Powered by Deep Web Technologies
Note: This page contains sample records for the topic "visible irradiance atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

ON THE EXISTENCE OF SHOCKS IN IRRADIATED EXOPLANETARY ATMOSPHERES  

SciTech Connect (OSTI)

Supersonic flows are expected to exist in the atmospheres of irradiated exoplanets, but the question of whether shocks develop lingers. Specifically, it reduces to whether continuous flow in a closed loop may become supersonic and if some portions of the supersonic flow steepen into shocks. We first demonstrate that continuous, supersonic flow may exist in two flavors: isentropic and non-isentropic, with shocks being included in the latter class of solutions. Supersonic flow is a necessary but insufficient condition for shocks to develop. The development of a shock requires the characteristics of neighboring points in a flow to intersect. We demonstrate that the intersection of characteristics may be quantified via the knowledge of the Mach number. Finally, we examine three-dimensional simulations of hot Jovian atmospheres and demonstrate that shock formation is expected to occur mostly on the dayside hemisphere, upstream of the substellar point, because the enhanced temperatures near the substellar point provide a natural pressure barrier for the returning flow. Understanding the role of shocks in irradiated exoplanetary atmospheres is relevant to correctly modeling observables such as the peak offsets of infrared phase curves.

Heng, Kevin [Institute for Astronomy, ETH Zuerich, Wolfgang-Pauli-Strasse 27, CH-8093 Zuerich (Switzerland)

2012-12-10T23:59:59.000Z

2

Surface effects and phase stability in metal oxides nanoparticles under visible irradiation  

SciTech Connect (OSTI)

The light induced phase transformation between stable phases of metal oxides nanoparticles is analyzed. The surrounding atmosphere as well as the defect density at the surface play a fundamental role. It has been found that in oxygen poor chamber atmosphere the phase transformation is favored, while the phase transition cannot be achieved if the defects at the surface are properly passivated. The phase transition is activated by intragap irradiation, able to activate the F- center at the surface connected to oxygen vacancies, and promoting the activation of the surface and the nucleation of neighboring crystallites. The phase transition was studied in Titanium oxide (TiO{sub 2}) and in Iron oxide (Fe{sub 2}O{sub 3}): Maghemite is subjected to a phase transformation to ??Fe{sub 2}O{sub 3} (hematite), Anatase nanoparticles converts to Rutile. The general mechanism of the phase transition and, more in general, the possibility to optically control the surface activity of metal oxides is discussed.

Ricci, Pier Carlo, E-mail: carlo.ricci@dsf.unica.it; Carbonaro, C. M., E-mail: carlo.ricci@dsf.unica.it; Corpino, R., E-mail: carlo.ricci@dsf.unica.it; Chiriu, D., E-mail: carlo.ricci@dsf.unica.it; Stagi, L., E-mail: carlo.ricci@dsf.unica.it [Dipartimento di Fisica, Universitá degli Studi di Cagliari, S.P. Monserrato-Sestu Km 0,700, 09042 Monserrato (Canada) (Italy)

2014-10-21T23:59:59.000Z

3

Analysis of the empirical relations between visible solar radiation, the solar altitude and the transparency of the atmosphere  

E-Print Network [OSTI]

ANALYSIS OF THE EMPIRICAL RELATIONS BETWEEN VISUAL SOLAR RADIATION, THE SOLAR ALTITUDE AND THE TRANSPARENCY OF THE ATMOSPHERE A Thesis A. Garcia Occhipinti Submitted to the Graduate College of the Texas ARM Untverstty in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE January 1965 Major Subject: Oceanography ANALYSIS OF THE EMPIRICAL RELATIONS BETWEEN VISIBLE SOLAR RADIATION, THE SOLAR ALTITUDE AND THE TRANSPARENCY OF THE ATMOSPHERE A Thesis A. Garcia Occhipinti...

Garcia Occhipinti, Antonio

1965-01-01T23:59:59.000Z

4

Effects of aerosol species on atmospheric visibility in Kaohsiung City, Taiwan  

SciTech Connect (OSTI)

Visibility data collected from Kaohsiung City, Taiwan, for the past two decades indicated that the air pollutants have significantly degraded visibility in recent years. During the study period, the seasonal mean visibilities in spring, summer, fall, and winter were only 5.4, 9.1, 8.2, and 3.4 km, respectively. To ascertain how urban aerosols influence the visibility, we conducted concurrent visibility monitoring and aerosol sampling in 1999 to identify the principal causes of visibility impairments in the region. In this study, ambient aerosols were sampled and analyzed for 11 constituents, including water-soluble ions and carbon materials, to investigate the chemical composition of Kaohsiung aerosols. Stepwise regression method was used to correlate the impact of aerosol species on visibility impairments. Both seasonal and diurnal variation patterns were found from the monitoring of visibility. Results showed that light scattering was attributed primarily to aerosols with sizes that range from 0.26 to 0.90 {mu}m, corresponding with the wavelength region of visible light, which accounted for {approximately} 72% of the light scattering coefficient. Sulfate was a dominant component that affected both the light scattering coefficient and the visibility in the region. On average, (NH{sub 4}){sup 2}SO{sub 4}, NH{sub 4}NO{sub 3}, total carbon, and fine particulate matter (PM2.5)-remainder contributed 53%, 17%, 16%, and 14% to total light scattering, respectively. An empirical regression model of visibility based on sulfate, elemental carbon, and humidity was developed, and the comparison indicated that visibility in an urban area could be properly simulated by the equation derived herein. 35 refs., 10 figs., 4 tabs.

Chang-Gai Lee; Chung-Shin Yuan; Jui-Cheng Chang; Ching Yuan [National Sun Yat-Sen University (Taiwan)

2005-07-01T23:59:59.000Z

5

Synthesis and magnetic characterization of magnetite obtained by monowavelength visible light irradiation  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Magnetite was synthesized under monowavelength LED irradiation at room temperature. Black-Right-Pointing-Pointer Different wavelength irradiations led to distinctive characteristics of magnetite. Black-Right-Pointing-Pointer Particle sizes of magnetite were controlled by different irradiation wavelengths. Black-Right-Pointing-Pointer Wavelength affects the magnetic characteristics of magnetite. -- Abstract: Magnetite (Fe{sub 3}O{sub 4}) nanoparticles were controllably synthesized by aerial oxidation Fe{sup II}EDTA solution under different monowavelength light-emitting diode (LED) lamps irradiation at room temperature. The results of the X-ray diffraction (XRD) spectra show the formation of magnetite nanoparticle further confirmed by Fourier transform infrared spectroscope (FTIR) and the difference in crystallinity of as-prepared samples. Fe{sub 3}O{sub 4} particles are nearly spherical in shape based on transmission electron microscopy (TEM). Average crystallite sizes of magnetite can be controlled by different irradiation light wavelengths from XRD and TEM: 50.1, 41.2, and 20.3 nm for red, green, and blue light irradiation, respectively. The magnetic properties of Fe{sub 3}O{sub 4} samples were investigated. Saturation magnetization values of magnetic nanoparticles were 70.1 (sample M-625), 65.3 (sample M-525), and 58.2 (sample M-460) emu/g, respectively.

Lin, Yulong [Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001 (China) [Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017 (China); Wei, Yu, E-mail: weiyu@mail.hebtu.edu.cn [College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050016 (China)] [College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050016 (China); Sun, Yuhan, E-mail: yhsun@sxicc.ac.cn [Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001 (China)] [Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001 (China); Wang, Jing [School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017 (China)] [School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017 (China)

2012-03-15T23:59:59.000Z

6

Hydrogen generation by visible light irradiation of ruthenium complexes and colloidal platinum stabilized by viologen polymers in aqueous solutions  

SciTech Connect (OSTI)

The hydrogen generation from water on the irradiation of visible light has recently attracted the attention of many investigators, because it affords one of the most promising approaches to chemical conversion of solar energy and production of renewable energy resources. In an attempt to construct efficient systems for chemical conversion of light energy, the present authors have found that photoinduced redox reactions in various molecular assemblies are very well suited for the purpose. Along this line, water-soluble polymers with pendant viologen groups and colloidal platinum have been prepared to study the electron transport properties and hydrogen generation in the polymer system. An attempt has also been made to synthesize polysoap-type viologen polymers in order to concentrate photosensitizer, electron mediator, and multielectron redox catalyst so that the hydrogen-generating efficiency is increased by the cooperation of the relevant species on the same polymer. The results are described.

Nishijima, T.; Nagamura, T.; Matsuo, T.

1981-02-01T23:59:59.000Z

7

About ÂŤEffectiveÂŽ Height of the Aerosol Atmosphere in Visible and IR Wavelength Range  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building Technologies Office About theofAbout SHARE About

8

Effect of 710 nm visible light irradiation on neurite outgrowth in primary rat cortical neurons following ischemic insult  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer 710 nm wavelength light (LED) has a protective effect in the stroke animal model. Black-Right-Pointing-Pointer We determined the effects of LED irradiation in vitro stroke model. Black-Right-Pointing-Pointer LED treatment promotes the neurite outgrowth through MAPK activation. Black-Right-Pointing-Pointer The level of synaptic markers significantly increased with LED treatment. Black-Right-Pointing-Pointer LED treatment protects cell death in the in vitro stroke model. -- Abstract: Objective: We previously reported that 710 nm Light-emitting Diode (LED) has a protective effect through cellular immunity activation in the stroke animal model. However, whether LED directly protects neurons suffering from neurodegeneration was entirely unknown. Therefore, we sought to determine the effects of 710 nm visible light irradiation on neuronal protection and neuronal outgrowth in an in vitro stroke model. Materials and methods: Primary cultured rat cortical neurons were exposed to oxygen-glucose deprivation (OGD) and reoxygenation and normal conditions. An LED array with a peak wavelength of 710 nm was placed beneath the covered culture dishes with the room light turned off and were irradiated accordingly. LED treatments (4 min at 4 J/cm{sup 2} and 50 mW/cm{sup 2}) were given once to four times within 8 h at 2 h intervals for 7 days. Mean neurite density, mean neurite diameter, and total fiber length were also measured after microtubule associated protein 2 (MAP2) immunostaining using the Axio Vision program. Synaptic marker expression and MAPK activation were confirmed by Western blotting. Results: Images captured after MAP2 immunocytochemistry showed significant (p < 0.05) enhancement of post-ischemic neurite outgrowth with LED treatment once and twice a day. MAPK activation was enhanced by LED treatment in both OGD-exposed and normal cells. The levels of synaptic markers such as PSD 95, GAP 43, and synaptophysin significantly increased with LED treatment in both OGD-exposed and normal cells (p < 0.05). Conclusion: Our data suggest that LED treatment may promote synaptogenesis through MAPK activation and subsequently protect cell death in the in vitro stroke model.

Choi, Dong-Hee [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of) [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of); Department of Medical Science, Konkuk University School of Medicine, Seoul (Korea, Republic of); Lee, Kyoung-Hee; Kim, Ji-Hye; Kim, Moon Young [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of)] [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of); Lim, Jeong Hoon [Department of Rehabilitation Medicine, Konkuk University School of Medicine, Seoul (Korea, Republic of) [Department of Rehabilitation Medicine, Konkuk University School of Medicine, Seoul (Korea, Republic of); Rehabilitation Medicine, Division of Neurology, Department of Medicine, National University Hospital, National University Health System (Singapore); Lee, Jongmin, E-mail: leej@kuh.ac.kr [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of) [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of); Department of Rehabilitation Medicine, Konkuk University School of Medicine, Seoul (Korea, Republic of)

2012-06-01T23:59:59.000Z

9

Introducing an Absolute Cavity Pyrgeometer (ACP) for Improving the Atmospheric Longwave Irradiance Measurement (Poster)  

SciTech Connect (OSTI)

Advancing climate change research requires accurate and traceable measurement of the atmospheric longwave irradiance. Current measurement capabilities are limited to an estimated uncertainty of larger than +/- 4 W/m2 using the interim World Infrared Standard Group (WISG). WISG is traceable to the Systeme international d'unites (SI) through blackbody calibrations. An Absolute Cavity Pyrgeometer (ACP) is being developed to measure absolute outdoor longwave irradiance with traceability to SI using the temperature scale (ITS-90) and the sky as the reference source, instead of a blackbody. The ACP was designed by NREL and optically characterized by the National Institute of Standards and Technology (NIST). Under clear-sky and stable conditions, the responsivity of the ACP is determined by lowering the temperature of the cavity and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The absolute atmospheric longwave irradiance is then calculated with an uncertainty of +/- 3.96 W/m2 with traceability to SI. The measured irradiance by the ACP was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the WISG.

Reda, I.; Stoffel, T.

2012-03-01T23:59:59.000Z

10

THE EFFECTS OF IRRADIATION ON HOT JOVIAN ATMOSPHERES: HEAT REDISTRIBUTION AND ENERGY DISSIPATION  

SciTech Connect (OSTI)

Hot Jupiters, due to the proximity to their parent stars, are subjected to a strong irradiating flux that governs their radiative and dynamical properties. We compute a suite of three-dimensional circulation models with dual-band radiative transfer, exploring a relevant range of irradiation temperatures, both with and without temperature inversions. We find that, for irradiation temperatures T{sub irr} {approx}< 2000 K, heat redistribution is very efficient, producing comparable dayside and nightside fluxes. For T{sub irr} Almost-Equal-To 2200-2400 K, the redistribution starts to break down, resulting in a high day-night flux contrast. Our simulations indicate that the efficiency of redistribution is primarily governed by the ratio of advective to radiative timescales. Models with temperature inversions display a higher day-night contrast due to the deposition of starlight at higher altitudes, but we find this opacity-driven effect to be secondary compared to the effects of irradiation. The hotspot offset from the substellar point is large when insolation is weak and redistribution is efficient, and decreases as redistribution breaks down. The atmospheric flow can be potentially subjected to the Kelvin-Helmholtz instability (as indicated by the Richardson number) only in the uppermost layers, with a depth that penetrates down to pressures of a few millibars at most. Shocks penetrate deeper, down to several bars in the hottest model. Ohmic dissipation generally occurs down to deeper levels than shock dissipation (to tens of bars), but the penetration depth varies with the atmospheric opacity. The total dissipated Ohmic power increases steeply with the strength of the irradiating flux and the dissipation depth recedes into the atmosphere, favoring radius inflation in the most irradiated objects. A survey of the existing data, as well as the inferences made from them, reveals that our results are broadly consistent with the observational trends.

Perna, Rosalba [JILA and Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States); Heng, Kevin [ETH Zuerich, Institute for Astronomy, Wolfgang-Pauli-Strasse 27, CH-8093 Zuerich (Switzerland); Pont, Frederic [College of Engineering, Mathematics and Physical Sciences, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

2012-05-20T23:59:59.000Z

11

Synthesis of ZnO nanorod–nanosheet composite via facile hydrothermal method and their photocatalytic activities under visible-light irradiation  

SciTech Connect (OSTI)

ZnO composite films consisting of ZnO nanorods and nanosheets were prepared by low-temperature hydrothermal processing at 80 °C on seeded glass substrates. The seed layer was coated on glass substrates by sol–gel dip-coating and pre-heated at 300 °C for 10 min prior to hydrothermal growth. The size of the grain formed after pre-heat treatment was ?40 nm. A preferred orientation seed layer at the c-axis was obtained, which promoted vertical growth of the ZnO nanorod arrays and formation of the ZnO nanosheets. X-ray diffraction patterns and high-resolution transmission electron microscope (HR-TEM) images confirmed that the ZnO nanorods and nanosheets consist of single crystalline and polycrystalline structures, respectively. Room temperature photoluminescence spectra of the ZnO nanorod–nanosheet composite films exhibited band-edge ultraviolet (UV) and visible emission (blue and green) indicating the formation of ZnO crystals with good crystallinity and are supported by Raman scattering results. The formation of one-dimensional (1D) ZnO nanorod arrays and two-dimensional (2D) ZnO nanosheet films using seeded substrates in a single low-temperature hydrothermal step would be beneficial for realization of device applications that utilize substrates with limited temperature stability. The ZnO nanorods and nanosheets composite structure demonstrated higher photocatalytic activity during degradation of aqueous methylene blue under visible-light irradiation. -- Graphical abstract: Schematic illustration of ZnO nanorod–nanosheet composite structure formation by hydrothermal at low-temperature of 80 °C against time. Highlights: • Novel simultaneous formation of ZnO nanorods and nanosheets composite structure. • Facile single hydrothermal step formation at low-temperature. • Photoluminescence showed ultraviolet and visible emission. • Feasible application on substrates with low temperature stability. • Improved photocatalytic activity under visible-light irradiation.

Tan, Wai Kian [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Abdul Razak, Khairunisak; Lockman, Zainovia [School of Materials and Mineral Resources, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Kawamura, Go; Muto, Hiroyuki [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Matsuda, Atsunori, E-mail: matsuda@ee.tut.ac.jp [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan)

2014-03-15T23:59:59.000Z

12

An Atmospheric Radiation Measurement Value-Added Product to Retrieve Optically Thin Cloud Visible Optical Depth using Micropulse Lidar  

SciTech Connect (OSTI)

The purpose of the Micropulse Lidar (MPL) Cloud Optical Depth (MPLCOD) Value-Added Product (VAP) is to retrieve the visible (short-wave) cloud optical depth for optically thin clouds using MPL. The advantage of using the MPL to derive optical depth is that lidar is able to detect optically thin cloud layers that may not be detected by millimeter cloud radar or radiometric techniques. The disadvantage of using lidar to derive optical depth is that the lidar signal becomes attenuation limited when ? approaches 3 (this value can vary depending on instrument specifications). As a result, the lidar will not detect optically thin clouds if an optically thick cloud obstructs the lidar beam.

Lo, C; Comstock, JM; Flynn, C

2006-10-01T23:59:59.000Z

13

Ultraviolet pulsed laser irradiation of multi-walled carbon nanotubes in nitrogen atmosphere  

SciTech Connect (OSTI)

Laser irradiation of randomly oriented multi-walled carbon nanotube (MWCNT) networks has been carried out using a pulsed Nd:YAG UV laser in nitrogen gas environment. The evolution of the MWCNT morphology and structure as a function of laser fluence and number of accumulated laser pulses has been studied using electron microscopies and Raman spectroscopy. The observed changes are discussed and correlated with thermal simulations. The obtained results indicate that laser irradiation induces very fast, high temperature thermal cycles in MWCNTs which produce the formation of different nanocarbon forms, such as nanodiamonds. Premelting processes have been observed in localized sites by irradiation at low number of laser pulses and low fluence values. The accumulation of laser pulses and the increase in the fluence cause the full melting and amorphization of MWCNTs. The observed structural changes differ from that of conventional high temperature annealing treatments of MWCNTs.

Pérez del Pino, Ángel, E-mail: aperez@icmab.es; Cabana, Laura; Tobias, Gerard [Instituto de Ciencia de Materiales de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus UAB, 08193 Bellaterra (Spain); György, Enikö [Instituto de Ciencia de Materiales de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus UAB, 08193 Bellaterra (Spain); National Institute for Lasers, Plasma and Radiation Physics, P. O. Box MG 36, 76900 Bucharest V (Romania); Ballesteros, Belén [ICN2—Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain)

2014-03-07T23:59:59.000Z

14

1-Dodecane-sulfonic-acid-sodium-salt(LAS) assisted hydrothermal synthesis of Cd{sub x}Zn{sub 1-x}S solid solution as efficient photocatalysts under visible light irradiation  

SciTech Connect (OSTI)

With anionic surfactant LAS assisted, series of zinc cadmium sulfide semiconductor photocatalysts were synthesized by hydrothermal method. These products were characterized by X-ray diffraction (XRD), UV-Vis absorption spectra (UV-Vis) and scanning electron microscopy (FESEM). The photocatalytic activities of as-prepared samples were evaluated by photocatalytic hydrogen production from water under visible-light irradiation. The best synthesis parameters are: Composition 0.9:0.1 (Cd:Zn molar ratio), Temperature 160 deg. C, Hydrothermal Time 48 Hour, LAS Concentration 1.7 mmol/L, the maximum visible-light-catalytic hydrogen production rate is 161.25 {mu}mol/h (lambda>430 nm) which is higher than those of by coprecipitation method. The experiment results indicate that surfactant assisted hydrothermal method is an effective way to get highly active CdZnS solid solution photocatalyst.

Jia, B.; Guo, L. J. [State Key Laboratory of Multiphase Flow in power Engineering, Xi'an Jiaotong University (China)

2010-03-01T23:59:59.000Z

15

The effect of various atmospheric oxygen concentrations upon peripheral lymphocytes during whole-body gamma irradiation  

E-Print Network [OSTI]

taken from the tail at 1 hr, 2 hv, 4 hv, and 24 hv post-irradiation. The samples consisted of 10) of blood mixed witi. 25 ml of diluting fluid. The diluting flu-'d used was that devised by D'Angelo and lacombe (31). A whiLe blood cell (WBC) -zuni... ? 1457, Excerpta Yedica Foundation& N. Y. , 1967. 31. G. D'Angelo and lb Lacombe, A practical diluent for electronic wni e cell counts. An. J. Clin. Path. 38, 658-662 (1962). R. C. D. "teel a!. d J. 'I. Torrie, Principles a-!d procedure- of statistic...

Vanek, Kenneth Norman

1969-01-01T23:59:59.000Z

16

Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth's surface for cloudless atmospheres  

SciTech Connect (OSTI)

A new, simple model for calculating clear-sky direct and diffuse spectral irradiance on horizontal and tilted surfaces is presented. The model is based on previously reported simple algorithms and on comparisons with rigorous radiative transfer calculations and limited outdoor measurements. Equations for direct normal irradiance are outlined; and include: Raleigh scattering; aerosol scattering and absorption; water vapor absorption; and ozone and uniformly mixed gas absorption. Inputs to the model include solar zenith angle, collector tilt angle, atmospheric turbidity, amount of ozone and precipitable water vapor, surface pressure, and ground albedo. The model calculates terrestrial spectra from 0.3 to 4.0 ..mu..m with approximately 10 nm resolution. A major goal of this work is to provide researchers with the capability to calculate spectral irradiance for different atmospheric conditions and different collector geometries using microcomputers. A listing of the computer program is provided.

Bird, R.; Riordan, C.

1984-12-01T23:59:59.000Z

17

The visibility complex made visibly simple an introduction to 2D structures of visibility  

E-Print Network [OSTI]

. Then a sweeping algorithm that can build the complex in O(mlog(n)) where n is the size of the visibility graph when a line becomes tangent to three objects. This is shown in the video. The complex is build usingThe visibility complex made visibly simple an introduction to 2D structures of visibility Fr

Durand, Frédo

18

ARM - Measurement - Visibility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearch Relatedcontentcharacteristics ARMgovMeasurementsVisibility ARM

19

Visible light photocatalytic activity in nitrogen-doped TiO{sub 2} nanobelts  

SciTech Connect (OSTI)

We present a comprehensive experimental and theoretical study of the electronic properties and photocatalytic activity of nitrogen-doped anatase TiO{sub 2} nanobelts. UV-visible spectra show enhanced absorption in the visible light range for nitrogen-doped nanobelts compared to the pristine sample. The nitrogen-doped nanobelts exhibit improved photocatalytic activity compared to the pristine sample upon visible light irradiation. Furthermore, the incorporation of nitrogen introduces localized states in the band gap.

De Nyago Tafen; Lewis, James P. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States); Wang Jin; Wu Nianqiang [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506 (United States)

2009-03-02T23:59:59.000Z

20

Dynamics of Planetary Atmospheres  

E-Print Network [OSTI]

pressure (bars) N2 82%; Ar 12%; CH4 6%CO2 96.5%; N2 3.5%Atmospheric composition 26177Orbital inclination (1992) orbiter ­ Winds from cloud-tracking and probe drifts ­ IR temperatures, solar-fixed tides, polar-Huygens mission (from 2005) ­ Doppler wind descent profile ­ IR temperature and composition maps ­ Visible, IR

Read, Peter L.

Note: This page contains sample records for the topic "visible irradiance atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

A new approach for deriving the solar irradiance from non-flaring solar upper atmosphere plasmas at 2 x 10^4<-T<-2 x 10^7 K  

SciTech Connect (OSTI)

We propose a new approach for deriving the solar irradiance in the X-ray to VUV range due to the emission by solar upper atmosphere plasmas at 2 x 10{sup 4} {le} T {le} 2 x 10{sup 7} K. Our approach is based on new understanding of the properties of the solar upper atmosphere; specifically, the discovery that the majority of emission from the non-flaring solar upper transition region and corona in the temperature range 3 x 10{sup 5} {le} T {le} 3 x 10{sup 6} K arises from isothermal plasmas that have four distinct temperatures: 0.35, 0.9, 1.4 and 3 x 10{sup 6} K. In the lower transition region (2 x 10{sup 4} {le} T {le} 2 x 10{sup 5} K) of coronal holes, quiet regions or active regions, although multithermal and variable in brightness, the shape of emission measure vs. temperature curves is almost constant. Flaring plasmas are for most part isothermal, although their emission measure and temperature continuously change. In this paper we review these recent results and propose a set of simple spectrometers for recording the solar spectrum in several narrow bands. The solar emission measure, average plasma temperature, and composition can be derived using the measured line fluxes. By combining the emission measure and other plasma properties with the output of a suite of atomic physics codes, which are also described here, the solar irradiance in the temperature range 2 x 10{sup 4} {le} T {le} 2 x 10{sup 7} K can be calculated.

Colgan, James P [Los Alamos National Laboratory; Abdallaf, Jr., Joseph [Los Alamos National Laboratory; Fontes, Christopher J [Los Alamos National Laboratory; Sherrill, Manolo E [Los Alamos National Laboratory; Feldmn, U [NON LANL; Landi, E [NON LANL; Brown, C M [NON LANL; Seely, J F [NON LANL; Doschek, G A [NON LANL; Dammasch, I E [NON LANL

2008-01-01T23:59:59.000Z

22

Sustained water cleavage by visible light  

SciTech Connect (OSTI)

Sustained cleavage of water by 4 quanta of visible light is achieved in aqueous solutions by using a bifunctional redox catalyst composed of Pt and RuO/sub 2/ cosupported by colloidal TiO/sub 2/ particles. A photochemical model system containing Ru(bpy)/sub 3//sup 2 +/ as a sensitizer and methyl viologen (MV/sup 2 +/) as an electron relay is used to test the effect of catalyst composition, sensitizer concentration, pH, and temperature on the efficiency of light-induced water decomposition. Electron relay free systems also exhibit high photoactivity. Direct band gap irradiation by uv light leads to efficient water cleavage in the absence of sensitizer and relay.

Borgarello, E.; Kiwi, J.; Pelizzetti, E.; Visca, M.; Graetzel, M.

1981-10-21T23:59:59.000Z

23

Apparatus and method to control atmospheric water vapor composition and concentration during dynamic cooling of biological tissues in conjunction with laser irradiations  

DOE Patents [OSTI]

Cryogen spray cooling of skin surface with millisecond cryogen spurts is an effective method for establishing a controlled temperature distribution in tissue and protecting the epidermis from nonspecific thermal injury during laser mediated dermatological procedures. Control of humidity level, spraying distance and cryogen boiling point is material to the resulting surface temperature. Decreasing the ambient humidity level results in less ice formation on the skin surface without altering the surface temperature during the cryogen spurt. For a particular delivery nozzle, increasing the spraying distance to 85 millimeters lowers the surface temperature. The methodology comprises establishing a controlled humidity level in the theater of operation of the irradiation site of the biological tissues before and/or during the cryogenic spray cooling of the biological tissue. At cold temperatures calibration was achieved by mounting a thermistor on a thermoelectric cooler. The thermal electric cooler was cooled from from 20.degree. C. to about -20.degree. C. while measuring its infrared emission.

Nelson, J. Stuart (Laguna Niguel, CA); Anvari, Bahman (Houston, TX); Tanenbaum, B. Samuel (Irvine, CA); Milner, Thomas E. (Austin, TX)

1999-01-01T23:59:59.000Z

24

Solar irradiance changes and photobiological effects at Earth's surface following astrophysical ionizing radiation events  

E-Print Network [OSTI]

Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in surface-level solar ultraviolet radiation. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In this work, we employed the TUV radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light) for clear-sky conditions and fixed aerosol parameter values. We also considered a wide range of biological effects on organisms ranging from humans to phytoplankton. We found that past work overestimated UVB irradiance, but that relative estimates for increase in exposure to DNA damaging radi...

Thomas, Brian C; Snyder, Brock R

2015-01-01T23:59:59.000Z

25

alpha particle irradiation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Incidence characteristics of alpha particles on detectors irradiated in a radon progeny atmosphere Biology and Medicine Websites Summary: Incidence characteristics of...

26

alpha particles irradiation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Incidence characteristics of alpha particles on detectors irradiated in a radon progeny atmosphere Biology and Medicine Websites Summary: Incidence characteristics of...

27

alpha particle irradiated: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Incidence characteristics of alpha particles on detectors irradiated in a radon progeny atmosphere Biology and Medicine Websites Summary: Incidence characteristics of...

28

apres irradiation alpha: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Edmond 8 Incidence characteristics of alpha particles on detectors irradiated in a radon progeny atmosphere Biology and Medicine Websites Summary: Incidence characteristics of...

29

3D Visibility made visibly simple: an introduction to the Visibility Skeleton  

E-Print Network [OSTI]

.g. lighting sim­ ulation), the limits of umbra and penumbra, etc. Previ­ ous approaches have used coarse visible from a vertex of the scene and the limits of umbra and penumbra between two polygons. 1 are the limits of umbra and penumbra together with back­ projections which encode the topological aspect

Durand, Frédo

30

On the feasibility of determining slant-range visibility by using measurements of scattered light  

E-Print Network [OSTI]

and scattering was not objectionably unrealistic. Six model atmospheres were deter- mined with the parameters based on measurements of the absorption and scattering coefficients in the atmosphere. The aerosols in urban areas (industrial pollution) were found... of the continuous increase in the polluting material contained in the atmosphere. The degree of increase in pollution can be estimated somewhat by the continual annual decrease in visibility reported in visibil- ity observations (Neiburger, 1955). The procedures...

Newcomb, Fred Richard

1972-01-01T23:59:59.000Z

31

Smoke and Visible Emissions (New Mexico)  

Broader source: Energy.gov [DOE]

This rule establishes controls on smoke and visible emissions from certain sources.  This rule is not intended to preempt any more stringent controls on smoke and visible emissions provided in any...

32

E-Print Network 3.0 - atmospheric aerosol aggregates Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are also directly associated with reduction in visibility and with long-range transport... for atmospheric aerosols is their association ... Source: Brookhaven National...

33

IRRADIATION EXPERIMENTS &  

E-Print Network [OSTI]

IRRADIATION EXPERIMENTS & FACILITIES AT BNL: BLIP & NSLS II Peter Wanderer Superconducting Magnet). Current user: LBNE ­ materials for Project X. · Long Baseline Neutrino Experiment ­ Abandoned gold mine

McDonald, Kirk

34

Continuous wave laser irradiation of explosives  

SciTech Connect (OSTI)

Quantitative measurements of the levels of continuous wave (CW) laser light that can be safely applied to bare explosives during contact operations were obtained at 532 nm, 785 nm, and 1550 nm wavelengths. A thermal camera was used to record the temperature of explosive pressed pellets and single crystals while they were irradiated using a measured laser power and laser spot size. A visible light image of the sample surface was obtained before and after the laser irradiation. Laser irradiation thresholds were obtained for the onset of any visible change to the explosive sample and for the onset of any visible chemical reaction. Deflagration to detonation transitions were not observed using any of these CW laser wavelengths on single crystals or pressed pellets in the unconfined geometry tested. Except for the photochemistry of DAAF, TATB and PBX 9502, all reactions appeared to be thermal using a 532 nm wavelength laser. For a 1550 nm wavelength laser, no photochemistry was evident, but the laser power thresholds for thermal damage in some of the materials were significantly lower than for the 532 nm laser wavelength. No reactions were observed in any of the studied explosives using the available 300 mW laser at 785 nm wavelength. Tables of laser irradiance damage and reaction thresholds are presented for pressed pellets of PBX9501, PBX9502, Composition B, HMX, TATB, RDX, DAAF, PETN, and TNT and single crystals of RDX, HMX, and PETN for each of the laser wavelengths.

McGrane, Shawn D.; Moore, David S.

2010-12-01T23:59:59.000Z

35

Visibility with Multiple Reflections Boris Aronov 1  

E-Print Network [OSTI]

â?? 1. A lower bound of \\Omega\\Gamma/ n=k \\Gamma \\Theta(1)) 2k ) is also established which matches to geometric optics, so that not only the issue of direct (straight­line) visibility, but also of visibility with reflection naturally occur here. Indeed, there is a large literature on geometric optics (such as [24, 12, 5

Dey, Tamal Krishna

36

Facile preparation of sphere-like copper ferrite nanostructures and their enhanced visible-light-induced photocatalytic conversion of benzene  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: • Spinel CuFe{sub 2}O{sub 4} nanospheres were successfully synthesized via a facile method. • CuFe{sub 2}O{sub 4} nanospheres showed high photocatalytic activity toward benzene. • Ethyl acetate, carboxylic acid and aldehyde were the intermediate products. - Abstract: Spinel copper ferrite nanospheres with diameters of about 116 nm were synthesized in high yield via a facile solvothermal route. The prepared nanospheres had cubic spinel structure and exhibited good size uniformity and regularity. The band-gap energy of CuFe{sub 2}O{sub 4} nanospheres was calculated to be about 1.69 eV, indicating their potential visible-light-induced photocatalytic activity. The dramatically enhanced photocatalytic activity of the CuFe{sub 2}O{sub 4} nanospheres was evaluated via the photocatalytic conversion of benzene under Xe lamp irradiation. By using the in situ FTIR technique, ethyl acetate, carboxylic acid and aldehyde could be regarded as the intermediate products, and CO{sub 2} was produced as the final product during the reaction process. This study provided new insight into the design and preparation of functional nanomaterials with sphere structure in high yield, and the as-grown architectures demonstrated an excellent ability to remove organic pollutants in the atmosphere.

Shen, Yu, E-mail: shenyuqing0322@gmail.com [School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028 (China); Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Wu, Yanbo; Xu, Hongfeng; Fu, Jie [School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028 (China); Li, Xinyong; Zhao, Qidong; Hou, Yang [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China)

2013-10-15T23:59:59.000Z

37

Atmospheric Neutrinos  

E-Print Network [OSTI]

This paper is a brief overview of the theory and experimental data of atmospheric neutrino production at the fiftieth anniversary of the experimental discovery of neutrinos.

Thomas K. Gaisser

2006-12-11T23:59:59.000Z

38

E-Print Network 3.0 - apres irradiation neutronique Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

tel-00005708,version1-5Apr2004 12;Sommaire 1 INTRODUCTION... COMPORTEMENT DES POLYMERES SOUS IRRADIATION SOUS ATMOSPHERE ANAEROBIE Source: Ecole Polytechnique, Centre de...

39

alpha-particles microbeam irradiation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Incidence characteristics of alpha particles on detectors irradiated in a radon progeny atmosphere Biology and Medicine Websites Summary: Incidence characteristics of...

40

Visible Spectrum Incandescent Selective Emitter  

SciTech Connect (OSTI)

The purpose of the work performed was to demonstrate the feasibility of a novel bi-layer selective emitter. Selective emitters are incandescent radiant bodies with emissivities that are substantially larger in a selected part of the radiation spectrum, thereby significantly shifting their radiated spectral distribution from that of a blackbody radiating at the same temperature. The major research objectives involved answering the following questions: (1) What maximum VIS/NIR radiant power and emissivity ratios can be attained at 2650 K? (2) What is the observed emitter body life and how does its performance vary with time? (3) What are the design tradeoffs for a dual heating approach in which both an internally mounted heating coil and electrical resistance self-heating are used? (4) What are the quantitative improvements to be had from utilizing a bi-layer emitter body with a low emissivity inner layer and a partially transmissive outer layer? Two approaches to obtaining selective emissivity were investigated. The first was to utilize large optical scattering within an emitter material with a spectral optical absorption that is much greater within the visible spectrum than that within the NIR. With this approach, an optically thick emitter can radiate almost as if optically thin because essentially, scattering limits the distance below the surface from which significant amounts of internally generated radiation can emerge. The performance of thin emitters was also investigated (for optically thin emitters, spectral emissivity is proportional to spectral absorptivity). These emitters were fabricated from thin mono-layer emitter rods as well as from bi-layer rods with a thin emitter layer mounted on a substrate core. With an initially estimated energy efficiency of almost three times that of standard incandescent bulbs, a number of energy, economic and environmental benefits such as less energy use and cost, reduced CO{sub 2} emissions, and no mercury contamination was initially projected. The work performed provided answers to a number of important questions. The first is that, with the investigated approaches, the maximum sustained emitter efficiencies are about 1.5 times that of a standard incandescent bulb. This was seen to be the case for both thick and thin emitters, and for both mono-layer and bi-layer designs. While observed VIS/NIR ratios represent improvements over standard incandescent bulbs, it does not appear sufficient to overcome higher cost (i.e. up to five times that of the standard bulb) and ensure commercial success. Another result is that high temperatures (i.e. 2650 K) are routinely attainable without platinum electrodes. This is significant for reducing material costs. A novel dual heating arrangement and insulated electrodes were used to attain these temperatures. Another observed characteristic of the emitter was significant grain growth soon after attaining operating temperatures. This is an undesirable characteristic that results in substantially less optical scattering and spectral selectivity, and which significantly limits emitter efficiencies to the values reported. Further work is required to address this problem.

Sonsight Inc.

2004-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "visible irradiance atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Visible spectrometer utilizing organic thin film absorption  

E-Print Network [OSTI]

In this thesis, I modeled and developed a spectrometer for the visible wavelength spectrum, based on absorption characteristics of organic thin films. The device uses fundamental principles of linear algebra to reconstruct ...

Tiefenbruck, Laura C. (Laura Christine)

2004-01-01T23:59:59.000Z

42

VISIBILITY ALGORITHMS 8.1. INTRODUCTION  

E-Print Network [OSTI]

from e if it would be entirely illuminated by a fluorescent light bulb whose extent matched e. Avis(x) is called the point visibility polygon for x; it may be imagined as the region illuminated by a light bulb

O'Rourke, Joseph

43

Emission of Visible Light by Hot Dense Metals  

E-Print Network [OSTI]

HIFAN 1761 EMISSION OF VISIBLE LIGHT BY HOT DENSE METALS ByDE-AC52-07NA27344. HI FAN Emission of Visible Light by HotABSTRACT We consider the emission of visible light by hot

More, R.M.

2010-01-01T23:59:59.000Z

44

Safer Food with Irradiation  

E-Print Network [OSTI]

This publication answers questions about food irradiation and how it helps prevent foodborne illnesses. Included are explanations of how irradiation works and its benefits. Irradiation is a safe method of preserving food quality and ensuring its...

Thompson, Britta; Vestal, Andy; Van Laanen, Peggy

2003-01-21T23:59:59.000Z

45

SPECTRAL SOLAR IRRADIANCE AND ITS ENTROPIC EFFECT ON EARTH'S CLIMATE  

E-Print Network [OSTI]

SPECTRAL SOLAR IRRADIANCE AND ITS ENTROPIC EFFECT ON EARTH'S CLIMATE Wei Wu1 , Yangang Liu1 of the spectral solar irradiance (SSI) at the top of the Earth's atmosphere by the Solar Radiation and Climate's entropy flux from the TOA incident solar radiation. Two extreme cases are examined by using Planck

46

Nitrogen-sensitized dual phase titanate/titania for visible-light driven phenol degradation  

SciTech Connect (OSTI)

A dual-phase material (DP-160) comprising hydrated titanate (H{sub 2}Ti{sub 3}O{sub 7}{center_dot}xH{sub 2}O) and anatase (TiO{sub 2}) was synthesized in a low-temperature one-pot process in the presence of triethylamine (TEA) as the N-source. The unique structure exhibits strong visible light absorption. The chromophore is linked to Ti-N bonds derived from both surface sensitization and sub-surface (bulk) doping. From transmission electron microscope (TEM) and textural studies by N{sub 2} physisorption, the composite exists as mesoporous particles with a grain size of {approx}20 nm and mean pore diameter of 3.5 nm, responsible for the high surface area ({approx}180 m{sup 2}/g). DP-160 demonstrated photocatalytic activity in the degradation of phenol under visible light ({lambda}>420 nm). The activity of the composite was further enhanced by a small addition (0.001 M) of H{sub 2}O{sub 2}, which also gave rise to some visible light activity in the control samples. This effect is believed to be associated with the surface peroxo-titanate complex. GC-MS analyses showed that the intermediate products of phenol degradation induced by visible light irradiation of DP-160 did not differ from those obtained by UV (band-gap) irradiation of TiO{sub 2}. The overall performance of the composite is attributed to efficient excitation via inter-band states (due to N-doping), surface sensitization, improved adsorptive properties of aromatic compounds due to the N-carbonaceous overlayer, and the presence of heterojunctions that are known to promote directional charge transfer in other mixed-phase titanias like Degussa P25. - graphical abstract: Nitrogen-sensitized dual phase titanate/titania photocatalyst showing extended visible light absorption and efficient photocatalytic degradation of phenol. Highlights: Black-Right-Pointing-Pointer Low temperature one-pot synthesis of visible light active dual phase photocatalyst. Black-Right-Pointing-Pointer The dual phase consists of nanoscale titanate and anatase titania phases. Black-Right-Pointing-Pointer The photocatalyst displays high activity in degrading phenol under visible light. Black-Right-Pointing-Pointer Mechanisms for the sensitization to visible light are considered.

