Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vision montreux energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Department of Energy Wind Vision: An Industry Preview | Department...  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Wind Vision: An Industry Preview Department of Energy Wind Vision: An Industry Preview The "Department of Energy Wind Vision: An Industry Preview,"...

2

Wind Vision | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows -Vision Wind Vision Addthis

3

Wind Vision | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows -Vision Wind Vision

4

Vision Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec do BrasilGmbH JumpVeronagest SAJVLtd JumpVision

5

Vision | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface. | EMSL Visible LightNORDUnet,1Mission »

6

Energy Vision | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro, California Zip: Energy Unlimited Energy

7

Solar Vision | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver PeakSystems Jump to:Jump to:Vision Jump to:

8

Montreux, Switzerland, 01-03 June 2005 Design Automation Challenges for Microfluidics-Based Biochips*  

E-Print Network [OSTI]

Montreux, Switzerland, 01-03 June 2005 Design Automation Challenges for Microfluidics, Durham, NC 27708 E-mail: {krish, fs}@ee.duke.edu Abstract Microfluidics-based biochips are soon expected are expected to increase dramatically. Current techniques for full-custom design of digital microfluidic

Chakrabarty, Krishnendu

9

Montreux, Switzerland, 01-03 June 2005 Reconfiguration Techniques for Digital Microfluidic Biochips*  

E-Print Network [OSTI]

Montreux, Switzerland, 01-03 June 2005 Reconfiguration Techniques for Digital Microfluidic Biochips, Durham, NC 27708 E-mail: {fs, krish}@ee.duke.edu Abstract As digital microfluidic biochips become performance parameter. The dynamic reconfigurability inherent in digital microfluidic biochips can be utilized

Chakrabarty, Krishnendu

10

Wind Vision | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-TypeWelcome toFarm Growth Through the

11

Accommodations for Vision Disabilities | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OF THE|Physical DisabilitiesVision

12

National Action Plan for Energy Efficiency Vision for 2025-A...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy. You have dialed into the DOE TAP Webcast titled National Action Plan For Energy Efficiency Vision for 2025, a Framework For Change. And we have Stacy Angel, who is the...

13

Vision Loss: Visual Impairment and Vision Impairment | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface. | EMSL Visible LightNORDUnet,

14

A Vision for Systems Engineering Applied to Wind Energy (Presentation)  

SciTech Connect (OSTI)

This presentation was given at the Third Wind Energy Systems Engineering Workshop on January 14, 2015. Topics covered include the importance of systems engineering, a vision for systems engineering as applied to wind energy, and application of systems engineering approaches to wind energy research and development.

Felker, F.; Dykes, K.

2015-01-01T23:59:59.000Z

15

Mission and Vision | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUAL REPORTMAMayCrossColorado | June 28,Mission and Vision

16

Energy Visions Prize | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The followingDirectLowDiscussion- Q & A HomeData JumpVisions

17

Wind Vision Testimonials (Text Version) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Vision Testimonials (Text Version) Wind Vision Testimonials (Text Version) Below is the text version for the Wind Vision Testimonials video. The video opens with the "Wind...

18

Keynote Address: Future Vision | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007 | Department7JanuaryWASTE-TO-ENERGY:About »KEY40PM

19

Department of Energy Releases Vision & Framework for the U.S...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Releases Vision & Framework for the U.S. Climate Change Technology Program Department of Energy Releases Vision & Framework for the U.S. Climate Change Technology Program August 5,...

20

A New Vision for United States Wind Power | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Information Resources A New Vision for United States Wind Power A New Vision for United States Wind Power In this video the Department of Energy reports preliminary findings of...

Note: This page contains sample records for the topic "vision montreux energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

HydroVision International | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi National AcceleratorMemorandaTammaraImage taken fromMission:July

22

Climate VISION: Events - Energy Efficient Homes Worksho  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, and technology for theAdvanced CleanEnergy

23

Wind Vision Testimonials | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows -

24

SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

an introduction to the SunShot Vision Study, produced by the Department of Energy's Solar Energy Technologies Program. The chapter begins by providing basic information about solar...

25

Wind Program: Wind Vision | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWindWind PowerWind

26

Wind Vision Presentation | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWindWind

27

Param Electro Vision | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County,PPPSolarParagon Airheater Technologies JumpOpenParam

28

ENERGY ISSUES WORKING GROUP ON LONG-TERM VISIONS FOR FUSION POWER  

E-Print Network [OSTI]

ENERGY ISSUES WORKING GROUP ON LONG-TERM VISIONS FOR FUSION POWER Don Steiner, Jeffrey Freidberg Farrokh Najmabadi William Nevins , and John Perkins The Energy Issues Working Group on Long-Term Visions energy production in the next century? 2. What is fusion's potential for penetrating the energy market

Najmabadi, Farrokh

29

Paducah Site End State Vision | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiativesNationalNuclearRocky Mountain OTCAnnualEnd State Vision Paducah

30

Encore Energy Systems formerly Energy Vision International formerly...  

Open Energy Info (EERE)

Oxford, Massachusetts Zip: 38655 Sector: Geothermal energy Product: Provider geothermal heat pumps primarily for heating and air conditioning. Coordinates: 43.781517,...

31

An energy vision: the transformation towards sustainability --interconnected challenges and solutions  

E-Print Network [OSTI]

(RCPs) [2 ], the International Energy Agency's World Energy Outlook [3,4 ], and several modeAn energy vision: the transformation towards sustainability -- interconnected challenges Nilsson8 and KR Smith9 The energy system is currently facing a number of challenges, most notably high

Silver, Whendee

32

NatSci 390IH Team-oriented Lab Discovery in Renewable Energy Course Vision  

E-Print Network [OSTI]

NatSci 390IH ­ Team-oriented Lab Discovery in Renewable Energy [iCons 3E] Syllabus 3/13/2012 Course Vision This course involves student-driven, team-oriented laboratory projects focused on the interrelated by society. The iCons Energy Laboratory encompasses a four-week "energy bootcamp" followed by two

Auerbach, Scott M.

33

Ambitious Vision Drives Oak Ridge's Progress | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access to OUOAlaska FeatureAllegationsAmbitious Vision

34

Vision for 2025: A Framework for Change | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.| Department ofEducationVirgin IslandsPlant's UraniumVision

35

Tribal Energy Program, Assisting Tribes to Realize Their Energy Visions (Brochure), Energy Efficiency & Renewable Energy (EERE)  

SciTech Connect (OSTI)

This 12-page brochure provides an overview of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy's Tribal Energy Program and describes the financial, technical, and educational assistance it provides to help tribes develop their renewable energy resources and reduce their energy consumption.

Not Available

2013-06-01T23:59:59.000Z

36

Energy Based Methods in Wind Turbine Control CeSOS Highlights and AMOS Visions  

E-Print Network [OSTI]

Energy Based Methods in Wind Turbine Control CeSOS Highlights and AMOS Visions Morten D. Pedersen 1 / 26 #12;This talk 1 Background 2 Understanding the Wind Turbine 3 Nonlinear Turbine Modeling 4;Background The Problem Previously stable wind turbine systems began exhibiting resonant behavior when put

Nørvåg, Kjetil

37

Wind Vision: Updating the DOE 20% Wind Energy by 2030 Report (Poster)  

SciTech Connect (OSTI)

The 20% Wind Energy by 2030 report was developed as part of the Advanced Energy Initiative. Published in 2008, the report was largely based on information collected and analyzed in 2006. Much has changed since then, including shifts in technology, markets, and policy. The industry needs a new, clear, vision for wind power that is shared among stakeholders from the U.S. government, industry, academia, and NGO communities. At WINDPOWER 2013, the U.S. Department of Energy, in partnership with the American Wind Energy Association and the Wind Energy Foundation, launched a project to update the 20% report with new objectives. This conference poster outlines the elements of the new Wind Vision.

Baring-Gould, E. I.

2014-04-01T23:59:59.000Z

38

DOE Releases Climate VISION Progress Report 2007 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department of Energy Secretary Steven Chuof Energy

39

Federal Employee Dental and Vision Plan (FEDVIP) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &ofDepartment of Energy OnDramatic energy8FEDLeft

40

Pump Systems Matter Mission and Vision | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | Department ofThatGrid3ofBuildingsEnergy PolicyPueblo

Note: This page contains sample records for the topic "vision montreux energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Technical Meeting: Buildings Interoperability Vision | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram (Alabama) ThisClimateAncillary Services Toheating

42

Department of Energy Wind Vision: An Industry Preview (Text Version...  

Broader source: Energy.gov (indexed) [DOE]

energy source, wind has already helped the nation reduce its greenhouse gas, water, and air pollution footprint from the power sector. The 96 million metric tons of avoided CO2...

43

Hydraulic Institute Mission and Vision | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable ProjectsHistory History On7,HowHowScience

44

Quadrennial Energy Review: Scope, Goals, Vision, Approach, Outreach |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | DepartmentLoans | Department of-

45

Department of Energy Wind Vision: An Industry Preview | Department of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINLNuclear262 2.272OrganizationEnergy

46

Climate Vision Progress Report 2007 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of4CenterPointChristinaClay SellClimate Preparedness

47

Proceedings of the Hydrogen Vision Meeting | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil'sof EnergyReserveDepartment of

48

Climate VISION: Private Sector Initiatives: Electric Power - Energy  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, andPlansResources andPlans Work

49

Climate VISION: Private Sector Initiatives: Lime - Energy Management  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links - TechnicalGHG

50

Vision of the Future Grid Workshop (November 2011) | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear GuideReportVictor Kane About Us VictorActionVision

51

Low Carbon Society Vision 2050: India | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJunoMedanos Energy Center LLC

52

NOVEL COMPOSITE MEMBRANES FOR HYDROGEN SEPARATION IN GASIFICATION PROCESSES IN VISION 21 ENERGY PLANTS  

SciTech Connect (OSTI)

This report describes the work performed, accomplishments and conclusion obtained from the project entitled ''Novel Composite Membranes for Hydrogen Separation in Gasification Processes in Vision 21 Energy Plants'' under the United States Department of Energy Contract DE-FC26-01NT40973. ITN Energy Systems was the prime contractor. Team members included: the Idaho National Engineering and Environmental Laboratory; Nexant Consulting; Argonne National Laboratory and Praxair. The objective of the program was to develop a novel composite membrane structure for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The separation technology module is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of the proposed technology will benefit the deployment of ''Vision 21'' fossil fuel plant processes by improving the energy efficiency, flexibility and environmental performance of these plants. Of particular importance is that this technology will also produce a stream of pure carbon dioxide. This allows facile sequestration or other use of this greenhouse gas. These features will benefit the U.S. in allowing for the continued use of domestic fossil fuels in a more energy efficient and environmentally acceptable manner. The program developed and evaluated composite membranes and catalysts for hydrogen separation. Components of the monolithic modules were fabricated by plasma spray processing. The engineering and economic characteristics of the proposed Ion Conducting Ceramic Membrane (ICCM) approach, including system integration issues, were also assessed. This resulted in a comprehensive evaluation of the technical and economic feasibility of integration schemes of ICCM hydrogen separation technology within Vision 21 fossil fuel plants. Several results and conclusion were obtained during this program. In the area of materials synthesis, novel pyrochlore-based proton conductors were identified, synthesized and characterized. They exhibited conductivity as high as 0.03 S/cm at 900 C. Long-term stability under CO{sub 2} and H{sub 2} atmospheres was also demonstrated. In the area of membrane fabrication by plasma spray processing, the initial results showed that the pyrochlore materials could be processed in a spray torch. Although leak-tight membranes were obtained, cracking, most likely due to differences in thermal expansion, remained a problem. More modeling and experimental work can be used to solve this problem. Finally the techno-economic analyses showed that the ITN ICCM approach for separating H{sub 2} is comparable to conventional pressure swing adsorption (PSA) technology in efficiency and economics. Enhanced membrane flux and lower operating temperatures may make the ICCM approach superior to PSA.

Michael Schwartz

2004-12-01T23:59:59.000Z

53

Vision of the Future Grid | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface. | EMSL Visible LightNORDUnet,1

54

An Earth-Friendly Wind Vision | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe OfficeUtility Fed.9-0s) AllMarch/April 2015 EERE's internalDepartment

55

SunShot Vision Study | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment of EnergyServicesSteven ChalkSuccessSunShotSoft

56

VISION Model for Vehicle Technologies and Alternative Fuels | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401UpsonUtah StateLoadingGrantEnergy

57

A New Vision for United States Hydropower | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β-ResearchNew Method andA NewAA NewA New

58

Petroleum Reserves Vision, Mission and Goals | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven AshbyDepartmentPersonnelAdams5 Entire .

59

Vision 2020: Lighting Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City,Division of Oil and GasRules,Energy IncRoadmap

60

SunShot Vision Study | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSiteDepartmentChallenge |Inspires Solar EnergySunShotto be

Note: This page contains sample records for the topic "vision montreux energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Webinar: Connected Buildings Interoperability Vision | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research PetroleumDepartment ofPanel DiscussionDepartmentBelow you can2012)May 7,0,

62

Energy-Efficient Management of Data Center Resources for Cloud Computing: A Vision, Architectural Elements, and Open Challenges  

E-Print Network [OSTI]

1 Energy-Efficient Management of Data Center Resources for Cloud Computing: A Vision, Architectural, challenges, and architectural elements for energy-efficient management of Cloud computing environments. We) architectural principles for energy-efficient management of Clouds; (b) energy-efficient resource allocation

Melbourne, University of

63

Novel Composite Membranes for Hydrogen Separation in Gasification Processes in Vision 21 Energy Plants  

SciTech Connect (OSTI)

ITN Energy Systems, Inc. (ITN) and its partners, the Idaho National Engineering and Environmental Laboratory, Argonne National Laboratory, Nexant Consulting, LLC and Praxair, Inc. are developing composite membranes for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The ITN team is pursuing a novel approach to hydrogen separation membrane technology where fundamental engineering material development is fully integrated into module fabrication designs; combining functionally-graded materials, monolithic module concept and thermal spray manufacturing techniques. The technology is based on the use of Ion Conducting Ceramic Membranes (ICCM) for the selective transport of hydrogen. The membranes are comprised of composites consisting of a proton conducting ceramic and a second metallic phase to promote electrical conductivity. Functional grading of the membrane components allows for the fabrication of individual membrane layers of different materials, microstructures and functions directly into a monolithic module. Plasma spray techniques, common in industrial manufacturing, are well suited for fabricating ICCM hydrogen separation modules inexpensively, yielding compact membrane modules that are amenable to large scale, continuous manufacturing techniques with low costs. The engineering and economic characteristics of the proposed ICCM approach, including system integration issues, are being assessed. This will result in an evaluation of the technical and economic feasibility of the proposed ICCM hydrogen separation approach for implementation within the ''Vision 21'' fossil fuel plant. The ICCM hydrogen separation technology is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of the proposed technology will benefit the deployment of ''Vision 21'' fossil fuel plant processes by improving the energy efficiency, flexibility and environmental performance of such plants. Of particular importance is that the proposed technology also results in a stream of pure carbon dioxide. This allows for the facile sequestration or other use of this greenhouse gas. These features will benefit the U.S. in allowing for the continued use of domestic fossil fuels in a more energy efficient and environmentally acceptable manner.

Schwartz, Michael

2001-11-06T23:59:59.000Z

64

NOVEL COMPOSITE MEMBRANES FOR HYDROGEN SEPARATION IN GASIFICATION PROCESSES IN VISION 21 ENERGY PLANTS  

SciTech Connect (OSTI)

ITN Energy Systems, along with its team members, the Idaho National Engineering and Environmental Laboratory, Nexant Consulting, Argonne National Laboratory and Praxair, propose to develop a novel composite membrane structure for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The ITN team is taking a novel approach to hydrogen separation membrane technology where fundamental engineering material development is fully integrated into fabrication designs; combining functionally graded materials, monolithic module concept and plasma spray manufacturing techniques. The technology is based on the use of Ion Conducting Ceramic Membranes (ICCM) for the selective transport of hydrogen. The membranes are comprised of composites consisting of a proton conducting ceramic and a second metallic phase to promote electrical conductivity. Functional grading of the membrane components allows the fabrication of individual membrane layers of different materials, microstructures and functions directly into a monolithic module. Plasma spray techniques, common in industrial manufacturing, are well suited for fabricating ICCM hydrogen separation modules inexpensively, yielding compact membrane modules that are amenable to large scale, continuous manufacturing with low costs. This program will develop and evaluate composite membranes and catalysts for hydrogen separation. Components of the monolithic modules will be fabricated by plasma spray processing. The engineering and economic characteristics of the proposed ICCM approach, including system integration issues, will also be assessed. This will result in a complete evaluation of the technical and economic feasibility of ICCM hydrogen separation for implementation within the ''Vision 21'' fossil fuel plant. The ICCM hydrogen separation technology is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of the proposed technology will benefit the deployment of ''Vision 21'' fossil fuel plant processes by improving the energy efficiency, flexibility and environmental performance of these plants. Of particular importance is that this technology will also produce a stream of pure carbon dioxide. This allows facile sequestration or other use of this greenhouse gas. These features will benefit the U.S. in allowing for the continued use of domestic fossil fuels in a more energy efficient and environmentally acceptable manner.

Michael Schwartz

2003-10-01T23:59:59.000Z

65

NOVEL COMPOSITE MEMBRANES FOR HYDROGEN SEPARATION IN GASIFICATION PROCESSES IN VISION 21 ENERGY PLANTS  

SciTech Connect (OSTI)

ITN Energy Systems, along with its team members, the Idaho National Engineering and Environmental Laboratory, Nexant Consulting, Argonne National Laboratory and Praxair, propose to develop a novel composite membrane structure for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The ITN team is taking a novel approach to hydrogen separation membrane technology where fundamental engineering material development is fully integrated into fabrication designs; combining functionally graded materials, monolithic module concept and plasma spray manufacturing techniques. The technology is based on the use of Ion Conducting Ceramic Membranes (ICCM) for the selective transport of hydrogen. The membranes are comprised of composites consisting of a proton conducting ceramic and a second metallic phase to promote electrical conductivity. Functional grading of the membrane components allows the fabrication of individual membrane layers of different materials, microstructures and functions directly into a monolithic module. Plasma spray techniques, common in industrial manufacturing, are well suited for fabricating ICCM hydrogen separation modules inexpensively, yielding compact membrane modules that are amenable to large scale, continuous manufacturing with low costs. This program will develop and evaluate composite membranes and catalysts for hydrogen separation. Components of the monolithic modules will be fabricated by plasma spray processing. The engineering and economic characteristics of the proposed ICCM approach, including system integration issues, will also be assessed. This will result in a complete evaluation of the technical and economic feasibility of ICCM hydrogen separation for implementation within the ''Vision 21'' fossil fuel plant. The ICCM hydrogen separation technology is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of the proposed technology will benefit the deployment of ''Vision 21'' fossil fuel plant processes by improving the energy efficiency, flexibility and environmental performance of these plants. Of particular importance is that this technology will also produce a stream of pure carbon dioxide. This allows facile sequestration or other use of this greenhouse gas. These features will benefit the U.S. in allowing for the continued use of domestic fossil fuels in a more energy efficient and environmentally acceptable manner.

Michael Schwartz

2003-07-01T23:59:59.000Z

66

NOVEL COMPOSITE MEMBRANES FOR HYDROGEN SEPARATION IN GASIFICATION PROCESSES IN VISION 21 ENERGY PLANTS  

SciTech Connect (OSTI)

ITN Energy Systems, along with its team members, the Idaho National Engineering and Environmental Laboratory, Nexant Consulting, Argonne National Laboratory and Praxair, propose to develop a novel composite membrane structure for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The ITN team is taking a novel approach to hydrogen separation membrane technology where fundamental engineering material development is fully integrated into fabrication designs; combining functionally graded materials, monolithic module concept and plasma spray manufacturing techniques. The technology is based on the use of Ion Conducting Ceramic Membranes (ICCM) for the selective transport of hydrogen. The membranes are comprised of composites consisting of a proton conducting ceramic and a second metallic phase to promote electrical conductivity. Functional grading of the membrane components allows the fabrication of individual membrane layers of different materials, microstructures and functions directly into a monolithic module. Plasma spray techniques, common in industrial manufacturing, are well suited for fabricating ICCM hydrogen separation modules inexpensively, yielding compact membrane modules that are amenable to large scale, continuous manufacturing with low costs. This program will develop and evaluate composite membranes and catalysts for hydrogen separation. Components of the monolithic modules will be fabricated by plasma spray processing. The engineering and economic characteristics of the proposed ICCM approach, including system integration issues, will also be assessed. This will result in a complete evaluation of the technical and economic feasibility of ICCM hydrogen separation for implementation within the ''Vision 21'' fossil fuel plant. The ICCM hydrogen separation technology is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of the proposed technology will benefit the deployment of ''Vision 21'' fossil fuel plant processes by improving the energy efficiency, flexibility and environmental performance of these plants. Of particular importance is that this technology will also produce a stream of pure carbon dioxide. This allows facile sequestration or other use of this greenhouse gas. These features will benefit the U.S. in allowing for the continued use of domestic fossil fuels in a more energy efficient and environmentally acceptable manner.

