentary bodies - both potential reservoirs and seals - have been reconstructed using a sequence stratigraphy approach. The sedimentary record has been informally subdivided into five main depositional sequences bounded by unconformities or their correlative conformities; classic facies analysis and petrophysical, seismic, and biostratigraphic data have been utilized to define the internal characteristics of each sequence.

  17. 300 Area Integrated Field-Scale Subsurface Research Challenge (IFRC) Field Site Management Plan

    SciTech Connect (OSTI)

    Freshley, Mark D.

    2008-12-31

    Pacific Northwest National Laboratory (PNNL) has established the 300 Area Integrated Field-Scale Subsurface Research Challenge (300 Area IFRC) on the Hanford Site in southeastern Washington State for the U.S. Department of Energy’s (DOE) Office of Biological and Environmental Research (BER) within the Office of Science. The project is funded by the Environmental Remediation Sciences Division (ERSD). The purpose of the project is to conduct research at the 300 IFRC to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The management approach for the 300 Area IFRC requires that a Field Site Management Plan be developed. This is an update of the plan to reflect the installation of the well network and other changes.

  18. Comparison of Permian basin giant oil fields with giant oil fields of other U. S. productive areas

    SciTech Connect (OSTI)

    Haeberle, F.R. )

    1992-04-01

    Covering over 40 million ac, the Permian basin is the fourth largest of the 28 productive areas containing giant fields. The 56 giant fields in the basin compare with the total of 264 giant oil fields in 27 other productive areas. Cumulative production figures of 18 billion bbl from the giant fields in the Permian basin are the largest cumulative production figures from giant fields in any of the productive areas. An estimated 1.9 billion bbl of remaining reserves in giant fields rank the basin third among these areas and the 19.9 billion bbl total reserves in giant fields in the basin are the largest total reserves in giant fields in any of the productive areas. The 1990 production figures from giant fields place the basin second in production among areas with giant fields. However, converting these figures to by-basin averages for the giant fields places the Permian basin 12th in field size among the areas with giant fields. Based on average reserves per well, the basin ranks 18th. Average 1990 production per giant field place the basin seventh and the average 1990 production per well in giant fields place the Permian basin 14th among the areas with giant fields.

  19. The Timber Mountain magmato-thermal event: An intense widespread culmination of magmatic and hydrothermal activity at the southwestern Nevada volcanic field

    SciTech Connect (OSTI)

    Jackson, M.R. Jr.

    1988-05-01

    Eruption of the Rainier Mesa and Ammonia Tanks Members Timber Mountain Tuff at about 11.5 and 11.3 Ma, respectively, resulted in formation of the timber Mountain (TM) caldera; new K-Ar ages show that volcanism within and around the TM caldera continued for about 1 m.y. after collapse. Some TM age magmatic activity took place west and southeast of the TM caldera in the Beatty -- Bullfrog Hills and Shoshone Mountain areas, suggesting that volcanic activity at the TM caldera was an intense expression of an areally extensive magmatic system active from about 11.5 to 10Ma. Epithermal Au-Ag, Hg and fluorite mineralization and hydrothermal alteration are found in both within and surrounding the Timber Mountain -- Oasis Valley caldera complex. New K-Ar ages date this hydrothermal activity between about 13 and 10 Ma, largely between about 11.5 and 10 Ma, suggesting a genetic relation of hydrothermal activity to the TM magmatic system.

  20. Field Mapping At Brady Hot Springs Area (Coolbaugh, Et Al., 2004...

    Open Energy Info (EERE)

    Brady Hot Springs Area (Coolbaugh, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Brady Hot Springs Area...

  1. Field Mapping At Fish Lake Valley Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Fish Lake Valley Area (DOE GTP) Exploration Activity Details Location Fish Lake Valley Area...

  2. Field Mapping At San Emidio Desert Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Emidio Desert Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At San Emidio Desert Area (DOE GTP) Exploration...

  3. Field Mapping At The Needles Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At The Needles Area (DOE GTP) Exploration Activity Details Location The Needles Area...

  4. Field Mapping At Jemez Pueblo Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jemez Pueblo Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Jemez Pueblo Area (DOE GTP) Exploration Activity...

  5. Field Mapping At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Glass Buttes Area (DOE GTP) Exploration Activity...

  6. Field Mapping At Coso Geothermal Area (1977-1978) | Open Energy...

    Open Energy Info (EERE)

    ENERGYGeothermal Home Exploration Activity: Field Mapping At Coso Geothermal Area (1977-1978) Exploration Activity Details Location Coso Geothermal Area Exploration Technique...

  7. Field Mapping At Seven Mile Hole Area (Larson, Et Al., 2009)...

    Open Energy Info (EERE)

    Seven Mile Hole Area (Larson, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Seven Mile Hole Area (Larson, Et...

  8. Development of a geothermal resource in a fractured volcanic formation: Case study of the Sumikawa Geothermal Field, Japan. Final report, May 1, 1995--November 30, 1997

    SciTech Connect (OSTI)

    Garg, S.K.; Combs, J.; Pritchett, J.W.

    1997-07-01

    The principal purpose of this case study of the Sumikawa Geothermal Field is to document and to evaluate the use of drilling logs, surface and downhole geophysical measurements, chemical analyses and pressure transient data for the assessment of a high temperature volcanic geothermal field. This comprehensive report describes the work accomplished during FY 1993-1996. A brief review of the geological and geophysical surveys at the Sumikawa Geothermal Field is presented (Section 2). Chemical data, consisting of analyses of steam and water from Sumikawa wells, are described and interpreted to indicate compositions and temperatures of reservoir fluids (Section 3). The drilling information and downhole pressure, temperature and spinner surveys are used to determine feedzone locations, pressures and temperatures (Section 4). Available injection and production data from both slim holes and large-diameter wells are analyzed to evaluate injectivity/productivity indices and to investigate the variation of discharge rate with borehole diameter (Section 5). New interpretations of pressure transient data from several wells are discussed (Section 6). The available data have been synthesized to formulate a conceptual model for the Sumikawa Geothermal Field (Section 7).

  9. Field Mapping At Hot Sulphur Springs Area (Goranson, 2005) |...

    Open Energy Info (EERE)

    Technique Field Mapping Activity Date Usefulness useful DOE-funding Unknown References Colin Goranson (2005) Recent Drilling Activities At The Earth Power Resources Tuscarora...

  10. Field Mapping At Hawthorne Area (Lazaro, Et Al., 2010) | Open...

    Open Energy Info (EERE)

    GPO has contracted the University of Nevada Reno Great Basin for Center for Geothermal Research to conduct additional field exploration at HAD. The tasks required by the Navy...

  11. Field Mapping At Salt Wells Area (Coolbaugh, Et Al., 2006) |...

    Open Energy Info (EERE)

    Basis Geochemical water sampling, mineral distribution mapping, and shallow (30 cm) temperature probe measurements were conducted to expand on a previous field mapping study...

  12. Field Mapping At Raft River Geothermal Area (1993) | Open Energy...

    Open Energy Info (EERE)

    extension over broad areas of the northern Basin and Range. References Dumitru, T.; Miller, E.; Savage, C.; Gans, P.; Brown, R. (1 April 1993) Fission track evidence for...

  13. Field Mapping At Truckhaven Area (Layman Energy Associates, 2008...

    Open Energy Info (EERE)

    geothermal prospect is shown in Figure 4. This map was prepared by modifying Dibblee's (1984) map using the results of LEA's detailed field mapping in the vicinity of the...

  14. Field Mapping At Roosevelt Hot Springs Geothermal Area (Ward...

    Open Energy Info (EERE)

    Area. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  15. Field Mapping At Brady Hot Springs Area (Wesnousky, Et Al., 2003...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Brady Hot Springs Area (Wesnousky, Et Al., 2003) Exploration Activity Details Location Brady...

  16. Field Mapping At Fish Lake Valley Area (Deymonaz, Et Al., 2008...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish...

  17. Field Mapping At Gabbs Valley Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Gabbs Valley Area (DOE GTP) Exploration Activity Details Location Gabbs Valley...

  18. Field Mapping At Coso Geothermal Area (1968-1971) | Open Energy...

    Open Energy Info (EERE)

    68-1971) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Coso Geothermal Area (1968-1971) Exploration Activity Details Location...

  19. Teleseismic-Seismic Monitoring At Lassen Volcanic National Park...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  20. Compound and Elemental Analysis At Lassen Volcanic National Park...

    Open Energy Info (EERE)

    Location Lassen Volcanic National Park Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown References J. Michael...

  1. Geology of the Pavana geothermal area, Departamento de Choluteca, Honduras, Central America: Field report

    SciTech Connect (OSTI)

    Eppler, D.B.; Heiken, G.; Wohletz, K.; Flores, W.; Paredes, J.R.; Duffield, W.A.

    1987-09-01

    The Pavana geothermal area is located in southern Honduras near the Gulf of Fonseca. This region is underlain by late Tertiary volcanic rocks. Within ranges near the geothermal manifestations, the rock sequences is characterized by intermediate to mafic laharic breccias and lavas overlain by silicic tuffs and lavas, which are in turn overlain by intermediate to mafic breccias, lavas, and tuffs. The nearest Quaternary volcanoes are about 40 km to the southwest, where the chain of active Central American volcanoes crosses the mouth of the Gulf of Fonseca. Structure of the Pavana area is dominated by generally northwest-trending, southwest-dipping normal faults. This structure is topographically expressed as northwest-trending escarpments that bound blocks of bedrock separated by asymmetric valleys that contain thin alluvial deposits. Thermal waters apparently issue from normal faults and are interpreted as having been heated during deep circulation along fault zones within a regional environment of elevated heat flow. Natural outflow from the main thermal area is about 3000 l/min of 60/sup 0/C water. Geothermometry of the thermal waters suggests a reservoir base temperature of about 150/sup 0/C.

  2. Ecological survey of M-Field, Edgewood Area Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Downs, J.L.; Eberhardt, L.E.; Fitzner, R.E.; Rogers, L.E.

    1991-12-01

    An ecological survey was conducted on M-Field, at the Edgewood Area, Aberdeen Proving Ground, Maryland. M-Field is used routinely to test army smokes and obscurants, including brass flakes, carbon fibers, and fog oils. The field has been used for testing purposes for the past 40 years, but little documented history is available. Under current environmental regulations, the test field must be assessed periodically to document the presence or potential use of the area by threatened and endangered species. The M-Field area is approximately 370 acres and is part of the US Army's Edgewood Area at Aberdeen Proving Ground in Harford County, Maryland. The grass-covered field is primarily lowlands with elevations from about 1.0 to 8 m above sea level, and several buildings and structures are present on the field. The ecological assessment of M-Field was conducted in three stages, beginning with a preliminary site visit in May to assess sampling requirements. Two field site visits were made June 3--7, and August 12--15, 1991, to identify the biota existing on the site. Data were gathered on vegetation, small mammals, invertebrates, birds, large mammals, amphibians, and reptiles.

  3. Ecological survey of M-Field, Edgewood Area Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Downs, J.L.; Eberhardt, L.E.; Fitzner, R.E.; Rogers, L.E.

    1991-12-01

    An ecological survey was conducted on M-Field, at the Edgewood Area, Aberdeen Proving Ground, Maryland. M-Field is used routinely to test army smokes and obscurants, including brass flakes, carbon fibers, and fog oils. The field has been used for testing purposes for the past 40 years, but little documented history is available. Under current environmental regulations, the test field must be assessed periodically to document the presence or potential use of the area by threatened and endangered species. The M-Field area is approximately 370 acres and is part of the US Army`s Edgewood Area at Aberdeen Proving Ground in Harford County, Maryland. The grass-covered field is primarily lowlands with elevations from about 1.0 to 8 m above sea level, and several buildings and structures are present on the field. The ecological assessment of M-Field was conducted in three stages, beginning with a preliminary site visit in May to assess sampling requirements. Two field site visits were made June 3--7, and August 12--15, 1991, to identify the biota existing on the site. Data were gathered on vegetation, small mammals, invertebrates, birds, large mammals, amphibians, and reptiles.

  4. Volcanic studies at Katmai

    SciTech Connect (OSTI)

    Not Available

    1989-12-31

    The Continental Scientific Drilling Program (CSDP) is a national effort supported by the Department of Energy, the US Geological Survey, and the National Science Foundation. One of the projects proposed for the CSDP consists of drilling a series of holes in Katmai National Park in Alaska to give a third dimension to the model of the 1912 eruption of Novarupta, and to investigate the processes of explosive volcanism and hydrothermal transport of metals (Eichelberger et al., 1988). The proposal for research drilling at Katmai states that ``the size, youth, elevated temperature, and simplicity of the Novarupta vent make it a truly unique scientific target.`` The National Park Service (NPS), which has jurisdiction, is sympathetic to aims of the study. However, NPS wishes to know whether Katmai is indeed uniquely suited to the research, and has asked the Interagency Coordinating Group to support an independent assessment of this claim. NPS suggested the National Academy of Sciences as an appropriate organization to conduct the assessment. In response, the National Research Council -- the working arm of the Academy -- established, under the aegis of its US Geodynamics Committee, a panel whose specific charge states: ``The proposed investigation at Katmai has been extensively reviewed for scientific merit by the three sponsoring and participating agencies. Thus, the scientific merit of the proposed drilling at Katmai is not at issue. The panel will review the proposal for scientific drilling at Katmai and prepare a short report addressing the specific question of the degree to which it is essential that the drilling be conducted at Katmai as opposed to volcanic areas elsewhere in the world.``

  5. Los Humeros Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    (0) 10 References Area Overview Geothermal Area Profile Location: Chignautla, Puebla, Mexico Exploration Region: Transmexican Volcanic Belt GEA Development Phase:...

  6. Surface area generation and droplet size control in solvent extraction systems utilizing high intensity electric fields

    DOE Patents [OSTI]

    Scott, Timothy C.; Wham, Robert M.

    1988-01-01

    A method and system for solvent extraction where droplets are shattered by a high intensity electric field. These shattered droplets form a plurality of smaller droplets which have a greater combined surface area than the original droplet. Dispersion, coalescence and phase separation are accomplished in one vessel through the use of the single pulsing high intensity electric field. Electric field conditions are chosen so that simultaneous dispersion and coalescence are taking place in the emulsion formed in the electric field. The electric field creates a large amount of interfacial surface area for solvent extraction when the droplet is disintegrated and is capable of controlling droplet size and thus droplet stability. These operations take place in the presence of a counter current flow of the continuous phase.

  7. Hierarchical probabilistic regionalization of volcanism for Sengan region, Japan.

    SciTech Connect (OSTI)

    Balasingam, Pirahas; Park, Jinyong; McKenna, Sean Andrew; Kulatilake, Pinnaduwa H. S. W.

    2005-03-01

    A 1 km square regular grid system created on the Universal Transverse Mercator zone 54 projected coordinate system is used to work with volcanism related data for Sengan region. The following geologic variables were determined as the most important for identifying volcanism: geothermal gradient, groundwater temperature, heat discharge, groundwater pH value, presence of volcanic rocks and presence of hydrothermal alteration. Data available for each of these important geologic variables were used to perform directional variogram modeling and kriging to estimate geologic variable vectors at each of the 23949 centers of the chosen 1 km cell grid system. Cluster analysis was performed on the 23949 complete variable vectors to classify each center of 1 km cell into one of five different statistically homogeneous groups with respect to potential volcanism spanning from lowest possible volcanism to highest possible volcanism with increasing group number. A discriminant analysis incorporating Bayes theorem was performed to construct maps showing the probability of group membership for each of the volcanism groups. The said maps showed good comparisons with the recorded locations of volcanism within the Sengan region. No volcanic data were found to exist in the group 1 region. The high probability areas within group 1 have the chance of being the no volcanism region. Entropy of classification is calculated to assess the uncertainty of the allocation process of each 1 km cell center location based on the calculated probabilities. The recorded volcanism data are also plotted on the entropy map to examine the uncertainty level of the estimations at the locations where volcanism exists. The volcanic data cell locations that are in the high volcanism regions (groups 4 and 5) showed relatively low mapping estimation uncertainty. On the other hand, the volcanic data cell locations that are in the low volcanism region (group 2) showed relatively high mapping estimation uncertainty

  8. Drilling, Sampling, and Well-Installation Plan for the IFC Well Field, 300 Area

    SciTech Connect (OSTI)

    Bjornstad, Bruce N.; Horner, Jacob A.

    2008-05-05

    The 300 Area was selected as a location for an IFC because it offers excellent opportunities for field research on the influence of mass-transfer processes on uranium in the vadose zone and groundwater. The 300 Area was the location of nuclear fuel fabrication facilities and has more than 100 waste sites. Two of these waste sites, the North and South Process Ponds received large volumes of process waste from 1943 to 1975 and are thought to represent a significant source of the groundwater uranium plume in the 300 Area. Geophysical surveys and other characterization efforts have led to selection of the South Process Pond for the IFC.

  9. Pre-Leonardian geology of Midland Farms field area, Andrews County, Texas

    SciTech Connect (OSTI)

    Mear, C.E.; Dufurrena, C.K.

    1984-01-01

    The Midland Farms (Ellenburger) oil field was discovered on September 16, 1952, with the completion of Anderson-Pritchard's 1 Fasken-24 well, drilled on an indicated single-fold seismic structure. The field produces from vuggy, fractured Ellenburger dolomite with up to 310 ft (94 m) of gross and net pay. The Midland Farms (Ellenburger) field is part of a larger structure which incorporates not only Midland Farms field, but Midland Farms, West (Devonian), Inez (Ellenburger), and parts of the Fasken (Penn) and Block 41 (Wolfcamp) fields. The structure is a complex, uplifted block composed of two doubly plunging, asymmetric anticlines bisected by at least one wrench-type fault and several normal faults. Penecontemporaneous leaching produced oomoldic porosity in the limestones. Ellenburger oil production was established in the Midland Farms area in September 1952, and has amounted to 61.6 million bbl oil and 28.5 bcf of gas from 91 wells to January 1983. Major Fusselman and Wolfcamp oil accumulations were discovered during development of the Ellenburger field. Fusselman oil was first produced in June 1953, and has totaled 10.1 million bbl of oil and 5 bcf of gas from 33 wells to January 1983. Wolfcamp production was established in January 1954 and totals 10.7 million bbl of oil and 1 bcf of gas from 39 wells. Total production from all zones including post-Leonard beds in the Midland Farms field area to date has been 210 million bbl of oil and 84 bcf of gas.

  10. Petroleum system of the Barua and Motatan fields and the San Pedro-Machango area

    SciTech Connect (OSTI)

    Navarro, A.; Diaz, F.; Rodriguez, I.

    1996-08-01

    The study area is located in the Costa Bolivar (onshore) in the Maracaibo Basin, being framed by Ceuta (offshore) and Tomoporo fields to its west and the Valera fault zone to the east, Mene Grande field to the north and La Ceiba to the south. Eocene oil accumulations are the most important for the study area. Probably this oil was generated and migrated during Miocene-Holocene time. Heavy oil accumulations occur in Miocene intervals, although they have not been considered commercial. It is possible that this oil was generated during early to late Eocene and suffered later biodegradation and remigration. Structurally, it is characterized by different and highly complex tectonic events. Normal faulting occurred during Cretaceous and Eocene times. During the latter, periods of inversion were present that created structural highs where oil generated from La Luna Formation (Cretaceous) accumulated. Major structural deformation occurred during upper Eocene and lower Miocene (Andes uplift). This deformation shows an increase from west (Barua) to east where the Valera fault zone is present. The study area shows a regional dip towards the south, while during the Eocene it dipped towards the north, due to the foredeep condition of the area, when up to 15,000 ft of sediments were deposited, based on seismic data. Porosities vary from 8% to 18% within the area. Fractures are present and they enhance oil production.

  11. EIS-0402: Remediation of Area IV of the Santa Susana Field Laboratory, California

    Broader source: Energy.gov [DOE]

    DOE is preparing an EIS for cleanup of Area IV, including the Energy Technology Engineering Center (ETEC), as well as the Northern Buffer Zone of the Santa Susana Field Laboratory (SSFL) in eastern Ventura County, California, approximately 29 miles north of downtown Los Angeles. (DOE’s operations bordered the Northern Buffer Zone. DOE is responsible for soil cleanup in Area IV and the Northern Buffer Zone.) In the EIS, DOE will evaluate reasonable alternatives for disposition of radiological facilities and support buildings, remediation of contaminated soil and groundwater, and disposal of all resulting waste at permitted facilities.

  12. Gunun-Salak Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Activities (0) 10 References Area Overview Geothermal Area Profile Location: Java, Indonesia Exploration Region: Sunda Volcanic Arc GEA Development Phase:...

  13. An area-of-review variance study of the East Texas field

    SciTech Connect (OSTI)

    Warner, D.L.; Koederitz, L.F.; Laudon, R.C.; Dunn-Norman, S.

    1996-12-31

    The East Texas oil field, discovered in 1930 and located principally in Gregg and Rusk Counties, is the largest oil field in the conterminous United States. Nearly 33,000 wells are known to have been drilled in the field. The field has been undergoing water injection for pressure maintenance since 1938. As of today, 104 Class II salt-water disposal wells, operated by the East Texas Salt Water Disposal Company, are returning all produced water to the Woodbine producing reservoir. About 69 of the presently existing wells have not been subjected to US Environmental Protection Agency Area-of-Review (AOR) requirements. A study has been carried out of opportunities for variance from AORs for these existing wells and for new wells that will be constructed in the future. The study has been based upon a variance methodology developed at the University of Missouri-Rolla under sponsorship of the American Petroleum Institute and in coordination with the Ground Water Protection Council. The principal technical objective of the study was to determine if reservoir pressure in the Woodbine producing reservoir is sufficiently low so that flow of salt-water from the Woodbine into the Carrizo-Wilcox ground water aquifer is precluded. The study has shown that the Woodbine reservoir is currently underpressured relative to the Carrizo-Wilcox and will remain so over the next 20 years. This information provides a logical basis for a variance for the field from performing AORs.

  14. Evaluation of area of review variance opportunities for the East Texas field. Annual report

    SciTech Connect (OSTI)

    Warner, D.L.; Koederitz, L.F.; Laudon, R.C.; Dunn-Norman, S.