Cheng, Yu Hua; Subramaniam, Vishnu P.; Gong, Dangguo; Tang, Yuxin [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)] [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Highfield, James, E-mail: James_Highfield@ices.a-star.edu.sg [Institute of Chemical and Engineering Sciences 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore)] [Institute of Chemical and Engineering Sciences 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Pehkonen, Simo O. [Chemical Engineering Program, Masdar Institute of Science and Technology, PO Box 54224, Abu Dhabi (United Arab Emirates)] [Chemical Engineering Program, Masdar Institute of Science and Technology, PO Box 54224, Abu Dhabi (United Arab Emirates); Pichat, Pierre [Photocatalyse et Environnement, CNRS/Ecole Centrale de Lyon (STMS), 69134 Ecully Cedex (France)] [Photocatalyse et Environnement, CNRS/Ecole Centrale de Lyon (STMS), 69134 Ecully Cedex (France); Schreyer, Martin K. [Institute of Chemical and Engineering Sciences 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore)] [Institute of Chemical and Engineering Sciences 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Chen, Zhong, E-mail: aszchen@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)] [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

2012-12-15T23:59:59.000Z

47

Relating productivity to visibility and lighting  

SciTech Connect (OSTI)

The problem of determining the appropriate light levels for visual tasks is a cost-benefit problem. Existing light level recommendations seriously underweight the importance of economic factors. Furthermore, the relative importance of the visibility factors in determining the optimal light levels appears inconsistent with the importance of these factors in determining visibility and visual performance. It is shown that calculations based on acuities give a lower limit of 100 to 200 lux for cost-effective light levels for office tasks. Upper limits are calculated from correlations of task performance to visibility levels. Visibility levels become progressively insensitive to luminance as luminance increases. Average power densities above 100 watts/m/sup 2/ are cost-effective only when visibility is very low. However, there is a 3-to-10 times larger increase in benefits from improving contrast or contrast sensitivity than from using more than 10 watts/m/sup 2/. Contrast or contrast sensitivity can be improved by using forms with larger print, using xerographic copy instead of carbon or mimeo, making sure office workers have the right eyeglasses, or even by transferring workers with visual problems to less visually demanding tasks. Once these changes are made it is no longer cost-effective to use more than 10 watts/m/sup 2/. This conclusion raises serious questions about recommendations that lead to greater than about 10 watts/m/sup 2/ of installed lighting for general office work.

Clear, R.; Berman, S.

1982-01-01T23:59:59.000Z

48

Preparation, characterization and applications of novel carbon and nitrogen codoped TiO{sub 2} nanoparticles from annealing TiN under CO atmosphere  

SciTech Connect (OSTI)

Graphical abstract: Carbon and nitrogen codoped TiO{sub 2} nanoparticles were firstly fabricated by calcining TiN powder under CO atmosphere at different temperatures between 400 and 600 °C, both the improved photocatalytic activity for degradation of methylene blue and enhanced photovoltaic performance for dye sensitized solar cells were demonstrated. - Highlights: • CN-codoped TiO{sub 2} nanoparticles were prepared by calcining TiN under CO atmosphere. • More visible light response was confirmed by UV–vis DRS and photocatalytic results. • Enhanced conversion efficiency was observed for the DSSCs from CN-TiO{sub 2} photoanode. • CN-codoping played an important role to improve the photocatalytic performance. - Abstract: Carbon and nitrogen codoped titania (CN-TiO{sub 2}) nanoparticles were fabricated by calcining titanium nitride (TiN) nanoparticles under carbon monoxide (CO) atmosphere at four different temperatures in a range of 400–600 °C. The as-prepared samples were characterized with X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and X-ray photoelectron spectroscopy (XPS). Enhanced light absorption in both the UV and visible light region was observed for the resulted CN-TiO{sub 2} nanoparticles in ultraviolet-visible diffuse reflectance spectroscopy (UV–vis DRS). Improved photocatalytic activity toward the degradation of methylene blue by the CN-TiO{sub 2} nanoparticles was demonstrated under UV and visible light, respectively. The highest degradation rate was achieved for CN-TiO{sub 2} nanoparticles (13%) compared to N-TiO{sub 2} (10%) and the commercial P25 (5%) under visible light illumination for 40 min. Furthermore, the improved photocatalytic activity of CN-TiO{sub 2} was also confirmed by the degradation of colorless resorcinol under UV–vis light irradiation. Dye-sensitized solar cells (DSSCs) were fabricated using P25, N-TiO{sub 2} and CN-TiO{sub 2} photoanodes, respectively. The highest conversion efficiency of 3.31% was achieved by the DSSCs based on the CN-TiO{sub 2} photoanodes in comparison with the commercial P25 (1.61%) and N-TiO{sub 2} (2.44%) photoanodes. This work demonstrates that thermal treatment of TiN nanoparticles under CO atmosphere has shown to be a rapid, direct and clean approach to synthesize photocatalysts with enhanced photocatalytic and photovoltaic performance.

Sun, Mingxuan; Song, Peng; Li, Jing; Cui, Xiaoli, E-mail: xiaolicui@fudan.edu.cn

2013-10-15T23:59:59.000Z

49

Total Solar Irradiance Calibration Transfer Experiment/TIM Frequently Asked Questions  

E-Print Network [OSTI]

TCTE Total Solar Irradiance Calibration Transfer Experiment/TIM Frequently Asked Questions What is the purpose of the TCTE mission? The Total Solar Irradiance Calibration Transfer Experiment (TCTE to monitor changes in solar irradiance at the top of the Earth's atmosphere. TCTE will launch as one of five

Mojzsis, Stephen J.

50

Human Contrast Threshold and Astronomical Visibility  

E-Print Network [OSTI]

The standard visibility model in light pollution studies is the formula of Hecht (1947), as used e.g. by Schaefer (1990). However it is applicable only to point sources and is shown to be of limited accuracy. A new visibility model is presented for uniform achromatic targets of any size against background luminances ranging from zero to full daylight, produced by a systematic procedure applicable to any appropriate data set (e.g Blackwell (1946)), and based on a simple but previously unrecognized empirical relation between contrast threshold and adaptation luminance. The scotopic luminance correction for variable spectral radiance (colour index) is calculated. For point sources the model is more accurate than Hecht's formula and is verified using telescopic data collected at Mount Wilson by Bowen (1947), enabling the sky brightness at that time to be determined. The result is darker than the calculation by Garstang (2004), implying that light pollution grew more rapidly in subsequent decades than has been sup...

Crumey, Andrew

2014-01-01T23:59:59.000Z

51

State visibility in Q-bit space  

E-Print Network [OSTI]

We study by comparison the structure of singlet type states in Q-bit space in the light of quantum and classical paradigms. It is shown that only the classical paradigm implies a variation in the visibility of correlation coefficients, that has been observed in fact in experiments. We conclude that Q-bit space in not a appropriate venue for an EPR test of quantum completeness.

A. F. Kracklauer

2007-03-04T23:59:59.000Z

52

Atmosphere Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2ArgonneAssemblyDemandPlasma4 Medicare5Dust

53

Seeing solar on campus : a visible photovoltaic installation on campus  

E-Print Network [OSTI]

This paper presents a methodology for selecting a site on the MIT campus for a visible solar photovoltaic installation. Visibility, solar exposure, advertising potential, aesthetics, interactivity and direct or important ...

Guarda, Daniel Jair Alves

2006-01-01T23:59:59.000Z

54

Visible and near infrared reflectances measured from laboratory ice clouds  

E-Print Network [OSTI]

Visible and near infrared reflectances measured from laboratory ice clouds Brian Barkey* and K. N present laboratory results of the 0:68 m visible (VIS) and 1:617 m near infrared (NIR) reflectances for the remote sensing of thin cirrus clouds on the basis of visible (VIS) and near infrared (NIR) channels

Liou, K. N.

55

Atmospheric Aerosol Systems | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Themes Atmospheric Aerosol Systems Overview Atmospheric Aerosol Systems Biosystem Dynamics & Design Energy Materials & Processes Terrestrial & Subsurface Ecosystems...

56

A Model of Visible QCD Axion  

E-Print Network [OSTI]

We pursue a class of visible axion models where the axion mass is enhanced by strong dynamics in a mirrored copy of the Standard Model in the line of the idea put forward by Rubakov. In particular, we examine the consistency of the models with laboratory, astrophysical, and cosmological constraints. As a result, viable parameter regions are found, where the mass of the axion is of $O(100)$ MeV or above while the Peccei-Quinn breaking scale is at around $10^{3\\mbox{-}5}$ GeV.

Fukuda, Hajime; Ibe, Masahiro; Yanagida, Tsutomu T

2015-01-01T23:59:59.000Z

57

The Visible and Near Infrared module of EChO  

E-Print Network [OSTI]

The Visible and Near Infrared (VNIR) is one of the modules of EChO, the Exoplanets Characterization Observatory proposed to ESA for an M-class mission. EChO is aimed to observe planets while transiting by their suns. Then the instrument had to be designed to assure a high efficiency over the whole spectral range. In fact, it has to be able to observe stars with an apparent magnitude Mv= 9-12 and to see contrasts of the order of 10-4 - 10-5 necessary to reveal the characteristics of the atmospheres of the exoplanets under investigation. VNIR is a spectrometer in a cross-dispersed configuration, covering the 0.4-2.5 micron spectral range with a resolving power of about 330 and a field of view of 2 arcsec. It is functionally split into two channels respectively working in the 0.4-1 and 1.0-2.5 micron spectral ranges. Such a solution is imposed by the fact the light at short wavelengths has to be shared with the EChO Fine Guiding System (FGS) devoted to the pointing of the stars under observation. The spectromete...

Adriani, A; Gambicorti, L; Focardi, M; Oliva, E; Farina, M; Di Giorgio, A M; Santoli, F; Pace, E; Piccioni, G; Filacchione, G; Pancrazzi, M; Tozzi, A; Micela, G

2014-01-01T23:59:59.000Z

58

Photometric Trends in the Visible Solar Continuum and Their Sensitivity to the Center-to-Limb Profile  

E-Print Network [OSTI]

Solar irradiance variations over solar rotational time-scales are largely determined by the passage of magnetic structures across the visible solar disk. Variations on solar cycle time scales are thought to be similarly due to changes in surface magnetism with activity. Understanding the contribution of magnetic structures to total solar irradiance and solar spectral irradiance requires assessing their contributions as a function of disk position. Since only relative photometry is possible from the ground, the contrasts of image pixels are measured with respect to a center-to-limb intensity profile. Using nine years of full-disk red and blue continuum images from the Precision Solar Photometric Telescope at the Mauna Loa Solar Observatory (PSPT/MLSO), we examine the sensitivity of continuum contrast measurements to the center-to-limb profile definition. Profiles which differ only by the amount of magnetic activity allowed in the pixels used to determine them yield oppositely signed solar cycle length continuu...

Peck, Courtney

2015-01-01T23:59:59.000Z

59

INFERENCE OF INHOMOGENEOUS CLOUDS IN AN EXOPLANET ATMOSPHERE  

SciTech Connect (OSTI)

We present new visible and infrared observations of the hot Jupiter Kepler-7b to determine its atmospheric properties. Our analysis allows us to (1) refine Kepler-7b's relatively large geometric albedo of Ag = 0.35 ± 0.02, (2) place upper limits on Kepler-7b thermal emission that remains undetected in both Spitzer bandpasses and (3) report a westward shift in the Kepler optical phase curve. We argue that Kepler-7b's visible flux cannot be due to thermal emission or Rayleigh scattering from H{sub 2} molecules. We therefore conclude that high altitude, optically reflective clouds located west from the substellar point are present in its atmosphere. We find that a silicate-based cloud composition is a possible candidate. Kepler-7b exhibits several properties that may make it particularly amenable to cloud formation in its upper atmosphere. These include a hot deep atmosphere that avoids a cloud cold trap, very low surface gravity to suppress cloud sedimentation, and a planetary equilibrium temperature in a range that allows for silicate clouds to potentially form in the visible atmosphere probed by Kepler. Our analysis does not only present evidence of optically thick clouds on Kepler-7b but also yields the first map of clouds in an exoplanet atmosphere.

Demory, Brice-Olivier; De Wit, Julien; Lewis, Nikole; Zsom, Andras; Seager, Sara [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)] [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Fortney, Jonathan [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)] [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Knutson, Heather; Desert, Jean-Michel [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)] [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Heng, Kevin [Center for Space and Habitability, University of Bern, Sidlerstrasse 5, CH-3012, Bern (Switzerland)] [Center for Space and Habitability, University of Bern, Sidlerstrasse 5, CH-3012, Bern (Switzerland); Madhusudhan, Nikku [Department of Physics and Department of Astronomy, Yale University, New Haven, CT 06520 (United States)] [Department of Physics and Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Gillon, Michael [Institut d'Astrophysique et de Géophysique, Université de Ličge, Allée du 6 Aoűt, 17, Bat. B5C, B-4000 Ličge 1 (Belgium)] [Institut d'Astrophysique et de Géophysique, Université de Ličge, Allée du 6 Aoűt, 17, Bat. B5C, B-4000 Ličge 1 (Belgium); Barclay, Thomas [NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States)] [NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States); Parmentier, Vivien [Laboratoire J.-L. Lagrange, UMR 7293, Université de Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d'Azur B.P. 4229, F-06304 Nice Cedex 4 (France)] [Laboratoire J.-L. Lagrange, UMR 7293, Université de Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d'Azur B.P. 4229, F-06304 Nice Cedex 4 (France); Cowan, Nicolas B., E-mail: demory@mit.edu [Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, F165, Evanston, IL 60208 (United States)

2013-10-20T23:59:59.000Z

60

Nanoantennas for visible and infrared radiation  

E-Print Network [OSTI]

Nanoantennas for visible and infrared radiation can strongly enhance the interaction of light with nanoscale matter by their ability to efficiently link propagating and spatially localized optical fields. This ability unlocks an enormous potential for applications ranging from nanoscale optical microscopy and spectroscopy over solar energy conversion, integrated optical nanocircuitry, opto-electronics and density-ofstates engineering to ultra-sensing as well as enhancement of optical nonlinearities. Here we review the current understanding of optical antennas based on the background of both well-developed radiowave antenna engineering and the emerging field of plasmonics. In particular, we address the plasmonic behavior that emerges due to the very high optical frequencies involved and the limitations in the choice of antenna materials and geometrical parameters imposed by nanofabrication. Finally, we give a brief account of the current status of the field and the major established and emerging lines of inves...

Biagioni, Paolo; Hecht, Bert

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "visible irradiance atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Visible light surface emitting semiconductor laser  

DOE Patents [OSTI]

A vertical-cavity surface-emitting laser is disclosed comprising a laser cavity sandwiched between two distributed Bragg reflectors. The laser cavity comprises a pair of spacer layers surrounding one or more active, optically emitting quantum-well layers having a bandgap in the visible which serve as the active optically emitting material of the device. The thickness of the laser cavity is m .lambda./2n.sub.eff where m is an integer, .lambda. is the free-space wavelength of the laser radiation and n.sub.eff is the effective index of refraction of the cavity. Electrical pumping of the laser is achieved by heavily doping the bottom mirror and substrate to one conductivity-type and heavily doping regions of the upper mirror with the opposite conductivity type to form a diode structure and applying a suitable voltage to the diode structure. Specific embodiments of the invention for generating red, green, and blue radiation are described.

Olbright, Gregory R. (Boulder, CO); Jewell, Jack L. (Bridgewater, NJ)

1993-01-01T23:59:59.000Z

62

Resonant Visible Light Modulation with Graphene  

E-Print Network [OSTI]

Fast modulation and switching of light at visible and near-infrared (vis-NIR) frequencies is of utmost importance for optical signal processing and sensing technologies. No fundamental limit appears to prevent us from designing wavelength-sized devices capable of controlling the light phase and intensity at gigaherts (and even terahertz) speeds in those spectral ranges. However, this problem remains largely unsolved, despite recent advances in the use of quantum wells and phase-change materials for that purpose. Here, we explore an alternative solution based upon the remarkable electro-optical properties of graphene. In particular, we predict unity-order changes in the transmission and absorption of vis-NIR light produced upon electrical doping of graphene sheets coupled to realistically engineered optical cavities. The light intensity is enhanced at the graphene plane, and so is its absorption, which can be switched and modulated via Pauli blocking through varying the level of doping. Specifically, we explor...

Yu, Renwen; de Abajo, F Javier Garcia

2015-01-01T23:59:59.000Z

63

AMLR program: Ultraviolet and visible solar irradiance around Elephant Island, Antarctica, January to March 1993  

SciTech Connect (OSTI)

Since the discovery of the seasonal ozone hole over Antarctica, great efforts have been made in measuring incident ultraviolet radiation at high latitudes in the Southern Hemisphere, as well as the impact that enhanced UV-B radiation could have on terrestrial and aquatic environments. The measurements described in this article were conducted on board the NOAA ship Surveyor. 3 refs., 3 figs.

Helbling, E.W.; Holm-Hansen, O. (Univ. of California, San Diego, La Jolla, CA (United States)); Moran, P. (Universidad Nacional del Sur, Bahia Blanca (Argentina))

1993-01-01T23:59:59.000Z

64

Visible Light Induced Photodesorption of NO from the α-Cr2O3(0001)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface. | EMSL Visible Light Induced

65

Photocytotoxicity of a New Rh2(II,II) Complex: Increase in Cytotoxicity upon Irradiation Similar to That of PDT Agent Hematoporphyrin  

E-Print Network [OSTI]

Photocytotoxicity of a New Rh2(II,II) Complex: Increase in Cytotoxicity upon Irradiation Similar, Texas 77842, and Food and Drug Administration, College Park, Maryland 20740 Received January 17, 2005- calating complex 1 towards Hs-27 human skin cells in the dark and upon irradiation with visible light

Turro, Claudia

66

Use Remote Sensing Data (selected visible and infrared spectrums...  

Broader source: Energy.gov (indexed) [DOE]

Use Remote Sensing Data (selected visible and infrared spectrums) to locate high temperature ground anomalies in Colorado. Confirm heat flow potential with on-site surveys to drill...

67

Packet loss visibility and packet prioritization in digital videos  

E-Print Network [OSTI]

Performance comparison for videos with apparent compres-Prioritization in Digital Videos A Dissertation submitted inloss visibility,” Packet Video Workshop, Irvine, December

Kanumuri, Sandeep

2006-01-01T23:59:59.000Z

68

Comminuting irradiated ferritic steel  

DOE Patents [OSTI]

Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

Bauer, Roger E. (Kennewick, WA); Straalsund, Jerry L. (Kennewick, WA); Chin, Bryan A. (Auburn, AL)

1985-01-01T23:59:59.000Z

69

Irradiation Creep in Graphite  

SciTech Connect (OSTI)

An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

Ubic, Rick; Butt, Darryl; Windes, William

2014-03-13T23:59:59.000Z

70

Submitted for Publication to SOLAR ENERGY PRODUCING SATELLITE-DERIVED IRRADIANCES IN COMPLEX ARID TERRAIN  

E-Print Network [OSTI]

Submitted for Publication to SOLAR ENERGY PRODUCING SATELLITE-DERIVED IRRADIANCES IN COMPLEX ARID spectrum. #12;Submitted for Publication to SOLAR ENERGY In its simplest description the model amounts wavelengths in the visible spectral range (0.55-0.75 µm) corresponding to the peak of the solar radiation

Perez, Richard R.

71

Cooperative Institute for Research in the Atmosphere Volume 35, Summer 2011  

E-Print Network [OSTI]

, and Glen Liston. 1 CIRA Director 2 Researcher Spotlight 4 Solar Irradiance Forecasting 6 CIRA Founder. of Atmospheric Science with the Carbon Tracker activity led by Pieter Tans at NOAA. Linking the academic research

Collett Jr., Jeffrey L.

72

ATMOSPHERIC TURBIDITY DETERMINATION FROM IRRADIANCE RATIOS Chris Gueymard Frank Vignola  

E-Print Network [OSTI]

Solar Energy Center Physics Department 1679 Clearlake Rd. University of Oregon Cocoa, FL 32922 and humidity. If precipitable water is too high or too low, a too low or too high turbidity is inevitably pre, are that it is more sensitive to in- strumental error because two radiometers are involved (instead of one

Oregon, University of

73

Visibility in Discrete Geometry: an application to discrete geodesic paths  

E-Print Network [OSTI]

Visibility in Discrete Geometry: an application to discrete geodesic paths David Coeurjolly that are visible from a source pixel. Based on these definitions, we define discrete geodesic paths in dis- crete domain with obstacles. This allows us to introduce a new geodesic metric in discrete geometry

Paris-Sud XI, Université de

74

The Lightwave Model 142 CW Visible Ring Laser,  

E-Print Network [OSTI]

, operation temperature was controlled using a diode thermo-electric cooler. The laser specifications [4] were1 The Lightwave Model 142 CW Visible Ring Laser, Beam Splitter, Model ATM- 80A1 Acousto Dr. Andres LaRosa Abstract A Lightwave Electronics Model 142 continuous wave visible (green) laser

La Rosa, Andres H.

75

Visible Inequality, Status Competition and Conspicuous Consumption: Evidence from India  

E-Print Network [OSTI]

Visible Inequality, Status Competition and Conspicuous Consumption: Evidence from India Punarjit representative micro data from India. I ...nd that a decrease in the level of visible inequality, ceteris paribus in one's social status due to parallel action of others. From a policy perspective, my ...ndings

Bandyopadhyay, Antar

76

Fringe Visibility Estimators for the Palomar Testbed Interferometer  

E-Print Network [OSTI]

Visibility estimators and their performance are presented for use with the Palomar Testbed Interferometer (PTI). One operational mode of PTI is single-baseline visibility measurement using pathlength modulation with synchronous readout by a NICMOS-3 infrared array. Visibility is estimated from the fringe quadratures, either incoherently, or using source phase referencing to provide a longer coherent integration time. The visibility estimators differ those used with photon-counting detectors in order to account for biases attributable to detector offsets and read noise. The performance of these estimators is affected not only by photon noise, but also by the detector read noise and errors in estimating the bias corrections, which affect the incoherent and coherent estimators differently. Corrections for visibility loss in the coherent estimators using the measured tracking jitter are also presented.

M. M. Colavita

1998-10-28T23:59:59.000Z

77

On the Absorption and Redistribution of Energy in Irradiated Planets  

E-Print Network [OSTI]

We present a sequence of toy models for irradiated planet atmospheres, in which the effects of geometry and energy redistribution are modelled self-consistently. We use separate but coupled grey atmosphere models to treat the ingoing stellar irradiation and outgoing planetary reradiation. We investigate how observed quantities such as full phase secondary eclipses and orbital phase curves depend on various important parameters, such as the depth at which irradiation is absorbed and the depth at which energy is redistributed. We also compare our results to the more detailed radiative transfer models in the literature, in order to understand how those map onto the toy model parameter space. Such an approach can prove complementary to more detailed calculations, in that they demonstrate, in a simple way, how the solutions change depending on where, and how, energy redistribution occurs. As an example of the value of such models, we demonstrate how energy redistribution and temperature equilibration at moderate o...

Hansen, Brad

2008-01-01T23:59:59.000Z

78

Effects of hadron irradiation on scintillating fibers  

SciTech Connect (OSTI)

Trackers based on scintillating-fiber technology are being considered by the Solenoidal Detector Collaboration at SSC and the D[phi] collaboration at Fermilab. An important issue is the effect of the radiation existing in the detector cores on fiber properties. Most studies of radiation damage in scintillators have irradiated small bulk samples rather than fibers, and have used X-rays, [sup 60]Co gammas, or electron beams, often at accelerated rates. The authors have irradiated some 600 fibers in the Fermilab Tevatron C[phi] area, thereby obtaining a hadronic irradiation at realistic rates. Four-meter-long samples of ten Bicron polystyrene-based fiber types, maintained in air, dry nitrogen, argon, and vacuum atmospheres within stainless-steel tubes, were irradiated for seven weeks at various distances from the accelerator beam pipes. Maximum doses, measured by thermoluminescence detectors, were about 80 Krad. Fiber properties, particularly light yield and attenuation length, have been measured over a one-year period. A description of the work together with the results is presented. At the doses achieved, corresponding to a few years of actual fiber-tracking detector operation, little degradation is observed. In addition, recovery after several days' exposure to air has been noted. Properties of unirradiated samples kept in darkness show no changes after one year.

Atac, M. (Univ. of California, Los Angeles, CA (United States) Fermi National Accelerator Lab., Batavia, IL (United States)); Buchanan, C.; Chrisman, D.; Cline, D.; Kolonko, J.; Kubic, J.; Park, J. (Univ. of California, Los Angeles, CA (United States)); Baumbaugh, A.; Binkley, M.; Bross, A.D.; Finley, D.; Elias, J.; Foster, G.W.; Kephart, R.; Kephart, R.; Kim, C.; Park, H.; Pla-Dalmau, A.; Rivetta, C.; Tkaczyk, S.; Wagner, R. (Fermi National Accelerator Lab., Batavia, IL (United States)); Chung, M.; Goldberg, H.; Jeskik, R.; Margulies, S.; Mendez, H.; Solomon, J.; Vaca, F. (Univ. of Illinois, Chicago, IL (United States)); Kelley, C. (Massachusetts College of Pharmacy and Allied Health Sciences, Boston, MA (United States)); Baumbaugh, B.; Bishop, J.; Biswas, N.; Cason, N.; Jacques, J.; Kehoe, R.; Kelly, M.; Kenney, V.; LoSecco, J.; Ruchti, R.; Shephard, W.; Warchol, J.; Wayne, M.; Marchant, J.; Mountain, R.J. (Univ. of Notre Dame, IN (United States)); Davis, D.; Vandergriff, D. (O

1993-08-01T23:59:59.000Z

79

Secure Programming via Visibly Pushdown Safety Games William Harris  

E-Print Network [OSTI]

Safety Games William R. Harris1 , Somesh Jha1 , and Thomas Reps1,2 1 University of WisconsinComputer Sciences Department Secure Programming via Visibly Pushdown Safety Games William Harris

Reps, Thomas W.

80

Visible spectroscopic imaging on the Alcator C-Mod tokamak  

E-Print Network [OSTI]

This dissertation reports on the development of a diagnostic visible imaging system on the Alcator C-Mod tokamak and the results from that system. The dissertation asserts the value of this system as a qualitative and ...

Boswell, C. J. (Christopher James), 1974-

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "visible irradiance atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Climate Sciences: Atmospheric Thermodynamics  

E-Print Network [OSTI]

1 Climate Sciences: Atmospheric Thermodynamics Instructor: Lynn Russell, NH343 http://aerosol.ucsd.edu/courses.html Text: Curry & Webster Atmospheric Thermodynamics Ch1 Composition Ch2 Laws Ch3 Transfers Ch12 Energy Climate Sciences: Atmospheric Thermodynamics Instructor: Lynn Russell, NH343 http

Russell, Lynn

82

5, 60416076, 2005 Atmospheric  

E-Print Network [OSTI]

opportunity to examine atmospheric oxidation in a megacity that has more pollution than typical USACPD 5, 6041­6076, 2005 Atmospheric oxidation in the Mexico City Metropolitan Area T. R. Shirley et.atmos-chem-phys.org/acpd/5/6041/ SRef-ID: 1680-7375/acpd/2005-5-6041 European Geosciences Union Atmospheric Chemistry

Boyer, Edmond

83

Atmospheric transmittance model for photosynthetically active radiation  

SciTech Connect (OSTI)

A parametric model of the atmospheric transmittance in the PAR band is presented. The model can be straightforwardly applied for calculating the beam, diffuse and global components of the PAR solar irradiance. The required inputs are: air pressure, ozone, water vapor and nitrogen dioxide column content, Ĺngström's turbidity coefficient and single scattering albedo. Comparison with other models and ground measured data shows a reasonable level of accuracy for this model, making it suitable for practical applications. From the computational point of view the calculus is condensed into simple algebra which is a noticeable advantage. For users interested in speed-intensive computation of the effective PAR solar irradiance, a PC program based on the parametric equations along with a user guide are available online at http://solar.physics.uvt.ro/srms.

Paulescu, Marius; Stefu, Nicoleta; Gravila, Paul; Paulescu, Eugenia; Boata, Remus; Pacurar, Angel; Mares, Oana [Physics Department, West University of Timisoara, V Parvan 4, 300223 Timisoara (Romania); Pop, Nicolina [Department of Physical Foundations of Engineering, Politehnica University of Timisoara, V Parvan 2, 300223 Timisoara (Romania); Calinoiu, Delia [Mechanical Engineering Faculty, Politehnica University of Timisoara, Mihai Viteazu 1, 300222 Timisoara (Romania)

2013-11-13T23:59:59.000Z

84

Hydrothermal synthesis of Mn vanadate nanosheets and visible-light photocatalytic performance for the degradation of methyl blue  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: • Mn vanadate nanosheets have been synthesized by simple hydrothermal process. • The formation of Mn vanadate nanosheets can be controlled by growth conditions. • Mn vanadate nanosheets exhibit good photocatalytic activities for methyl blue. - Abstract: Mn vanadate nanosheets have been synthesized via a facile hydrothermal route using ammonium metavanadate and Mn acetate as the raw materials, polyvinyl pyrrolidone (PVP) as the surfactant. X-ray diffraction (XRD) shows that the Mn vanadate nanosheets are composed of monoclinic MnV{sub 2}O{sub 6} phase. Scanning electron microscopy (SEM) observation indicates that the nanosheets have the average thickness of about 50 nm, length of 2–10 ?m and width of 800 nm to 2 ?m. The growth process of the Mn vanadate nanosheets has also been discussed based on the analysis of the roles of the growth conditions on the formation of the Mn vanadate nanosheets. The nanosheets show good photocatalytic activities for the degradation of methylene blue (MB) under visible light irradiation. About 72.96% MB can be degraded after visible light irradiation for 1 h over 10 mg Mn vanadate nanosheets in 10 mL MB solution with the concentration of 10 mg L{sup ?1}.

Pei, L.Z., E-mail: lzpei@ahut.edu.cn; Xie, Y.K.; Pei, Y.Q.; Jiang, Y.X.; Yu, H.Y.; Cai, Z.Y.

2013-07-15T23:59:59.000Z

85

Photocatalytic degradation of pentachlorophenol in aqueous solution by visible light sensitive N-F-codoped TiO{sub 2} photocatalyst  

SciTech Connect (OSTI)

Graphical abstract: Schematic representation for the visible light photocatalytic process of N and F codoped TiO{sub 2}. Highlights: ? Visible light sensitive N-F-codoped TiO{sub 2}. ? Photocatalytic degradation of pentachlorophenol. ? Effect of oxidants on photocatalytic degradation of pentachlorophenol. ? PMS is a more efficient oxidant for the photodegradation of PCP. - Abstract: In this present study, N-F-codoped titanium dioxide nanocatalyst (NFTO) has been synthesized by simple sol–gel assisted solvothermal method for the effective utilization of visible light in photocatalytic reactions. Structural characterization of the photocatalyst is analyzed by XRD, UV–vis diffuse reflectance spectra (DRS), SEM and TEM. Moreover the chemical statuses of NFTO are gathered by X-ray photoelectron spectroscopy (XPS). The results show that a high surface area with photoactive anatase phase crystalline is obtained. In addition, nitrogen and fluorine atoms are doped into TiO{sub 2} crystal lattice to extend the visible light absorption and higher photocatalytic activity. The photocatalytic degradation of pentachlorophenol in aqueous solution is examined under visible light irradiation, the addition of oxidants such as PMS, PDS and H{sub 2}O{sub 2} is analyzed in detail. The rate of photocatalytic degradation of pentachlorophenol is obtained in the following order: PMS > PDS > H{sub 2}O{sub 2}.

Govindan, Kadarkarai, E-mail: govindanmu@gmail.com [Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021 (India); Water Chemistry Lab, Water Institute, Karunya University, Coimbatore 641 114 (India); Murugesan, Sepperumal [Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021 (India); Maruthamuthu, Pitchai [Department of Energy (Chemistry-Interdisciplinary), University of Madras, Guindy Campus, Chennai 600025 (India)

2013-05-15T23:59:59.000Z

86

Structural and luminescent properties of electron-irradiated silicon  

SciTech Connect (OSTI)

Structural defects induced by electron irradiation of p-Cz-Si wafers were identified. The influence of the annealing conditions in a chlorine-containing atmosphere on the structural and luminescent properties of the samples was examined. Light-emitting diodes based on electron-irradiated and high-temperature-annealed wafers were fabricated by a vapour-phase epitaxy technique and their luminescence properties were studied. A high-intensity dislocation-related D1 line was observed at 1.6 ?m in the room-temperature electroluminescence spectrum.

Sobolev, N. A.; Loshachenko, A. S. [Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia and Fok Institute of Physics, St. Petersburg State University, 198504 St. Petersburg (Russian Federation); Aruev, P. N.; Kalyadin, A. E.; Shek, E. I.; Zabrodskiy, V. V. [Ioffe Physical-Technical Institute, 194021 St. Petersburg (Russian Federation); Shtel'makh, K. F. [Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia and St. Petersburg State Technical University, 195251 St. Petersburg (Russian Federation); Vdovin, V. I. [Rzhanov Institute of Semiconductor Physics, 630090 Novosibirsk (Russian Federation); Xiang, Luelue; Yang, Deren [State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, 310027 Hangzhou (China)

2014-02-21T23:59:59.000Z

87

Irradiation Effects on Human Cortical Bone Fracture Behavior  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponsesIon/Surface ReactionsIrradiation Effects onIrradiation

88

Irradiation Effects on Human Cortical Bone Fracture Behavior  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponsesIon/Surface ReactionsIrradiation EffectsIrradiation

89

AtmosphericAtmospheric Composition Introduction The division investigates the atmospheric  

E-Print Network [OSTI]

development on observation side was the installation of an ozone observation station in Surinam in close co-operation with the Surinam Meteorological Service. Processes in the tropical regions are important for the global climate and the global atmospheric composition. The participation in Indoex (Indian Ocean Experiment) and this Surinam

Haak, Hein

90

Irradiation Stability of Carbon Nanotubes  

E-Print Network [OSTI]

Ion irradiation of carbon nanotubes is a tool that can be used to achieve modification of the structure. Irradiation stability of carbon nanotubes was studied by ion and electron bombardment of the samples. Different ion species at various energies...

Aitkaliyeva, Assel

2010-01-14T23:59:59.000Z

91

Controlled synthesis of T-shaped BiVO{sub 4} and enhanced visible light responsive photocatalytic activity  

SciTech Connect (OSTI)

A novel T-shaped BiVO{sub 4} microcrystal photocatalyst was successfully synthesized by the hydrothermal method with the aid of a structure-directing surfactant SDBS in the present study. Having received well characterization with the aid of various techniques and the results showed that the SDBS greatly changed the microstructure of BiVO{sub 4}, which had a unique T shape and belonged to the monoclinic family. The fast exchange dynamics between the surfactants bound to the Bi{sup 3+} seed surface and the free VO{sub 3}{sup ?} in the solution significantly increase the rate of heterogeneous nucleation. In addition, the photocatalytic activity of the prepared T-shaped BiVO{sub 4} was evaluated by the degradation of Methylene Blue solution under visible light irradiation, 17% and 47% higher decolorization rates than the commercial P25 and BiVO{sub 4} synthesized without SDBS, respectively. Meanwhile, it has been found that the degradation kinetics of MB fitted the pseudo-first-order kinetics and the T-shaped BiVO{sub 4} also displayed high photocatalytic performance for metronidazole degradation. -- Graphical abstract: H{sub 2}O{sub 2} molecules function as electron trapping reagent to react with e{sup ?} to enhance the photocatalytic degradation efficiency of MB in the BiVO{sub 4}/H{sub 2}O{sub 2} system under visible light irradiation. Highlights: • T-shaped BiVO{sub 4} was synthesized using SDBS as a structure-directing surfactant. • SDBS greatly changed the microstructure of BiVO{sub 4}. • The T-shaped BiVO{sub 4} had a better visible-light photocatalytic activity. • Degradation kinetics of MB by BiVO{sub 4} fitted the pseudo-first-order kinetics.

Dong, Shuying; Yu, Chongfei; Li, Yukun [School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007 (China); Li, Yihui [School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); Sun, Jianhui, E-mail: sunjh@htu.cn [School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007 (China); Geng, Xiaofei [School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007 (China)

2014-03-15T23:59:59.000Z

92

Photosensitivity of the Ni-A state of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F with visible light  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Ni-A state of [NiFe] hydrogenase showed light sensitivity. Black-Right-Pointing-Pointer New FT-IR bands were observed with light irradiation of the Ni-A state. Black-Right-Pointing-Pointer EPR g-values of the Ni-A state shifted upon light irradiation. Black-Right-Pointing-Pointer The light-induced state converted back to the Ni-A state under the dark condition. -- Abstract: [NiFe] hydrogenase catalyzes reversible oxidation of molecular hydrogen. Its active site is constructed of a hetero dinuclear Ni-Fe complex, and the oxidation state of the Ni ion changes according to the redox state of the enzyme. We found that the Ni-A state (an inactive unready, oxidized state) of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F (DvMF) is light sensitive and forms a new state (Ni-AL) with irradiation of visible light. The Fourier transform infrared (FT-IR) bands at 1956, 2084 and 2094 cm{sup -1} of the Ni-A state shifted to 1971, 2086 and 2098 cm{sup -1} in the Ni-AL state. The g-values of g{sub x} = 2.30, g{sub y} = 2.23 and g{sub z} = 2.01 for the signals in the electron paramagnetic resonance (EPR) spectrum of the Ni-A state at room temperature varied for -0.009, +0.012 and +0.010, respectively, upon light irradiation. The light-induced Ni-AL state converted back immediately to the Ni-A state under dark condition at room temperature. These results show that the coordination structure of the Fe site of the Ni-A state of [NiFe] hydrogenase is perturbed significantly by light irradiation with relatively small coordination change at the Ni site.

Osuka, Hisao [Graduate School of Life Science, University of Hyogo, 3-2-1, Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan) [Graduate School of Life Science, University of Hyogo, 3-2-1, Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma-shi, Nara 630-0192 (Japan); Shomura, Yasuhito; Komori, Hirofumi; Shibata, Naoki [Graduate School of Life Science, University of Hyogo, 3-2-1, Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan)] [Graduate School of Life Science, University of Hyogo, 3-2-1, Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Nagao, Satoshi [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma-shi, Nara 630-0192 (Japan)] [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma-shi, Nara 630-0192 (Japan); Higuchi, Yoshiki, E-mail: hig@sci.u-hyogo.ac.jp [Graduate School of Life Science, University of Hyogo, 3-2-1, Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan) [Graduate School of Life Science, University of Hyogo, 3-2-1, Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); CREST, JST, Gobancho, Chiyoda-ku, Tokyo 102-0076 (Japan); Hirota, Shun, E-mail: hirota@ms.naist.jp [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma-shi, Nara 630-0192 (Japan) [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma-shi, Nara 630-0192 (Japan); CREST, JST, Gobancho, Chiyoda-ku, Tokyo 102-0076 (Japan)

2013-01-04T23:59:59.000Z

93

Atmospheric Neutrino Fluxes  

E-Print Network [OSTI]

Starting with an historical review, I summarize the status of calculations of the flux of atmospheric neutrinos and how they compare to measurements.

Thomas K. Gaisser

2005-02-18T23:59:59.000Z

94

Correlation of Spectral Solar Irradiance with solar activity as measured by VIRGO  

E-Print Network [OSTI]

Context. The variability of Solar Spectral Irradiance over the rotational period and its trend over the solar activity cycle are important for understanding the Sun-Earth connection as well as for observational constraints for solar models. Recently the SIM experiment on SORCE has published an unexpected negative correlation with Total Solar Irradiance of the visible spectral range. It is compensated by a strong and positive variability of the near UV range. Aims. We aim to verify whether the anti-correlated SIM/SORCE-trend in the visible can be confirmed by independent observations of the VIRGO experiment on SOHO. The challenge of all space experiments measuring solar irradiance are sensitivity changes of their sensors due to exposure to intense UV radiation, which are difficult to assess in orbit. Methods. We analyze a 10-year time series of VIRGO sun photometer data between 2002 and 2012. The variability of Spectral Solar Irradiance is correlated with the variability of the Total Solar Irradiance, which is...

Wehrli, C; Shapiro, A I

2013-01-01T23:59:59.000Z

95

Visible-light photoconductivity of Zn1-xCoxO and its dependence on Co2+  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface. | EMSL Visible Light

96

Algorithms for the Automatic Identification of MARFEs and UFOs in JET Database of Visible Camera Videos  

E-Print Network [OSTI]

Algorithms for the Automatic Identification of MARFEs and UFOs in JET Database of Visible Camera Videos

97

Atmospheric Thermodynamics Composition  

E-Print Network [OSTI]

1 Atmospheric Thermodynamics Ch1 Composition Ch2 Laws Ch3 Transfers Ch12 EnergyBalance Ch4 Water Ch Sciences: Atmospheric Thermodynamics Instructor: Lynn Russell, NH343 http #12;2 Review from Ch. 1 · Thermodynamic quantities · Composition · Pressure · Density · Temperature

Russell, Lynn

98

Atmospheric Dynamics II Instructor  

E-Print Network [OSTI]

AT602 Atmospheric Dynamics II 2 credits Instructor: David W. J. Thompson davet: An Introduction to Dynamic Meteorology, 5th Edition, Academic Press (recommended) · Marshall, J., and Plumb, R. A., 2008: Atmosphere, Ocean, and Climate Dynamics: An Introductory Text, Academic Press. · Vallis, G. K

99

On the Absorption and Redistribution of Energy in Irradiated Planets  

E-Print Network [OSTI]

We present a sequence of toy models for irradiated planet atmospheres, in which the effects of geometry and energy redistribution are modelled self-consistently. We use separate but coupled grey atmosphere models to treat the ingoing stellar irradiation and outgoing planetary reradiation. We investigate how observed quantities such as full phase secondary eclipses and orbital phase curves depend on various important parameters, such as the depth at which irradiation is absorbed and the depth at which energy is redistributed. We also compare our results to the more detailed radiative transfer models in the literature, in order to understand how those map onto the toy model parameter space. Such an approach can prove complementary to more detailed calculations, in that they demonstrate, in a simple way, how the solutions change depending on where, and how, energy redistribution occurs. As an example of the value of such models, we demonstrate how energy redistribution and temperature equilibration at moderate optical depths can lead to temperature inversions in the planetary atmosphere, which may be of some relevance to recent observational findings.