Michael Schwartz

2004-01-01T23:59:59.000Z

67

Solar Energy A Viable Contributor to Renewables in This vision document has been designed to catalyse engagement and discussion with key  

E-Print Network [OSTI]

Solar Energy ­ A Viable Contributor to Renewables in Scotland This vision document has been in Scotland. #12;Solar Energy ­ A Viable Contributor to Renewables in Scotland _______________________________________________________________________ Executive Summary This document sets out a vision for solar energy in Scotland and is designed to encourage

Painter, Kevin

68

Wind Vision: Continuing the Success of Wind Energy | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment ofCareersWind Vision: Continuing the Success of Wind

69

Vision Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlongUpdatesValley winsVideo History Fusion1.1 The2Vision

70

SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

Four of the SunShot Vision Study evaluates the current price and performance of photovoltaic technologies. Price projections representing incrementalevolutionary improvements in...

71

Renewable Energy 2030 Experts'Visions 25th Anniversary of the Postgraduate Programme Renewable Energy (PPRE)  

E-Print Network [OSTI]

SPEECHES A14 - Auditorium Joachim Luther,"Solar Energy - State of the Art" Former Head of Fraunhofer Institute for Solar Energy Systems, Freiburg (ISE, 1993 - 2006) Daniel Kammen,"Science,Technology and Policy & INTRODUCTION TO THE SESSIONS A14 - Auditorium Anil Kumar Misra, Indo-German Energy Programme, GIZ, India 9

Peinke, Joachim

72

Energy-Efficient Management of Data Center Resources for Cloud Computing: A Vision, Architectural Elements, and Open Challenges  

E-Print Network [OSTI]

Cloud computing is offering utility-oriented IT services to users worldwide. Based on a pay-as-you-go model, it enables hosting of pervasive applications from consumer, scientific, and business domains. However, data centers hosting Cloud applications consume huge amounts of energy, contributing to high operational costs and carbon footprints to the environment. Therefore, we need Green Cloud computing solutions that can not only save energy for the environment but also reduce operational costs. This paper presents vision, challenges, and architectural elements for energy-efficient management of Cloud computing environments. We focus on the development of dynamic resource provisioning and allocation algorithms that consider the synergy between various data center infrastructures (i.e., the hardware, power units, cooling and software), and holistically work to boost data center energy efficiency and performance. In particular, this paper proposes (a) architectural principles for energy-efficient management of ...

Buyya, Rajkumar; Abawajy, Jemal

2010-01-01T23:59:59.000Z

73

In Press: Journal of Rail and Rapid Transit Machine vision analysis of the energy efficiency  

E-Print Network [OSTI]

, recover kinetic energy of moving trains, energy efficient design of railway vehicles, more efficient

Barkan, Christopher P.L.

74

Machine vision analysis of the energy efficiency of intermodal freight trains  

E-Print Network [OSTI]

, and M P Stehly of moving trains, energy efficient design of railway vehicles, more efficient operations

Ahuja, Narendra

75

SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

current and emerging financial structures and incentives that could help stimulate solar energy growth, especially in the pre-2020 transition period. 47927chapter8.pdf More...

76

SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

including lessons learned in this and other studies to maximize the role of solar energy and minimize integration costs. Finally, it highlights the importance of developing...

77

SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of the SunShot scenario's projected solar deployment, including electric-sector costs, carbon emissions, and solar energy sector employment. 47927chapter3.pdf More Documents &...

78

National Action Plan for Energy Efficiency Vision for 2025: A Framework for Change  

Broader source: Energy.gov [DOE]

This presentation, given through the DOE's Technical Assitance Program (TAP), addresses the National Action Plan for Energy Efficiency. This webinar is part of a 7-part series created for 5 states (Kentucky, Mississippi, Texas, Puerto Rico, and Alaska) with a cooperative agreement and funding under the State Energy Program with DOE.

79

Working Groups Collaborate on U.S. Virgin Islands Clean Energy Vision and  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | DepartmentDeborahTanzimaJuly 30,Workforce

80

TECHNOLOGY VISION 2020: The U.S. Chemical Industry | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClient update resolve008 HighDepartmentTopic

Note: This page contains sample records for the topic "vision montreux energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Wind Vision: New Report Highlights a Robust Wind Energy Future | Department  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-TypeWelcome toFarm Growth Through theof

82

SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency &  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1 Special Report:Step bySubsidyNovemberRenewable Energy

83

SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency &  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1 Special Report:StepRenewable Energy (EERE) | Department of

84

SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency &  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1 Special Report:StepRenewable Energy (EERE) | Department

85

SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency &  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1 Special Report:StepRenewable Energy (EERE) |

86

SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency &  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1 Special Report:StepRenewable Energy (EERE) |Renewable

87

Energy Department Co-Hosts Workshops to Develop an Industry-Driven Vision  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusiness Competition |Storage Technologies in FueltoTrainof the

88

Vision, Leadership and Commitment...  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear GuideReportVictor Kane About Us VictorActionVisionV

89

CESP Tool 3.1: Vision Development Worksheet | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment of Energy BuildingsBuriedJune 28, 2011.0.2: Value2:3:3.1:

90

Fact Sheet -- Climate VISION 02-12-031.doc | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFYOxide EmissionEconomyEnergyShare in JustSheet

91

Forging the way with vision and foresight | OSTI, US Dept of Energy, Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note: Since theNationalSites Meetings,Frontiers inof

92

Department of Energy Releases Vision & Framework for the U.S. Climate  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealing WithDevelopment ofNoPreparesReportChange Technology

93

U.S. Virgin Islands Leadership Embraces Inclusiveness to Ensure Community Ownership of Clean Energy Vision  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept. of Energy, Office ofNuclear WeaponstoU.S.0: Committing to

94

SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency & Renewable Energy (EERE)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSiteDepartmentChallenge |Inspires Solar EnergySunShotto be11 Appendix

95

SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency & Renewable Energy (EERE)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSiteDepartmentChallenge |Inspires Solar EnergySunShotto be11

96

SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency & Renewable Energy (EERE)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSiteDepartmentChallenge |Inspires Solar EnergySunShotto be115 2.

97

SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency & Renewable Energy (EERE)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSiteDepartmentChallenge |Inspires Solar EnergySunShotto be115 2.41 3.

98

SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency & Renewable Energy (EERE)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSiteDepartmentChallenge |Inspires Solar EnergySunShotto be115 2.41

99

SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency & Renewable Energy (EERE)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSiteDepartmentChallenge |Inspires Solar EnergySunShotto be115 2.4197

100

SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency & Renewable Energy (EERE)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSiteDepartmentChallenge |Inspires Solar EnergySunShotto be115 2.4197

Note: This page contains sample records for the topic "vision montreux energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency & Renewable Energy (EERE)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSiteDepartmentChallenge |Inspires Solar EnergySunShotto be115

102

SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency & Renewable Energy (EERE)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSiteDepartmentChallenge |Inspires Solar EnergySunShotto be11593 8.

103

SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency & Renewable Energy (EERE)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSiteDepartmentChallenge |Inspires Solar EnergySunShotto be11593 8.xix

104

Mission, Vision, Values  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & Fuel Cells SystemMission, Vision, Values

105

From Proceedings from the Workshop on Motion: Representation and Analysis (pp. 151-155), Charleston, SC, May 7-9 (1986). The extraction of Spatio-temporal Energy in Human and Machine Vision  

E-Print Network [OSTI]

systems. Spatio-temporal energy analysis is a useful tool for understanding and developing motion systemsFrom Proceedings from the Workshop on Motion: Representation and Analysis (pp. 151-155), Charleston, SC, May 7-9 (1986). The extraction of Spatio-temporal Energy in Human and Machine Vision Edward H

Adelson, Edward

106

Published by ORNL's Energy Efficiency and Renewable Energy Program (www.ornl.gov/Energy_Eff) No. 1 2001 This is DOE's vision for the year  

E-Print Network [OSTI]

Published by ORNL's Energy Efficiency and Renewable Energy Program (www.ornl.gov/Energy_Eff) No. 1 be owned and operated by businesses and individuals. They can incorporate a range of renewable energy efficient and reliable energy system in the world by maximizing the use of affordable distributed energy

Pennycook, Steve

107

WINDExchange Webinar: The DOE Wind Vision  

Broader source: Energy.gov [DOE]

DOE's WINDExchange initiative will host a webinar presenting the Wind Program's Wind Vision, an effort to update and expand the 2008 DOE 20% Wind Energy by 2030 report. Given the huge changes...

108

3D Computer Vision and Video Computing 3D Vision3D Vision  

E-Print Network [OSTI]

3D Computer Vision and Video Computing 3D Vision3D Vision CSC I6716 Fall 2010 Topic 1 of Part II Camera Models Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu #12;3D Computer Vision and Video Computing 3D Vision3D Vision Closely Related Disciplines Image Processing ­ images to mages Computer

Zhu, Zhigang

109

3D Computer Vision and Video Computing 3D Vision3D Vision  

E-Print Network [OSTI]

1 3D Computer Vision and Video Computing 3D Vision3D Vision Topic 1 of Part II Camera Models CSC I6716 Spring2011 Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu 3D Computer Vision and Video Computing 3D Vision3D Vision Closely Related Disciplines Image Processing ­ images to mages Computer

Zhu, Zhigang

110

Buildings-to-Grid Technical Opportunities: Introduction and Vision...  

Broader source: Energy.gov (indexed) [DOE]

operators, and playing an essential role in enabling a more efficient, green, and secure energy system. Buildings-to-Grid Technical Opportunities: Introduction and Vision More...

111

Microsoft Word - Whitepaper_The Modern Grid Vision_APPROVED_2009...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Vision for the Smart Grid The Modern Grid Strategy A VISION FOR THE SMART GRID Developed for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability...

112

Idaho National Laboratory Small Business Program Vision & Opportunity  

E-Print Network [OSTI]

­ Focus on the Mission GNEP ­ Global Nuclear Energy Partnership Generation IV Nuclear Energy Systems Studies Nuclear Programs Energy Security Global Security Homeland Security National Defense A leader · Idaho National Laboratory ­ Overview and Vision ­ Primary Programs · INL Small Business Program ­ Vision

113

Our Vision  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat CornellInternships,(SC)Organization Ames Laboratory

114

LANL Vision  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs & GraduatesReducing Select Start DateLANLCode

115

BPA Vision  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I. Ben-Zvi, P. Study of SmartRates4 [BPA

116

BLUE VIEW VISION INSIGHT! Good news--your vision plan  

E-Print Network [OSTI]

WELCOME TO BLUE VIEW VISION INSIGHT! Good news--your vision plan is flexible and easy to use, your discounts, and much more! Blue View Vision InsightSM University of California Student Health Insurance Plan (UC SHIP) 2013/14 Your Blue View Vision Insight Network Blue View Vision Insight offers you

California at Santa Cruz, University of

117

BLUE VIEW VISION INSIGHT! Good news--your vision plan  

E-Print Network [OSTI]

WELCOME TO BLUE VIEW VISION INSIGHT! Good news--your vision plan is flexible and easy to use, your discounts, and much more! Blue View Vision InsightSM University of California Student Health Insurance Plan (UC SHIP) 2012/13 Your Blue View Vision Insight Network Blue View Vision Insight offers you

Barrett, Jeffrey A.

118

Comparison of Bottom-Up and Top-Down Forecasts: Vision Industry Energy Forecasts with ITEMS and NEMS  

E-Print Network [OSTI]

Comparisons are made of energy forecasts using results from the Industrial module of the National Energy Modeling System (NEMS) and an industrial economic-engineering model called the Industrial Technology and Energy Modeling System (ITEMS), a model...

Roop, J. M.; Dahowski, R. T

119

3D Computer Vision and Video Computing 3D Vision3D Vision  

E-Print Network [OSTI]

1 3D Computer Vision and Video Computing 3D Vision3D Vision CSc I6716 Fall 2010 Topic 3 of Part II Stereo Vision Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu 3D Computer Vision and Video Computing Stereo VisionStereo Vision Problem Infer 3D structure of a scene from two or more images taken

Zhu, Zhigang

120

3D Computer Vision and Video Computing 3D Vision3D Vision  

E-Print Network [OSTI]

1 3D Computer Vision and Video Computing 3D Vision3D Vision CSc I6716 Spring 2011 Topic 3 of Part II Stereo Vision p g Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu 3D Computer Vision and Video Computing Stereo VisionStereo Vision Problem Infer 3D structure of a scene from two or more images

Zhu, Zhigang

Note: This page contains sample records for the topic "vision montreux energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Making Computer Vision Computationally Efficient  

E-Print Network [OSTI]

Workloads 4 Parallelizing Computer Vision 4.1 Numerical9.1.1 Pattern analysis of computer vision workloads 9.1.23 Understanding Computer Vision 3.1 Patterns and

Sundaram, Narayanan

2012-01-01T23:59:59.000Z

122

NPP's Role in BSA Vision and Plans  

E-Print Network [OSTI]

­ Distinguished Core universities: Columbia, Cornell, Harvard, MIT, Princeton, and Yale Impressive track record impact on DOE's mission Deep, proven and passionate management team, committed to the vision, to BNL; and accelerates DOE's mission in high energy physics, applied energy sciences, environmental/biological sciences

123

Information architecture. Volume 4: Vision  

SciTech Connect (OSTI)

The Vision document marks the transition from definition to implementation of the Department of Energy (DOE) Information Architecture Program. A description of the possibilities for the future, supported by actual experience with a process model and tool set, points toward implementation options. The directions for future information technology investments are discussed. Practical examples of how technology answers the business and information needs of the organization through coordinated and meshed data, applications, and technology architectures are related. This document is the fourth and final volume in the planned series for defining and exhibiting the DOE information architecture. The targeted scope of this document includes DOE Program Offices, field sites, contractor-operated facilities, and laboratories. This document paints a picture of how, over the next 7 years, technology may be implemented, dramatically improving the ways business is conducted at DOE. While technology is mentioned throughout this document, the vision is not about technology. The vision concerns the transition afforded by technology and the process steps to be completed to ensure alignment with business needs. This goal can be met if those directing the changing business and mission-support processes understand the capabilities afforded by architectural processes.

NONE

1998-03-01T23:59:59.000Z

124

VISION 21 SYSTEMS ANALYSIS METHODOLOGIES  

SciTech Connect (OSTI)

Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into power plant systems that meet performance and emission goals of the Vision 21 program. The study efforts have narrowed down the myriad of fuel processing, power generation, and emission control technologies to selected scenarios that identify those combinations having the potential to achieve the Vision 21 program goals of high efficiency and minimized environmental impact while using fossil fuels. The technology levels considered are based on projected technical and manufacturing advances being made in industry and on advances identified in current and future government supported research. Included in these advanced systems are solid oxide fuel cells and advanced cycle gas turbines. The results of this investigation will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

G.S. Samuelsen; A. Rao; F. Robson; B. Washom

2003-08-11T23:59:59.000Z

125

Vision 2020 |LSU Residential Colleges Program Vision 2020  

E-Print Network [OSTI]

Vision 2020 |LSU Residential Colleges Program Vision 2020 Residential Colleges Program Department of Residential Life Louisiana State University Strategic Plan 24 November 2011 Robert V. Rohli Faculty Director #12;Vision 2020 | LSU Residential Colleges Program 11.24.2011 Page | - 2 - Mission Statement MISSION

Harms, Kyle E.

126

National Hydrogen Vision Meeting Proceedings  

Fuel Cell Technologies Publication and Product Library (EERE)

This document provides presentations and summaries of the notes from the National Hydrogen Vision Meeting''s facilitated breakout sessions. The Vision Meeting, which took place November 15-16, 2001, k

127

Overview of NETL In-House Vision 21 Activities  

SciTech Connect (OSTI)

The Office of Science and Technology at the National Energy Technology Laboratory, conducts research in support of Department of Energy's Fossil Energy Program. The research is funded through a variety of programs with each program focusing on a particular aspect of fossil energy. Since the Vision 21 Concept is based on the Advanced Power System Programs (Integrated Gasification Combined Cycle, Pressurized Fluid Bed, HIPPS, Advanced Turbine Systems, and Fuel Cells) it is not surprising that much of the research supports the Vision 21 Concept. The research is classified and presented according to ''enabling technologies'' and ''supporting technologies'' as defined by the Vision 21 Program. Enabling technology include fuel flexible gasification, fuel flexible combustion, hydrogen separation from fuel gas, advanced combustion systems, circulating fluid bed technology, and fuel cells. Supporting technologies include development of advanced materials, computer simulations, computation al fluid dynamics modeling, and advanced environmental control. An overview of Vision 21 related research is described, emphasizing recent accomplishments and capabilities.

Wildman, David J.

2001-11-06T23:59:59.000Z

128

VISIONS FOR A SUSTAINABLE  

E-Print Network [OSTI]

THE VISIONS FOR A SUSTAINABLE GEORGETOWN INITIATIVE study with recommendations for a campus climate action plan prepared for the Hoyas Roundtable on Sustainability MARCH 15, 2012 THE HOYA ROUNDTABLE SERIES: SPOTLIGHT ON SUSTAINABILITY GEORGETOWN SUSTAINABILITY #12;Georgetown University is taking major steps toward

Riesenhuber, Maximilian

129

Organizational Beliefs and Managerial Vision  

E-Print Network [OSTI]

This paper studies, in a world with differing priors, the role of organizational beliefs and managerial vision in the behavior and performance of corporations.

Van den Steen, Eric

2003-03-28T23:59:59.000Z

130

ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Aluminum Industry Vision: Sustainable Solutions for a Dynamic World ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic World alumvision.pdf More Documents...

131

Computer vision techniques for underwater navigation  

E-Print Network [OSTI]

DCS) Chapter 2 Computer Vision . . 2.1 Labeling . . . . 2.2OF CALIFORNIA, SAN DIEGO Computer Vision Techniques fordegree Master of Science in Computer Science by Christopher

Barngrover, Christopher M.

2010-01-01T23:59:59.000Z

132

2020 Vision Project Summary  

SciTech Connect (OSTI)

Since the 2020 Vision project began in 1996, students from participating schools have completed and submitted a variety of scenarios describing potential world and regional conditions in the year 2020 and their possible effect on US national security. This report summarizes the students' views and describes trends observed over the course of the 2020 Vision project's five years. It also highlights the main organizational features of the project. An analysis of thematic trends among the scenarios showed interesting shifts in students' thinking, particularly in their views of computer technology, US relations with China, and globalization. In 1996, most students perceived computer technology as highly beneficial to society, but as the year 2000 approached, this technology was viewed with fear and suspicion, even personified as a malicious, uncontrollable being. Yet, after New Year's passed with little disruption, students generally again perceived computer technology as beneficial. Also in 1996, students tended to see US relations with China as potentially positive, with economic interaction proving favorable to both countries. By 2000, this view had transformed into a perception of China emerging as the US' main rival and ''enemy'' in the global geopolitical realm. Regarding globalization, students in the first two years of the project tended to perceive world events as dependent on US action. However, by the end of the project, they saw the US as having little control over world events and therefore, we Americans would need to cooperate and compromise with other nations in order to maintain our own well-being.

Gordon, K.W.; Scott, K.P.

2000-11-01T23:59:59.000Z

133

Python and computer vision  

SciTech Connect (OSTI)

This paper discusses the use of Python in a computer vision (CV) project. We begin by providing background information on the specific approach to CV employed by the project. This includes a brief discussion of Constrained Delaunay Triangulation (CDT), the Chordal Axis Transform (CAT), shape feature extraction and syntactic characterization, and normalization of strings representing objects. (The terms 'object' and 'blob' are used interchangeably, both referring to an entity extracted from an image.) The rest of the paper focuses on the use of Python in three critical areas: (1) interactions with a MySQL database, (2) rapid prototyping of algorithms, and (3) gluing together all components of the project including existing C and C++ modules. For (l), we provide a schema definition and discuss how the various tables interact to represent objects in the database as tree structures. (2) focuses on an algorithm to create a hierarchical representation of an object, given its string representation, and an algorithm to match unknown objects against objects in a database. And finally, (3) discusses the use of Boost Python to interact with the pre-existing C and C++ code that creates the CDTs and CATS, performs shape feature extraction and syntactic characterization, and normalizes object strings. The paper concludes with a vision of the future use of Python for the CV project.

Doak, J. E. (Justin E.); Prasad, Lakshman

2002-01-01T23:59:59.000Z

134

Digital Object Identifier (DOI) 10.1007/s00138-004-0147-4 Machine Vision and Applications (2004) 16: 2732 Machine Vision and  

E-Print Network [OSTI]

, and it suggests that brain imaging data should be used to build cognitive models of the human visual system vision ­ Appearance-based vision 1 Introduction In the introduction to his book, David Marr argued of neurons. This is akin to measuring the pressure of a gas rather than the energy of in- dividual molecules

Baek, Kyungim

135

Energy Vision International Florida | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It isInformation Contracts (ESPC) Webinar Jump to:S ADataTrust

136

Vision North Texas  

E-Print Network [OSTI]

, 2011 ? ? FW D 16 County Region for Vision North Texas 5.3M people in 2000; 6.5M in 2010; 9.5M in 2030; 11.7M in 2050 ESL-KT-11-11-18 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 ESL-KT-11-11-18 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 ESL-KT-11..., Dallas, Texas, Nov. 7 ? 9, 2011 ESL-KT-11-11-18 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 ESL-KT-11-11-18 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 2030 ?Business as usual? households/acre ESL-KT-11-11-18 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011...

Walz, K.