    1995-05-01

    The East Texas oil field, discovered in 1930 and located principally in Gregg and Rusk Counties, is the largest oil field in the conterminous United States. Nearly 33,000 wells are known to have been drilled in the field. The field has been undergoing water injection for pressure maintenance since 1938. As of today, 104 Class II salt-water disposal wells, operated by the East Texas Salt Water Disposal Company, are returning all produced water to the Woodbine producing reservoir. About 69 of the presently existing wells have not been subjected to U.S. Environmental Protection Agency Area-of-Review (AOR) requirements. A study has been carried out of opportunities for variance from AORs for these existing wells and for new wells that will be constructed in the future. The study has been based upon a variance methodology developed at the University of Missouri-Rolla under sponsorship of the American Petroleum Institute and in coordination with the Ground Water Protection Council. The principal technical objective of the study was to determine if reservoir pressure in the Woodbine producing reservoir is sufficiently low so that flow of salt-water from the Woodbine into the Carrizo-Wilcox ground water aquifer is precluded. The study has shown that the Woodbine reservoir is currently underpressured relative to the Carrizo-Wilcox and will remain so over the next 20 years. This information provides a logical basis for a variance for the field from performing AORs.

  15. Focused feasibility study for surface soil at the main pits and pushout area, J-field toxic burning pits area, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Patton, T.; Benioff, P.; Biang, C.; Butler, J.

    1996-06-01

    The Environmental Management Division of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). J-Field is located within the Edgewood Area of APG in Harford County, Maryland. Since World War II, activities in the Edgewood Area have included the development, manufacture, testing, and destruction of chemical agents and munitions. These materials were destroyed at J-Field by open burning/open detonation. Portions of J-Field continue to be used for the detonation and disposal of unexploded ordnance (UXO) by open burning/open detonation under authority of the Resource Conservation and Recovery Act.

  16. THE WIDE-AREA ENERGY STORAGE AND MANAGEMENT SYSTEM PHASE II Final Report - Flywheel Field Tests

    SciTech Connect (OSTI)

    Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.; Rudolph, Frank; Murthy, Shashikala; Arseneaux, Jim; Loutan, Clyde; Chowdhury, S.

    2010-08-31

    This research was conducted by Pacific Northwest National Laboratory (PNNL) operated for the U.S. department of Energy (DOE) by Battelle Memorial Institute for Bonneville Power Administration (BPA), California Institute for Energy and Environment (CIEE) and California Energy Commission (CEC). A wide-area energy management system (WAEMS) is a centralized control system that operates energy storage devices (ESDs) located in different places to provide energy and ancillary services that can be shared among balancing authorities (BAs). The goal of this research is to conduct flywheel field tests, investigate the technical characteristics and economics of combined hydro-flywheel regulation services that can be shared between Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) controlled areas. This report is the second interim technical report for Phase II of the WAEMS project. This report presents: 1) the methodology of sharing regulation service between balancing authorities, 2) the algorithm to allocate the regulation signal between the flywheel and hydro power plant to minimize the wear-and-tear of the hydro power plants, 3) field results of the hydro-flywheel regulation service (conducted by the Beacon Power), and 4) the performance metrics and economic analysis of the combined hydro-flywheel regulation service.

  17. Hydrophobic force field as molecular alternative to surface-area models

    SciTech Connect (OSTI)

    Hummer, G.

    1999-07-07

    An effective force field for hydrophobic interactions is developed based on a modified potential-of-mean-force (PMF) expansion of the effective many-body interactions between nonpolar molecules in water. For the simplest nonpolar solutes in water, hard particles, the modified PMF expansion is exact in both limiting cases of infinite separation and perfect overlap. The hydrophobic interactions are parametrized by using the information-theory model of hydrophobic hydration. The interactions between nonpolar solutes are short-ranged and can be evaluated efficiently on a computer. The force field is compared with simulation data for alkane conformational equilibria in water as well as a model for the formation of a hydrophobic core of a protein. The modified PMF expansion can be extended to solutes with attractive interactions. The observed accuracy, computational efficiency, and atomic detail of the model suggest that this simple hydrophobic force field can lead to a molecular alternative for phenomenological surface-area models with applications in ligand-binding and protein-folding studies.

  18. OBSERVATIONS OF ENERGETIC HIGH MAGNETIC FIELD PULSARS WITH THE FERMI LARGE AREA TELESCOPE

    SciTech Connect (OSTI)

    Parent, D.; Abdo, A. A.; Kerr, M.; Den Hartog, P. R.; Romani, R. W.; Watters, K.; Craig, H. A.; Baring, M. G.; DeCesar, M. E.; Harding, A. K.; Espinoza, C. M.; Stappers, B. W.; Weltevrede, P.; Gotthelf, E. V.; Camilo, F.; Johnston, S.; Kaspi, V. M.; Livingstone, M.; Burgay, M.; Freire, P. C. C. E-mail: kerrm@stanford.edu; and others

    2011-12-20

    We report the detection of {gamma}-ray pulsations from the high-magnetic-field rotation-powered pulsar PSR J1119-6127 using data from the Fermi Large Area Telescope. The {gamma}-ray light curve of PSR J1119-6127 shows a single, wide peak offset from the radio peak by 0.43 {+-} 0.02 in phase. Spectral analysis suggests a power law of index 1.0 {+-} 0.3{sup +0.4}{sub -0.2} with an energy cutoff at 0.8 {+-} 0.2{sup +2.0}{sub -0.5} GeV. The first uncertainty is statistical and the second is systematic. We discuss the emission models of PSR J1119-6127 and demonstrate that despite the object's high surface magnetic field-near that of magnetars-the field strength and structure in the {gamma}-ray emitting zone are apparently similar to those of typical young pulsars. Additionally, we present upper limits on the {gamma}-ray pulsed emission for the magnetically active PSR J1846-0258 in the supernova remnant Kesteven 75 and two other energetic high-B pulsars, PSRs J1718-3718 and J1734-3333. We explore possible explanations for the non-detection of these three objects, including peculiarities in their emission geometry.

  19. The 300 Area Integrated Field Research Challenge Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2009-04-29

    Pacific Northwest National Laboratory and a group of expert collaborators are using the U.S. Department of Energy Hanford Site 300 Area uranium plume within the footprint of the 300-FF-5 groundwater operable unit as a site for an Integrated Field-Scale Subsurface Research Challenge (IFRC). The IFRC is entitled Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on the Hanford Site 300 Area Uranium Plume Project. The theme is investigation of multi-scale mass transfer processes. A series of forefront science questions on mass transfer are posed for research that relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements/approaches needed to characterize and model a mass transfer-dominated system. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the 300 Area IFRC Project. This plan is designed to be used exclusively by project staff.

  20. DECOVALEX-THMC Task D: Long-Term Permeability/Porosity Changes inthe EDZ and Near Field due to THM and THC Processes in Volcanic andCrystaline-Bentonite Systems, Status Report October 2005

    SciTech Connect (OSTI)

    Birkholzer, J.; Rutqvist, J.; Sonnenthal, E.; Barr, D.

    2005-11-01

    The DECOVALEX project is an international cooperativeproject initiated by SKI, the Swedish Nuclear Power Inspectorate, withparticipation of about 10 international organizations. The name DECOVALEXstands for DEvelopment of COupled models and their VALidation againstExperiments. The general goal of this project is to encouragemultidisciplinary interactive and cooperative research on modelingcoupled processes in geologic formations in support of the performanceassessment for underground storage of radioactive waste. Three multi-yearproject stages of DECOVALEX have been completed in the past decade,mainly focusing on coupled thermal-hydrological-mechanicalprocesses.Currently, a fourth three-year project stage of DECOVALEX isunder way, referred to as DECOVALEX-THMC. THMC stands for Thermal,Hydrological, Mechanical, and Chemical processes. The new project stageaims at expanding the traditional geomechanical scope of the previousDECOVALEX project stages by incorporating geochemical processes importantfor repository performance. The U.S. Department of Energy (DOE) leadsTask D of the new DECOVALEX phase, entitled "Long-termPermeability/Porosity Changes in the EDZ and Near Field due to THC andTHM Processes for Volcanic and Crystalline-Bentonite Systems." In itsleadership role for Task D, DOE coordinates and sets the direction forthe cooperative research activities of the international research teamsengaged in Task D.

  1. Ahuachapan Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Activities (0) 10 References Area Overview Geothermal Area Profile Location: El Salvador Exploration Region: Central American Volcanic Arc Chain GEA Development Phase:...

  2. The concentrations of radionuclides, heavy metals, and poloychlorinated biphenyls in field mice collected from regional background areas. Revision 3

    SciTech Connect (OSTI)

    Fresquez, Philip R.

    2015-12-18

    Field mice are effective indicators of contaminant presence. This paper reports the concentrations of various radionuclides, heavy metals, polychlorinated biphenyls, high explosives, perchlorate, and dioxin/furans in field mice (mostly deer mice) collected from regional background areas in northern New Mexico. These data, represented as the regional statistical reference level (the mean plus three standard deviations = 99% confidence level), are used to compare with data from field mice collected from areas potentially impacted by Laboratory operations, as per the Environmental Surveillance Program at Los Alamos National Laboratory.

  3. Field Mapping At Coso Geothermal Area (2001-2003) | Open Energy...

    Open Energy Info (EERE)

    Coso field primarily occurs in the hanging walls of the listric faults. References Unruh, J. (1 January 2001) NEW SEISMIC IMAGING OF THE COSO GEOTHERMAL FIELD, EASTERN CALIFORNIA...

  4. Influence of plasma loss area on transport of charged particles through a transverse magnetic field

    SciTech Connect (OSTI)

    Das, B. K.; Chakraborty, M. [Centre of Plasma Physics-Institute for Plasma Research, Tepesia, Kamrup, Assam (India); Bandyopadhyay, M. [ITER-India, Institute for Plasma Research, Gandhinagar, Gujarat (India)

    2012-01-15

    Plasma transport in a double plasma device from the source region to the target region through a physical window comprising of electrically grounded magnet channels (filled with permanent magnet bars) for transverse magnetic field (TMF) and a pair of stainless steel (SS) plates is studied and presented in this manuscript. The study has relevance in negative ion source research and development where both TMF created by magnet channels and bias plate are used. The experiment is performed in two stages. In the first stage, a TMF is introduced between the two regions along with the SS plates, and corresponding plasma parameter data in the two regions are recorded by changing the distance between the TMF channels. In the second stage, the TMF is withdrawn from the system, and corresponding data are taken by changing the separation between the SS plates. The experimental results are then compared with a theoretical model. In the presence of TMF, where electrons are magnetized and ions are un-magnetized, it is observed that plasma transport perpendicular to the TMF is dominated by the ambipolar diffusion of ions. In the absence of TMF, plasma is un-magnetized, and plasma transport through the SS window aperture is almost independent of open area of the SS window.

  5. Comparison of personal radio frequency electromagnetic field exposure in different urban areas across Europe

    SciTech Connect (OSTI)

    Joseph, Wout; University of Basel ; Thuroczy, Gyoergy; French National Institute for Industrial Environment and Risks , Verneuil en Halatte ; Gajsek, Peter; Trcek, Tomaz; Bolte, John; Vermeeren, Guenter; University of Basel ; Juhasz, Peter; Finta, Viktoria

    2010-10-15

    Background: Only limited data are available on personal radio frequency electromagnetic field (RF-EMF) exposure in everyday life. Several European countries performed measurement studies in this area of research. However, a comparison between countries regarding typical exposure levels is lacking. Objectives: To compare for the first time mean exposure levels and contributions of different sources in specific environments between different European countries. Methods: In five countries (Belgium, Switzerland, Slovenia, Hungary, and the Netherlands), measurement studies were performed using the same personal exposure meters. The pooled data were analyzed using the robust regression on order statistics (ROS) method in order to allow for data below the detection limit. Mean exposure levels were compared between different microenvironments such as homes, public transports, or outdoor. Results: Exposure levels were of the same order of magnitude in all countries and well below the international exposure limits. In all countries except for the Netherlands, the highest total exposure was measured in transport vehicles (trains, car, and busses), mainly due to radiation from mobile phone handsets (up to 97%). Exposure levels were in general lower in private houses or flats than in offices and outdoors. At home, contributions from various sources were quite different between countries. Conclusions: Highest total personal RF-EMF exposure was measured inside transport vehicles and was well below international exposure limits. This is mainly due to mobile phone handsets. Mobile telecommunication can be considered to be the main contribution to total RF-EMF exposure in all microenvironments.

  6. EIS-0402: Remediation of Area IV of the Santa Susana Field Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Technology Engineering Center (ETEC), as well as the Northern Buffer Zone of the Santa Susana Field Laboratory (SSFL) in eastern Ventura County, California, approximately 29...

  7. EIS-0402: Remediation of Area IV of the Santa Susana Field Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Susana Field Laboratory (SSFL) in eastern Ventura County, California, approximately 29 miles north of downtown Los Angeles. (DOE's operations bordered the Northern Buffer Zone. ...

  8. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A. [Los Alamos National Lab., NM (United States); Wells, S. [Univ. of California, Riverside, CA (United States); Bowker, L.; Finnegan, K. [Univ. of Nevada, Las Vegas, NV (United States); Geissman, J.; McFadden, L.

    1995-02-01

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report.

  9. Lower Pennsylvanian reservoirs of Parkway-Empire south field area, Eddy County, New Mexico

    SciTech Connect (OSTI)

    James, A.D.

    1984-01-01

    The Parkway-Empire area is located on the Northwest shelf in central Eddy County, approximately 15 mi (24 km) northeast of Carlsbad, New Mexico. This area produces oil and gas from the lower and middle Morrow sandstones, Atoka sandstones, and Strawn limestones. Oil is also produced from the Queen and Seven Rivers sandstones, and the Grayburg, San Andres, and Wolfcamp dolomites. All of the these zones are productive from stratigraphic traps. The lower Morrow sandstones occur at a depth of about 11,400 ft (3,474 m). In the Parkway area, the middle Morrow sandstones are thought to be a transgressive series of marine beaches and submarine bars which trend toward the northeast, parallel to depositional strike. Stratigraphic traps are created in the lower and middle Morrow sandstones by variations in cementation and depositional patterns. Productive Atoka sandstones occur at a depth of approximately 10,700 ft (3,261 m). Strawn limestones produce from a series of small, low-relief algal banks developed along depositional strike to the northeast. The Strawn limestone is about 300 ft (91 m) thick and occurs between 10,250 and 10,500 ft (3,124 and 3,200 m). Wells in this area have typical ultimate recoveries of between 1.0 and 3.0 bcf of gas. The combination of stacked reservoirs and good production makes this area of the Morrow trend especially attractive.

  10. Reactivating of a mature oil field in the Finca-Yopales area, Venezuela, Using 3-D seismic

    SciTech Connect (OSTI)

    Sanchez, M.; Betancourt, H.

    1996-08-01

    The area of Finca-Yopales is located in the Eastern Venezuelan Basin in the Anzoategui State where Corpoven has the Trico and Yopales Norte fields. Based on the interpretation of 134 km{sup 2} of 3-D seismic and the geologic interpretation from 145 wells in the area, we define a better geological and structural model. We were also able to map 6 seismic reflectors corresponding to the units A8, F7, L4U and SI from the Oficina Formation, U2 top of Merecure Formation and the top of the Cretaceous, in order to generate a fault plane for all the area which was converted to depth with a lineal relationship which was obtained from wells available. From this interpretation we obtain the structural levels B4, J2, M1 and U2 which are references for the area, those being regional and trangressive events. The main feature of the structure is a high at the southeast of the area and three fault systems of Cretaceous, Miocene and post-Miocene age. This area has been exploited for a long time, having more than 93% of the inactive drilled wells. The total production up to April, 1995 is 59.14 MMbls; the Trico field is the most prolific, with more than 95% of the production. The sands L`s, U`s, O`s and S`s are the most prospective. This paper present the evaluation of the area and the analysis of the reservoir where we increased the computed reserves.

  11. Site Environmental Report For Calendar Year 2012. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    Liu, Ning; Rutherford, Phil; Dassler, David

    2013-09-01

    This Annual Site Environmental Report (ASER) for 2012 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2012 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  12. Site Environmental Report for Calendar Year 2010. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    Liu, Ning; Rutherford, Phil; Amar, Ravnesh

    2011-09-01

    This Annual Site Environmental Report (ASER) for 2010 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2010 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  13. Site Environmental Report for Calendar Year 2009. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    Liu, Ning; Rutherford, Phil; Amar, Ravnesh

    2010-09-01

    This Annual Site Environmental Report (ASER) for 2009 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2009 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  14. Site Environmental Report for Calendar Year 2008. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    Liu, Ning; Rutherford, Phil; Amar, Ravnesh

    2009-09-01

    This Annual Site Environmental Report (ASER) for 2008 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. In May 2007, the D&D operations in Area IV were suspended by the DOE. The environmental monitoring programs were continued throughout the year. Results of the radiological monitoring program for the calendar year 2008 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  15. Site Environmental Report for Calendar Year 2011. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    Liu, Ning; Rutherford, Phil; Dassler, David

    2012-09-01

    This Annual Site Environmental Report (ASER) for 2011 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2011 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  16. Borehole Completion and Conceptual Hydrogeologic Model for the IFRC Well Field, 300 Area, Hanford Site

    SciTech Connect (OSTI)

    Bjornstad, Bruce N.; Horner, Jacob A.; Vermeul, Vincent R.; Lanigan, David C.; Thorne, Paul D.

    2009-04-20

    A tight cluster of 35 new wells was installed over a former waste site, the South Process Pond (316-1 waste site), in the Hanford Site 300 Area in summer 2008. This report documents the details of the drilling, sampling, and well construction for the new array and presents a summary of the site hydrogeology based on the results of drilling and preliminary geophysical logging.

  17. field

    National Nuclear Security Administration (NNSA)

    09%2A en Ten-Year Site Plans (TYSP) http:nnsa.energy.govaboutusouroperationsinfopsinfopstysp

    field field-type-text field-field-page-name">
  18. field

    National Nuclear Security Administration (NNSA)

    09%2A en Ten-Year Site Plans (TYSP) http:www.nnsa.energy.govaboutusouroperationsinfopsinfopstysp

    field field-type-text field-field-page-name">
  19. A Physical Model For The Origin Of Volcanism Of The Tyrrhenian...

    Open Energy Info (EERE)

    Of Neapolitan Area Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Physical Model For The Origin Of Volcanism Of The Tyrrhenian Margin- The...

  20. Site Environmental Report for Calendar Year 2006. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    Liu, Ning; Rutherford, Phil

    2007-09-01

    This Annual Site Environmental Report (ASER) for 2006 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated in 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2006 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  1. Site Environmental Report for Calendar Year 2013. DOE Operations at The Boeing Company, Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    2014-06-30

    This Annual Site Environmental Report (ASER) for 2013 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2013 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. Due to the suspension of D&D activities in Area IV, no effluents were released into the atmosphere during 2013. Therefore, the potential radiation dose to the general public through airborne release was zero. Similarly, the radiation dose to an offsite member of the public (maximally exposed individual) due to direct radiation from SSFL is indistinguishable from background. All radioactive wastes are processed for disposal at DOE disposal sites and/or other licensed sites approved by DOE for radioactive waste

  2. Taking a new look at an old field: A revised structural/stratigraphic framework of the SVS-40 area

    SciTech Connect (OSTI)

    Taylor, C.; Carrizales, R.; Acosta, W.; Cova, J.; Garrido, M.; Rossetti, A.N.

    1996-08-01

    The SVS-40 area in Lake Maracaibo has undergone a complete structural/stratigraphic revision by fully integrating all available data on a single software platform. This integration was achieved by utilizing the latest workstation technology to create a commonly shared database. This allowed quick access and usage of all the data for generating a structural-stratigraphic-parametric model for reservoir simulation. Located in Maraven`s Lama field, Central Lake Maracaibo, the SVS-40 area has been producing oil for the last 30 years. It contains three major reservoirs which are currently under water injection projects. The reservoir dynamics of the field required a new look, one that could only be achieved by piecing together the data in a coherent fashion. The structural model was developed primarily from the 3D seismic survey over the area. At the same time, the stratigraphy framework was completed and integrated. Along with the appropriate petrophysical and production data, a consistent geometric and parametric model suitable for input to a numerical fluid flow simulator has been developed. The results of this integrated model are presented as well as the steps followed to generate it.

  3. The boomerang area: An example of oil and gas fields related to a transfer zone development

    SciTech Connect (OSTI)

    Specht, M.; Colletta, B.; Letouzey, J. ); Baby, P. ); Oller, J.; Montemuro, G. ); Guillier, B. )

    1993-02-01

    We present results of a study realized from petroleum data of Yacimientos Petroliferos Fiscales Bolivianos of the most important transfer zone of the Bolivian Andean belt: the Santa Cruz transfer zone. Frontal part of the Bolivian Andean belt consists of a thick series (6 to 8 km) of paleozoic to cenozoic sedimentary rocks thrusted eastwards on a sole thrust located in paleozoic series. The frontal part of the belt, globally N-S oriented, undergoes an important deviation East of Santa Cruz with a left lateral offset of 100 Km. Taking into account the E-W shortening direction, this transfer zone can be interpreted as a lateral ramp. The Santa Cruz transfer zone coincide with a set of small oil and gas fields whereas frontal structures lack hydrocarbon occurrences. We are then faced with a two-fold problem: (1) what is the origin of the transfer zone (2) why are the oil and gas concentrated in the transfer zone Our synthesis shows that the transfer zone is superimposed on the limit of a detached Paleozoic basin whose border direction is oblique to the regional shortening direction. We then interpret the oil and gas formation in two steps: (1) source rock maturation and hydrocarbon migration towards the top of the Paleozoic sedimentary wedge before Andean deformation. (2) hydrocarbon dismigration towards anticlinal structures developed during the lateral ramp propagation. In order to test our interpretation we performed a set of analog model experiments whose 3D visualization was analyzed by computerized X-ray tomography.

  4. Reaction-Based Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center

    SciTech Connect (OSTI)

    Yeh, Gour-Tsyh

    2006-06-01

    This research project (started Fall 2004) was funded by a grant to The Pennsylvania State University, University of Central Florida, and The University of Alabama in the Integrative Studies Element of the NABIR Program (DE-FG04-ER63914/63915/63196). Dr. Eric Roden, formerly at The University of Alabama, is now at the University of Wisconsin - Madison. Our project focuses on the development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. This work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and is directly aligned with the Scheibe et al. NABIR FRC Field Project at Area 2.