Brad Hansen

2008-01-18T23:59:59.000Z

100

GLAO IN THE VISIBLE: THE SAM EXPERIENCE Andrei Tokovinina  

E-Print Network [OSTI]

-common-path errors were avoided. SAM can feed corrected images to its internal CCD detector, SAMI (4K×4K CCDGLAO IN THE VISIBLE: THE SAM EXPERIENCE Andrei Tokovinina Cerro Tololo Interamerican Observatory, Casilla 603, La Serena, Chile Abstract. The SOAR adaptive module (SAM) is going through science

Tokovinin, Andrei A.

Note: This page contains sample records for the topic "visible irradiance atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Resonator design for a visible wavelength free-electron laser (*)  

SciTech Connect (OSTI)

Design requirements for a visible wavelength free-electron laser being developed at the Accelerator Test Facility at Brookhaven National Laboratory are presented along with predictions of laser performance from 3-D numerical simulations. The design and construction of the optical resonator, its alignment and control systems are also described. 15 refs., 8 figs., 4 tabs.

Bhowmik, A.; Lordi, N. (Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Div.); Ben-Zvi, I.; Gallardo, J. (Brookhaven National Lab., Upton, NY (United States))

1990-01-01T23:59:59.000Z

102

Visibility Preprocessing with Occluder Fusion for Urban Walkthroughs  

E-Print Network [OSTI]

in the umbra (shadow volume) with respect to a given area light source. In contrast to occlusion from a point: · The umbra with respect to a polygonal area light source is not only bounded by planes, but also by reguli, i. For visibility from a point, the joint umbra of many occluders is the union of the umbrae of the individual

103

The Lightwave Model 142 CW Visible Ring Laser,  

E-Print Network [OSTI]

, operation temperature was controlled using a diode thermo-electric cooler. The laser specifications [4] were1 The Lightwave Model 142 CW Visible Ring Laser, Beam Splitter, Model ATM- 80A1 Acousto Dr. Andres LaRosa March 11th , 2003 #12;2 Abstract A Lightwave Electronics Model 142 continuous wave

La Rosa, Andres H.

104

Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino  

E-Print Network [OSTI]

Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino Department of Physics and Astronomy with their announcement that: "We find that a new type of sound wave, namely, the dust-acoustic waves, can appear" [1 and experimental work on dust acoustic waves is given. The basic physics of the dust acoustic wave and some

Merlino, Robert L.

105

Interactive Visibility Culling in Complex Environments using Occlusion-Switches  

E-Print Network [OSTI]

Categories and Subject Descriptors: I.3.5 [Com- puter Graphics]: Computational Geometry and Object ModelingInteractive Visibility Culling in Complex Environments using Occlusion-Switches Naga K. Govindaraju culling in complex 3D environments. An occlusion- switch consists of two GPUs (graphics processing units

North Carolina at Chapel Hill, University of

106

UNDERSTANDING TRENDS ASSOCIATED WITH CLOUDS IN IRRADIATED EXOPLANETS  

SciTech Connect (OSTI)

Unlike previously explored relationships between the properties of hot Jovian atmospheres, the geometric albedo and the incident stellar flux do not exhibit a clear correlation, as revealed by our re-analysis of Q0-Q14 Kepler data. If the albedo is primarily associated with the presence of clouds in these irradiated atmospheres, a holistic modeling approach needs to relate the following properties: the strength of stellar irradiation (and hence the strength and depth of atmospheric circulation), the geometric albedo (which controls both the fraction of starlight absorbed and the pressure level at which it is predominantly absorbed), and the properties of the embedded cloud particles (which determine the albedo). The anticipated diversity in cloud properties renders any correlation between the geometric albedo and the stellar flux weak and characterized by considerable scatter. In the limit of vertically uniform populations of scatterers and absorbers, we use an analytical model and scaling relations to relate the temperature-pressure profile of an irradiated atmosphere and the photon deposition layer and to estimate whether a cloud particle will be lofted by atmospheric circulation. We derive an analytical formula for computing the albedo spectrum in terms of the cloud properties, which we compare to the measured albedo spectrum of HD 189733b by Evans et al. Furthermore, we show that whether an optical phase curve is flat or sinusoidal depends on whether the particles are small or large as defined by the Knudsen number. This may be an explanation for why Kepler-7b exhibits evidence for the longitudinal variation in abundance of condensates, while Kepler-12b shows no evidence for the presence of condensates despite the incident stellar flux being similar for both exoplanets. We include an 'observer's cookbook' for deciphering various scenarios associated with the optical phase curve, the peak offset of the infrared phase curve, and the geometric albedo.

Heng, Kevin [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Demory, Brice-Olivier, E-mail: kevin.heng@csh.unibe.ch, E-mail: demory@mit.edu [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

2013-11-10T23:59:59.000Z

107

The second and third NGNP advanced gas reactor fuel irradiation experiments  

SciTech Connect (OSTI)

The United States Dept. of Energy's Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is currently scheduled to irradiate a total of five low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The irradiations are being accomplished to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas cooled reactors. The experiments will each consist of at least six separate capsules, and will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The effluent sweep gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and completed a very successful irradiation in early November 2009. The second experiment (AGR-2) started irradiation in June 2010, and the third and fourth experiments have been combined into a single larger irradiation (AGR-3/4) that is currently being assembled. The design and status of the second through fourth experiments as well as the irradiation results of the second experiment to date are discussed. (authors)

Grover, S. B.; Petti, D. A. [Idaho National Laboratory, 2525 N. Fremont Ave., Idaho Falls, ID 83415 (United States)

2012-07-01T23:59:59.000Z

108

Atmospheric Pollution Research 1 (2010) 220228 Atmospheric Pollution Research  

E-Print Network [OSTI]

Atmospheric Pollution Research 1 (2010) 220228 Atmospheric Pollution Research www in modeling of the associated multiphase processes. Iron redox species are important pollutants. The oxidative capacity of the atmospheric cloud water decreases when dissolution is included

Boyer, Edmond

109

Atmospheric coherence times in interferometry: definition and measurement  

E-Print Network [OSTI]

Current and future ground-based interferometers require knowledge of the atmospheric time constant t_0, but this parameter has diverse definitions. Moreover, adequate techniques for monitoring t_0 still have to be implemented. We derive a new formula for the structure function of the fringe phase (piston) in a long-baseline interferometer, and review available techniques for measuring the atmospheric time constant and the shortcomings. It is shown that the standard adaptive-optics atmospheric time constant is sufficient for quantifying the piston coherence time, with only minor modifications. The residual error of a fast fringe tracker and the loss of fringe visibility in a finite exposure time are calculated in terms of the same parameter. A new method based on the fast variations of defocus is proposed. The formula for relating the defocus speed to the time constant is derived. Simulations of a 35-cm telescope demonstrate the feasibility of this new technique for site testing.

A. Kellerer; A. Tokovinin

2006-10-06T23:59:59.000Z

110

Trends in atmospheric haze induced by peat fires in Sumatra Island, Indonesia and El Nin~o phenomenon from 1973 to 2003  

E-Print Network [OSTI]

Trends in atmospheric haze induced by peat fires in Sumatra Island, Indonesia and El Nin by peat fires on the peat land area of the island of Sumatra, Indonesia. Visibility and the anomalies). Citation: Wang, Y., R. D. Field, and O. Roswintiarti (2004), Trends in atmospheric haze induced by peat

Field, Robert

111

Visible-light absorption and large band-gap bowing of GaN1-xSbx from first principles  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Applicability of the Ga(Sbx)N1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sbx)N1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sbx)N1-x alloys could be potential candidates for splitting water under visible light irradiation.

Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; Lisenkov, Sergey; Pendyala, Chandrashekhar; Sunkara, Mahendra K.; Menon, Madhu

2011-08-01T23:59:59.000Z

112

Ground-based All-sky Mid-infrared and Visible Imagery for Purposes of Characterizing Cloud Properties  

SciTech Connect (OSTI)

This paper describes the All Sky Infrared Visible Analyzer (ASIVA), a multi-purpose visible and infrared sky imaging and analysis instrument whose primary functionality is to provide radiometrically calibrated imagery in the mid-infrared (mid-IR) atmospheric window. This functionality enables the determination of diurnal hemispherical cloud fraction (HCF) and estimates of sky/cloud temperature from which one can derive estimates of cloud emissivity and cloud height. This paper describes the calibration methods and performance of the ASIVA instrument with particular emphasis on data products being developed for the meteorological community. Data presented here were collected during a field campaign conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility from May 21 to July 27, 2009. The purpose of this campaign was to determine the efficacy of IR technology in providing reliable nighttime HCF data. Significant progress has been made in the analysis of the campaign data over the past several years and the ASIVA has proven to be an excellent instrument for determining HCF as well as several other important cloud properties.

Klebe, Dimitri; Blatherwick, R. D.; Morris, Victor R.

2014-02-24T23:59:59.000Z

113

Atmospheric optical calibration system  

DOE Patents [OSTI]

An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

Hulstrom, R.L.; Cannon, T.W.

1988-10-25T23:59:59.000Z

114

Reflection beamshifts of visible light due to graphene  

E-Print Network [OSTI]

I present theoretical calculations of reflection beamshifts, Goos-H\\"anchen and Imbert-Fedorov shifts, due to the presence of a monolayer graphene on a dielectric media when using a beam with wavelength in the visible range. Specifically, I look at beamshifts for different polarization states (p, s, $45^0$, $\\sigma^+$). The Goos-H\\"anchen shifts I calculated are in good agreement with results of a recent experiment. I will discuss other possible experimental routes to determine beamshifts in graphene.

Hermosa, N

2015-01-01T23:59:59.000Z

115

Visible light photon counters optimization for quantum information applications  

SciTech Connect (OSTI)

In this paper we describe the studies of the main parameters needed for optimal operation of Visible Light Photon Counters (VLPCs) when used in quantum information systems. The isolation of the single photon signal is analyzed through the definition of a contamination parameter. A compromise in the minimization of this parameter for temperature, bias voltage and dark count variation must be achieved and this depends on the experimental conditions.

Molina, J.; /Rio de Janeiro State U.; Estrada, J.; Bross, A.; /Fermilab; Ginther, G.; /Rochester U.; Buscher, V.; /Freiburg U.

2006-10-01T23:59:59.000Z

116

Electrically injected visible vertical cavity surface emitting laser diodes  

DOE Patents [OSTI]

Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors. 5 figs.

Schneider, R.P.; Lott, J.A.

1994-09-27T23:59:59.000Z

117

Emission of Visible Light by Hot Dense Metals  

SciTech Connect (OSTI)

We consider the emission of visible light by hot metal surfaces having uniform and non-uniform temperature distributions and by small droplets of liquid metal. The calculations employ a nonlocal transport theory for light emission, using the Kubo formula to relate microscopic current fluctuations to the dielectric function of the material. We describe a related algorithm for calculating radiation emission in particle simulation of hot fusion plasmas.

More, R.M.; Goto, M.; Graziani, F.; Ni, P.A.; Yoneda, H.

2009-12-01T23:59:59.000Z

118

Advancing Visibility of Grid Operations to Improve Reliability | Department  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3-- ------------------------------ChapterJuly 20142Lora Toyof Energy Visibility

119

Visible and Infrared Optical Design for the ITER Upper Ports  

SciTech Connect (OSTI)

This document contains the results of an optical design scoping study of visible-light and infrared optics for the ITER upper ports, performed by LLNL under contract for the US ITER Project Office. ITER is an international collaboration to build a large fusion energy tokamak with a goal of demonstrating net fusion power for pulses much longer than the energy confinement time. At the time of this report, six of the ITER upper ports are planned to each to contain a camera system for recording visible and infrared light, as well as other diagnostics. the performance specifications for the temporal and spatial resolution of this system are shown in the Section II, Functional Specifications. They acknowledge a debt to Y. Corre and co-authors of the CEA Cadarache report ''ITER wide-angle viewing and thermographic and visible system''. Several of the concepts used in this design are derived from that CEA report. The infrared spatial resolution for optics of this design is diffraction-limited by the size of the entrance aperture, at lower resolution than listed in the ITER diagnostic specifications. The size of the entrance aperture is a trade-off between spatial resolution, optics size in the port, and the location of relay optics. The signal-to-noise ratio allows operation at the specified time resolutions.

Lasnier, C; Seppala, L; Morris, K; Groth, M; Fenstermacher, M; Allen, S; Synakowski, E; Ortiz, J

2007-03-01T23:59:59.000Z

120

The Swift-UVOT ultraviolet and visible grism calibration  

E-Print Network [OSTI]

We present the calibration of the Swift UVOT grisms, of which there are two, providing low-resolution field spectroscopy in the ultraviolet and optical bands respectively. The UV grism covers the range 1700-5000 Angstrom with a spectral resolution of 75 at 2600 Angstrom for source magnitudes of u=10-16 mag, while the visible grism covers the range 2850-6600 Angstrom with a spectral resolution of 100 at 4000 Angstrom for source magnitudes of b=12-17 mag. This calibration extends over all detector positions, for all modes used during operations. The wavelength accuracy (1-sigma) is 9 Angstrom in the UV grism clocked mode, 17 Angstrom in the UV grism nominal mode and 22 Angstrom in the visible grism. The range below 2740 Angstrom in the UV grism and 5200 Angstrom in the visible grism never suffers from overlapping by higher spectral orders. The flux calibration of the grisms includes a correction we developed for coincidence loss in the detector. The error in the coincidence loss correction is less than 20%. The...

Kuin, N P M; Breeveld, A A; Page, M J; James, C; Lamoureux, H; Mehdipour, M; Still, M; Yershov, V; Brown, P J; Carter, M; Mason, K O; Kennedy, T; Marshall, F; Roming, P W A; Siegel, M; Oates, S; Smith, P J; De Pasquale, M

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "visible irradiance atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The propagation of light pollution in the atmosphere  

E-Print Network [OSTI]

Methods to map artificial night sky brightness and stellar visibility across large territories or their distribution over the entire sky at any site are based on the computation of the propagation of light pollution with Garstang models, a simplified solution of the radiative transfer problem in the atmosphere which allows a fast computation by reducing it to a ray-tracing approach. We present here up-to-date Extended Garstang Models (EGM) which provide a more general numerical solution for the radiative transfer problem applied to the propagation of light pollution in the atmosphere. We also present the LPTRAN software package, an application of EGM to high-resolution DMSP-OLS satellite measurements of artificial light emissions and to GTOPO30 digital elevation data, which provides an up-to-date method to predict the artificial brightness distribution of the night sky at any site in the World at any visible wavelength for a broad range of atmospheric situations and the artificial radiation density in the atm...

Cinzano, Pierantonio

2012-01-01T23:59:59.000Z

122

Visible Light-Driven Water Oxidation by Ir oxide Clusters Coupledto Single Cr Centers in Mesoporous Silica  

SciTech Connect (OSTI)

Visible light-induced water oxidation has been demonstrated at an Ir oxide nanocluster coupled to a single Cr{sup VI} site on the pore surface of MCM-41 mesoporous silica. The photocatalytic unit was assembled by the reaction of surface Cr=O groups with Ir(acac){sub 3} precursor followed by calcination at 300 C and bond formation monitored by FT-Raman and FT-IR spectroscopy. High-resolution Z-contrast electron micrographs of the calcined material combined with energy-dispersive X-ray spot analysis confirmed the occlusion of Ir oxide nanoparticles inside the mesopores. Oxygen evolution of an aqueous suspension of the Ir{sub x}O{sub y}-CrMCM-41 upon visible light irradiation of the Cr{sup VI}-O ligand-to-metal charge-transfer absorption was monitored mass-spectrometrically. Comparison of the product yields for samples with low Cr content (Cr/Si {le} 0.02) and high Cr content (Cr/Si = 0.05) indicates that only isolated Cr centers are capable of extracting electrons from Ir oxide clusters, while di- or polychromate species are not. Water oxidation at a multielectron-transfer catalyst coupled to a single metal center has not been demonstrated before. The ability to drive water oxidation with a single metal center as electron pump offers opportunities for coupling the oxygen-evolving photocatalytic unit to reducing sites in the nanoporous scaffold.

Nakamura, Ryuhei; Frei, Heinz

2006-07-10T23:59:59.000Z

123

ARM - Field Campaign - Solmirus' All Sky Infrared Visible Analyzer (ASIVA)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth

124

Status of the NGNP fuel experiment AGR-2 irradiated in the advanced test reactor  

SciTech Connect (OSTI)

The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also undergo on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and sup

S. Blaine Grover; David A. Petti

2014-05-01T23:59:59.000Z

125

Status of the NGNP Fuel Experiment AGR-2 Irradiated in the Advanced Test Reactor  

SciTech Connect (OSTI)

The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and support systems will be briefly discussed, followed by the progress and status of the experiment to date.

Blaine Grover

2012-10-01T23:59:59.000Z

126

Status of the NGNP Graphite Creep Experiments AGC-1 and AGC-2 Irradiated in the Advanced Test Reactor  

SciTech Connect (OSTI)

The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating six nuclear graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant (NGNP) Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six peripheral stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six peripheral stacks will have different compressive loads applied to the top half of each pair of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during irradiation of the experiment. The first experiment, AGC-1, started its irradiation in September 2009, and the irradiation was completed in January 2011. The second experiment, AGC-2, started its irradiation in April 2011 and completed its irradiation in May 2012. This paper will briefly discuss the design of the experiment and control systems, and then present the irradiation results for each experiment to date.

Blaine Grover

2012-10-01T23:59:59.000Z

127

Polarimetric Remote Sensing in the Visible to Near Infrared James R. Shell II  

E-Print Network [OSTI]

Polarimetric Remote Sensing in the Visible to Near Infrared by James R. Shell II B.S. Physics Title of Dissertation: Polarimetric Remote Sensing in the Visible to Near Infrared I, James R. Shell II Remote Sensing in the Visible to Near Infrared by James R. Shell II Submitted to the Chester F. Carlson

Salvaggio, Carl

128

Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra  

E-Print Network [OSTI]

Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared Diffuse reflectance spectroscopy Visible/near-infrared spectroscopy Multivariate calibration Pre-processing transformations In order to reduce costs and time in the analysis of soil properties, visible/near-infrared

Grunwald, Sabine

129

Author's personal copy Soil total carbon analysis in Hawaiian soils with visible, near-infrared and  

E-Print Network [OSTI]

Author's personal copy Soil total carbon analysis in Hawaiian soils with visible, near-infrared reflectance spectroscopy Agriculture Hawaii Mid-infrared Soil carbon Visible near-infrared Accurate assessment of DRS for Ct prediction of Hawaiian ag- ricultural soils by creating visible, near-infrared (VNIR

Grunwald, Sabine

130

Comparison of Long-Wave Infrared Imaging and Visible/Near-Infrared Imaging of Vegetation for  

E-Print Network [OSTI]

Comparison of Long-Wave Infrared Imaging and Visible/Near-Infrared Imaging of Vegetation using spectral imaging. This has been accom- plished with both visible/near-infrared (Vis/NIR) sunlight-path laser absorption measurements [14]­[16], in-situ visible and near-infrared (Vis/NIR) spectral

Lawrence, Rick L.

131

Photoelectrochemical reduction of aqueous protons with a CuO/CuBi2O4 heterojunction under visible light irradiation  

E-Print Network [OSTI]

to the H2 evolved at the former electrode. Note that the FTO|CuO|CuBi2O4|Pt electrode has a small electrode area and was largely covered by an insulating epoxy resin resulting in a small current in Figure S14. A H2 oxidation current was observed at the Pt...

Park, Hyun S.; Lee, Chong-Yong; Reisner, Erwin

2014-09-05T23:59:59.000Z

132

Dynamics of Atmospheres  

E-Print Network [OSTI]

transfer ­ Solar heating of surface, and atmosphere via dust absorption ­ Infrared CO2 band cooling (especially around 667 cm-1) ­ nonLTE near-infrared heating of CO2 and nonLTE cooling effects above ~60-80 km. Baroclinic waves, scales, heat and momentum transport, seasonal occurrence. Qualitative treatment

Read, Peter L.

133

ARM - Evaluation Product - Airborne Visible/Infrared Imaging Spectrometer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborne Visible/Infrared Imaging Spectrometer (AVIRIS) ARM Data Discovery

134

CHARACTERISTIC SIZE OF FLARE KERNELS IN THE VISIBLE AND NEAR-INFRARED CONTINUA  

SciTech Connect (OSTI)

In this Letter, we present a new approach to estimate the formation height of visible and near-infrared emission of an X10 flare. The sizes of flare emission cores in three wavelengths are accurately measured during the peak of the flare. The source size is the largest in the G band at 4308 A and shrinks toward longer wavelengths, namely the green continuum at 5200 A and NIR at 15600 A, where the emission is believed to originate from the deeper atmosphere. This size-wavelength variation is likely explained by the direct heating model as electrons need to move along converging field lines from the corona to the photosphere. Therefore, one can observe the smallest source, which in our case is 0.''65 {+-} 0.''02 in the bottom layer (represented by NIR), and observe relatively larger kernels in upper layers of 1.''03 {+-} 0.''14 and 1.''96 {+-} 0.''27, using the green continuum and G band, respectively. We then compare the source sizes with a simple magnetic geometry to derive the formation height of the white-light sources and magnetic pressure in different layers inside the flare loop.

Xu, Yan; Jing, Ju; Wang, Haimin [Space Weather Research Lab, Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Blvd, Newark, NJ 07102-1982 (United States); Cao, Wenda, E-mail: yx2@njit.edu [Big Bear Solar Observatory, Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Blvd, Newark, NJ 07102-1982 (United States)

2012-05-01T23:59:59.000Z

135

Visible light emitting vertical cavity surface emitting lasers  

DOE Patents [OSTI]

A vertical cavity surface emitting laser that emits visible radiation is built upon a substrate, then having mirrors, the first mirror on top of the substrate; both sets of mirrors being a distributed Bragg reflector of either dielectrics or other materials which affect the resistivity or of semiconductors, such that the structure within the mirror comprises a plurality of sets, each having a thickness of .lambda./2n where n is the index of refraction of each of the sets; each of the mirrors adjacent to spacers which are on either side of an optically active bulk or quantum well layer; and the spacers and the optically active layer are from one of the following material systems: In.sub.z (Al.sub.y Ga.sub.1-y).sub.1-z P, InAlGaAs, AlGaAs, InGaAs, or AlGaP/GaP, wherein the optically active region having a length equal to m .lambda./2n.sub.eff where m is an integer and n.sub.eff is the effective index of refraction of the laser cavity, and the spacer layer and one of the mirrors being transmissive to radiation having a wavelength of .lambda./n, typically within the green to red portion of the visible spectrum.

Bryan, Robert P. (Boulder, CO); Olbright, Gregory R. (Boulder, CO); Lott, James A. (Albuquerque, NM); Schneider, Jr., Richard P. (Albuquerque, NM)

1995-01-01T23:59:59.000Z

136

Visible light emitting vertical cavity surface emitting lasers  

DOE Patents [OSTI]

A vertical cavity surface emitting laser that emits visible radiation is built upon a substrate, then having mirrors, the first mirror on top of the substrate; both sets of mirrors being a distributed Bragg reflector of either dielectrics or other materials which affect the resistivity or of semiconductors, such that the structure within the mirror comprises a plurality of sets, each having a thickness of {lambda}/2n where n is the index of refraction of each of the sets; each of the mirrors adjacent to spacers which are on either side of an optically active bulk or quantum well layer; and the spacers and the optically active layer are from one of the following material systems: In{sub z}(Al{sub y}Ga{sub 1{minus}y}){sub 1{minus}z}P, InAlGaAs, AlGaAs, InGaAs, or AlGaP/GaP, wherein the optically active region having a length equal to m {lambda}/2n{sub eff} where m is an integer and n{sub eff} is the effective index of refraction of the laser cavity, and the spacer layer and one of the mirrors being transmissive to radiation having a wavelength of {lambda}/n, typically within the green to red portion of the visible spectrum. 10 figs.

Bryan, R.P.; Olbright, G.R.; Lott, J.A.; Schneider, R.P. Jr.

1995-06-27T23:59:59.000Z

137

Exploring Visible-Light-Responsive Photocatalysts for Water Splitting Based on Novel Band-gap Engineering Strategies  

E-Print Network [OSTI]

Chapter 4 Boron Carbides as Efficient, Metal-Free, Visible-and transition metals, the boron carbide products werex Chapter Boron Carbides as Efficient, Metal-free, Visible-

Liu, Jikai

2013-01-01T23:59:59.000Z

138

High-energy irradiation and mass loss rates of hot Jupiters in the solar neighborhood  

E-Print Network [OSTI]

Giant gas planets in close proximity to their host stars experience strong irradiation. In extreme cases photoevaporation causes a transonic, planetary wind and the persistent mass loss can possibly affect the planetary evolution. We have identified nine hot Jupiter systems in the vicinity of the Sun, in which expanded planetary atmospheres should be detectable through Lyman alpha transit spectroscopy according to predictions. We use X-ray observations with Chandra and XMM-Newton of seven of these targets to derive the high-energy irradiation level of the planetary atmospheres and the resulting mass loss rates. We further derive improved Lyman alpha luminosity estimates for the host stars including interstellar absorption. According to our estimates WASP-80 b, WASP-77 b, and WASP-43 b experience the strongest mass loss rates, exceeding the mass loss rate of HD 209458 b, where an expanded atmosphere has been confirmed. Furthermore, seven out of nine targets might be amenable to Lyman alpha transit spectroscopy...

Salz, M; Czesla, S; Schmitt, J H M M

2015-01-01T23:59:59.000Z

139

Proton irradiation effect on SCDs  

E-Print Network [OSTI]

The Low Energy X-ray Telescope is a main payload on the Hard X-ray Modulation Telescope satellite. The swept charge device is selected for the Low Energy X-ray Telescope. As swept charge devices are sensitive to proton irradiation, irradiation test was carried out on the HI-13 accelerator at the China Institute of Atomic Energy. The beam energy was measured to be 10 MeV at the SCD. The proton fluence delivered to the SCD was $3\\times10^{8}\\mathrm{protons}/\\mathrm{cm}^{2}$ over two hours. It is concluded that the proton irradiation affects both the dark current and the charge transfer inefficiency of the SCD through comparing the performance both before and after the irradiation. The energy resolution of the proton-irradiated SCD is 212 eV@5.9 keV at $-60\\,^{\\circ}\\mathrm{C}$, while it before irradiated is 134 eV. Moreover, better performance can be reached by lowering the operating temperature of the SCD on orbit.

Yan-Ji Yang; Jing-Bin Lu; Yu-Sa Wang; Yong Chen; Yu-Peng Xu; Wei-Wei Cui; Wei Li; Zheng-Wei Li; Mao-Shun Li; Xiao-Yan Liu; Juan Wang; Da-Wei Han; Tian-Xiang Chen; Cheng-Kui Li; Jia Huo; Wei Hu; Yi Zhang; Bo Lu; Yue Zhu; Ke-Yan Ma; Di Wu; Yan Liu; Zi-Liang Zhang; Guo-He Yin; Yu Wang

2014-04-19T23:59:59.000Z

140

Differential atmospheric tritium sampler  

DOE Patents [OSTI]

An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The moisture then passes through a combustion chamber where hydrogen gas in the form of H/sub 2/ or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

Griesbach, O.A.; Stencel, J.R.

1987-10-02T23:59:59.000Z

Note: This page contains sample records for the topic "visible irradiance atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Differential atmospheric tritium sampler  

DOE Patents [OSTI]

An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The mixture then passes through a combustion chamber where hydrogen gas in the form of H.sub.2 or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

Griesbach, Otto A. (Langhorne, PA); Stencel, Joseph R. (Skillman, NJ)

1990-01-01T23:59:59.000Z

142

ARM Multi-Filter Rotating Shadowband Radiometer (MFRSR): irradiances  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The multifilter rotating shadowband radiometer (MFRSR) takes spectral measurements of direct normal, diffuse horizontal and total horizontal solar irradiances. These measurements are at nominal wavelengths of 415, 500, 615, 673, 870, and 940 nm. The measurements are made at a user-specified time interval, usually about one minute or less. The sampling rate for the Atmospheric Radiation Measurement (ARM) Climate Research Facility MFRSRs is 20 seconds. From such measurements, one may infer the atmosphere's optical depth at the wavelengths mentioned above. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Michalsky et al. 1994) and other atmospheric constituents. A silicon detector is also part of the MFRSR. This detector provides a measure of the broadband direct normal, diffuse horizontal and total horizontal solar irradiances. A MFRSR head that is mounted to look vertically downward can measure upwelling spectral irradiances. In the ARM system, this instrument is called a multifilter radiometer (MFR). At the Southern Great Plains (SGP) there are two MFRs; one mounted at the 10-m height and the other at 25 m. At the North Slope of Alaska (NSA) sites, the MFRs are mounted at 10 m. MFRSR heads are also used to measure normal incidence radiation by mounting on a solar tracking device. These are referred to as normal incidence multi-filter radiometers (NIMFRs) and are located at the SGP and NSA sites. Another specialized use for the MFRSR is the narrow field of view (NFOV) instrument located at SGP. The NFOV is a ground-based radiometer (MFRSR head) that looks straight up.

Hodges, Gary

143

The changing atmosphere  

SciTech Connect (OSTI)

The chemistry of the atmosphere is changing, in large measure because of gases emitted by such human activities as farming, manufacturing, and the combustion of fossil fuels. The deleterious effects are increasingly evident; they may well become worse in the years ahead. This paper discusses the pollutants and the environmental perturbations with which they are associated. The authors believe the solution to the earth's environmental problems lies in a truly global effort.

Graedel, T.E.; Crutzen, P.J.

1989-09-01T23:59:59.000Z

144

Environmental Chemistry II (Atmospheric Chemistry)  

E-Print Network [OSTI]

Seinfeld, J. H. and Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate ChangeSYLLABUS FOR Environmental Chemistry II (Atmospheric Chemistry) FCH 511 Fall 2013 Theodore S

Dibble, Theodore

145

Defect studies in ion irradiated AlGaN. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData Files Data Files 1B&W Y-12studies in ion irradiated AlGaN.

146

Irradiation Effects on Human Cortical Bone Fracture Behavior  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponsesIon/Surface ReactionsIrradiation Effects on Human

147

Irradiation Effects on Human Cortical Bone Fracture Behavior  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponsesIon/Surface ReactionsIrradiation Effects on

148

Irradiation Effects on Human Cortical Bone Fracture Behavior  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponsesIon/Surface ReactionsIrradiation Effects

149

Irradiation Effects on Microstructure Change in Nanocrystalline Ceria -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponsesIon/Surface ReactionsIrradiation

150

Status of the NGNP graphite creep experiments AGC-1 and AGC-2 irradiated in the advanced test reactor  

SciTech Connect (OSTI)

The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Program will be irradiating six nuclear graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the next generation nuclear plant (NGNP) very high temperature gas reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six peripheral stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six peripheral stacks will have three different compressive loads applied to the top half of three diametrically opposite pairs of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during irradiation of the experiment.

S. Blaine Grover

2014-05-01T23:59:59.000Z

151

Pluto's Atmosphere Does Not Collapse  

E-Print Network [OSTI]

Combining stellar occultation observations probing Pluto's atmosphere from 1988 to 2013 and models of energy balance between Pluto's surface and atmosphere, we conclude that Pluto's atmosphere does not collapse at any point in its 248-year orbit. The occultation results show an increasing atmospheric pressure with time in the current epoch, a trend present only in models with a high thermal inertia and a permanent N2 ice cap at Pluto's north rotational pole.

Olkin, C B; Borncamp, D; Pickles, A; Sicardy, B; Assafin, M; Bianco, F B; Buie, M W; de Oliveira, A Dias; Gillon, M; French, R G; Gomes, A Ramos; Jehin, E; Morales, N; Opitom, C; Ortiz, J L; Maury, A; Norbury, M; Ribas, F B; Smith, R; Wasserman, L H; Young, E F; Zacharias, M; Zacharias, N

2013-01-01T23:59:59.000Z

152

Water vapour in the atmosphere of a transiting extrasolar planet  

E-Print Network [OSTI]

Water is predicted to be among, if not the most abundant molecular species after hydrogen in the atmospheres of close-in extrasolar giant planets (hot-Jupiters) Several attempts have been made to detect water on an exoplanet, but have failed to find compelling evidence for it or led to claims that should be taken with caution. Here we report an analysis of recent observations of the hot-Jupiter HD189733b taken during the transit, where the planet passed in front of its parent star. We find that absorption by water vapour is the most likely cause of the wavelength-dependent variations in the effective radius of the planet at the infrared wavelengths 3.6, 5.8 and 8 microns. The larger effective radius observed at visible wavelengths may be due to either star variability or the presence of clouds/hazes. We explain the most recent thermal infrared observations of the planet during secondary transit behind the star, reporting a non-detection of water on HD189733b, as being a consequence of the nearly isothermal vertical profile of the planet.s atmosphere. Our results show that water is detectable on extrasolar planets using the primary transit technique and that the infrared should be a better wavelength region than the visible, for such searches.

Giovanna Tinetti; Alfred Vidal-Madjar; Mao-Chang Liang; Jean-Philippe Beaulieu; Yuk Yung; Sean Carey; Robert J. Barber; Jonathan Tennyson; Ignasi Ribas; Nicole Allard; Gilda E. Ballester; David K. Sing; Franck Selsis

2007-07-20T23:59:59.000Z

153

Navajo Generating Station and Air Visibility Regulations: Alternatives and Impacts  

SciTech Connect (OSTI)

Pursuant to the Clean Air Act, the U.S. Environmental Protection Agency (EPA) announced in 2009 its intent to issue rules for controlling emissions from Navajo Generating Station that could affect visibility at the Grand Canyon and at several other national parks and wilderness areas. The final rule will conform to what EPA determines is the best available retrofit technology (BART) for the control of haze-causing air pollutants, especially nitrogen oxides. While EPA is ultimately responsible for setting Navajo Generating Station's BART standards in its final rule, it will be the U.S. Department of the Interior's responsibility to manage compliance and the related impacts. This study aims to assist both Interior and EPA by providing an objective assessment of issues relating to the power sector.

Hurlbut, D. J.; Haase, S.; Brinkman, G.; Funk, K.; Gelman, R.; Lantz, E.; Larney, C.; Peterson, D.; Worley, C.; Liebsch, E.

2012-01-01T23:59:59.000Z

154

Atmospheric Aerosol Systems | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsTools PrintableCARIBU ProposalBeamAtmospheric

155

Atmospheric Radiation Measurement Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2ArgonneAssemblyDemandPlasma4August 1999 ARM

156

Atmospheric Radiation Measurement Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2ArgonneAssemblyDemandPlasma4August 1999

157

Atmospheric Radiation Measurement Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2ArgonneAssemblyDemandPlasma4August 1999July

158

Atmospheric Radiation Measurement Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2ArgonneAssemblyDemandPlasma4August

159

Atmospheric Radiation Measurement Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2ArgonneAssemblyDemandPlasma4August3 ARM 2003

160

Atmospheric Particulates | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone byDear Friend,Arthur J. Nozik -GrownAn overheadAtmospheric

Note: This page contains sample records for the topic "visible irradiance atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

ARM: Shortwave Array Spectroradiometer-Hemispheric, VISible channel, high-sun angles [a0 data is uncalibrated  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Shortwave Array Spectroradiometer-Hemispheric, VISible channel, high-sun angles [a0 data is uncalibrated

Flynn, Connor

162

ARM: Shortwave Array Spectroradiometer-Hemispheric, VISible channel, low-sun angles [a0 data is uncalibrated  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Shortwave Array Spectroradiometer-Hemispheric, VISible channel, low-sun angles [a0 data is uncalibrated

Flynn, Connor

163

Neutron irradiation of beryllium pebbles  

SciTech Connect (OSTI)

Seven subcapsules from the FFTF/MOTA 2B irradiation experiment containing 97 or 100% dense sintered beryllium cylindrical specimens in depleted lithium have been opened and the specimens retrieved for postirradiation examination. Irradiation conditions included 370 C to 1.6 {times} 10{sup 22} n/cm{sup 2}, 425 C to 4.8 {times} 10{sup 22} n/cm{sup 2}, and 550 C to 5.0 {times} 10{sup 22} n/cm{sup 2}. TEM specimens contained in these capsules were also retrieved, but many were broken. Density measurements of the cylindrical specimens showed as much as 1.59% swelling following irradiation at 500 C in 100% dense beryllium. Beryllium at 97% density generally gave slightly lower swelling values.

Gelles, D.S.; Ermi, R.M. [Pacific Northwest National Lab., Richland, WA (United States); Tsai, H. [Argonne National Lab., IL (United States)

1998-03-01T23:59:59.000Z

164

Formation of nanostructured TiO{sub 2} by femtosecond laser irradiation of titanium in O{sub 2}  

SciTech Connect (OSTI)

We used femtosecond laser irradiation of titanium metal in an oxidizing environment to form a highly stable surface layer of nanostructured amorphous titanium dioxide (TiO{sub 2}). We studied the influence of atmospheric composition on these surface structures and found that gas composition and pressure affect the chemical composition of the surface layer but not the surface morphology. Incorporation of nitrogen is only possible when no oxygen is present in the surrounding atmosphere.

Landis, Elizabeth C. [Department of Chemistry, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138 (United States); Phillips, Katherine C.; Mazur, Eric [School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138 (United States); Friend, Cynthia M. [Department of Chemistry, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138 (United States); School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138 (United States)

2012-09-15T23:59:59.000Z

165

Advanced Gas Reactor (AGR)-5/6/7 Fuel Irradiation Experiments in the Advanced Test Reactor  

SciTech Connect (OSTI)

The United States Department of Energy’s Very High Temperature Reactor (VHTR) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which each consist of at least five separate capsules, are being irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gases also have on-line fission product monitoring the effluent from each capsule to track performance of the fuel during irradiation. The first two experiments (designated AGR-1 and AGR-2), have been completed. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. The design of the fuel qualification experiment, designated AGR-5/6/7, is well underway and incorporates lessons learned from the three previous experiments. Various design issues will be discussed with particular details related to selection of thermometry.

A. Joseph Palmer; David A. Petti; S. Blaine Grover

2014-04-01T23:59:59.000Z

166

Atmos. Chem. Phys., 5, 18791890, 2005 www.atmos-chem-phys.org/acp/5/1879/  

E-Print Network [OSTI]

/2005-5-1879 European Geosciences Union Atmospheric Chemistry and Physics The UV-A and visible solar irradiance spectrum: inter-comparison of absolutely calibrated, spectrally medium resolution solar irradiance, solar irradiance spec- tra are absolutely measured at moderate resolution in the UV/visible spectral

Boyer, Edmond

167

What causes the large extensions of red-supergiant atmospheres? Comparisons of interferometric observations with 1-D hydrostatic, 3-D convection, and 1-D pulsating model atmospheres  

E-Print Network [OSTI]

We present the atmospheric structure and the fundamental parameters of three red supergiants, increasing the sample of RSGs observed by near-infrared spectro-interferometry. Additionally, we test possible mechanisms that may explain the large observed atmospheric extensions of RSGs. We carried out spectro-interferometric observations of 3 RSGs in the near-infrared K-band with the VLTI/AMBER instrument at medium spectral resolution. To comprehend the extended atmospheres, we compared our observational results to predictions by available hydrostatic PHOENIX, available 3-D convection, and new 1-D self-excited pulsation models of RSGs. Our near-infrared flux spectra are well reproduced by the PHOENIX model atmospheres. The continuum visibility values are consistent with a limb-darkened disk as predicted by the PHOENIX models, allowing us to determine the angular diameter and the fundamental parameters of our sources. Nonetheless, in the case of V602 Car and HD 95686, the PHOENIX model visibilities do not predict ...

Arroyo-Torres, B; Chiavassa, A; Scholz, M; Freytag, B; Marcaide, J M; Hauschildt, P H; Wood, P R; Abellan, F J

2015-01-01T23:59:59.000Z

168

The Health and Visibility Cost of Air Pollution: A Comparison of Estimation Methods  

E-Print Network [OSTI]

economics, air pollution, health effects, visibility,Cost of Health Effects of Motor Vehicle Air Pollution. UCD-of the health costs of air pollution (because individuals

Delucchi, Mark; Murphy, James; McCubbin, Donald

2002-01-01T23:59:59.000Z

169

Synthesis and characterization of some metal oxide nanocrystals by microwave irradiation  

SciTech Connect (OSTI)

Copper oxide and cobalt oxide (CuO, Co3O4) nanocrystals (NCs) have been successfully prepared in a short time using microwave irradiation. The resulted powders of nanocrystals (NCs) were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Thermogravimetric analysis (TGA) measurements are also studied. Fourier-transform infrared (FT-IR) and UV–visible absorption spectroscopy of both kind of nanoparticels are illustrated. Optical absorption analysis indicated the direct band gap for both kinds of nanocrystals.

Rashad, M.; Gaber, A.; Abdelrahim, M. A.; Abdel-Baset, A. M. [Physics Department, Faculty of Science, Assiut University, 71516 Assiut (Egypt); Moharram, A. H. [Physics Dept., College of Science and Arts, King Abdulaziz Univ., Rabigh 21911 (Saudi Arabia)

2013-12-16T23:59:59.000Z

170

Silicon-based visible and near-infrared optoelectric devices  

DOE Patents [OSTI]

In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.

Carey, III, James Edward (Newton, MA); Mazur, Eric (Concord, MA)

2011-12-20T23:59:59.000Z

171

Silicon-based visible and near-infrared optoelectric devices  

DOE Patents [OSTI]

In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.

Mazur, Eric (Concord, MA); Carey, III, James E. (Newton, MA)

2011-02-08T23:59:59.000Z

172

Silicon-based visible and near-infrared optoelectric devices  

DOE Patents [OSTI]

In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.

Mazur, Eric (Concord, MA); Carey, III, James E. (Newton, MA)

2010-08-24T23:59:59.000Z

173

Silicon-based visible and near-infrared optoelectric devices  

DOE Patents [OSTI]

In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity great than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelenths, e.g., up to about 3.5 microns.

Mazur, Eric; Carey, James Edward

2013-12-10T23:59:59.000Z

174

Global horizontal irradiance clear sky models : implementation and analysis.  