2011-01-01T23:59:59.000Z

137

Vision Industries dba Vision Motor Corp | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UCOpenVerona,HamptonVinland,InformationVirydFL LLC Jump

138

Collaborative vision, saving sight | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities ofCellulosic FeedstockCollaborative vision, saving

139

New Vision front  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2EnergyDepartment of Energy Vehicle FuelGRID

140

In "Handbook of Mathematical Models in Computer Vision", Springer, 2006 p.1 Graph Cuts in Vision and Graphics  

E-Print Network [OSTI]

and Graphics: Theories and Applications Yuri Boykov and Olga Veksler Computer Science, The University the corresponding graph. Thus, many applications in vision and graphics use min-cut algorithms as a tool for computing optimal hypersurfaces. Secondly, graph-cuts also work as a powerful energy minimization tool

Boykov, Yuri

Note: This page contains sample records for the topic "vision montreux energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ITP Chemicals: Vision 2020 Technology Roadmap for Combinatroial...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vision 2020 Technology Roadmap for Combinatroial Methods; September 2001 ITP Chemicals: Vision 2020 Technology Roadmap for Combinatroial Methods; September 2001...

142

Draft Industry Preview- Wind Vision Brochure  

Broader source: Energy.gov [DOE]

This brochure contains highlights from DOEs Wind Vision study. Facts, figures, and projections are subject to change pending the release of the full Wind Vision report in early 2015.

143

Nepal 2030: A Vision for Peaceful and Prosperous Nation [Nepal 2030: A Vision for  

E-Print Network [OSTI]

1 Nepal 2030: A Vision for Peaceful and Prosperous Nation #12;[Nepal 2030: A Vision for Peaceful (eds.). 2012. Nepal 2030: A Vision for Peaceful and Prosperous Nation. Kathmandu: South Asia Regional;The editors of the book Nepal 2030: A Vision for PeacefulandProsperousNationacknowledgesupport from

Richner, Heinz

144

Climate VISION: Contact Us  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart ofMeasuring DopamineEnergy,6. Radiative Forcing of ClimateCONTACT US

145

Climate VISION: News  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart ofMeasuring DopamineEnergy,6. Radiative Forcing of ClimateCONTACTNews

146

Climate VISION: Program Mission  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart ofMeasuring DopamineEnergy,6. Radiative Forcing ofPROGRAM MISSION

147

Climate VISION: Sitemap  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart ofMeasuring DopamineEnergy,6. Radiative Forcing ofPROGRAMSECURITY

148

Climate Vision: Presidential Statements  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart ofMeasuring DopamineEnergy,6. Radiative Forcing

149

Climate Vision: Technology Pathways  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart ofMeasuring DopamineEnergy,6. Radiative ForcingTECHNOLOGY PATHWAYS

150

Photogrammetry & Machine Vision 1. Image sensors  

E-Print Network [OSTI]

Photogrammetry & Machine Vision 1. Image sensors (a) Fundamentals of image sensors (b) CCD image'Apuzzo Photogrammetry and Machine Vision - 3 Point cloud processing, surface generation, texturing (b) Camera, noise) 2N. D'Apuzzo Photogrammetry and Machine Vision - 3 Point cloud processing, surface generation

Giger, Christine

151

Photogrammetry & Machine Vision 1. Image sensors  

E-Print Network [OSTI]

Photogrammetry & Machine Vision 1. Image sensors (a) Fundamentals of image sensors (b) CCD image. Remondino, N. D'Apuzzo Photogrammetry and Machine Vision ­ 1. Measurement in images (b) Camera calibration of Photogrammetry and Machine Vision Fully understand: 1. Image based 3D and 4D measurement 2. Image based 3D

Giger, Christine

152

Photogrammetry & Machine Vision 1. Image sensors  

E-Print Network [OSTI]

Photogrammetry & Machine Vision 1. Image sensors (a) Fundamentals of image sensors (b) CCD image. Remondino, N. D'Apuzzo Photogrammetry and Machine Vision ­ 2. Camera calibration and orientation (b) Camera and Machine Vision ­ 2. Camera calibration and orientation (b) Calibration methods (reference object, point

Giger, Christine

153

Hawaii Hydrogen Power Park The U.S. Department of Energy (U.S. DOE) has promoted the vision that the transition to a  

E-Print Network [OSTI]

). The objective of the PICHTR project was developing and testing the use of wind and solar power to power small demonstration program we used the electricity generated by the wind turbine and solar array to powerHawaii Hydrogen Power Park Background The U.S. Department of Energy (U.S. DOE) has promoted

154

A vision for reinforcement learning  

E-Print Network [OSTI]

of California, San Diego August 21, 2011 1 / 29 #12;What is the goal of maintenance? Preventive maintenanceA vision for reinforcement learning and predictive maintenance Charles Elkan University. Intrinsically probabilistic: Reduce expected later cost. From reactive maintenance to proactive maintenance

Wang, Deli

155

Proceedings NATIONAL HYDROGEN VISION MEETING  

E-Print Network [OSTI]

's Plan directs us to explore the possibility of a hydrogen economy..." Spencer Abraham, Secretary be found at the end of this document.) The intent was to identify a common vision of a "hydrogen economy of the Group: Which factors are most likely to support/inhibit the development of a "hydrogen economy

156

Mission & Vision  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program PreliminaryA3,0 AlabamaYearEnergyMiraPEAKMission &

157

Vision Office Products  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlongUpdatesValley winsVideo History Fusion1.1 The

158

Vision Office Products  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlongUpdatesValley winsVideo History Fusion1.1 The2

159

Welcome to Climate VISION  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlender Net ProductionNetWeilin JiangProgram

160

Climate VISION: Events  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy, science, and technology - C L4.Events

Note: This page contains sample records for the topic "vision montreux energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Climate VISION: Industry Associations  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy, science, and technology - C

162

Climate Vision: Presidential Statements  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy, science, andTechnologyTechnologyRemarks

163

Climate VISION: News Archive  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, and technology for theAdvanced

164

Climate VISION: RSS  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinks -Resources &WorkRSS

165

Climate Vision: Presidential Statements  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinks

166

Climate Vision: Presidential Statements  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinksat United Nations Secretary

167

Climate Vision: Presidential Statements  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinksat United Nations

168

Climate Vision: Presidential Statements  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinksat United NationsFirst Lady

169

Climate Vision: Presidential Statements  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinksat United NationsFirst

170

Climate Vision: Presidential Statements  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinksat United NationsFirstthe

171

Climate Vision: Presidential Statements  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinksat United

172

Climate Vision: Presidential Statements  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinksat UnitedPresidential

173

Sandia National Laboratories: Analysis, Modeling, Cost of Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProgramsAnalysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014 Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014 The "20% Wind Energy by...

174

Group Vision Care Policy Vision Care for Life EVIDENCE OF COVERAGE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky LearningGetGraphene's 3DRiseAdministrationPolicy Vision Care

175

Vision Office Products  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface. | EMSL Visible LightNORDUnet,1 North

176

ORISE: Mission and Vision  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory |CHEMPACK MappingHistory The OakMentor Training MentorMessage

177

Wind Vision Highlights  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry SoarsStructural1 2

178

Mission Vision Values  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fundProject8 -3EutecticMindingMiraHanford Contractors

179

VISION User Guide - VISION (Verifiable Fuel Cycle Simulation) Model  

SciTech Connect (OSTI)

The purpose of this document is to provide a guide for using the current version of the Verifiable Fuel Cycle Simulation (VISION) model. This is a complex model with many parameters; the user is strongly encouraged to read this user guide before attempting to run the model. This model is an R&D work in progress and may contain errors and omissions. It is based upon numerous assumptions. This model is intended to assist in evaluating what if scenarios and in comparing fuel, reactor, and fuel processing alternatives at a systems level for U.S. nuclear power. The model is not intended as a tool for process flow and design modeling of specific facilities nor for tracking individual units of fuel or other material through the system. The model is intended to examine the interactions among the components of a fuel system as a function of time varying system parameters; this model represents a dynamic rather than steady-state approximation of the nuclear fuel system. VISION models the nuclear cycle at the system level, not individual facilities, e.g., reactor types not individual reactors and separation types not individual separation plants. Natural uranium can be enriched, which produces enriched uranium, which goes into fuel fabrication, and depleted uranium (DU), which goes into storage. Fuel is transformed (transmuted) in reactors and then goes into a storage buffer. Used fuel can be pulled from storage into either separation of disposal. If sent to separations, fuel is transformed (partitioned) into fuel products, recovered uranium, and various categories of waste. Recycled material is stored until used by its assigned reactor type. Note that recovered uranium is itself often partitioned: some RU flows with recycled transuranic elements, some flows with wastes, and the rest is designated RU. RU comes out of storage if needed to correct the U/TRU ratio in new recycled fuel. Neither RU nor DU are designated as wastes. VISION is comprised of several Microsoft Excel input files, a Powersim Studio core, and several Microsoft Excel output files. All must be co-located in the same folder on a PC to function. We use Microsoft Excel 2003 and have not tested VISION with Microsoft Excel 2007. The VISION team uses both Powersim Studio 2005 and 2009 and it should work with either.

Jacob J. Jacobson; Robert F. Jeffers; Gretchen E. Matthern; Steven J. Piet; Benjamin A. Baker; Joseph Grimm

2009-08-01T23:59:59.000Z

180

Int J Computer Vision 3 (1989) 181-208 1 Int J Computer Vision 3 (1989) 181-208 2  

E-Print Network [OSTI]

Int J Computer Vision 3 (1989) 181-208 1 #12;Int J Computer Vision 3 (1989) 181-208 2 #12;Int J Computer Vision 3 (1989) 181-208 3 #12;Int J Computer Vision 3 (1989) 181-208 4 #12;Int J Computer Vision 3 (1989) 181-208 5 #12;Int J Computer Vision 3 (1989) 181-208 6 #12;Int J Computer Vision 3 (1989) 181

Murray, David

Note: This page contains sample records for the topic "vision montreux energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Videos | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Wind Vision: An Industry Preview Testimonials - Partnerships in Solid-State Lighting - Soraa, Inc. Testimonials - Partnerships in Combined Heat and Power...

182

SunShot Vision Study: February 2012 (Book)  

SciTech Connect (OSTI)

The objective of the SunShot Vision Study is to provide an in-depth assessment of the potential for solar technologies to meet a significant share of electricity demand in the United States during the next several decades. Specifically, it explores a future in which the price of solar technologies declines by about 75% between 2010 and 2020 - in line with the U.S. Department of Energy (DOE) SunShot Initiative's targets.

Not Available

2012-02-01T23:59:59.000Z

183

Fusion Energy: Visions of the Future  

E-Print Network [OSTI]

worldwide · X-ray/neutron applications · US teams at KSU, NSTec 2009: LPP Focus Fusion-1 lab begins

184

Vision FL LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UCOpenVerona,HamptonVinland,InformationVirydFL LLC Jump to:

185

Wind Vision Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEdit JumpWill County, Illinois:4 Sector WindOaxacaWind

186

Vision and Roadmap Documents | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.| Department ofEducationVirgin IslandsPlant's Uranium

187

OpenEI Community - Energy Visions Prize  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/Geothermal < Oklahoma Jumpcommunity 2013 Civicofficially

188

acute vision loss: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

card at the time of visit Clemson Area Vision to cover routine vision exam(s), eyeglasses, andor contact lens up to 300 per policy year. Vision Exams Stuart, Steven J. 236...

189

ageless vision glare: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

card at the time of visit Clemson Area Vision to cover routine vision exam(s), eyeglasses, andor contact lens up to 300 per policy year. Vision Exams Stuart, Steven J. 228...

190

Oak Ridge Office of Environmental Management Pursues Vision of...  

Office of Environmental Management (EM)

Office of Environmental Management Pursues Vision of Future While Remembering Past Oak Ridge Office of Environmental Management Pursues Vision of Future While Remembering Past...

191

The Tunnel Vision Syndrome: Massively Delaying Progress  

E-Print Network [OSTI]

The Tunnel Vision Syndrome: Massively Delaying Progress Reiner Hartenstein, Professor, IEEE fellow facet as the complete answer are far from solving the problem. What is the reason of these slow-down- stream-based computing was delayed for decades by the tunnel vision syndrome. The History of Systolic

Hartenstein, Reiner

192

Robotics and Vision Scientist Evolution Robotics  

E-Print Network [OSTI]

Robotics and Vision Scientist Evolution Robotics 1055 E. Colorado Bl., #410 Pasadena, California 91106 (626) 993-3300 09 May 2011 Evolution Robotics Employment Opportunity Profile · Title: Robotics and Vision Scientist · Reports to: VP of Research and Development The Company: Evolution Robotics, Inc

Plotkin, Joshua B.

193

Summary of student scenarios: 2020 Vision project, fiscal year 1997  

SciTech Connect (OSTI)

The Strategic Issues Thinking: 2020 Vision project introduces students and teaches to national security issues through the techniques of scenario building, and engages them in an interactive process of creating scenarios relevant to the Department of Energy, Defense Programs (DOE/DP). Starting with the world as it is today, teams of students develop a series of scenarios on international developments over the next 25 years under various circumstances. This report identifies recurrent themes in the student`s scenarios, lists creative ways the students presented their scenarios, compares and contrasts the program`s FY97 results with FY96 results, identifies the benefits of the program, and offers a glimpse of Sandia`s future plans for the 2020 Vision project.

Gordon, K.W.; Munoz, A.; Scott, K.P.; Rinne, R.

1997-11-01T23:59:59.000Z

194

Digital Object Identifier (DOI) 10.1007/s00138-004-0147-4 Machine Vision and Applications (2004) Machine Vision and  

E-Print Network [OSTI]

rather than the energy of in- dividual molecules, and it suggests that brain imaging data should be used ­ Appearance-based vision 1 Introduction In the introduction to his book, David Marr argued that com- plex to build cognitive models of the human visual system at the functional and algorithmic levels, rather than

Draper, Bruce A.

195

COHERENT LASER VISION SYSTEM (CLVS) OPTION PHASE  

SciTech Connect (OSTI)

The purpose of this research project was to develop a prototype fiber-optic based Coherent Laser Vision System (CLVS) suitable for DOE's EM Robotic program. The system provides three-dimensional (3D) vision for monitoring situations in which it is necessary to update the dimensional spatial data on the order of once per second. The system has total immunity to ambient lighting conditions.

Robert Clark

1999-11-18T23:59:59.000Z

196

Working Groups Collaborate on U.S. Virgin Islands Clean Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Working Groups Collaborate on U.S. Virgin Islands Clean Energy Vision and Road Map Working Groups Collaborate on U.S. Virgin Islands Clean Energy Vision and Road Map A diverse set...

197

NNSA Network Vision (2NV) | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challengeMultiscaleLogosAdministrationNetwork Vision (2NV) | National

198

THE MOON AND THE NEW PRESIDENTIAL SPACE VISION PAUL D. SPUDIS  

E-Print Network [OSTI]

, and it is argued that people offer significant advantages over robots for the purposes of scientific exploration, in the longer term, of increasing prosperity by providing access to the material and energy resources of the Solar System. Keywords: Human spaceflight, lunar exploration, Mars exploration, space policy, Vision

Spudis, Paul D.

199

ISSN0249-0803ISRNINRIA/RT--7612--FR+ENG Vision, Perception and Multimedia Understanding  

E-Print Network [OSTI]

by reconstructing simultaneously buildings, trees and topographically complex grounds. A major contribution of our work is the original way of modeling buildings which guarantees a high generalization level while vision, 3D-geometry, shape representation, urban scenes, point data, energy minimization, Markov Random

Paris-Sud XI, Universit de

200

Tomorrows Energy: Hydrogen, Fuel Cells, and the Prospects for a Cleaner Planet  

E-Print Network [OSTI]

Chronicles the progress of hydrogen energy from a vision torange of information about hydrogen energy issues. This bookReview: Tomorrow's Energy: Hydrogen, Fuel Cells, and the

Mirza, Umar Karim

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vision montreux energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Microsoft Word - START Renewable Energy Project Development Assistance...  

Energy Savers [EERE]

foster tribal energy self-sufficiency and self-determination, promote community economic development and job creation, and advance tribal visions for a sustainable energy future....

202

ITP Industrial Distributed Energy: Combined Heat and Power -...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of Progress, A Vision for the Future ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of...

203

Community Energy Planning A Resource Guide for Remote Communities...  

Open Energy Info (EERE)

- Central Plant, Energy Efficiency, Greenhouse Gas, Renewable Energy, Biomass, Water Power, Solar, - Solar Pv, Wind Phase Create a Vision, Determine Baseline, Evaluate...

204

VISION: Verifiable Fuel Cycle Simulation Model  

SciTech Connect (OSTI)

The nuclear fuel cycle consists of a set of complex components that work together in unison. In order to support the nuclear renaissance, it is necessary to understand the impacts of changes and timing of events in any part of the fuel cycle system. The Advanced Fuel Cycle Initiatives systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing, and changes in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model components and some examples of how to use VISION.

Jacob Jacobson; A. M. Yacout; Gretchen Matthern; Steven Piet; David Shropshire; Tyler Schweitzer

2010-11-01T23:59:59.000Z

205

VISION: Verifiable Fuel Cycle Simulation Model  

SciTech Connect (OSTI)

The nuclear fuel cycle is a very complex system that includes considerable dynamic complexity as well as detail complexity. In the nuclear power realm, there are experts and considerable research and development in nuclear fuel development, separations technology, reactor physics and waste management. What is lacking is an overall understanding of the entire nuclear fuel cycle and how the deployment of new fuel cycle technologies affects the overall performance of the fuel cycle. The Advanced Fuel Cycle Initiatives systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing and delays in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works and can transition as technologies are changed. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model and some examples of how to use VISION.

Jacob J. Jacobson; Abdellatif M. Yacout; Gretchen E. Matthern; Steven J. Piet; David E. Shropshire

2009-04-01T23:59:59.000Z

206

EV Everywhere Grand Challenge: DOE's 10-Year Vision for Plug...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plug-in Electric Vehicles & Batteries EV Everywhere Grand Challenge: DOE's 10-Year Vision for Plug-in Electric Vehicles EV Everywhere Grand Challenge: DOE's 10-Year Vision for...

207

The Web Services Vision Definition of Web Services  

E-Print Network [OSTI]

1 The Web Services Vision Overview Definition of Web Services Key concepts Difference from traditional web model Context Service-oriented architecture Distributed computing Overview Microsoft .NET vision Web Services Difference from traditional web model Context Service-oriented architecture

Cheverst, Keith

208

A National Vision of America's Transition to a Hydrogen Economy...  

Energy Savers [EERE]

A National Vision of America's Transition to a Hydrogen Economy--To 2030 and Beyond A National Vision of America's Transition to a Hydrogen Economy--To 2030 and Beyond The summary...

209

Climate VISION: How to Participate  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart ofMeasuring DopamineEnergy,6. Radiative Forcing of ClimateCONTACT

210

Climate VISION: Private Sector Initiatives  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart ofMeasuring DopamineEnergy,6. Radiative Forcing of

211

Climate VISION: Resources and Links  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart ofMeasuring DopamineEnergy,6. Radiative Forcing ofPROGRAM

212

Climate VISION: Greenhouse Gases Information  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, and technology for theAdvanced CleanEnergyGHG

213

Future Vision for Instrumentation, Information and Control Modernization  

SciTech Connect (OSTI)

A Future Vision of a transformed nuclear plant operating model based on an integrated digital environment has been developed as part of the Advanced Instrumentation, Information, and Control (II&C) research pathway, under the Light Water Reactor (LWR) Sustainability Program. This is a research and development program sponsored by the U.S. Department of Energy (DOE), performed in close collaboration with the nuclear utility industry, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. II&C has been identified as a potential life-limiting issue for the domestic LWR fleet in addressing the reliability and aging concerns of the legacy systems in service today. The Future Vision is based on a digital architecture that encompasses all aspects of plant operations and support, integrating plant systems, plant work processes, and plant workers in a seamless digital environment to enhance nuclear safety, increase productivity, and improve overall plant performance. Pilot projects are being conducted as the means for industry to gain confidence in these new technologies for use in nuclear plant work activities. The pilot projects introduce new digital technologies into the nuclear plant operating environment at host operating plants to demonstrate and validate them for production usage. In turn, the pilot project technologies serve as the stepping stones to the eventual seamless digital environment as described in the Future Vision. Initial project results confirm that the technologies can address provide substantial efficiency and human performance benefits while resolving the reliability and aging concerns.

Ken D. Thomas

2012-05-01T23:59:59.000Z

214

Climate VISION: Events - Climate VISION Partners Highlight Success Stories  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, and technology for theAdvanced Clean

215

Underwater Computer Vision: Two Decades of Traditional Approaches  

E-Print Network [OSTI]

waters). Why is vision difficult in underwater? environment lighting medium Sensor & sensor platform #12) Why is vision difficult in underwater? environment lighting medium Sensor & sensor platform #12;7 Why is vision difficult in underwater? environment lighting medium Sensor & sensor platform 4. Poor positioning

Treuille, Adrien

216

Loss of Daylight Vision in Retinal Degeneration: Are  

E-Print Network [OSTI]

Loss of Daylight Vision in Retinal Degeneration: Are Oxidative Stress and Metabolic Dysregulation, particularly in cones, the type of photoreceptors that mediate daylight and color vision. The evidence, providing our daylight vision, and have many of the same features and vulnerabilities as rod photoreceptors

Tabin, Cliff

217

Integrated Imaging and Vision Techniques for Industrial Inspection: A Special Issue on Machine Vision and Applications  

SciTech Connect (OSTI)

Imaging- and vision-based techniques play an important role in industrial inspection. The sophistication of the techniques assures high- quality performance of the manufacturing process through precise positioning, online monitoring, and real-time classification. Advanced systems incorporating multiple imaging and/or vision modalities provide robust solutions to complex situations and problems in industrial applications. A diverse range of industries, including aerospace, automotive, electronics, pharmaceutical, biomedical, semiconductor, and food/beverage, etc., have benefited from recent advances in multi-modal imaging, data fusion, and computer vision technologies. Many of the open problems in this context are in the general area of image analysis methodologies (preferably in an automated fashion). This editorial article introduces a special issue of this journal highlighting recent advances and demonstrating the successful applications of integrated imaging and vision technologies in industrial inspection.