  5. Reaction-based Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center

    SciTech Connect (OSTI)

    Tsyh Yeh, Gour

    2007-12-21

    This research sought to examine biogeochemical processes likely to take place in the less conductive materials above and below the gravel during the in situ ethanol biostimulation experiment conducted at Area 2 during 2005-2006. The in situ experiment in turn examined the hypothesis that injection of electron donor into this layer would induce formation of a redox barrier in the less conductive materials, resulting in decreased mass transfer of uranium out these materials and attendant declines in groundwater U(VI) concentration. Our project focuses on the development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. This report summarizes research activities conducted at The University of Central Florida (2004-2007), the development of biogeochemical and reactive transport models and the conduction of numerical simulations at laboratory, column, and field scales.

  6. Site Environmental Report for Calendar Year 2005. DOE Operations at The Boeing Company, Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    2006-09-30

    This annual report describes the environmental monitoring programs related to the Department of Energy’s (DOE) activities at the Santa Susana Field Laboratory (SSFL) facility located in Ventura County, California during 2005. Part of the SSFL facility, known as Area IV, had been used for DOE’s activities since the 1950s. A broad range of energy related research and development (R&D) projects, including nuclear technologies projects, was conducted at the site. All the nuclear R&D operations in Area IV ceased in 1988. Current efforts are directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and closure of facilities used for liquid metal research.

  7. Rapid production of large-area deep sub-wavelength hybrid structures by femtosecond laser light-field tailoring

    SciTech Connect (OSTI)

    Wang, Lei; Chen, Qi-Dai E-mail: hbsun@jlu.edu.cn; Yang, Rui; Xu, Bin-Bin; Wang, Hai-Yu; Yang, Hai; Huo, Cheng-Song; Tu, Hai-Ling; Sun, Hong-Bo E-mail: hbsun@jlu.edu.cn

    2014-01-20

    The goal of creation of large-area deep sub-wavelength nanostructures by femtosecond laser irradiation onto various materials is being hindered by the limited coherence length. Here, we report solution of the problem by light field tailoring of the incident beam with a phase mask, which serves generation of wavelets. Direct interference between the wavelets, here the first-order diffracted beams, and interference between a wavelet and its induced waves such as surface plasmon polariton are responsible for creation of microgratings and superimposed nanogratings, respectively. The principle of wavelets interference enables extension of uniformly induced hybrid structures containing deep sub-wavelength nanofeatures to macro-dimension.

  8. Magmatic-tectonic evolution of a volcanic rifted margin

    SciTech Connect (OSTI)

    Eldholm, O. )

    1990-05-01

    Many North Atlantic margins are underlain by huge volcanic edifices near the continent-ocean boundary. A crustal hole drilled at the outer Voering Plateau during ODP (Ocean Drilling Project) Leg 104 has provided important constraints on the breakup history and the subsequent margin evolution by penetrating more than 900 m of igneous rocks and interbedded sediment below a post-early Eocene cover. The recovered basement rocks constitute two different volcanic series. The Upper Series, comprising a seaward-dipping reflector wedge, consists of transitional mid-oceanic tholeiitic lava flows and thin volcaniclastic sediments. Dacitic flows, some dikes and thicker sediments constitute the Lower Series. The margin evolved by Paleocene crustal extension, uplift and pervasive intrusion in the rift zone. Just prior to breakup, magma from shallow crustal melts produced the Lower Series. The Upper Series was constructed during an intense, rapidly waning subaerial surge following breakup in the earliest Eocene. The Upper Series covers both new oceanic crust and large areas of continental crust. The dipping wedge was formed by subsidence due to loading and thermal contraction probably amplified by a tectonic force. When the surge had abated, the injection center subsided and a normal oceanic crust was formed. A direct temporal and compositional relationship exists between the onshore North Atlantic Volcanic Province and the volcanic margins. Whereas the central transverse part of the province, near the Iceland hotspot has been active for 60 m.y., the volcanic margins reflect a 2,000-km-long transient phenomenon lasting only 3 m.y. The breakup volcanism and lack of initial subsidence are related to a regional, about 50C{degree}, increased temperature at the base of the lithosphere (hot carpet) combined with opening in previously extended crust.

  9. Assessment of industrial minerals and rocks in the controlled area

    SciTech Connect (OSTI)

    Castor, S.B.; Lock, D.E.

    1996-08-01

    Yucca Mountain in Nye County, Nevada, is a potential site for a permanent repository for high-level nuclear waste in Miocene ash flow tuff. The Yucca Mountain controlled area occupies approximately 98 km{sup 2} that includes the potential repository site. The Yucca Mountain controlled area is located within the southwestern Nevada volcanic field, a large area of Miocene volcanism that includes at least four major calderas or cauldrons. It is sited on a remnant of a Neogene volcanic plateau that was centered around the Timber Mountain caldera complex. The Yucca Mountain region contains many occurrences of valuable or potentially valuable industrial minerals, including deposits with past or current production of construction aggregate, borate minerals, clay, building stone, fluorspar, silicate, and zeolites. The existence of these deposits in the region and the occurrence of certain mineral materials at Yucca Mountain, indicate that the controlled area may have potential for industrial mineral and rock deposits. Consideration of the industrial mineral potential within the Yucca Mountain controlled area is mainly based on petrographic and lithologic studies of samples from drill holes in Yucca Mountain. Clay minerals, zeolites, fluorite, and barite, as minerals that are produced economically in Nevada, have been identified in samples from drill holes in Yucca Mountain.

  10. Hanford 100-D Area Biostimulation Soluble Substrate Field Test: Interim Data Summary for the Substrate Injection and Process Monitoring Phases of the Field Test

    SciTech Connect (OSTI)

    Truex, Michael J.; Vermeul, Vincent R.; Mackley, Rob D.; Fritz, Brad G.; Mendoza, Donaldo P.; Johnson, Christian D.; Elmore, Rebecca P.; Brockman, Fred J.; Bilskis, Christina L.

    2008-06-01

    Pacific Northwest National Laboratory is conducting a treatability test designed to demonstrate that in situ biostimulation can be applied to help meet cleanup goals in the Hanford Site 100-D Area. The in situ biostimulation technology is intended to provide supplemental treatment upgradient of the In Situ Redox Manipulation (ISRM) barrier by reducing the concentration of the primary oxidizing species in groundwater (i.e., nitrate and dissolved oxygen) and chromate, and thereby increasing the longevity of the ISRM barrier. This report summarizes the initial results from field testing of an in situ biological treatment zone implemented through injection of a soluble substrate. The field test is divided into operational phases that include substrate injection, process monitoring, and performance monitoring. The results summarized herein are for the substrate injection and process monitoring phase encompassing the first approximately three months of field testing. Performance monitoring is ongoing at the time this report was prepared and is planned to extend over approximately 18 months. As such, this report is an interim data summary report for the field test. The treatability testing has multiple objectives focused on evaluating the performance of biostimulation as a reducing barrier for nitrate, oxygen, and chromate. The following conclusions related to these objectives are supported by the data provided in this report. Substrate was successfully distributed to a radius of about 15 m (50 ft) from the injection well. Monitoring data indicate that microbial growth initiated rapidly, and this rapid growth would limit the ability to inject substrate to significantly larger zones from a single injection well. As would be expected, the uniformity of substrate distribution was impacted by subsurface heterogeneity. However, subsequent microbial activity and ability to reduce the targeted species was observed throughout the monitored zone during the process monitoring

  11. Phase-Field Simulations of GaN Growth by Selective Area Epitaxy on Complex Mask Geometries

    SciTech Connect (OSTI)

    Aagesen, Larry K.; Coltrin, Michael Elliott; Han, Jung; Thornton, Katsuyo

    2015-05-15

    Three-dimensional phase-field simulations of GaNgrowth by selective area epitaxy were performed. Furthermore, this model includes a crystallographic-orientation-dependent deposition rate and arbitrarily complex mask geometries. The orientation-dependent deposition rate can be determined from experimental measurements of the relative growth rates of low-index crystallographic facets. Growth on various complex mask geometries was simulated on both c-plane and a-plane template layers. Agreement was observed between simulations and experiment, including complex phenomena occurring at the intersections between facets. The sources of the discrepancies between simulated and experimental morphologies were also investigated. We found that the model provides a route to optimize masks and processing conditions during materials synthesis for solar cells, light-emitting diodes, and other electronic and opto-electronic applications.

  12. Phase-field simulations of GaN growth by selective area epitaxy on complex mask geometries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aagesen, Larry K.; Coltrin, Michael Elliott; Han, Jung; Thornton, Katsuyo

    2015-05-15

    Three-dimensional phase-field simulations of GaN growth by selective area epitaxy were performed. Furthermore, this model includes a crystallographic-orientation-dependent deposition rate and arbitrarily complex mask geometries. The orientation-dependent deposition rate can be determined from experimental measurements of the relative growth rates of low-index crystallographic facets. Growth on various complex mask geometries was simulated on both c-plane and a-plane template layers. Agreement was observed between simulations and experiment, including complex phenomena occurring at the intersections between facets. The sources of the discrepancies between simulated and experimental morphologies were also investigated. We found that the model provides a route to optimize masks andmore » processing conditions during materials synthesis for solar cells, light-emitting diodes, and other electronic and opto-electronic applications.« less

  13. Phase-field simulations of GaN growth by selective area epitaxy from complex mask geometries

    SciTech Connect (OSTI)

    Aagesen, Larry K.; Thornton, Katsuyo; Coltrin, Michael E.; Han, Jung

    2015-05-21

    Three-dimensional phase-field simulations of GaN growth by selective area epitaxy were performed. The model includes a crystallographic-orientation-dependent deposition rate and arbitrarily complex mask geometries. The orientation-dependent deposition rate can be determined from experimental measurements of the relative growth rates of low-index crystallographic facets. Growth on various complex mask geometries was simulated on both c-plane and a-plane template layers. Agreement was observed between simulations and experiment, including complex phenomena occurring at the intersections between facets. The sources of the discrepancies between simulated and experimental morphologies were also investigated. The model provides a route to optimize masks and processing conditions during materials synthesis for solar cells, light-emitting diodes, and other electronic and opto-electronic applications.

  14. Chemical and biological monitoring of MIOR on the pilot area of Vyngapour oil field, West Sibera, Russia

    SciTech Connect (OSTI)

    Arinbasarov, M.U.; Murygina, V.P.; Mats, A.A.

    1995-12-31

    The pilot area of the Vyngapour oil field allotted for MIOR tests contains three injection and three producing wells. These wells were treated in summer 1993 and 1994. Before, during, and after MIOR treatments on the pilot area the chemical compounds of injected and formation waters were studied, as well as the amount and species of microorganisms entering the stratum with the injected water and indigenous bacteria presented in bottomhole zones of the wells. The results of monitoring showed that the bottomhole zone of the injection well already had biocenosis of heterotrophic, hydrocarbon-oxidizing, methanogenic, and sulfate-reducing bacteria, which were besides permanently introduced into the reservoir during the usual waterflooding. The nutritious composition activated vital functions of all bacterial species presented in the bottomhole zone of the injection well. The formation waters from producing wells showed the increase of the content of nitrate, sulfate, phosphate, and bicarbonate ions by the end of MIOR. The amount of hydrocarbon-oxidizing bacteria in formation waters of producing wells increased by one order. The chemical and biological monitoring revealed the activation of the formation microorganisms, but no transport of food industry waste bacteria through the formation from injection to producing wells was found.

  15. Eruptive history and petrochemistry of the Bulusan volcanic complex: Implications for the hydrothermal system and volcanic hazards of Mt. Bulusan, Philippines

    SciTech Connect (OSTI)

    Delfin, F.G. Jr.; Panem, C.C.; Defant, M.J.

    1993-10-01

    Two contrasting conceptual models of the postcaldera magmatic system of the Bulusan volcanic complex are constructed on the basis of a synthesis of volcanological, petrochemical, and petrologic data. These models predict that hydrothermal convection below the complex will occur either in discrete, structurally-focused zones or over a much broader area. Both models, however, agree that hydrothermal fluids at depth will be highly acidic and volcanic-related. Future ash-fall eruptions and mudflows are likely to affect the area previously chosen for possible drilling. Such risks, combined with the expected acidic character of the hydrothermal system, argue against drilling into this system.

  16. TECTONIC VERSUS VOLCANIC ORIGIN OF THE SUMMIT DEPRESSION AT MEDICINE LAKE VOLCANO, CALIFORNIA

    SciTech Connect (OSTI)

    Mark Leon Gwynn

    2010-05-01

    Medicine Lake Volcano is a Quaternary shield volcano located in a tectonically complex and active zone at the transition between the Basin and Range Province and the Cascade Range of the Pacific Province. The volcano is topped by a 7x12 km elliptical depression surrounded by a discontinuous constructional ring of basaltic to rhyolitic lava flows. This thesis explores the possibility that the depression may have formed due to regional extension (rift basin) or dextral shear (pull-apart basin) rather than through caldera collapse and examines the relationship between regional tectonics and localized volcanism. Existing data consisting of temperature and magnetotelluric surveys, alteration mineral studies, and core logging were compiled and supplemented with additional core logging, field observations, and fault striae studies in paleomagnetically oriented core samples. These results were then synthesized with regional fault data from existing maps and databases. Faulting patterns near the caldera, extension directions derived from fault striae P and T axes, and three-dimensional temperature and alteration mineral models are consistent with slip across arcuate ring faults related to magma chamber deflation during flank eruptions and/or a pyroclastic eruption at about 180 ka. These results are not consistent with a rift or pull-apart basin. Limited subsidence can be attributed to the relatively small volume of ash-flow tuff released by the only known major pyroclastic eruption and is inconsistent with the observed topographic relief. The additional relief can be explained by constructional volcanism. Striae from unoriented and oriented core, augmented by striae measurements in outcrop suggest that Walker Lane dextral shear, which can be reasonably projected from the southeast, has probably propagated into the Medicine Lake area. Most volcanic vents across Medicine Lake Volcano strike north-south, suggesting they are controlled by crustal weakness related to Basin and

  17. Tectonic versus volcanic origin of the summit depression at Medicine Lake Volcano, California

    SciTech Connect (OSTI)

    Mark Leon Gwynn

    2010-05-01

    Medicine Lake Volcano is a Quaternary shield volcano located in a tectonically complex and active zone at the transition between the Basin and Range Province and the Cascade Range of the Pacific Province. The volcano is topped by a 7x12 km elliptical depression surrounded by a discontinuous constructional ring of basaltic to rhyolitic lava flows. This thesis explores the possibility that the depression may have formed due to regional extension (rift basin) or dextral shear (pull-apart basin) rather than through caldera collapse and examines the relationship between regional tectonics and localized volcanism. Existing data consisting of temperature and magnetotelluric surveys, alteration mineral studies, and core logging were compiled and supplemented with additional core logging, field observations, and fault striae studies in paleomagnetically oriented core samples. These results were then synthesized with regional fault data from existing maps and databases. Faulting patterns near the caldera, extension directions derived from fault striae P and T axes, and three-dimensional temperature and alteration mineral models are consistent with slip across arcuate ring faults related to magma chamber deflation during flank eruptions and/or a pyroclastic eruption at about 180 ka. These results are not consistent with a rift or pull-apart basin. Limited subsidence can be attributed to the relatively small volume of ash-flow tuff released by the only known major pyroclastic eruption and is inconsistent with the observed topographic relief. The additional relief can be explained by constructional volcanism. Striae from unoriented and oriented core, augmented by striae measurements in outcrop suggest that Walker Lane dextral shear, which can be reasonably projected from the southeast, has probably propagated into the Medicine Lake area. Most volcanic vents across Medicine Lake Volcano strike north-south, suggesting they are controlled by crustal weakness related to Basin and

  18. Field Investigation Report for Waste Management Area S-SX Volume 1 & 2 [SEC 1 Thru 6

    SciTech Connect (OSTI)

    KNEPP, A.J.

    2002-01-11

    This field investigation report for WMA S-SX addresses the results and modeling efforts from field investigation over the last three years ( 1997 through 2000)

  19. Bent-tailed radio sources in the australia telescope large area survey of the Chandra deep field south

    SciTech Connect (OSTI)

    Dehghan, S.; Johnston-Hollitt, M.; Franzen, T. M. O.; Norris, R. P.; Miller, N. A.

    2014-11-01

    Using the 1.4 GHz Australia Telescope Large Area Survey, supplemented by the 1.4 GHz Very Large Array images, we undertook a search for bent-tailed (BT) radio galaxies in the Chandra Deep Field South. Here we present a catalog of 56 detections, which include 45 BT sources, 4 diffuse low-surface-brightness objects (1 relic, 2 halos, and 1 unclassified object), and a further 7 complex, multi-component sources. We report BT sources with rest-frame powers in the range 10{sup 22} ≤ P {sub 1.4} {sub GHz} ≤ 10{sup 26} W Hz{sup –1}, with redshifts up to 2 and linear extents from tens of kiloparsecs up to about 1 Mpc. This is the first systematic study of such sources down to such low powers and high redshifts and demonstrates the complementary nature of searches in deep, limited area surveys as compared to shallower, large surveys. Of the sources presented here, one is the most distant BT source yet detected at a redshift of 2.1688. Two of the sources are found to be associated with known clusters: a wide-angle tail source in A3141 and a putative radio relic which appears at the infall region between the galaxy group MZ 00108 and the galaxy cluster AMPCC 40. Further observations are required to confirm the relic detection, which, if successful, would demonstrate this to be the least powerful relic yet seen with P {sub 1.4} {sub GHz} = 9 × 10{sup 22} W Hz{sup –1}. Using these data, we predict future 1.4 GHz all-sky surveys with a resolution of ∼10 arcsec and a sensitivity of 10 μJy will detect of the order of 560,000 extended low-surface-brightness radio sources of which 440,000 will have a BT morphology.

  20. Blind Geothermal System Exploration in Active Volcanic Environments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt & Subtle Volcanic Systems, Hawaii & Maui Blind...

  1. Geothermometry At Lassen Volcanic National Park Area (Janik ...

    Open Energy Info (EERE)

    sample taken had a pH of 8.35 and contained 2100 ppm Cl and 0.55 ppm NH3. Ratios of Na+K+ and Na+Cl remained nearly constant throughout the flow test. Cation geothermometers...

  2. Lassen Volcanic National Park Geothermal Area | Open Energy Informatio...

    Open Energy Info (EERE)

    GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean...

  3. Static Temperature Survey At Lassen Volcanic National Park Area...

    Open Energy Info (EERE)

    indicate that the well has penetrated a lateral outflow plume of thermal water (Goff et al., 1988). References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid...

  4. Field studies of the potential for wind transport of plutonium- contaminated soils at sites in Areas 6 and 11, Nevada Test Site

    SciTech Connect (OSTI)

    Lancaster, N.; Bamford, R.; Metzger, S.

    1995-07-01

    This report describes and documents a series of field experiments carried out in Areas 6 and 11 of the Nevada Test Site in June and July 1994 to determine parameters of boundary layer winds, surface characteristics, and vegetation cover that can be used to predict dust emissions from the affected sites. Aerodynamic roughness of natural sites is determined largely by the lateral cover of the larger and more permanent roughness elements (shrubs). These provide a complete protection of the surface from wind erosion. Studies using a field-portable wind tunnel demonstrated that natural surfaces in the investigated areas of the Nevada Test Site are stable except at very high wind speeds (probably higher than normally occur, except perhaps in dust devils). However, disturbance of silty-clay surfaces by excavation devices and vehicles reduces the entrainment threshold by approximately 50% and makes these areas potentially very susceptible to wind erosion and transport of sediments.

  5. Subsurface geology and potential for geopressured-geothermal energy in the Turtle Bayou field-Kent Bayou field area, Terrebonne Parish, Louisiana

    SciTech Connect (OSTI)

    Moore, D.R.

    1982-09-01

    A 216 square mile area approximately 65 miles southwest of New Orleans, Louisiana, has been geologically evaluated to determine its potential for geopressured-geothermal energy production. The structural and stratigraphic analyses were made with emphasis upon the Early and Middle Miocene age sediments which lie close to and within the geopressured section. Three geopressured sands, the Robulus (43) sand, Cibicides opima sand, and Cristellaria (I) sand, are evaluated for their potential of producing geothermal energy. Two of these sands, the Robulus (43) sand and the Cibicides opima sand, meet several of the United States Department of Energy's suggested minimum requirements for a prospective geopressured-geothermal energy reservoir.

  6. Application of an Area-of-Review (AOR) Concept to the East Texas Field and Other Selected Texas Oilfields

    SciTech Connect (OSTI)

    Warner, Don L.; Koederitz, Leonard F.; Laudon, Robert C.

    2001-04-19

    The Underground Injection Control Regulations promulgated in 1980, under the Safe Drinking Water Act of 1974, require Area-of-Review (AOR) studies be conducted as part of the permitting process for newly drilled or converted Class II injection wells. Existing Class II injection wells operating at the time regulations became effective were excluded from the AOR requirement. The AOR is the area surrounding an injection well or wells defined by either the radial distance within which pressure in the injection zone may cause migration of the injection and/or formation fluid into an underground source of drinking water (USDW) or defined by a fixed radius of not less than one-fourth mile. In the method where injection pressure is used to define the AOR radial distance, the AOR is also known as the ''zone of endangering influence.''

  7. Annual Site Environmental Report, Department of Energy Operations at the Energy Technology Engineering Center – Area IV, Santa Susana Field Laboratory

    SciTech Connect (OSTI)

    Frazee, Brad; Hay, Scott; Wondolleck, John; Sorrels, Earl; Rutherford, Phil; Dassler, David; Jones, John

    2015-05-01

    This Annual Site Environmental Report (ASER) for 2014 describes the environmental conditions related to work performed for the DOE at Area IV of the Santa Susana Field Laboratory (SSFL). The ETEC, a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  8. Drilling Specifications: Well Installations in the 300 Area to Support PNNL’s Integrated Field-Scale Subsurface Research Challenge (IFC) Project

    SciTech Connect (OSTI)

    Bjornstad, Bruce N.; Vermeul, Vince R.

    2008-01-21

    Part of the 300 Area Integrated Field-Scale Subsurface Research Challenge (IFC) will be installation of a network of high density borings and wells to monitor migration of fluids and contaminants (uranium), both in groundwater and vadose zone, away from an surface infiltration plot (Figure A-1). The infiltration plot will be located over an area of suspected contamination at the former 300 Area South Process Pond (SPP). The SPP is located in the southeastern portion of the Hanford Site, within the 300-FF-5 Operable Unit. Pacific Northwest National Laboratory (PNNL) with the support of FH shall stake the well locations prior to the start of drilling. Final locations will be based on accessibility and will avoid any surface or underground structures or hazards as well as surface contamination.