SciTech Connect (OSTI)

Clear sky models estimate the terrestrial solar radiation under a cloudless sky as a function of the solar elevation angle, site altitude, aerosol concentration, water vapor, and various atmospheric conditions. This report provides an overview of a number of global horizontal irradiance (GHI) clear sky models from very simple to complex. Validation of clear-sky models requires comparison of model results to measured irradiance during clear-sky periods. To facilitate validation, we present a new algorithm for automatically identifying clear-sky periods in a time series of GHI measurements. We evaluate the performance of selected clear-sky models using measured data from 30 different sites, totaling about 300 site-years of data. We analyze the variation of these errors across time and location. In terms of error averaged over all locations and times, we found that complex models that correctly account for all the atmospheric parameters are slightly more accurate than other models, but, primarily at low elevations, comparable accuracy can be obtained from some simpler models. However, simpler models often exhibit errors that vary with time of day and season, whereas the errors for complex models vary less over time.

Stein, Joshua S.; Hansen, Clifford W.; Reno, Matthew J.

2012-03-01T23:59:59.000Z

175

Effects of mass loss for highly-irradiated giant planets  

E-Print Network [OSTI]

We present calculations for the evolution and surviving mass of highly-irradiated extrasolar giant planets (EGPs) at orbital semimajor axes ranging from 0.023 to 0.057 AU using a generalized scaled theory for mass loss, together with new surface-condition grids for hot EGPs and a consistent treatment of tidal truncation. Theoretical estimates for the rate of energy-limited hydrogen escape from giant-planet atmospheres differ by two orders of magnitude, when one holds planetary mass, composition, and irradiation constant. Baraffe et al. (2004, A&A 419, L13-L16) predict the highest rate, based on the theory of Lammer et al. (2003, Astrophys. J. 598, L121-L124). Scaling the theory of Watson et al. (1981, Icarus 48, 150-166) to parameters for a highly-irradiated exoplanet, we find an escape rate ~102 lower than Baraffe's. With the scaled Watson theory we find modest mass loss, occurring early in the history of a hot EGP. In this theory, mass loss including the effect of Roche-lobe overflow becomes significant primarily for masses below a Saturn mass, for semimajor axes = 0.023 AU. This contrasts with the Baraffe model, where hot EGPs are claimed to be remnants of much more massive bodies, originally several times Jupiter and still losing substantial mass fractions at present.

W. B. Hubbard; M. F. Hattori; A. Burrows; I. Hubeny; D. Sudarsky

2006-10-27T23:59:59.000Z

176

Low energy electron irradiation of an apple  

E-Print Network [OSTI]

The viability of pathogenic organisms on the surface of fresh fruits and vegetables can be significantly reduced by low energy electron beam irradiation. The most difficult technical challenge for surface irradiation of fruits and vegetable...

Brescia, Giovanni Batista

2002-01-01T23:59:59.000Z

177

Statistical criteria for characterizing irradiance time series.  

SciTech Connect (OSTI)

We propose and examine several statistical criteria for characterizing time series of solar irradiance. Time series of irradiance are used in analyses that seek to quantify the performance of photovoltaic (PV) power systems over time. Time series of irradiance are either measured or are simulated using models. Simulations of irradiance are often calibrated to or generated from statistics for observed irradiance and simulations are validated by comparing the simulation output to the observed irradiance. Criteria used in this comparison should derive from the context of the analyses in which the simulated irradiance is to be used. We examine three statistics that characterize time series and their use as criteria for comparing time series. We demonstrate these statistics using observed irradiance data recorded in August 2007 in Las Vegas, Nevada, and in June 2009 in Albuquerque, New Mexico.

Stein, Joshua S.; Ellis, Abraham; Hansen, Clifford W.

2010-10-01T23:59:59.000Z

178

3, 895959, 2006 Irradiance and  

E-Print Network [OSTI]

and corals. However, the contribution of benthic communities to the primary production of the global coastal energy source fueling marine primary prBGD 3, 895­959, 2006 Irradiance and primary production in the coastal ocean J.-P. Gattuso et al

Paris-Sud XI, Université de

179

sterilization by irradiation Arne Miller  

E-Print Network [OSTI]

-1:2006 Equipment characterization (6) Product definition (7) Process definition (8) Installation Qualification (9.1) Operational Qualification (9.2) · Performance Qualification (9.3) - later #12;3 Equipment characterization samples shall be irradiated to defined and uniform doses. #12;9 9.1 Installation qualification (A.9

180

Low temperature irradiation tests on  

E-Print Network [OSTI]

Sample cool down by He gas loop 10K ­ 20K Fast neutron flux Measured by Ni activation in 2010 1.4xK #12;reactor Cryogenics #12;Al-Cu-Mg He gas temperature near sample 12K Resistance changesLow temperature irradiation tests on stabilizer materials using reactor neutrons at KUR Makoto

McDonald, Kirk

Note: This page contains sample records for the topic "visible irradiance atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Atmospheric propagation of THz radiation.  

SciTech Connect (OSTI)

In this investigation, we conduct a literature study of the best experimental and theoretical data available for thin and thick atmospheres on THz radiation propagation from 0.1 to 10 THz. We determined that for thick atmospheres no data exists beyond 450 GHz. For thin atmospheres data exists from 0.35 to 1.2 THz. We were successful in using FASE code with the HITRAN database to simulate the THz transmission spectrum for Mauna Kea from 0.1 to 2 THz. Lastly, we successfully measured the THz transmission spectra of laboratory atmospheres at relative humidities of 18 and 27%. In general, we found that an increase in the water content of the atmosphere led to a decrease in the THz transmission. We identified two potential windows in an Albuquerque atmosphere for THz propagation which were the regions from 1.2 to 1.4 THz and 1.4 to 1.6 THz.

Wanke, Michael Clement; Mangan, Michael A.; Foltynowicz, Robert J.

2005-11-01T23:59:59.000Z

182

Posters Mean Fluxes of Visible Solar Radiation in Broken Clouds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22, 2014SocietyJ. Dudhia51 Posters7 Posters537

183

Triply Redundant Integrated Navigation and Asset Visibility System - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2TopoPortal HydrogenOpportunitiesInnovation

184

Crystallographic Dependence of Visible-Light Photochemistry in Epitaxial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases on &gamma;-Al2O3.WinterCrystal StructurewithMonolayer.TiO2-xNx

185

Capturing All the Light: Panchromatic Visible Absorption for Solar  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,Bios High Energy Physics AdvisoryCMSNF

186

Irradiation-induced phenomena in carbon  

E-Print Network [OSTI]

Chapter 1 Irradiation-induced phenomena in carbon nanotubes To appear in "Chemistry of Carbon@acclab.helsinki.fi 1 #12;2CHAPTER 1. IRRADIATION-INDUCED PHENOMENA IN CARBON NANOTUBES #12;Contents 1 Irradiation-induced phenomena in carbon nanotubes 1 1.1 Introduction

Krasheninnikov, Arkady V.

187

Transition from Irradiation-Induced Amorphization to Crystallization...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from Irradiation-Induced Amorphization to Crystallization in Nanocrystalline Silicon Carbide. Transition from Irradiation-Induced Amorphization to Crystallization in...

188

Occlusion-Aware Hessians for Error Control in Irradiance Caching /  

E-Print Network [OSTI]

Control for Irradiance Caching. ” In ACM Transactions on Graphics,Control for Irradiance Caching. ” In ACM Transactions on Graphics,

Schwarzhaupt, Jorge Andres

2013-01-01T23:59:59.000Z

189

Completing the Design of the Advanced Gas Reactor Fuel Development and Qualification Experiments for Irradiation in the Advanced Test Reactor  

SciTech Connect (OSTI)

The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the newly formed Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation.

S. Blaine Grover

2006-10-01T23:59:59.000Z

190

Visibility-Based Strategies for Tracking and Searching Unpredictable Coherent Targets Among Known Obstacles  

E-Print Network [OSTI]

Visibility-Based Strategies for Tracking and Searching Unpredictable Coherent Targets Among Known Obstacles Christopher Vo Jyh-Ming Lien MASC group, Dept. of Computer Science, George Mason University http that incorporate informed search to regain visibility of targets when they escape the camera's view, with promising

Lien, Jyh-Ming

191

2D and 3D Visibility in Discrete Geometry: an application to discrete geodesic paths  

E-Print Network [OSTI]

1 2D and 3D Visibility in Discrete Geometry: an application to discrete geodesic paths D discrete geodesic paths in discrete domain with obstacles. This allows us to introduce a new geodesic metric in discrete geometry. Keywords: discrete visibility, geodesic path, distance transform, discrete

Boyer, Edmond

192

To appear in Proceedings of ACRA 2004 1 Visible Spectrum Optical Communication and  

E-Print Network [OSTI]

To appear in Proceedings of ACRA 2004 1 Visible Spectrum Optical Communication and Distance Sensing an underwater communication system for a swarm of submersibles, we de- veloped an optical communication, emitting light in the green and blue part of the visible spectrum. This paper presents ex- perimental

Trumpf, Jochen

193

Increased Climate Variability Is More Visible Than Global Warming: A General  

E-Print Network [OSTI]

Increased Climate Variability Is More Visible Than Global Warming: A General System@utep.edu Abstract While global warming is a statistically confirmed long-term phenomenon, its most visible than the global warming itself. 1 Formulation of the Problem What is global warming. The term "global

Kreinovich, Vladik

194

A distributed Approach for Access and Visibility Task under Ergonomic Constraints with a Manikin  

E-Print Network [OSTI]

A distributed Approach for Access and Visibility Task under Ergonomic Constraints with a Manikin, to assess an efficient path planner for a manikin for access and visibility task under ergonomic constraints a way to explore areas such as maintenance or ergonomics of the product that were traditionally ignored

Paris-Sud XI, Université de

195

ATMOSPHERIC ELSEVIER AtmosphericResearch 44 (1997) 231-241  

E-Print Network [OSTI]

ATMOSPHERIC RESEARCH ELSEVIER AtmosphericResearch 44 (1997) 231-241 Error analysis of backscatter;accepted 14 February 1997 Abstract Ice sphere backscatter has been calculated using both Mie theory as a reasonable approximation for rv 1997 Elsevier Science B.V. 1. Introduction Cirrus clouds play

Reading, University of

196

ELSEVIER AtmosphericResearch 38 (1995) 207-235 ATMOSPHERIC  

E-Print Network [OSTI]

ELSEVIER AtmosphericResearch 38 (1995) 207-235 ATMOSPHERIC RESEARCH On the parameterization of ice and water substance mixing ratio fields were only strongly altered by turning off the ice phase of these schemes includes ice processes. But in mid- latitudes and also in tropics the ice phase is an important

Moelders, Nicole

197

Effects of swift heavy ions irradiation parameters on optical properties of muscovite mica  

E-Print Network [OSTI]

Muscovite mica sheets with a thickness of 25 {\\mu}m were irradiated by various kinds of swift heavy ions (Sn, Xe and Bi) in HIRFL. The fluences ranged from 1$\\times$10^{10} ions/cm^2 to 8$\\times$10^{11} ions/cm^2. The electronic energy loss (dE/dx)_e was increased from 14.7 keV/nm to 31.2 keV/nm. The band gap and Urbach energy of pristine and irradiated mica were analyzed by ultraviolet- visible spectroscopy. Periodic fringes in long wave length of the absorption spectra caused by interference phenomenon, were disturbed as the (dE/dx)_e increased. It was suggested that the chemical bonds between Tetrahedral-Octohedral-Tetrahedral (TOT) layers of mica were destroyed. Thus the smooth surface was cleaved after irradiation. The band gap was narrowed down with the increasing (dE/dx)_e and fluences. The values of Urbach energy were increased as the (dE/dx)_e and fluences gradually increased. It was indicated that the amount of defects and the proportion of amorphous structure were increased in mica irradiated under...

Zhang, Sheng-Xia; Zeng, Jian; Song, Yin; Mo, Dan; Yao, Hui-Jun; Duan, Jing-Lai; Sun, You-Mei; Hou, Ming-Dong

2014-01-01T23:59:59.000Z

198

FORMATION OF ORGANIC MOLECULES AND WATER IN WARM DISK ATMOSPHERES  

SciTech Connect (OSTI)

Observations from Spitzer and ground-based infrared spectroscopy reveal significant diversity in the molecular emission from the inner few AU of T Tauri disks. We explore theoretically the possible origin of this diversity by expanding on our earlier thermal-chemical model of disk atmospheres. We consider how variations in grain settling, X-ray irradiation, accretion-related mechanical heating, and the oxygen-to-carbon ratio can affect the thermal and chemical properties of the atmosphere at 0.25-40 AU. We find that these model parameters can account for many properties of the detected molecular emission. The column density of the warm (200-2000 K) molecular atmosphere is sensitive to grain settling and the efficiency of accretion-related heating, which may account, at least in part, for the large range in molecular emission fluxes that have been observed. The dependence of the atmospheric properties on the model parameters may also help to explain trends that have been reported in the literature between molecular emission strength and mid-infrared color, stellar accretion rate, and disk mass. We discuss whether some of the differences between our model results and the observations (e.g., for water) indicate a role for vertical transport and freezeout in the disk midplane. We also discuss how planetesimal formation in the outer disk (beyond the snowline) may imprint a chemical signature on the inner few AU of the disk and speculate on possible observational tracers of this process.

Najita, Joan R. [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Adamkovics, Mate; Glassgold, Alfred E. [Astronomy Department, University of California, Berkeley, CA 94720 (United States)

2011-12-20T23:59:59.000Z

199

Polyport atmospheric gas sampler  

DOE Patents [OSTI]

An atmospheric gas sampler with a multi-port valve which allows for multi, sequential sampling of air through a plurality of gas sampling tubes mounted in corresponding gas inlet ports. The gas sampler comprises a flow-through housing which defines a sampling chamber and includes a gas outlet port to accommodate a flow of gases through the housing. An apertured sample support plate defining the inlet ports extends across and encloses the sampling chamber and supports gas sampling tubes which depend into the sampling chamber and are secured across each of the inlet ports of the sample support plate in a flow-through relation to the flow of gases through the housing during sampling operations. A normally closed stopper means mounted on the sample support plate and operatively associated with each of the inlet ports blocks the flow of gases through the respective gas sampling tubes. A camming mechanism mounted on the sample support plate is adapted to rotate under and selectively lift open the stopper spring to accommodate a predetermined flow of gas through the respective gas sampling tubes when air is drawn from the housing through the outlet port.

Guggenheim, S. Frederic (Teaneck, NJ)

1995-01-01T23:59:59.000Z

200

DOE research on atmospheric aerosols  

SciTech Connect (OSTI)

Atmospheric aerosols are the subject of a significant component of research within DOE`s environmental research activities, mainly under two programs within the Department`s Environmental Sciences Division, the Atmospheric Radiation Measurement (ARM) Program and the Atmospheric Chemistry Program (ACP). Research activities conducted under these programs include laboratory experiments, field measurements, and theoretical and modeling studies. The objectives and scope of these programs are briefly summarized. The ARM Program is the Department`s major research activity focusing on atmospheric processes pertinent to understanding global climate and developing the capability of predicting global climate change in response to energy related activities. The ARM approach consists mainly of testing and improving models using long-term measurements of atmospheric radiation and controlling variables at highly instrumented sites in north central Oklahoma, in the Tropical Western Pacific, and on the North Slope of Alaska. Atmospheric chemistry research within DOE addresses primarily the issue of atmospheric response to emissions from energy-generation sources. As such this program deals with the broad topic known commonly as the atmospheric source-receptor sequence. This sequence consists of all aspects of energy-related pollutants from the time they are emitted from their sources to the time they are redeposited at the Earth`s surface.

Schwartz, S.E.

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "visible irradiance atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Space Science : Atmosphere Greenhouse Effect  

E-Print Network [OSTI]

Space Science : Atmosphere Greenhouse Effect Part-5a Solar + Earth Spectrum IR Absorbers Grey Atmosphere Greenhouse Effect #12;Radiation: Solar and Earth Surface B"(T) Planck Ideal Emission Integrate at the carbon cycle #12;However, #12;Greenhouse Effect is Complex #12;PLANETARY ENERGY BALANCE G+W fig 3-5

Johnson, Robert E.

202

Laser irradiation of carbon nanotube films: Effects and heat dissipation probed by Raman spectroscopy  

SciTech Connect (OSTI)

We investigate the thermal properties of thin films formed by single- and multi-walled carbon nanotubes submitted to laser irradiation using Raman scattering as a probe of both the tube morphology and the local temperature. The nanotubes were submitted to heating/cooling cycles attaining high laser intensities ({approx}1.4 MW/cm{sup 2}) under vacuum and in the presence of an atmosphere, with and without oxygen. We investigate the heat diffusion of the irradiated nanotubes to their surroundings and the effect of laser annealing on their properties. The presence of oxygen during laser irradiation gives rise to an irreversible increase of the Raman efficiency of the carbon nanotubes and to a remarkable increase of the thermal conductivity of multi-walled films. The second effect can be applied to design thermal conductive channels in devices based on carbon nanotube films using laser beams.

Mialichi, J. R.; Brasil, M. J. S. P.; Iikawa, F. [Instituto de Fisica 'Gleb Wataghin,' Unicamp, Campinas, 13083-859 Sao Paulo (Brazil); Verissimo, C.; Moshkalev, S. A. [Centro de Componentes Semicondutores, Unicamp, Campinas, 13083-870 Sao Paulo (Brazil)

2013-07-14T23:59:59.000Z

203

GTL-1 Irradiation Summary Report  

SciTech Connect (OSTI)

The primary objective of the Gas Test Loop (GTL-1) miniplate experiment is to confirm acceptable performance of high-density (i.e., 4.8 g-U/cm3) U3Si2/Al dispersion fuel plates clad in Al-6061 and irradiated under the relatively aggressive Booster Fast Flux Loop (BFFL) booster fuel conditions, namely a peak plate surface heat flux of 450 W/cm2. As secondary objectives, several design and fabrication variations were included in the test matrix that may have the potential to improve the high-heat flux, high-temperature performance of the base fuel plate design.1, 2 The following report summarizes the life of the GTL-1 experiment through end of irradiation, including as-run neutronic analysis, thermal analysis and hydraulic testing results.

D. M. Perez; G. S. Chang; N. E. Woolstenhulme; D. M. Wachs

2012-01-01T23:59:59.000Z

204

RERTR-6 Irradiation Summary Report  

SciTech Connect (OSTI)

The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-6 was designed to evaluate several modified fuel designs that were proposed to address the possibility of breakaway swelling due to porosity within the (U. Mo) Al interaction product observed in the full-size plate tests performed in Russia and France1. The following report summarizes the life of the RERTR-6 experiment through end of irradiation, including as-run neutronic analyses, thermal analyses and hydraulic testing results.

D. M. Perez; M. A. Lillo; G. S. Chang; G. A. Roth; N. E. Woolstenhulme; D. M. Wachs

2011-12-01T23:59:59.000Z

205

RERTR-13 Irradiation Summary Report  

SciTech Connect (OSTI)

The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-13 was designed to assess performance of different types of neutron absorbers that can be potentially used as burnable poisons in the low enriched uranium-molybdenum based dispersion and monolithic fuels.1 The following report summarizes the life of the RERTR-13 experiment through end of irradiation, including as-run neutronic analysis results, thermal analysis results and hydraulic testing results.

D. M. Perez; M. A. Lillo; G. S. Chang; D. M. Wachs; G. A. Roth; N. E. Woolstenhulme

2012-09-01T23:59:59.000Z

206

Nuclear plant irradiated steel handbook  

SciTech Connect (OSTI)

This reference handbook presents selected information extracted from the EPRI reactor surveillance program database, which contains the results from surveillance program reports on 57 plants and 116 capsules. Tabulated data includes radiation induced temperature shifts, capsule irradiation conditions and statistical features of the Charpy V-notch curves. General information on the surveillance materials is provided and the Charpy V-notch energy results are presented graphically.

Oldfield, W.; Oldfield, F.M.; Lombrozo, P.M.; McConnell, P.

1986-09-01T23:59:59.000Z

207

Nonequilibrium Atmospheric Secondary Organic Aerosol Formation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerosol Formation and Growth. Abstract: Airborne particles play a critical role in air quality, human health effects, visibility and climate. Secondary organic aerosols (SOA)...

208

ARM - Evolution of the Atmosphere  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborne Visible/InfraredProductsMicroPulse

209

Status of the Combined Third and Fourth NGNP Fuel Irradiations In the Advanced Test Reactor  

SciTech Connect (OSTI)

The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and is currently scheduled to be completed in September 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. Since the purpose of this combined experiment is to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment is significantly different from the first two experiments, though the control and monitoring systems are extremely similar. The design of the experiment will be discussed followed by its progress and status to date.

S. Blaine Grover; David A. Petti; Michael E. Davenport

2013-07-01T23:59:59.000Z

210

Enhanced visible-light absorption of mesoporous TiO2 by co-doping with transition-metal/nitrogen ions  

SciTech Connect (OSTI)

Titanium (IV) oxide, TiO2, has been the object of intense scrutiny for energy applications. TiO2 is inexpensive, non-toxic, and has excellent corrosion resistance when exposed to electrolytes. A major drawback preventing the widespread use TiO2 for photolysis is its relatively large band gap of ~3eV. Only light with wavelengths shorter than 400 nm, which is in the ultraviolet portion of the spectrum, has sufficient energy to be absorbed. Less than 14 percent of the solar irradiation reaching the earth s surface has energy exceeding this band gap. Adding dopants such as transition metals has long been used to reduce the gap and increase photocatalytic activity by accessing the visible part of the solar spectrum. The degree to which the band gap is reduced using transition metals depends in part on the overlap of the d-orbitals of the transition metals with the oxygen p-orbitals. Therefore, doping with anions such as nitrogen to modify the cation-anion orbital overlap is another approach to reduce the gap. Recent studies suggest that using a combination of transition metals and nitrogen as dopants is more effective at introducing intermediate states within the band gap, effectively narrowing it. Here we report the synthesis of mesoporous TiO2 spheres, co-doped with transition metals and nitrogen that exhibit a nearly flat absorbance response across the visible spectrum extending into the near infrared.

Mathis, John [Embry-Riddle Aeronautical University; Bi, Zhonghe [ORNL; Bridges, Craig A [ORNL; Kidder, Michelle [ORNL; Paranthaman, Mariappan Parans [ORNL

2013-01-01T23:59:59.000Z

211

INITIAL IRRADIATION OF THE FIRST ADVANCED GAS REACTOR FUEL DEVELOPMENT AND QUALIFICATION EXPERIMENT IN THE ADVANCED TEST REACTOR  

SciTech Connect (OSTI)

The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation.

S. Blaine Grover; David A. Petti

2007-09-01T23:59:59.000Z

212

C/O RATIO AS A DIMENSION FOR CHARACTERIZING EXOPLANETARY ATMOSPHERES  

SciTech Connect (OSTI)

Until recently, infrared observations of exoplanetary atmospheres have typically been interpreted using models that assumed solar elemental abundances. With the chemical composition fixed, attempts have been made to classify hot Jupiter atmospheres on the basis of stellar irradiation. However, recent observations have revealed deviations from predictions based on such classification schemes, and chemical compositions retrieved from some data sets have also indicated non-solar abundances. The data require a two-dimensional (2D) characterization scheme with dependence on both irradiation and chemistry. In this work, we suggest the carbon-to-oxygen (C/O) ratio as an important second dimension for characterizing exoplanetary atmospheres. In hot-hydrogen-dominated atmospheres, the C/O ratio critically influences the relative concentrations of several spectroscopically dominant species. Between a C/O of 0.5 (solar value) and 2, the H{sub 2}O and CH{sub 4} abundances can vary by several orders of magnitude in the observable atmosphere, and new hydrocarbon species such as HCN and C{sub 2}H{sub 2} become prominent for C/O {>=} 1, while the CO abundance remains almost unchanged. Furthermore, a C/O {>=} 1 can preclude a strong thermal inversion due to TiO and VO in a hot Jupiter atmosphere, since TiO and VO are naturally underabundant for C/O {>=} 1. We, therefore, suggest a new 2D classification scheme for hydrogen-dominated exoplanetary atmospheres with irradiation (or temperature) and C/O ratio as the two dimensions. We define four classes in this 2D space (O1, O2, C1, and C2) with distinct chemical, thermal, and spectral properties. Based on the most recent observations, we characterize the thermal structure and C/O ratios of six hot Jupiters (XO-1b, CoRoT-2b, WASP-14b, WASP-19b, WASP-33b, and WASP-12b) in the framework of our proposed 2D classification scheme. While the data for several systems in our sample are consistent with C-rich atmospheres, new observations are required to conclusively constrain their C/O ratios in the day side as well as the terminator regions of their atmospheres. We discuss how observations using existing and forthcoming facilities can constrain C/O ratios in exoplanetary atmospheres.

Madhusudhan, Nikku, E-mail: Nikku.Madhusudhan@yale.edu [Department of Physics, Yale University, New Haven, CT 06511 (United States); Department of Astronomy, Yale University, New Haven, CT 06511 (United States)

2012-10-10T23:59:59.000Z

213

EPR Investigation of Irradiated Curry Powder  

SciTech Connect (OSTI)

Gamma-ray irradiated curry powder, a well priced oriental spice was investigated in order to establish the ability of EPR to detect the presence and time stability of free irradiation free-radicals. Accordingly, curry powder aliquots were irradiated with gradually increasing absorbed doses up to 11.3 kGy. The EPR spectra of all irradiated samples show the presence of al last two different species of free radicals, whose concentration increased monotonously with the absorbed doses. A 100 deg. C isothermal annealing of irradiated samples has shown a differential reduction of amplitude of various components of the initial spectra, but even after 3.6 h of thermal treatment, the remaining amplitude represents no less then 30% of the initial ones. The same peculiarities have been noticed after more than one year storage at room temperature, all of them being very useful in establishing the existence of any previous irradiation treatment.

Duliu, O. G.; Ali, S. I. [University of Bucharest, Department of Atomic and Nuclear Physics, P.O. Box MG-11, 077125 Bucharest (Romania); Georgescu, R. [National Institute for Physics and Nuclear Engineering-Horia Hulubei, P.O. Box MG-6, 077125 Bucharest (Romania)

2007-04-23T23:59:59.000Z

214

The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor  

SciTech Connect (OSTI)

The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In addition, the purpose and differences between the two experiments will be compared and the irradiation results to date on the first experiment will be presented.

S. Blaine Grover

2009-09-01T23:59:59.000Z

215

Design of the Advanced Gas Reactor Fuel Experiments for Irradiation in the Advanced Test Reactor  

SciTech Connect (OSTI)

The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight particle fuel tests in the Advanced Test Reactor (ATR) located at the newly formed Idaho National Laboratory (INL) to support development of the next generation Very High Temperature Reactor (VHTR) in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments will be irradiated in an inert sweep gas atmosphere with on-line temperature monitoring and control combined with on-line fission product monitoring of the sweep gas. The final design phase has just been completed on the first experiment (AGR-1) in this series and the support systems and fission product monitoring system that will monitor and control the experiment during irradiation. This paper discusses the development of the experimental hardware and support system designs and the status of the experiment.

S. Blaine Grover

2005-10-01T23:59:59.000Z

216

Using the visibility complex for radiosity computation Rachel Orti Fredo Durand Stephane Rivi`ere Claude Puech  

E-Print Network [OSTI]

to be strictly recomputed. In computational geometry, a data structure called the visibility complex has recentlyUsing the visibility complex for radiosity computation Rachel Orti Fr´edo Durand St´ephane Rivi in those calculations. We propose the use of the visibility complex for radiosity calculations

Boyer, Edmond

217

Atmospheric science and power production  

SciTech Connect (OSTI)

This is the third in a series of scientific publications sponsored by the US Atomic Energy Commission and the two later organizations, the US Energy Research and Development Adminstration, and the US Department of Energy. The first book, Meteorology and Atomic Energy, was published in 1955; the second, in 1968. The present volume is designed to update and to expand upon many of the important concepts presented previously. However, the present edition draws heavily on recent contributions made by atmospheric science to the analysis of air quality and on results originating from research conducted and completed in the 1970s. Special emphasis is placed on how atmospheric science can contribute to solving problems relating to the fate of combustion products released into the atmosphere. The framework of this book is built around the concept of air-quality modeling. Fundamentals are addressed first to equip the reader with basic background information and to focus on available meteorological instrumentation and to emphasize the importance of data management procedures. Atmospheric physics and field experiments are described in detail to provide an overview of atmospheric boundary layer processes, of how air flows around obstacles, and of the mechanism of plume rise. Atmospheric chemistry and removal processes are also detailed to provide fundamental knowledge on how gases and particulate matter can be transformed while in the atmosphere and how they can be removed from the atmosphere. The book closes with a review of how air-quality models are being applied to solve a wide variety of problems. Separate analytics have been prepared for each chapter.

Randerson, D. (ed.)

1984-07-01T23:59:59.000Z

218

Laser Atmospheric Studies with VERITAS  

E-Print Network [OSTI]

As a calibrated laser pulse propagates through the atmosphere, the amount of Rayleigh-scattered light arriving at the VERITAS telescopes can be calculated precisely. This technique was originally developed for the absolute calibration of ultra-high-energy cosmic-ray fluorescence telescopes but is also applicable to imaging atmospheric Cherenkov telescopes (IACTs). In this paper, we present two nights of laser data taken with the laser at various distances away from the VERITAS telescopes and compare it to Rayleigh scattering simulations.

C. M. Hui; for the VERITAS collaboration

2007-09-25T23:59:59.000Z

219

Background-subtraction using contour-based fusion of thermal and visible imagery  

E-Print Network [OSTI]

rights reserved. Keywords: Background-subtraction; Fusion; Thermal imagery; Infrared; FLIR; Contour of the electromagnetic spectrum, long-wave infrared (thermal) and visible light. Thermal (FLIR) and color video cameras

Davis, James W.

220

The effects of air pollution on visibility at Edwards AFB, California  

E-Print Network [OSTI]

THE EFFECTS OF AIR POLLUTION ON VISIBILITY AT EDWARDS AFB, CALIFORNIA A Thesis by JEFFREY SCOTT TONGUE Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... May 1987 Major Subject: Meteorology THE EFFECTS OF AIR POLLUTION ON VISIBILITY AT EDWARDS AFB, CALIFORNIA A Thesis by JEFFREY SCOTT TONGUE Approved as to style and content by: Walter K. Henry (Chairman of Committee) Kenneth C. Brundidge...

Tongue, Jeffrey Scott

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "visible irradiance atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Sodium and potassium levels in the serum of acutely irradiated and non-irradiated rats  

E-Print Network [OSTI]

SODIUM AND POTASSIUM LEVELS IN THE SERUM OF ACUTELY IRRADIATED AND NON-IRRADIATED RATS A Thesis By DAVID PRESTON SHEPHERD Submitted to the Graduate College of the Texas ARM University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1967 Major Subject: Zoology SODIUM AND POTASSIUM LEVELS IN THE SERUM OF ACUTELY IRRADIATED AND NON-IRRADIATED RATS A Thesis By DAVID PRESTON SHEPHERD Approved as to style and content by: (Chairman of Committee) (Head...

Shepherd, David Preston

1967-01-01T23:59:59.000Z

222

Fragmentation Energetics of Clusters Relevant to Atmospheric...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Clusters Relevant to Atmospheric New Particle Formation. Fragmentation Energetics of Clusters Relevant to Atmospheric New Particle Formation. Abstract: The exact mechanisms by...

223

Star-planet magnetic interaction and evaporation of planetary atmospheres  

E-Print Network [OSTI]

Stars interact with their close-in planets through radiation, gravitation, and magnetic fields. We investigate the energy input to a planetary atmosphere by reconnection between stellar and planetary magnetic fields and compare it to the energy input of the extreme ultraviolet (EUV) radiation field of the star. We quantify the power released by magnetic reconnection at the boundary of the planetary magnetosphere that is conveyed to the atmosphere by accelerated electrons. We introduce simple models to evaluate the energy spectrum of the accelerated electrons and the energy dissipated in the atmospheric layers in the polar regions of the planet upon which they impinge. A simple transonic isothermal wind flow along field lines is considered to estimate the increase in mass loss rate in comparison with a planet irradiated only by the EUV flux of its host star. We find that energetic electrons can reach levels down to column densities of 10^{23}-10^{25} m^{-2}, comparable with or deeper than EUV photons, and incr...

Lanza, A F

2013-01-01T23:59:59.000Z

224

Nuclear Engineering Division Irradiated Materials Laboratory  

E-Print Network [OSTI]

Nuclear Engineering Division Irradiated Materials Laboratory The Irradiated Materials Laboratory (IML) in Argonne's Nuclear Engineering Division is used to conduct research on the behavior. #12;C O N TA C T > Dr. Michael C. Billone | 630-252-7146 | billone@anl.gov | Nuclear Engineering

Kemner, Ken

225

Calibration of LSST Instrumental and Atmospheric Photometric Passbands  

SciTech Connect (OSTI)

The Large Synoptic Survey Telescope (LSST) will continuously image the entire sky visible from Cerro Pachon in northern Chile every 3-4 nights throughout the year. The LSST will provide data for a broad range of science investigations that require better than 1% photometric precision across the sky (repeatability and uniformity) and a similar accuracy of measured broadband color. The fast and persistent cadence of the LSST survey will significantly improve the temporal sampling rate with which celestial events and motions are tracked. To achieve these goals, and to optimally utilize the observing calendar, it will be necessary to obtain excellent photometric calibration of data taken over a wide range of observing conditions - even those not normally considered 'photometric'. To achieve this it will be necessary to routinely and accurately measure the full optical passband that includes the atmosphere as well as the instrumental telescope and camera system. The LSST mountain facility will include a new monochromatic dome illumination projector system to measure the detailed wavelength dependence of the instrumental passband for each channel in the system. The facility will also include an auxiliary spectroscopic telescope dedicated to measurement of atmospheric transparency at all locations in the sky during LSST observing. In this paper, we describe these systems and present laboratory and observational data that illustrate their performance.

Burke, David L.; /SLAC; Axelrod, T.; /Arizona U., Astron. Dept. - Steward Observ.; Barrau, Aurelien; Baumont, Sylvain; /LPSC, Grenoble; Blondin, Stephane; /Marseille, CPPM; Claver, Chuck; /NOAO, Tucson; Gorecki, Alexia; /LPSC, Grenoble; Ivezic, Zeljko; Jones, Lynne; /Washington U., Seattle, Astron. Dept.; Krabbendam, Victor; Liang, Ming; Saha, Abhijit; /NOAO, Tucson; Smith, Allyn; /Austin Peay State U.; Smith, R.Chris; /Cerro-Tololo InterAmerican Obs.; Stubbs, Christopher W.; /Harvard-Smithsonian Ctr. Astrophys.

2011-07-06T23:59:59.000Z

226

AGC-1 Irradiation Experiment Test Plan  

SciTech Connect (OSTI)

The Advanced Graphite Capsule (AGC) irradiation test program supports the acquisition of irradiated graphite performance data to assist in the selection of the technology to be used for the VHTR. Six irradiations are planned to investigate compressive creep in graphite subjected to a neutron field and obtain irradiated mechanical properties of vibrationally molded, extruded, and iso-molded graphites for comparison. The experiments will be conducted at three temperatures: 600, 900, and 1200°C. At each temperature, two different capsules will be irradiated to different fluence levels, the first from 0.5 to 4 dpa and the second from 4 to 7 dpa. AGC-1 is the first of the six capsules designed for ATR and will focus on the prismatic fluence range.

R. L. Bratton

2006-05-01T23:59:59.000Z

227

SIO 217a Atmospheric and Climate Sciences I: Atmospheric Thermodynamics  

E-Print Network [OSTI]

. Radiant Energy. Radiative Transfer. Transport.) 10-Oct W 3 More Transfer Processes 15-Oct M 4 4 Gas. Equation of State. Hydrostatic Equilibrium.) 3-Oct W 2 2.11 First and Second Laws and Characteristics. Precipitation Processes. Radiative Transfer in a Cloudy Atmosphere. Fogs, Stratus

Russell, Lynn

228

Linked Environments for Atmospheric Discovery Linked Environments for Atmospheric  

E-Print Network [OSTI]

Unidata Program Center #12;Linked Environments for Atmospheric Discovery The Team: 9 institutions and 105 MethodologyTraditional NWP Methodology STATIC OBSERVATIONS Radar Data Mobile Mesonets Surface Observations Satellites The Process is Entirely Prescheduled and Serial; It Does NOT Respond to the Weather! The Process

229

Photochemical preparation of CdS hollow microspheres at room temperature and their use in visible-light photocatalysis  

SciTech Connect (OSTI)

CdS hollow microspheres have been successfully prepared by a photochemical preparation technology at room temperature, using polystyrene latex particles as templates, CdSO{sub 4} as cadmium source and Na{sub 2}S{sub 2}O{sub 3} as both sulphur source and photo-initiator. The process involved the deposition of CdS nanoparticles on the surface of polystyrene latex particles under the irradiation of an 8 W UV lamp and the subsequent removal of the latex particles by dispersing in dichloromethane. Photochemical reactions at the sphere/solution interface should be responsible for the formation of hollow spheres. The as-prepared products were characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Such hollow spheres could be used in photocatalysis and showed high photocatalytic activities in photodegradation of methyl blue (MB) in the presence of H{sub 2}O{sub 2}. The method is green, simple, universal and can be extended to prepare other sulphide and oxide hollow spheres. -- Graphical abstract: Taking polystyrene spheres dispersed in a precursor solution as templates, CdS hollow microspheres composed of nanoparticles were successfully prepared via a new photochemical route at room temperature. Display Omitted Research highlights: {yields} Photochemical method was first employed to prepare hollow microspheres. {yields} CdS hollow spheres were first prepared at room temperature using latex spheres. {yields} The polystyrene spheres used as templates were not modified with special groups. {yields}The CdS hollow microspheres showed high visible-light photocatalytic activities.

Huang Yuying [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Sun Fengqiang, E-mail: fengqiangsun@yahoo.c [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation in GuangDong Universities, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), South China Normal University, Guangzhou 510006 (China); Wu Tianxing; Wu Qingsong; Huang Zhong; Su Heng; Zhang Zihe [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China)

2011-03-15T23:59:59.000Z

230

Measurement and Modeling of Shortwave Irradiance Components in Cloud-Free Atmospheres  

E-Print Network [OSTI]

be accurately measured to high accuracy (0.3%) with the aid of an active cavity radiometer (ACR). Ediffuse has of global energy budget and is required to be fully understood for application in such diverse fields

231

Incidence characteristics of alpha particles on detectors irradiated in a radon progeny atmosphere  

E-Print Network [OSTI]

progeny (usually about 0.5). This forms the base for determining the exposure to radon progeny expressed methods for long-term passive measure- ments of radon progeny concentrations, despite that short

Yu, K.N.

232

NETL SOFC: Atmospheric Pressure Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifA Comparison95519LocalizedWaterTerryAtmospheric

233

Irradiation-induced defect clustering and amorphization in silicon...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Irradiation-induced defect clustering and amorphization in silicon carbide. Irradiation-induced defect clustering and amorphization in silicon carbide. Abstract: Previous computer...

234

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary...  

Broader source: Energy.gov (indexed) [DOE]

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities...

235

Magnetization measurements and XMCD studies on ion irradiated...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

measurements and XMCD studies on ion irradiated iron oxide and core-shell ironiron-oxide nanomaterials. Magnetization measurements and XMCD studies on ion irradiated iron oxide...

236

RERTR-7 Irradiation Summary Report  

SciTech Connect (OSTI)

The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-7A, was designed to test several modified fuel designs to target fission densities representative of a peak low enriched uranium (LEU) burnup in excess of 90% U-235 at peak experiment power sufficient to generate a peak surface heat flux of approximately 300 W/cm2. The RERTR-7B experiment was designed as a high power test of 'second generation' dispersion fuels at peak experiment power sufficient to generate a surface heat flux on the order of 230 W/cm2.1 The following report summarizes the life of the RERTR-7A and RERTR-7B experiments through end of irradiation, including as-run neutronic analyses, thermal analyses and hydraulic testing results.

D. M. Perez; M. A. Lillo; G. S. Chang; G. A. Roth; N. E. Woolstenhulme; D. M. Wachs

2011-12-01T23:59:59.000Z

237

Method to Calculate Uncertainty Estimate of Measuring Shortwave Solar Irradiance using Thermopile and Semiconductor Solar Radiometers  

SciTech Connect (OSTI)

The uncertainty of measuring solar irradiance is fundamentally important for solar energy and atmospheric science applications. Without an uncertainty statement, the quality of a result, model, or testing method cannot be quantified, the chain of traceability is broken, and confidence cannot be maintained in the measurement. Measurement results are incomplete and meaningless without a statement of the estimated uncertainty with traceability to the International System of Units (SI) or to another internationally recognized standard. This report explains how to use International Guidelines of Uncertainty in Measurement (GUM) to calculate such uncertainty. The report also shows that without appropriate corrections to solar measuring instruments (solar radiometers), the uncertainty of measuring shortwave solar irradiance can exceed 4% using present state-of-the-art pyranometers and 2.7% using present state-of-the-art pyrheliometers. Finally, the report demonstrates that by applying the appropriate corrections, uncertainties may be reduced by at least 50%. The uncertainties, with or without the appropriate corrections might not be compatible with the needs of solar energy and atmospheric science applications; yet, this report may shed some light on the sources of uncertainties and the means to reduce overall uncertainty in measuring solar irradiance.

Reda, I.