Liu, Zheng; Ukida, H.; Ramuhalli, Pradeep; Forsyth, D. S.

2010-06-05T23:59:59.000Z

218

TESLA'S VISION OF THE WIRELESS GLOBAL COMMUNICATIONS  

E-Print Network [OSTI]

TESLA'S VISION OF THE WIRELESS GLOBAL COMMUNICATIONS Ljiljana Trajkovi Communication Networks;January 17, 2005 UBC Ljiljana Trajkovic, Simon Fraser University 2 Road map Tesla in 1890's First wireless;January 17, 2005 UBC Ljiljana Trajkovic, Simon Fraser University 4 Alternate currents Tesla left Edison

Trajkovic, Ljiljana

219

TESLA'S VISION OF THE WIRELESS GLOBAL COMMUNICATIONS  

E-Print Network [OSTI]

, at an AIEE meeting in New York, Tesla presented a lecture entitled "A New System of Alternate Current MotorsTESLA'S VISION OF THE WIRELESS GLOBAL COMMUNICATIONS Ljiljana Trajkovi Communication Networks;March 12, 2004 Kwantlen College Ljiljana Trajkovic, Simon Fraser University 2 Road map Tesla in 1890's

Trajkovic, Ljiljana

220

2020 Vision Project Summary: FY99  

SciTech Connect (OSTI)

During the 1998-99 school year, students from participating schools completed and submitted a variety of scenarios describing potential world and regional conditions in the year 2020 and their possible effect on U.S. national security. This report summarizes the student's views and describes trends observed over the course of the 2020 Vision project's four years.

K.W. Gordon; K.P. Scott

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vision montreux energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Utrecht University's vision for teaching and  

E-Print Network [OSTI]

Utrecht University's vision for teaching and learning In recent years, student numbers field, Utrecht University seeks to retain and strengthen its leading position in education, working by their work and enabled to innovate and improve their teaching. It is Utrecht University's ambition to deliver

Utrecht, Universiteit

222

Filtrage particulaire dans la vision robotique  

E-Print Network [OSTI]

Filtrage particulaire dans la vision robotique : Application à la commande d'un mini-drone ?cole Thématique Filtrage Particulaire 9 février 2012 Céline Teulière #12;Mobile robotics A task is defined2 (Independent Robotics) CyCab (Inria) Quadri-rotor (Novadem) HRP-4 (Kawada) 2 #12;Mobile robot

LeGland, François

223

Mathematical Optimization in Graphics and Vision  

E-Print Network [OSTI]

Mathematical Optimization in Graphics and Vision Luiz Velho Paulo Cezar Pinto Carvalho IMPA - Instituto de Matemática Pura e Aplicada Course ScheduleCourse Schedule Module 1 ­ Computer Graphics to Answer · Why optimization is important for graphics? ­ Problems and Solutions · How optimization can

224

Computer Vision, Graphics, and Image Processing 40 (1987) 250-266 1 Computer Vision, Graphics, and Image Processing 40 (1987) 250-266 2  

E-Print Network [OSTI]

Computer Vision, Graphics, and Image Processing 40 (1987) 250-266 1 #12;Computer Vision, Graphics, and Image Processing 40 (1987) 250-266 2 #12;Computer Vision, Graphics, and Image Processing 40 (1987) 250-266 3 #12;Computer Vision, Graphics, and Image Processing 40 (1987) 250-266 4 #12;Computer Vision

Murray, David

225

Wind Vision Chapter 1: Introduction to the Wind Vision  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry SoarsStructural1 2 1

226

Wind Vision Chapter 3: Impacts of the Wind Vision  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry SoarsStructural1 2 12

227

Hydraulic Institute Mission and Vision:  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013Department ofThis

228

Retiree Dental, Vision, Legal, Insurance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter Resources Ames Site457AD&DDental,

229

ARM - Mission and Vision Statements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosionAnnouncementsgovMeasurements Measurement Categories

230

PNNL: About - Mission and Vision  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002OpticsPeriodical:RockyPISTON (PortablePNC-142691

231

Hanford's 2015 Vision - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCIResearchGulf ofnewsFlashSpeakersHanford's

232

PNNL: About - Mission and Vision  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeedingOptimizingTools Software and ToolsDepartmentEMS Graphic

233

2020 Vision Project Summary, FY98  

SciTech Connect (OSTI)

The 2020 Vision project began in 1996 with two participating teachers and four classes. It has since grown to comprise more than a dozen participating teachers and hundreds of students across the country. Much of this growth took place in FY98, thanks to the accomplishment of several major goals: implementation of a mentor program, enhanced teacher training, a mid-year conference for students, recruitment of distant schools, and the development of an interactive Web site. The first part of this report describes these accomplishments, as well as future directions for 2020 Vision. The second part summarized the scenarios students wrote during the 1997-98 school year. it identifies recurrent themes in the students' scenarios and compares/contrasts them with scenarios written in the first two years of the project.

A Munoz; J. C. Clausen; K. P. Scott; K. W. Gordon

1998-11-01T23:59:59.000Z

234

Vision of a Visualization Tool for Commissioning  

E-Print Network [OSTI]

VISION OF A VISUALIZATION TOOL FOR COMMISSIONING Per Isakson*, J?rgen Eriksson** * Building Sciences KTH, Stockholm SWEDEN. per.isakson@byv.kth.se ** ?F-Installation, G?teborg, SWEDEN. jorgen.eriksson@af.se Summary. A prototype... of BEMS to support performance monitoring, nor considerable efforts to develop such use. In Sweden the control manufactures do not see a demand from the marketplace; on the contrary they observe little use of the tools they already provide. Research...

Isakson, P.; Eriksson, J.

2004-01-01T23:59:59.000Z

235

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect (OSTI)

Eltron Research Inc., and team members CoorsTek, McDermott Technology, inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; R.D. Carneim; P.F. Becher; C-H. Hsueh; Aaron L. Wagner; Jon P. Wagner

2002-04-30T23:59:59.000Z

236

Vision and Inertial Sensor Based Drive Trains Control  

E-Print Network [OSTI]

Block diagram of encoder feedback system for single jointBlock diagram of KKF feedback system for single jointtrajectory. Joint Space Control The block diagram of vision

Cheng, Haifei

2010-01-01T23:59:59.000Z

237

DOE Announces New Wind Vision Initiative at AWEA WINDPOWER Conference...  

Office of Environmental Management (EM)

speech, Zayas said that the reason for revitalizing the vision now is threefold. First, wind power has seen significant improvements in both costs and technologies. Second, the...

238

LookTel --- Computer Vision Applications for the Visually Impaired  

E-Print Network [OSTI]

Interface Elements. IEEE Computer Graphics and Applicationstext in natural scenes. In Computer Vision and PatternProceedings of the 2004 IEEE Computer Society Conference

Sudol, Jeremi

2013-01-01T23:59:59.000Z

239

air operations vision: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 The Operational Strengths and Weaknesses of Military Night Vision Equipment Computer Technologies and Information Sciences Websites Summary: The Operational Strengths and...

240

Moffitt Library Renovation: The Vision Moffitt Library is a five-story center for learning in the center of the UC Berkeley campus, serving undergraduate  

E-Print Network [OSTI]

Moffitt Library Renovation: The Vision Moffitt Library is a five-story center for learning and reduces daytime energy consumption · Fixtures, equipment, and design elements will be energy-efficient and optimal for occupant health and comfort · Leadership in Environmental and Energy Design (LEED

California at Berkeley, University of

Note: This page contains sample records for the topic "vision montreux energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Hypersonic airbreathing vehicle visions and enhancing technologies  

SciTech Connect (OSTI)

This paper addresses the visions for hypersonic airbreathing vehicles and the advanced technologies that forge and enhance the designs. The matrix includes space access vehicles (single-stage-to-orbit (SSTO), two-stage-to-orbit (2STO) and three-stage-to-orbit (3STO)) and endoatmospheric vehicles (airplanes{emdash}missiles are omitted). The characteristics, the performance potential, the technologies and the synergies will be discussed. A common design constraint is that all vehicles (space access and endoatmospheric) have enclosed payload bays. {copyright} {ital 1997 American Institute of Physics.}

Hunt, J.L.; Lockwood, M.K.; Petley, D.H.; Pegg, R.J. [NASA Langley Research Center (LaRC) Hampton, Virginia (United States)

1997-01-01T23:59:59.000Z

242

Vision and revision in Coleridge's dramas  

E-Print Network [OSTI]

to repentance with the aid of a foil, and then punished him for his evil deeds. But Coleridge went further in his revision of the dramatic vision of the day; he rewrote Remorse as a romance, ~2a ol a. While he shifted the emphasis from the punishment... is that they are attempts to revise Shakespeare, to offer a modern, romantic version of Shakespearean tragedy in Remorse and Shakespearean romance 1n ~2a ol a. Little work has been done on these dramas, and only a small fraction of those studies that have been written...

Tveten, Janet Elaine Hesler

2012-06-07T23:59:59.000Z

243

Flexible electrode array for artifical vision  

DOE Patents [OSTI]

An image is captured or otherwise converted into a signal in an artificial vision system. The signal is transmitted to the retina utilizing an implant. The implant consists of a polymer substrate made of a compliant material such as poly(dimethylsiloxane) or PDMS. The polymer substrate is conformable to the shape of the retina. Electrodes and conductive leads are embedded in the polymer substrate. The conductive leads and the electrodes transmit the signal representing the image to the cells in the retina. The signal representing the image stimulates cells in the retina.

Krulevitch, Peter (Pleasanton, CA); Polla, Dennis L. (Roseville, MN); Maghribi, Mariam N. (Davis, CA); Hamilton, Julie (Tracy, CA)

2006-12-05T23:59:59.000Z

244

UC Procurement Vision and Mission To be acknowledged by University of California executive and campus leadership, faculty, staff and students as a  

E-Print Network [OSTI]

UC Procurement Vision and Mission Vision · To be acknowledged by University of California executive

California at Santa Cruz, University of

245

E-Print Network 3.0 - acquired color vision Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fredo Durand Summary: 1 The Art and Science of Depiction Fredo Durand MIT- Lab for Computer Science Color Color Vision 2... Color Color Vision 3 Talks Abstract Issues...

246

Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations...  

Office of Environmental Management (EM)

Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations This document establishes the California...

247

E-Print Network 3.0 - autonomous vision system Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies and Information Sciences 57 Using Computer Vision to Achieve Incremental Vehicle Automation Summary: , that computer vision will play at least some role in the...

248

Student Affairs Supporting the Vision of UC Davis  

E-Print Network [OSTI]

Student Affairs Supporting the Vision of UC Davis Annual Report, 2010-2011 #12;STUDENT AFFAIRS · ANNUAL REPORT 2010-2011 1 Student Affairs: Supporting a Vision of Excellence Broad opportunities to encourage student growth and development The Division of Student Affairs dedicates itself to advancing

Ferrara, Katherine W.

249

Teaching Image Computation: From Computer Graphics to Computer Vision  

E-Print Network [OSTI]

Teaching Image Computation: From Computer Graphics to Computer Vision Bruce A. Draper and J. Ross Beveridge Department of Computer Science Colorado State University Fort Collins, CO 80523 draper@cs.colostate.edu ross@cs.colostate.edu Keywords: Computer Vision, Computer Graphics, Education, Course Design

Draper, Bruce A.

250

7. Business Models LearningsfromfoundingaComputerVisionStartup  

E-Print Network [OSTI]

7. Business Models #12;LearningsfromfoundingaComputerVisionStartup Flickr:dystopos How are you models ! ! (not only technology) #12;LearningsfromfoundingaComputerVisionStartup Auction business model! Bricks and clicks business model! Collective business models! Component business model! Cutting out

Solem, Jan Erik

251

7. Business Models LearningsfromfoundingaComputerVisionStartup  

E-Print Network [OSTI]

7. Business Models #12;LearningsfromfoundingaComputerVisionStartup Flickr:dystopos How are you models (not only technology) #12;LearningsfromfoundingaComputerVisionStartup Auction business model Bricks and clicks business model Collective business models Component business model Cutting out

Quack, Till

252

University of Kentucky Statement of Vision, Mission and Values  

E-Print Network [OSTI]

1 of 11 University of Kentucky Statement of Vision, Mission and Values VISION The University of Kentucky will be one of the nation's 20 best public research universities, an institution recognized world development. MISSION The University of Kentucky is a public, research-extensive, land grant university

Hayes, Jane E.

253

Smart Material Interfaces: A Vision Andrea Minuto1  

E-Print Network [OSTI]

Smart Material Interfaces: A Vision Andrea Minuto1 , Dhaval Vyas1,2 , Wim Poelman2 , and Anton, we introduce a vision called Smart Material Interfaces (SMIs), which takes advantage of the latest generation of en- gineered materials that has a special property defined "smart". They are capable

Nijholt, Anton

254

Minneapolis, Minnesota: Energy Pathways Project  

Broader source: Energy.gov [DOE]

This presentation features Brian Ross, a consultant for the City of Minneapolis, Minnesota with CR Planning. Ross provides an overview of how Minneapolis created a local energy vision for its...

255

A Mobile Vision System for Robust Multi-Person Tracking Andreas Ess1  

E-Print Network [OSTI]

A Mobile Vision System for Robust Multi-Person Tracking Andreas Ess1 Bastian Leibe1 Konrad,leibe,konrads}@vision.ee.ethz.ch vangool@esat.kuleuven.be Abstract We present a mobile vision system for multi-person track- ing in busy systems. In particular, there is a strong need for mobile vision systems than can operate in unconstrained

Giger, Christine

256

Tiny camera could aid in robotics, night vision Monday, January 17, 2011  

E-Print Network [OSTI]

Tiny camera could aid in robotics, night vision Monday, January 17, 2011 Researchers from night-vision surveillance, robotic vision, endoscopic imaging, and consumer electronics. "We were on this article! 0 COMMENTS Page 1 of 1Tiny camera could aid in robotics, night vision | R&D Mag 1/19/2011http

Rogers, John A.

257

Cryogenics Vision Workshop for High-Temperature Superconducting Electric Power Systems Proceedings  

SciTech Connect (OSTI)

The US Department of Energy's Superconductivity Program for Electric Systems sponsored the Cryogenics Vision Workshop, which was held on July 27, 1999 in Washington, D.C. This workshop was held in conjunction with the Program's Annual Peer Review meeting. Of the 175 people attending the peer review meeting, 31 were selected in advance to participate in the Cryogenics Vision Workshops discussions. The participants represented cryogenic equipment manufactures, industrial gas manufacturers and distributors, component suppliers, electric power equipment manufacturers (Superconductivity Partnership Initiative participants), electric utilities, federal agencies, national laboratories, and consulting firms. Critical factors were discussed that need to be considered in describing the successful future commercialization of cryogenic systems. Such systems will enable the widespread deployment of high-temperature superconducting (HTS) electric power equipment. Potential research, development, and demonstration (RD and D) activities and partnership opportunities for advancing suitable cryogenic systems were also discussed. The workshop agenda can be found in the following section of this report. Facilitated sessions were held to discuss the following specific focus topics: identifying Critical Factors that need to be included in a Cryogenics Vision for HTS Electric Power Systems (From the HTS equipment end-user perspective) identifying R and D Needs and Partnership Roles (From the cryogenic industry perspective) The findings of the facilitated Cryogenics Vision Workshop were then presented in a plenary session of the Annual Peer Review Meeting. Approximately 120 attendees participated in the afternoon plenary session. This large group heard summary reports from the workshop session leaders and then held a wrap-up session to discuss the findings, cross-cutting themes, and next steps. These summary reports are presented in this document. The ideas and suggestions raised during the Workshop will be used by the DOE Superconductivity Program for Electric Systems in preparing subsequent planning and strategy documents such as a Cryogenic Technology Development Roadmap.

Energetics, Inc.

2000-01-01T23:59:59.000Z

258

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect (OSTI)

Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, ceramic, cermet (ceramic/metal), and thin film membranes were prepared, characterized, and evaluated for H{sub 2} transport. For selected ceramic membrane compositions an optimum range for transition metal doping was identified, and it was determined that highest proton conductivity occurred for two-phase ceramic materials. Furthermore, a relationship between transition metal dopant atomic number and conductivity was observed. Ambipolar conductivities of {approx}6 x 10{sup -3} S/cm were achieved for these materials, and {approx} 1-mm thick membranes generated H{sub 2} transport rates as high as 0.3 mL/min/cm{sup 2}. Cermet membranes during this quarter were found to have a maximum conductivity of 3 x 10{sup -3} S/cm, which occurred at a metal phase contact of 36 vol.%. Homogeneous dense thin films were successfully prepared by tape casting and spin coating; however, there remains an unacceptably high difference in shrinkage rates between the film and support, which led to membrane instability. Further improvements in high pressure membrane seals also were achieved during this quarter, and a maximum pressure of 100 psig was attained. CoorsTek optimized many of the processing variables relevant to manufacturing scale production of ceramic H{sub 2} transport membranes, and SCI used their expertise to deposit a range of catalysts compositions onto ceramic membrane surfaces. Finally, MTI compiled relevant information regarding Vision 21 fossil fuel plant operation parameters, which will be used as a starting point for assessing the economics of incorporating a H{sub 2} separation unit.

Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Adam E. Calihman; Lyrik Y. Pitzman; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

2001-07-30T23:59:59.000Z

259

BGSU Foundations: Vision, Mission, Core Values, University Learning  

E-Print Network [OSTI]

Services Directory #12; 2 Bowling Green State University Graduate Vision: Defining the University Bowling Green State University (BGSU) aspires at Bowling Green State University holds high and explicit expectations for student

Moore, Paul A.

260

Computer vision based navigation for spacecraft proximity operations  

E-Print Network [OSTI]

The use of computer vision for spacecraft relative navigation and proximity operations within an unknown environment is an enabling technology for a number of future commercial and scientific space missions. This thesis ...

Tweddle, Brent Edward

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vision montreux energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Research Councils UK Joint Vision For Collaborative Training  

E-Print Network [OSTI]

Research Councils UK Joint Vision For Collaborative Training Objectives: Research Council Collaborative Training will provide doctoral students with a first- rate, challenging research training organisations in the private, public and civil society sectors. Benefits to the student ­ Collaborative Training

Berzins, M.

262

Computer Vision Based Navigation for Spacecraft Proximity Operations  

E-Print Network [OSTI]

. Miller February 2010 SSL # 1-10 #12;#12;Computer Vision Based Navigation for Spacecraft Proximity Operations Brent E. Tweddle, David W. Miller February 2010 SSL # 1-10 This work is based on the unaltered

263

Vision as Dance? Three Challenges for Sensorimotor Contingency Theory  

E-Print Network [OSTI]

In Action in Perception Alva No develops and presents a sensorimotor account of vision and of visual consciousness. According to such an account seeing (and indeed perceiving more generally) is analysed as a kind of skilful ...

Clark, Andy

2006-01-01T23:59:59.000Z

264

Grid Modeling for the SunShot Vision Study  

SciTech Connect (OSTI)

This document describes the use of production cost modeling in the SunShot Vision study, including methods used to create the SunShot Vision scenarios, their implementation in the Gridview model, and assumptions regarding transmission system and operation of each generator type. It also describes challenges and limitations of modeling solar generation technologies in production cost models, and suggests methods for improving their representation in current models.

Brinkman, G.; Denholm, P.; Drury, E.; Ela, E.; Mai, T.; Margolis, R.; Mowers, M.

2012-02-01T23:59:59.000Z

265

Development and Update of Models for Long-Term Energy and GHG...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(VISION) model's over 300 users: DOE - Vehicle Technologies Program, Hydrogen and Fuel Cells Program, Biofuels Program, Policy Office, Energy Information Administration ...

266

Visions on Energy Production Technologies for Finland up to 2030  

E-Print Network [OSTI]

of combined heat and power production (CHP) 1960 28% 28% 28% 31% 37% 50% 0.4 0.45 0.50 1.0 1.00.15-0.20 0 for a future plant Wood input Power output Heat production Total efficiency Power-to-heat ratio 150 MW 60 MW 70 plant Wood input 200 MW Power output 115 MW Heat production 77 MW Efficiencies, (LHV) Power District

267

PureVision Technology Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerType Jump to:Co Jump to: navigation,

268

Climate VISION Progress Report 2007 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartmentPolicyClean, EERE SmallW H IClimate

269

The SunShot Vision Study | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1Telework Telework The| DepartmentDevelopmentResources |The

270

Interdisciplinary Innovation and Vision in the HVAC  

E-Print Network [OSTI]

High energy costs in buildings are forcing the building owners, developers, fund and facility managers to find alternate energy efficiency methods while improving the indoor air quality and thus the comfort level of the room occupants. High...

Hecker, T.

2008-01-01T23:59:59.000Z

271

Planning Brings Vision Into Focus (Brochure)  

SciTech Connect (OSTI)

This case study/fact sheet highlights the strategic energy planning process for Tribes that was developed by the DOE Office of Indian Energy. This nine-step process, which is outlined in one of the foundational education courses offered by the Office, enables Tribes to pursue energy projects in a well-planned and strategic manner.