  9. Heterogeneous Structure Around the Jemez Volcanic Field, New...

    Open Energy Info (EERE)

    such as magma ascent from the upper mantle to the crust. Authors Takeshi Nishimura, Michael Fehler, W. Scott Baldridge, Peter Roberts and Lee Steck Published Journal...

  10. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Final report, March 1996--September 1998

    SciTech Connect (OSTI)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.; Groshong, R.H.; Jin, G.

    1998-12-01

    This project was designed to analyze the structure of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas to suggest ways in which oil recovery can be improved. The Eutaw Formation comprises 7 major flow units and is dominated by low-resistivity, low-contrast play that is difficult to characterize quantitatively. Selma chalk produces strictly from fault-related fractures that were mineralized as warm fluid migrated from deep sources. Resistivity, dipmeter, and fracture identification logs corroborate that deformation is concentrated in the hanging-wall drag zones. New area balancing techniques were developed to characterize growth strata and confirm that strain is concentrated in hanging-wall drag zones. Curvature analysis indicates that the faults contain numerous fault bends that influence fracture distribution. Eutaw oil is produced strictly from footwall uplifts, whereas Selma oil is produced from fault-related fractures. Clay smear and mineralization may be significant trapping mechanisms in the Eutaw Formation. The critical seal for Selma reservoirs, by contrast, is where Tertiary clay in the hanging wall is juxtaposed with poorly fractured Selma chalk in the footwall. Gilbertown Field can be revitalized by infill drilling and recompletion of existing wells. Directional drilling may be a viable technique for recovering untapped oil from Selma chalk. Revitalization is now underway, and the first new production wells since 1985 are being drilled in the western part of the field.

  11. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Annual report, March 1996--March 1997

    SciTech Connect (OSTI)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Groshong, R.H.

    1997-08-01

    Gilbertown Field is the oldest oil field in Alabama and produces oil from chalk of the Upper Cretaceous Selma Group and from sandstone of the Eutaw Formation along the southern margin of the Gilbertown fault system. Most of the field has been in primary recovery since establishment, but production has declined to marginally economic levels. This investigation applies advanced geologic concepts designed to aid implementation of improved recovery programs. The Gilbertown fault system is detached at the base of Jurassic salt. The fault system began forming as a half graben and evolved in to a full graben by the Late Cretaceous. Conventional trapping mechanisms are effective in Eutaw sandstone, whereas oil in Selma chalk is trapped in faults and fault-related fractures. Burial modeling establishes that the subsidence history of the Gilbertown area is typical of extensional basins and includes a major component of sediment loading and compaction. Surface mapping and fracture analysis indicate that faults offset strata as young as Miocene and that joints may be related to regional uplift postdating fault movement. Preliminary balanced structural models of the Gilbertown fault system indicate that synsedimentary growth factors need to be incorporated into the basic equations of area balance to model strain and predict fractures in Selma and Eutaw reservoirs.

  12. Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center

    SciTech Connect (OSTI)

    Burgos, W.D.

    2009-09-02

    This report summarizes research conducted in conjunction with a project entitled “Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center”, which was funded through the Integrative Studies Element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. William Burgos (The Pennsylvania State University) was the overall PI/PD for the project, which included Brian Dempsey (Penn State), Gour-Tsyh (George) Yeh (Central Florida University), and Eric Roden (formerly at The University of Alabama, now at the University of Wisconsin) as separately-funded co-PIs. The project focused on development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. The work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and was directly aligned with the Scheibe et al. ORNL FRC Field Project at Area 2.

  13. SU-E-I-22: Dependence On Calibration Phantom and Field Area of the Conversion Factor Used to Calculate Skin Dose During Neuro-Interventional Fluoroscopic Procedures

    SciTech Connect (OSTI)

    Rana, V K; Vijayan, S; Rudin, S R; Bednarek, D R

    2014-06-01

    Purpose: To determine the appropriate calibration factor to use when calculating skin dose with our real-time dose-tracking system (DTS) during neuro-interventional fluoroscopic procedures by evaluating the difference in backscatter from different phantoms and as a function of entrance-skin field area. Methods: We developed a dose-tracking system to calculate and graphically display the cumulative skin-dose distribution in real time. To calibrate the DTS for neuro-interventional procedures, a phantom is needed that closely approximates the scattering properties of the head. We compared the x-ray backscatter from eight phantoms: 20-cm-thick solid water, 16-cm diameter water-filled container, 16-cm CTDI phantom, modified-ANSI head phantom, 20-cm-thick PMMA, Kyoto-Kagaku PBU- 50 head, Phantom-Labs SK-150 head, and RSD RS-240T head. The phantoms were placed on the patient table with the entrance surface at 15 cm tube-side from the isocenter of a Toshiba Infinix C-arm, and the entrance-skin exposure was measured with a calibrated 6-cc PTW ionization chamber. The measurement included primary radiation, backscatter from the phantom and forward scatter from the table and pad. The variation in entrance-skin exposure was also measured as a function of the skin-entrance area for a 30x30 cm by 20-cm-thick PMMA phantom and the SK-150 head phantom using four different added beam filters. Results: The entranceskin exposure values measured for eight different phantoms differed by up to 12%, while the ratio of entrance exposure of all phantoms relative to solid water showed less than 3% variation with kVp. The change in entrance-skin exposure with entrance-skin area was found to differ for the SK-150 head compared to the 20-cm PMMA phantom and the variation with field area was dependent on the added beam filtration. Conclusion: To accurately calculate skin dose for neuro-interventional procedures with the DTS, the phantom for calibration should be carefully chosen since different

  14. Blind Geothermal System Exploration in Active Volcanic Environments...

    Open Energy Info (EERE)

    Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical...

  15. Applications of the VLF Induction Method For Studying Some Volcanic...

    Open Energy Info (EERE)

    the VLF Induction Method For Studying Some Volcanic Processes of Kilauea Volcano, Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  16. Collection and Analysis of Geothermal and Volcanic Water and...

    Open Energy Info (EERE)

    of Geothermal and Volcanic Water and Gas Discharges Authors Werner F. Giggenbach and R.L. Goguel Published Department of Scientific and Industrial Research, Chemistry Division,...

  17. A Morphometric Analysis Of The Submarine Volcanic Ridge South...

    Open Energy Info (EERE)

    Of Pico Island, Azores Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Morphometric Analysis Of The Submarine Volcanic Ridge...

  18. Large area graphene ion sensitive field effect transistors with tantalum pentoxide sensing layers for pH measurement at the Nernstian limit

    SciTech Connect (OSTI)

    Fakih, Ibrahim, E-mail: ibrahim.fakih@mail.mcgill.ca; Sabri, Shadi; Szkopek, Thomas, E-mail: thomas.szkopek@mcgill.ca [Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec H3A 2A7 (Canada); Mahvash, Farzaneh [Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec H3A 2A7 (Canada); Dpartement de Chimie et Biochimie, Universite du Qubec Montral, Montreal, Quebec H3C 3P8 (Canada); Nannini, Matthieu [McGill Nanotools Microfab, McGill University, Montreal, Quebec H3A 2A7 (Canada); Siaj, Mohamed [Dpartement de Chimie et Biochimie, Universite du Qubec Montral, Montreal, Quebec H3C 3P8 (Canada)

    2014-08-25

    We have fabricated and characterized large area graphene ion sensitive field effect transistors (ISFETs) with tantalum pentoxide sensing layers and demonstrated pH sensitivities approaching the Nernstian limit. Low temperature atomic layer deposition was used to deposit tantalum pentoxide atop large area graphene ISFETs. The charge neutrality point of graphene, inferred from quantum capacitance or channel conductance, was used to monitor surface potential in the presence of an electrolyte with varying pH. Bare graphene ISFETs exhibit negligible response, while graphene ISFETs with tantalum pentoxide sensing layers show increased sensitivity reaching up to 55?mV/pH over pH 3 through pH 8. Applying the Bergveld model, which accounts for site binding and a Guoy-Chapman-Stern picture of the surface-electrolyte interface, the increased pH sensitivity can be attributed to an increased buffer capacity reaching up to 10{sup 14} sites/cm{sup 2}. ISFET response was found to be stable to better than 0.05 pH units over the course of two weeks.

  19. Near-field modeling in Frenchman Flat, Nevada Test Site

    SciTech Connect (OSTI)

    Pohlmann, K.; Shirley, C.; Andricevic, R.

    1996-12-01

    The US Department of Energy (DOE) is investigating the effects of nuclear testing in underground test areas (the UGTA program) at the Nevada Test Site. The principal focus of the UGTA program is to better understand and define subsurface radionuclide migration. The study described in this report focuses on the development of tools for generating maps of hydrogeologic characteristics of subsurface Tertiary volcanic units at the Frenchman Flat corrective Action Unit (CAU). The process includes three steps. The first step involves generation of three-dimensional maps of the geologic structure of subsurface volcanic units using geophysical logs to distinguish between two classes: densely welded tuff and nonwelded tuff. The second step generates three-dimensional maps of hydraulic conductivity utilizing the spatial distribution of the two geologic classes obtained in the first step. Each class is described by a correlation structure based on existing data on hydraulic conductivity, and conditioned on the generated spatial location of each class. The final step demonstrates the use of the maps of hydraulic conductivity for modeling groundwater flow and radionuclide transport in volcanic tuffs from an underground nuclear test at the Frenchman Flat CAU. The results indicate that the majority of groundwater flow through the volcanic section occurs through zones of densely welded tuff where connected fractures provide the transport pathway. Migration rates range between near zero to approximately four m/yr, with a mean rate of 0.68 m/yr. This report presents the results of work under the FY96 Near-Field Modeling task of the UGTA program.

  20. Mineral resources and mineral resource potential of the Panamint Dunes Wilderness Study Area, Inyo County, California

    SciTech Connect (OSTI)

    Kennedy, G.L.; Kilburn, J.E.; Conrad, J.E.; Leszcykowski, A.M.

    1984-01-01

    This report presents the results of a mineral survey of the Panamint Dunes Wilderness Study Area (CDCA-127), California Desert Conservation Area, Inyo County, California. The Panamint Dunes Wilderness Study Area has an identified volcanic cinder resource and few areas with mineral resource potential. Hydrothermal deposits of lead-zinc-silver occur in veins and small replacement bodies along and near the Lemoigne thrust fault on the eastern side of the wilderness study area. Two workings, the Big Four mine with 35,000 tons of inferred subeconomic lead-zinc-silver resources and a moderate potential for additional resources, and the Apple 1 claim with low potential for lead-zinc-silver resources, are surrounded by the study area but are specifically excluded from it. A low resource potential for lead-zinc-silver is assigned to other exposures along the Lemoigne thrust, although metallic minerals were not detected at these places. The Green Quartz prospect, located near the northern tip of the study area, has low resource potential for copper in quartz pegmatities in quartz monzonite of the Hunter Mountain batholith. Nonmetallic mineral resources consist of volcanic cinders and quartz sand. An estimated 900,000 tons of inferred cinder reserves are present at Cal Trans borrow pit MS 242, on the southern margin of the study area. The Panamint Valley dune field, encompassing 480 acres in the north-central part of the study area, has only low resource potential for silica because of impurities. Other sources of silica and outside the study area are of both higher purity and closer to possible markets. 19 refs., 2 figs., 1 tab.

  1. Comparative analysis of core drilling and rotary drilling in volcanic terrane

    SciTech Connect (OSTI)

    Flynn, T.; Trexler, D.T.; Wallace, R.H. Jr.

    1987-04-01

    Initially, the goal of this report is to compare and contrast penetration rates of rotary-mud drilling and core drilling in young volcanic terranes. It is widely recognized that areas containing an abundance of recent volcanic rocks are excellent targets for geothermal resources. Exploration programs depend heavily upon reliable subsurface information, because surface geophysical methods may be ineffective, inconclusive, or both. Past exploration drilling programs have mainly relied upon rotary-mud rigs for virtually all drilling activity. Core-drilling became popular several years ago, because it could deal effectively with two major problems encountered in young volcanic terranes: very hard, abrasive rock and extreme difficulty in controlling loss of circulation. In addition to overcoming these difficulties, core-drilling produced subsurface samples (core) that defined lithostratigraphy, structure and fractures far better than drill-chips. It seemed that the only negative aspect of core drilling was cost. The cost-per-foot may be two to three times higher than an ''initial quote'' for rotary drilling. In addition, penetration rates for comparable rock-types are often much lower for coring operations. This report also seeks to identify the extent of wireline core drilling (core-drilling using wireline retrieval) as a geothermal exploration tool. 25 refs., 21 figs., 13 tabs.

  2. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama -- Year 2. Annual report, March 1997--March 1998

    SciTech Connect (OSTI)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.

    1998-09-01

    Gilbertown Field is the oldest oil field in Alabama and has produced oil from fractured chalk of the Cretaceous Selma Group and glauconitic sandstone of the Eutaw Formation. Nearly all of Gilbertown Field is still in primary recovery, although waterflooding has been attempted locally. The objective of this project is to analyze the geologic structure and burial history of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas in order to suggest ways in which oil recovery can be improved. Indeed, the decline of oil production to marginally economic levels in recent years has made this type of analysis timely and practical. Key technical advancements being sought include understanding the relationship of requisite strain to production in Gilbertown reservoirs, incorporation of synsedimentary growth factors into models of area balance, quantification of the relationship between requisite strain and bed curvature, determination of the timing of hydrocarbon generation, and identification of the avenues and mechanisms of fluid transport.

  3. Active System For Monitoring Volcanic Activity- A Case Study...

    Open Energy Info (EERE)

    For Monitoring Volcanic Activity- A Case Study Of The Izu-Oshima Volcano, Central Japan Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  4. A Distinction Technique Between Volcanic And Tectonic Depression...

    Open Energy Info (EERE)

    Modeling Of Gravity Anomaly- A Case Study Of The Hohi Volcanic Zone, Central Kyushu, Japan Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A...

  5. A Miocene Island-Arc Volcanic Seamount- The Takashibiyama Formation...

    Open Energy Info (EERE)

    Island-Arc Volcanic Seamount- The Takashibiyama Formation, Shimane Peninsula, Sw Japan Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Miocene...

  6. Surface Mercury Geochemistry As A Guide To Volcanic Vent Structure...

    Open Energy Info (EERE)

    Mercury Geochemistry As A Guide To Volcanic Vent Structure And Zones Of High Heat Flow In The Valley Of Ten Thousand Smokes, Katmai National Park, Alaska Jump to: navigation,...

  7. CT Scan of Earth Links Mantle Plumes with Volcanic Hotspots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CT Scan of Earth Links Mantle Plumes with Volcanic Hotspots CT Scan of Earth Links Mantle Plumes with Volcanic Hotspots Simulations Run at NERSC Show How Seismic Waves Travel Through Mantle September 2, 2015 Robert Sanders, rlsanders@berkeley.edu, (510) 643-6998 NERSC PI: Barbara Romanowicz Lead Institution: University of California, Berkeley Project Title: Imaging and Calibration of Mantle Structure at Global and Regional Scales Using Full-Waveform Seismic Tomography NERSC Resources Used:

  8. 100-N Area Strontium-90 Treatability Demonstration Project: Phytoextraction Along the 100-N Columbia River Riparian Zone – Field Treatability Study

    SciTech Connect (OSTI)

    Fellows, Robert J.; Fruchter, Jonathan S.; Driver, Crystal J.; Ainsworth, Calvin C.

    2010-01-11

    Strontium-90 (90Sr) is present both in the aquifer near the river and in the vadose and riparian zones of the river’s shore at 100-NR-2. Phytoextraction of 90Sr is being considered as a potential remediation system along the riparian zone of the Columbia River. Phytoextraction would employ coyote willow (Salix exigua). Past studies have shown that willow roots share uptake mechanisms for Sr with Ca, a plant macronutrient as well as no discrimination between Sr and 90Sr. Willow 90Sr concentration ratios [CR’s; (pCi 90Sr/g dry wt. of new growth tissue)/(pCi 90Sr/g soil porewater)] were consistently greater than 65 with three-quarters of the assimilated label partitioned into the above ground shoot. Insect herbivore experiments also demonstrated no significant potential for bioaccumulation or food chain transfer from their natural activities. The objectives of this field study were three-fold: (1) to demonstrate that a viable, “managed” plot of coyote willows can be established on the shoreline of the Columbia River that would survive the same microenvironment to be encountered at the 100-NR-2 shoreline; (2) to show through engineered barriers that large and small animal herbivores can be prevented from feeding on these plants; and (3) to show that once established, the plants will provide sufficient biomass annually to support the phytoextraction technology. A field treatability demonstration plot was established on the Columbia River shoreline alongside the 100-K West water intake at the end of January 2007. The plot was delimited by a 3.05 m high chain-link fence and was approximately 10 x 25 m in size. A layer of fine mesh metal small animal screening was placed around the plot at the base of the fencing to a depth of 45 cm. A total of sixty plants were placed in six slightly staggered rows with 1-m spacing between plants. The actual plot size was 0.00461 hectare (ha). At the time of planting (March 12, 2007), the plot was located about 10 m from the

  9. Investigation of the thermal regime and geologic history of the Cascade volcanic arc: First phase of a program for scientific drilling in the Cascade Range

    SciTech Connect (OSTI)

    Priest, G.R.

    1987-01-01

    A phased, multihole drilling program with associated science is proposed as a means of furthering our understanding of the thermal regime and geologic history of the Cascade Range of Washington, Oregon, and northern California. The information obtained from drilling and ancillary geological and geophysical investigations will contribute to our knowledge in the following general areas: (1) the magnitude of the regional background heat flow of parts of the Quaternary volcanic belt dominated by the most abundant volcanic rock types, basalt and basaltic andesite; (2) the nature of the heat source responsible for the regional heat-flow anomaly; (3) the characteristics of the regional hydrothermal and cold-water circulation; the rates of volcanism for comparison with models for the rate and direction of plate convergence of the Cascades; (5) the history of deformation and volcanism in the volcanic arc that can be related to subduction; (6) the present-day stress regime of the volcanic arc and the relation of these stresses to plate interactions and possible large earthquakes; and the current geometry of the subducted oceanic plate below the Cascade Range and the relationship of the plate to the distribution of heat flow, Quaternary volcanism, and Quaternary deformation. Phase I research will be directed toward a detailed investigation of the Santiam Pass segment. In concert with the Santiam Pass research, a detailed study of the nearby Breitenbush Hot Springs area is also recommended as a component of Phase I. The object of the Breitenbush research is to study one of the hottest known Cascade hydrothermal systems, which coincidentally also has a good geological and geophysical data base. A coordinated program of drilling, sampling, subsurface measurements, and surface surveys will be associated with the drilling of several holes.

  10. Dixie Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Field Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1 U.S. Department...

  11. Feasibility studies for the development of petroleum areas. Integrated exploitation project of the fields in the area north of Santa Cruz. Volume 2. Tables and figures. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1991-03-01

    The report, generated by Scientific Software-Intercomp, Inc. for Yacimientos Petroliferos Fiscales Bolivianos, documents the results of a feasibility study which addressed the viability of developing petroleum areas in Bolivia. The primary objective of the project was to describe the reservoirs that have been discovered and their reserves, describe which would be the best alternatives for development of these reservoirs, and to determine the best alternatives for development of all the reserves together. The report, volume 2 of 4 contains Tables and Figures.

  12. Feasibility studies for the development of petroleum areas-integrated exploitation project of the fields in the area north of Santa Cruz. Volume 1. Text. Export trade information (Final)

    SciTech Connect (OSTI)

    Not Available

    1991-03-01

    The report, generated by Scientific Software-Intercomp, Inc. for Yacimientos Petroliferos Fiscales Bolivianos, documents the results of a feasibility study which addressed the viability of developing petroleum areas in Bolivia. The primary objective of the project was to describe the reservoirs that have been discovered and their reserves, describe which would be the best alternatives for development of these reservoirs, and to determine the best alternatives for development of all the reserves together. The report, volume 1 of 4, contains the main text which discusses: Objectives and Scope; Deliverables; Geology (Well Logs, Core Data, Dipmeters, Mudlogs, Database and Data Availability Problems, Procedure, Mapping, Results, Stratigraphic Considerations); and Petrophysics (Objectives, Database Preparation, Core Data Analysis, Log Normalization, Parameter Selection, Log Processing and Results, Reservoir Summation, Conclusions and Recommendations, Production Engineering, Reservoir Engineering and Simulation, Pipeline and Facilities Design, Economics).

  13. Injection of electrons with predominantly perpendicular energy into an area of toroidal field ripple in a tokamak plasma to improve plasma confinement

    DOE Patents [OSTI]

    Ono, Masayuki; Furth, Harold

    1993-01-01

    An electron injection scheme for controlling transport in a tokamak plasma. Electrons with predominantly perpendicular energy are injected into a ripple field region created by a group of localized poloidal field bending magnets. The trapped electrons then grad-B drift vertically toward the plasma interior until they are detrapped, charging the plasma negative. Calculations indicate that the highly perpendicular velocity electrons can remain stable against kinetic instabilities in the regime of interest for tokamak experiments. The penetration distance can be controlled by controlling the "ripple mirror ratio", the energy of the injected electrons, and their v.sub..perp. /v.sub.51 ratio. In this scheme, the poloidal torque due to the injected radial current is taken by the magnets and not by the plasma. Injection is accomplished by the flat cathode containing an ECH cavity to pump electrons to high v.sub..perp..

  14. Field-Derived Hydraulic Properties for Perched-Water Aquifer Wells 299-E33-350 and 299-E33-351, Hanford Site B-Complex Area

    SciTech Connect (OSTI)

    Newcomer, Darrell R.

    2014-07-01

    During February and March 2014, Pacific Northwest National Laboratory conducted hydraulic (slug) tests at 200-DV-1 Operable Unit wells 299-E33-350 (C8914) and 299-E33-351 (C8915) as part of B-Complex Area Perched-Water characterization activities at the Hanford Site 200-East Area. During the construction/completion phase of each well, two overlapping depth intervals were tested within the unconfined perched-water aquifer contained in the silty-sand subunit of the Cold Creek Unit. The purpose of the slug-test characterization was to provide estimates of transmissivity and hydraulic conductivity for the perched-water aquifer at these selected well locations.