2011-07-01T23:59:59.000Z

238

HEATING THE ATMOSPHERE ABOVE SUNSPOTS  

E-Print Network [OSTI]

become fragmented and twisted, and where they generate the necessary energy to heat the solar coronaHEATING THE ATMOSPHERE ABOVE SUNSPOTS David Alexander and Neal E. Hurlburt Lockheed Martin Solar, University of Cambridge, Cambridge, CB3 9EW, UK Abstract We present our results of a hybrid model of sunspots

Rucklidge, Alastair

239

13, 90179049, 2013 Stable atmospheric  

E-Print Network [OSTI]

ACPD 13, 9017­9049, 2013 Stable atmospheric methane in the 2000s I. Pison et al. Title Page Utrecht, Utrecht University, Utrecht, the Netherlands 3 SRON Netherlands Institute for Space Research, Utrecht, the Netherlands 4 Vrije Universiteit, Department of Systems Ecology, Amsterdam, the Netherlands 5

Paris-Sud XI, Université de

240

Space Science: Atmosphere Thermal Structure  

E-Print Network [OSTI]

Space Science: Atmosphere Part -2 Thermal Structure Review tropospheres Absorption of Radiation Adiabatic Lapse Rate ~ 9 K/km Slightly smaller than our estimate Pressure ~3000ft under ocean surface thickness (positive up) is the solar zenith angle Fs is the solar energy flux at frequency (when

Johnson, Robert E.

Note: This page contains sample records for the topic "visible irradiance atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

AGC-1 Post Irradiation Examination Status  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) Graphite R&D program is currently measuring irradiated material property changes in several grades of nuclear graphite for predicting their behavior and operating performance within the core of new Very High Temperature Reactor (VHTR) designs. The Advanced Graphite Creep (AGC) experiment consisting of six irradiation capsules will generate this irradiated graphite performance data for NGNP reactor operating conditions. All six AGC capsules in the experiment will be irradiated in the Advanced Test Reactor (ATR), disassembled in the Hot Fuel Examination Facility (HFEF), and examined at the INL Research Center (IRC) or Oak Ridge National Laboratory (ORNL). This is the first in a series of status reports on the progress of the AGC experiment. As the first capsule, AGC1 was irradiated from September 2009 to January 2011 to a maximum dose level of 6-7 dpa. The capsule was removed from ATR and transferred to the HFEF in April 2011 where the capsule was disassembled and test specimens extracted from the capsules. The first irradiated samples from AGC1 were shipped to the IRC in July 2011and initial post irradiation examination (PIE) activities were begun on the first 37 samples received. PIE activities continue for the remainder of the AGC1 specimen as they are received at the IRC.

David Swank

2011-09-01T23:59:59.000Z

242

AGR-1 Irradiation Experiment Test Plan  

SciTech Connect (OSTI)

This document presents the current state of planning for the AGR-1 irradiation experiment, the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment will be irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). The test will contain six independently controlled and monitored capsules. Each capsule will contain a single type, or variant, of the AGR coated fuel. The irradiation is planned for about 700 effective full power days (approximately 2.4 calendar years) with a time-averaged, volume-average temperature of approximately 1050 °C. Average fuel burnup, for the entire test, will be greater than 17.7 % FIMA, and the fuel will experience fast neutron fluences between 2.4 and 4.5 x 1025 n/m2 (E>0.18 MeV).

John T. Maki

2009-10-01T23:59:59.000Z

243

Design of the Next Generation Nuclear Plant Graphite Creep Experiments for Irradiation in the Advanced Test Reactor  

SciTech Connect (OSTI)

The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain seven separate stacks of graphite specimens. Six of the specimen stacks will have half of their graphite specimens under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will be organized into pairs with a different compressive load being applied to the top half of each pair of specimen stacks. The seventh stack will not have a compressive load on the graphite specimens during irradiation. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during initial start-up of the experiment. The final design phase for the first experiment was completed in September 2008, and the fabrication and assembly of the experiment test train as well as installation and testing of the control and support systems that will monitor and control the experiment during irradiation are being completed in early calendar 2009. The first experiment is scheduled to be ready for insertion in the ATR by April 30, 2009. This paper will discuss the design of the experiment including the test train and the temperature and compressive load monitoring, control, and data collection systems.

S. Blaine Grover

2009-05-01T23:59:59.000Z

244

Design and Status of the NGNP Fuel Experiment AGR-3/4 Irradiated in the Advanced Test Reactor  

SciTech Connect (OSTI)

The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in November 2013. Since the purpose of this experiment is to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment is significantly different from the first two experiments, though the control and monitoring systems are very similar. The purpose and design of this experiment will be discussed followed by its progress and status to date.

Blaine Grover

2012-10-01T23:59:59.000Z

245

RERTR-12 Insertion 2 Irradiation Summary Report  

SciTech Connect (OSTI)

The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-12 was designed to provide comprehensive information on the performance of uranium-molybdenum (U-Mo) based monolithic fuels for research reactor applications.1 RERTR-12 insertion 2 includes the capsules irradiated during the last three irradiation cycles. These capsules include Z, Y1, Y2 and Y3 type capsules. The following report summarizes the life of the RERTR-12 insertion 2 experiment through end of irradiation, including as-run neutronic analysis results, thermal analysis results and hydraulic testing results.

D. M. Perez; G. S. Chang; D. M. Wachs; G. A. Roth; N. E. Woolstenhulme

2012-09-01T23:59:59.000Z

246

Measuring Degradation Rates Without Irradiance Data  

SciTech Connect (OSTI)

A method to report PV system degradation rates without using irradiance data is demonstrated. First, a set of relative degradation rates are determined by comparing daily AC final yields from a group of PV systems relative to the average final yield of all the PV systems. Then, the difference between relative and absolute degradation rates is found from a statistical analysis. This approach is verified by comparing to methods that utilize irradiance data. This approach is significant because PV systems are often deployed without irradiance sensors, so the analysis method described here may enable measurements of degradation using data that were previously thought to be unsuitable for degradation studies.

Pulver, S.; Cormode, D.; Cronin, A.; Jordan, D.; Kurtz, S.; Smith, R.

2011-02-01T23:59:59.000Z

247

Irradiation of the First Advanced Gas Reactor Fuel Development and Qualification Experiment in the Advanced Test Reactor  

SciTech Connect (OSTI)

The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation. The design of the first experiment (designated AGR-1) was completed in 2005, and the fabrication and assembly of the test train as well as the support systems and fission product monitoring system that monitor and control the experiment during irradiation were completed in September 2006. The experiment was inserted in the ATR in December 2006, and is serving as a shakedown test of the multi-capsule experiment design that will be used in the subsequent irradiations as well as a test of the early variants of the fuel produced under this program. The experiment test train as well as the monitoring, control, and data collection systems are discussed and the status of the experiment is provided.

S. Blaine Grover; David A. Petti

2008-10-01T23:59:59.000Z

248

INTERFEROMETRIC VISIBILITY OF A SCINTILLATING SOURCE: STATISTICS AT THE NYQUIST LIMIT  

SciTech Connect (OSTI)

We derive the distribution of interferometric visibility for a source exhibiting strong diffractive scintillation, with particular attention to spectral resolution at or near the Nyquist limit. We also account for arbitrary temporal averaging, intrinsic variability within the averaging time, and the possibility of spatially extended source emission. We demonstrate that the interplay between scintillation and self-noise induces several remarkable features, such as a broad ''skirt'' in the visibility distribution. Our results facilitate the interpretation of interferometric observations of pulsars at meter and decimeter wavelengths.

Johnson, M. D.; Gwinn, C. R., E-mail: michaeltdh@physics.ucsb.edu, E-mail: cgwinn@physics.ucsb.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

2013-05-10T23:59:59.000Z

249

The Intersection of Gay Street and Straight Street: Shopping, Social Class, and the New Gay Visibility  

E-Print Network [OSTI]

, some of whom turned out to be—gasp!— straight. They went on little, romantic dates, and told each other how nice and attractive they were; they frolicked in the pool in their ranch-style house in Palm Springs; James’ best girlfriend Andra grilled.... Making Sense of the New Gay Tele-Visibility Something important and strange is going on when people who just a few years ago reviled you decide instead they want to be you, or at least dress like you. What is going on here? What kind of visibility...

Gamson, Joshua

2005-04-01T23:59:59.000Z

250

Visible line intensities of the triatomic hydrogen ion from experiment and theory  

E-Print Network [OSTI]

The visible spectrum of H3+ is studied using high-sensitivity action spectroscopy in a cryogenic radiofrequency multipole trap. Advances are made to measure the weak ro-vibrational transitions from the lowest rotational states of H3+ up to high excitation energies providing visible line intensities and, after normalisation to an infrared calibration line, the corresponding Einstein $B$ coefficients. {\\it Ab initio} predictions for the Einstein $B$ coefficients are obtained from a highly precise dipole moment surface of H3+ and found to be in excellent agreement, even in the region where states have been classified as chaotic.

Petrignani, Annemieke; Grussie, Florian; Wolf, Andreas; Mizus, Irina I; Polyansky, Oleg L; Tennyson, Jonathan; Zobov, Nikolai F; Pavanello, Michele; Adamowicz, Ludwik

2015-01-01T23:59:59.000Z

251

Atomic Entanglement vs Photonic Visibility for Quantum Criticality of Hybrid System  

E-Print Network [OSTI]

To characterize the novel quantum phase transition for a hybrid system consisting of an array of coupled cavities and two-level atoms doped in each cavity, we study the atomic entanglement and photonic visibility in comparison with the quantum fluctuation of total excitations. Analytical and numerical simulation results show the happen of quantum critical phenomenon similar to the Mott insulator to superfluid transition. Here, the contour lines respectively representing the atomic entanglement, photonic visibility and excitation variance in the phase diagram are consistent in the vicinity of the non-analytic locus of atomic concurrences.

M. X. Huo; Ying Li; Z. Song; C. P. Sun

2007-02-12T23:59:59.000Z

252

ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)Productssondeadjustsondeadjust Documentation DataProductswsicloudwsicloudsummarygifAOS Processing

253

PROSPECTING IN LATE-TYPE DWARFS: A CALIBRATION OF INFRARED AND VISIBLE SPECTROSCOPIC METALLICITIES OF LATE K AND M DWARFS SPANNING 1.5 dex  

SciTech Connect (OSTI)

Knowledge of late K and M dwarf metallicities can be used to guide planet searches and constrain planet formation models. However, the determination of metallicities of late-type stars is difficult because visible wavelength spectra of their cool atmospheres contain many overlapping absorption lines, preventing the measurement of equivalent widths. We present new methods, and improved calibrations of existing methods, to determine metallicities of late K and M dwarfs from moderate resolution (1300 < R < 2000) visible and infrared spectra. We select a sample of 112 wide binary systems that contain a late-type companion to a solar-type primary star. Our sample includes 62 primary stars with previously published metallicities, as well as 50 stars with metallicities determined from our own observations. We use our sample to empirically determine which features in the spectrum of the companion are best correlated with the metallicity of the primary. We find {approx_equal}120 features in K and M dwarf spectra that are useful for predicting metallicity. We derive metallicity calibrations for different wavelength ranges, and show that it is possible to get metallicities reliable to <0.10 dex using either visible, J-, H-, or K-band spectra. We find that the most accurate metallicities derived from visible spectra requires the use of different calibrations for early-type (K5.5-M2) and late-type (M2-M6) dwarfs. Our calibrations are applicable to dwarfs with metallicities of -1.04 < [Fe/H] <+0.56 and spectral types from K7 to M5. Lastly, we use our sample of wide binaries to test and refine existing calibrations to determine M dwarf metallicities. We find that the {zeta} parameter, which measures the ratio of TiO can CaH bands, is correlated with [Fe/H] for super-solar metallicities, and {zeta} does not always correctly identify metal-poor M dwarfs. We also find that existing calibrations in the K and H bands are quite reliable for stars with [Fe/H] >-0.5, but are less useful for more metal-poor stars.

Mann, Andrew W.; Hilton, Eric J. [Institute for Astronomy, University of Hawai'i, 2680 Woodlawn Dr, Honolulu, HI 96822 (United States); Brewer, John M. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Gaidos, Eric [Department of Geology and Geophysics, University of Hawai'i, 1680 East-West Road, Honolulu, HI 96822 (United States); Lepine, Sebastien [Department of Astrophysics, American Museum of Natural History, New York, NY 10024 (United States)

2013-02-01T23:59:59.000Z

254

Introduction The bay scallop, Argopecten irradi-  

E-Print Network [OSTI]

71(3) 17 Introduction The bay scallop, Argopecten irradi- ans amplicostatus, has been present (Garcia-Cubas, 1968). Historical Uses Mollusks were used by the pre-Co- lumbian cultures in Mexico as food

255

Selective irradiation of the vascular endothelium  

E-Print Network [OSTI]

We developed a unique methodology to selectively irradiate the vascular endothelium in vivo to better understand the role of vascular damage in causing normal tissue radiation side-effects.The relationship between vascular ...

Schuller, Bradley W

2007-01-01T23:59:59.000Z

256

Processing Irradiated Beryllium For Disposal  

SciTech Connect (OSTI)

The purpose of this research was to develop a process for decontaminating irradiated beryllium that will allow it to be disposed of through normal radwaste channels. Thus, the primary objectives of this ongoing study are to remove the transuranic (TRU) isotopes to less than 100 nCi/g and remove {sup 60}Co, and {sup 137}Cs, to levels that will allow the beryllium to be contact handled. One possible approach that appears to have the most promise is aqueous dissolution and separation of the isotopes by selected solvent extraction followed by precipitation, resulting in a granular form for the beryllium that may be fixed to prevent it from becoming respirable and therefore hazardous. Beryllium metal was dissolved in nitric and fluorboric acids. Isotopes of {sup 241}Am, {sup 239}Pu, {sup 85}Sr, and {sup 137}Cs were then added to make a surrogate beryllium waste solution. A series of batch contacts was performed with the spiked simulant using chlorinated cobalt dicarbollide (CCD) and polyethylene glycol diluted with sulfone to extract the isotopes of Cs and Sr. Another series of batch contacts was performed using a combination of octyl (phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) in tributyl phosphate (TBP) diluted with dodecane for extracting the isotopes of Pu and Am. The results indicate that greater than 99.9% removal can be achieved for each isotope with only three contact stages.

T. J. Tranter; R. D. Tillotson; N. R. Mann; G. R. Longhurst

2005-11-01T23:59:59.000Z

257

Neutron Irradiation Measurement for Superconducting Magnet  

E-Print Network [OSTI]

close to reactor core · Sample cool down by He gas loop: 10K ­ 20K · Fast neutron flux (En>0.1MeV): 1.4x. Materials, 49, p161 (1973&74) Reactor n on Al Reactor n on Cu fluence up to 2*1022 n/m2 (En>0.1MeV) RRR Irradiation at KUR · Kyoto Univ. Research Reactor Institute · MW max. thermal power · Irradiation cryostat

McDonald, Kirk

258

Atmospheric-pressure plasma jet  

DOE Patents [OSTI]

Atmospheric-pressure plasma jet. A .gamma.-mode, resonant-cavity plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two concentric cylindrical electrodes are employed to generate a plasma in the annular region therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly shaping the rf-powered electrode. Because of the atmospheric pressure operation, no ions survive for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike low-pressure plasma sources and conventional plasma processing methods.

Selwyn, Gary S. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

259

Electron spectroscopy study of single and double multiphoton ionization of strontium by visible picosecond laser light  

E-Print Network [OSTI]

795 Electron spectroscopy study of single and double multiphoton ionization of strontium by visible'ionisation multiphotonique simple et double du strontium par des impulsions picosecondes de 1011 à quelque 1012 W cm-2 initial un état excité de l'ion. Abstract. 2014 Multiphoton single and double ionization of strontium

Paris-Sud XI, Université de

260

Remote sensing of Greenland ice sheet using multispectral near-infrared and visible radiances  

E-Print Network [OSTI]

Remote sensing of Greenland ice sheet using multispectral near-infrared and visible radiances Petr microwave methods. The method should be useful for long-term monitoring of the melt area of the Greenland of MODIS retrievals of the western portion of the Greenland ice sheet over the period 2000 to 2006

Dozier, Jeff

Note: This page contains sample records for the topic "visible irradiance atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Optical properties of metallic (III, Mn)V ferromagnetic semiconductors in the infrared to visible range  

E-Print Network [OSTI]

We report on a study of the ac conductivity and magneto-optical properties of metallic ferromagnetic (III, Mn)V semiconductors in the infrared to visible spectrum at zero temperature. Our analysis is based on the successful kinetic exchange model...

Hankiewicz, EM; Jungwirth, T.; Dietl, T.; Timm, C.; Sinova, Jairo.

2004-01-01T23:59:59.000Z

262

Mapping microphytobenthos biomass by non-linear inversion of visible-infrared hyperspectral images  

E-Print Network [OSTI]

- 1 - Mapping microphytobenthos biomass by non-linear inversion of visible-infrared hyperspectral-Philippe.Combe@chimie.univ-nantes.fr Abstract This study presents an innovative approach to map microphytobenthos biomass and fractional cover to microscale intimate mixtures. This prevents the use of classical linear unmixing models to retrieve biomass

Combe, Jean-Philippe

263

Engineering for Environmental Sustainability http://engineering.tufts.edu/ Energy-efficient Visible Light Communication  

E-Print Network [OSTI]

Engineering for Environmental Sustainability http://engineering.tufts.edu/ Energy-efficient Visible of a new era of energy-efficient lighting bringing revolutionary advances in the use of light technology is key to realizing energy-efficient "smart lighting systems". To extend the bandwidth

Tufts University

264

VISIBLE AND INFRARED RARE-EARTH ACTIVATED ELECTROLUMINESCENCE FROM ERBIUM DOPED GaN  

E-Print Network [OSTI]

. At the same time novel work is being conducted using rare earth elements as sources of light emission. Results. III-V semiconductors doped with rare-earth elements have also been used10VISIBLE AND INFRARED RARE-EARTH ACTIVATED ELECTROLUMINESCENCE FROM ERBIUM DOPED GaN M. Garter*, R

Steckl, Andrew J.

265

The Energy Dashboard: Improving the Visibility of Energy Consumption at a Campus-Wide Scale  

E-Print Network [OSTI]

of Energy (DOE) estimates that 73% of the electricity usage and 39% of the CO2 emissions in the US come from, Experimentation, Measurement, Human Factors Keywords Energy, Power, Buildings 1 Introduction The US DepartmentThe Energy Dashboard: Improving the Visibility of Energy Consumption at a Campus-Wide Scale Yuvraj

Gupta, Rajesh

266

Automatic Skin Enhancement with Visible and Near-Infrared Image Fusion  

E-Print Network [OSTI]

Automatic Skin Enhancement with Visible and Near-Infrared Image Fusion Sabine SĂĽsstrunk School and hemo- globin, the key components of skin color, have little absorp- tion in the near-infrared (NIR to the incident light's wavelength, we show that near-infrared images provide information that can be used

Salvaggio, Carl

267

Distributed Pursuit-Evasion with Limited-Visibility Sensors Via Frontier-based Exploration  

E-Print Network [OSTI]

Distributed Pursuit-Evasion with Limited-Visibility Sensors Via Frontier-based Exploration Joseph W guaranteeing complete coverage of the frontier between cleared and contaminated areas while expanding the cleared area. Our frontier-based algorithm can guarantee detection of evaders in unknown, multiply

Bullo, Francesco

268

Thermal decomposition and flammability of fire-resistant, UV/visible-sensitive polyarylates, copolymers and blends  

E-Print Network [OSTI]

Thermal decomposition and flammability of fire-resistant, UV/visible- sensitive polyarylates temperature, low notch sensitivity, and good electrical properties. Most of all, these materials show a high resistance to ignition and flame spreading without additives [6]. A high-temperature wholly aromatic poly

269

A simplified physical model for assessing solar radiation over Brazil using GOES 8 visible imagery  

E-Print Network [OSTI]

A simplified physical model for assessing solar radiation over Brazil using GOES 8 visible imagery; published 30 January 2004. [1] Solar radiation assessment by satellite is constrained by physical Composition and Structure: Transmission and scattering of radiation; KEYWORDS: solar radiation, satellite

270

Sulfuryl fluoride in the global atmosphere  

E-Print Network [OSTI]

The first calibrated high-frequency, high-precision, in situ atmospheric and archived air measurements of the fumigant sulfuryl fluoride (SO[subscript 2]F[subscript 2]) have been made as part of the Advanced Global Atmospheric ...

Muhle, J.

271

Climate Change Mitigation: Climate, Health, and Equity Implications of the Visible and the Hidden  

E-Print Network [OSTI]

a critical conversation on climate change, privatization andamounts due to climate change." Atmospheric Environment 41(Board. CARB (2008d). Climate change proposed scoping plan: a

Shonkoff, Seth Berrin

2012-01-01T23:59:59.000Z

272

Radar range measurements in the atmosphere.  

SciTech Connect (OSTI)

The earth's atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

Doerry, Armin Walter

2013-02-01T23:59:59.000Z

273

Quantitative determination of atmospheric hydroperoxyl radical  

DOE Patents [OSTI]

A method for the quantitative determination of atmospheric hydroperoxyl radical comprising: (a) contacting a liquid phase atmospheric sample with a chemiluminescent compound which luminesces on contact with hydroperoxyl radical; (b) determining luminescence intensity from the liquid phase atmospheric sample; and (c) comparing said luminescence intensity from the liquid phase atmospheric sample to a standard luminescence intensity for hydroperoxyl radical. An apparatus for automating the method is also included.

Springston, Stephen R. (Upton, NY); Lloyd, Judith (Westbury, NY); Zheng, Jun (Stony Brook, NY)

2007-10-23T23:59:59.000Z

274

Comparison of Deuterium Retention for Ion-irradiated and Neutron-irradiated Tungsten  

SciTech Connect (OSTI)

The behavior of D retention for Fe{sup 2+}-irradiated tungsten with a damage of 0.025-3 dpa was compared with that for neutron-irradiated tungsten with 0.025 dpa. The D{sub 2} thermal desorption spectroscopy (TDS) spectra for Fe{sup 2+}-irradiated tungsten consisted of two desorption stages at 450 and 550 K, while that for neutron-irradiated tungsten was composed of three stages and an addition desorption stage was found at 750 K. The desorption rate of the major desorption stage at 550K increased as the displacement damage increased due to Fe{sup 2+} irradiation increasing. In addition, the first desorption stage at 450K was found only for damaged samples. Therefore, the second stage would be based on intrinsic defects or vacancy produced by Fe{sup 2+} irradiation, and the first stage should be the accumulation of D in mono-vacancy and the activation energy would be relatively reduced, where the dislocation loop and vacancy is produced. The third one was found only for neutron irradiation, showing the D trapping by a void or vacancy cluster, and the diffusion effect is also contributed to by the high full-width at half-maximum of the TDS spectrum. Therefore, it can be said that the D{sub 2} TDS spectra for Fe{sup 2+}-irradiated tungsten cannot represent that for the neutron-irradiated one, indicating that the deuterium trapping and desorption mechanism for neutron-irradiated tungsten is different from that for the ion-irradiated one.

Yasuhisa Oya; Masashi Shimada; Makoto Kobayashi; Takuji Oda; Masanori Hara; Hideo Watanabe; Yuji Hatano; Pattrick Calderoni; Kenji Okuno

2011-12-01T23:59:59.000Z

275

EFFECTS OF ION IRRADIATION ON Zr52.5Cu17.9Ni14.6Al10Ti5 (BAM-11) BULK METALLIC GLASS  

SciTech Connect (OSTI)

Bulk metallic glasses are intriguing candidates for nuclear applications due to their inherent amorphous structure, but their radiation response is largely unknown due to the relatively recent nature of innovations in bulk metallic glass fabrication. Here, microstructural and mechanical property evaluations have been performed on a Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BAM-11) irradiated with 3 MeV Ni+ ions to 0.1 and 1.0 dpa at room temperature and 200 C. Nanoindentation hardness and Young s modulus both decreased by 6 to 20% in samples irradiated at room temperature, with the sample irradiated to 1.0 dpa experiencing the greatest change in mechanical properties. However, no significant changes in properties were observed in the samples irradiated at 200 C, and transmission electron microscopy showed no visible evidence of radiation damage or crystallization following ion irradiation at any of the tested conditions. These results suggest that BAM-11 bulk metallic glass may be useful for certain applications in nuclear environments.

Perez-Bergquist, Alex G [ORNL] [ORNL; Bei, Hongbin [ORNL] [ORNL; Leonard, Keith J [ORNL] [ORNL; Zhang, Yanwen [ORNL] [ORNL; Zinkle, Steven J [ORNL] [ORNL

2014-01-01T23:59:59.000Z

276

Atmospheric Radiation Measurement Radiative Atmospheric Divergence using ARM Mobile  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2ArgonneAssemblyDemandPlasma4August3Radiative

277

Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone byDear Friend,Arthur J. Nozik -GrownAnAtmospheric Radiation

278

Atmospheric Lifetime of Fossil Fuel Carbon Dioxide  

E-Print Network [OSTI]

Atmospheric Lifetime of Fossil Fuel Carbon Dioxide David Archer,1 Michael Eby,2 Victor Brovkin,3 released from combustion of fossil fuels equilibrates among the various carbon reservoirs of the atmosphere literature on the atmospheric lifetime of fossil fuel CO2 and its impact on climate, and we present initial

Scherer, Norbert F.

279

Impacts of Atmospheric Anthropogenic Nitrogen on the  

E-Print Network [OSTI]

anthropogenic carbon dioxide may result from this atmospheric nitrogen fertilization, leading to a decreaseImpacts of Atmospheric Anthropogenic Nitrogen on the Open Ocean R. A. Duce,1 * J. LaRoche,2 K quantities of atmospheric anthropogenic fixed nitrogen entering the open ocean could account for up to about

Ward, Bess

280

Ch4. Atmosphere and Surface Energy Balances  

E-Print Network [OSTI]

than red light. #12;The Electromagnetic Spectrum 8% 47% 45% 100% solar radiation #12;Blue Sky, Red;Energy Pathways #12;Solar radiation transfer in the atmosphere Solar radiation Reflection Atmosphere or performing any work. #12;Solar radiation transfer in the atmosphere Solar radiation Reflection Transmission

Pan, Feifei

Note: This page contains sample records for the topic "visible irradiance atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Proof of the Atmospheric Greenhouse Effect  

E-Print Network [OSTI]

A recently advanced argument against the atmospheric greenhouse effect is refuted. A planet without an infrared absorbing atmosphere is mathematically constrained to have an average temperature less than or equal to the effective radiating temperature. Observed parameters for Earth prove that without infrared absorption by the atmosphere, the average temperature of Earth's surface would be at least 33 K lower than what is observed.

Smith, Arthur P

2008-01-01T23:59:59.000Z

282

ATS621, Fall 2013 Atmospheric Chemistry  

E-Print Network [OSTI]

ATS621, Fall 2013 Atmospheric Chemistry Tuesdays and Thursdays, 10 ­ 10:50, 212B ACRC) 491-8587 Teaching Assistant: Lauren Potter Atmospheric Chemistry Bldg., Room 11 Lepotter, transport, chemistry and deposition impact atmospheric chemical composition; 2) Explain the chemical

283

ATS621, Fall 2014 Atmospheric Chemistry  

E-Print Network [OSTI]

ATS621, Fall 2014 Atmospheric Chemistry Monday and Wednesday, 9 ­ 9:50, 212B ACRC Instructor: Prof) Understand quantitatively how emissions, transport, chemistry and deposition impact atmospheric chemical to Atmospheric Chemistry, D.J. Jacob Princeton University Press, 1999 PDF versions of the chapters can

Collett Jr., Jeffrey L.

284

Evaluation of Health Risks of Atmospheric Pollutants  

E-Print Network [OSTI]

4 5- (DRAFT) Evaluation of Health Risks of Atmospheric Pollutants Guy Landrieu INERIS Institut, Stuttgart : Germany (1995)" #12;INERIS: Evaluation of health risks of atmospheric pollutants (DRAFT may 1995) Evaluation of health risks of atmospheric pollutants Summary 1 Introduction 2 Background 3 Harmfulness

Paris-Sud XI, Université de

285

Determination of Uranium Metal Concentration in Irradiated Fuel Storage Basin Sludge Using Selective Dissolution  

SciTech Connect (OSTI)

Uranium metal corroding in water-saturated sludges now held in the US Department of Energy Hanford Site K West irradiated fuel storage basin can create hazardous hydrogen atmospheres during handling, immobilization, or subsequent transport and storage. Knowledge of uranium metal concentration in sludge thus is essential to safe sludge management and process design, requiring an expeditious routine analytical method to detect uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of 30 wt% or higher total uranium concentrations.

Delegard, Calvin H.; Sinkov, Sergey I.; Chenault, Jeffrey W.; Schmidt, Andrew J.; Welsh, Terri L.; Pool, Karl N.

2014-03-01T23:59:59.000Z

286

Visible structures  

E-Print Network [OSTI]

All architecture is the interplay between structure, surface and ornament. Traditionally, ornament adorned structure thereby giving it its meaning. A society with its intellectual foundations resting in faith or the abstract ...

Conway, Helene Marie

1991-01-01T23:59:59.000Z

287

Atmospheric Sciences Program Department of Marine, Earth and Atmospheric Sciences (MEAS)  

E-Print Network [OSTI]

atmospheric chemistry/air quality, boundary layer and air pollution meteorology, regional/global climatology MODELING OF MULTIPLE AIR POLLUTANTS AT URBAN AND REGIONAL SCALES Our atmosphere is a complex systemAtmospheric Sciences Program Department of Marine, Earth and Atmospheric Sciences (MEAS) (http

Parker, Matthew D. Brown

288

Comparison and detection of total and available soil carbon fractions using visible/near infrared diffuse reflectance spectroscopy  

E-Print Network [OSTI]

. With the advent of visible/near-infrared-diffuse reflectance spectroscopy (VNIR-DRS) to infer on soil C fractionsComparison and detection of total and available soil carbon fractions using visible/near infrared diffuse reflectance spectroscopy D.V. Sarkhot a,1,2 , S. Grunwald a, , Y. Ge b,3 , C.L.S. Morgan c,4

Grunwald, Sabine

289

Dye Surface Coating Enables Visible Light Activation of TiO2 Nanoparticles Leading to Degradation of  

E-Print Network [OSTI]

Dye Surface Coating Enables Visible Light Activation of TiO2 Nanoparticles Leading to Degradation that an alizarin red S ~ARS! dye coating on TiO2 nanoparticles enables visible light activation of reactive oxygen species. Successful coating of nanoparti- cles with dye is demonstrated through

Brown, Eric

290

Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing  

E-Print Network [OSTI]

Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote 2013. [1] Penetration of solar radiation in the ocean is determined by the attenuation coefficient (Kd. Lewis, R. Arnone, and R. Brewin (2013), Penetration of UV-visible solar radiation in the global oceans

291

atmospheric nitrogen fluorescence: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Websites Summary: Greenhouse Effect and Atmospheric Warming Atmosphere absorbs heat energy A real greenhouse traps heatCh4. Atmosphere and Surface Energy Balances...

292

atmospheric pressure surface: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

K. 27 Ch4. Atmosphere and Surface Energy Balances Geosciences Websites Summary: Greenhouse Effect and Atmospheric Warming Atmosphere absorbs heat energy A real greenhouse traps...

293

Sandia National Laboratories: atmospheric chemistry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Release Wavearc-fault circuit interrupterchemistry

294

Sandia National Laboratories: atmospheric research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Release Wavearc-fault circuit interrupterchemistryresearch

295

Atmosphere to Electrons Program Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope Change #1Impacts |Services SubcommitteeAtmosphere to

296

Quantification of UV-Visible and Laser Spectroscopic Techniques for Materials Accountability and Process Control  

SciTech Connect (OSTI)

Ultraviolet–visible spectroscopy (UV–Visible) and time-resolved laser fluorescence spectroscopy (TRLFS) optical techniques can permit on-line analysis of actinide elements in a solvent extraction process in real time. These techniques have been used for measuring actinide speciation and concentration under laboratory conditions and are easily adaptable to multiple sampling geometries, such as dip probes, fiber-optic sample cells, and flow-through cell geometries. To fully exploit these techniques, researchers must determine the fundamental speciation of target actinides and the resulting influence on spectroscopic properties. Detection limits, process conditions, and speciation of key actinide components can be established and utilized in a range of areas, particularly those related to materials accountability and process control. Through this project, researchers will develop tools and spectroscopic techniques to evaluate solution extraction conditions and concentrations of U, Pu, and Cm in extraction processes, addressing areas of process control and materials accountability. The team will evaluate UV– Visible and TRLFS for use in solvent extraction-based separations. Ongoing research is examining efficacy of UV-Visible spectroscopy to evaluate uranium and plutonium speciation under conditions found in the UREX process and using TRLFS to evaluate Cm speciation and concentration in the TALSPEAK process. A uranyl and plutonium nitrate UV–Visible spectroscopy study met with success, which supports the utility and continued exploration of spectroscopic methods for evaluation of actinide concentrations and solution conditions for other aspects of the UREX+ solvent extraction scheme. This project will ex examine U and Pu absorbance in TRUEX and TALSPEAK, perform detailed examination of Cm in TRUEX and TALSPEAK, study U laser fluorescence, and apply project data to contactors. The team will also determine peak ratios as a function of solution concentrations for the UV-Visible spectroscopy studies. The use of TRLFS to examine Cm and U will provide data to evaluate lifetime, peak location, and peak ratios (mainly for U). The bases for the spectroscopic techniques have been investigated, providing fundamental evidence for the application’s utility.

Czerwinski, Kenneth

2013-09-13T23:59:59.000Z

297

E-Print Network 3.0 - additive irradiation procedures Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

irradiation procedures Search Powered by Explorit Topic List Advanced Search Sample search results for: additive irradiation procedures Page: << < 1 2 3 4 5 > >> 1 IRRADIANCE MAPS...

298

Horizontal modular dry irradiated fuel storage system  

DOE Patents [OSTI]

A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

Fischer, Larry E. (Los Gatos, CA); McInnes, Ian D. (San Jose, CA); Massey, John V. (San Jose, CA)

1988-01-01T23:59:59.000Z

299

Laboratory for Characterization of Irradiated Graphite  

SciTech Connect (OSTI)

The newly completed Idaho National Laboratory (INL) Carbon Characterization Laboratory (CCL) is located in Labs C19 and C20 of the Idaho National Laboratory Research Center (IRC). The CCL was established under the Next Generation Nuclear Plant (NGNP) Project to support graphite and ceramic composite research and development activities. The research is in support of the Advanced Graphite Creep (AGC) experiment — a major material irradiation experiment within the NGNP Graphite program. The CCL is designed to characterize and test low activated irradiated materials such as high purity graphite, carbon-carbon composites, and silicon-carbide composite materials. The laboratory is fully capable of characterizing material properties for both irradiated and nonirradiated materials.

Karen A. Moore

2010-03-01T23:59:59.000Z

300

Irradiation creep of vanadium-base alloys.  

SciTech Connect (OSTI)

A study of irradiation creep in vanadium-base alloys is underway with experiments in the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR) in the US. Test specimens are thin-wall sealed tubes with internal pressure loading. The results from the initial ATR irradiation at low temperature (200-300 C) to a neutron damage level of 4.7 dpa show creep rates ranging from {approx}0 to 1.2 x 10{sup {minus}5}/dpa/MPa for a 500-kg heat of V-4Cr-4Ti alloy. These rates were generally lower than reported from a previous experiment in BR-10. Because both the attained neutron damage levels and the creep strains were low in the present study, however, these creep rates should be regarded as only preliminary. Substantially more testing is required before a data base on irradiation creep of vanadium alloys can be developed and used with confidence.

Tsai, H.; Matsui, H.; Billone, M. C.; Strain, R. V.; Smith, D. L.

1998-05-18T23:59:59.000Z

Note: This page contains sample records for the topic "visible irradiance atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Irradiation effects on borosilicate waste glasses  

SciTech Connect (OSTI)

The effects of alpha decay on five borosilicate glasses containing simulated nuclear high-level waste oxides were studied. Irradiations carried out at room temperature were achieved by incorporating 1 to 8 wt % /sup 244/Cm/sub 2/O/sub 3/ in the glasses. Density changes and stored-energy build-up saturated at doses less than 2 x 10/sup 21/ alpha decays/kg. Damage manifested by stored energy was completely annealed at 633/sup 0/K. Positive and negative density changes were observed which never exceeded 1%. Irradiation had very little effect on mechanical strength or on chemical durability as measured by aqueous leach rates. Also, no effects were observed on the microstructure for vitreous waste glasses, although radiation-induced microcracking could be achieved on specimens that had been devitrified prior to irradiation.

Roberts, F.P.

1980-06-01T23:59:59.000Z

302

Heavy ion irradiation of crystalline water ice  

E-Print Network [OSTI]

Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic ...

Dartois, E; Boduch, P; Brunetto, R; Chabot, M; Domaracka, A; Ding, J J; Kamalou, O; Lv, X Y; Rothard, H; da Silveira, E F; Thomas, J C

2015-01-01T23:59:59.000Z

303

Volume-scalable high-brightness three-dimensional visible light source  

DOE Patents [OSTI]

A volume-scalable, high-brightness, electrically driven visible light source comprises a three-dimensional photonic crystal (3DPC) comprising one or more direct bandgap semiconductors. The improved light emission performance of the invention is achieved based on the enhancement of radiative emission of light emitters placed inside a 3DPC due to the strong modification of the photonic density-of-states engendered by the 3DPC.

Subramania, Ganapathi; Fischer, Arthur J; Wang, George T; Li, Qiming

2014-02-18T23:59:59.000Z

304

Visibility of cold atomic gases in optical lattices for finite temperatures  

SciTech Connect (OSTI)

In nearly all experiments with ultracold atoms time-of-flight pictures are the only data available. In this paper we present an analytical strong-coupling calculation for those time-of-flight pictures of bosons in a three-dimensional optical lattice in the Mott phase. This allows us to determine the visibility, which quantifies the contrast of peaks in the time-of-flight pictures, and we suggest how to use it as a thermometer.

Hoffmann, Alexander [Arnold Sommerfeld Center, Ludwig Maximilian Universitaet, Theresienstrasse 37, 80333 Muenchen (Germany); Pelster, Axel [Fachbereich Physik, Universitaet Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg (Germany); Fachbereich Physik, Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin (Germany)

2009-05-15T23:59:59.000Z

305

Modified Visible and Infrared Optical Design for the ITER Upper Ports  

SciTech Connect (OSTI)

This document reports the results of a follow-on optical design study of visible-light and infrared optics for the ITER upper ports, performed by LLNL under contract for the US ITER Project Office. The major objectives of this work are to move the viewing aperture closer to the plasma so that the optical path does not cut through any adjacent blanket shield module other than the module designated for the port; move optics forward into the port tube to increase the aperture size and therefore improve the spatial resolution; assess the trade-off between spatial resolution and spatial coverage by reducing the field of view; and create a mechanical model with a neutron labyrinth. Here we show an optical design incorporating all these aspects. The new design fits into a 360 mm ID tube, as did the previous design. The entrance aperture is increased from 10 mm to 21 mm, with a corresponding increase in spatial resolution. The Airy disk diameter for 3.8 {micro}m wavelength IR light is 5.1 mm at the most distant target point in the field of view. The field of view is reduced from 60 toroidal degrees (full toroidal coverage with 6 cameras) to 50 toroidal degrees. The 10 degrees eliminated are those nearest the camera, which have the poorest view of the divertor plate and in fact saw little of the plate. The Cassegrain telescope that was outside the vacuum windows in the previous design is now in vacuum, along with lenses for visible light. The Cassegrain for visible light is eliminated. An additional set of optical relay lenses is added for the visible and for the IR.

Lasnier, C; Seppala, L; Morris, K

2008-04-24T23:59:59.000Z

306

Heavy-Section Steel Irradiation Program  

SciTech Connect (OSTI)

Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. Because the RPV is the only key safety-related component of the plant for which a redundant backup system does not exist, it is imperative to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance that occurs during service. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established.

Rosseel, T.M.

2000-04-01T23:59:59.000Z

307

Gamma irradiation of the prenatal mouse dentition  

E-Print Network [OSTI]

as the dental lamina to the stage of the deposition of enamel and dentin. The purpose of this study was to determine the effect of a continuous stress of gamma irradiation on the structure of the odontogenic cells, the relative size and rate of development... development. In 1927, Leist (9) made a study of the effect of X-rays on teeth, which was brought about by the following rase. A worker in a Roentgen tube factory was exposed daily to a considerable dose of X-irradiation. Sometime later he began to show...

Kerley, Michael Auston

1969-01-01T23:59:59.000Z

308

Final Assembly and Initial Irradiation of the First Advanced Gas Reactor Fuel Development and Qualification Experiment in the Advanced Test Reactor  

SciTech Connect (OSTI)

The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotropic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing.1,2 The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The final design phase for the first experiment was completed in 2005, and the fabrication and assembly of the first experiment test train (designated AGR-1) as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation were completed in 2006. The experiment was inserted in the ATR in December 2006, and will serve as a shakedown test of the multi-capsule experiment design that will be used in the subsequent irradiations as well as a test of the early variants of the fuel produced under this program. The experiment test train as well as the monitoring, control, and data collection systems are discussed.

S. B. Grover

2007-05-01T23:59:59.000Z

309

atmospheric research community: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University Corporation for Atmospheric Research Geosciences Websites Summary: University Corporation for Atmospheric Research CIGNA DENTAL PREFERRED PROVIDER INSURANCE EFFECTIVE...

310

An Infrared Spectral Library for Atmospheric Environmental Monitoring...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Infrared Spectral Library for Atmospheric Environmental Monitoring. An Infrared Spectral Library for Atmospheric Environmental Monitoring. Abstract: Infrared (IR) spectroscopy...

311

Effects of neutron flux and irradiation temperature on irradiation embrittlement of A533B steels  

SciTech Connect (OSTI)

Irradiation embrittlement of A533B steels with low copper contents were investigated from the point of dose rate and irradiation temperature effects. Change of neutron flux in the range from {minus}10{sup 12} to {minus}10{sup 13} n/cm{sup 2}/s (E > 1 MeV) did not have a significant effect on the embrittlement. Irradiation temperature change of 1 C resulted in the transition temperature shift ({Delta}T{sub 41J}) of about 1 C and yield stress change ({Delta}{sigma}{sub y}) of about 0.8 MPa. Factors that might affect the embrittlement of low copper steels are also discussed.