Not Available

2013-04-01T23:59:59.000Z

272

UMORE PARK: VISIONS FOR THE FUTURE  

E-Print Network [OSTI]

for renewable energy production #12;Land Use Map #12;City in the Sky Impacts and Numbers Zones Percentage Acres Emissions 652,194 61.08 lbs Commercial Energy Use 3,485,561 326.46 million btu/year Commercial Floor Area 38PA 5215 5-2-2011 #12;Values of the Board of Regents Sustainability Energy Health and Wellness

Netoff, Theoden

273

2020 Vision for Tank Waste Cleanup (One System Integration) - 12506  

SciTech Connect (OSTI)

The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The Cleanup of Hanford's 56 million gallons of radioactive and chemical waste stored in 177 large underground tanks represents the Department's largest and most complex environmental remediation project. Sixty percent by volume of the nation's high-level radioactive waste is stored in the underground tanks grouped into 18 'tank farms' on Hanford's central plateau. Hanford's mission to safely remove, treat and dispose of this waste includes the construction of a first-of-its-kind Waste Treatment Plant (WTP), ongoing retrieval of waste from single-shell tanks, and building or upgrading the waste feed delivery infrastructure that will deliver the waste to and support operations of the WTP beginning in 2019. Our discussion of the 2020 Vision for Hanford tank waste cleanup will address the significant progress made to date and ongoing activities to manage the operations of the tank farms and WTP as a single system capable of retrieving, delivering, treating and disposing Hanford's tank waste. The initiation of hot operations and subsequent full operations of the WTP are not only dependent upon the successful design and construction of the WTP, but also on appropriately preparing the tank farms and waste feed delivery infrastructure to reliably and consistently deliver waste feed to the WTP for many decades. The key components of the 2020 vision are: all WTP facilities are commissioned, turned-over and operational, achieving the earliest possible hot operations of completed WTP facilities, and supplying low-activity waste (LAW) feed directly to the LAW Facility using in-tank/near tank supplemental treatment technologies. A One System Integrated Project Team (IPT) was recently formed to focus on developing and executing the programs that will be critical to successful waste feed delivery and WTP startup. The team is comprised of members from Bechtel National, Inc. (BNI), Washington River Protection Solutions LLC (WRPS), and DOE-ORP and DOE-WTP. The IPT will combine WTP and WRPS capabilities in a mission-focused model that is clearly defined, empowered and cost efficient. The genesis for this new team and much of the 2020 vision is based on the work of an earlier team that was tasked with identifying the optimum approach to startup, commissioning, and turnover of WTP facilities for operations. This team worked backwards from 2020 - a date when the project will be completed and steady-state operations will be underway - and identified success criteria to achieving safe and efficient operations of the WTP. The team was not constrained by any existing contract work scope, labor, or funding parameters. Several essential strategies were identified to effectively realize the one-system model of integrated feed stream delivery, WTP operations, and product delivery, and to accomplish the team's vision of hot operations beginning in 2016: - Use a phased startup and turnover approach that will allow WTP facilities to be transitioned to an operational state on as short a timeline as credible. - Align Tank Farm (TF) and WTP objectives such that feed can be supplied to the WTP when it is required for hot operations. - Ensure immobilized waste and waste recycle streams can be recei

Harp, Benton; Charboneau, Stacy; Olds, Erik [US DOE (United States)

2012-07-01T23:59:59.000Z

274

3 Introduction 5 Mission, vision and aims  

E-Print Network [OSTI]

planning. As such, it is organised into three `core' thematic chapters which summarise our past, present important areas, particular initiatives to address emerging global challenges in health, energy

275

Workshop: Systems Integration Vision Challenges and Opportunities |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment ofof EnergyEmbedded ExperimentsEl

276

Workshop: Systems Integration Vision Challenges and Opportunities...  

Broader source: Energy.gov (indexed) [DOE]

after achieving the SunShot Initiative's cost targets for solar energy, successful systems integration will remain as the key barrier to enable significantly higher levels of...

277

It Gets Better | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

together to better our energy future. This vision requires talent, so we work hard to train and recruit the top talent available. It also requires that we take care of the talent...

278

SunShot Vision Study February 2012  

E-Print Network [OSTI]

in February 2011 with the goal of making solar energy cost- competitive with conventional electricity Laboratory (NREL) and the contributions by the Solar Energy Industries Association, Solar Electric Power as potential challenges. The potential benefits include solar contributing an increasingly significant share

279

On-machine 3D vision system for machining setup modeling  

E-Print Network [OSTI]

3 ORIGINAL ARTICLE On-machine 3D vision system for machiningIn computer numerical control machine tools, using machiningIn this paper, an on-machine vision system is presented to

Zhang, Xi; Tian, Xiaodong; Yamazaki, Kazuo

2010-01-01T23:59:59.000Z

280

Combined Heat and Power - A Decade of Progress, A Vision for...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power - A Decade of Progress, A Vision for the Future, August 2009 Combined Heat and Power - A Decade of Progress, A Vision for the Future, August 2009 Combined...

Note: This page contains sample records for the topic "vision montreux energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

U-129: RSA enVision Bugs Permit Cross-Site Scripting, SQL Injection...  

Energy Savers [EERE]

129: RSA enVision Bugs Permit Cross-Site Scripting, SQL Injection, and Directory Traversal Attacks U-129: RSA enVision Bugs Permit Cross-Site Scripting, SQL Injection, and...

282

Tutorial: Computer Vision with Allegro Common Lisp and the VIGRA Library using VIGRACL  

E-Print Network [OSTI]

Tutorial: Computer Vision with Allegro Common Lisp and the VIGRA Library using VIGRACL Benjamin vision library and Allegro Common Lisp. The interoperability is achieved by an extension called VIGRACL

Hamburg,.Universitt

283

Vision for 2025: A Framework for Change  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear GuideReportVictor Kane About Us VictorAction Plan

284

Pump Systems Matter Mission and Vision:  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket37963 Vol. 79,Department of Energytip sheetPump

285

Climate VISION: 1605 (B) Reporting Guidelines  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart ofMeasuring DopamineEnergy,6. Radiative Forcing of Climate

286

Climate VISION: Security and Privacy Notices  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart ofMeasuring DopamineEnergy,6. Radiative Forcing ofPROGRAMSECURITY AND

287

COURSE SYLLABUS Course Title and Number: OPTI 200 Light, Color, and Vision  

E-Print Network [OSTI]

eyeglasses or contacts to correct vision. - have an understanding of what the LASIK procedure is and does

Arizona, University of

288

Climate VISION: Private Sector Initiatives: Minerals  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy, science, and

289

Climate Vision: Presidential Statements - April 16, 2008  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy, science,

290

VISION-BASED OBSTACLE AVOIDANCE FOR A SMALL, LOW-COST ROBOT  

E-Print Network [OSTI]

VISION-BASED OBSTACLE AVOIDANCE FOR A SMALL, LOW-COST ROBOT Chau Nguyen Viet, Ian Marshall Computer.marshall@kent.ac.uk Keywords: obstacle-avoidance, robot vision. Abstract: This paper presents a vision-based obstacle avoidance algorithm for a small indoor mobile robot built from low-cost, and off-the-shelf electronics. The obstacle

Marshall, Ian W.

291

*www.unbc.ca/embracingchange/academic_visioning.html Embracing Change, Promoting Excellence  

E-Print Network [OSTI]

*www.unbc.ca/embracingchange/academic_visioning.html Embracing Change, Promoting Excellence Implementing the Academic Vision: Proposed Senate Process April 10, 2007 Town Hall Presentation* #12;*www.unbc.ca · Athletics, including health and wellness #12;*www.unbc.ca/embracingchange/academic_visioning.html Global

Northern British Columbia, University of

292

Teaching Computer Vision to Computer Scientists: Issues and a Comparative Textbook Review  

E-Print Network [OSTI]

Page 1 Teaching Computer Vision to Computer Scientists: Issues and a Comparative Textbook Review Title: Teaching Computer Vision to Computer Scientists Abstract Computer vision is a broad-based field of computer science that requires students to understand and integrate knowledge from numerous disciplines

Maxwell, Bruce

293

ARTIFICIAL NEURAL NETWORK-BASED SEGMENTATION AND APPLE GRADING BY MACHINE VISION  

E-Print Network [OSTI]

ARTIFICIAL NEURAL NETWORK-BASED SEGMENTATION AND APPLE GRADING BY MACHINE VISION Devrim Unay In this paper, a computer vision based system is introduced to automatically sort apple fruits. An artificial. INTRODUCTION Computer vision based quality sorting of apple fruits is nec- essary for increasing the speed

Dupont, Stéphane

294

Cooperative Vision Based Estimation and Tracking Using Multiple UAVs  

E-Print Network [OSTI]

Cooperative Vision Based Estimation and Tracking Using Multiple UAVs Brett Bethke, Mario Valenti. Unmanned aerial vehicles (UAVs) are excellent platforms for detecting and tracking objects of interest to give better results than could be achieved with a single UAV, while being robust to failures. In addi

How, Jonathan P.

295

Secure Personal Data Servers: a Vision Paper Tristan Allard*,**  

E-Print Network [OSTI]

Secure Personal Data Servers: a Vision Paper Tristan Allard*,** , Nicolas Anciaux* , Luc Bouganim, CO, USA {indrajit,iray}@cs.colostate.edu ABSTRACT An increasing amount of personal data by centralization. This paper suggests a radically different way of considering the management of personal data

Ray, Indrakshi

296

Software Requirements Specification Verifiable Fuel Cycle Simulation (VISION) Model  

SciTech Connect (OSTI)

The purpose of this Software Requirements Specification (SRS) is to define the top-level requirements for a Verifiable Fuel Cycle Simulation Model (VISION) of the Advanced Fuel Cycle (AFC). This simulation model is intended to serve a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies.

D. E. Shropshire; W. H. West

2005-11-01T23:59:59.000Z

297

Small Vision Systems: Hardware and Implementation Kurt Konolige  

E-Print Network [OSTI]

are becoming smaller, lower power, and cheaper, enabling their application in areas not previously considered hardware arrays (Kanade 1996, Matthies 1995). But computational power and algorithmic advances have made such implementation, the SRI Small Vision Module (SVM), which achieves realtime operation at low power in a small

Konolige, Kurt

298

A Cognitive Vision System for Nuclear Fusion Device Monitoring  

E-Print Network [OSTI]

to produce controlled thermonuclear fusion power by magnetic confinement of a plasma (fully ionized gasA Cognitive Vision System for Nuclear Fusion Device Monitoring Vincent Martin1 , Victor Moncada1 optimizations. The framework is generic and can be easily adapted to different fusion device environ- ments

Paris-Sud XI, Université de

299

The Tunnel Vision Syndrome: Challenging Computer Science Education  

E-Print Network [OSTI]

The Tunnel Vision Syndrome: Challenging Computer Science Education Reiner Hartenstein1 Professor levels from compilers over execution devices down to all levels of storage behavior, challenging all, and programming. Overcoming the von-Neumann- syndrome-based mind set would be a fascinating job for computer

Hartenstein, Reiner

300

Usage Control: A Vision for Next Generation Access Control  

E-Print Network [OSTI]

Neutral ABC model CRM/SRM, CDID architectures DRM technologies, certificates, etc. OM-AM Framework UsageUsage Control: A Vision for Next Generation Access Control Infs767, Oct 23, 2003 Ravi Sandhu and Jaehong Park (www.list.gmu.edu) Laboratory for Information Security Technology (LIST) George Mason

Sandhu, Ravi

Note: This page contains sample records for the topic "vision montreux energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Two Case Studies on Vision-based Moving Objects Measurement  

E-Print Network [OSTI]

In this thesis, we presented two case studies on vision-based moving objects measurement. In the first case, we used a monocular camera to perform ego-motion estimation for a robot in an urban area. We developed the algorithm based on vertical line...

Zhang, Ji

2012-10-19T23:59:59.000Z

302

A STUDENT NEWSLETTER SPRING 2007VISIONS of Latin America  

E-Print Network [OSTI]

Infrastructure in South America: economic Development vs. Environment integration? 8 Un lustro sin Roberto Bolaño elections in Paraguay in which president and former bishop Fernando Lugo ended 61 years of rule of traditional oral vs. written forms of communication in Andean education. CLAS welcomes submissions for Visions

Machery, Edouard

303

Terrain Based Vehicle Orientation Estimation Combining Vision and Inertial Measurements  

E-Print Network [OSTI]

and yaw. A kinematic Kalman filter modeling an inertial navigation system then uses the scene matching/IMU system, the roll, pitch and yaw estimates from vision/IMU Kalman filter show an agreement with a (2 Park, PA, 16802 sbrennan@psu.edu Abstract A novel method for estimating vehicle roll, pitch and yaw

Brennan, Sean

304

VEHICLE STATE ESTIMATION USING VISION AND INERTIAL MEASUREMENTS  

E-Print Network [OSTI]

, pitch and yaw. A kinematic Kalman filter modeling an inertial navigation system then uses the scene: A novel method for estimating vehicle roll, pitch and yaw using machine vision and inertial sensors versus those from a high-quality GPS/INS system. Keywords: Terrain Aided Localization, Inertial

Brennan, Sean

305

An Autonomous Excavator with Vision-Based Track Slippage Control  

E-Print Network [OSTI]

1 An Autonomous Excavator with Vision-Based Track Slippage Control Parvaneh Saeedi, Peter D, such as lifting and carrying loads, digging and ground level- ing. Autonomous controls for driving or assisting of noise. Sonar, a low resolution system, is sensitive to environmental disturbances (wind, temperature

Lowe, David

306

The ERC Vision for Smart Spaces Robert F. Karlicek, Jr.  

E-Print Network [OSTI]

and Biochemical Sensing · Adaptive, self- commissioning installations · Smart Building & Grid InterfacesThe ERC Vision for Smart Spaces Robert F. Karlicek, Jr. Smart Lighting Engineering Research Center Rensselaer Polytechnic Institute #12;Solid State Lighting today · Efficient but NOT SMART · Made primarily

Lü, James Jian-Qiang

307

Vision-Based Reaching for Autonomous Virtual Humans  

E-Print Network [OSTI]

is presented. Agents are endowed with a rudimentary synthetic vision and memory system that is used to gather) simulated lifting motions based on comfort, strength and perceived exertion factors. Tolani and Badler (1996 and Terzopoulos (1994) implemented a realistic simulation of artificial fish

O'Sullivan, Carol

308

Vehicle Identification Using Infrared Vision and Applications to Cooperative Perception  

E-Print Network [OSTI]

Vehicle Identification Using Infrared Vision and Applications to Cooperative Perception Axel von Arnim, Mathias Perrollaz, Arnaud Bertrand, Jacques Ehrlich Abstract-- Vehicles will be in the next on the road, or an emergency braking notification. Vehicles are also more and more equipped with perception

Paris-Sud XI, Universit de

309

Mission & Vision The mission of University Health Services  

E-Print Network [OSTI]

is to be a national campus health leader in the 21st century, providing the highest quality of care in a fully opportunity in campus health to innovatively depart from a model of health care that focuses primarily#12;Mission & Vision The mission of University Health Services (UHS) is to enhance learning

Wisconsin at Madison, University of

310

2004 Special Issue Associative learning in early vision  

E-Print Network [OSTI]

the saturation of perceptual learning when practicing a certain task repeatedly. We present simulations2004 Special Issue Associative learning in early vision Misha Tsodyks, Yael Adini, Dov Sagi; accepted 12 March 2004 Abstract Sensory discriminations often improve with practice (perceptual learning

Sagi, Dov

311

A MACHINE VISION SYSTEM FOR FORENSIC ANALYSIS Ovidiu Ghita1  

E-Print Network [OSTI]

A MACHINE VISION SYSTEM FOR FORENSIC ANALYSIS Ovidiu Ghita1 , René Gapert2 , Laura Monks1 , Jason Forensic Anthropology Unit, Department of Human Anatomy and Physiology, University College Dublin remains are analysed by forensic anthropologists in order to draw conclusions about the probable identity

Whelan, Paul F.

312

Climate VISION: Private Sector Initiatives: Aluminum  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy, science, and technology - CLetters of

313

Climate VISION: Private Sector Initiatives: Automobile Manufacturers  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy, science, and technology - CLetters

314

Climate VISION: Private Sector Initiatives: Business Roundtable  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy, science, and technology -

315

Climate VISION: Private Sector Initiatives: Cement  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy, science, and technology -Letters of

316

Climate VISION: Private Sector Initiatives: Chemical Manufacturing  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy, science, and technology -Letters

317

Climate VISION: Private Sector Initiatives: Electric Power  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy, science, and technology -LettersLetters

318

Climate VISION: Private Sector Initiatives: Forest Products  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy, science, and technology

319

Climate VISION: Private Sector Initiatives: Lime  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy, science, and technologyLettersLetters of

320

Climate VISION: Private Sector Initiatives: Magnesium  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy, science, and technologyLettersLetters

Note: This page contains sample records for the topic "vision montreux energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Climate VISION: Private Sector Initiatives: Progress Report  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy, science, andTechnology Pathways As

322

Climate VISION: Private Sector Initiatives: Semiconductors  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy, science, andTechnology Pathways

323

Climate VISION: PrivateSector Initiatives: Mining  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy, science, andTechnology PathwaysLetters

324

Climate Vision: Presidential Statements - February 12, 2003  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy, science,Statement by the President

325

Climate Vision: Presidential Statements - February 14, 2002  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy, science,Statement by the

326

Climate Vision: Presidential Statements - June 07, 2005  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy, science,Statement by thePresident Bush

327

Climate Vision: Presidential Statements - June 11, 2001  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy, science,Statement by thePresident

328

Climate Vision: Presidential Statements - June 13, 2001  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy, science,Statement by

329

Climate Vision: Presidential Statements - November 28, 2007  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy, science,Statement byStatement by the

330

Sandia National Laboratories: Re Vision Consulting LLC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar Regional Test CenterCMCNationalEnergyRadiation

331

Climate VISION: Events - Advanced Clean Coal Workshop  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, and technology for theAdvanced Clean Coal

332

Climate VISION: Private Sector Initiatives: Aluminum: Results  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, and technologyResults The Aluminum

333

Climate VISION: Private Sector Initiatives: Automobile Manufacturers:  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, and technologyResults TheResources and

334

Climate VISION: Private Sector Initiatives: Automobile Manufacturers:  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, and technologyResults TheResources

335

Climate VISION: Private Sector Initiatives: Automobile Manufacturers:  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, and technologyResults TheResourcesResources

336

Climate VISION: Private Sector Initiatives: Automobile Manufacturers:  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, and technologyResults

337

Climate VISION: Private Sector Initiatives: Automobile Manufacturers:  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, and technologyResultsResources and Links -

338

Climate VISION: Private Sector Initiatives: Automobile Manufacturers:  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, and technologyResultsResources and Links

339

Climate VISION: Private Sector Initiatives: Automobile Manufacturers:  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, and technologyResultsResources and

340

Climate VISION: Private Sector Initiatives: Automobile Manufacturers:  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, and technologyResultsResources andResults

Note: This page contains sample records for the topic "vision montreux energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Climate VISION: Private Sector Initiatives: Automobile Manufacturers:  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, and technologyResultsResources

342

Climate VISION: Private Sector Initiatives: Cement  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, andPlans Work Plans The AllianceWorkGHG

343

Climate VISION: Private Sector Initiatives: Cement - Results  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, andPlans Work Plans TheResults No

344

Climate VISION: Private Sector Initiatives: Chemical Manufacturing -  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, andPlans WorkTechnology Pathways

345

Climate VISION: Private Sector Initiatives: Chemical Manufacturing:  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, andPlans WorkTechnologyResources and

346

Climate VISION: Private Sector Initiatives: Chemical Manufacturing:  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, andPlans WorkTechnologyResources

347

Climate VISION: Private Sector Initiatives: Chemical Manufacturing:  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, andPlans WorkTechnologyResourcesResources

348

Climate VISION: Private Sector Initiatives: Chemical Manufacturing:  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, andPlans

349

Climate VISION: Private Sector Initiatives: Chemical Manufacturing:  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, andPlansResources and Links - Technical

350

Climate VISION: Private Sector Initiatives: Chemical Manufacturing:  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, andPlansResources and Links -

351

Climate VISION: Private Sector Initiatives: Lime: Results  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links - TechnicalGHGGHGResults The National

352

Climate VISION: Private Sector Initiatives: Magnesium  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links - TechnicalGHGGHGResults

353

Climate VISION: Private Sector Initiatives: Magnesium: Results  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -Results At this time, given the recent

354

Climate VISION: Private Sector Initiatives: Mining: Results  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -Results AtTechnical

355

Climate VISION: PrivateSector Initiatives: Steel  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinks -Resources &Work

356

Climate VISION: Resources and Links - Plant Assessments  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinks -Resources

357

Climate VISION: Resources and Links - Software Tools  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinks -ResourcesPrograms

358

Climate VISION: Resources and Links - Training Sessions  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinks -ResourcesProgramsTraining

359

IEEE Workshop on Applications of Computer Vision 3-4 December, 2002, Orlando FL Monocular, Vision Based, Autonomous Refueling System  

E-Print Network [OSTI]

Based, Autonomous Refueling System Aly Farag, Emir Dizdarevic, Ahmed Eid, and Allbert Lrincz of a vision based platform for automated refueling tasks. The platform is an autonomous docking system in principle, with the specific application refueling of vehicles. The system is based on monochromatic

Farag, Aly A.