  15. Contact metasomatic and hydrothermal minerals in the SH2 deep well, Sabatini Volcanic District, Latium, Italy

    SciTech Connect (OSTI)

    Cavarretta, G.; Tecce, F.

    1987-01-01

    Metasomatic and hydrothermal minerals were logged throughout the SH2 geothermal well, which reached a depth of 2498 m in the Sabatini volcanic district. Below 460 m of volcanics, where the newly formed minerals were mainly chlorite, calcite and zeolites (mostly phillipsite), drilling entered the Allochthonous Flysch Complex. Evidence of the ''Cicerchina facies'' was found down to 1600 m depth. Starting from 1070 m, down to hole bottom, a contact metasomatic complex was defined by the appearance of garnet. Garnet together with K-fledspar, vesuvianite, wilkeite, cuspidine, harkerite, wollastonite and apatite prevail in the top part of the contact metasomatic complex. Vesuvianite and phlogopite characterize the middle part. Phlogopite, pyroxene, spinel and cancrinite predominate in the bottom part. The 1500 m thick metasomatic complex indicates the presence at depth of the intrusion of a trachytic magma which released hot fluids involved in metasomatic mineral-forming reactions. Minerals such as harkerite, wilkeite, cuspidine, cancrinite, vesuvianite and phlogopite indicate the intrusive melt had a high volatile content which is in agreement with the very high explosivity index of this volcanic district. The system is at present sealed by abundant calcite and anhydrite. It is proposed that most, if not all, of the sulphates formed after reaction of SO/sub 2/ with aqueous calcium species rather than from sulphates being remobilized from evaporitic (Triassic) rocks as previously inferred. The hypothesis of a CO/sub 2/-rich deep-derived fluid ascending through major fracture systems and contrasting cooling in the hottest areas of Latium is presented.

  16. Laboratory and Field Studies Related to Radionuclide Migration at the Nevada Test Site in Support of the Underground Test Area and Hydrologic Resources Management Projects

    SciTech Connect (OSTI)

    D.L.Finnegan; J.L.Thompson

    2002-06-01

    This report details the work of Chemistry Division personnel from Los Alamos National Laboratory in FY 2001 for the U. S. Department of Energy National Nuclear Security Administration Nevada Operations Office (NNSA/NV) under its Defense Programs and Environmental Restoration divisions. Los Alamos is one of a number of agencies collaborating in an effort to describe the present and future movement of radionuclides in the underground environment of the Nevada Test Site. This fiscal year we collected and analyzed water samples from a number of expended test locations at the Nevada Test Site. We give the results of these analyses and summarize the information gained over the quarter century that we have been studying several of these sites. We find that by far most of the radioactive residues from a nuclear test are contained in the melt glass in the cavity. Those radionuclides that are mobile in water can be transported if the groundwater is moving due to hydraulic or thermal gradients. The extent to which they move is a function of their chemical speciation, with neutral or anionic materials traveling freely relative to cationic materials that tend to sorb on rock surfaces. However, radionuclides sorbed on colloids may be transported if the colloids are moving. Local conditions strongly influence the distribution and movement of radionuclides, and we continue to study sites such as Almendro, which is thermally quite hot, and Nash and Bourbon, where radionuclides had not been measured for 8 years. We collected samples from three characterization wells in Frenchman Flat to obtain baseline radiochemistry data for each well, and we analyzed eight wells containing radioactivity for {sup 237}Np, using our highly sensitive ICP/MS. We have again used our field probe that allows us to measure important groundwater properties in situ. We conclude our report by noting document reviews and publications produced in support of this program.

  17. Field studies of beach cones as coastal erosion control/reversal devices for areas with significant oil and gas activities. Final report, February 24, 1992--September 18, 1995

    SciTech Connect (OSTI)

    Law, V.J.

    1995-09-18

    The primary objective of this project was to evaluate the utility of a device called the {open_quotes}beach cone{close_quotes} in combating coastal erosion. Seven initial sites were selected for testing beach cones in a variety of geometric configurations. Permits were obtained from the State of Louisiana and the U.S. Army Corps of Engineers to perform the work associated with this study. Six hundred beach cones were actually installed at six of the sites in late July and early August, 1992. Findings indicate that beach cones accreted significant amounts of materials along the beach of a barrier island, and they might have been instrumental in repairing an approximately 200 meter gap in the island. At the eighth installation the amount of accreted material was measured by surveys to be 2200 cubic meters (2900 cubic yards) in February of 1993, when the cones were found to have been completely covered by the material. At other test sites, accretion rates have been less dramatic but importantly, no significant additional erosion has occurred, which is a positive result. The cost of sediment accretion using beach cones was found to be about $13.72 per cubic yard, which would be much lower if the cones were mass produced (on the order of $3.00 per cubic yard). The survival of the cones through the fringes of Hurricane Andrew indicates that they can be anchored sufficiently to survive significant storms. The measurements of the cones settling rates indicate that this effect is not significant enough to hinder their effectiveness. A subcontract to Xavier University to assess the ecological quality of the experimental sites involved the study of the biogeochemical cycle of trace metals. The highest concentration of heavy metals were near a fishing camp while the lowest levels were in the beach sand of a barrier island. This suggests that the metals do not occur naturally in these areas, but have been placed in the sediments by man`s activities.

  18. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Areas Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Biosciences The Biosciences Area forges multidisciplinary teams to solve national challenges in energy, environment and health issues; and to advance the engineering of biological systems for sustainable manufacturing. Biosciences Area research is coordinated through three divisions and is enabled by Berkeley

  19. The Bulalo geothermal field, Philippines: Reservoir characteristics and response to production

    SciTech Connect (OSTI)

    Clemente, W.C.; Villadolid-Abrigo, F.L.

    1993-10-01

    The Bulalo geothermal field has been operating since 1979, and currently has 330 MWe of installed capacity. The field is associated with a 0.5 Ma dacite dome on the southeastern flank of the Late Pliocene to Quaternary Mt. Makiling stratovolcano. The reservoir occurs within pre-Makiling andesite flows and pyroclastic rocks capped by the volcanic products of Mt. Makiling. Initially, the reservoir was liquid-dominated with a two-phase zone overlying the neutral-pH liquid. Exploitation has resulted in an enlargement of the two-phase zone, return to the reservoir of separated waste liquid that has been injected, scaling in the wellbores and rock formation, and influx of cooler groundwaters. Return of injected waters to the reservoir and scaling have been the major reservoir management concerns. These have been mitigated effectively by relocating injection wells farther away from the production area and by dissolving scale from wells with an acid treatment.

  20. Field trip guide to the Valles Caldera and its geothermal systems

    SciTech Connect (OSTI)

    Goff, F.E.; Bolivar, S.L.

    1983-12-01

    This field trip guide has been compiled from extensive field trips led at Los Alamos National Laboratory during the past six years. The original version of this guide was designed to augment a workshop on the Valles Caldera for the Continental Scientific Drilling Program (CSDP). This workshop was held at Los Alamos, New Mexico, 5-7 October 1982. More stops were added to this guide to display the volcanic and geothermal features at the Valles Caldera. The trip covers about 90 miles (one way) and takes two days to complete; however, those who wish to compress the trip into one day are advised to use the designated stops listed in the Introduction. Valles Caldera and vicinity comprise both one of the most exciting geothermal areas in the United States and one of the best preserved Quaternary caldera complexes in the world.

  1. Late Cenozoic Ring Faulting and Volcanism in the Coso Range Area...

    Open Energy Info (EERE)

    to the surface during the past few million years. Author Wendell A. Duffield Published Journal Geology, 1975 DOI Not Provided Check for DOI availability: http:crossref.org...

  2. Socorro Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  3. La Primavera Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  4. Florida Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  5. Jemez Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  6. Cerro Prieto Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  7. Jemez Pueblo Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  8. Jemez Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  9. Los Azufres Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  10. Approach, methods and results of an individual elicitation for the volcanism expert judgment panel

    SciTech Connect (OSTI)

    Crowe, B.M.

    1996-06-01

    Probabilistic volcanic hazard assessment (PVHA) of future magnetic disruption of the Yucca Mountain site was completed as a participating member of the volcanism export judgment panel conducted by Geomatrix Consultants for the Department of Energy. The purpose of this summary is to describe the data assumptions, methods, and results of the elicitation and to contrast this assessment with past volcanism studies conducted for the Yucca Mountain Project.

  11. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in diverse research areas such as cell biology, lithography, infrared microscopy, radiology, and x-ray tomography. Time-Resolved These techniques exploit the pulsed nature of...

  12. Bay Area

    National Nuclear Security Administration (NNSA)

    8%2A en NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas http:nnsa.energy.govmediaroompressreleasesamsca

  13. Preliminary geologic map of the Sleeping Butte volcanic centers

    SciTech Connect (OSTI)

    Crowe, B.M.; Perry, F.V.

    1991-07-01

    The Sleeping Butte volcanic centers comprise two, spatially separate, small-volume (<0.1 km{sup 3}) basaltic centers. The centers were formed by mildly explosive Strombolian eruptions. The Little Black Peak cone consists of a main scoria cone, two small satellitic scoria mounds, and associated lobate lava flows that vented from sites at the base of the scoria cone. The Hidden Cone center consists of a main scoria cone that developed on the north-facing slope of Sleeping Butte. The center formed during two episodes. The first included the formation of the main scoria cone, and venting of aa lava flows from radial dikes at the northeast base of the cone. The second included eruption of scoria-fall deposits from the summit crater. The ages of the Little Black Peak and the Hidden Cone are estimated to be between 200 to 400 ka based on the whole-rock K-Ar age determinations with large analytical undertainty. This age assignment is consistent with qualitative observations of the degree of soil development and geomorphic degradation of volcanic landforms. The younger episode of the Hidden Cone is inferred to be significantly younger and probably of Late Pleistocene or Holocene age. This is based on the absence of cone slope rilling, the absence of cone-slope apron deposits, and erosional unconformity between the two episodes, the poor horizon- development of soils, and the presence of fall deposits on modern alluvial surfaces. Paleomagnetic data show that the centers record similar but not identical directions of remanent magnetization. Paleomagnetic data have not been obtained for the youngest deposits of the Hidden Cone center. Further geochronology, soils, geomorphic, and petrology studies are planned of the Sleeping Butte volcanic centers 20 refs., 3 figs.

  14. Uranium and thorium decay series disequilibria in young volcanic rocks

    SciTech Connect (OSTI)

    Williams, R.W.

    1988-01-01

    Two of the central questions in igneous geochemistry that study of radioactive disequilibria can help to answer are: what are the rates of magma genesis; and what are the timescales of magma separation and transport. In addition to the temporal information that may be extracted from disequilibria data, the {sup 230}Th/{sup 232}Th of a young rock may be used as a tracer of the Th/U ratio of its source region. Measurements were made by isotope dilution alpha-spectrometry of {sup 238}U, {sup 234}U, {sup 230}Th, and {sup 232}Th in 20 subduction related, 3 oceanic intraplate, and 10 continental intraplate volcanics. {sup 210}Pb was measured in all, {sup 226}Ra was measured in about half, and {sup 228}Th was measured in 10 of the most recent samples. Disequilibrium between {sup 228}Th and {sup 232}Th was found only in the Nacarbonatite samples from Oldoinyo Lengai volcano in Tanzania, which is attributable to {sup 228}Ra/{sup 232}Th {approximately} 27 at the time of eruption. These rocks also have {sup 226}Ra/{sup 230}Th > 60. Three Ra-enrichment models are developed which constrain carbonatite magma formation at less than 20 years before eruption. The effects of different partial melting processes on the {sup 238}U decay series are investigated. If mid-ocean ridge basalts are formed by a dynamic melting process, the {sup 230}Th/{sup 232}Th of the basalts provides a minimum estimate of the Th/U ratio of the source region. The {sup 238}U enrichment in arc volcanics is probably the results of metasomatism of the source by fluids derived from the subducting slab, and the {sup 230}Th enrichment observed for other volcanics is probably due to the partial melting process in the absence of U-bearing fluids.

  15. Structural investigations of Great Basin geothermal fields: Applications and implications

    SciTech Connect (OSTI)

    Faulds, James E; Hinz, Nicholas H.; Coolbaugh, Mark F

    2010-11-01

    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  16. Dynamic coupling of volcanic CO2 flow and wind at the HorseshoeLake tree kill, Mammoth Mountain, CA

    SciTech Connect (OSTI)

    Lewicki, J.L.; Hilley, G.E.; Tosha, T.; Aoyagi, R.; Yamamoto, K.; Benson, S.M.

    2006-11-20

    We investigate spatio-temporal relationships between soilCO2 flux (FCO2), meteorological variables, and topography over a ten-dayperiod (09/12/2006 to 09/21/2006) at the Horseshoe Lake tree kill,Mammoth Mountain, CA. Total CO2 discharge varied from 16 to 52 t d-1,suggesting a decline in CO2 emissions over decadal timescales. Weobserved systematic changes in FCO2 in space and time in association witha weather front with relatively high wind speeds from the west and lowatmospheric pressures. The largest FCO2 changes were observed inrelatively high elevation areas. The variations in FCO2 may be due todynamic coupling of wind-driven airflow through the subsurface and flowof source CO2 at depth. Our results highlight the influence of weatherfronts on volcanic gas flow in the near-surface environment and how thisinfluence can vary spatially within a study area.

  17. Melt Zones Beneath Five Volcanic Complexes in California: An...

    Open Energy Info (EERE)

    No.: LBL-18232. Related Geothermal Exploration Activities Activities (1) Geothermal Literature Review At Long Valley Caldera Geothermal Area (Goldstein & Flexser, 1984) Areas (1)...

  18. The Momotombo Geothermal Field, Nicaragua: Exploration and development case history study

    SciTech Connect (OSTI)

    1982-07-01

    This case history discusses the exploration methods used at the Momotombo Geothermal Field in western Nicaragua, and evaluates their contributions to the development of the geothermal field models. Subsequent reservoir engineering has not been synthesized or evaluated. A geothermal exploration program was started in Nicaragua in 1966 to discover and delineate potential geothermal reservoirs in western Nicaragua. Exploration began at the Momotombo field in 1970 using geological, geochemical, and geophysical methods. A regional study of thermal manifestations was undertaken and the area on the southern flank of Volcan Momotombo was chosen for more detailed investigation. Subsequent exploration by various consultants produced a number of geotechnical reports on the geology, geophysics, and geochemistry of the field as well as describing production well drilling. Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. This report presents the description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development. Our principal finding is that data developed at each stage were not sufficiently integrated to guide further work at the field, causing inefficient use of

  19. Geology Report: Area 3 Radioactive Waste Management Site DOE/Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2006-07-01

    Surficial geologic studies near the Area 3 Radioactive Waste Management Site (RWMS) were conducted as part of a site characterization program. Studies included evaluation of the potential for future volcanism and Area 3 fault activity that could impact waste disposal operations at the Area 3 RWMS. Future volcanic activity could lead to disruption of the Area 3 RWMS. Local and regional studies of volcanic risk indicate that major changes in regional volcanic activity within the next 1,000 years are not likely. Mapped basalts of Paiute Ridge, Nye Canyon, and nearby Scarp Canyon are Miocene in age. There is a lack of evidence for post-Miocene volcanism in the subsurface of Yucca Flat, and the hazard of basaltic volcanism at the Area 3 RWMS, within the 1,000-year regulatory period, is very low and not a forseeable future event. Studies included a literature review and data analysis to evaluate unclassified published and unpublished information regarding the Area 3 and East Branch Area 3 faults mapped in Area 3 and southern Area 7. Two trenches were excavated along the Area 3 fault to search for evidence of near-surface movement prior to nuclear testing. Allostratigraphic units and fractures were mapped in Trenches ST02 and ST03. The Area 3 fault is a plane of weakness that has undergone strain resulting from stress imposed by natural events and underground nuclear testing. No major vertical displacement on the Area 3 fault since the Early Holocene, and probably since the Middle Pleistocene, can be demonstrated. The lack of major displacement within this time frame and minimal vertical extent of minor fractures suggest that waste disposal operations at the Area 3 RWMS will not be impacted substantially by the Area 3 fault, within the regulatory compliance period. A geomorphic surface map of Yucca Flat utilizes the recent geomorphology and soil characterization work done in adjacent northern Frenchman Flat. The approach taken was to adopt the map unit boundaries (line

  20. Analysis of fractures in volcanic cores from Pahute Mesa, Nevada Test Site

    SciTech Connect (OSTI)

    Drellack, S.L. Jr.; Prothro, L.B.; Roberson, K.E.

    1997-09-01

    The Nevada Test Site (NTS), located in Nye County, southern Nevada, was the location of 828 announced underground nuclear tests, conducted between 1951 and 1992. Approximately one-third of these tests were detonated near or below the water table. An unavoidable consequence of these testing activities was introducing radionuclides into the subsurface environment, impacting groundwater. Groundwater flows beneath the NTS almost exclusively through interconnected natural fractures in carbonate and volcanic rocks. Information about these fractures is necessary to determine hydrologic parameters for future Corrective Action Unit (CAU)-specific flow and transport models which will be used to support risk assessment calculations for the U.S. Department of Energy, Nevada Operations Office (DOE/NV) Underground Test Area (UGTA) remedial investigation. Fracture data are critical in reducing the uncertainty of the predictive capabilities of CAU-specific models because of their usefulness in generating hydraulic conductivity values and dispersion characteristics used in transport modeling. Specifically, fracture aperture and density (spacing) are needed to calculate the permeability anisotropy of the formations. Fracture mineralogy information is used qualitatively to evaluate diffusion and radionuclide retardation potential in transport modeling. All these data can best be collected through examination of core samples.

  1. Age and location of volcanic centers less than or equal to 3...

    Office of Scientific and Technical Information (OSTI)

    Location of the volcanic vents and rocks were taken from Luedke and Smith (1978). Ages ... ages of various rocks they dated, so locations were taken from Luedke and Smith (1978). ...

  2. Age and location of volcanic centers less than or equal to 3...

    Office of Scientific and Technical Information (OSTI)

    age, are shown. Location of the volcanic vents and rocks were taken from Luedke and Smith (1978). Ages were obtained from the original literature in all cases except for McKee...

  3. Preliminary results of wildcat drilling in Absaroka volcanic rocks, Hot Springs County, Wyoming

    SciTech Connect (OSTI)

    Bailey, M.H.; Sundell, K.A.

    1986-08-01

    Recent drilling of three remote, high-elevation wildcat wells has proven that excellent Paleozoic reservoirs are present at shallow depths beneath Eocene volcaniclastic rocks. The Tensleep and Madison Formations are fluid filled above an elevation of 8000 ft, and all Paleozoic formations exhibit shows of oil and gas. These prolific reservoir rocks have produced billions of barrels of oil from the adjacent Bighorn and Wind river basins, and they pinch out with angular unconformity against the base of the volcanics, providing enormous potential for stratigraphic oil accumulations. Vibroseis and portable seismic data have confirmed and further delineate large anticlines of Paleozoic rocks, which were originally discovered by detailed surface geologic mapping. These structures can be projected along anticlinal trends from the western Owl Creek Mountains to beneath the volcanics as well. The overlying volcanics are generally soft, reworked sediments. However, large, hard boulders and blocks of andesite-dacite, which were previously mapped as intrusives, are present and are the result of catastrophic landslide/debris flow. The volcanics locally contain highly porous and permeable sandstones and abundant bentonite stringers. Oil and gas shows were observed throughout a 2400-ft thick interval of the Eocene Tepee Trail and Aycross Formations. Shows were recorded 9100 ft above sea level in the volcanic rocks. A minimum of 10 million bbl of oil (asphaltum) and an undetermined amount of gases and lighter oils have accumulated within the basal volcanic sequence, based on the evaluation of data from two drill sites. Significant amounts of hydrocarbons have migrated since the volcanics were deposited 50 Ma. Large Laramide anticlines were partially eroded and breached into the Paleozoic formations and resealed by overlying volcanics with subsequent development of a massive tar seal.

  4. Melt zones beneath five volcanic complexes in California: an...

    Open Energy Info (EERE)

    Bridge. Related Geothermal Exploration Activities Activities (4) Geothermal Literature Review At Coso Geothermal Area (1984) Geothermal Literature Review At Geysers...

  5. The Underground Test Area Project of the Nevada Test Site: Building Confidence in Groundwater Flow and Transport Models at Pahute Mesa Through Focused Characterization Studies

    SciTech Connect (OSTI)

    Pawloski, G A; Wurtz, J; Drellack, S L

    2009-12-29

    Pahute Mesa at the Nevada Test Site contains about 8.0E+07 curies of radioactivity caused by underground nuclear testing. The Underground Test Area Subproject has entered Phase II of data acquisition, analysis, and modeling to determine the risk to receptors from radioactivity in the groundwater, establish a groundwater monitoring network, and provide regulatory closure. Evaluation of radionuclide contamination at Pahute Mesa is particularly difficult due to the complex stratigraphy and structure caused by multiple calderas in the Southwestern Nevada Volcanic Field and overprinting of Basin and Range faulting. Included in overall Phase II goals is the need to reduce the uncertainty and improve confidence in modeling results. New characterization efforts are underway, and results from the first year of a three-year well drilling plan are presented.

  6. Takigami Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8...

  7. Yamagawa Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8...

  8. New River Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  9. East Brawley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  10. Clear Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  11. South Brawley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  12. Fort Bidwell Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  13. Adak Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  14. Hellisheidi Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  15. Maui Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  16. Romania Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  17. Ndunga Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  18. Bjarnaflag Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  19. Yangbajain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  20. RMOTC Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  1. Langjiu Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  2. Bruchsal Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8...

  3. Garching Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8...

  4. Sky-polarization data for volcanic and non-volcanic periods. Report for April-September 1986

    SciTech Connect (OSTI)

    Longtin, D.R.; Volz, F.E.

    1986-10-01

    Volz has monitored the Arago and Babinet neutral points at Lexington and Bedford, Mass. for the years 1968 to 1986. These data, along with measurements of turbidity, twilight color ratio, solar aureole, and cloud and snow cover, have been assembled into a data base and checked for error. The neutral-point data were then corrected for day-to-day variations in tropospheric turbidity and separated into groups that coincide with time periods of known volcanic influences and seasonal events. 3-D plots indicate that both the Arago and Babinet points were strongly affected by the presence of the El Chichon dust cloud; however, the features were not as pronounced as in the tropics. Measurements made after the El Chichon eruptions also suggest a movement of the neutral points after sunset which was not observed after the eruptions of Mt. Pelee in 1902 and Katmai in 1911. The present measurements did not show an effect from the eruptions of Fuego in 1971 and late 1974.