Suzuki, Masahide; Onizawa, Kunio; Kizaki, Minoru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

1996-12-31T23:59:59.000Z

312

Fructolysis in the semen of continuously irradiated and non-irradiated goats  

E-Print Network [OSTI]

Abbott showed that the androgenic activity of the testis is far more resistant to x- ray irradiation than is the germinal epi- 1 thelium. When Abbott administered 5, 000 and 10, OOOR to rats, he found no decrease in the sex accessory organ weights nor.... Another point which supports the data that the damaged spermatogonia give rise to subnormal sperm is 23 the studies done with in vitro sperm that have been irradiated. Man 15 stated that irradiation of whole, fresh semen has little or no effect...

Ziller, Henry Hubert

1966-01-01T23:59:59.000Z

313

Parallization of Stellar Atmosphere Codes  

E-Print Network [OSTI]

Parallel computing has turned out to be the enabling technology to solve complex physical systems. However, the transition from shared memory, vector computers to massively parallel, distributed memory systems and, recently, to hybrid systems poses new challenges to the scientist. We want to present a cook-book (with a very strong, personal bias) based on our experience with parallization of our existing codes. Some of the general tools and communication libraries are discussed. Our approach includes a mixture of algorithm, domain and physical module based parallization. The advantages, scalability and limitations of each are discussed at some examples. We want show that it becomes easier to write parallel code with increasing complexity of the physical problem making stellar atmosphere codes beyond the classical assumptions very suitable.

P. Hoeflich

2002-09-19T23:59:59.000Z

314

Understanding the Irradiation Behavior of Zirconium Carbide  

SciTech Connect (OSTI)

Zirconium carbide (ZrC) is being considered for utilization in high-temperature gas-cooled reactor fuels in deep-burn TRISO fuel. Zirconium carbide possesses a cubic B1-type crystal structure with a high melting point, exceptional hardness, and good thermal and electrical conductivities. The use of ZrC as part of the TRISO fuel requires a thorough understanding of its irradiation response. However, the radiation effects on ZrC are still poorly understood. The majority of the existing research is focused on the radiation damage phenomena at higher temperatures (>450{degree}C) where many fundamental aspects of defect production and kinetics cannot be easily distinguished. Little is known about basic defect formation, clustering, and evolution of ZrC under irradiation, although some atomistic simulation and phenomenological studies have been performed. Such detailed information is needed to construct a model describing the microstructural evolution in fast-neutron irradiated materials that will be of great technological importance for the development of ZrC- based fuel. The goal of the proposed project is to gain fundamental understanding of the radiation-induced defect formation in zirconium carbide and irradiation response (ZrC) by using a combination of state-of-the-art experimental methods and atomistic modeling. This project will combine (1) in situ ion irradiation at a specialized facility at a national laboratory, (2) controlled temperature proton irradiation on bulk samples, and (3) atomistic modeling to gain a fundamental understanding of defect formation in ZrC. The proposed project will cover the irradiation temperatures from cryogenic temperature to as high as 800{degree}C, and dose ranges from 0.1 to 100 dpa. The examination of this wide range of temperatures and doses allows us to obtain an experimental data set that can be effectively used to exercise and benchmark the computer calculations of defect properties. Combining the examination of radiation-induced microstructures mapped spatially and temporally, microstructural evolution during post-irradiation annealing, and atomistic modeling of defect formation and transport energetics will provide new, critical understanding about property changes in ZrC. The behavior of materials under irradiation is determined by the balance between damage production, defect clustering, and lattice response. In order to predict those effects at high temperatures so targeted testing can be expanded and extrapolated beyond the known database, it is necessary to determine the defect energetics and mobilities as these control damage accumulation and annealing. In particular, low-temperature irradiations are invaluable for determining the regions of defect mobility. Computer simulation techniques are particularly useful for identifying basic defect properties, especially if closely coupled with a well-constructed and complete experimental database. The close coupling of calculation and experiment in this project will provide mutual benchmarking and allow us to glean a deeper understanding of the irradiation response of ZrC, which can then be applied to the prediction of its behavior in reactor conditions.

Motta, Arthur; Sridharan, Kumar; Morgan, Dane; Szlufarska, Izabela

2013-10-11T23:59:59.000Z

315

Guiding in the visible with "colorful" solid-core Bragg fibers  

E-Print Network [OSTI]

modes. Potential applications of such fibers are discussed. © 2007 Optical Society of America OCIS codes: 060.2280, 060.2270. Microstructured plastic optical fibers have been re- cently applied to various bandgap were irradiated in the first 1­3 cm along the fiber length. Subsequently, only a particular color

Skorobogatiy, Maksim

316

Impact of Aerosols on Atmospheric Attenuation Loss in Central Receiver Systems: Preprint  

SciTech Connect (OSTI)

Atmospheric attenuation loss between the heliostat field and receiver has been recognized as a significant source of loss in Central Receiver Systems. In clear sky situations, extinction of Direct Normal Irradiance (DNI) is primarily by aerosols in the atmosphere. When aerosol loading is high close to the surface the attenuation loss between heliostat and receivers is significantly influenced by the amount of aerosols present on a particular day. This study relates measured DNI to aerosol optical depths close to the surface of the earth. The model developed in the paper uses only measured DNI to estimate the attenuation between heliostat and receiver in a central receiver system. The requirement that only a DNI measurement is available potentially makes the model a candidate for widespread use.

Sengupta, M.; Wagner, M. J.

2011-08-01T23:59:59.000Z

317

Time dependences of atmospheric Carbon dioxide fluxes  

E-Print Network [OSTI]

Understanding the lifetime of CO2 in the atmosphere is critical for predictions regarding future climate changes. A simple mass conservation analysis presented here generates tight estimations for the atmosphere's retention time constant. The analysis uses a leaky integrator model that combines the observed deficit (only less than 40% of CO2 produced from combustion of fossil fuels is actually retained in the atmosphere, while more than 60% is continuously shed) with the exponential growth of fossil fuel burning. It reveals a maximum characteristic time of less than 23 year for the transfer of atmospheric CO2 to a segregation sink. This time constant is further constrained by the rapid disappearance of 14C after the ban of atmospheric atomic bomb tests, which provides a lower limit of 18 years for this transfer. The study also generates evaluations of other CO2 fluxes, exchange time constants and volumes exchanged. Analysis of large harmonic oscillations of atmospheric CO2 concentration, often neglected in th...

DeSalvo, Riccardo

2014-01-01T23:59:59.000Z

318

Response of Strontium Titanate to Ion and Electron Irradiation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Strontium Titanate to Ion and Electron Irradiation. Response of Strontium Titanate to Ion and Electron Irradiation. Abstract: Response of strontium titanate (SrTiO3) to ion and...

319

Irradiation Stability of Carbon Nanotubes and Related Materials  

E-Print Network [OSTI]

defect annealing at elevated irradiation temperatures, which delays the formation of amorphous regions. Investigation of nanotube stability after various processing techniques and irradiation indicated that radiation response of CNTs in a composite...

Aitkaliyeva, Assel 1985-

2012-09-28T23:59:59.000Z

320

E-Print Network 3.0 - accelerated hyperfractionated irradiation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Group Collection: Physics 79 Irradiation of Nd-Fe-B Permanent Magnets with APS Bending Magnet X-rays and 60 Summary: of 260 Mrad was used to irradiate Nd-Fe-B sample magnets with...

Note: This page contains sample records for the topic "visible irradiance atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Implementation Plan for the Irradiated Materials Characterization Laboratory (IMCL)  

SciTech Connect (OSTI)

This document contains details regarding the planned implementation of the Irradiated Materials Characterization Laboratory at the INL.

Not Listed

2013-04-01T23:59:59.000Z

322

12.815 Atmospheric Radiation, Fall 2005  

E-Print Network [OSTI]

Introduction to the physics of atmospheric radiation and remote sensing including use of computer codes. Radiative transfer equation including emission and scattering, spectroscopy, Mie theory, and numerical solutions. ...

Prinn, Ronald G.

323

Urban Atmospheres captures a unique, synergistic moment  

E-Print Network [OSTI]

Urban Atmospheres captures a unique, synergistic moment ­ expanding urban populations, rapid EDITORS Eric Paulos Intel Research eric@paulos.net Tom Jenkins Royal College of Art thomas

Paulos, Eric

324

Atmospheric and Surface Science Research Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric and Surface Science Research Laboratory Idaho National Laboratory (INL) researchers are contributing to the scientific understanding of contaminant transport through...

325

atmospheres: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to optical depth perturbations. In Earth-type atmospheres sustained planetary greenhouse effect with a stable ground surface temperature can only exist at a particular...

326

atmosphere: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to optical depth perturbations. In Earth-type atmospheres sustained planetary greenhouse effect with a stable ground surface temperature can only exist at a particular...

327

atmospherics: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to optical depth perturbations. In Earth-type atmospheres sustained planetary greenhouse effect with a stable ground surface temperature can only exist at a particular...

328

Comparing local vs. global visible and near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) calibrations for the prediction of soil clay, organic C  

E-Print Network [OSTI]

Comparing local vs. global visible and near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS Elsevier B.V. All rights reserved. 1. Introduction Visible and near-infrared (VisNIR) diffuse reflectance

Lawrence, Rick L.

329

SIPS: Solar Irradiance Prediction System Stefan Achleitner  

E-Print Network [OSTI]

-scaling capacities of renewable energy sources such as wind and solar. However, variability and uncertainty in powerSIPS: Solar Irradiance Prediction System Stefan Achleitner Computer Science and Engineering Liu and Alberto E. Cerpa Electrical Engineering and Computer Science University of California, Merced

Cerpa, Alberto E.

330

The Sun and Climate Solar Irradiance  

E-Print Network [OSTI]

The Sun and Climate #12;Solar Irradiance The Solar Constant f = 1.4 x 106 erg/cm2/s. Over is higher when the Sun is more magnetically active. ·The Sun was magnetically active, and the climate the Sun Drive Climate? #12;The Temperature's Rising #12;Sunspots and CO2 What is Cause and What is Effect

Walter, Frederick M.

331

Total Solar Irradiance Satellite Composites and their  

E-Print Network [OSTI]

Chapter 12 Total Solar Irradiance Satellite Composites and their Phenomenological Effect on Climate. Phenomenological solar signature on climate 310 9. Conclusion 312 1. INTRODUCTION A contiguoustotal solar from each other, in particular about whether the TSI minimum during solar Cycles 22e23 (1995

Scafetta, Nicola

332

Irradiation Embritlement in Alloy HT-­9  

SciTech Connect (OSTI)

HT-9 steel is a candidate structural and cladding material for high temperature lead-bismuth cooled fast reactors. In typical advanced fast reactor designs fuel elements will be irradiated for an extended period of time, reaching up to 5-7 years. Significant displacement damage accumulation in the steel is expected (> 200 dpa) when exposed to dpa-rates of 20-30 dpa{sub Fe}/y and high fast flux (E > 0.1 MeV) {approx}4 x 10{sup 15} n/cm{sup 2}s. Core temperatures could reach 400-560 C, with coolant temperatures at the inlet as low as 250 C, depending on the reactor design. Mechanical behavior in the presence of an intense fast flux and high dose is a concern. In particular, low temperature operation could be limited by irradiation embrittlement. Creep and corrosion effects in liquid metal coolants could set a limit to the upper operating temperature. In this report, we focus on the low temperature operating window limit and describe HT-9 embrittlement experimental findings reported in the literature that could provide supporting information to facilitate the consideration of a Code Case on irradiation effects for this class of steels in fast reactor environments. HT-9 has an extensive database available on irradiation performance, which makes it the best choice as a possible near-term candidate for clad, and ducts in future fast reactors. Still, as it is shown in this report, embrittlement data for very low irradiation temperatures (< 200 C) and very high radiation exposure (> 150 dpa) is scarce. Experimental findings indicate a saturation of DBTT shifts as a function of dose, which could allow for long lifetime cladding operation. However, a strong increase in DBTT shift with decreasing irradiation temperature could compromise operation at low service temperatures. Development of a deep understanding of the physics involved in the radiation damage mechanisms, together with multiscale computer simulation models of irradiation embrittlement will provide the basis to derive trendlines and quantitative engineering predictions.

Serrano De Caro, Magdalena [Los Alamos National Laboratory

2012-08-27T23:59:59.000Z

333

Response of neutron-irradiated RPV steels to thermal annealing  

SciTech Connect (OSTI)

One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVs) is to thermally anneal them to restore the fracture toughness properties that have been degraded by neutron irradiation. This paper summarizes experimental results of work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response of several irradiated RPV steels.

Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

1997-03-01T23:59:59.000Z

334

Total solar irradiance during the Holocene F. Steinhilber,1  

E-Print Network [OSTI]

Total solar irradiance during the Holocene F. Steinhilber,1 J. Beer,1 and C. Fro¨hlich2 Received 20 solar irradiance covering 9300 years is presented, which covers almost the entire Holocene. This reconstruction is based on a recently observationally derived relationship between total solar irradiance

Wehrli, Bernhard

335

Sensitivity of ultrasonic nonlinearity to irradiated, annealed, and re-irradiated microstructure changes in RPV steels  

SciTech Connect (OSTI)

The planned life extension of nuclear reactors throughout the US and abroad will cause reactor vessel and internals materials to be exposed to more neutron irradiation than was originally intended. A nondestructive evaluation (NDE) method to monitor radiation damage would enable safe and cost-effective continued operation of nuclear reactors. Radiation damage in reactor pressure vessel (RPV) steels causes microstructural changes that leave the material in an embrittled state. Nonlinear ultrasound is an NDE technique quantified by the measurable acoustic nonlinearity parameter, which is sensitive to microstructural changes in metallic materials such as dislocations, precipitates and their combinations. Recent research has demonstrated the sensitivity of the acoustic nonlinearity parameter to increasing neutron fluence in representative RPV steels. The current work considers nonlinear ultrasonic experiments conducted on similar RPV steel samples that had a combination of irradiation, annealing, re-irradiation, and/or re-annealing to a total neutron fluence of 0.5 5 1019 n/cm2 (E > 1 MeV) at an irradiation temperature of 290 C. The acoustic nonlinearity parameter generally increased with increasing neutron fluence, and consistently decreased from the irradiated to the annealed state over different levels of neutron fluence. Results of the measured acoustic nonlinearity parameter are compared with those from previous measurements on other RPV steel samples. This comprehensive set of results illustrates the dependence of the measured acoustic nonlinearity parameter on neutron fluence, material composition, irradiation temperature and annealing.

Matlack, Katie [Georgia Institute of Technology, Atlanta] [Georgia Institute of Technology, Atlanta; Kim, J-Y. [Georgia Institute of Technology, Atlanta] [Georgia Institute of Technology, Atlanta; Wall, J.J. [Electric Power Research Institute (EPRI)] [Electric Power Research Institute (EPRI); Jacobs, L.J. [Georgia Institute of Technology, Atlanta] [Georgia Institute of Technology, Atlanta; Sokolov, Mikhail A [ORNL] [ORNL

2014-01-01T23:59:59.000Z

336

Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition  

E-Print Network [OSTI]

Soil consumption of atmospheric methane plays an important secondary role in regulating the atmospheric CH4 budget, next to the dominant loss mechanism involving reaction with the hydroxyl radical (OH). Here we used a ...

Zhuang, Qianlai

337

Untangling the Chemical Evolution of Titan's Atmosphere and Surface -- From Homogeneous to Heterogeneous Chemistry  

SciTech Connect (OSTI)

The arrival of the Cassini-Huygens probe at Saturn's moon Titan - the only Solar System body besides Earth and Venus with a solid surface and a thick atmosphere with a pressure of 1.4 atm at surface level - in 2004 opened up a new chapter in the history of Solar System exploration. The mission revealed Titan as a world with striking Earth-like landscapes involving hydrocarbon lakes and seas as well as sand dunes and lava-like features interspersed with craters and icy mountains of hitherto unknown chemical composition. The discovery of a dynamic atmosphere and active weather system illustrates further the similarities between Titan and Earth. The aerosol-based haze layers, which give Titan its orange-brownish color, are not only Titan's most prominent optically visible features, but also play a crucial role in determining Titan's thermal structure and chemistry. These smog-like haze layers are thought to be very similar to those that were present in Earth's atmosphere before life developed more than 3.8 billion years ago, absorbing the destructive ultraviolet radiation from the Sun, thus acting as 'prebiotic ozone' to preserve astrobiologically important molecules on Titan. Compared to Earth, Titan's low surface temperature of 94 K and the absence of liquid water preclude the evolution of biological chemistry as we know it. Exactly because of these low temperatures, Titan provides us with a unique prebiotic 'atmospheric laboratory' yielding vital clues - at the frozen stage - on the likely chemical composition of the atmosphere of the primitive Earth. However, the underlying chemical processes, which initiate the haze formation from simple molecules, have been not understood well to date.

Kaiser, Ralf I.; Maksyutenko, Pavlo; Ennis, Courtney; Zhang, Fangtong; Gu, Xibin; Krishtal, Sergey P.; Mebel, Alexander M.; Kostko, Oleg; Ahmed, Musahid

2010-03-16T23:59:59.000Z

338

THE INFLUENCE OF ATMOSPHERIC SCATTERING AND ABSORPTION ON OHMIC DISSIPATION IN HOT JUPITERS  

SciTech Connect (OSTI)

Using semi-analytical, one-dimensional models, we elucidate the influence of scattering and absorption on the degree of Ohmic dissipation in hot Jovian atmospheres. With the assumption of Saha equilibrium, the variation in temperature is the main driver of the variations in the electrical conductivity, induced current, and Ohmic power dissipated. Atmospheres possessing temperature inversions tend to dissipate most of the Ohmic power superficially, at high altitudes, whereas those without temperature inversions are capable of greater dissipation deeper down. Scattering in the optical range of wavelengths tends to cool the lower atmosphere, thus reducing the degree of dissipation at depth. Purely absorbing cloud decks (in the infrared), of a finite extent in height, allow for localized reductions in dissipation and may reverse a temperature inversion if they are dense and thick enough, thus greatly enhancing the dissipation at depth. If Ohmic dissipation is the mechanism for inflating hot Jupiters, then variations in the atmospheric opacity (which may be interpreted as arising from variations in metallicity and cloud/haze properties) and magnetic field strength naturally produce a scatter in the measured radii at a given strength of irradiation. Future work will determine if these effects are dominant over evolutionary effects, which also contribute a scatter to the measured radii.

Heng, Kevin [ETH Zuerich, Institute for Astronomy, Wolfgang-Pauli-Strasse 27, CH-8093 Zuerich (Switzerland)

2012-03-20T23:59:59.000Z

339

Direct comparison of EUV and visible-light interferometries Kenneth A. Goldberg*a, Patrick Naulleaua, SangHun Leea,b, Chang Changa,b, Cynthia Bresloffc,  

E-Print Network [OSTI]

Direct comparison of EUV and visible-light interferometries Kenneth A. Goldberg*a, PatrickĂ? EUV imaging systems provide the first direct comparisons of visible-light and at-wavelength EUV-coated Schwarzschild objectives are discussed. Favorable agreement has been achieved between EUV and visible-light

340

Some challenges of middle atmosphere data assimilation  

E-Print Network [OSTI]

Some challenges of middle atmosphere data assimilation 1234567 89A64BC7DEF72B4 8629EEC7C72DEEE5.1256/qj.05.87 Some challenges of middle atmosphere data assimilation By S. POLAVARAPU1,2, T. G. SHEPHERD2 Data assimilation is employed at operational weather forecast centres to combine measurements and model

Wirosoetisno, Djoko

Note: This page contains sample records for the topic "visible irradiance atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

OCEAN-ATMOSPHERE INTERACTION AND TROPICAL CLIMATE  

E-Print Network [OSTI]

radiation is the ultimate source of energy for motions in the atmosphere and ocean. Most absorption of solar radiation takes place on the Earth surface, the majority of which is occupied by oceans. Thus oceanic modulate surface radiative flux. Thus, the ocean and atmosphere are a coupled system and their interaction

Xie, Shang-Ping

342

Doctoral Programs Atmospheric, Oceanic & Space Sciences  

E-Print Network [OSTI]

University of Michigan Space Research Building 2455 Hayward Street Ann Arbor, MI 48109-2143 aoss Katherine E. White, Ann Arbor ©The Regents of the University of Michigan Research areas Atmospheric Science Atmospheric Dynamics Climate, Climate Modeling & Climate Change Clouds & Precipitation Paleoclimate, Ice

Eustice, Ryan

343

United States Department Atmospheric and Biospheric Interactions  

E-Print Network [OSTI]

United States Department Atmospheric and Biospheric Interactions of Agriculture Forest Service coordinator. 1997. Atmospheric and biospheric interactions of gases and energy in the Pacific region century have caused a dramatic increase in global air pollution. This process has accelerated in the past

Standiford, Richard B.

344

Atmospheric Chemistry, Modeling, and Biogeochemistry of Mercury  

E-Print Network [OSTI]

Atmospheric Chemistry, Modeling, and Biogeochemistry of Mercury Noelle Eckley Selin *Reprinted from Mercury in the Environment: Pattern and Process (Chapter 5) pp. 73-80 Copyright © 2012 with kind, and Biogeochemistry of Mercury NOELLE ECKLEY SELIN and their distribution in the atmosphere. This includes

345

Extremes and Atmospheric Data Eric Gilleland  

E-Print Network [OSTI]

Extremes and Atmospheric Data Eric Gilleland Research Applications Laboratory National Center for Atmospheric Research 2007-08 Program on Risk Analysis, Extreme Events and Decision Theory, opening workshop 16-19 September, North Carolina #12;Extremes · Interest in making inferences about large, rare, extreme phenomena

Gilleland, Eric

346

Effects of stress on microstructural evolution during irradiation  

SciTech Connect (OSTI)

Many theories have been postulated to describe irradiation creep but few have been supported with microstructural evidence. The purpose of this paper is to review microstructural studies of the effects of stress during irradiation in order to assess the validity of the available irradiation creep theories. Microstructural studies based on high voltage electron, ion, proton and neutron irradiation will be described, with major emphasis placed on interpreting behavior demonstrated in austenitic steels. Special attention will be given to work on fast neutron irradiated Nimonic PE16, a precipitation strengthened superalloy.

Gelles, D.S. [Pacific Northwest Lab., Richland, VA (United States)

1992-12-31T23:59:59.000Z

347

Atmospheric sampling glow discharge ionization source  

DOE Patents [OSTI]

An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

McLuckey, S.A.; Glish, G.L.

1989-07-18T23:59:59.000Z

348

A SEARCH FOR MAGNESIUM IN EUROPA'S ATMOSPHERE  

SciTech Connect (OSTI)

Europa's tenuous atmosphere results from sputtering of the surface. The trace element composition of its atmosphere is therefore related to the composition of Europa's surface. Magnesium salts are often invoked to explain Galileo Near Infrared Mapping Spectrometer spectra of Europa's surface, thus magnesium may be present in Europa's atmosphere. We have searched for magnesium emission in the Hubble Space Telescope Faint Object Spectrograph archival spectra of Europa's atmosphere. Magnesium was not detected and we calculate an upper limit on the magnesium column abundance. This upper limit indicates that either Europa's surface is depleted in magnesium relative to sodium and potassium, or magnesium is not sputtered as efficiently resulting in a relative depletion in its atmosphere.

Hoerst, S. M. [Cooperative Institute for Research in Environmental Sciences, University of Colorado-Boulder, Boulder, CO (United States); Brown, M. E., E-mail: sarah.horst@colorado.edu [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA (United States)

2013-02-20T23:59:59.000Z

349

Qubit transfer between photons at telecom and visible wavelengths in a slow-light atomic medium  

E-Print Network [OSTI]

We propose a method that enables efficient conversion of quantum information frequency between different regions of spectrum of light based on recently demonstrated strong parametric coupling between two narrow-band single-photon pulses propagating in a slow-light atomic medium [1]. We show that an input qubit at telecom wavelength is transformed into another at visible domain in a lossless and shape-conserving manner while keeping the initial quantum coherence and entanglement. These transformations can be realized with a quantum efficiency close to its maximum value.

A. Gogyan

2009-12-08T23:59:59.000Z

350

A visible light-sensitive tungsten carbide/tungsten trioxde composite photocatalyst  

SciTech Connect (OSTI)

A photocatalyst composed of tungsten carbide (WC) and tungsten oxide (WO{sub 3}) has been prepared by the mechanical mixing of each powder. Its photocatalytic activity was evaluated by the gaseous isopropyl alcohol decomposition process. The photocatalyst showed high visible light photocatalytic activity with a quantum efficiency of 3.2% for 400-530 nm light. The photocatalytic mechanism was explained by means of enhanced oxygen reduction reaction due to WC, which may serve as a multielectron reduction catalyst, as well as the photogeneration of holes in the valence band of WO{sub 3}.

Kim, Young-ho [Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Irie, Hiroshi [Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Hashimoto, Kazuhito [Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

2008-05-05T23:59:59.000Z

351

Concept development for the ITER equatorial port visible/infrared wide angle viewing system  

SciTech Connect (OSTI)

The ITER equatorial port visible/infrared wide angle viewing system concept is developed from the measurement requirements. The proposed solution situates 4 viewing systems in the equatorial ports 3, 9, 12, and 17 with 4 views each (looking at the upper target, the inner divertor, and tangentially left and right). This gives sufficient coverage. The spatial resolution of the divertor system is 2 times higher than the other views. For compensation of vacuum-vessel movements, an optical hinge concept is proposed. Compactness and low neutron streaming is achieved by orienting port plug doglegs horizontally. Calibration methods, risks, and R and D topics are outlined.

Reichle, R.; Beaumont, B.; Boilson, D.; Bouhamou, R.; Direz, M.-F.; Encheva, A.; Henderson, M.; Kazarian, F.; Lamalle, Ph.; Lisgo, S.; Mitteau, R.; Patel, K. M.; Pitcher, C. S.; Pitts, R. A.; Prakash, A.; Raffray, R.; Schunke, B.; Snipes, J.; Diaz, A. Suarez; Udintsev, V. S. [ITER Organization, Route de Vinon-sur-Verdon, 13115 St Paul-lez-Durance (France); and others

2012-10-15T23:59:59.000Z

352

Enhanced visible and near-infrared capabilities of the JET mirror-linked divertor spectroscopy system  

SciTech Connect (OSTI)

The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium D?, D?, D? line emission in the outer divertor. The expanded system provides unique capabilities for studying spatially resolved divertor plasma dynamics at near-ELM resolved timescales as well as a test bed for feasibility assessment of near-infrared spectroscopy.

Lomanowski, B. A., E-mail: b.a.lomanowski@durham.ac.uk; Sharples, R. M. [Centre for Advanced Instrumentation, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Meigs, A. G.; Conway, N. J.; Zastrow, K.-D.; Heesterman, P.; Kinna, D. [EURATOM/CCFE Fusion Association, Culham Science Center, Abingdon OX14 3DB (United Kingdom); Collaboration: JET-EFDA Team

2014-11-15T23:59:59.000Z

353

Chapter 9.1: Department of Atmospheric Science1 The Department of Atmospheric Science was founded in 1962 within the College of Engineering as  

E-Print Network [OSTI]

in first place among departments of atmosphere and ocean sciences in the nation. Strategic Planning Areas, or full professor levels) in atmospheric dynamics, climate dynamics, atmospheric radiation, atmospheric

354

Materials Modification Under Ion Irradiation: JANNUS Project  

SciTech Connect (OSTI)

JANNUS (Joint Accelerators for Nano-Science and Nuclear Simulation) is a project designed to study the modification of materials using multiple ion beams and in-situ TEM observation. It will be a unique facility in Europe for the study of irradiation effects, the simulation of material damage due to irradiation and in particular of combined effects. The project is also intended to bring together experimental and modelling teams for a mutual fertilisation of their activities. It will also contribute to the teaching of particle-matter interactions and their applications. JANNUS will be composed of three accelerators with a common experimental chamber and of two accelerators coupled to a 200 kV TEM.

Serruys, Y.; Trocellier, P. [CEA-Saclay, DEN/DMN/SRMP, 91191 Gif-sur-Yvette Cedex (France); Ruault, M.-O.; Henry, S.; Kaietasov, O. [CSNSM, Bat. 104, Orsay Campus (France); Trouslard, Ph. [INSTN, CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France)

2004-12-01T23:59:59.000Z

355

Neutron irradiation of beryllium: Recent Russian results  

SciTech Connect (OSTI)

Results on postirradiation tensile and compression testing, swelling and bubble growth during annealing for various grades of beryllium are presented. It is shown that swelling at temperatures above 550{degrees}C is sensitive to material condition and response is correlated with oxygen content. Swelling on the order of 15% can be expected at 700{degrees}C for doses on the order of 10{sup 22} n/cm{sup 2}. Bubble growth response depends on irradiation fluence.

Gelles, D.S. [Pacific Northwest Lab., Richland, VA (United States)

1992-12-31T23:59:59.000Z

356

ARM - Measurement - Shortwave broadband total net irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearch Relatedcontent ARMnumberDoppler ARMdiffusedirectnet irradiance

357

ARM - Measurement - Shortwave narrowband direct downwelling irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearch Relatedcontent ARMnumberDopplerdownwelling irradiance ARM Data

358

ARM - Measurement - Shortwave narrowband direct normal irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearch Relatedcontent ARMnumberDopplerdownwelling irradiance ARM

359

Band-engineered SrTiO{sub 3} nanowires for visible light photocatalysis  

SciTech Connect (OSTI)

We have theoretically investigated the structural, electronic, and optical properties of perovskite SrTiO{sub 3} nanowires for use in visible light photocatalytic applications using pseudopotential density-functional theory calculations. The electronic structure calculations show that the band gap is modified in the SrTiO{sub 3} nanowires compared with that of the bulk. For TiO{sub 2}-terminated nanowires, the mid-band states induced by the combination of oxygen and strontium atoms on the surface lead to a shift in the valence band toward the conduction band without interference from the edge of the conduction band, which reduces the band gap. On the contrary, the electronic states induced by the combination of oxygen and strontium atoms on the surface of SrO-terminated nanowires lead to a shift in the conduction band toward the valence band. The calculated optical results indicate that the absorption edge of the nanowires shift towards the red-light region. These theoretical results suggest that perovskite SrTiO{sub 3} nanowires are promising candidates for use in visible light photocatalytic processes such as solar-assisted water splitting reactions.

Fu, Q.; He, T.; Li, J. L.; Yang, G. W. [State Key Laboratory of Optoelectronic Materials and Technologies, Institute of Optoelectronic and Functional Composite Materials, Nanotechnology Research Center, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong (China)

2012-11-15T23:59:59.000Z

360

Fabric filter versus ESP designs to meet no visible emissions for Brandon shores  

SciTech Connect (OSTI)

This paper investigates the designs of particulate collection equipment to achieve no visible emissions criteria, or a visually clear stack, at the Brandon Shores Station of the Baltimore Gas and Electric Co. The transmissometer opacity corresponding to the ''no visible emissions'' (NVE) criteria for a visually clear plume was established. A stack exit concentration was established to achieve the design instrument opacity. The proposed fabric filter and cold-side electrostatic precipitator (ESP) equipment were evaluated on a technical and economic basis for achieving the design stack exit concentration. The technical evaluation included a comprehensive review of fabric filter and cold-side ESP operating installations and the use of a computer model to predict site-specific ESP performance and expected operating margins. A review of operating installations and use of state-of-the-art computer models demonstrates that conservatively designed fabric filters or cold-side ESP equipment should be capable of achieving an outlet or stack exit concentration of 0.004 gr/acf.

Becker, D.F.; Klopp, A.C.; Kusterer, J.N.; Link, S.A.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "visible irradiance atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fabrication and characterization of the source grating for visibility improvement of neutron phase imaging with gratings  

SciTech Connect (OSTI)

The fabrication of gratings including metal deposition processes for highly neutron absorbing lines is a critical issue to achieve a good visibility of the grating-based phase imaging system. The source grating for a neutron Talbot-Lau interferometer is an array of Gadolinium (Gd) structures that are generally made by sputtering, photo-lithography, and chemical wet etching. However, it is very challenging to fabricate a Gd structure with sufficient neutron attenuation of approximately more than 20 {mu}m using a conventional metal deposition method because of the slow Gd deposition rate, film stress, high material cost, and so on. In this article, we fabricated the source gratings for neutron Talbot-Lau interferometers by filling the silicon structure with Gadox particles. The new fabrication method allowed us a very stable and efficient way to achieve a much higher Gadox filled structure than a Gd film structure, and is even more suitable for thermal polychromatic neutrons, which are more difficult to stop than cold neutrons. The newly fabricated source gratings were tested at the polychromatic thermal neutron grating interferometer system of HANARO at the Korea Atomic Energy Research Institute, and the visibilities and images from the neutron phase imaging system with the new source gratings were compared with those fabricated by a Gd deposition method.

Kim, Jongyul [Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Nuclear and Quantum Engineering Department, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Lee, Kye Hong; Lim, Chang Hwy; Kim, Taejoo [Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Ahn, Chi Won [Nano Fusion Technology Division, National Nanofab Center, Daejeon 305-701 (Korea, Republic of); Cho, Gyuseong [Nuclear and Quantum Engineering Department, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Lee, Seung Wook [School of Mechanical Engineering, Pusan National University, Pusan 609-735 (Korea, Republic of)

2013-06-15T23:59:59.000Z

362

Wide-angle ITER-prototype tangential infrared and visible viewing system for DIII-D  

SciTech Connect (OSTI)

An imaging system with a wide-angle tangential view of the full poloidal cross-section of the tokamak in simultaneous infrared and visible light has been installed on DIII-D. The optical train includes three polished stainless steel mirrors in vacuum, which view the tokamak through an aperture in the first mirror, similar to the design concept proposed for ITER. A dichroic beam splitter outside the vacuum separates visible and infrared (IR) light. Spatial calibration is accomplished by warping a CAD-rendered image to align with landmarks in a data image. The IR camera provides scrape-off layer heat flux profile deposition features in diverted and inner-wall-limited plasmas, such as heat flux reduction in pumped radiative divertor shots. Demonstration of the system to date includes observation of fast-ion losses to the outer wall during neutral beam injection, and shows reduced peak wall heat loading with disruption mitigation by injection of a massive gas puff.

Lasnier, C. J., E-mail: lasnier@LLNL.gov; Allen, S. L.; Ellis, R. E.; Fenstermacher, M. E.; McLean, A. G.; Meyer, W. H.; Morris, K.; Seppala, L. G. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); Crabtree, K. [College of Optics, University of Arizona, Tucson, Arizona 85721 (United States); Van Zeeland, M. A. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)

2014-11-15T23:59:59.000Z

363

A versatile femtosecond stimulated Raman spectroscopy setup with tunable pulses in the visible to near infrared  

SciTech Connect (OSTI)

We demonstrate a versatile and efficient setup to perform femtosecond stimulated Raman spectroscopy (FSRS). Technical innovations are implemented to achieve the wavelength tunability for both the picosecond narrowband Raman pump pulse and femtosecond broadband Raman probe pulse. Using a simplified one-grating scheme in a home-built second harmonic bandwidth compressor followed by a two-stage noncollinear optical parametric amplifier, we tune the Raman pump pulse from ca. 480 to 750?nm. To generate the suitable Raman probe pulse in tandem, we rely on our recently demonstrated broadband up-converted multicolor array technique that readily provides tunable broadband laser sidebands across the visible to near-infrared range. This unique setup has unparalleled flexibility for conducting FSRS. We measure the ground-state Raman spectra of a cyclohexane standard using tunable pump-probe pairs at various wavelengths across the visible region. The best spectral resolution is ?12?cm{sup ?1}. By tuning the pump wavelength closer to the electronic absorption band of a photoacid pyranine in water, we observe the pre-resonantly enhanced Raman signal. The stimulated Raman gain of the 1627?cm{sup ?1} mode is increased by over 15 times.

Zhu, Liangdong [Department of Physics, Oregon State University, Corvallis, Oregon 97331 (United States); Liu, Weimin [Department of Chemistry, Oregon State University, Corvallis, Oregon 97331 (United States); Fang, Chong, E-mail: Chong.Fang@oregonstate.edu [Department of Physics, Oregon State University, Corvallis, Oregon 97331 (United States); Department of Chemistry, Oregon State University, Corvallis, Oregon 97331 (United States)

2014-07-28T23:59:59.000Z

364

Intrinsic nature of visible-light absorption in amorphous semiconducting oxides  

SciTech Connect (OSTI)

To enlighten microscopic origin of visible-light absorption in transparent amorphous semiconducting oxides, the intrinsic optical property of amorphous InGaZnO{sub 4} is investigated by considering dipole transitions within the quasiparticle band structure. In comparison with the crystalline InGaZnO{sub 4} with the optical gap of 3.6 eV, the amorphous InGaZnO{sub 4} has two distinct features developed in the band structure that contribute to significant visible-light absorption. First, the conduction bands are down-shifted by 0.55 eV mainly due to the undercoordinated In atoms, reducing the optical gap between extended states to 2.8 eV. Second, tail states formed by localized oxygen p orbitals are distributed over ?0.5 eV near the valence edge, which give rise to substantial subgap absorption. The fundamental understanding on the optical property of amorphous semiconducting oxides based on underlying electronic structure will pave the way for resolving instability issues in recent display devices incorporating the semiconducting oxides.

Kang, Youngho; Song, Hochul; Han, Seungwu, E-mail: hansw@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, Seoul 151-755 (Korea, Republic of); Nahm, Ho-Hyun [Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 151-747 (Korea, Republic of); Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Jeon, Sang Ho; Cho, Youngmi [CAE Team, Samsung Display Co., Ltd, 95 Samsung 2-ro, Giheung-gu, Youngin-City, Gyeonggi-Do 446-711 (Korea, Republic of)

2014-03-01T23:59:59.000Z

365

Optical assembly of a visible through thermal infrared multispectral imaging system  

SciTech Connect (OSTI)

The Optical Assembly (OA) for the Multispectral Thermal Imager (MTI) program has been fabricated, assembled, and successfully tested for its performance. It represents a major milestone achieved towards completion of this earth observing E-O imaging sensor that is to be operated in low earth orbit. Along with its wide-field-of-view (WFOV), 1.82{degree} along-track and 1.38{degree} cross-track, and comprehensive on-board calibration system, the pushbroom imaging sensor employs a single mechanically cooled focal plane with 15 spectral bands covering a wavelength range from 0.45 to 10.7 {micro}m. The OA has an off-axis three-mirror anastigmatic (TMA) telescope with a 36-cm unobscured clear aperture. The two key performance criteria, 80% enpixeled energy in the visible and radiometric stability of 1% 1{sigma} in the visible/near-infrared (VNIR) and short wavelength infrared (SWIR), of 1.45% 1{sigma} in the medium wavelength infrared (MWIR), and of 0.53% 1{sigma} long wavelength infrared (LWIR), as well as its low weight (less than 49 kg) and volume constraint (89 cm x 44 cm x 127 cm) drive the overall design configuration of the OA and fabrication requirements.

Henson, T. [Sandia National Labs., Albuquerque, NM (United States); Bender, S.; Byrd, D. [Los Alamos National Labs., NM (United States). NIS Div.; Rappoport, W.; Shen, G.Y. [Raytheon Optical Systems, Inc., Danbury, CT (United States)

1998-06-01T23:59:59.000Z

366

Composition, Mineralogy, and Porosity of Multiple Asteroid Systems from Visible and Near-infrared Spectral Data  

E-Print Network [OSTI]

We provide a taxonomic and compositional characterization of Multiple Asteroid Systems (MASs) located in the main belt (MB) using visible and near-infrared (0.45-2.5 um) spectral data of 42 MB MASs. The mineralogical analysis is applied to determine meteorite analogs for the MASs, which, in turn, are applied to the MAS density measurements of Marchis et al. (2012) to estimate the system porosity. The macroporosities are used to evaluate the primary MAS formation hypotheses. The visible observing campaign includes 25 MASs obtained using the SOAR telescope with the Goodman High Throughput Spectrometer. The infrared observing campaign includes 34 MASs obtained using the NASA IRTF with the SpeX spectragraph. The MASs are classified using the Bus-DeMeo taxonomic system. We perform a NIR spectral band parameter analysis using a new analysis routine, the Spectral Analysis Routine for Asteroids (SARA). The SARA routine determines band centers, areas, and depths by utilizing the diagnostic absorption features near 1- ...

Lindsay, Sean S; Emery, Joshua P; Enriquez, J Emilio; Assafin, Marcelo

2014-01-01T23:59:59.000Z

367

Magnetic phase formation in irradiated austenitic alloys  

SciTech Connect (OSTI)

Austenitic alloys are often observed to develop magnetic properties during irradiation, possibly associated with radiation-induced acceleration of the ferrite phase. Some of the parametric sensitivities of this phenomenon have been addressed using a series of alloys irradiated in the BOR-60 reactor at 593K. The rate of development of magnetic phase appears to be sensitive to alloy composition. To the first order, the largest sensitivities to accelerate ferrite formation, as explored in this experiment, are associated with silicon, carbon and manganese and chromium. Si, C, and Mn are thought to influence diffusion rates of point defects while Cr plays a prominent role in defining the chromium equivalent and therefore the amount of ferrite at equilibrium. Pre-irradiation cold working was found to accelerate ferrite formation, but it can play many roles including an effect on diffusion, but on the basis of these results the dominant role or roles of cold-work cannot be identified. Based on the data available, ferrite formation is most probably associated with diffusion.

Gussev, Maxim N [ORNL] [ORNL; Busby, Jeremy T [ORNL] [ORNL; Tan, Lizhen [ORNL] [ORNL; Garner, Francis A. [Radiation Effects Consulting, Richland, WA] [Radiation Effects Consulting, Richland, WA

2014-01-01T23:59:59.000Z

368

Upgrade to the Birmingham Irradiation Facility  

E-Print Network [OSTI]

The Birmingham Irradiation Facility was developed in 2013 at the University of Birmingham using the Medical Physics MC40 cyclotron. It can achieve High Luminosity LHC (HL-LHC) fluences of 10^15 (1 MeV neutron equivalent (neq)) cm^-2 in 80 s with proton beam currents of 1 ?A and so can evaluate effectively the performance and durability of detector technologies and new components to be used for the HL-LHC. Irradiations of silicon sensors and passive materials can be carried out in a temperature controlled cold box which moves continuously through the homogenous beamspot. This movement is provided by a pre-configured XY-axis Cartesian robot scanning system. In 2014 the cooling system and cold box were upgraded from a recirculating glycol chiller system to a liquid nitrogen evaporative system. The new cooling system achieves a stable temperature of 50 1C in 30 min and aims to maintain sub-0 1C temperatures on the sensors during irradiations. This paper reviews the design, development, commissioning and perform...