360

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect (OSTI)

Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, it was demonstrated that increasing the transition metal loading in a model perovskite composition resulted in an increase in hydrogen flux. Improved flux corresponded to the emergence of additional phases in the ceramic membrane, and highest flux was achieved for a composite consisting of pseudo-cubic and rhombohedral perovskite phases. A 0.9-mm thick membrane of this material generated a hydrogen flux in excess of 0.1 mL/min/cm{sup 2}, which was approximately 35 times greater than analogs with lower transition metal levels. The dopant level and crystal structure also correlated with membrane density and coefficient of thermal expansion, but did not appear to affect grain size or shape. Additionally, preliminary ceramic-metal (cermet) composite membranes demonstrated a 10-fold increase in flux relative to analogous membranes composed of only the ceramic component. The hydrogen flux for these cermet samples corresponded to a conductivity of {approx} 10{sup -3} S/cm, which was consistent with the predicted proton conductivity of the ceramic phase. Increasing the sweep gas flow rate in test reactors was found to significantly increase hydrogen flux, as well as apparent material conductivity for all samples tested. Adding humidity to the feed gas stream produced a small increase in hydrogen flux. However, the catalyst on ceramic membrane surfaces did not affect flux, which suggested that the process was membrane-diffusion limited. Representative samples and fabrication processes were evaluated on the basis of manufacturing practicality. it was determined that optimum membrane densification occurs over a very narrow temperature range for the subject ceramics. Additionally, calcination temperatures currently employed result in powders that are difficult mill and screen. These issues must be addressed to improve large-scale fabricability.

Shane E. Roark; Tony F. Sammells; Adam E. Calihman; Lyrik Y. Pitzman; Pamela M. Van Calcar; Richard A. Mackay; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Tim R. Armstrong; Mike J. Holmes; Aaron L. Wagner

2001-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "vision montreux energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect (OSTI)

Eltron Research Inc. and their team members are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, new cermet compositions were tested that demonstrated similar performance to previous materials. A 0.5-mm thick membrane achieved at H{sub 2} transport rate of 0.2 mL/min/cm{sup 2} at 950 C, which corresponded to an ambipolar conductivity of 3 x 10{sup -3} S/cm. Although these results were equivalent to those for other cermet compositions, this new composition might be useful if it demonstrates improved chemical or mechanical stability. Ceramic/ceramic composite membranes also were fabricated and tested; however, some reaction did occur between the proton- and electron-conducting phases, which likely compromised conductivity. This sample only achieved a H{sub 2} transport rate of {approx} 0.006 mL/min/cm{sup 2} and an ambipolar conductivity of {approx}4 x 10{sup -4} S/cm. Chemical stability tests were continued, and candidate ceramic membranes were found to react slightly with carbon monoxide under extreme testing conditions. A cermet compositions did not show any reaction with carbon monoxide, but a thick layer of carbon formed on the membrane surface. The most significant technical accomplishment this quarter was a new high-pressure seal composition. This material maintained a pressure differential across the membrane of {approx} 280 psi at 800 C, and is still in operation.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; M.K. Ferber; Aaron L. Wagner; Jon P. Wagner

2002-07-30T23:59:59.000Z

362

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect (OSTI)

Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, mixed proton/electron conductivity and hydrogen transport was measured as a function of metal phase content for a range of ceramic/metal (cermet) compositions. It was found that optimum performance occurred at 44 wt.% metal content for all compositions tested. Although each cermet appeared to have a continuous metal phase, it is believed that hydrogen transport increased with increasing metal content partially due to beneficial surface catalyst characteristics resulting from the metal phase. Beyond 44 wt.% there was a reduction in hydrogen transport most likely due to dilution of the proton conducting ceramic phase. Hydrogen separation rates for 1-mm thick cermet membranes were in excess of 0.1 mL/min/cm{sup 2}, which corresponded to ambipolar conductivities between 1 x 10{sup -3} and 8 x 10{sup -3} S/cm. Similar results were obtained for multiphase ceramic membranes comprised of a proton-conducting perovskite and electron conducting metal oxide. These multi-phase ceramic membranes showed only a slight improvement in hydrogen transport upon addition of a metal phase. The highest hydrogen separation rates observed this quarter were for a cermet membrane containing a hydrogen transport metal. A 1-mm thick membrane of this material achieved a hydrogen separation rate of 0.3 mL/min/cm{sup 2} at only 700 C, which increased to 0.6 mL/min/cm{sup 2} at 950 C.

Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Alexandra Z. LaGuardia; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

2001-10-30T23:59:59.000Z

363

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect (OSTI)

Eltron Research Inc., and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying composite membrane composition and microstructure to maximize hydrogen permeation without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, a composite metal membrane based on an inexpensive hydrogen permeable metal achieved permeation rates in excess of 25 mL/min/cm{sup 2}. Preliminary attempts to incorporate this metal into a cermet were successful, and a thick cermet membrane (0.83 mm) with 40 vol.% metal phase achieved a permeation rate of nearly 0.4 mL/min/cm{sup 2}. Increasing the metal phase content and decreasing membrane thickness should significantly increase permeation, while maintaining the benefits derived from cermets. Two-phase ceramic/ceramic composite membranes had low hydrogen permeability, likely due to interdiffusion of constituents between the phases. However, these materials did demonstrate high resistance to corrosion, and might be good candidates for other composite membranes. Temperature-programmed reduction measurements indicated that model cermet materials absorbed 2.5 times as much hydrogen than the pure ceramic analogs. This characteristic, in addition to higher electron conductivity, likely explains the relatively high permeation for these cermets. Incorporation of catalysts with ceramics and cermets increased hydrogen uptake by 800 to more than 900%. Finally, new high-pressure seals were developed for cermet membranes that maintained a pressure differential of 250 psi. This result indicated that the approach for high-pressure seal development could be adapted for a range of compositions. Other items discussed in this report include mechanical testing, new proton conducting ceramics, supported thin films, and alkane to olefin conversion.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Stewart R. Schesnack; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

2003-01-30T23:59:59.000Z

364

Vision of a Multi Properties Owner  

E-Print Network [OSTI]

Upscale8%Midscale37%Economy55% 4 000 HOTELS450 000 guest rooms DGTHDGTH The General Management of Hotel Technical Services is in charge :?To write the Technical Standards Documents?To manage construction of new properties and main refurbishment... was indicated + / -:-guest not able to select himself the right temperature-many guest complains-therefore modification of the system BMS SMALL STORIESBMS SMALL STORIES Sofitel, energy management in guest rooms :?Room no booked : temperature = set point ? 5?C?Room...

Bouilleaud

2004-01-01T23:59:59.000Z

365

Accerelate Your Vision | Argonne Leadership Computing Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuel ProductionForAccelerators,Science at

366

DOE-ID Mission and Vision  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice of ScientificSolar Residence by

367

The CASL vision is to confidently predict  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 . TensileTevatronPortalThe art CASL

368

BNL | CFN Strategic Plan: Mission and Vision  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience Program CumulusA t iBudget2/4/13 Page 1 of2:1:PillarsPhoto

369

Proceedings of the Hydrogen Vision Meeting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309Department of Energy TeacherEffects on

370

FY 2009 National Renewable Energy Laboratory (NREL) Annual Report: A Year of Energy Transformation  

SciTech Connect (OSTI)

This FY2009 Annual Report surveys the National Renewable Energy Laboratory's (NREL) accomplishments in renewable energy and energy efficiency research and development, commercialization and deployment of technologies, and strategic energy analysis. It offers NREL's vision and progress in building a clean, sustainable research campus and reports on community involvement.

Not Available

2010-01-01T23:59:59.000Z

371

An inkjet vision measurement technique for high-frequency jetting  

SciTech Connect (OSTI)

Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

Kwon, Kye-Si, E-mail: kskwon@sch.ac.kr; Jang, Min-Hyuck; Park, Ha Yeong [Department of Mechanical Engineering, Soonchunhyang University 22, Soonchunhyang-Ro, Shinchang, Asan Chungnam 336-745 (Korea, Republic of); Ko, Hyun-Seok [Department of Electrical and Robot Engineering, Soonchunhyang University, 22, Soonchunhyang-Ro, Shinchang, Asan Chungnam 336-745 (Korea, Republic of)

2014-06-15T23:59:59.000Z

372

International Border Management Systems (IBMS) Program : visions and strategies.  

SciTech Connect (OSTI)

Sandia National Laboratories (SNL), International Border Management Systems (IBMS) Program is working to establish a long-term border security strategy with United States Central Command (CENTCOM). Efforts are being made to synthesize border security capabilities and technologies maintained at the Laboratories, and coordinate with subject matter expertise from both the New Mexico and California offices. The vision for SNL is to provide science and technology support for international projects and engagements on border security.

McDaniel, Michael; Mohagheghi, Amir Hossein

2011-02-01T23:59:59.000Z

373

u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAG EMEN T CENTER NEPA...  

Broader source: Energy.gov (indexed) [DOE]

EERE PROJECT MANAG EMEN T CENTER NEPA DETERlilNATION Page 1 of2 STATE: VA PROJECT TITLE: Green Vision Community Energy Program and Evergreen Municipal Energy Efficiency Program-...

374

Energy Storage Architecture Northwest Power and Conservation Council Symposium  

E-Print Network [OSTI]

Modular Energy Storage Architecture (MESA) Northwest Power and Conservation Council Symposium: Innovations in Energy Storage Technologies February 13, 2013 Portland, OR #12;2 Agenda 2/13/2013 Renewable energy challenges Vision for energy storage Energy storage barriers MESA ­ Standardization & software

375

UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation into Energy Storage for Use with Renewable Energy  

E-Print Network [OSTI]

into Energy Storage for Use with Renewable Energy Generation in the New SUB Joel Beales, Jason Serwa, Andrea An Investigation into Energy Storage for Use with Renewable Energy Generation in the New SUB Team Members and Roles" (SUB Vision). The largest challenge in implementing successful renewable energy systems is the storage

376

EV Everywhere Charges Up the Workplace | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Volt), 2011 World Car of the Year (Nissan Leaf), 2013 Motor Trend Car of the Year (Tesla Model S) and 2012 Green Car Vision Award Winner (Ford C-MAX Energi). To maintain this...

377

Renewable Energy Opportunities Saginaw Chippewa Indian Tribe  

SciTech Connect (OSTI)

The Saginaw Chippewa Indian Tribe has a vision to become self-sufficient in its energy needs and to maintain its culture and protect Mother Earth with respect and honor for the next seven generations. To achieve this vision, green energy sources such as solar, wind and biomass energy are the best energy paths to travel. In this feasibility study the Tribe has analyzed and provided data on the nature of the renewable resources available to the Tribe and the costs of implementing these technologies.

Saginaw Chippewa Indian Tribe Planning Department; Smiley, Steve; Bennett, Keith, DOE Project Officer

2008-10-22T23:59:59.000Z

378

Women @ Energy: Eileen Vergino | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Ownedof Energy ThePrivacy ActVeteranWind Vision About In supportWomen @Eileen

379

Women @ Energy: Jennifer Steeb | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Ownedof Energy ThePrivacy ActVeteranWind Vision About In supportWomen

380

Women @ Energy: Michelle Buchanan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Ownedof Energy ThePrivacy ActVeteranWind Vision About In supportWomenMichelle

Note: This page contains sample records for the topic "vision montreux energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

E-Print Network 3.0 - active robot vision Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at the workshop. Omnidirectional vision research has always been greatly stimulated by mobile robotics and it has... of nowadays robots and vehicles enables the ... Source:...

382

T-704: RSA enVision Lets Remote Users View Files and Remote Authentica...  

Broader source: Energy.gov (indexed) [DOE]

Articles U-129: RSA enVision Bugs Permit Cross-Site Scripting, SQL Injection, and Directory Traversal Attacks V-174: RSA Authentication Manager Writes Operating System, SNMP,...

383

E-Print Network 3.0 - augmented-vision displays effects Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Procedures for Summary: System Hardware Window Toolkit GSP Augmented Vision Interfaces System System Figure 3.2: The Grasp system software... , the models must be...

384

E-Print Network 3.0 - assigning reciprocal vision Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Topic List Advanced Search Sample search results for: assigning reciprocal vision Page: << < 1 2 3 4 5 > >> 1 What motivates repayment? Neural correlates of reciprocity in...

385

ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY RLE DE L'NERGIE DE FUSION DANS UNE STRATGIE D'NERGIE  

E-Print Network [OSTI]

1-1 ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY RLE DE L'NERGIE DE FUSION DANS. 1. Introduction 1. Introduction 1.1. Fusion energy 1.1. Energie de fusion Fusion energy is one of only a few truly long-term energy options. Since its inception in the 1950s, the vision of the fusion

Najmabadi, Farrokh

386

ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY R LE DE L'NERGIE DE FUSION DANS UNE STRATGIE D'NERGIE  

E-Print Network [OSTI]

1-1 ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY R LE DE L'NERGIE DE FUSION DANS. 1. Introduction 1. Introduction 1.1. Fusion energy 1.1. Energie de fusion Fusion energy is one of only a few truly long-term energy options. Since its inception in the 1950s, the vision of the fusion

387

Energy  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$ EGcG ENERGY MEASUREMENTS;/:4,4 (; . 1.;Suire

388

Long-Term Instrumentation, Information, and Control Systems (II&C) Modernization Future Vision and Strategy  

SciTech Connect (OSTI)

Life extension beyond 60 years for the U.S operating nuclear fleet requires that instrumentation and control (I&C) systems be upgraded to address aging and reliability concerns. It is impractical for the legacy systems based on 1970's vintage technology operate over this extended time period. Indeed, utilities have successfully engaged in such replacements when dictated by these operational concerns. However, the replacements have been approached in a like-for-like manner, meaning that they do not take advantage of the inherent capabilities of digital technology to improve business functions. And so, the improvement in I&C system performance has not translated to bottom-line performance improvement for the fleet. Therefore, wide-scale modernization of the legacy I&C systems could prove to be cost-prohibitive unless the technology is implemented in a manner to enable significant business innovation as a means of off-setting the cost of upgrades. A Future Vision of a transformed nuclear plant operating model based on an integrated digital environment has been developed as part of the Advanced Instrumentation, Information, and Control (II&C) research pathway, under the Light Water Reactor (LWR) Sustainability Program. This is a research and development program sponsored by the U.S. Department of Energy (DOE), performed in close collaboration with the nuclear utility industry, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. DOE's program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy security and environmental security . The Advanced II&C research pathway is being conducted by the Idaho National Laboratory (INL). The Future Vision is based on a digital architecture that encompasses all aspects of plant operations and support, integrating plant systems, plant work processes, and plant workers in a seamless digital environment to enhance nuclear safety, increase productivity, and improve overall plant performance. The long-term goal is to transform the operating model of the nuclear power plants (NPP)s from one that is highly reliant on a large staff performing mostly manual activities to an operating model based on highly integrated technology with a smaller staff. This digital transformation is critical to addressing an array of issues facing the plants, including aging of legacy analog systems, potential shortage of technical workers, ever-increasing expectations for nuclear safety improvement, and relentless pressure to reduce cost. The Future Vision is based on research is being conducted in the following major areas of plant function: (1) Highly integrated control rooms; (2) Highly automated plant; (3) Integrated operations; (4) Human performance improvement for field workers; and (5) Outage safety and efficiency. Pilot projects will be conducted in each of these areas as the means for industry to collectively integrate these new technologies into nuclear plant work activities. The pilot projects introduce new digital technologies into the nuclear plant operating environment at host operating plants to demonstrate and validate them for production usage. In turn, the pilot project technologies serve as the stepping stones to the eventual seamless digital environment as described in the Future Vision.

Kenneth Thomas

2012-02-01T23:59:59.000Z

389

Long-Term Instrumentation, Information, and Control Systems (II&C) Modernization Future Vision and Strategy  

SciTech Connect (OSTI)

Life extension beyond 60 years for the U.S operating nuclear fleet requires that instrumentation and control (I&C) systems be upgraded to address aging and reliability concerns. It is impractical for the legacy systems based on 1970s vintage technology operate over this extended time period. Indeed, utilities have successfully engaged in such replacements when dictated by these operational concerns. However, the replacements have been approached in a like-for-like manner, meaning that they do not take advantage of the inherent capabilities of digital technology to improve business functions. And so, the improvement in I&C system performance has not translated to bottom-line performance improvement for the fleet. Therefore, wide-scale modernization of the legacy I&C systems could prove to be cost-prohibitive unless the technology is implemented in a manner to enable significant business innovation as a means of off-setting the cost of upgrades. A Future Vision of a transformed nuclear plant operating model based on an integrated digital environment has been developed as part of the Advanced Instrumentation, Information, and Control (II&C) research pathway, under the Light Water Reactor (LWR) Sustainability Program. This is a research and development program sponsored by the U.S. Department of Energy (DOE), performed in close collaboration with the nuclear utility industry, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. DOEs program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy security and environmental security . The Advanced II&C research pathway is being conducted by the Idaho National Laboratory (INL). The Future Vision is based on a digital architecture that encompasses all aspects of plant operations and support, integrating plant systems, plant work processes, and plant workers in a seamless digital environment to enhance nuclear safety, increase productivity, and improve overall plant performance. The long-term goal is to transform the operating model of the nuclear power plants (NPP)s from one that is highly reliant on a large staff performing mostly manual activities to an operating model based on highly integrated technology with a smaller staff. This digital transformation is critical to addressing an array of issues facing the plants, including aging of legacy analog systems, potential shortage of technical workers, ever-increasing expectations for nuclear safety improvement, and relentless pressure to reduce cost. The Future Vision is based on research is being conducted in the following major areas of plant function: 1. Highly integrated control rooms 2. Highly automated plant 3. Integrated operations 4. Human performance improvement for field workers 5. Outage safety and efficiency. Pilot projects will be conducted in each of these areas as the means for industry to collectively integrate these new technologies into nuclear plant work activities. The pilot projects introduce new digital technologies into the nuclear plant operating environment at host operating plants to demonstrate and validate them for production usage. In turn, the pilot project technologies serve as the stepping stones to the eventual seamless digital environment as described in the Future Vision.

Kenneth Thomas; Bruce Hallbert

2013-02-01T23:59:59.000Z

390

Sustainable Energy for All A Framework for Action  

E-Print Network [OSTI]

1 Sustainable Energy for All A Framework for Action The Secretary-General's High-level Group on Sustainable Energy for All January 2012 #12;2 The Secretary-General's High-level Group on Sustainable Energy with sustainable energy for all is achievable 7 2. We must all act together to realise this vision and all

Kammen, Daniel M.

391

VISUAL WORDS, TEXT ANALYSIS CONCEPTS FOR COMPUTER VISION Wang-Juh Chen, Hoi Tin Kong, Minah Oh,  

E-Print Network [OSTI]

VISUAL WORDS, TEXT ANALYSIS CONCEPTS FOR COMPUTER VISION By Wang-Juh Chen, Hoi Tin Kong, Minah Oh Report: Visual Words, Text Analysis Concepts for Computer Vision Wang-Juh Chen Hoi Tin Kong Minah Oh

392

The Australasian College of Road Safety Road Safety 2020: Smart Solutions, Sustainability, Vision, Conference Proceedings, 5-6 November 2009  

E-Print Network [OSTI]

The Australasian College of Road Safety Road Safety 2020: Smart Solutions, Sustainability, Vision Solutions, Sustainability, Vision The Australasian College of Road Safety Conference, Perth, Western Australia : Australia (2009)" #12;The Australasian College of Road Safety Road Safety 2020: Smart Solutions

Paris-Sud XI, Université de

393

The aviator's (re)vision of the world : an aesthetics of ascension in Norman Bel Geddes's Futurama  

E-Print Network [OSTI]

This dissertation considers a new ontology of vision brought on by the advent of human flight. It focuses on the project that best reflects this new vision: the Futurama, an exhibit designed by the American industrial ...

Morshed, Adnan Zillur

2002-01-01T23:59:59.000Z

394

Looking-in and looking-out of a vehicle: Computer-vision-based enhanced vehicle safety  

E-Print Network [OSTI]

vision for au- tomated vehicle steering, IEEE ExpertArti?cial vision in road vehicles, Proc. IEEE, vol. 90, no.detection system for heavy vehicles, in Proc. Occular Meas.

Trivedi, M M; Gandhi, T; McCall, J

2007-01-01T23:59:59.000Z

395

Robust Vision-based Underwater Homing Using Self-Similar Landmarks  

E-Print Network [OSTI]

exceptionally on limited processing power and demonstrates how the combined vision and controller systems proximity to subsea oil and gas structures. Due to issues such as multi-pathing and variable lighting in cluttered environments such as reefs or close to the seafloor and subsea structures. Vision- based target

Boyer, Edmond

396

Il cammino della scienza nella visione di Popper, in relazione alla crisi della Fisica  

E-Print Network [OSTI]

Il cammino della scienza nella visione di Popper, in relazione alla crisi della Fisica e delle filosofico- epistemologiche Visione probabilistica della realtà Teoria dei quanti come teoria fisica finale 3 "Oggi la fisica è in crisi" (Popper, 1956, La teoria dei quanti e lo scisma nella Fisica in Poscritto

Maume-Deschamps, Véronique

397

Just Books Seminar VISIONS OF THE AMERICAN ENVIRONMENT: IMAGES TO ACTION  

E-Print Network [OSTI]

2 Just Books Seminar VISIONS OF THE AMERICAN ENVIRONMENT: IMAGES TO ACTION Spring 2013 posted X63075, goldin@brandeis.edu What role does the natural environment play in the North American of the natural environment in the North American vision, through the lens of books and selected readings, films

Snider, Barry B.