  5. Field Mapping | Open Energy Information

    Open Energy Info (EERE)

    Mapping Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Field Mapping Details Activities (74) Areas (44) Regions (6) NEPA(0) Exploration...

  6. Uranium mineralization in fluorine-enriched volcanic rocks

    SciTech Connect (OSTI)

    Burt, D.M.; Sheridan, M.F.; Bikun, J.; Christiansen, E.; Correa, B.; Murphy, B.; Self, S.

    1980-09-01

    Several uranium and other lithophile element deposits are located within or adjacent to small middle to late Cenozoic, fluorine-rich rhyolitic dome complexes. Examples studied include Spor Mountain, Utah (Be-U-F), the Honeycomb Hills, Utah (Be-U), the Wah Wah Mountains, Utah (U-F), and the Black Range-Sierra Cuchillo, New Mexico (Sn-Be-W-F). The formation of these and similar deposits begins with the emplacement of a rhyolitic magma, enriched in lithophile metals and complexing fluorine, that rises to a shallow crustal level, where its roof zone may become further enriched in volatiles and the ore elements. During initial explosive volcanic activity, aprons of lithicrich tuffs are erupted around the vents. These early pyroclastic deposits commonly host the mineralization, due to their initial enrichment in the lithophile elements, their permeability, and the reactivity of their foreign lithic inclusions (particularly carbonate rocks). The pyroclastics are capped and preserved by thick topaz rhyolite domes and flows that can serve as a source of heat and of additional quantities of ore elements. Devitrification, vapor-phase crystallization, or fumarolic alteration may free the ore elements from the glassy matrix and place them in a form readily leached by percolating meteoric waters. Heat from the rhyolitic sheets drives such waters through the system, generally into and up the vents and out through the early tuffs. Secondary alteration zones (K-feldspar, sericite, silica, clays, fluorite, carbonate, and zeolites) and economic mineral concentrations may form in response to this low temperature (less than 200 C) circulation. After cooling, meteoric water continues to migrate through the system, modifying the distribution and concentration of the ore elements (especially uranium).

  7. A Preparation Zone For Volcanic Explosions Beneath Naka-Dake...

    Open Energy Info (EERE)

    activity including a decrease in the level of the lake water, mud eruptions, and red hot glows on the crater wall. Temporal variations in the geomagnetic field observed...

  8. Gila Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  9. Montezuma Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  10. Radium Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  11. Zuni Mountains Nm Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  12. Las Tres Virgenes Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  13. A compound power-law model for volcanic eruptions: Implications for risk assessment of volcanism at the proposed nuclear waste repository at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Ho, Chih-Hsiang

    1994-10-17

    Much of the ongoing debate on the use of nuclear power plants in U.S.A. centers on the safe disposal of the radioactive waste. Congress, aware of the importance of the waste issue, passed the Nuclear Waste Policy Act of 1982, requiring the federal government to develop a geologic repository for the permanent disposal of high level radioactive wastes from civilian nuclear power plants. The Department of Energy (DOE) established the Office of Civilian Radioactive Waste Management (OCRWM) in 1983 to identify potential sites. When OCRWM had selected three potential sites to study, Congress enacted the Nuclear Waste Policy Amendments Act of 1987, which directed the DOE to characterize only one of those sites, Yucca Mountain, in southern Nevada. For a site to be acceptable, theses studies must demonstrate that the site could comply with regulations and guidelines established by the federal agencies that will be responsible for licensing, regulating, and managing the waste facility. Advocates and critics disagree on the significance and interpretation of critical geological features which bear on the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Recent volcanism in the vicinity of Yucca Mountain is readily recognized as an important factor in determining future public and environmental safety because of the possibility of direct disruption of a repository site by volcanism. In particular, basaltic volcanism is regarded as direct and unequivocal evidence of deep-seated geologic instability. In this paper, statistical analysis of volcanic hazard assessment at the Yucca Mountain site is discussed, taking into account some significant geological factors raised by experts. Three types of models are considered in the data analysis. The first model assumes that both past and future volcanic activities follow a homogeneous Poisson process (HPP).

  14. Cenozoic volcanic geology of the Basin and Range province in...

    Open Energy Info (EERE)

    the Basin and Range province in Hidalgo County, southwestern New Mexico Authors Deal, E. G., Elston, W.E., Erb, E. E., Peterson, S. L., & Reiter and D. E. Conference 29th Field...

  15. Compound and Elemental Analysis At Lassen Volcanic National Park...

    Open Energy Info (EERE)

    and hot springs in the Lassen area for comparison. Analytical methods are outlined in Goff and Janik (2002, p.305). References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity...

  16. The Geysers Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Geysers Geothermal Area The Geysers Geothermal Area The Geysers Geothermal area, north of San Francisco, California, is the world's largest dry-steam geothermal steam field. Power production at the Geysers reached peak production in 1987, at that time serving 1.8 million people. Photo of The Geysers power plant

  17. SIMULATION OF THE ICELAND VOLCANIC ERUPTION OF APRIL 2010 USING THE ENSEMBLE SYSTEM

    SciTech Connect (OSTI)

    Buckley, R.

    2011-05-10

    The Eyjafjallajokull volcanic eruption in Iceland in April 2010 disrupted transportation in Europe which ultimately affected travel plans for many on a global basis. The Volcanic Ash Advisory Centre (VAAC) is responsible for providing guidance to the aviation industry of the transport of volcanic ash clouds. There are nine such centers located globally, and the London branch (headed by the United Kingdom Meteorological Office, or UKMet) was responsible for modeling the Iceland volcano. The guidance provided by the VAAC created some controversy due to the burdensome travel restrictions and uncertainty involved in the prediction of ash transport. The Iceland volcanic eruption provides a useful exercise of the European ENSEMBLE program, coordinated by the Joint Research Centre (JRC) in Ispra, Italy. ENSEMBLE, a decision support system for emergency response, uses transport model results from a variety of countries in an effort to better understand the uncertainty involved with a given accident scenario. Model results in the form of airborne concentration and surface deposition are required from each member of the ensemble in a prescribed format that may then be uploaded to a website for manipulation. The Savannah River National Laboratory (SRNL) is the lone regular United States participant throughout the 10-year existence of ENSEMBLE. For the Iceland volcano, four separate source term estimates have been provided to ENSEMBLE participants. This paper focuses only on one of those source terms. The SRNL results in relation to other modeling agency results along with useful information obtained using an ensemble of transport results will be discussed.

  18. Chocolate Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  19. Colado Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  20. Lualualei Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  1. Little Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  2. Honokowai Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  3. Electrochemical formation of field emitters

    DOE Patents [OSTI]

    Bernhardt, Anthony F.

    1999-01-01

    Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area.

  4. Electrohydrodynamically driven large-area liquid ion sources

    DOE Patents [OSTI]

    Pregenzer, Arian L. (Corrales, NM)

    1988-01-01

    A large-area liquid ion source comprises means for generating, over a large area of the surface of a liquid, an electric field of a strength sufficient to induce emission of ions from a large area of said liquid. Large areas in this context are those distinct from emitting areas in unidimensional emitters.

  5. Center for Volcanic and Tectonic Studies, Department of Geoscience annual report, October 1, 1989--September 30, 1990

    SciTech Connect (OSTI)

    Smith, E.I. [Nevada Univ., Las Vegas, NV (United States). Center for Volcanic and Tectonic Studies

    1990-11-01

    This report summarizes our activities during the period October 1, 1989 to September 30, 1990. Our goal was to develop an understanding of late-Miocene and Pliocene volcanism in the Great Basin by studying Pliocene volcanoes in the vicinity of the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. Field studies during this period concentrated on the Quaternary volcanoes in Crater Flat, Yucca Mountain, Fortification Hill, at Buckboard Mesa and Sleeping Butte, and in the Reveille Range. Also, a study was initiated on structurally disrupted basaltic rocks in the northern White Hills of Mohave County, Arizona. As well as progress reports of our work in Crater Flat, Fortification Hill and the Reveille Range, this paper also includes a summary of model that relates changing styles of Tertiary extension to changing magmatic compositions, and a summary of work being done in the White Hills, Arizona. In the Appendix, we include copies of published papers not previously incorporated in our monthly reports.

  6. Nagqu Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Use the "Edit with Form" button at the top of the page to add a Well Field Description Geology of the Area Geologic Setting Tectonic Setting: Extensional Tectonics Controlling...

  7. Final Scientific/Technical Report – DE-FG02-06ER64172 – Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center – Subproject to Co-PI Eric E. Roden

    SciTech Connect (OSTI)

    Eric E. Roden

    2009-03-17

    This report summarizes research conducted in conjunction with a project entitled “Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center”, which was funded through the Integrative Studies Element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. William Burgos (The Pennsylvania State University) was the overall PI/PD for the project, which included Brian Dempsey (Penn State), Gour-Tsyh (George) Yeh (Central Florida University), and Eric Roden (formerly at The University of Alabama, now at the University of Wisconsin) as separately-funded co-PIs. The project focused on development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. The work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and was directly aligned with the Scheibe et al. ORNL FRC Field Project at Area 2. Area 2 is a shallow pathway for migration of contaminated groundwater to seeps in the upper reach of Bear Creek at ORNL, mainly through a ca. 1 m thick layer of gravel located 4-5 m below the ground surface. The gravel layer is sandwiched between an overlying layer of disturbed fill material, and 2-3 m of undisturbed shale saprolite derived from the underlying Nolichucky Shale bedrock. The fill was put in place when contaminated soils were excavated and replaced by native saprolite from an uncontaminated area within Bear Creek Valley; the gravel layer was presumably installed prior to addition of the fill in order to provide a stable surface for the operation of heavy machinery. The undisturbed saprolite is highly weathered bedrock that has unconsolidated character but retains much of the bedding and fracture structure of the parent rock (shale with interbedded limestone). Hydrological tracer studies conducted during the Scheibe et al. field

  8. 300 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  9. 200 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  10. 700 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  11. Sweet Surface Area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sweet Surface Area Sweet Surface Area Create a delicious root beer float and learn sophisticated science concepts at the same time. Sweet Surface Area Science is all around us, so ...

  12. Geothermal Resource Exploration And Definition Projects | Open...

    Open Energy Info (EERE)

    Et Al., 2004) Ground Magnetics At Cove Fort Area - Vapor (Warpinski, Et Al., 2004) Ground Magnetics At San Francisco Volcanic Field Area (Warpinski, Et Al., 2004)...

  13. Strategic Focus Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Focus Areas Lockheed Martin on behalf of Sandia National Laboratories will consider grant requests that best support the Corporation's strategic focus areas and reflect ...

  14. AREA 5 RWMS CLOSURE

    National Nuclear Security Administration (NNSA)

    153 CLOSURE STRATEGY NEVADA TEST SITE AREA 5 RADIOACTIVE WASTE MANAGEMENT SITE Revision 0 ... Closure Strategy Nevada Test Site Area 5 Radioactive Waste Management ...

  15. An evaluation of the effect of volcanic eruption on the solar radiation at Australian and Canadian stations

    SciTech Connect (OSTI)

    Yatko, B.R.; Garrison, J.D.

    1996-11-01

    Peak (most probable) and average values of {angstrom}`s turbidity coefficient {beta} and peak (most probable) and average values of the diffuse index k{sub d} are obtained from the solar radiation data from 21 stations in Australia and 5 stations in Canada. These data exhibit clear increases in their values when the volcanic aerosols in the stratosphere increase following volcanic eruptions of sufficient magnitude. The effect of the eruptions of Fuego (1974), El Chichon (1982) and Pinatubo (1991) are seen most clearly in the data. The effect of lesser eruptions is also seen. The store of volcanic aerosols in the stratosphere shifts with the season so that scattering by volcanic aerosols in the spring half of the year is stronger than in the fall.

  16. Localization of Volcanic Activity: Topographic Effects on Dike Propagation, Eruption and COnduit Formation

    SciTech Connect (OSTI)

    E.S. Gaffney; B. Damjanac

    2006-05-12

    Magma flow in a dike rising in a crack whose strike runs from a highland or a ridge to an adjacent lowland has been modeled to determine the effect of topography on the flow. It is found that there is a distinct tendency for the flow to be diverted away from the highland end of the strike toward the lowland. Separation of the geometric effect of the topography from its effect on lateral confining stresses on the crack indicates that both contribute to the effect but that the effect of stress is less important. Although this analysis explains a tendency for volcanic eruptions to occur in low lands, it does not preclude eruptions on highlands. The particular configuration modeled mimics topography around the proposed nuclear waste repository at Yucca Mountain, Nevada, so that the results may indicate some reduction in the volcanic hazard to the site.

  17. Acoustic waves in the atmosphere and ground generated by volcanic activity

    SciTech Connect (OSTI)

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru

    2012-09-04

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  18. Characterization of Field Experimental Sites at Hanford's 300...

    Office of Scientific and Technical Information (OSTI)

    Characterization of Field Experimental Sites at Hanford's 300-Area IFC Site Citation Details In-Document Search Title: Characterization of Field Experimental Sites at Hanford's ...

  19. Petrographic and reservoir features of Hauterivian (Lower Cretaceous) Shatlyk horizon in the Malay gas field, Amu-Darya basin, east Turkmenia

    SciTech Connect (OSTI)

    Naz, H.; Ersan, A.

    1996-08-01

    Malay gas field in Amu-Darya basin, eastern Turkmenia, is located on the structural high that is on the Malay-Bagadzha arch north of the Repetek-Kelif structure zone. With 500 km{sup 2} areal coverage, 16 producing wells and 200 billion m{sup 3} estimated reserves, the field was discovered in 1978 and production began in 1987 from 2400-m-deep Hauterivian-age (Early Cretaceous) Shatlyk horizon. The Shatlyk elastic sequence shows various thickness up to 100 m in the Malay structural closure and is studied through E-log, core, petrographic data and reservoir characteristics. The Shatlyk consists of poorly indurated, reddish-brown and gray sandstones, and sandy gray shales. The overall sand-shale ratio increases up and the shales interleave between the sand packages. The reservoir sandstones are very fine to medium grained, moderately sorted, compositionally immature, subarkosic arenites. The framework grains include quartz, feldspar and volcanic lithic fragments. Quartz grains are monocrystalline in type and most are volcanic in origin. Feldspars consist of K- Feldspar and plagioclase. The orthoclases are affected by preferential alteration. The sandstones show high primary intergranular porosity and variations in permeability. Patch-like evaporate cement and the iron-rich grain coatings are reducing effects in permeability. The coats are pervasive in reddish-brown sandstones but are not observed in the gray sandstones. The evaporate cement is present in all the sandstone samples examined and, in places, follows the oxidation coats. The petrographic evidences and the regional facies studies suggest the deposition in intersection area from continental to marine nearshore deltaic environment.

  20. FIELD INVESTIGATION AT THE FAULTLESS SITE CENTRAL NEVADA TEST

    Office of Legacy Management (LM)

    FIELD INVESTIGATION AT THE FAULTLESS SITE CENTRAL NEVADA TEST AREA DOEINV10845--T3 DE93 ... at the Faultless Site Central Nevada Test Area An evaluation of groundwater ...

  1. 100 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    00 Area About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H

  2. Quantum Field Theory & Gravity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum Field Theory & Gravity Quantum Field Theory & Gravity Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email Quantum Field Theory and Gravity at Los Alamos The HEP effort at Los Alamos in this area is actively pursing a number of questions in this area. What is the final state of complete gravitational collapse? What happens at the event horizon? What is dark energy? How did the

  3. Ground Magnetics At Marysville Mt Area (Blackwell) | Open Energy...

    Open Energy Info (EERE)

    field of the effect of the stock. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Additional References Retrieved from...

  4. Rock Sampling At Neal Hot Springs Geothermal Area (Colwell, Et...

    Open Energy Info (EERE)

    of Neal Hot Springs and the surrounding areas. This study was conducted by a geophysics field camp from the Colorado School of Mines. Notes Geochemical FingerprintingXRF...

  5. West Valley Reservoir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  6. Lake City Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  7. Boyes Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  8. Travertine Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  9. Leonards Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  10. North Shore Mono Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  11. Pilger Estates Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  12. Tecopa Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  13. Marble Hot Well Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  14. Direct-Current Resistivity At Clear Lake Area (Skokan, 1993)...

    Open Energy Info (EERE)

    surveys were carried out in the area. These field measurements (Rapolla and Keller, 1984) were combined by spatially averaging apparent resistivities on a one kilometer grid (...

  15. Direct-Current Resistivity Survey At Clear Lake Area (Skokan...

    Open Energy Info (EERE)

    surveys were carried out in the area. These field measurements (Rapolla and Keller, 1984) were combined by spatially averaging apparent resistivities on a one kilometer grid (...

  16. Thermo Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  17. Conceptual Model At Dixie Valley Geothermal Area (Reed, 2007...

    Open Energy Info (EERE)

    mean residence times, large surface areas, and adjacent damage zones that provide permeability. The tracers were injected in the center of the Dixie Valley Geothermal Field and...

  18. Neustadt-Glewe Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8...

  19. Ground Magnetics At Neal Hot Springs Geothermal Area (Colwell...

    Open Energy Info (EERE)

    of Neal Hot Springs and the surrounding areas. These studies were conducted by students and faculty in geophysics field camps from the Colorado School of Mines, Boise State...

  20. Technical Area 21

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Area 21 Technical Area 21 Technical Area 21 was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. August 1, 2013 Technical Area 21 in 2011 Technical Area 21 in 2011 Technical Area 21 (TA-21), also known as DP Site was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. Between 2008 and 2011, MDAs B, U, and V were excavated and removed. 24 buildings were demolished in 2010 and 2011

  1. Field Mapping At Chena Geothermal Area (Kolker, 2008) | Open...

    Open Energy Info (EERE)

    1973 - 1974 Usefulness not indicated DOE-funding Unknown Exploration Basis Masters thesis Norma Biggar, Geophysical Institute University of Alaska Notes Geological mapping of...

  2. Field Mapping At Dixie Valley Geothermal Area (Wesnousky, Et...

    Open Energy Info (EERE)

    were calculated using the Coulomb Failure Function. The models indicate that induced stress changes near the endpoints of recent fault ruptures seem to create ideal conditions...

  3. Field Mapping At Kilauea East Rift Geothermal Area (Thomas, 1986...

    Open Energy Info (EERE)

    along the East Rift Zone; detailed historic lava flows were mapped as well as developed structural models of the rift. Locations and progressions of recorded eruptive cycles and...

  4. Field Mapping At Coso Geothermal Area (2010) | Open Energy Information

    Open Energy Info (EERE)

    of the South Ranges to see if a geothermal resource might exist. A TGH drilling campaign may be initiated in the South Ranges in 2011. References Andrew Sabin, S. Bjornstad,...

  5. EA for Well Field Development at Patua Geothermal Area -DOI...

    Open Energy Info (EERE)

    Present, Potentially Affected, Not Indicated) for this property. imposed *A SAD Air Quality Operating Permit would be obtained for the project and a plan for fugitive dust...

  6. Field Mapping At Coso Geothermal Area (2006) | Open Energy Information

    Open Energy Info (EERE)

    Basis Determine impact of brittle faulting and seismogenic deformation on permeability in geothermal reservoir Notes New mapping documents a series of late Quaternary...

  7. Field Mapping At Salt Wells Area (Coolbaugh, Et Al., 2004) |...

    Open Energy Info (EERE)

    Details regarding the complete hardware specifications of the device are included in the body of the article. A custom geologic mapping software applet developed by Gary Edmondo...

  8. Field Mapping At Marysville Mt Area (Blackwell) | Open Energy...

    Open Energy Info (EERE)

    intrusive (outlined by the magnetic data) and the heat flow anomaly occupy a broad dome in the Precambrian rocks, the stock outcropping in the northwest portion of the dome,...

  9. Field Mapping At Coso Geothermal Area (1980) | Open Energy Information

    Open Energy Info (EERE)

    the areal extent of the magma reservoir Notes The distribution of quaternary rhyolite dome of the Coso Range was analyzed. Thirty-eight separate domes and flows of...

  10. Field Mapping At Long Valley Caldera Geothermal Area (Sorey ...

    Open Energy Info (EERE)

    agencies in designating permit conditions and mitigation measures for existing and future resource developments." References Michael L. Sorey, Christopher D. Farrar (1998)...

  11. Ground Gravity Survey At Dixie Valley Geothermal Field Area ...

    Open Energy Info (EERE)

    most useful in identifying the surface projection of subsurface contacts of greatest density contrast, (Blackwell et al., 2002). Thus where the contact is sharp and large the...

  12. Field Mapping At Long Valley Caldera Geothermal Area (Sorey,...

    Open Energy Info (EERE)

    higher. Hot-springs with surface discharge temperatures of 79-93 oC occur primarily at Casa Diablo, Hot Creek gorge, Little Hot Creek, and along the south side of the resurgent...

  13. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maps Individual Permit: Site Monitoring Area Maps Each Site Monitoring Area Map is updated whenever the map information is updated. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email What do these maps show? The Individual Permit for Storm Water site monitoring area maps display the following information: Surface hydrological features Locations of the Site(s) assigned to the Site Monitoring Area (SMA) The Site Monitoring

  14. Computation of probabilistic hazard maps and source parameter estimation for volcanic ash transport and dispersion

    SciTech Connect (OSTI)

    Madankan, R.; Pouget, S.; Singla, P.; Bursik, M.; Dehn, J.; Jones, M.; Patra, A.; Pavolonis, M.; Pitman, E.B.; Singh, T.; Webley, P.

    2014-08-15

    Volcanic ash advisory centers are charged with forecasting the movement of volcanic ash plumes, for aviation, health and safety preparation. Deterministic mathematical equations model the advection and dispersion of these plumes. However initial plume conditions height, profile of particle location, volcanic vent parameters are known only approximately at best, and other features of the governing system such as the windfield are stochastic. These uncertainties make forecasting plume motion difficult. As a result of these uncertainties, ash advisories based on a deterministic approach tend to be conservative, and many times over/under estimate the extent of a plume. This paper presents an end-to-end framework for generating a probabilistic approach to ash plume forecasting. This framework uses an ensemble of solutions, guided by Conjugate Unscented Transform (CUT) method for evaluating expectation integrals. This ensemble is used to construct a polynomial chaos expansion that can be sampled cheaply, to provide a probabilistic model forecast. The CUT method is then combined with a minimum variance condition, to provide a full posterior pdf of the uncertain source parameters, based on observed satellite imagery. The April 2010 eruption of the Eyjafjallajkull volcano in Iceland is employed as a test example. The puff advection/dispersion model is used to hindcast the motion of the ash plume through time, concentrating on the period 1416 April 2010. Variability in the height and particle loading of that eruption is introduced through a volcano column model called bent. Output uncertainty due to the assumed uncertain input parameter probability distributions, and a probabilistic spatial-temporal estimate of ash presence are computed.