Dervan, P; Hodgson, P; Marin- Reyes; Parker, K; Wilson, J; Baca, M

2015-01-01T23:59:59.000Z

369

Irradiation response and stability of nanoporous materials  

SciTech Connect (OSTI)

Nanoporous materials consist of a regular organic or inorganic framework supporting a regular, porous structure. Pores are by definition roughly in the nanometre range, that is between 0.2 nm and 100 nm. Nanoporous materials can be subdivided into 3 categories (IUPAC): (1) Microporous materials - 0.2-2 nm; (2) Mesoporous materials - 2-50 nm; and (3) Macroporous materials - 50-1000 nm. np-Au foams were successfully synthesized by de-alloying process. np-Au foams remain porous structure after Ne ion irradiation to 1 dpa. Stacking Fault Tetrahedra (SFTs) were observed in RT irradiated np-Au foams under the highest and intermediate fluxes, but not under the lowest flux. SFTs were not observed in LNT irradiated np-Au foams under all fluxes. The vacancy diffusivity in Au at RT is high enough so that the vacancies have enough time to agglomerate and then collapse to form SFTs. The high ion flux creates more damage per unit time; vacancies don't have enough time to diffuse or recombine. As a result, SFTs were formed at high ion fluxes.

Fu, Engang [Los Alamos National Laboratory; Wang, Yongqiang [Los Alamos National Laboratory; Serrano De Caro, Magdalena [Los Alamos National Laboratory; Caro, Jose A. [Los Alamos National Laboratory; Zepeda-Ruiz, L [Lawrence Livermore national Laboratory; Bringa, E. [CONICET, Universidad de Cuyo, Argentina; Nastasi, Mike [University of Nebraska, Lincoln, NE; Baldwin, Jon K. [Los Alamos National Laboratory

2012-08-28T23:59:59.000Z

370

The spectral irradiance traceability chain at PTB  

SciTech Connect (OSTI)

Spectral irradiance is a fundamental radiometric unit. Its application to measurement results requires qualified traceability to basic units of the international system of units (Systeme international d'unites, SI). The Physikalisch-Technische Bundesanstalt (PTB) is amongst other national metrological institutes (NMIs) responsible for the realization, maintenance and dissemination of various radiometric and photometric units based on and traceable to national standards. The unit of spectral irradiance is realized and represented by a blackbody-radiator as the national primary standard of the PTB. Based on Planck's radiation law, the irradiance is calculated and realized for any wavelength taking into account the exact knowledge of the radiation temperature and the geometrical parameters. Using a double-monochromator-based spectroradiometer system, secondary standard lamps can be calibrated by direct comparison to the blackbody-radiator (substitution method). These secondary standard lamps are then used at the PTB to calibrate standard lamps of customers. The customers themselves use these so-called transfer standards to calibrate their working standard lamps. These working standards are then used to calibrate own spectroradiometers or sources. This rather complex calibration chain is a common procedural method that for the customers generally leads to satisfying measurement results on site. Nevertheless, the standard lamps in use have to fulfill highest requirements concerning stability and reproducibility. Only this allows achieving comparably low transfer measurement uncertainties, which occur at each calibration step. Thus, the PTB is constantly investigating the improvement and further development of transfer standards and measurement methods for various spectral regions. The realization and dissemination of the spectral irradiance using the blackbody-radiator at the PTB is accomplished with worldwide approved minimized measurement uncertainties confirmed by international intercomparisons among NMIs. Ultimately, the spectral irradiance can be realized with expanded measurement uncertainties of far less than 1 % over a wide spectral range. Thus, for customers with high demands on low measurement uncertainties, it is possible to calibrate their working standards directly against the blackbody-radiator, taking into account the higher necessary effort. In special cases it is possible to calibrate the customer's spectroradiometric facilities directly in front of the blackbody-radiator. In the context of the European Metrology Research Project Traceability for surface spectral solar ultraviolet radiation, the traceability chain will be improved and adapted.

Sperfeld, P.; Pape, S.; Nevas, S. [Physikalisch-Technische Bundesanstalt, Bundesallee 10, 381160 Braunschweig (Germany)

2013-05-10T23:59:59.000Z

371

Evaluation of Neutron Irradiated Silicon Carbide and Silicon Carbide Composites  

SciTech Connect (OSTI)

The effects of fast neutron irradiation on SiC and SiC composites have been studied. The materials used were chemical vapor deposition (CVD) SiC and SiC/SiC composites reinforced with either Hi-Nicalon{trademark} Type-S, Hi-Nicalon{trademark} or Sylramic{trademark} fibers fabricated by chemical vapor infiltration. Statistically significant numbers of flexural samples were irradiated up to 4.6 x 10{sup 25} n/m{sup 2} (E>0.1 MeV) at 300, 500 and 800 C in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Dimensions and weights of the flexural bars were measured before and after the neutron irradiation. Mechanical properties were evaluated by four point flexural testing. Volume increase was seen for all bend bars following neutron irradiation. Magnitude of swelling depended on irradiation temperature and material, while it was nearly independent of irradiation fluence over the fluence range studied. Flexural strength of CVD SiC increased following irradiation depending on irradiation temperature. Over the temperature range studied, no significant degradation in mechanical properties was seen for composites fabricated with Hi-Nicalon{trademark} Type-S, while composites reinforced with Hi-Nicalon{trademark} or Sylramic fibers showed significant degradation. The effects of irradiation on the Weibull failure statistics are also presented suggesting a reduction in the Weibull modulus upon irradiation. The cause of this potential reduction is not known.

Newsome G, Snead L, Hinoki T, Katoh Y, Peters D

2007-03-26T23:59:59.000Z

372

Space Science: Atmospheres Evolution of planets  

E-Print Network [OSTI]

;Atmospheres / Evolution Heat Sources Compressional Energy Trapped Radioactive Material Tidal Interactions, same A) the surface temperature,Tg, increases. WOW! Simple #12;Temperature vs. time in an Early Epoch

Johnson, Robert E.

373

The porous atmosphere of eta Carinae  

E-Print Network [OSTI]

We analyze the wind generated by the great 20 year long super-Eddington outburst of eta-Carinae. We show that using classical stellar atmospheres and winds theory, it is impossible to construct a consistent wind model in which a sufficiently small amount of mass, like the one observed, is shed. One expects the super-Eddington luminosity to drive a thick wind with a mass loss rate substantially higher than the observed one. The easiest way to resolve the inconsistency is if we alleviate the implicit notion that atmospheres are homogeneous. An inhomogeneous atmosphere, or "porous", allows more radiation to escape while exerting a smaller average force. Consequently, such an atmosphere yields a considerably lower mass loss rate for the same total luminosity. Moreover, all the applications of the Eddington Luminosity as a strict luminosity limit should be revised, or at least reanalyzed carefully.

Nir J. Shaviv

2000-02-09T23:59:59.000Z

374

HYPERsensarium : an archive of atmospheric conditions  

E-Print Network [OSTI]

HYPERsensarium proposes a tangible interface of atmospheres for public experience through an archive of historical and projected weathers. While architecture's purpose has long been to act as the technical boundary between ...

Shaw, Kelly E. (Kelly Evelyn)

2013-01-01T23:59:59.000Z

375

Azores Global Atmosphere Monitoring Complex 1. INTRODUCTION  

E-Print Network [OSTI]

to the accuracy of European weather forecasts. Today, they provide a unique base for studies of atmospheric levels. Measurements in the free troposphere (FT) are particularly useful, because trace gas and particle

Honrath, Richard E.

376

Adaptive control for Mars atmospheric flight  

E-Print Network [OSTI]

landing accuracy requirements for a manned space vehicle make it necessary to ?y a controlled entry trajectory rather than a more robust ballistic entry trajectory used for some robotic missions. The large variations in Mars atmospheric properties make a...

Restrepo, Carolina Isabel

2009-05-15T23:59:59.000Z

377

Atomic Force and Scanning Electron Microscopy of Atmospheric Particles  

E-Print Network [OSTI]

conducted so as to characterize atmospheric aerosols from anthropogenic (pollution) and natural (sea saltAtomic Force and Scanning Electron Microscopy of Atmospheric Particles ZAHAVA BARKAY,1 * AMIT 69978, Israel KEY WORDS atmospheric aerosols; atomic force microscopy; scanning electron microscopy

Shapira, Yoram

378

Adjoint modeling for atmospheric pollution process sensitivity at regional scale  

E-Print Network [OSTI]

Adjoint modeling for atmospheric pollution process sensitivity at regional scale Laurent Menut; 0345 Atmospheric Composition and Structure: Pollution--urban and regional (0305); 3210 Mathematical: atmospheric pollution, tropospheric ozone, urban pollution peaks, adjoint modeling, sensitivity Citation

Menut, Laurent

379

Spectral Response of the Pulsationally-Induced Shocks in the Atmosphere of BW Vulpeculae  

E-Print Network [OSTI]

The star BW Vul excites an extremely strong radial pulsation that grows in its envelope and is responsible for visible shock features in the continuum flux and spectral line profiles emerging in the atmosphere At two phases separated by 0.8 cycles. Material propelled upwards in the atmosphere from the shock returns to the lower photosphere where it creates a second shock just before the start of the next cycle. We have obtained three nights of echelle data for this star over about 5 pulsation cycles (P = 0.201 days) in order to evaluate the effects of on a number of important lines in the spectrum, including the HeI 5875A and 6678A lines. These data were supplemented by archival high-dispersion IUE (UV) data from 1994. A comparison of profiles of the two HeI lines during the peak of the infall activity suggests that differences in the development of the blue wing at this time are due to heating and short-lived formations of an optically thin layer above the atmospheric region compressed by the infall. This discovery and the well-known decreases in equivalent widths of the CII 6578-83A doublet at the two shock phases, suggests that shock flattens the temperature gradient and produces heating in heating the upper atmosphere. Except for absorptions in the blue wings of the UV resonance lines, we find no evidence for sequential shock delays arriving at various regions of line formation of the photosphere (a "Van Hoof effect"). Phase lags cited by some former observers may be false indicators arising from varying degrees of desaturation of multiple lines, such as for the red HeI lines. In addition, an apparent lag in the equivalent width curve of lines arising from less excited atomic levels could instead be caused by post-shock cooling, followed by a rebound shock.

Myron A. Smith; C. Simon Jeffery

2002-10-08T23:59:59.000Z

380

Air Activation Following an Atmospheric Explosion  

SciTech Connect (OSTI)

In addition to thermal radiation and fission products, nuclear explosions result in a very high flux of unfissioned neutrons. Within an atmospheric nuclear explosion, these neutrons can activate the various elemental components of natural air, potentially adding to the radioactive signature of the event as a whole. The goal of this work is to make an order-of-magnitude estimate of the total amount of air activation products that can result from an atmospheric nuclear explosion.

Lowrey, Justin D.; McIntyre, Justin I.; Prichard, Andrew W.; Gesh, Christopher J.

2013-03-13T23:59:59.000Z

Note: This page contains sample records for the topic "visible irradiance atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Atmospheric State, Cloud Microphysics and Radiative Flux  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

Mace, Gerald

382

Comparative Analysis of Urban Atmospheric Aerosol by Particle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis of Urban Atmospheric Aerosol by Particle-Induced X-ray Emission (PIXE), Proton Elastic Scattering Analysis Comparative Analysis of Urban Atmospheric Aerosol by...

383

atmospheric dispersion coefficient: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the earth surface. In general, the atmospheric motion is driven by the intense solar energy arriving at the equator 3 A GIS-based atmospheric dispersion model Computer...

384

atmospheric dispersion calculations: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the earth surface. In general, the atmospheric motion is driven by the intense solar energy arriving at the equator 4 A GIS-based atmospheric dispersion model Computer...

385

atmospheric dispersion experiment: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the earth surface. In general, the atmospheric motion is driven by the intense solar energy arriving at the equator 2 A GIS-based atmospheric dispersion model Computer...

386

atmospheric ion measurements: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Atmospheric CERN Preprints Summary: We report the first observation in a high energy neutrino telescope of cascades induced by atmospheric electron neutrinos and by...

387

Atmospheric Solids Analysis Probe Mass Spectrometry: A New Approach...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric Solids Analysis Probe Mass Spectrometry: A New Approach for Airborne Particle Analysis. Atmospheric Solids Analysis Probe Mass Spectrometry: A New Approach for Airborne...

388

Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951...  

Energy Savers [EERE]

Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963....

389

An Infrared Spectral Library for Atmospheric Environmental Monitoring...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Library for Atmospheric Environmental Monitoring. An Infrared Spectral Library for Atmospheric Environmental Monitoring. Abstract: Infrared (IR) spectroscopy is one of several...

390

atmospheric pressure ionization: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Atmospheric Pressure, in Vivo, and Imaging Mass. For example, atmospheric pressure infrared MALDI (AP IR-MALDI), capable of producing ions from small ionization (DESI),5...

391

Oxygen detected in atmosphere of Saturn's moon Dione  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxygen detected in atmosphere of Saturn's moon Dione Oxygen detected in atmosphere of Saturn's moon Dione Scientists and an international research team have announced discovery of...

392

A Volcanologist'S Review Of Atmospheric Hazards Of Volcanic Activity...  

Open Energy Info (EERE)

atmospheric hazards caused by explosive volcanic activity. The hazard posed by fine silicate ash with long residence time in the atmosphere is probably much less serious than...

393

atmospheric co2 content: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

394

atmospheric sciences exposure: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

annual reviews of faculty performance in accordance 8 Space Science : Atmosphere Greenhouse Effect Physics Websites Summary: Space Science : Atmosphere Greenhouse Effect Part-5a...

395

atmospheric co2 concentrations: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

396

atmospheric co2 concentration: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

397

atmospheric loading effects: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

large solar proton Paris-Sud XI, Universit de 7 Space Science : Atmosphere Greenhouse Effect Physics Websites Summary: Space Science : Atmosphere Greenhouse Effect Part-5a...

398

atmospheric co2 measurements: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

399

atmospheric co2 variations: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

400

atmospheric sciences: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

annual reviews of faculty performance in accordance 8 Space Science : Atmosphere Greenhouse Effect Physics Websites Summary: Space Science : Atmosphere Greenhouse Effect Part-5a...

Note: This page contains sample records for the topic "visible irradiance atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

atmospheric co2 mixing: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

402

atmospheric aerosols basic: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of atmospheric aerosol. Aplin, KL 2012-01-01 13 1. Introduction The atmospheric greenhouse effect is the basic mechanism Environmental Sciences and Ecology Websites Summary: 1....

403

Enhancement of the visibility of objects located below the surface of a scattering medium  

DOE Patents [OSTI]

Techniques are provided for enhancing the visibility of objects located below the surface of a scattering medium such as tissue, water and smoke. Examples of such an object include a vein located below the skin, a mine located below the surface of the sea and a human in a location covered by smoke. The enhancement of the image contrast of a subsurface structure is based on the utilization of structured illumination. In the specific application of this invention to image the veins in the arm or other part of the body, the issue of how to control the intensity of the image of a metal object (such as a needle) that must be inserted into the vein is also addressed.

Demos, Stavros

2013-11-19T23:59:59.000Z

404

Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters  

SciTech Connect (OSTI)

We present transmission visible wavelength filters based on strong interference behaviors in an ultrathin semiconductor material between two metal layers. The proposed devices were fabricated on 2?cm?×?2?cm glass substrate, and the transmission characteristics show good agreement with the design. Due to a significantly reduced light propagation phase change associated with the ultrathin semiconductor layer and the compensation in phase shift of light reflecting from the metal surface, the filters show an angle insensitive performance up to ±70°, thus, addressing one of the key challenges facing the previously reported photonic and plasmonic color filters. This principle, described in this paper, can have potential for diverse applications ranging from color display devices to the image sensors.

Lee, Kyu-Tae; Seo, Sungyong; Yong Lee, Jae; Jay Guo, L., E-mail: guo@umich.edu [Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan 48109 (United States)

2014-06-09T23:59:59.000Z

405

Response of a SiC Photodiode to Extreme Ultraviolet through Visible Radiation  

SciTech Connect (OSTI)

The responsivity of a type 6H-SiC photodiode in the 1.5-400 nm wavelength range was measured using synchrotron radiation. The responsivity was 0.20 A/W at 270 nm and was less than 0.10 A/W in the extreme ultraviolet (EUV) region. The responsivity was calculated using a proven optical model that accounted for the reflection and absorption of the incident radiation and the variation of the charge collection efficiency (CCE) with depth into the device. The CCE was determined from the responsivity measured in the 200-400 nm wavelength range. By use of this CCE and the effective pair creation energy (7.2 eV) determined from x-ray absorption measurements, the EUV responsivity was accurately modeled with no free parameters. The measured visible-light sensitivity, although low compared with that of a silicon photodiode, was surprisingly high for this wide bandgap semiconductor.

Seely,J.; Kjornrattanawanich, B.; Holland, G.; Korde, R.

2005-01-01T23:59:59.000Z

406

Bright and fast voltage reporters across the visible spectrum via electrochromic FRET (eFRET)  

E-Print Network [OSTI]

We present a palette of brightly fluorescent genetically encoded voltage indicators (GEVIs) with excitation and emission peaks spanning the visible spectrum, sensitivities from 6 - 10% Delta F/F per 100 mV, and half-maximal response times from 1 - 7 ms. A fluorescent protein is fused to an Archaerhodopsin-derived voltage sensor. Voltage-induced shifts in the absorption spectrum of the rhodopsin lead to voltage-dependent nonradiative quenching of the appended fluorescent protein. Through a library screen, we identified linkers and fluorescent protein combinations which reported neuronal action potentials in cultured rat hippocampal neurons with a single-trial signal-to-noise ratio from 6.6 to 11.6 in a 1 kHz imaging bandwidth at modest illumination intensity. The freedom to choose a voltage indicator from an array of colors facilitates multicolor voltage imaging, as well as combination with other optical reporters and optogenetic actuators.

Zou, Peng; Douglass, Adam D; Hochbaum, Daniel R; Brinks, Daan; Werley, Christopher A; Harrison, D Jed; Campbell, Robert E; Cohen, Adam E

2014-01-01T23:59:59.000Z

407

Visible Photoluminescence from Cubic (3C) Silicon Carbide Microdisks Coupled to High Quality Whispering Gallery Modes  

E-Print Network [OSTI]

We present the design, fabrication and characterization of cubic (3C) silicon carbide microdisk resonators with high quality factor modes at visible and near infrared wavelengths (600 - 950 nm). Whispering gallery modes with quality factors as high as 2,300 and corresponding mode volumes V ~ 2 ({\\lambda}/n)^3 are measured using laser scanning confocal microscopy at room temperature. We obtain excellent correspondence between transverse-magnetic (TM) and transverse-electric (TE) polarized resonances simulated using Finite Difference Time Domain (FDTD) method and those observed in experiment. These structures based on ensembles of optically active impurities in 3C-SiC resonators could play an important role in diverse applications of nonlinear and quantum photonics, including low power optical switching and quantum memories.

Radulaski, Marina; Müller, Kai; Lagoudakis, Konstantinos G; Zhang, Jingyuan Linda; Buckley, Sonia; Kelaita, Yousif A; Alassaad, Kassem; Ferro, Gabriel; Vu?kovi?, Jelena

2014-01-01T23:59:59.000Z

408

Visible Photoluminescence from Cubic (3C) Silicon Carbide Microdisks Coupled to High Quality Whispering Gallery Modes  

E-Print Network [OSTI]

We present the design, fabrication and characterization of cubic (3C) silicon carbide microdisk resonators with high quality factor modes at visible and near infrared wavelengths (600 - 950 nm). Whispering gallery modes with quality factors as high as 2,300 and corresponding mode volumes V ~ 2 ({\\lambda}/n)^3 are measured using laser scanning confocal microscopy at room temperature. We obtain excellent correspondence between transverse-magnetic (TM) and transverse-electric (TE) polarized resonances simulated using Finite Difference Time Domain (FDTD) method and those observed in experiment. These structures based on ensembles of optically active impurities in 3C-SiC resonators could play an important role in diverse applications of nonlinear and quantum photonics, including low power optical switching and quantum memories.

Marina Radulaski; Thomas M. Babinec; Kai Müller; Konstantinos G. Lagoudakis; Jingyuan Linda Zhang; Sonia Buckley; Yousif A. Kelaita; Kassem Alassaad; Gabriel Ferro; Jelena Vu?kovi?

2014-12-08T23:59:59.000Z

409

A holographic bound on the total number of computations in the visible Universe  

E-Print Network [OSTI]

Information and encoding are central to holographic imaging of matter and fields within a two-surface. We consider the probability of detection of particles inside star-like holographic screens defined by their propagators. Imaging a point particle of mass m hereby requires I = 2 pi mr in log2 bits on a spherical screen or radius r. Encoding the three hairs of mass, charge, angular momentum and radiation requires a minimum of four bits. This formulation leads directly to Reissner-Nordstrom black holes and extremal Kerr black holes for minimal screens, that envelope event horizons. Applied to the cosmological event horizon, the total number of computations in the visible Universe is found to be bounded by 10e121.

Maurice H. P. M. van Putten

2014-08-12T23:59:59.000Z

410

Solvothermal synthesis of designed nonstoichiometric strontium titanate for efficient visible-light photocatalysis  

SciTech Connect (OSTI)

SrTiO{sub 3} powders with various Sr/Ti atomic ratios were synthesized by microwave-assisted solvothermal reactions of SrCl{sub 2} and Ti(OC{sub 3}H{sub 7}){sub 4} in KOH aqueous solutions. The nanoparticles of perovskite type SrTiO{sub 3} structure with the particle size of 30-40 nm were synthesized. The photocatalytic activity was determined by deNO{sub x} ability using light emitting diode lamps of various wavelengths such as 627 nm (red), 530 nm (green), 445 nm (blue), and 390 nm (UV). The photocatalytic activity significantly changed depending on the Sr/Ti atomic ratio, i.e., the strontium rich sample (Sr/Ti atomic ratio>1) showed excellent visible light responsive photocatalytic activity for the oxidative destruction of NO.

Sulaeman, Uyi; Yin, Shu; Sato, Tsugio [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan)

2010-09-06T23:59:59.000Z

411

Broadband visible light source based on AllnGaN light emitting diodes  

DOE Patents [OSTI]

A visible light source device is described based on a light emitting diode and a nanocluster-based film. The light emitting diode utilizes a semiconductor quantum well structure between n-type and p-type semiconductor materials on the top surface a substrate such as sapphire. The nanocluster-based film is deposited on the bottom surface of the substrate and can be derived from a solution of MoS.sub.2, MoSe.sub.2, WS.sub.2, and WSe.sub.2 particles of size greater than approximately 2 nm in diameter and less than approximately 15 nm in diameter, having an absorption wavelength greater than approximately 300 nm and less than approximately 650 nm.

Crawford, Mary H.; Nelson, Jeffrey S.

2003-12-16T23:59:59.000Z

412

Josephson Junctions and Devices fabricated by Focused Electron Beam Irradiation  

E-Print Network [OSTI]

Josephson Junctions and Devices fabricated by Focused Electron Beam Irradiation Wilfred Edwin Booij Gonville and Caius College Cambridge A dissertation submitted for the degree of Doctor of Philosophy at the University of Cambridge December 1997... Summary Josephson Junctions and Devices fabricated by Focused Electron Beam Irradiation The irradiation of high Tc superconducting thin films with a focused electron beam, such as that obtained in a scanning transmission electron microscope (STEM), can...

Booij, Wilfred Edwin

413

NANOSTRUCTURE PATTERNING UNDER ENERGETIC PARTICLE BEAM IRRADIATION  

SciTech Connect (OSTI)

Energetic ion bombardment can lead to the development of complex and diverse nanostructures on or beneath the material surface through induced self-organization processes. These self-organized structures have received particular interest recently as promising candidates as simple, inexpensive, and large area patterns, whose optical, electronic and magnetic properties are different from those in the bulk materials [1-5]. Compared to the low mass efficiency production rate of lithographic methods, these self-organized approaches display new routes for the fabrication of nanostructures over large areas in a short processing time at the nanoscale, beyond the limits of lithography [1,4]. Although it is believed that surface nanostructure formation is based on the morphological instability of the sputtered surface, driven by a kinetic balance between roughening and smoothing actions [6,7], the fundamental mechanisms and experimental conditions for the formation of these nanostructures has still not been well established, the formation of the 3-D naopatterns beneath the irradiated surface especially needs more exploration. During the last funding period, we have focused our efforts on irradiation-induced nanostructures in a broad range of materials. These structures have been studied primarily through in situ electron microscopy during electron or ion irradiation. In particular, we have performed studies on 3-D void/bubble lattices (in metals and CaF2), embedded sponge-like porous structure with uniform nanofibers in irradiated semiconductors (Ge, GaSb, and InSb), 2-D highly ordered pattern of nanodroplets (on the surface of GaAs), hexagonally ordered nanoholes (on the surface of Ge), and 1-D highly ordered ripple and periodic arrays (of Cu nanoparticles) [3,8-11]. The amazing common feature in those nanopatterns is the uniformity of the size of nanoelements (nanoripples, nanodots, nanovoids or nanofibers) and the distance separating them. Our research focuses on the understanding of fundamental scientific basis for the irradiation-induced self-organization processes. The fundamental physical mechanisms underlying ordered pattern formation, which include defect production and migration, ion sputtering, redeposition, viscous flow and diffusion, are investigated through a combination of modeling and in situ and ex-situ observations [3,9,11]. In addition, these nanostructured materials exhibit considerable improvement of optical properties [9,12,13]. For example, patterned Ge with a hexagonally ordered, honeycomb-like structure of nanoscale holes possesses a high surface area and a considerably blue-shifted energy gap [9], and oxidation of ordered Ga droplets shows noticeable enhancement of optical transmission [12]. This research has addressed nanopattern formation in a variety of materials under ion bombardment and provided a fundamental understanding of the dynamic mechanisms involved. In addition, have also stared to systematically investigate pattern formation under ion irradiation for more systems with varied experimental conditions and computation, including the collaboration with Dr. Veena Tikare of Sandia National Laboratory with a hybrid computation method at the ending this grant. A more detailed relationship between nanostructure formation and experimental conditions will be revealed with our continued efforts.

Wang, Lumin [Regents of the University of Michigan; Lu, Wei [Regents of the University of Michigan

2013-01-31T23:59:59.000Z

414

MWCNT/WO{sub 3} nanocomposite photoanode for visible light induced water splitting  

SciTech Connect (OSTI)

The Multi-walled carbon nanotube (MWCNT)/WO{sub 3} nanocomposite thin films with different MWCNT’s weight percentages were prepared by sol–gel method as visible light induced photoanode in water splitting reaction. Weight percentage of MWCNT in the all nanocomposite thin films was confirmed by TGA/DSC analysis. According to XPS analysis, oxygenated groups at the surface of the MWCNT and stoichiometric formation of WO{sub 3} thin films were determined, while the crystalline structure of the nanocomposite samples was studied by XRD indicating (0 0 2) peak of MWCNT in the monoclinic phase of WO{sub 3}. The influence of different weight percentage (wt%) of MWCNT on WO{sub 3} photoactivity showed that the electron conductivity, charge transfer and electron life time had improved as compared with the pure WO{sub 3}. Based on linear sweep voltammetry and chronoamperometry measurements, the (1 wt%) MWCNT/WO{sub 3} nanocomposite thin films photoanode has a maximum photocurrent density of ?4.5 A/m{sup 2} and electron life time of about 57 s. - Graphical abstract: Photocurrent density versus time at constant potential (0.7 V) for the WO{sub 3} films containing different MWCNT weight percentages annealed at 400 °C under 1000 Wm{sup ?2} visible photo-illumination. Display Omitted - Highlights: • MWCNT/ WO{sub 3} nanocomposite thin films were synthesized using sol–gel derived method. • TGA/DSC confirmed the weight percentage of MWCNT in the all nanocomposite thin films. • XPS analysis revealed that WO{sub 3} was attached on the oxygenated group of MWCNT surface. • The Highest Photoelectrochemical activity is achieved for (1 wt%)MWCNT/WO{sub 3} thin film.

Yousefzadeh, Samira [Physics Department, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Reyhani, Ali [Physics Department, Faculty of Science, Imam Khomeini International University, P.O. Box 34149-16818, Qazvin (Iran, Islamic Republic of); Naseri, Naimeh [Physics Department, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Moshfegh, Alireza Z., E-mail: moshfegh@sharif.edu [Physics Department, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of)

2013-08-15T23:59:59.000Z

415

A new list of thorium and argon spectral lines in the visible  

E-Print Network [OSTI]

Aims. We present a new list of thorium and argon emission lines in the visible obtained by analyzing high-resolution (R=110,000) spectra of a ThAr hollow cathode lamp. The aim of this new line list is to allow significant improvements in the quality of wavelength calibration for medium- to high-resolution astronomical spectrographs. Methods. We use a series of ThAr lamp exposures obtained with the HARPS instrument (High Accuracy Radial-velocity Planet Searcher) to detect previously unknown lines, perform a systematic search for blended lines and correct individual wavelengths by determining the systematic offset of each line relative to the average wavelength solution. Results. We give updated wavelengths for more than 8400 lines over the spectral range 3785-6915 A. The typical internal uncertainty on the line positions is estimated to be ~10 m/s (3.3 parts in 10^8 or 0.18 mA), which is a factor of 2-10 better than the widely used Los Alamos Atlas of the Thorium Spectrum (Palmer & Engleman 1983). The absolute accuracy of the global wavelength scale is the same as in the Los Alamos Atlas. Using this new line list on HARPS ThAr spectra, we are able to obtain a global wavelength calibration which is precise at the 20 cm/s level (6.7 parts in 10^10 or 0.0037 mA). Conclusions. Several research fields in astronomy requiring high-precision wavelength calibration in the visible (e.g. radial velocity planet searches, variability of fundamental constants) should benefit from using the new line list.

C. Lovis; F. Pepe

2007-03-15T23:59:59.000Z

416

A Simplified Shuttle Irradiation Facility for ATR  

SciTech Connect (OSTI)

During the past fifteen years there has been a steady increase in the demand for radioisotopes in nuclear medicine and a corresponding decline in the number of reactors within the U.S. capable of producing them. The Advanced Test Reactor (ATR) is the largest operating test reactor in the U.S., but its isotope production capabilities have been limited by the lack of an installed isotope shuttle irradiation system. A concept for a simple “low cost” shuttle irradiation facility for ATR has been developed. Costs were reduced (in comparison to previous ATR designs) by using a shielded trough of water installed in an occupiable cubicle as a shielding and contamination control barrier for the send and receive station. This shielding concept also allows all control valves to be operated by hand and thus the need for an automatic control system was eliminated. It was determined that 4 – 5 ft of water would be adequate to shield the isotopes of interest while shuttles are transferred to a small carrier. An additional feature of the current design is a non-isolatable by-pass line, which provides a minimum coolant flow to the test region regardless of which control valves are opened or closed. This by-pass line allows the shuttle facility to be operated without bringing reactor coolant water into the cubicle except for send and receive operations. The irradiation position selected for this concept is a 1.5 inch “B” hole (B-11). This position provides neutron fluxes of approximately: 1.6 x 1014 (<0.5 eV) and 4.0 x 1013 (>0.8 MeV) n/cm2*sec.

Palmer, Alma Joseph; Laflin, S. T.

1999-09-01T23:59:59.000Z

417

Emulation of reactor irradiation damage using ion beams  

SciTech Connect (OSTI)

The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide, irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiations and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiations establishes the capability of tailoring ion irradiations to emulate the reactor-irradiated microstructure.

G. S. Was; Z. Jiao; E. Beckett; A. M. Monterrosa; O. Anderoglu; B. H. Sencer; M. Hackett

2014-10-01T23:59:59.000Z

418

apres irradiation globale: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

necessary for the evaluation of global irradiance on inclined surface which is needed for photovoltaic Boyer, Edmond 7 Caractristiques lectriques de diodes Au-Si(N) ralises aprs...

419

Microsoft Word - Analysis of Deformation Mode Changes in Irradiated...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

steels); however, in many cases they may have a negative impact on material performance (hydrogen embrittlement of bcc-phase, etc.). Irradiation leads to defects accumulation,...

420

Irradiation Effects on Human Cortical Bone Fracture Behavior  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic...

Note: This page contains sample records for the topic "visible irradiance atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Modification of Defect Structures in Graphene by Electron Irradiation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modification of Defect Structures in Graphene by Electron Irradiation: Ab Initio Molecular Dynamics Simulations. Modification of Defect Structures in Graphene by Electron...

422

Dynamic Recovery in Silicate-Apatite Structures Under Irradiation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recovery in Silicate-Apatite Structures Under Irradiation and Implications for Long-Term Immobilization of Actinides. Dynamic Recovery in Silicate-Apatite Structures Under...

423

Development and Quantification of UV-Visible and Laser Spectroscopic Techniques for Materials Accountability and Process Control  

SciTech Connect (OSTI)

Ultraviolet-Visible Spectroscopy (UV-Visible) and Time Resolved Laser Fluorescence Spectroscopy (TRLFS) optical techniques can permit on-line, real-time analysis of the actinide elements in a solvent extraction process. UV-Visible and TRLFS techniques have been used for measuring the speciation and concentration of the actinides under laboratory conditions. These methods are easily adaptable to multiple sampling geometries, such as dip probes, fiber-optic sample cells, and flow-through cell geometries. To fully exploit these techniques for GNEP applications, the fundamental speciation of the target actinides and the resulting influence on 3 spectroscopic properties must be determined. Through this effort detection limits, process conditions, and speciation of key actinide components can be establish and utilized in a range of areas of interest to GNEP, especially in areas related to materials accountability and process control.

Ken Czerwinski; Phil Weck; Frederic Poineau

2010-12-29T23:59:59.000Z

424

Coal Fly Ash as a Source of Iron in Atmospheric Dust  

SciTech Connect (OSTI)

Anthropogenic coal fly ash aerosols may represent a significant source of bioavailable iron in the open ocean. Few measurements have been made to compare the solubility of atmospheric iron from anthropogenic aerosols and other sources. We report an investigation of the iron dissolution of three fly ash samples in acidic aqueous solutions and compare the solubilities with that of Arizona test dust, a reference material of mineral dust. The effects of pH, cloud processing, and solar irradiation on Fe solubility were explored. Similar to previously reported results on mineral dust, iron in aluminosilicate phases provide predominant dissolved iron compared with iron in oxides. Iron solubility of fly ash is higher than Arizona test dust, especially at the higher pH conditions investigated. Simulated atmospheric processing elevates iron solubility due to significant changes in the morphology aluminosilicate glass, a dominantly material in fly ash particle. Iron continuously releases into the aqueous solution as fly ash particles break up into smaller fragments. The assessment of dissolved atmospheric iron deposition fluxes, and their effect on the biogeochemistry at ocean surface should be constrained by taking into account the source, environment pH, Fe speciation, and solar radiation.

Chen, Haihan; Laskin, Alexander; Baltrusaitis, Jonas; Gorski, Christopher A.; Scherer, Michelle; Grassian, Vicki H.

2012-01-18T23:59:59.000Z

425

Microstructural examination of irradiated vanadium alloys  

SciTech Connect (OSTI)

Microstructural examination results are reported for a V-5Cr-5Ti unirradiated control specimens of heat BL-63 following annealing at 1050{degrees}C, and V-4Cr-4Ti heat BL-47 irradiated in three conditions from the DHCE experiment: at 425{degrees}C to 31 dpa and 0.39 appm He/dpa, at 600{degrees}C to 18 dpa and 0.54 appm He/dpa and at 600{degrees}C to 18 dpa and 4.17 appm He/dpa.

Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States); Chung, H.M. [Argonne National Lab., IL (United States)

1997-04-01T23:59:59.000Z

426

Mitigation of irradiation embrittlement by annealing  

SciTech Connect (OSTI)

The main results of a complex investigation carried out in Russia of post irradiation annealing and reembrittlement of WWER-440 reactor pressure vessel materials are presented. The dependence of the Charpy transition temperature recovery on annealing temperature and fluence was established. Charpy specimens were reirradiated after annealing at 340, 380, 420, and 460 C. Experimental values of the Charpy transition temperature after reirradiation are compared to that predicted by three methods. At annealing temperatures equal to or above 420 C, results of the analysis indicate that, of the methods investigated, the lateral shift method gives the best result for estimating the transition temperature shift due to reirradiation.

Amayev, A.D.; Kryukov, A.M.; Levit, V.I.; Platonov, P.A.; Sokolov, M.A. [Kurchatov Inst., Moscow (Russian Federation)

1996-12-31T23:59:59.000Z

427

Irradiation-induced effects of proton irradiation on zirconium carbides with different stoichiometries  

SciTech Connect (OSTI)

Zirconium carbide (ZrC) is being considered for utilization in deep burn TRISO fuel particles for hightemperature, gas-cooled reactors. Zirconium carbide has a cubic B1 type crystal structure along with a very high melting point (3420 ?C), exceptional hardness and good thermal and electrical conductivities. Understanding the ZrC irradiation response is crucial for establishing ZrC as an alternative component in TRISO fuel. Until now, very few studies on irradiation effects on ZrC have been released and fundamental aspects of defect evolution and kinetics are not well understood although some atomistic simulations and phenomenological studies have been performed. This work was carried out to understand the damage evolution in float-zone refined ZrC with different stoichiometries. Proton irradiations at 800 ?C up to doses of 3 dpa were performed on ZrCx (where x ranges from 0.9 to 1.2) to investigate the damage evolution. The irradiation-induced defects, such as density of dislocation loops, at different stoichiometries and doses which were characterized by transmission electron microscopy (TEM) is presented and discussed.

Y. Huang; B.R. Maier; T.R. Allen

2014-10-01T23:59:59.000Z

428

Method using laser irradiation for the production of atomically clean crystalline silicon and germanium surfaces  

DOE Patents [OSTI]

This invention relates to a new method for removing surface impurities from crystalline silicon or germanium articles, such as off-the-shelf p- or n-type wafers to be doped for use as junction devices. The principal contaminants on such wafers are oxygen and carbon. The new method comprises laser-irradiating the contaminated surface in a non-reactive atmosphere, using one or more of Q-switched laser pulses whose parameters are selected to effect melting of the surface without substantial vaporization thereof. In a typical application, a plurality of pulses is used to convert a surface region of an off-the-shelf silicon wafer to an automatically clean region. This can be accomplished in a system at a pressure below 10.sup.-8 Torr, using Q-switched ruby-laser pulses having an energy density in the range of from about 60 to 190 MW/cm.sup.2.

Ownby, Gary W. (Knoxville, TN); White, Clark W. (Oak Ridge, TN); Zehner, David M. (Lenoir City, TN)

1981-01-01T23:59:59.000Z

429

Evolution of the nanostructure OF VVER-1000 RPV materials under neutron irradiation and post irradiation annealing  

SciTech Connect (OSTI)

A high nickel VVER-1000 (15Kh2NMFAA) base metal (1.34 wt% Ni, 0.47% Mn, 0.29% Si and 0.05% Cu), and a high nickel (12Kh2N2MAA) weld metal (1.77 wt% Ni, 0.74% Mn, 0.26% Si and 0.07% Cu) have been characterized by atom probe tomography to determine the changes in the microstructure during neutron irradiation to high fluences. The base metal was studied in the unirradiated condition and after neutron irradiation to fluences between 2.4 and 14.9 x 10{sup 23} m{sup -2} (E > 0.5 MeV), and the weld metal was studied in the unirradiated condition and after neutron irradiation to fluences between 2.4 and 11.5 x 10{sup 23} m{sup -2} (E > 0.5 MeV). High number densities of 2-nm-diameter Ni-, Si- and Mn-enriched nanoclusters were found in the neutron irradiated base and weld metals. No significant copper enrichment was associated with these nanoclusters and no copper-enriched precipitates were observed. The number densities of these nanoclusters correlate with the shifts in the {Delta}T{sub 41 J} ductile-to-brittle transition temperature. These nanoclusters were present after a post irradiOffice of Science (US)C, but had dissolved into the matrix after 24 h at 450 C. Phosphorus, nickel, silicon and to a lesser extent manganese were found to be segregated to the dislocations.

Miller, Michael K [ORNL; Chernobaeva, A. A. [Russian Research Center, Kurchatov Institute, Moscow, Russia; Shtrombakh, Ya. [Russian Research Center, Kurchatov Institute, Moscow, Russia; Erak, D. [Russian Research Center, Kurchatov Institute, Moscow, Russia; Zabusov, Oleg O. [Russian Research Center, Kurchatov Institute, Moscow, Russia; Russell, Kaye F [ORNL; Nanstad, Randy K [ORNL

2009-01-01T23:59:59.000Z

430

Dissolution of ordered precipitates under ion irradiation  

SciTech Connect (OSTI)

The stability of the ordered {gamma}{prime} precipitates under 300-keV Ni{sup +} irradiation was investigated between room temperature and 623 K. The two competing mechanisms of destabilization by cascade producing irradiation, i.e. disordering and dissolution of the {gamma}{prime} precipitates in Nimonic PE16 alloy, has been studied separately by electron microscopy and field-ion microscopy with atom probe. At high temperatures, the precipitates are stable. At intermediate temperatures, the precipitates dissolve by ballistic mixing into the matrix, but the interface is restored by the radiation-enhanced atomic jumps. The order in the precipitates remains stable. At low temperatures, the precipitates are dissolved by atomic mixing. The dissolution proceeds in a diffusional manner with a diffusion coefficient normalized by the displacement rate D/K = 0.75 nm{sup 2}dpa{sup {minus}1}. The precipitates become disordered by a fluence of 0.1 dpa, whereas precipitate dissolution needs much higher fluences.