398

Vision-Based Control of MicroAirVehicles: Progress and Problems In Estimation  

E-Print Network [OSTI]

. These disciplines include control theory, vision processing, signal processing, sensor development, micro of the controllability and observability of such flight systems are just some of the control theoretic issues Security and civilian law enforcement. A. A Simple, Prototypical Vision-Based Control A simple example

DeVore, Ronald

399

An Onboard Monocular Vision System for Autonomous Takeoff, Hovering and Landing of a Micro Aerial Vehicle  

E-Print Network [OSTI]

An Onboard Monocular Vision System for Autonomous Takeoff, Hovering and Landing of a Micro Aerial monocular vision system for autonomous takeoff, hovering and landing of a Micro Aerial Vehicle (MAV). Since pose, yaw angle of the MAV, is estimated from the ellipse fitted from the letter "H". The efficiency

Zell, Andreas

400

Vision-based Control of a Smart Wheelchair for the Automated Transport and Retrieval System (ATRS)  

E-Print Network [OSTI]

for autonomously docking a wheelchair onto a vehicle lift platform. This is a principle component of the AutomatedVision-based Control of a Smart Wheelchair for the Automated Transport and Retrieval System (ATRS disabilities. The ATRS employs robotics, automation, and machine vision technologies, and can be integrated

Spletzer, John R.

Note: This page contains sample records for the topic "vision montreux energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Chapter 1.0: College of Engineering Values, Mission, and Vision1  

E-Print Network [OSTI]

development. College of Engineering Values · Excellence · Service · Ethics & Integrity · Creativity Chapter 1.0: College of Engineering Values, Mission, and Vision1 College of Engineering Vision The College of Engineering conducts work that is purposeful with regional, national and global

402

Mobile Robot Localization using Panoramic Vision and Combinations of Feature Region Detectors  

E-Print Network [OSTI]

for the robot to know its location accurately in terms of metric coordinates (i.e. Cartesian coordinatesMobile Robot Localization using Panoramic Vision and Combinations of Feature Region Detectors Arnau presents a vision-based approach for mobile robot localization. The environmental model is topolog- ical

Mántaras, Ramon López de

403

Autonomous Landing of MAVs on an Arbitrarily Textured Landing Site using Onboard Monocular Vision  

E-Print Network [OSTI]

Autonomous Landing of MAVs on an Arbitrarily Textured Landing Site using Onboard Monocular Vision a novel solution for micro aerial vehicles (MAVs) to autonomously search for and land on an arbitrary landing site using real- time monocular vision. The autonomous MAV is provided with only one single

Zell, Andreas

404

HUMAN RESOURCES WORKING GROUP: ACTION PLAN VISION PRIORITY: MAXIMIZING OUR HUMAN RESOURCES  

E-Print Network [OSTI]

HUMAN RESOURCES WORKING GROUP: ACTION PLAN VISION PRIORITY: MAXIMIZING OUR HUMAN RESOURCES, and student body." From David Ward, "A Vision for the Future," p. 9. This document lists the human-resource goals and plans of the Office of Human Resources, the Equity and Diversity Resource Center

Sheridan, Jennifer

405

1 Copyright 2011 by ASME This paper presents the vision system and visual processing for  

E-Print Network [OSTI]

1 Copyright © 2011 by ASME ABSTRACT This paper presents the vision system and visual processing for a biomimetic elastic cable-driven quadruped robot Robo- Cat. This paper presents the vision system and visual-level cognition algorithms, software architec- ture and hardware implementation. The system uses two video cameras

Starzyk, Janusz A.

406

Low-cost wearable low-vision aid using a handmade retinal light-scanning microdisplay  

E-Print Network [OSTI]

scanning fiber display6 to present icons indicating the location of potential hazards. The scanning fiberLow-cost wearable low-vision aid using a handmade retinal light-scanning microdisplay Ryland C) is a portable system that uses machine vision to track potential walking hazards for the visually impaired

Washington at Seattle, University of

407

LES SOFTWARE FOR THE DESIGN OF LOW EMISSION COMBUSTION SYSTEMS FOR VISION 21 PLANTS  

SciTech Connect (OSTI)

In this project, an advanced computational software tool was developed for the design of low emission combustion systems required for Vision 21 clean energy plants. Vision 21 combustion systems, such as combustors for gas turbines, combustors for indirect fired cycles, furnaces and sequestrian-ready combustion systems, will require innovative low emission designs and low development costs if Vision 21 goals are to be realized. The simulation tool will greatly reduce the number of experimental tests; this is especially desirable for gas turbine combustor design since the cost of the high pressure testing is extremely costly. In addition, the software will stimulate new ideas, will provide the capability of assessing and adapting low-emission combustors to alternate fuels, and will greatly reduce the development time cycle of combustion systems. The revolutionary combustion simulation software is able to accurately simulate the highly transient nature of gaseous-fueled (e.g. natural gas, low BTU syngas, hydrogen, biogas etc.) turbulent combustion and assess innovative concepts needed for Vision 21 plants. In addition, the software is capable of analyzing liquid-fueled combustion systems since that capability was developed under a concurrent Air Force Small Business Innovative Research (SBIR) program. The complex physics of the reacting flow field are captured using 3D Large Eddy Simulation (LES) methods, in which large scale transient motion is resolved by time-accurate numerics, while the small scale motion is modeled using advanced subgrid turbulence and chemistry closures. In this way, LES combustion simulations can model many physical aspects that, until now, were impossible to predict with 3D steady-state Reynolds Averaged Navier-Stokes (RANS) analysis, i.e. very low NOx emissions, combustion instability (coupling of unsteady heat and acoustics), lean blowout, flashback, autoignition, etc. LES methods are becoming more and more practical by linking together tens to hundreds of PCs and performing parallel computations with fine grids (millions of cells). Such simulations, performed in a few weeks or less, provide a very cost-effective complement to experimental testing. In 5 years, these same calculations can be performed in 24 hours or less due to the expected increase of computing power and improved numerical techniques. This project was a four-year program. During the first year, the project included the development and implementation of improved chemistry (reduced GRI mechanism), subgrid turbulence (localized dynamic), and subgrid combustion-turbulence interaction (Linear Eddy) models into the CFD-ACE+ code. University expertise (Georgia Tech and University of California, Berkeley) was utilized to help develop and implement these advanced submodels into the unstructured, parallel CFD flow solver, CFD-ACE+. Efficient numerical algorithms that rely on in situ look-up tables or artificial neural networks were implemented for chemistry calculations. In the second year, the combustion LES software was evaluated and validated using experimental data from lab-scale and industrial test configurations. This code testing (i.e., alpha testing) was performed by CFD Research Corporation's engineers. During the third year, six industrial and academic partners used the combustion LES code and exercised it on problems of their choice (i.e., beta testing). Final feedback and optimizations were then implemented into the final release (licensed) version of the combustion LES software to the general public. An additional one-year task was added for the fourth year of this program entitled, ''LES Simulations of SIMVAL Results''. For this task, CFDRC performed LES calculations of selected DoE SIMVAL cases, and compared predictions with measurements from NETL. In addition to comparisons with NOx and CO exit measurements, comparisons were made to measured pressure oscillations. Potential areas of improvement for combustion and turbulence models were identified. In conclusion, this program advanced the state-of-the-art in combustion LES an

Clifford E. Smith; Steven M. Cannon; Virgil Adumitroaie; David L. Black; Karl V. Meredith

2005-01-01T23:59:59.000Z

408

Associate at the American Planning Association. Planning for Solar Energy  

E-Print Network [OSTI]

There is a growing desire among communities to become more sustainable. Energy conservation and renewable energy production (including solar energy) play a significant role in community sustainability goals. Public officials and engaged citizens have many opportunities throughout the planning process to help support and advance solar energy initiatives in their communities. LONG-RANGE COMMUNITY VISIONING AND GOAL SETTING Community visioning is often the first step in developing any type of community plan, for establishing new standards, policies, and incentives, for doing development work, and for making public investment decisions. Whether part of a planning process or on its own, visioning is an important first chance to identify new opportunities and prioritiesincluding those related to solar energy. Planners often conduct visioning exercises that produce a communitys long-term goals and objectives. By expressing their views of renewable energy generation during these visioning exercises (including responding to surveys and participating in visioning meetings), citizens enable planners to gauge the level of awareness and importance of solar energy in the community. Planners use this information to develop policies and action items for the community. Once a community agrees upon its long-range goals and objectives, municipal officials should look to them when reviewing development proposals, making budget decisions, and performing other related tasks. Both citizens and public officials should use these visioning meetings to discuss how solar energy is connected to other community goals and values and how solar energy could help achieve other community goals. A PV System installed on a residence. (Photo credit:

This Pas; Quicknotes Erin Musiol

409

VISION SERVICE PLAN (VSP) The CHEIBA Trust and the CHEIBA Trust Members are pleased to offer you a comprehensive  

E-Print Network [OSTI]

are not eligible for glasses and contacts in the same benefit period. Eyeglasses VSP covers in full single vision

410

National Energy Map for India:Technology Vision 2030 | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBus Jump to:NSTARNamibia-UNEPProgrammes

411

Encore Energy Systems formerly Energy Vision International formerly DeMarco  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classifiedProject) |Emeryville,Empire Naturallighten

412

Empowering Los Angeles: A Vision for a New Urban Ecology.  

E-Print Network [OSTI]

??This thesis addresses the future of sustainable energy distribution and transportation in the United States. Predictions of future energy and transportation demands promote localized energy (more)

Martin, Judith Rose

2011-01-01T23:59:59.000Z

413

Retrofitting the Southeast: The Cool Energy House  

SciTech Connect (OSTI)

The Consortium for Advanced Residential Buildings has provided the technical engineering and building science support for a highly visible demonstration home in connection with the National Association of Home Builders' International Builders Show. The two previous projects, the Las Vegas net-zero ReVISION House and the 2011 VISION and ReVISION Houses in Orlando, met goals for energy efficiency, cost effectiveness, and information dissemination through multiple web-based venues. This project, which was unveiled at the 2012 International Builders Show in Orlando on February 9, is the deep energy retrofit Cool Energy House (CEH). The CEH began as a mid-1990s two-story traditional specification house of about 4,000 ft2 in the upscale Orlando suburb of Windermere.

Zoeller, W.; Shapiro, C.; Vijayakumar, G.; Puttagunta, S.

2013-02-01T23:59:59.000Z

414

Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for37 East and WestLydiaEnabling timeEnergeticsEnergy

415

Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It is the|ResourcesCareersEmploymentEnergy

416

Wind Vision Chapter 4: The Wind Vision Roadmap: A Pathway Forward  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry SoarsStructural1 2 124

417

Group Vision Care Plan Vision Care for Life EVIDENCE OF COVERAGE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky LearningGetGraphene's 3DRiseAdministration

418

Grand Challenges for Biological and Environmental Research: A Long-Term Vision  

SciTech Connect (OSTI)

The interactions and feedbacks among plants, animals, microbes, humans, and the environment ultimately form the world in which we live. This world is now facing challenges from a growing and increasingly affluent human population whose numbers and lifestyles are driving ever greater energy demand and impacting climate. These and other contributing factors will make energy and climate sustainability extremely difficult to achieve over the 20-year time horizon that is the focus of this report. Despite these severe challenges, there is optimism that deeper understanding of our environment will enable us to mitigate detrimental effects, while also harnessing biological and climate systems to ensure a sustainable energy future. This effort is advanced by scientific inquiries in the fields of atmospheric chemistry and physics, biology, ecology, and subsurface science - all made possible by computing. The Office of Biological and Environmental Research (BER) within the Department of Energy's (DOE) Office of Science has a long history of bringing together researchers from different disciplines to address critical national needs in determining the biological and environmental impacts of energy production and use, characterizing the interplay of climate and energy, and collaborating with other agencies and DOE programs to improve the world's most powerful climate models. BER science focuses on three distinct areas: (1) What are the roles of Earth system components (atmosphere, land, oceans, sea ice, and the biosphere) in determining climate? (2) How is the information stored in a genome translated into microbial, plant, and ecosystem processes that influence biofuel production, climate feedbacks, and the natural cycling of carbon? (3) What are the biological, geochemical, and physical forces that govern the behavior of Earth's subsurface environment? Ultimately, the goal of BER science is to support experimentation and modeling that can reliably predict the outcomes and behaviors of complex biological and environmental systems, leading to robust solutions for DOE missions and strategic goals. In March 2010, the Biological and Environmental Research Advisory Committee held the Grand Challenges for Biological and Environmental Research: A Long-Term Vision workshop to identify scientific opportunities and grand challenges for BER science in the coming decades and to develop an overall strategy for drafting a long-term vision for BER. Key workshop goals included: (1) Identifying the greatest scientific challenges in biology, climate, and the environment that DOE will face over a 20-year time horizon. (2) Describing how BER should be positioned to address those challenges. (3) Determining the new and innovative tools needed to advance BER science. (4) Suggesting how the workforce of the future should be trained in integrative system science. This report lays out grand research challenges for BER - in biological systems, climate, energy sustainability, computing, and education and workforce training - that can put society on a path to achieve the scientific evidence and predictive understanding needed to inform decision making and planning to address future energy needs, climate change, water availability, and land use.

Arkin, A.; Baliga, N.; Braam, J.; Church, G.; Collins, J; Cottingham, R.; Ecker, J.; Gerstein, M.; Gilna, P.; Greenberg, J.; Handelsman, J.; Hubbard, S.; Joachimiak, A.; Liao, J.; Looger, L.; Meyerowitz, E.; Mjolness, E.; Petsko, G.; Sayler, G.; Simpson, M.; Stacey, G.; Sussman, M.; Tiedje, J.; Bader, D.; Cessi, P.; Collins, W.; Denning, S.; Dickinson, R.; Easterling, D.; Edmonds, J.; Feddema, J.; Field, C.; Fridlind, A.; Fung, I.; Held, I.; Jackson, R.; Janetos, A.; Large, W.; Leinen, M.; Leung, R.; Long, S.; Mace, G.; Masiello, C.; Meehl, G.; Ort, D.; Otto-Bliesner, B.; Penner, J.; Prather, M.; Randall, D.; Rasch, P.; Schneider, E.; Shugart, H.; Thornton, P.; Washington, W.; Wildung, R.; Wiscombe, W.; Zak, D.; Zhang, M.; Bielicki, J.; Buford, M.; Cleland, E.; Dale, V.; Duke, C.; Ehleringer, J.; Hecht, A.; Kammen, D.; Marland, G.; Pataki, D.; Riley, M. Robertson, P.; Hubbard, S.

2010-12-01T23:59:59.000Z

419

A Renewable Energy Future: Innovation and Beyond  

Broader source: Energy.gov [DOE]

This PowerPoint slide deck was originally presented at the 2012 SunShot Grand Challenge Summit and Technology Forum during a plenary session by Dr. Dan E. Arvizu, director of NREL. Entitled "A Renewable Energy Future: Innovation and Beyond," the presentation demonstrates the transformation needed in the energy sector to achieve a clean energy vision and identifies innovation as what is needed to make it happen. The presentation also includes a discussion of the integration challenges that affect solar energy systems.

420

What Energy Functions Can Be Minimized via Graph Cuts?  

E-Print Network [OSTI]

What Energy Functions Can Be Minimized via Graph Cuts? Vladimir Kolmogorov, Member, IEEE, and Ramin been developed to solve energy minimization problems in computer vision. Each of these techniques constructs a graph such that the minimum cut on the graph also minimizes the energy. Yet, because these graph

Field, David

Note: This page contains sample records for the topic "vision montreux energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment > Voluntary826Industry forEmergingM

422

ENERGY  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatement ||More EmphasisofEMABTank WasteEnvironmental

423

Vision-based guidance and control of a hovering vehicle in unknown, gps-denied environments  

E-Print Network [OSTI]

This paper describes the system architecture and core algorithms for a quadrotor helicopter that uses vision data to navigate an unknown, indoor, GPS-denied environment. Without external sensing, an estimation system that ...

Andrews, Gregory

424

The Vision of the Other in Mark Twain's 'War-Prayer'  

E-Print Network [OSTI]

Little, 1929. Twain, Mark. The War-Prayer. New York: Harper,New Perspectives on The War-Prayer Essayson The War-Prayer The Vision of the Other in Mark Twain

Zehr, Martin

2009-01-01T23:59:59.000Z

425

Six degrees of freedom estimation using monocular vision and moir patterns  

E-Print Network [OSTI]

We present the vision-based estimation of the position and orientation of an object using a single camera relative to a novel target that incorporates the use of moire patterns. The objective is to acquire the six degree ...

Tournier, Glenn P. (Glenn Paul)

2006-01-01T23:59:59.000Z

426

Mid-Level Vision and Recognition of Non-Rigid Objects  

E-Print Network [OSTI]

We address mid-level vision for the recognition of non-rigid objects. We align model and image using frame curves - which are object or "figure/ground" skeletons. Frame curves are computed, without discontinuities, ...

Subirana-Vilanova, J. Brian

1995-04-01T23:59:59.000Z

427

COMMUNICATION N099 G.R.H. ET VISION STRATEGIQUE : UN ECLAIRAGE CROISE  

E-Print Network [OSTI]

STRATEGIQUE : UN ECLAIRAGE CROISE INTRODUCTION Depuis presque une décennie les publications insistant sur leCOMMUNICATION N°099 « G.R.H. ET VISION STRATEGIQUE : UN ECLAIRAGE CROISE » NICOLAS EDERL? SERGE

Paris-Sud XI, Université de

428

Toward Robot Perception through Omnidirectional Vision Jose Gaspar, Niall Winters, Etienne Grossmann, Jose Santos-Victor  

E-Print Network [OSTI]

ecnico, Sugar House Lane, Bellevue, Av. Rovisco Pais, 1, Dublin 8, 1049-001 Lisboa - Portugal. Ireland. (jag. 1.1 Background In the mid-20th Century, Gibson put forward an ecological approach to vision

Instituto de Sistemas e Robotica

429

Visioning 2050 BNL's Contribution to the NYS Climate Action Plan  

E-Print Network [OSTI]

and Energy Climate change: motivations for NYS action Some energy facts New York State Climate Action Plan, and storage Energy Strategy Focus: Discovery to Deployment CFN/Nanoscience NSLS II New York Blue Core Programs improvements of heating systems, biofuels - Building controls, energy management , etc. #12;#12;The New York

Homes, Christopher C.

430

PERFORMING DIAGNOSTICS ON THE SPALLATION NEUTRON SOURCE VISION BEAM LINE TO ELIMINATE HIGH VIBRATION LEVELS AND PROVIDE A SUSTAINABLE OPERATION  

SciTech Connect (OSTI)

The Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL) provides variable energy neutrons for a variety of experiments. The neutrons proceed down beam lines to the experiment hall, which houses a variety of experiments and test articles. Each beam line has one or more neutron choppers which filter the neutron beam based on the neutron energy by using a rotating neutron absorbing material passing through the neutron beam. Excessive vibration of the Vision beam line, believed to be caused by the T0 chopper, prevented the Vision beam line from operating at full capacity. This problem had been addressed several times by rebalancing/reworking the T0 beam chopper but the problem stubbornly persisted. To determine the cause of the high vibration, dynamic testing was performed. Twenty-seven accelerometer and motor current channels of data were collected during drive up, drive down, coast down, and steady-state conditions; resonance testing and motor current signature analysis were also performed. The data was analyzed for traditional mechanical/machinery issues such as misalignment and imbalance using time series analysis, frequency domain analysis, and operating deflection shape analysis. The analysis showed that the chopper base plate was experiencing an amplified response to the excitation provided by the T0 beam chopper. The amplified response was diagnosed to be caused by higher than expected base plate flexibility, possibly due to improper grouting or loose floor anchors. Based on this diagnosis, a decision was made to dismantle the beam line chopper and remount the base plate. Neutron activation of the beam line components make modifications to the beam line especially expensive and time consuming due to the radiation handling requirements, so this decision had significant financial and schedule implications. It was found that the base plate was indeed loose because of improper grouting during its initial installation. The base plate was modified by splitting it into multiple sections, isolating the T0 chopper from the rest of the beam line, and each section was then reinstalled and re-grouted. After these modifications, the vibration levels were reduced by a factor of 30. The reduction in vibration level was sufficient to allow the Vision beam line to operate at full capacity for the first time since its completed construction date.

Van Hoy, Blake W [ORNL

2014-01-01T23:59:59.000Z

431

#AskEnergySaver: Air Sealing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Ownedof Energy ThePrivacy ActVeteranWind Vision AboutSecretary Chu

432

#AskEnergySaver: Home Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Ownedof Energy ThePrivacy ActVeteranWind Vision AboutSecretary Chuexperts

433

Cleanroom Energy Optimization Methods  

E-Print Network [OSTI]

in many parts of the country. The purpose of this article is to inform the reader. Whereas, the obvious benefits for energy conservation policies are mainly ecological; corporations with vision can implement policies that also contribute... significantly to the bottom line. Semiconductor Cleanroom Energy Based upon surveys the Semiconductor industry has over 12,800,000 ft2 (1,190,000 m2) of cleanroom space in the United States varying in cleanliness from Class M1 (ISO Class 3) to Class M6...

Naughton, P.; Schrecengost, R.

2004-01-01T23:59:59.000Z

434

A vision for end-to-end (E2E) data services: "Unidata's vision calls for providing comprehensive, well-integrated and end-to-end  

E-Print Network [OSTI]

, well-integrated and end-to-end data services for the geosciences. These include an array of functions components and services that are well-integrated and enable us to realize the aforementioned vision within a stage as well as across the stages. Strategies, tactics and imperatives: Integrated services do

435

Water Power Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

HydroVision International July 14, 2015 8:00AM PDT to July 17, 2015 5:00PM PDT European Wave and Tidal Energy Conference September 6, 2015 8:00AM CEST to September 11, 2015 5:00PM...