  15. Inner Area Principles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inner Area Principles The Inner Area principles proposed by the Tri-Parties are a good beginning toward consideration of what kind of approach will be needed to remedy the problems of the Central Plateau. However, the Board feels that some principles have been overlooked in the preparation of these. [1] While it has been generally agreed that designated waste disposal facilities of the Inner Area (like ERDF and IDF) would not be candidates for remediation. What happened to the remedial approach

  16. Atmospheric Dispersal and Dispostion of Tephra From a Potential Volcanic Eruption at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    G. Keating; W.Statham

    2004-02-12

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (ASHPLUME) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. The ASHPLUME conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The ASHPLUME mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report will improve and clarify the previous documentation of the ASHPLUME mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model.

  17. The Cobb-Eickelberg seamount chain: Hotspot volcanism with mid-ocean ridge basalt affinity

    SciTech Connect (OSTI)

    Desonie, D.L.; Duncan, R.A. )

    1990-08-10

    Cobb hotspot, currently located beneath Axial seamount on the Juan de Fuca ridge, has the temporal but not the isotopic characteristics usually attributed to a mantle plume. The earlier volcanic products of the hotspot, form eight volcanoes in the Cobb-Eickelberg seamount (CES) chain, show a westward age progression away from the hotspot and a westward increase in the age difference between the seamounts and the crust on which they formed. These results are consistent with movement of the Pacific plate over a fixed Cobb hotspot and eventual encroachment by the westwardly migrating Juan de Fuca ridge. CES lavas are slightly enriched in alkalies and incompatible elements relative to those of the Juan de Fuca ridge but they have Sr, Nd, and Pb isotopic compositions virtually identical to those found along the ridge. Therefore, Cobb hotspot is a stationary, upper mantle melting anomaly whose volcanic products show strong mid-ocean ridge basalt (MORB) affinity. These observations can be explained by low degrees of partial melting of entrained heterogeneous upper mantle MORB source material within a thermally driven lower mantle diapir or by an intrinsic MORB-like composition of the deeper mantle source region from which northeast Pacific plumes rise.

  18. Imperial Valley Geothermal Area

    Broader source: Energy.gov [DOE]

    The Imperial Valley Geothermal project consists of 10 generating plants in the Salton Sea Known Geothermal Resource Area in Southern California's Imperial Valley. The combined capacity at Imperial...

  19. Western Area Power Administration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Area Power Administration Follow-up to Nov. 25, 2008 Transition ... Southwestern Power Administration CONSTRUCTION BUDGET ITEM DESCRIPTION FY 2009* MICROWAVE ...

  20. Electrochemical formation of field emitters

    DOE Patents [OSTI]

    Bernhardt, A.F.

    1999-03-16

    Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays is disclosed. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area. 12 figs.

  1. Carlsbad Field Office - Fact Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the nation's nuclear waste disposal problem Carlsbad Field Office The U.S. Department of Energy (DOE) created the Carlsbad Area Office in late 1993 to lead the nation's transuranic waste disposal efforts. In September 2000 the office was elevated in status to become the Carlsbad Field Office (CBFO), taking on significant new responsibilities. These include protecting the environment along the U.S. - Mexico border and serving as an international center for the study of waste management. The CBFO

  2. Innovation investment area: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The mission of Environmental Management`s (EM) Office of Technology Development (OTD) Innovation Investment Area is to identify and provide development support for two types of technologies that are developed to characterize, treat and dispose of DOE waste, and to remediate contaminated sites. They are: technologies that show promise to address specific EM needs, but require proof-of-principle experimentation; and (2) already proven technologies in other fields that require critical path experimentation to demonstrate feasibility for adaptation to specific EM needs. The underlying strategy is to ensure that private industry, other Federal Agencies, universities, and DOE National Laboratories are major participants in developing and deploying new and emerging technologies. To this end, about 125 different new and emerging technologies are being developed through Innovation Investment Area`s (IIA) two program elements: RDDT&E New Initiatives (RD01) and Interagency Agreements (RD02). Both of these activities are intended to foster research and development partnerships so as to introduce innovative technologies into other OTD program elements for expedited evaluation.

  3. ATMOSPHERIC DISPERSAL AND DEPOSITION OF TEPHRA FROM A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN, NEVADA

    SciTech Connect (OSTI)

    C. Harrington

    2004-10-25

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit by Igneous Intrusion''. This model report provides direct inputs to

  4. Geothermal br Resource br Area Geothermal br Resource br Area...

    Open Energy Info (EERE)

    Aluto Langano Geothermal Area Aluto Langano Geothermal Area East African Rift System Ethiopian Rift Valley Major Normal Fault Basalt MW K Amatitlan Geothermal Area Amatitlan...

  5. Decontamination & decommissioning focus area

    SciTech Connect (OSTI)

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  6. Hanford 300 Area ROD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area ROD Briefing to the Hanford Advisory Board March 6, 2014 Larry Gadbois -- EPA Recap of the 300 Area ROD Primary new concept -- Uranium Sequestration: * Purpose: Accelerate restoration of groundwater uranium contamination. * Protect groundwater from downward leaching from the vadose zone (overlying soil). * Add phosphate to chemically bond with uranium into geologically stable autunite. Does not dissolve. * Dissolve phosphate in water, apply at ground surface, inject into the ground,

  7. Physics Thrust Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thrust Areas Physics Thrust Areas Physics Division serves the nation through its broad portfolio of fundamental and applied research. Quality basic science research: critical component of maintaining our capabilities in national security research To further understand the physical world, generate new or improved technology in experimental physics, and establish a physics foundation for current and future Los Alamos programs, Physics Division leverages its expertise and experimental capabilities

  8. Long-term desorption behavior of uranium and neptunium in heterogeneous volcanic tuff materials /

    SciTech Connect (OSTI)

    Dean, Cynthia A.

    2010-05-01

    Uranium and neptunium desorption were studied in long-term laboratory experiments using four well-characterized volcanic tuff cores collected from southeast of Yucca Mountain, Nevada. The objectives of the experiments were to 1. Demonstrate a methodology aimed at characterizing distributions of sorption parameters (attributes of multiple sorption sites) that can be applied to moderately-sorbing species in heterogeneous systems to provide more realistic reactive transport parameters and a more realistic approach to modeling transport in heterogeneous systems. 2. Focus on uranium and neptunium because of their high solubility, relatively weak sorption, and high contributions to predicted dose in Yucca Mountain performance assessments. Also, uranium is a contaminant of concern at many DOE legacy sites and uranium mining sites.

  9. OLED area illumination source

    DOE Patents [OSTI]

    Foust, Donald Franklin; Duggal, Anil Raj; Shiang, Joseph John; Nealon, William Francis; Bortscheller, Jacob Charles

    2008-03-25

    The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.

  10. Operational Area Monitoring Plan

    Office of Legacy Management (LM)

    ' SECTION 11.7B Operational Area Monitoring Plan for the Long -Term H yd rol og ical M o n i to ri ng - Program Off The Nevada Test Site S . C. Black Reynolds Electrical & Engineering, Co. and W. G. Phillips, G. G. Martin, D. J. Chaloud, C. A. Fontana, and 0. G. Easterly Environmental Monitoring Systems Laboratory U. S. Environmental Protection Agency October 23, 1991 FOREWORD This is one of a series of Operational Area Monitoring Plans that comprise the overall Environmental Monitoring Plan

  11. Aeromagnetic Survey At Kilauea Summit Area (Zablocki, 1978) ...

    Open Energy Info (EERE)

    Usefulness could be useful with more improvements DOE-funding Unknown Notes These VLF induction methods should have wide application to studies of active volcanic regions in other...

  12. Spencer Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  13. Black Rock Point Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  14. Wedell Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  15. Double Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  16. Alvord Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  17. Bailey Bay Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  18. Dixie Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  19. Buffalo Valley Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  20. Big Windy Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  1. Compound and Elemental Analysis At Jemez Springs Geothermal Area...

    Open Energy Info (EERE)

    1972 - 1974 Usefulness useful DOE-funding Unknown References Frank W. Trainer (1974) Groundwater in the Southwestern Part of the Jemez Mountains Volcanic Region, New Mexico...

  2. Petrography Analysis At Kilauea East Rift Geothermal Area (Quane...

    Open Energy Info (EERE)

    Exploration Basis The purpose of this study was to analyze deep core sample from the Scientific observation holes and piece together a volcanic history of Kilauea Notes core...

  3. Isotopic Analysis-Fluid At Geysers Geothermal Area (1982) | Open...

    Open Energy Info (EERE)

    and weathering release of crustal He, magma aging and tritiugenic addition of 3He). Raft River contains only crustal He indicating no active volcanic sources. References...

  4. Isotopic Analysis-Fluid At Steamboat Springs Geothermal Area...

    Open Energy Info (EERE)

    and weathering release of crustal He, magma aging and tritiugenic addition of 3He). Raft River contains only crustal He indicating no active volcanic sources. References...

  5. Environmental Resources of Selected Areas of Hawaii: Geological Hazards (DRAFT)

    SciTech Connect (OSTI)

    Staub, W.P.

    1994-06-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 (Fed Regis. 5925638) withdrawing its Notice of Intent (Fed Regis. 575433) of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent U.S. Geological Survey (USGS) publications and open-file reports. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift, and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis). First, overviews of volcanic and earthquake activity, and details of offshore geologic hazards is provided for the Hawaiian Islands. Then, a more detailed discussion of onshore geologic hazards is presented with special emphasis on the southern third of Hawaii and the east rift

  6. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The spatial location and boundaries for each Site shown on the Site Monitoring Area maps ... P-SMA-2 DP-SMA-0.4 LA-SMA-2.3 LA-SMA-5.51 LA-SMA-6.38 P-SMA-2.15 DP-SMA-0.6 ...

  7. Plutonium focus area

    SciTech Connect (OSTI)

    1996-08-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  8. Subsurface contaminants focus area

    SciTech Connect (OSTI)

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  9. Ulumbu Geothermal Field | Open Energy Information

    Open Energy Info (EERE)

    Use the "Edit with Form" button at the top of the page to add a Well Field Description Geology of the Area Geologic Setting Tectonic Setting: Controlling Structure: Topographic...

  10. Property:AreaGeology | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area B Beowawe Hot Springs Geothermal Area Blue Mountain Geothermal Area Brady Hot Springs Geothermal Area C Chena Geothermal Area Coso Geothermal Area D Desert Peak...

  11. Attosecond nanoscale near-field sampling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Forg, B.; Schotz, J.; SuBmann, F.; Forster, M.; Kruger, M.; Ahn, B.; Okell, W. A.; Wintersperger, K.; Zherebtsov, S.; Guggenmos, A.; et al

    2016-05-31

    The promise of ultrafast light-field-driven electronic nanocircuits has stimulated the development of the new research field of attosecond nanophysics. An essential prerequisite for advancing this new area is the ability to characterize optical near fields from light interaction with nanostructures, with sub-cycle resolution. Here we experimentally demonstrate attosecond near-field retrieval for a tapered gold nanowire. Furthermore, by comparison of the results to those obtained from noble gas experiments and trajectory simulations, the spectral response of the nanotaper near field arising from laser excitation can be extracted.

  12. Effects of Volcanism, Crustal Thickness, and Large Scale Faulting on the Development and Evolution of Geothermal Systems: Collaborative Project in Chile

    Broader source: Energy.gov [DOE]

    Effects of Volcanism, Crustal Thickness, and Large Scale Faulting on the Development and Evolution of Geothermal Systems: Collaborative Project in Chile presentation at the April 2013 peer review meeting held in Denver, Colorado.

  13. Aluto-Langano Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    yd Use the "Edit with Form" button at the top of the page to add a Well Field Description Geology of the Area Geologic Setting Tectonic Setting: Rift Zone Controlling Structure:...

  14. Pico Vermelho-Ribeira Grande Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    yd Use the "Edit with Form" button at the top of the page to add a Well Field Description Geology of the Area Geologic Setting Tectonic Setting: Rift Zone Controlling Structure:...

  15. Twenty-Nine Palms Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    LiDAR At Twenty-Nine Palms Area (Page, Et Al., 2010) LiDAR Field Investigations And Temperature-Gradient Drilling At Marine Corps Air-Ground Combat Center (Mcagcc),...

  16. Figure 1. Project Area, Focused Study Area, Potential Access...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Page 4 of 8 Figure 1. Project Area, Focused Study Area, Potential Access Agreement Land, and Land Not Suitable for Conveyance

  17. Figure 1. Project Area, Focused Study Area, Potential Access...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page 4 of 8 Figure 1. Project Area, Focused Study Area, Potential Access Agreement Land, and Land Not Suitable for Conveyance...

  18. Internal split field generator

    DOE Patents [OSTI]

    Thundat; Thomas George; Van Neste, Charles W.; Vass, Arpad Alexander

    2012-01-03

    A generator includes a coil of conductive material. A stationary magnetic field source applies a stationary magnetic field to the coil. An internal magnetic field source is disposed within a cavity of the coil to apply a moving magnetic field to the coil. The stationary magnetic field interacts with the moving magnetic field to generate an electrical energy in the coil.

  19. Heavy Quarks, QCD, and Effective Field Theory (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Title: Heavy Quarks, QCD, and Effective Field Theory The research supported by this OJI award is in the area of heavy quark and quarkonium production, especially the application ...

  20. Field Mapping At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Goff, Et Al., 2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et...

  1. Volcanic episodes near Yucca Mountain as determined by paleomagnetic studies as Lathrop Wells, Crater Flat, and Sleeping Butte, Nevada

    SciTech Connect (OSTI)

    Champion, D.E.

    1991-12-31

    It has been suggested that mafic volcanism in the vicinity of Yucca Mountain, Nevada, is both recent (20 ka) and a product of complex {open_quotes}polycyclic{close_quotes} eruptions. This pattern of volcanism, as interpreted by some workers at the Lathrop Wells volcanic complex, comprises a sequence of numerous small-volume eruptions that become more tephra-producing over time. Such sequences are thought to occur over timespans as long as 100,000 years. However, paleomagnetic studies of the tephra and lava flows from mafic volcanoes near Yucca Mountain fail to find evidence of repeated eruptive activity over timespans of 10{sup 3} to 10{sup 5} years, even though samples have been taken that represent approximately 95% of the products of these volcanoes. Instead, the eruptions seem to have occurred as discrete episodes at each center and thus can be considered to be {open_quotes}monogenetic.{close_quotes} Dates of these episodes have been obtained by the proven radiometric-geochronometer methods of K-Ar or {sup 40}Ar/{sup 39}Ar dating.

  2. Four-year prospective study of the respiratory effects of volcanic ash from Mt. St. Helens

    SciTech Connect (OSTI)

    Buist, A.S.; Vollmer, W.M.; Johnson, L.R.; Bernstein, R.S.; McCamant, L.E.

    1986-04-01

    This report describes the 4-yr follow-up of 712 loggers exposed over an extended period to varying levels of fresh volcanic ash from the 1980 eruptions of Mt. St. Helens. Concerns related to the irritant effect the ash might have on the airways and also to its fibrogenic potential if exposures were intense and continued over many years. Our subjects were divided into 3 groups: high, low, and no exposure. Baseline testing was begun in June 1980, 1 month after the major eruption, and follow-up testing continued on an annual basis through 1984; 88% of the loggers have been tested at least 3 times. Analysis of lung function data showed that a significant, exposure-related decline in FEV1 occurred during the first year after the eruption. The decline was short-lived, however, and by 1984 the differences between exposure groups were no longer significant. Self-reported symptoms of cough, phlegm, and wheeze showed a similar pattern. No ash-related changes were seen in chest roentgenograms taken in 1980 and in 1984. Our findings are consistent with the hypothesis that the inhaled ash caused mucus hypersecretion and/or airway inflammation that reversed when the exposure levels decreased. The ash levels to which the loggers were exposed were low compared with permissible occupational levels for nuisance dusts, but generally higher than the total suspended particulate levels permissible in ambient air.

  3. Environmental Field Surveys, EMF Rapid Program, Engineering Project No.3

    SciTech Connect (OSTI)

    Enertech Consultants

    1996-04-01

    The EMF Research and Public Information Dissemination Program (RAPID) includes several engineering research in the area of exposure assessment and source characterization. RAPID engineering project No. 3: ''Environmental Field Surveys'' was performed to obtain information on the levels and characteristics of different environments, for which only limited data were available, especially in comparison to magnetic field data for the residential environment and for electric utility facilities, such as power lines and substations. This project was also to provide information on the contribution of various field sources in the surveyed environments. Magnetic field surveys were performed at four sites for each of five environments: schools, hospitals, office buildings, machine shops, and grocery stores. Of the twenty sites surveyed, 11 were located in the San Francisco Bay Area and 9 in Massachusetts. The surveys used a protocol based on magnetic field measurements and observation of activity patterns, designed to provide estimates of magnetic field exposure by type of people and by type of sources. The magnetic field surveys conducted by this project produced a large amount of data which will form a part of the EMF measurement database Field and exposure data were obtained separately for ''area exposure'' and ''at exposure points''. An exposure point is a location where persons engage in fixed, site specific activities near a local source that creates a significant increase in the area field. The area field is produced by ''area sources'', whose location and field distribution is in general not related to the location of the people in the area.

  4. High field strength following the Kauai R-N geomagnetic reversal

    SciTech Connect (OSTI)

    Paul, H.A. . Dept. of Geology)

    1993-04-01

    The paleomagnetism of superposed lava flows on Kauai, Hawaii shows that the ancient geomagnetic field was unusually strong following a reverse-to-normal polarity transition that occurred about 4 million years ago. Paleointensities were determined by a standard experimental procedure (Thelliers' method) that recreates the process of remanence acquisition in volcanic rocks. This experiment makes it possible to infer the strength of the geomagnetic field present with each lava flow formed, thus producing an accurate picture of the ancient field's behavior after the reversal. Samples from 10 volcanic units yielded virtual dipole moments (VDMs) ranging from 7.4 [times] 10[sup 22] Am[sup 2] to 14.5 [times] 10[sup 22] Am[sup 2] with an average of 11.1[times]10[sup 22] Am[sup 2]. This value is high in comparisons to the average VDM for the past 5 m.y., approximately 8.7[times]10[sup 22] Am[sup 2]. In contrast to the highly variable dipole moment observed following a 15 m.y. old reversal at Steen s Mountain, Oregon, the field following the Kauai transition was relatively steady. Surprisingly, the maximum dipole moments following the two reversals were nearly equal. This similarity hints that high field strength may be a systematic feature of the geodynamo immediately following a polarity reversal.

  5. Bay Area | Open Energy Information

    Open Energy Info (EERE)

    Page Edit History Bay Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Bay Area 1.1 Products and Services in the Bay Area 1.2 Research and Development...

  6. Rockies Area | Open Energy Information

    Open Energy Info (EERE)

    Rockies Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Rockies Area 1.1 Products and Services in the Rockies Area 1.2 Research and Development...

  7. Texas Area | Open Energy Information

    Open Energy Info (EERE)

    Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Texas Area 1.1 Products and Services in the Texas Area 1.2 Research and Development Institutions in the...

  8. Large area bulk superconductors

    DOE Patents [OSTI]

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  9. Predicting and validating the tracking of a Volcanic Ash Cloud during the 2006 Eruption of Mt. Augustine Volcano

    SciTech Connect (OSTI)

    Webley, Peter W.; Atkinson, D.; Collins, Richard L.; Dean, K.; Fochesatto, J.; Sassen, Kenneth; Cahill, Catherine F.; Prata, A.; Flynn, Connor J.; Mizutani, K.

    2008-11-01

    On 11 January 2006, Mount Augustine volcano in southern Alaska began erupting after 20-year repose. The Anchorage Forecast Office of the National Weather Service (NWS) issued an advisory on 28 January for Kodiak City. On 31 January, Alaska Airlines cancelled all flights to and from Anchorage after multiple advisories from the NWS for Anchorage and the surrounding region. The Alaska Volcano Observatory (AVO) had reported the onset of the continuous eruption. AVO monitors the approximately 100 active volcanoes in the Northern Pacific. Ash clouds from these volcanoes can cause serious damage to an aircraft and pose a serious threat to the local communities, and to transcontinental air traffic throughout the Arctic and sub-Arctic region. Within AVO, a dispersion model has been developed to track the dispersion of volcanic ash clouds. The model, Puff, was used operational by AVO during the Augustine eruptive period. Here, we examine the dispersion of a volcanic ash cloud from Mount Augustine across Alaska from 29 January through the 2 February 2006. We present the synoptic meteorology, the Puff predictions, and measurements from aerosol samplers, laser radar (or lidar) systems, and satellites. UAF aerosol samplers revealed the presence of volcanic aerosols at the surface at sites where Puff predicted the ash clouds movement. Remote sensing satellite data showed the development of the ash cloud in close proximity to the volcano and a sulfur-dioxide cloud further from the volcano consistent with the Puff predictions. Lidars showed the presence of volcanic aerosol with consistent characteristics aloft over Alaska and were capable of detecting the aerosol, even in the presence of scattered clouds and where the cloud is too thin/disperse to be detected by remote sensing satellite data. The lidar measurements revealed the different trajectories of ash consistent with the Puff predictions. Dispersion models provide a forecast of volcanic ash cloud movement that might be

  10. Ceuta-Tomoporo field, Venezuela

    SciTech Connect (OSTI)

    Puig, E.R.; Fernando Marcano, R. )

    1990-09-01

    Ceuta field is located in the southeastern part of the Maracaibo basin, western Venezuela. The field is a conspicuous high belonging to the Pueblo Viejo trend, a set of strike-slip faults trending northwest. The field has an area of 320 km and is divided into eight fault-bounded blocks where light- or medium-grade oil is being produced. The structural framework is characterized by a major left-slip fault and oil accumulations are associated with compressive and extensive structural features. The deposition of Eocene sediments in some areas may have been controlled by normal faulting and a period of shortening may have altered the character of some of the faults during the late Eocene or later. The main producing intervals are shallow-water marine or fluviodeltaic Miocene and Eocene sands with porosities ranging from 8 to 15% and a production potential of up to 3,500 BOPD from depths averaging 5,182 m (17,000 ft). The reservoirs seem to contain mixtures of hydrocarbons, probably due to the generation of oil in more than one oil kitchen and/or at different migration times from a common drainage area.