Camus, E.; Bourdeau, F.; Abromeit, C.; Wanderka, N.; Wollenberger, H. [Hahn-Meitner-Institut Berlin GmbH (Germany)

1995-09-01T23:59:59.000Z

431

Phase transformations in neutron-irradiated Zircaloys  

SciTech Connect (OSTI)

Microstructural evolution in Zircaloy-2 and -4 spent-fuel cladding specimens after approx.3 years of irradiation in commercial power reactors has been investigated by TEM and HVEM. Two kinds of precipitates induced by the fast-neutron irradiation in the reactors have been identified, i.e., Zr/sub 3/O and cubic-ZrO/sub 2/ particles approximately 2 to 10 nm in size. By means of a weak-beam dark-field ''2-1/2D-microscopy'' technique, the bulk nature of the precipitates and the surficial nature of artifact oxide and hydride phases could be discerned. The Zr(Fe/sub x/,Cr/sub 1-x/)/sub 2/ and Zr/sub 2/(Fe/sub x/,Ni/sub 1-x/) intermetallic precipitates normally present in the as-fabricated material virtually dissolved in the spent-fuel cladding specimens after a fast-neutron fluence of approx.4 x 10/sup 21/ ncm/sup -2/ in the power reactors. The observed radiation-induced phase transformations are compared with predictions based on the currently available understanding of the alloy characteristics. 29 refs.

Chung, H.M.

1986-04-01T23:59:59.000Z

432

A Simplified Shuttle Irradiation Facility for ATR  

SciTech Connect (OSTI)

During the past fifteen years there has been a steady increase in the demand for radioisotopes in nuclear medicine and a corresponding decline in the number of reactors within the U.S. capable of producing them. The Advanced Test Reactor (ATR) is the largest operating test reactor in the U.S., but its isotope production capabilities have been limited by the lack of an installed isotope shuttle irradiation system. A concept for a simple "low cost" shuttle irradiation facility for ATR has been developed. Cost were reduced (in comparison to previous ATR designs) by using a shielded trough of water installed in an occupiable cubicle as a shielding and contamination control barrier for the send and receive station. This shielding concept also allows all control valves to be operated by hand and thus the need for an automatic control system was eliminated. It was determined that 4-5 ft of water would be adequate to shield the isotopes of interest while shuttles are transferred to a small carrier. An additional feature of the current design is a non-isolatable by-pass line, which provides a minimum coolant flow to the test region regardless of which control valves are opened or closed. This by-pass line allows the shuttle facility to be operated without bringing reactor coolant water into the cubicle except for send and receive operations.

A. J. Palmer; S. T. Laflin

1999-08-01T23:59:59.000Z

433

Optimisation of buildings' solar irradiation availability  

SciTech Connect (OSTI)

In order to improve the sustainability of new and existing urban settlements it is desirable to maximise the utilisation of the solar energy incident on the building envelope, whether by passive or active means. To this end we have coupled a multi-objective optimisation algorithm with the backwards ray tracing program RADIANCE which itself uses a cumulative sky model for the computation of incident irradiation (W h/m{sup 2}) in a single simulation. The parameters to optimise are geometric (the height of buildings up to their facade and the height and orientation of roofs), but with the constraint of maintaining an overall built volume, and the objective function is heating season solar irradiation offset by envelope heat losses. This methodology has been applied to a range of urban typologies and produces readily interpretable results. The focus of this work is on the design of new urban forms but the method could equally be applied to examine the relative efficiency of existing urban settlements, by comparison of existing forms with the calculated optima derived from relevant specifications of the building envelope. (author)

Kaempf, Jerome Henri; Montavon, Marylene; Bunyesc, Josep; Robinson, Darren [Solar Energy and Building Physics Laboratory, Station 18, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland); Bolliger, Raffaele [Industrial Energy Systems Laboratory, Station 9, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland)

2010-04-15T23:59:59.000Z

434

LWRS ATR Irradiation Testing Readiness Status  

SciTech Connect (OSTI)

The Light Water Reactor Sustainability (LWRS) Program was established by the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors. The LWRS Program is divided into four R&D Pathways: (1) Materials Aging and Degradation; (2) Advanced Light Water Reactor Nuclear Fuels; (3) Advanced Instrumentation, Information and Control Systems; and (4) Risk-Informed Safety Margin Characterization. This report describes an irradiation testing readiness analysis in preparation of LWRS experiments for irradiation testing at the Idaho National Laboratory (INL) Advanced Test Reactor (ATR) under Pathway (2). The focus of the Advanced LWR Nuclear Fuels Pathway is to improve the scientific knowledge basis for understanding and predicting fundamental performance of advanced nuclear fuel and cladding in nuclear power plants during both nominal and off-nominal conditions. This information will be applied in the design and development of high-performance, high burn-up fuels with improved safety, cladding integrity, and improved nuclear fuel cycle economics

Kristine Barrett

2012-09-01T23:59:59.000Z

435

Analysis of tritium transport in irradiated beryllium  

SciTech Connect (OSTI)

Analysis of the beryllium tritium release results with simple analytical models indicated that tritium behavior in Be is not dominated by one simple mechanism, but by a combination of several mechanisms including surface processes and helium bubbles. A model was developed and the initial version of the model included tritium diffusion in the beryllium and the beryllium oxide, second order desorption at the solid/gas interface and diffusion through interconnected porosity. Fundamental data, tritium diffusion and desorption coefficients for Be and BeO, were derived from experimental data using the model. Beryllium is a metal to which one can generally apply the concepts of diffusion, solubility, surface processes and traps. Tritium transport in the irradiated beryllium is affected by processes occurring in the bulk, He bubbles, the bulk/surface and surface/gas interfaces. There are two types of solid/gas surfaces in the irradiated Be. One is the surface at the pure Be/He bubble interface where no oxide layer exists and the other is the surface at the BeO layer/purge gas interface. Although the material characteristics of the Be and BeO layer are different and have different activation barriers, the surface processes can be applied to both interfaces.

Cho, S.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)

1994-12-31T23:59:59.000Z

436

AGR-1 Irradiated Test Train Preliminary Inspection and Disassembly First Look  

SciTech Connect (OSTI)

The AGR-1 irradiation experiment ended on November 6, 2009, after 620 effective full power days in the Advanced Test Reactor, achieving a peak burnup of 19.6% FIMA. The test train was shipped to the Materials and Fuels Complex in March 2010 for post-irradiation examination. The first PIE activities included non-destructive examination of the test train, followed by disassembly of the test train and individual capsules and detailed inspection of the capsule contents, including the fuel compacts and the graphite fuel holders. Dimensional measurements of the compacts, graphite holders, and steel capsules shells were performed using a custom vision measurement system (for outer diameters and lengths) and conventional bore gauges (for inner diameters). Gamma spectrometry of the intact test train gave a preliminary look at the condition of the interior components. No evidence of damage to compacts or graphite components was evident from the isotopic and gross gamma scans. Neutron radiography of the intact Capsule 2 showed a high degree of detail of interior components and confirmed the observation that there was no major damage to the capsule. Disassembly of the capsules was initiated using procedures qualified during out-of-cell mockup testing. Difficulties were encountered during capsule disassembly due to irradiation-induced changes in some of the capsule components’ properties, including embrittled niobium and molybdenum parts that were susceptible to fracture and swelling of the graphite fuel holders that affected their removal from the capsule shells. This required various improvised modifications to the disassembly procedure to avoid damage to the fuel compacts. Ultimately the capsule disassembly was successful and only one compact from Capsule 4 (out of 72 total in the test train) sustained damage during the disassembly process, along with the associated graphite holder. The compacts were generally in very good condition upon removal. Only relatively minor damage or markings were visible using high resolution photographic inspection. Compact dimensional measurements indicated diametrical shrinkage of 0.9 to 1. 4%, and length shrinkage of 0.2 to 1.1%. The shrinkage was somewhat dependent on compact location within each capsule and within the test train. Compacts exhibited a maximum diametrical shrinkage at a fast neutron fluence of approximately 3×1021 n/cm2. A multivariate statistical analysis indicates that fast neutron fluence as well as compact position in the test train influence compact shrinkage.

Paul Demkowicz; Lance Cole; Scott Ploger; Philip Winston; Binh Pham; Michael Abbott

2011-01-01T23:59:59.000Z

437

A Survey of Irradiated Pillars, Globules, and Jets in the Carina Nebul  

E-Print Network [OSTI]

We present wide-field, deep narrowband H$_2$, Br$\\gamma$, H$\\alpha$, [S II], [O III], and broadband I and K-band images of the Carina star formation region. The new images provide a large-scale overview of all the H$_2$ and Br$\\gamma$ emission present in over a square degree centered on this signature star forming complex. By comparing these images with archival HST and Spitzer images we observe how intense UV radiation from O and B stars affects star formation in molecular clouds. We use the images to locate new candidate outflows and identify the principal shock waves and irradiated interfaces within dozens of distinct areas of star-forming activity. Shocked molecular gas in jets traces the parts of the flow that are most shielded from the intense UV radiation. Combining the H$_2$ and optical images gives a more complete view of the jets, which are sometimes only visible in H$_2$. The Carina region hosts several compact young clusters, and the gas within these clusters is affected by radiation from both the...

Hartigan, P; Smith, N; Bally, J

2015-01-01T23:59:59.000Z

438

On the potential of the EChO mission to characterise gas giant atmospheres  

E-Print Network [OSTI]

Space telescopes such as EChO (Exoplanet Characterisation Observatory) and JWST (James Webb Space Telescope) will be important for the future study of extrasolar planet atmospheres. Both of these missions are capable of performing high sensitivity spectroscopic measurements at moderate resolutions in the visible and infrared, which will allow the characterisation of atmospheric properties using primary and secondary transit spectroscopy. We use the NEMESIS radiative transfer and retrieval tool (Irwin et al. 2008, Lee et al. 2012) to explore the potential of the proposed EChO mission to solve the retrieval problem for a range of H2-He planets orbiting different stars. We find that EChO should be capable of retrieving temperature structure to ~200 K precision and detecting H2O, CO2 and CH4 from a single eclipse measurement for a hot Jupiter orbiting a Sun-like star and a hot Neptune orbiting an M star, also providing upper limits on CO and NH3. We provide a table of retrieval precisions for these quantities in ...

Barstow, Joanna K; Irwin, Patrick G J; Bowles, Neil; Fletcher, Leigh N; Lee, Jae-Min

2012-01-01T23:59:59.000Z

439

Typical atmospheric aerosol behavior at the Cherenkov Telescope Array candidate sites in Argentina  

E-Print Network [OSTI]

Aerosols from natural and antropogenic sources are one of the atmospheric components that have the largest spacial-temporal variability, depending on the type (land or ocean) surface, human activity and climatic conditions (mainly temperature and wind). Since Cherenkov photons generated by the incidence of a primary ultraenergetic cosmic gamma photon have a spectral intensity distribution concentrated in the UV and visible ranges [Hillas AM. Space Science Reviews, 75, 17-30, 1996], it is important to know the aerosol concentration and its contribution to atmospheric radiative transfer. We present results of this concentration measured in typical rather calm (not windy) days at San Antonio de los Cobres (SAC) and El Leoncito/CASLEO proposed Argentinean Andes range sites for the placement of the Cherenkov Telescope Array (CTA). In both places, the aerosol concentration has a peak in the 2.5-5.0$\\mu$m range of the mean aerosol diameter and a very low mean total concentration of 0.097$\\mu$g/m$^3$ (0.365$\\mu$g/m$^...

Piacentini, Rubén D; Micheletti, María I; Salum, Graciela M; Maya, Javier; Mancilla, Alexis; García, Beatriz

2013-01-01T23:59:59.000Z

440

Sandia National Laboratories: point sensor irradiance measurements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine bladelifetime ismobileparallelplantplasma materialsplatinumpoint

Note: This page contains sample records for the topic "visible irradiance atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Atmospheric chemistry impacts and feedbacks on the global carbon cycle  

E-Print Network [OSTI]

prediction. Issues to be addressed include the quantification of the impact of the atmospheric oxidation and the oxidative state of the atmosphere. The end goal is to create a model that can quantitatively predict is required to: Predict 3-D atmospheric CO2 production as a function of the CCSM3 atmospheric chemistry module

442

New nonlinear mechanisms of midlatitude atmospheric low-frequency variability  

E-Print Network [OSTI]

and Atmospheric Research Utrecht, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands Abstract

443

Atmospheric Pressure Plasma Process And Applications  

SciTech Connect (OSTI)

This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

Peter C. Kong; Myrtle

2006-09-01T23:59:59.000Z

444

Magnetized Atmospheres around Accreting Neutron Stars  

E-Print Network [OSTI]

We present a detailed investigation of atmospheres around accreting neutron stars with high magnetic field ($B\\gtrsim 10^{12}$ G) and low luminosity ($L\\lesssim 10^{33}$ erg/s). We compute the atmospheric structure, intensity and emergent spectrum for a plane-parallel, pure hydrogen medium by solving the transfer equations for the normal modes coupled to the hydrostatic and energy balance equations. The hard tail found in previous investigations for accreting, non-magnetic neutron stars with comparable luminosity is suppressed and the X-ray spectrum, although still harder than a blackbody at the star effective temperature, is nearly planckian in shape. Spectra from accreting atmospheres, both with high and low fields, are found to exhibit a significant excess at optical wavelengths above the Rayleigh-Jeans tail of the X-ray continuum.

S. Zane; R. Turolla; A. Treves

2000-02-01T23:59:59.000Z

445

Postharvest irradiation treatment effect on grapefruit functional components and their role in prevention of colon cancer  

E-Print Network [OSTI]

and irradiation significantly (P ? 0.05) affected the bioactive compounds in grapefruit, however, the effect of storage was prominent. The third study examined the influence of irradiation and freeze drying on bioactive compounds of grapefruit. Irradiation...

Vanamala, Jairam Krishna Prasad

2005-11-01T23:59:59.000Z

446

SHORT COMMUNICATION Microbeam irradiation of C. elegans nematode in microfluidic  

E-Print Network [OSTI]

SHORT COMMUNICATION Microbeam irradiation of C. elegans nematode in microfluidic channels M implemented a microfluidic tool for microbeam irradiation of Caenorhabditis elegans. The device allows into the microfluidic device through liquid flow between an inlet and an outlet, and the size of each microchannel

Brenner, David Jonathan

447

Retention of Hydrogen Isotopes in Neutron Irradiated Tungsten  

SciTech Connect (OSTI)

To investigate the effects of neutron irradiation on hydrogen isotope retention in tungsten, disk-type specimens of pure tungsten were irradiated in the High Flux Isotope Reactor in Oak Ridge National Laboratory followed by exposure to high flux deuterium (D) plasma in Idaho National Laboratory. The results obtained for low dose n-irradiated specimens (0.025 dpa for tungsten) are reviewed in this paper. Irradiation at coolant temperature of the reactor (around 50 degrees C) resulted in the formation of strong trapping sites for D atoms. The concentrations of D in n-irradiated specimens were ranging from 0.1 to 0.4 mol% after exposure to D plasma at 200 and 500 degrees C and significantly higher than those in non-irradiated specimens because of D-trapping by radiation defects. Deep penetration of D up to a depth of 50-100 µm was observed at 500 degrees C. Release of D in subsequent thermal desorption measurements continued up to 900 degrees C. These results were compared with the behaviour of D in ion-irradiated tungsten, and distinctive features of n-irradiation were discussed.

Yuji Hatano; Masashi Shimada; Yasuhisa Oya; Guoping Cao; Makoto Kobayashi; Masanori Hara; Brad J. Merrill; Kenji Okuno; Mikhail A. Sokolov; Yutai Katoh

2013-03-01T23:59:59.000Z

448

Irradiation effects in high-density polyethylene Jussi Polvia  

E-Print Network [OSTI]

Irradiation effects in high-density polyethylene Jussi Polvia , Kai Nordlunda a simulations, we have studied the irradiation effects in high density polyethylene. We determined the threshold energy for creating defects in the polyethylene lattice as a function of the incident angle. We found

Nordlund, Kai

449

Asymmetric Orientational Writing in glass with femtosecond laser irradiation  

E-Print Network [OSTI]

Asymmetric Orientational Writing in glass with femtosecond laser irradiation B. Poumellec,1 M in the dielectric inducing an asymmetric stress field is proposed. ©2013 Optical Society of America OCIS codes: (160. Prade, and A. Mysyrowicz, "Femtosecond laser irradiation stress induced in pure silica," Opt. Express 11

Boyer, Edmond

450

Physica B 308310 (2001) 612615 Irradiation effects in semiconducting diamonds  

E-Print Network [OSTI]

Physica B 308­310 (2001) 612­615 Irradiation effects in semiconducting diamonds N. Kristianpoller irradiation on semiconducting diamonds (type IIb) were studied and compared with those induced at the same conditions in natural (type Ia) and in synthetic diamonds. Methods of optical absorption, of X-ray and light

Chen, Reuven

451

A Community Atmosphere Model with Superparameterized Clouds  

SciTech Connect (OSTI)

In 1999, National Center for Atmospheric Research (NCAR) scientists Wojciech Grabowski and Piotr Smolarkiewicz created a "multiscale" atmospheric model in which the physical processes associated with clouds were represented by running a simple high-resolution model within each grid column of a lowresolution global model. In idealized experiments, they found that the multiscale model produced promising simulations of organized tropical convection, which other models had struggled to produce. Inspired by their results, Colorado State University (CSU) scientists Marat Khairoutdinov and David Randall created a multiscale version of the Community Atmosphere Model (CAM). They removed the cloud parameterizations of the CAM, and replaced them with Khairoutdinov's high-resolution cloud model. They dubbed the embedded cloud model a "super-parameterization," and the modified CAM is now called the "SP-CAM." Over the next several years, many scientists, from many institutions, have explored the ability of the SP-CAM to simulate tropical weather systems, the day-night changes of precipitation, the Asian and African monsoons, and a number of other climate processes. Cristiana Stan of the Center for Ocean-Land-Atmosphere Interactions found that the SP-CAM gives improved results when coupled to an ocean model, and follow-on studies have explored the SP-CAM's utility when used as the atmospheric component of the Community Earth System Model. Much of this research has been performed under the auspices of the Center for Multiscale Modeling of Atmospheric Processes, a National Science Foundation (NSF) Science and Technology Center for which the lead institution is CSU.

Randall, David; Branson, Mark; Wang, Minghuai; Ghan, Steven J.; Craig, Cheryl; Gettelman, A.; Edwards, Jim

2013-06-18T23:59:59.000Z

452

Controlled atmosphere for fabrication of cermet electrodes  

DOE Patents [OSTI]

A process is disclosed for making an inert electrode composite wherein a metal oxide and a metal are reacted in a gaseous atmosphere at an elevated temperature of at least about 750 C. The metal oxide is at least one of the nickel, iron, tin, zinc and zirconium oxides and the metal is copper, silver, a mixture of copper and silver or a copper-silver alloy. The gaseous atmosphere has an oxygen content that is controlled at about 5--3000 ppm in order to obtain a desired composition in the resulting composite. 2 figs.

Ray, S.P.; Woods, R.W.

1998-08-11T23:59:59.000Z

453

Controlled atmosphere for fabrication of cermet electrodes  

DOE Patents [OSTI]

A process for making an inert electrode composite wherein a metal oxide and a metal are reacted in a gaseous atmosphere at an elevated temperature of at least about 750.degree. C. The metal oxide is at least one of the nickel, iron, tin, zinc and zirconium oxides and the metal is copper, silver, a mixture of copper and silver or a copper-silver alloy. The gaseous atmosphere has an oxygen content that is controlled at about 5-3000 ppm in order to obtain a desired composition in the resulting composite.

Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA)

1998-01-01T23:59:59.000Z

454

The Atmospheric Radiation Measurement Program Video  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004The Atmospheric Radiation Measurement

455

Radiometric characterization of a high temperature blackbody in the visible and near infrared  

SciTech Connect (OSTI)

At the Physikalisch-Technische Bundesanstalt the radiance temperature in the range from 962 °C to 3000 °C is disseminated by applying a high temperature blackbody (HTBB) with a directly heated pyrolytic graphite cavity. The thermodynamic radiance temperature of the HTBB was measured in the temperature range from 1000 °C to 3000 °C by applying almost simultaneously absolutely calibrated silicon photodiode based filter radiometers with centre wavelengths at 476 nm, 676 nm, 800 nm, 900 nm and 1000 nm and InGaAs photodiode based filter radiometers with centre wavelengths at 1300 nm, 1550 nm and 1595 nm. The results demonstrate that, expressed in terms of irradiance, within an uncertainty of 0.1 % (k=1) in a broad wavelength range the thermodynamic radiance temperature of the HTBB is wavelength independent in the investigated temperature interval.

Taubert, R. D.; Hollandt, J. [Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, D-10587 Berlin (Germany)] [Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, D-10587 Berlin (Germany)

2013-09-11T23:59:59.000Z

456

CdSe-MoS2: A Quantum Size-Confined Photocatalyst for Hydrogen Evolution from Water under Visible Light  

E-Print Network [OSTI]

and for the conversion of carbon dioxides into methanol and hydrocarbons. Metal chalcogenides1­9 are promisingCdSe-MoS2: A Quantum Size-Confined Photocatalyst for Hydrogen Evolution from Water under Visible driven pathway to hydrogen. Hydrogen is not only an environmentally benign fuel for the generation

Osterloh, Frank

457

Summary Leaf reflectance at visible and near-infrared wavelengths (4001000 nm) is related primarily to pigmenta-  

E-Print Network [OSTI]

Summary Leaf reflectance at visible and near-infrared wavelengths (400­1000 nm) is related physiology and relationships between plants and their growth environment. We studied reflectance of two co collected from 24 sites and white spruce from 30 sites. Overall, reflectance spectra of the two species were

Richardson, Andrew D.

458

Bringing Visibility to Rural Users in Cote d'Ivoire Mariya Zheleva, Paul Schmitt, Morgan Vigil and Elizabeth Belding  

E-Print Network [OSTI]

from Cote d'Ivoire with an emphasis on understanding how population density impacts the use of cellularBringing Visibility to Rural Users in Cote d'Ivoire Mariya Zheleva, Paul Schmitt, Morgan Vigil a cellular traffic dataset provided by Orange in Cote d'Ivoire with the goal of identifying distinctions

Belding-Royer, Elizabeth M.

459

A Red-Shifted, Fast-Relaxing Azobenzene Photoswitch for Visible Light Control of an Ionotropic Glutamate Receptor  

E-Print Network [OSTI]

A Red-Shifted, Fast-Relaxing Azobenzene Photoswitch for Visible Light Control of an Ionotropic cores with a red-shifted cis-to-trans isomerization have been previously described, they have not yet ligand (PTL) approach. We report the synthesis and characterization of a red-shifted PTL, L-MAG0460

Trauner, Dirk

460

Visible-light active TiO2 for microwave assisted photocatalytic reactions using mercury electrodeless discharge lamps  

E-Print Network [OSTI]

activity was evaluated by the degradation of mono-chloroacetic acid in a microwave field using mercury with pure titania, the UV-Vis spectra of Ag+, Zr4+ and VO2+ doped titanium dioxide show significant absorption in visible region. The degradation efficiency of MCAA in a microwave field on these TiO2 layers

Cirkva, Vladimir

Note: This page contains sample records for the topic "visible irradiance atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

PPPL3301, Preprint: May 1998, UC426 Design Study of a Visible/Infrared Periscope for Intense Radiation  

E-Print Network [OSTI]

PPPL­3301, Preprint: May 1998, UC­426 Design Study of a Visible/Infrared Periscope for Intense projected heating of the reflective optics themselves to several hundred degrees Celsius. Tests of beryllium regions during operation and infrared measurement of the surface temperature of the first wall structures

462

PPPL-3301, Preprint: May 1998, UC-426 Design Study of a Visible/Infrared Periscope for Intense Radiation  

E-Print Network [OSTI]

PPPL-3301, Preprint: May 1998, UC-426 Design Study of a Visible/Infrared Periscope for Intense projected heating of the reflective optics themselves to several hundred degrees Celsius. Tests of beryllium regions during operation and infrared measurement of the surface temperature of the first wall structures

463

Combining visible and near-infrared images for realistic skin Clement Fredembach, Nathalie Barbuscia and Sabine Susstrunk  

E-Print Network [OSTI]

Combining visible and near-infrared images for realistic skin smoothing Cl´ement Fredembach components of skin colour, have little absorption in the near-infrared part of the spectrum propose that near-infrared images provide information that can be used to automatically smooth skin tones

Salvaggio, Carl

464

Standard Guide for Packaging Materials for Foods to Be Irradiated  

E-Print Network [OSTI]

1.1 This guide provides a format to assist producers and users of food packaging materials in selecting materials that have the desirable characteristics for their intended use and comply with applicable standards or government authorizations. It outlines parameters that should be considered when selecting food-contact packaging materials intended for use during irradiation of prepackaged foods and it examines the criteria for fitness for their use. 1.2 This guide identifies known regulations and regulatory frameworks worldwide pertaining to packaging materials for holding foods during irradiation; but it does not address all regulatory issues associated with the selection and use of packaging materials for foods to be irradiated. It is the responsibility of the user of this guide to determine the pertinent regulatory issues in each country where foods are to be irradiated and where irradiated foods are distributed. 1.3 This guide does not address all of the food safety issues associated with the synergisti...

American Society for Testing and Materials. Philadelphia

2009-01-01T23:59:59.000Z

465

Standard Guide for Irradiation of Finfish and Aquatic Invertebrates Used as Food to Control Pathogens and Spoilage Microorganisms  

E-Print Network [OSTI]

1.1 This guide outlines procedures and operations for the irradiation of raw, untreated, fresh (chilled), or frozen finfish and aquatic invertebrates, while ensuring that the irradiated product is safe and wholesome. 1.1.1 Aquatic invertebrates include molluscs, crustacea, echinoderms, etc. 1.1.1.1 Molluscs include bivalve shellfish, such as clams, mussels, and oysters; snails; and cephalopods, such as squid and octopus. 1.1.1.2 Crustacea include shellfish such as shrimp, lobster, crabs, prawns and crayfish. 1.1.1.3 Echinoderms include sea urchins and sea cucumbers. 1.2 This guide covers absorbed doses used to reduce the microbial and parasite populations in aquatic invertebrates and finfish. Such doses typically are below 10 kGy (1). 1.3 The use of reduced-oxygen packaging (vacuum or modified atmosphere, and including products packed in oil) with irradiated, raw product is not covered by this guide. The anaerobic environment created by reduced-oxygen packaging provides the potential for outgrowth o...

American Society for Testing and Materials. Philadelphia

2009-01-01T23:59:59.000Z

466

E-Print Network 3.0 - accelerated partial-breast irradiation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

irradiated for one hour... 1 Irradiation of Nd-Fe-B Permanent Magnets with APS Bending Magnet ... Source: Kemner, Ken - Biosciences Division, Argonne National Laboratory...

467

Instrumentation to Enhance Advanced Test Reactor Irradiations  

SciTech Connect (OSTI)

The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

J. L. Rempe; D. L. Knudson; K. G. Condie; J. E. Daw; S. C. Taylor

2009-09-01T23:59:59.000Z

468

Irradiation behavior of metallic fast reactor fuels  

SciTech Connect (OSTI)

Metallic fuels were the first fuels chosen for liquid metal cooled fast reactors (LMR's). In the late 1960's world-wide interest turned toward ceramic LMR fuels before the full potential of metallic fuel was realized. However, during the 1970's the performance limitations of metallic fuel were resolved in order to achieve a high plant factor at the Argonne National Laboratory's Experimental Breeder Reactor II. The 1980's spawned renewed interest in metallic fuel when the Integral Fast Reactor (IFR) concept emerged at Argonne National Laboratory. A fuel performance demonstration program was put into place to obtain the data needed for the eventual licensing of metallic fuel. This paper will summarize the results of the irradiation program carried out since 1985.

Pahl, R.G.; Porter, D.L.; Crawford, D.C.; Walters, L.C.

1991-01-01T23:59:59.000Z

469

Optimization parameter design for proton irradiation accelerator  

E-Print Network [OSTI]

The proton irradiation accelerator is widely founded for industry application, and should be designed as compact, reliable, and easy operate. A 10 MeV proton beam is designed to be injected into the slow circulation ring with the repetition rate of 0.5 Hz for accumulation and acceleration, and then the beam with the energy of 300MeV will be slowly extracted by third order resonance method. For getting a higher intensity and more uniform beam, the height of the injection bump is carefully optimised during the injection period. Besides, in order to make the extracted beam with a more uniform distribution, a RF Knock-out method is adopted, and the RF kicker's amplitude is well optimised.

Yu-Wen An; Hong-Fei Ji; Sheng Wang; Shou-Yan Xu

2014-11-20T23:59:59.000Z

470

Recovery of niobium from irradiated targets  

DOE Patents [OSTI]

A process for selective separation of niobium from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected form the group consisting of molybdenum, biobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the cationic resin; adjusting the pH of the second ion-containing solution to within a range of from about 5.0 to about 6.0; contacting the pH adjusting second ion-containing solution with a dextran-based material for a time to selectively separate niobium from the solution and recovering the niobium from the dextran-based material.

Phillips, Dennis R. (Los Alamos, NM); Jamriska, Sr., David J. (Los Alamos, NM); Hamilton, Virginia T. (Los Alamos, NM)

1994-01-01T23:59:59.000Z

471

Infrared nanosecond laser-metal ablation in atmosphere: Initial plasma during laser pulse and further expansion  

SciTech Connect (OSTI)

We have investigated the dynamics of the nanosecond laser ablated plasma within and after the laser pulse irradiation using fast photography. A 1064 nm, 15 ns laser beam was focused onto a target made from various materials with an energy density in the order of J/mm{sup 2} in atmosphere. The plasma dynamics during the nanosecond laser pulse were observed, which could be divided into three stages: fast expansion, division into the primary plasma and the front plasma, and stagnation. After the laser terminated, a critical moment when the primary plasma expansion transited from the shock model to the drag model was resolved, and this phenomenon could be understood in terms of interactions between the primary and the front plasmas.

Wu, Jian; Wei, Wenfu; Li, Xingwen; Jia, Shenli; Qiu, Aici [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Shaanxi 710049 (China)] [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Shaanxi 710049 (China)

2013-04-22T23:59:59.000Z

472

Soot scattering measurements in the visible and near-infrared spectrum  

SciTech Connect (OSTI)

Scattering to extinction cross-section ratios, {rho}{sub se} were measured using the NIST Large Agglomerate Optics Facility for soot produced from ethene and acetylene laminar diffusion flames. Measurements were performed using light sources at 543.5 nm, 632.8 nm and 856 nm. The average scattering to extinction cross-section ratios for these wavelengths are equal to 0.246, 0.196, and 0.196 for ethene and 0.316, 0.230, and 0.239 for acetylene. The 856 nm measurements represent the longest wavelength for which accurate scattering measurements have been performed for soot. The size distribution and fractal properties of the two soots were determined to assess the effects of limited acceptance angle range, finite size of the sensor, and departure from cosine response on the uncertainty in the measurement of {rho}{sub se} The expanded relative uncertainty (95% confidence level) was found to be {+-}6% at the two visible wavelengths and {+-}8% at 856 nm. Both the magnitude and wavelength dependence of {rho}{sub se} for the present experiments are significantly different from those reported by Krishnan et al. for overfire soot produced using a turbulent flame. The results are compared with the predictions of fractal optics.

ZHU,JINYU; CHOI,MUN YOUNG; MULHOLLAND,GEORGE W.; GRITZO,LOUIS A.

2000-02-08T23:59:59.000Z

473

AGC-3 Irradiation Data Qualification Final Report  

SciTech Connect (OSTI)

The Graphite Technology Development Program will run a series of six experiments to quantify the effects of irradiation on nuclear grade graphite. The third experiment, Advanced Graphite Creep 3 (AGC 3), began with Advanced Test Reactor (ATR) Cycle 152B on November 27, 2012, and ended with ATR Cycle 155B on April 23, 2014. This report documents qualification of AGC 3 experiment irradiation monitoring data for use by the Very High Temperature Reactor (VHTR) Technology Development Office (TDO) Program for research and development activities required to design and license the first VHTR nuclear plant. Qualified data meet the requirements for data collection and use as described in the experiment planning and quality assurance documents. Failed data do not meet the requirements. Trend data may not meet the requirements, but may still provide some useable information. All thermocouples (TCs) functioned throughout the AGC 3 experiment. There was one interval between December 18, 2012, and December 20, 2012, where 10 NULL values were reported for various TCs. These NULL values were deleted from the Nuclear Data Management and Analysis System database. All temperature data are Qualified for use by the VHTR TDO Program. Argon, helium, and total gas flow data were within expected ranges and are Qualified for use by the VHTR TDO Program. Total gas flow was approximately 50 sccm through the AGC 3 experiment capsule. Helium gas flow was briefly increased to 100 sccm during ATR shutdowns. At the start of the AGC 3 experiment, moisture in the outflow gas line was stuck at a constant value of 335.6174 ppmv for the first cycle (Cycle 152B). When the AGC 3 experiment capsule was reinstalled in ATR for Cycle 154B, a new moisture filter was installed. Moisture data from Cycle 152B are Failed. All moisture data from the final three cycles (Cycles 154B, 155A, and 155B) are Qualified for use by the VHTR TDO Program.

Laurence Hull

2014-08-01T23:59:59.000Z

474

Detecting Drizzle in Marine Warm Clouds Using Visible, Infrared, and Microwave Satellite Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData FilesShape, Density, andagingaboutDrizzle in Marine Warm

475

Tunable Transmittance of Near-infrared and Visible Light in Reconstructed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2TopoPortalBRDFTunable Thermal Link

476

Cloud Properties Derived from Visible and Near-infrared Reflectance in the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of WesternVailCloisteredPresence of Aerosols

477

Connectivity To Atmospheric Release Advisory Capability  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish DOE and NNSA connectivity to Atmospheric Release Advisory Capability (ARAC) for sites and facilities that have the potential for releasing hazardous materials sufficient to generate certain emergency declarations and to promote efficient use of resources for consequence assessment activities at DOE sites, facilities, operations, and activities in planning for and responding to emergency events. No cancellations.

2001-02-26T23:59:59.000Z

478

Exploring the Deep... Ocean-Atmosphere  

E-Print Network [OSTI]

Climate oscillations 97 #12;Storing energy To understand how solar radiation affects large-scale processes), and biosphere (living organisms) that are driven by solar energy. The ocean and the atmosphere have the greatest on the others. To fully understand the dynamics of our climate, we must examine the global energy balance

Wright, Dawn Jeannine

479

Atmospheric Data Package for the Composite Analysis  

SciTech Connect (OSTI)

The purpose of this data package is to summarize our conceptual understanding of atmospheric transport and deposition, describe how this understanding will be simplified for numerical simulation as part of the Composite Analysis (i.e., implementation model), and finally to provide the input parameters needed for the simulations.

Napier, Bruce A.; Ramsdell, James V.

2005-09-01T23:59:59.000Z

480

THE LOWER SOLAR ATMOSPHERE ROBERT J. RUTTEN  

E-Print Network [OSTI]

THE LOWER SOLAR ATMOSPHERE ROBERT J. RUTTEN Sterrekundig Instituut, Postbus 80 000, NL­3508 TA, Utrecht, The Netherlands Abstract. This "rapporteur" report discusses the solar photosphere and low does not seem to jeopardize precise determination of solar abundances in classical fashion. It is still

Rutten, Rob

Note: This page contains sample records for the topic "visible irradiance atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

MIDDLE ATMOSPHERE DYNAMICS ATS 708 (3 credits)  

E-Print Network [OSTI]

Academic Integrity Policy as found in the General Catalog (http://www.catalog.colostate.edu/FrontPDF/1, 1987, Andrews, Holton, Leovy, Academic Press. · Atmospheric and Oceanic Fluid Dynamics, 2006, Vallis Articles (alphabetically): · Baldwin et al., 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 1979

482

MIDDLE ATMOSPHERE DYNAMICS AT707 (3 credits)  

E-Print Network [OSTI]

., Holton, J. R., Leovy, C. B., Academic Press, 489 pp. · Atmospheric and Oceanic Fluid Dynamics, 2006 Review Articles: · Haynes, P. H., 2005: Stratospheric Dynamics. Annu. Rev. Fluid Mech., 37, 263­ 293­Dobson Circulation, Residual (Diabatic) Circulations 7.1 Discovery 7.2 Eliassen's Balanced Response to a Mechanical

483

Analysis methods for Atmospheric Cerenkov Telescopes  

E-Print Network [OSTI]

Three different analysis techniques for Atmospheric Imaging System are presented. The classical Hillas parameters based technique is shown to be robust and efficient, but more elaborate techniques can improve the sensitivity of the analysis. A comparison of the different analysis techniques shows that they use different information for gamma-hadron separation, and that it is possible to combine their qualities.

Mathieu de Naurois

2006-07-12T23:59:59.000Z

484

TETTERSTO NATURE Pre-industrial atmospheric  

E-Print Network [OSTI]

, starting with the Greek and Roman cultures3'4.The cumulative deposition from anthropogenicsourcesin preTETTERSTO NATURE Pre-industrial atmospheric lead contamination detected in Swedish lake sediments for pre-industrial atmospherictrace-metalcontaminationt''it is commonlyassumed that air pollution

Short, Daniel

485

Microlensing Effects in Atmospheres of Substars  

E-Print Network [OSTI]

The purpose of the present work is the study of focusing properties of atmospheres of substars that is necessary for adequate interpreting of observational data and for solving the inverse problem consisting in recovery parameters of 'microlenses' (substars) and sources (quasars). Amplification factor for a quasar image as projected onto the field of microlenses-substars was computed for optical and radio wavelengths.

L. A. Berdina; A. A. Minakov

2007-12-10T23:59:59.000Z

486

Propagation of strangelets in the Earth's atmosphere  

E-Print Network [OSTI]

A new model for the description of the behaviour of strangelets in the Earth's atmosphere is presented. Strangelet fission induced by collision with air nuclei is included. It is shown that strangelets with certain parameters of initial mass and energy may reach depths near sea level, which can be examined by ground-based experiments.

Fei Wu; Ren-Xin Xu; Bo-Qiang Ma

2007-02-13T23:59:59.000Z

487

White Dwarf Spectra and Atmosphere Models  

E-Print Network [OSTI]

We describe the spectral classification of white dwarfs and some of the physical processes important for their understanding. In the major part of this paper we discuss the input physics and computational methods for one of the most widely used stellar atmosphere codes for white dwarfs.

Detlev Koester

2008-12-02T23:59:59.000Z

488

1999 Gordon Research Conference on Atmospheric Chemistry  

SciTech Connect (OSTI)

The Gordon Research Conference (GRC) on Atmospheric Chemistry was held at Salve Regina University in Newport, Rhode Island, June 13-18, 1999. The conference was well attended with 151 participants. The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both US and foreign scientists, senior researchers, young investigators, and students.

Storm, C.

2000-08-01T23:59:59.000Z

489

Atmospheric dispersion in mountain valleys and basins  

SciTech Connect (OSTI)

The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ventilation rate'' of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

Allwine, K.J.

1992-01-01T23:59:59.000Z

490

Atmospheric dispersion in mountain valleys and basins  

SciTech Connect (OSTI)

The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ``ventilation rate`` of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

Allwine, K.J.

1992-01-01T23:59:59.000Z

491

JournalofGeophysicalResearch: Atmospheres RESEARCH ARTICLE  

E-Print Network [OSTI]

convection to start from more levels · Simple modification of convective parameterization Correspondence to of the Community Atmosphere Model (CAM4), we show that the overall accuracy in the diurnal simulation of convective rise to diurnal cycles in cloud amount [May et al., 2012] and relative humidity [Soden, 2000] which

Folkins, Ian

492

Cooperative Institute for Research in the Atmosphere  

E-Print Network [OSTI]

#12;2 Cooperative Institute for Research in the Atmosphere Contents 3 Heavy Snowfall regulations designed to elimi- nate human-caused haze in Big Bend and 155 other National Parks), and the Electric Power Research Institute (EPRI), among others. In support of BRAVO, NPS and CIRA scientists

Collett Jr., Jeffrey L.

493

Methane present in an extrasolar planet atmosphere  

E-Print Network [OSTI]

Molecules present in exoplanetary atmospheres are expected to strongly influence the atmospheric radiation balance, trace dynamical and chemical processes, and indicate the presence of disequilibrium effects. Since molecules have the potential to reveal the exoplanet atmospheric conditions and chemistry, searching for them is a high priority. The rotational-vibrational transition bands of water, carbon monoxide, and methane are anticipated to be the primary sources of non-continuum opacity in hot-Jovian planets. Since these bands overlap in wavelength, and the corresponding signatures from them are weak, decisive identification requires precision infrared spectroscopy. Here we report on a near-infrared transmission spectrum of the planet HD 189733b showing the presence of methane. Additionally, a resolved water-vapour band at 1.9 microns confirms the recent claim of water in this object. On thermochemical grounds, carbon-monoxide is expected to be abundant in the upper atmosphere of hot-Jovian exoplanets; thus the detection of methane rather than carbon-monoxide in such a hot planet could signal the presence of a horizontal chemical gradient away from the permanent dayside, or it may imply an ill-understood photochemical mechanisms that leads to an enhancement of methane.

Mark R. Swain; Gautam Vasisht; Giovanna Tinetti

2008-02-07T23:59:59.000Z

494

AT 715 (2 Credits) Atmospheric Oxidation Processes  

E-Print Network [OSTI]

: 1. Develop an understanding of kinetic and equilibrium aspects of important chemical pathways, Journal of Geophysical Research, Atmospheric Chemis- try and Physics (on-line), Journal of the Air: reactions of isoprene oxidation products. Environ. Sci. Tech. 40, 4956-4960. #12;

495

Doctoral Programs Atmospheric, Oceanic & Space Sciences  

E-Print Network [OSTI]

Professor; Recipient, Teaching Innovation Prize; Michigan Distinguished Professor of the Year Allison Mission to Comet 67P / Churyumov- Gerasimenko · Solar and Heliospheric Physics G