436

Optimizing Dam Operations for Power and for Fish: an Overview of the US Department of Energy and US Army Corps of Engineers ADvanced Turbine Development R&D. A Pre-Conference Workshop at HydroVision 2006, Oregon Convention Center, Portland, Oregon July 31, 2006  

SciTech Connect (OSTI)

This booklet contains abstracts of presentations made at a preconference workshop on the US Department of Energy and US Army Corps of Engineers hydroturbine programs. The workshop was held in conjunction with Hydrovision 2006 July 31, 2006 at the Oregon Convention Center in Portland Oregon. The workshop was organized by the Corps of Engineers, PNNL, and the DOE Wind and Hydropower Program. Presenters gave overviews of the Corps' Turbine Survival Program and the history of the DOE Advanced Turbine Development Program. They also spoke on physical hydraulic models, biocriteria for safe fish passage, pressure investigations using the Sensor Fish Device, blade strike models, optimization of power plant operations, bioindex testing of turbine performance, approaches to measuring fish survival, a systems view of turbine performance, and the Turbine Survival Program design approach.

Dauble, Dennis D.

2006-08-01T23:59:59.000Z

437

REDD: A Public Data Set for Energy Disaggregation Research  

E-Print Network [OSTI]

of energy consumption over the course of a day for one of the houses in REDD. biology or machine vision. WeREDD: A Public Data Set for Energy Disaggregation Research J. Zico Kolter Computer Science@csail.mit.edu Matthew J. Johnson Laboratory for Information and Decision Systems Massachusetts Institute of Technology

Willsky, Alan S.

438

Ris Energy Report 3 References for Chapter 3  

E-Print Network [OSTI]

electricity market. 4. European Commission (2003): Hydrogen Energy and Fuel Cells ­ A Vision of our Future Programmes on Hydrogen and Fuel Cells R&D, Hydrogen Co-ordination Group, IEA/CERT/ HCG(2003)1. 7. IEA (2004 of fuel cell/hydrogen technology. In Proc. 15th World Hydrogen Energy Conf., Yokohama. 28PL-02, CD Rom

439

#EnergyFaceoff Rounds Begin! | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment ofCareersWind Vision:#EnergyFaceoff Rounds Begin!

440

2009 Energy Consumption Per Person | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment ofCareersWind Vision:#EnergyFaceoff100% Cleansecurity09

Note: This page contains sample records for the topic "vision montreux energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview  

SciTech Connect (OSTI)

Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

Unal, Cetin [Los Alamos National Laboratory; Pasamehmetoglu, Kemal [IDAHO NATIONAL LAB; Carmack, Jon [IDAHO NATIONAL LAB

2010-01-01T23:59:59.000Z

442

A National Vision for Electricity's Second 100 Years | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley ResponsibleSubmissionof Energy 5ofA BoostNational

443

Market-Oriented Cloud Computing: Vision, Hype, and Reality for Delivering IT Services as Computing Utilities  

E-Print Network [OSTI]

This keynote paper: presents a 21st century vision of computing; identifies various computing paradigms promising to deliver the vision of computing utilities; defines Cloud computing and provides the architecture for creating market-oriented Clouds by leveraging technologies such as VMs; provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; presents some representative Cloud platforms especially those developed in industries along with our current work towards realising market-oriented resource allocation of Clouds by leveraging the 3rd generation Aneka enterprise Grid technology; reveals our early thoughts on interconnecting Clouds for dynamically creating an atmospheric computing environment along with pointers to future community research; and concludes with the need for convergence of competing IT paradigms for delivering our 21st century vision.

Buyya, Rajkumar; Venugopal, Srikumar

2008-01-01T23:59:59.000Z

444

#AskEnergy: Live Twitter Q&A on Solar Energy | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment ofCareersWind Vision: Continuing theDepartmentAskEnergy:

445

Mentoring New Visions Students Design Lab Sustainability Team  

E-Print Network [OSTI]

This work is supported by the NSF under cooperative agreement EEC-0812056 and by New York State under NYSTAR replacement Track and analyze energy consumption and savings data before and after bulb replacement. Build & controls) Track energy savings Build demonstration prototypes LED Demo & Bulb Survey in DCC DCC Bulb

Salama, Khaled

446

form processing specifically for use by vision applica-tions. The most fundamental of the planned extensions  

E-Print Network [OSTI]

, J. Brolio, A. Hanson, and E. Riseman, "The Schema System," International Journal of Computer Vision, "Detecting Runways in Complex Airport Scenes," Computer Vision, Graphics, and Image Processing, Vol. 51, No:McGraw Hill, 1975, Chapter 5. #12;Figure 10 Los Angeles International -- Excellent runway only. #12;Figure 9

Southern California, University of

447

Abstract--This paper presents a comparison of lateral controllers for vision-based control of a small autonomous  

E-Print Network [OSTI]

of a small autonomous aircraft following a road. Control strategies are designed to stabilize the aircraft conditions as well as with background wind, a zero-roll assumption in the vision system, and realistic presented here is to enable vision- based following of a roadway by small, autonomous aircraft using only

Frew, Eric W.

448

Optics-less smart sensors and a possible mechanism of cutaneous vision in nature  

E-Print Network [OSTI]

Optics-less cutaneous (skin) vision is not rare among living organisms, though its mechanisms and capabilities have not been thoroughly investigated. This paper demonstrates, using methods from statistical parameter estimation theory and numerical simulations, that an array of bare sensors with a natural cosine-law angular sensitivity arranged on a flat or curved surface has the ability to perform imaging tasks without any optics at all. The working principle of this type of optics-less sensor and the model developed here for determining sensor performance may be used to shed light upon possible mechanisms and capabilities of cutaneous vision in nature.

Leonid Yaroslavsky; Chad Goerzen; Stanislav Umansky; H. John Caulfield

2008-08-08T23:59:59.000Z

449

Report: EM Management Analysis and Strategic Vision-Casting  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015Department of Energy onACQUISITION ANDEM

450

Vision for Bioenergy and Biobased Products in the United States  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department of Energy Ventilation SystemNovemberAction Plan for Energy

451

The Electricity Transmission System Future Vision & Grid Challenges  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram (Alabama)Technology forto lead those involved in theThereFuture

452

Climate VISION: Private Sector Initiatives: Aluminum: Resources and Links -  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, and technology forResources & LinksEnergy

453

Climate VISION: Private Sector Initiatives: Cement: Resources and Links  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, andPlans Work Plans TheResultsEnergy

454

Climate VISION: Private Sector Initiatives: Mining: GHG Information  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -Results At this time,Energy Footprints

455

Climate VISION: Private Sector Initiatives: Mining: GHG Information -  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -Results At this time,Energy

456

Climate VISION: Private Sector Initiatives: Oil and Gas: Resources and  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinks - Energy Management

457

Climate VISION: Private Sector Initiatives: Oil and Gas: Resources and  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinks - Energy ManagementLinks -

458

Climate VISION: Private Sector Initiatives: Oil and Gas: Resources and  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinks - Energy ManagementLinks

459

Climate VISION: Private Sector Initiatives: Oil and Gas: Resources and  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinks - Energy

460

Climate VISION: Private Sector Initiatives: Oil and Gas: Resources and  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinks - EnergyLinks - Software

Note: This page contains sample records for the topic "vision montreux energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Climate VISION: Private Sector Initiatives: Oil and Gas: Resources and  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinks - EnergyLinks -

462

Climate VISION: Private Sector Initiatives: Oil and Gas: Results  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinks - EnergyLinks -Results The

463

Climate VISION: Private Sector Initiatives: Oil and Gas: Work Plans  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinks - EnergyLinks -Results

464

Climate VISION: Private Sector Initiatives: Semiconductors: GHG Information  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinks - EnergyLinks -ResultsGHG

465

Climate VISION: Private Sector Initiatives: Semiconductors: Resources and  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinks - EnergyLinks

466

Climate VISION: Private Sector Initiatives: Semiconductors: Resources and  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinks - EnergyLinksLinks -

467

Climate VISION: Private Sector Initiatives: Semiconductors: Resources and  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinks - EnergyLinksLinks -Links

468

Climate VISION: Private Sector Initiatives: Semiconductors: Resources and  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinks - EnergyLinksLinks

469

Climate VISION: Private Sector Initiatives: Semiconductors: Work Plans  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinks - EnergyLinksLinksWork

471

U.S. EPA State Clean Energy and Climate Program (2009). Clean Energy Lead by Example Guide: Strategies, Resources, and Action Steps for State Programs.  

E-Print Network [OSTI]

State governments can achieve substantial energy cost savings across their facilities, operations, and fleets through clean energy Lead by Example (LBE) programs. They can also demonstrate energy and environmental leadership, raise public awareness of the benefits of clean energy technologies, improve air quality, reduce greenhouse gas (GHG) emissions, improve energy supply and reliability, and foster markets for environmentally preferable products. The LBE Guide provides information to assist state governments as they develop and implement effective LBE programs to achieve their clean energy goals. It presents strategies, resources, and tools state decision makers can use throughout the process. EPA and other organizations recognize leading by example as a key policy option for states seeking to achieve their clean energy goals. For example, the importance of LBE programs is documented in the the National Action Plan for Energy Efficiency Vision for 2025 report. The Vision identifies LBE as a critical component of achieving the long-term goal of all cost-effective energy efficiency by 2025. Goal Six of the Visions ten implementation goals is to develop state policies such as LBE for pursuing robust energy efficiency practices. DocUmEnt maP ChAPtER onE introduction ChAPtER two Potential lBE activities and measures ChAPtER thREE

Prepared Joanna Pratt; Joe Donahue; Niko Dietsch

472

Toward accessible evaluation of the electrophysiology of human vision  

E-Print Network [OSTI]

As photoreceptors in our retinas capture discrete photons, that energy is converted into an electrochemical signal which shoots back through the optic nerve and into our visual cortex. We can sample that signal as it's ...

Canham, Amy Elizabeth

2014-01-01T23:59:59.000Z

473

Japanese Vision of Commissioning Process and Asian View  

E-Print Network [OSTI]

society in Japan. As most engineers have not been so happy as the minimum initial cost policy used to goes first without clear definition of performance on environmental quality and energy efficiency, commissioning concept, after seven years of discussions...

Nakahara, N.

2004-01-01T23:59:59.000Z

474

Climate VISION: Private Sector Initiatives: Aluminum: Resources and Links -  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, and technology

475

Climate VISION: Private Sector Initiatives: Automobile Manufacturers: GHG  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, and

476

Climate VISION: Private Sector Initiatives: Forest Products: Resources and  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,

477

Climate VISION: Private Sector Initiatives: Magnesium: Resources and Links  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -

478

Fusion energy science: Clean, safe, and abundant energy through innovative science and technology  

SciTech Connect (OSTI)

Fusion energy science combines the study of the behavior of plasmas--the state of matter that forms 99% of the visible universe--with a vision of using fusion--the energy source of the stars--to create an affordable, plentiful, and environmentally benign energy source for humankind. The dual nature of fusion energy science provides an unfolding panorama of exciting intellectual challenge and a promise of an attractive energy source for generations to come. The goal of this report is a comprehensive understanding of plasma behavior leading to an affordable and attractive fusion energy source.

None

2001-01-01T23:59:59.000Z

479

Wider recognition in peripheral vision common to different subtypes of dyslexia  

E-Print Network [OSTI]

Wider recognition in peripheral vision common to different subtypes of dyslexia M.L. Lorusso a,*, A the various subtypes of dyslexia, suggests a general characteristic of visual perception, and possibly a different visual-attentional mode. ? 2004 Elsevier Ltd. All rights reserved. Keywords: Dyslexia; Lateral

Poggio, Tomaso

480

STRATEGIC PLAN 2011 2016: SUMMARY i. Charter, Mission and Strategic Vision 2  

E-Print Network [OSTI]

and Advocacy Campus People and Culture Finance · The Plan incorporates short, medium and long term performance & Resources Committee, its Senior Management Team, Heads of School and Heads of Departments fora, and a teamSTRATEGIC PLAN 2011 ­ 2016: SUMMARY Contents i. Charter, Mission and Strategic Vision 2 ii

Subramanian, Sriram

Note: This page contains sample records for the topic "vision montreux energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Robotics and Computer Integrated Manufacturing 19 (2003) 7987 Vision-guided fixtureless assembly of automotive components  

E-Print Network [OSTI]

of automotive components Gary M. Bonea, *, David Capsonb a Department of Mechanical Engineering, Mc with sensor-guided robots. In this paper, the development of a vision-guided RFA workcell for automotive automotive body components. r 2003 Elsevier Science Ltd. All rights reserved. Keywords: Automated assembly

Bone, Gary

482

Vision Statement for Plant Physiology Comparative Plant Genomics. Frontiers and Prospects  

E-Print Network [OSTI]

Vision Statement for Plant Physiology Comparative Plant Genomics. Frontiers and Prospects Ana L function and evolution at various levels of biological organiza- tion. The availability of whole-genome sequences as well as other genomic resources (e.g. microarray meth- ods, expressed sequence tag [EST

Purugganan, Michael D.

483

Vision Research 46 (2006) 27352742 www.elsevier.com/locate/visres  

E-Print Network [OSTI]

© 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.visres.2006.01.001 Flash lag in depth Laurence R. Harris ¤ , Philip A. Duke, Agnieszka Kopinska Department of Psychology, Centre for Vision Research, York University, Toronto, Ont., Canada M3J 1P3 Received 25 October 2005; received in revised form 28 December 2005

Harris, Laurence R.

484

Machine Vision Condition Monitoring of Heavy-Haul Railcar Structural Underframe Components  

E-Print Network [OSTI]

Machine Vision Condition Monitoring of Heavy-Haul Railcar Structural Underframe Components Bryan W at Urbana-Champaign Summary: Monitoring the structural health of heavy-haul rolling stock is critical inspection of railcar truck components, safety appliances and passenger car undercarriages [4, 5, 6

Barkan, Christopher P.L.

485

Aspects of High Level Computer Vision Using Fuzzy Sets James M. Keller  

E-Print Network [OSTI]

was that for pattern recognition, the differences between fuzzy spatial relation definitions was not crucialAspects of High Level Computer Vision Using Fuzzy Sets James M. Keller Computer Engr. & Computer Matsakis@irit.fr Abstract Fuzzy set theory is making many inroads into the handling of uncertainty

Matsakis, Pascal

486

Titan Student Union "Visioning Day" Activity (March 18, 2011) Student Engagement Report  

E-Print Network [OSTI]

Titan Student Union ­ "Visioning Day" Activity (March 18, 2011) Student Engagement Report FY 2010-2011 Purpose Statement The Titan Student Union and Student Recreation Center, collectively a unit of the Associated Students, CSUF, Inc., together serve as the primary gathering place and recreational facility

de Lijser, Peter

487

Monitoring the Aerodynamic Efficiency of Intermodal Train Loading Using Machine Vision  

E-Print Network [OSTI]

Monitoring the Aerodynamic Efficiency of Intermodal Train Loading Using Machine Vision TRB 11 transported by North American railroads. Intermodal trains, however, use equipment that is not aerodynamically significant aerodynamic drag. This high resistance associated with the movement of intermodal trains results

Illinois at Urbana-Champaign, University of

488

Genetic Evidence for the Coexistence of Pheromone Perception and Full Trichromatic Vision in Howler Monkeys  

E-Print Network [OSTI]

Genetic Evidence for the Coexistence of Pheromone Perception and Full Trichromatic Vision in Howler Monkeys David M. Webb,* Liliana Corte´s-Ortiz, and Jianzhi Zhang* *Department of Ecology and Evolutionary trichromacy alone does not lead to the loss of pheromone communication. We suggest that the ecological

Zhang, Jianzhi

489

CeSOS Highlights and AMOS Visions 27-29th May 2013 Aurlien Babarit  

E-Print Network [OSTI]

2013 Criteria for comparison > The true criterion is cost of kWh. > kWh (power production) can absorption Income side of COE The higher the power absorption per unit, the less the installation cost a limit to the allowed cost for viability #12;A. Babarit CeSOS Highlights and AMOS Visions 27-29th May

Nrvg, Kjetil

490

Verifiable Fuel Cycle Simulation Model (VISION): A Tool for Analyzing Nuclear Fuel Cycle Futures  

SciTech Connect (OSTI)

The nuclear fuel cycle consists of a set of complex components that are intended to work together. To support the nuclear renaissance, it is necessary to understand the impacts of changes and timing of events in any part of the fuel cycle system such as how the system would respond to each technological change, a series of which moves the fuel cycle from where it is to a postulated future state. The system analysis working group of the United States research program on advanced fuel cycles (formerly called the Advanced Fuel Cycle Initiative) is developing a dynamic simulation model, VISION, to capture the relationships, timing, and changes in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model components and some examples of how to use VISION. For example, VISION users can now change yearly the selection of separation or reactor technologies, the performance characteristics of those technologies, and/or the routing of material among separation and reactor types - with the model still operating on a PC in <5 min.

Jacob J. Jacobson; Steven J. Piet; Gretchen E. Matthern; David E. Shropshire; Robert F. Jeffers; A. M. Yacout; Tyler Schweitzer

2010-11-01T23:59:59.000Z

491

ViDE: A Vision-Based Approach for Deep Web Data Extraction  

E-Print Network [OSTI]

ViDE: A Vision-Based Approach for Deep Web Data Extraction Wei Liu, Xiaofeng Meng, Member, IEEE, and Weiyi Meng, Member, IEEE Abstract--Deep Web contents are accessed by queries submitted to Web databases and the returned data records are enwrapped in dynamically generated Web pages (they will be called deep Web pages

492

Meteorological Conditions Processing for Vision-based Traffic Monitoring Nicolas Hautire  

E-Print Network [OSTI]

of the sensors. A vision-based traffic monitoring system is proposed to take fog and rain into account and react ac- cordingly. A background modeling approach, based on a mixture of gaussians, is used to separate the foreground from the background. Since fog is steady weather, the back- ground image is used to detect

Paris-Sud XI, Université de

493

Eye Finding via Face Detection for a Foveated, Active Vision System Brian Scassellati  

E-Print Network [OSTI]

Eye Finding via Face Detection for a Foveated, Active Vision System Brian Scassellati 545 Technology Square MIT Artificial Intelligence Lab Cambridge, MA, 02139, USA scaz@ai.mit.edu Abstract Eye finding is the first step toward building a ma- chine that can recognize social cues, like eye contact

494

Eye Finding via Face Detection for a Foveated, Active Vision System Brian Scassellati  

E-Print Network [OSTI]

Eye Finding via Face Detection for a Foveated, Active Vision System Brian Scassellati 545 Technology Square MIT Artificial Intelligence Lab Cambridge, MA, 02139, USA scaz@ai.mit.edu Abstract Eye finding is the first step toward building a ma­ chine that can recognize social cues, like eye contact

495

Vision Based Navigation with an Experimental Satellite Konrad Makowka, Alvar Saenz-Otero, David W. Miller  

E-Print Network [OSTI]

-Otero, David W. Miller January 2012 SSL # 2-12 #12;#12;Page I Vision Based Navigation with an Experimental Satellite Testbed Konrad Makowka, Alvar Saenz-Otero, David W. Miller January 2012 SSL # 2-12 This work at Massachusetts Institute of Technology (MIT) Space Systems Laboratory (SSL). First, an application programming

496

Computer Vision for Vehicle Monitoring and Control Luke Fletcher, Nicholas Apostoloff, Jason Chen, Alexander Zelinsky  

E-Print Network [OSTI]

the dynamics of road vehicles. Automation in road vehicles is being looked to as a possible tool to combat fatigue. Analogous to the Figure 1: The Autonomous Vehicle. deployment of industrial robots, automationComputer Vision for Vehicle Monitoring and Control Luke Fletcher, Nicholas Apostoloff, Jason Chen

497

Condition Monitoring of Railway Turnouts and Other Track Components Using Machine Vision  

E-Print Network [OSTI]

vehicle-mounted cameras, image enhancement using image-processing software, and assisted automation using and symptomatic conditions within the images. A prototype machine vision system has been developed for automated more efficient, effective, and objective. In addition, interim approaches to automated track inspection

Illinois at Urbana-Champaign, University of

498

Citizens In Movement A Vision for the People of Malmberget, Sweden  

E-Print Network [OSTI]

Citizens In Movement A Vision for the People of Malmberget, Sweden prepared by Daniel BYSTR?M (Sweden) Rita ENGLER (Brazil) Filippo A. SALUSTRI (Canada) Sara TUNHEDEN (Sweden) Nils J. TVENGSBERG mine run by LKAB in Malm- berget, Sweden, takes ore from deposits that extend downwards and outwards

Salustri, Filippo A.

499

Resolution Invariant Surfaces for Panoramic Vision Systems Tanya L. Conroy John B. Moore  

E-Print Network [OSTI]

shape not designed for resolution invariance. The resolu- tion invariance of these mirrors is especially to undertake range finding. The proposed mirror shapes will be useful for mobile robotics and machine vi- sion of mobile robotics and machine vision [5], [1]. An attractive approach to panoramic imaging is to mount

Moore, John Barratt

500

Vision: Cloud-Powered Sight for All Showing the Cloud What You See  

E-Print Network [OSTI]

Vision: Cloud-Powered Sight for All Showing the Cloud What You See Paramvir Bahl Matthai Philipose argue that for computers to do more for us, we need to show the cloud what we see and embrace cloud General Terms Algorithms, Design, Human Factors, Languages, Performance, Security Keywords Camera, cloud

Zhong, Lin