  11. T-1 Training Area

    SciTech Connect (OSTI)

    2014-11-07

    Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

  12. T-1 Training Area

    ScienceCinema (OSTI)

    None

    2015-01-09

    Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

  13. Preliminary investigation Area 12 fleet operations steam cleaning discharge area Nevada Test Site

    SciTech Connect (OSTI)

    1996-07-01

    This report documents the characterization activities and findings of a former steam cleaning discharge area at the Nevada Test Site. The former steam cleaning site is located in Area 12 east of Fleet Operations Building 12-16. The characterization project was completed as a required condition of the ``Temporary Water Pollution Control Permit for the Discharge From Fleet Operations Steam Cleaning Facility`` issued by the Nevada Division of Environmental Protection. The project objective was to collect shallow soil samples in eight locations in the former surface discharge area. Based upon field observations, twelve locations were sampled on September 6, 1995 to better define the area of potential impact. Samples were collected from the surface to a depth of approximately 0.3 meters (one foot) below land surface. Discoloration of the surface soil was observed in the area of the discharge pipe and in localized areas in the natural drainage channel. The discoloration appeared to be consistent with the topographically low areas of the site. Hydrocarbon odors were noted in the areas of discoloration only. Samples collected were analyzed for bulk asbestos, Toxicity Characteristic Leaching Procedure (TCLP) metals, total petroleum hydrocarbons (TPHs), volatile organic compounds (VOCs), semi-volatile organic compounds (Semi-VOCs), and gamma scan.

  14. A Hydrostratigraphic Model of the Pahute Mesa - Oasis Valley Area, Nye County, Nevada

    SciTech Connect (OSTI)

    S. L. Drellack, Jr.; L. B. Prothro; J. L. Gonzales

    2001-12-01

    A 3-D hydrostratigraphic framework model has been built for the use of hydrologic modelers who are tasked with developing a model to determine how contaminants are transported by groundwater flow in an area of complex geology. The area of interest includes Pahute Mesa, a former nuclear testing area at the Nevada Test Site (NTS), and Oasis Valley, a groundwater discharge area down-gradient from contaminant source areas on Pahute Mesa. To build the framework model, the NTS hydrogeologic framework was integrated with an extensive collection of drill-hole data (stratigraphic, lithologic, and alteration data); a structural model; and several recent geophysical, geological, and hydrological studies to formulate a hydrostratigraphic system. The authors organized the Tertiary volcanic units in the study area into 40 hydrostratigraphic units that include 16 aquifers, 13 confining units, and 11 composite units. The underlying pre-Tertiary rocks were divided into six hydrostratigraphic units, including two aquifers and four confining units. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units (''layers'' in the model) along with all the major structural features that control them, including calderas and faults. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to address alternative interpretations for some of the major features in the model. Six of these alternatives were developed so they could be modeled in the same fashion as the base model.

  15. The Long Valley/Mono Basin Volcanic Complex: A Preliminary Magnetotell...

    Open Energy Info (EERE)

    exhibiting a variety of tectonic activity. Both the telluric field and magnetic induction arrows imply the presence of a structurally controlled east-west electric current...

  16. CV-2a: Plutonic - Recent or Active Volcanism | Open Energy Information

    Open Energy Info (EERE)

    dry steam geothermal field was the first geothermal resource to be utilized for electricity generation in 1911 (reference: reuk.co.uk) Famous plutonic geothermal plays...

  17. AREA RADIATION MONITOR

    DOE Patents [OSTI]

    Manning, F.W.; Groothuis, S.E.; Lykins, J.H.; Papke, D.M.

    1962-06-12

    S>An improved area radiation dose monitor is designed which is adapted to compensate continuously for background radiation below a threshold dose rate and to give warning when the dose integral of the dose rate of an above-threshold radiation excursion exceeds a selected value. This is accomplished by providing means for continuously charging an ionization chamber. The chamber provides a first current proportional to the incident radiation dose rate. Means are provided for generating a second current including means for nulling out the first current with the second current at all values of the first current corresponding to dose rates below a selected threshold dose rate value. The second current has a maximum value corresponding to that of the first current at the threshold dose rate. The excess of the first current over the second current, which occurs above the threshold, is integrated and an alarm is given at a selected integrated value of the excess corresponding to a selected radiation dose. (AEC)

  18. External split field generator

    DOE Patents [OSTI]

    Thundat, Thomas George; Van Neste, Charles W.; Vass, Arpad Alexander

    2012-02-21

    A generator includes a coil disposed about a core. A first stationary magnetic field source may be disposed on a first end portion of the core and a second stationary magnetic field source may be disposed on a second end portion of core. The first and second stationary magnetic field sources apply a stationary magnetic field to the coil. An external magnetic field source may be disposed outside the coil to apply a moving magnetic field to the coil. Electrical energy is generated in response to an interaction between the coil, the moving magnetic field, and the stationary magnetic field.

  19. livermore field office

    National Nuclear Security Administration (NNSA)

    donation to those in need.

    Livermore Field Office sets core values as part of continuous improvement process http:nnsa.energy.govbloglivermore-field-office-sets-cor...

  20. SSL Demonstration: Area Lighting Yuma Sector Border Patrol Area...

    Energy Savers [EERE]

    DEMONSTRATION: Area Lighting Yuma Sector Border Patrol Area, AZ A unique GATEWAY evaluation on a stretch of border between the U.S. and Mexico looks at how high-flux LED lighting ...

  1. Conceptual Model At Coso Geothermal Area (2005-2007) | Open Energy...

    Open Energy Info (EERE)

    Unknown Exploration Basis Determine most productive areas of geothermal field using stress and faulting analysis to develop a geomechanical model Notes New geologic mapping and...

  2. Thermal And-Or Near Infrared At Coso Geothermal Area (2007) ...

    Open Energy Info (EERE)

    and field data is effective for determining geothermal areas Notes Thermal infrared (TIR) data from the spaceborne ASTER instrument was used to detect surface temperature...

  3. Oil and Gas Field Code Master List 1990

    SciTech Connect (OSTI)

    Not Available

    1991-01-04

    This is the ninth annual edition of the Energy Information Administration's (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1990 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. There are 54,963 field records in this year's Oil and Gas Field Code Master List (FCML). This amounts to 467 more than in last year's report. As it is maintained by EIA, the Master List includes: Field records for each state and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides;field records for each alias field name; fields crossing state boundaries that may be assigned different names by the respective state naming authorities.

  4. Final Report - Hydraulic Conductivity with Depth for Underground Test Area (UGTA) Wells

    SciTech Connect (OSTI)

    P. Oberlander; D. McGraw; C. Russell

    2007-10-31

    Hydraulic conductivity with depth has been calculated for Underground Test Area (UGTA) wells in volcanic tuff and carbonate rock. The following wells in volcanic tuff are evaluated: ER-EC-1, ER-EC-2a, ER-EC-4, ER-EC-5, ER-5-4#2, ER-EC-6, ER-EC-7, and ER-EC-8. The following wells in carbonate rock are evaluated: ER-7-1, ER-6-1, ER-6-1#2, and ER-12-3. There are a sufficient number of wells in volcanic tuff and carbonate rock to associate the conductivity values with the specific hydrogeologic characteristics such as the stratigraphic unit, hydrostratigraphic unit, hydrogeologic unit, lithologic modifier, and alteration modifier used to describe the hydrogeologic setting. Associating hydraulic conductivity with hydrogeologic characteristics allows an evaluation of the data range and the statistical distribution of values. These results are relevant to how these units are considered in conceptual models and represented in groundwater models. The wells in volcanic tuff illustrate a wide range of data values and data distributions when associated with specific hydrogeologic characteristics. Hydraulic conductivity data within a hydrogeologic characteristic can display normal distributions, lognormal distributions, semi-uniform distribution, or no identifiable distribution. There can be multiple types of distributions within a hydrogeologic characteristic such as a single stratigraphic unit. This finding has implications for assigning summary hydrogeologic characteristics to hydrostratigraphic and hydrogeologic units. The results presented herein are specific to the hydrogeologic characteristic and to the wells used to describe hydraulic conductivity. The wells in carbonate rock are associated with a fewer number of hydrogeologic characteristics. That is, UGTA wells constructed in carbonate rock have tended to be in similar hydrogeologic materials, and show a wide range in hydraulic conductivity values and data distributions. Associations of hydraulic conductivity and

  5. F Reactor Area Cleanup Complete

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – U.S. Department of Energy (DOE) contractors have cleaned up the F Reactor Area, the first reactor area at the Hanford Site in southeastern Washington state to be fully remediated.

  6. Field Campaign Guidelines

    SciTech Connect (OSTI)

    Voyles, J. W.; Chapman, L. A.

    2015-12-01

    This document establishes a common set of guidelines for the Atmospheric Radiation Measurement (ARM) Climate Research Facility for planning, executing, and closing out field campaigns. The steps that guide individual field campaigns are described in the Field Campaign Tracking System and are specifically tailored to meet the scope of each field campaign.

  7. Focus Areas | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Focus Areas FA 1: Diversifying Supply FA 2: Developing Substitutes FA 3: Improving Reuse and Recycling FA 4: Crosscutting Research

  8. Sub-crop geologic map of pre-Tertiary rocks in the Yucca Flat and northern Frenchman Flat areas, Nevada Test Site, southern Nevada

    SciTech Connect (OSTI)

    Cole, J.C.; Harris, A.G.; Wahl, R.R.

    1997-10-02

    This map displays interpreted structural and stratigraphic relations among the Paleozoic and older rocks of the Nevada Test Site region beneath the Miocene volcanic rocks and younger alluvium in the Yucca Flat and northern Frenchman Flat basins. These interpretations are based on a comprehensive examination and review of data for more than 77 drillholes that penetrated part of the pre-Tertiary basement beneath these post-middle Miocene structural basins. Biostratigraphic data from conodont fossils were newly obtained for 31 of these holes, and a thorough review of all prior microfossil paleontologic data is incorporated in the analysis. Subsurface relationships are interpreted in light of a revised regional geologic framework synthesized from detailed geologic mapping in the ranges surrounding Yucca Flat, from comprehensive stratigraphic studies in the region, and from additional detailed field studies on and around the Nevada Test Site. All available data indicate the subsurface geology of Yucca Flat is considerably more complicated than previous interpretations have suggested. The western part of the basin, in particular, is underlain by relics of the eastward-vergent Belted Range thrust system that are folded back toward the west and thrust by local, west-vergent contractional structures of the CP thrust system. Field evidence from the ranges surrounding the north end of Yucca Flat indicate that two significant strike-slip faults track southward beneath the post-middle Miocene basin fill, but their subsurface traces cannot be closely defined from the available evidence. In contrast, the eastern part of the Yucca Flat basin is interpreted to be underlain by a fairly simple north-trending, broad syncline in the pre-Tertiary units. Far fewer data are available for the northern Frenchman Flat basin, but regional analysis indicates the pre-Tertiary structure there should also be relatively simple and not affected by thrusting. This new interpretation has implications

  9. Environmental resources of selected areas of Hawaii: Geological hazards

    SciTech Connect (OSTI)

    Staub, W.P.; Reed, R.M.

    1995-03-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent US Geological Survey (USGS) publications and USGS open-file reports related to this project. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis).

  10. Environmental protection in the Beatrice field development

    SciTech Connect (OSTI)

    Hay, J.T.C.; Hay, H.D.; Debnam, G.F.

    1982-01-01

    The development of the Beatrice field in the inner Moray Firth area of the UK North Sea has presented problems in the area of environmental protection. Because the field lies only 12 miles from a totally unspoiled coastline of very great scenic beauty and environmental quality, it was necessary, before field development approval could be obtained, to convince central government, local authorities, and various nature preservation bodies that an environmental protection plan could be developed. The plan, which covered the offshore field, pipeline and onshore terminal, consisted essentially of 3 main elements: (1) an environmental impact analysis was commissioned; (2) a plan was drawn up to deal with the prevention and control of spillages; and (3) a series of technical discussions took place with local and central government authorities.

  11. Soil gas survey in the geothermal area of Bolsena Lake (Vulsini Mts. , central Italy)

    SciTech Connect (OSTI)

    Corazza, E.; Magro, G.; Ceccarelli, A. ); Pieri, S.; Rossi, U. )

    1993-06-01

    A soil gas survey has been carried out in the Vulsini Mts. volcanic area, around Bolsena Lake, with the objective of testing the reliability of this geochemical method for geothermal exploration. The thermal gradients is high all over the area; the He/Ne ratio, and He, CO[sub 2], and H[sub 2] concentrations have been determined in 259 samples. Compared with its surroundings, this area exhibits an overall positive CO[sub 2] anomaly, but the distribution of diffusive gases (He and H[sub 2]) allows one to distinguish three different sectors around the lake: (1) a northern sector with high CO[sub 2], and H[sub 2]/CO[sub 2], He/CO[sub 2], and He/Ne ratios close to the background value; (2) a south-eastern sector, characterized by the presence of cold fumaroles, with high He, H[sub 2], CO[sub 2] and He/Ne, and generally low H[sub 2]/CO[sub 2] and He/CO[sub 2] spots. Permeability is assumed to the main factor controlling the differences between the above three sectors. In sector 1, the flysch (1 km thick) is intruded by a great number of sills and dikes, and the underlying limestones are completely metamorphosed into marbles; CO[sub 2] is the late stage of a heavy degassing process. Sector 2 includes several volcanic spatter cones along the tectonic trends; the high permeability allows the deep gases to be ducted with minor changes. Sector 3 is an elongated strip with an anti-Apennine trend; diffusion of H[sub 2] only is the result of the thick (>3 km) unaltered flysch cover. In sector 3 the underground outflow of the lake through shallow volcanics entrains large quantities of air and masks any deep gases; the few anomalous spots reproduce situations like that of sector 2. One of these spots is located near a producing well tapping the geothermal reservoir.

  12. Geothermal resource area 9: Nye County. Area development plan

    SciTech Connect (OSTI)

    Pugsley, M.

    1981-01-01

    Geothermal Resource area 9 encompasses all of Nye County, Nevada. Within this area there are many different known geothermal sites ranging in temperature from 70/sup 0/ to over 265/sup 0/ F. Fifteen of the more major sites have been selected for evaluation in this Area Development Plan. Various potential uses of the energy found at each of the resource sites discussed in this Area Development Plan were determined after evaluating the area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities, and comparing those with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 15 geothermal sites considered in this Area Development Plan are summarized.

  13. Volcanic lightning and plume behavior reveal evolving hazards during the April 2015 eruption of Calbuco Volcano, Chile

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Van Eaton, Alexa R.; Behnke, Sonja Ann; Amigo, Alvaro; Bertin, Daniel; Mastin, Larry G.; Giacosa, Raul E.; Gonzalez, Jeronimo; Valderrama, Oscar; Fontijn, Karen

    2016-04-12

    Soon after the onset of an eruption, model forecasts of ash dispersal are used to mitigate the hazards to aircraft, infrastructure, and communities downwind. However, it is a significant challenge to constrain the model inputs during an evolving eruption. Here we demonstrate that volcanic lightning may be used in tandem with satellite detection to recognize and quantify changes in eruption style and intensity. Using the eruption of Calbuco volcano in southern Chile on 22 and 23 April 2015, we investigate rates of umbrella cloud expansion from satellite observations, occurrence of lightning, and mapped characteristics of the fall deposits. Our remotemore » sensing analysis gives a total erupted volume that is within uncertainty of the mapped volume (0.56 ± 0.28 km3 bulk). Furthermore, observations and volcanic plume modeling further suggest that electrical activity was enhanced both by ice formation in the ash clouds >10 km above sea level and development of a low-level charge layer from ground-hugging currents.« less

  14. SSL Demonstration: Area Lighting, Yuma Sector Border Patrol Area, AZ

    SciTech Connect (OSTI)

    2015-05-28

    Along the Yuma Sector Border Patrol Area in Yuma, Arizona, the GATEWAY program conducted a trial demonstration in which the incumbent quartz metal halide area lighting was replaced with LED at three pole locations at the Yuma Sector Border Patrol Area in Yuma, Arizona. The retrofit was documented to better understand LED technology performance in high-temperature environments. This document is a summary brief of the Phase 1.0 and 1.1 reports previously published on this demonstration.

  15. ARM - Field Campaign - Surface Albedo IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    02.09 - 2004.02.13 Lead Scientist : Alexander Trishchenko For data sets, see below. Abstract Purpose of this field campaign was to collect surface albedo spectra for representative surface types in the ARM SGP CART site area, to gather information useful for conducting surface type classification from aerial/satellite remote sensing data, to develop the detailed spectral model of surface reflectance over the ARM SGP CART site area for conditions in winter time (February) Campaign Data Sets IOP

  16. Desert Peak Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Desert Peak Geothermal Area (Redirected from Desert Peak Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Desert Peak Geothermal Area Contents 1 Area Overview 2...

  17. PPPL Area Map | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL Area Map View Larger Map

  18. Property:GeothermalArea | Open Energy Information

    Open Energy Info (EERE)

    Area + Babadere Geothermal Project + Tuzla Geothermal Area + Bacman 1 GEPP + Bac-Man Laguna Geothermal Area + Bacman 2 GEPP + Bac-Man Laguna Geothermal Area + Bacman...

  19. Cove Fort Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Cove Fort Geothermal Area (Redirected from Cove Fort Geothermal Area - Vapor) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cove Fort Geothermal Area Contents 1 Area...

  20. Blue Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (Redirected from Blue Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Blue Mountain Geothermal Area Contents 1 Area...

  1. Stillwater Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Stillwater Geothermal Area (Redirected from Stillwater Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Stillwater Geothermal Area Contents 1 Area Overview 2...

  2. Chena Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Chena Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Chena Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1 Chena Area...

  3. Salton Sea Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Salton Sea Geothermal Area (Redirected from Salton Sea Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Salton Sea Geothermal Area Contents 1 Area Overview 2...

  4. Heber Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Heber Geothermal Area (Redirected from Heber Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Heber Geothermal Area Contents 1 Area Overview 2 History and...

  5. Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt and Subtle Volcanic Systems, Hawai’i and Maui

    SciTech Connect (OSTI)

    Fercho, Steven; Owens, Lara; Walsh, Patrick; Drakos, Peter; Martini, Brigette; Lewicki, Jennifer L.; Kennedy, Burton M.

    2015-08-01

    Suites of new geophysical and geochemical exploration surveys were conducted to provide evidence for geothermal resource at the Haleakala Southwest Rift Zone (HSWRZ) on Maui Island, Hawai’i. Ground-based gravity (~400 stations) coupled with heli-bourne magnetics (~1500 line kilometers) define both deep and shallow fractures/faults, while also delineating potentially widespread subsurface hydrothermal alteration on the lower flanks (below approximately 1800 feet a.s.l.). Multi-level, upward continuation calculations and 2-D gravity and magnetic modeling provide information on source depths, but lack of lithologic information leaves ambiguity in the estimates. Additionally, several well-defined gravity lows (possibly vent zones) lie coincident with magnetic highs suggesting the presence of dike intrusions at depth which may represent a potentially young source of heat. Soil CO2 fluxes were measured along transects across geophysically-defined faults and fractures as well as young cinder cones along the HSWRZ. This survey generally did not detect CO2 levels above background, with the exception of a weak anomalous flux signal over one young cinder cone. The general lack of observed CO2 flux signals on the HSWRZ is likely due to a combination of lower magmatic CO2 fluxes and relatively high biogenic surface CO2 fluxes which mix with the magmatic signal. Similar surveys at the Puna geothermal field on the Kilauea Lower East Rift Zone (KLERZ) also showed a lack of surface CO2 flux signals, however aqueous geochemistry indicated contribution of magmatic CO2 and He to shallow groundwater here. As magma has been intercepted in geothermal drilling at the Puna field, the lack of measured surface CO2 flux indicative of upflow of magmatic fluids here is likely due to effective “scrubbing” by high groundwater and a mature hydrothermal system. Dissolved inorganic carbon (DIC) concentrations, δ13C compositions and 3He/4He values were sampled at Maui from several shallow

  6. Fault Mapping At Coso Geothermal Area (1980) | Open Energy Information

    Open Energy Info (EERE)

    intrudes the crust in repsonse to lithospheric extension. References Duffield, W.A.; Bacon, C.R.; Dalrymple, G.B. (10 May 1980) Late Cenozoic volcanism, geochronology, and...

  7. Resistivity Log At Long Valley Caldera Geothermal Area (Nordquist...

    Open Energy Info (EERE)

    Volcanic Complex: A Preliminary Magnetotelluric and Magnetic Variation Interpretation Philip E. Wannamaker, P.M. Wright, Zhou Zi-xing, Li Xing-bin, Zhao Jing-xiang (1991)...

  8. Magnetotellurics At Long Valley Caldera Geothermal Area (Hermance...

    Open Energy Info (EERE)

    Volcanic Complex: A Preliminary Magnetotelluric and Magnetic Variation Interpretation Philip E. Wannamaker, P.M. Wright, Zhou Zi-xing, Li Xing-bin, Zhao Jing-xiang (1991)...

  9. Geological and geophysical studies of a geothermal area in the...

    Open Energy Info (EERE)

    geology; structure; surveys; tectonics; United States; volcanic rocks Authors Williams, P.L.; Mabey, D.R.; Pierce, K.L.; Zohdy, A.A.R.; Ackermann, H.; Hoover and D.B. Published U....

  10. Exploratory Well At Kilauea East Rift Geothermal Area (FURUMOTO...

    Open Energy Info (EERE)

    was right around sea level and the hot water layer was found to be very thin. High permeability due to cracks between successive volcanic flow layers was discovered. References...

  11. Radiometrics At Lightning Dock Geothermal Area (Deal, Et Al....

    Open Energy Info (EERE)

    G., Elston, W.E., Erb, E. E., Peterson, S. L., & Reiter, D. E. (1978) Cenozoic volcanic geology of the Basin and Range province in Hidalgo County, southwestern New Mexico...

  12. Nevada Field Office

    National Nuclear Security Administration (NNSA)

    field-items">
    field-item odd">